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1 Introduction

In the third of our series of papers on cevian geometry [9], we have studied
the properties of the generalized orthocenter H of a point P with respect to
an ordinary triangle ABC in the extended Euclidean plane, using synthetic
techniques from projective geometry. This generalized orthocenter is defined as
follows. Letting K denote the complement map with respect to ABC and ι the
isotomic map (see [1], [6]), the point Q = K ◦ ι(P ) is called the isotomcomple-
ment of P . Further, let D,E, F denote the traces of P on the sides of ABC.
The generalized orthocenter H is defined to be the unique point H for which
the lines HA,HB,HC are parallel to QD,QE,QF , respectively. We showed
(synthetically) in [7] that H is given by the formula

H = K−1 ◦ T−1P ′ ◦K(Q),

where TP ′ is the unique affine map taking ABC to the cevian triangle D3E3F3

of the isotomic conjugate P ′ = ι(P ) of P . The related point

O = K(H) = T−1P ′ ◦K(Q)

is the generalized circumcenter (for P ) and is the center of the circumconic
C̃O = T−1P ′ (NP ′), where NP ′ is the nine-point conic for the quadrangle ABCP ′

(see [9], Theorems 2.2 and 2.4; and [2], p. 84).

We also showed in [9], Theorem 3.4, that if TP is the unique affine map taking
ABC to the cevian triangle DEF of P , then the affine map M = TP ◦K−1 ◦TP ′
is a homothety or translation which maps the circumconic C̃O to the inconic I,
defined to be the conic with center Q which is tangent to the sides of ABC at
the points D,E, F . In the classical case, when P = Ge is the Gergonne point of
triangle ABC, the points O and H are the usual circumcenter and orthocenter,
and the conics C̃O and I are the circumcircle and incircle, respectively. In that
case the map M taking C̃O to I is a homothety, and its center is the insimilicenter
S. In general, if G is the centroid of ABC, and Q′ = K(P ), then the center of
the map M is the point

S = OQ ·GV = OQ ·O′Q′, where V = PQ · P ′Q′,
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Figure 1: The conics C̃O (strawberry) and I (green).
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and O′ = T−1P ◦ K(Q′) is the generalized circumcenter for the point P ′. (See
Figure 1.)

In this paper we first determine synthetically the locus of points P for which
the generalized orthocenter is a vertex of ABC. This turns out to be the union
of three conics minus six points. Excepting the points A,B,C, these three
conics lie inside the Steiner circumellipse ι(l∞) (l∞ is the line at infinity), and
each of these conics is tangent to ι(l∞) at two of the vertices. (See Figure 2.)
We also consider a special case in which H is a vertex of ABC and the map
M is a translation, so that the circumconic C̃O and the inconic are congruent.
(See Figures 3 and 4 in Section 2.) In Section 3, we synthetically determine
the locus of all points P for which M is a translation, which is the set of P
for which S ∈ l∞. We determine necessary and sufficient conditions for this to
occur in Theorem 3.1; for example, we show M is a translation if and only if
the point P lies on the conic C̃O. (This situation does not occur in the classical
situation, when P is the Gergonne point, since this point always lies inside
the circumcircle.) Using barycentric coordinates we show that this locus is an
elliptic curve minus 6 points. (See Figure 5.) We also show that there are
infinitely many points P in this locus which can be defined over the quadratic
field Q(

√
2), i.e., whose barycentric coordinates can be taken to lie in this field.

In particular, given two points in this locus, a third point can be constructed
using the addition on the elliptic curve. In Section 4 we show how this elliptic
curve, minus a set of 12 torsion points, may be constructed as the locus of points
P = A(P1), where A runs over the affine mappings taking inscribed triangles
(with a fixed centroid) on a subset A of a hyperbola C (consisting of six open
arcs; see equation (5)) to a fixed triangle ABC, and where P1 is a fixed point
on the hyperbola (an endpoint of one of the arcs making up A ). In another
paper [11] we will show that the locus of points P , for which the map M is a
half-turn, is also an elliptic curve, which can be synthetically constructed in a
similar way using the geometry of the triangle.

We adhere to the notation of [6]-[10]: P is always a point not on the extended
sides of the ordinary triangles ABC and K−1(ABC); D0E0F0 = K(ABC) is
the medial triangle of ABC, with D0 on BC, E0 on CA, F0 on AB (and the
same for further points Di, Ei, Fi); DEF is the cevian triangle associated to
P ; D2E2F2 the cevian triangle for Q = K ◦ ι(P ) = K(P ′); D3E3F3 the cevian
triangle for P ′ = ι(P ). As above, TP and TP ′ are the unique affine maps taking
triangle ABC to DEF and D3E3F3, respectively, and λ = TP ′ ◦ T−1P . See [6]
and [8] for the properties of these maps.

We also refer to the papers [6], [8], [9], and [10] as I, II, III, and IV re-
spectively. See [1], [2], [3] for results and definitions in triangle geometry and
projective geometry.
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2 The special case H = A,O = D0.

We now consider the set of all points P such that H = A and O = K(H) =
K(A) = D0. We start with a lemma.

Lemma 2.1. Provided the generalized orthocenter H of P is defined, the fol-
lowing are equivalent:

(a) H = A.

(b) QE = AF and QF = AE.

(c) F3 is collinear with Q, E0, and K(E3).

(d) E3 is collinear with Q, F0, and K(F3).

Proof. (See Figure 2.) We use the fact that K(E3) is the midpoint of segment
BE and K(F3) is the midpoint of segment CF from I, Corollary 2.2. Statement
(a) holds iff QE ‖ AB and QF ‖ AC, i.e. iff AFQE is a parallelogram, which
is equivalent to (b). Suppose (b) holds. Let X = BE · QF3. Then triangles
BXF3 and EXQ are congruent since QE ‖ BF3 = AB and QE = AF =
BF3. Therefore, BX = EX, i.e. X is the midpoint K(E3) of BE, so Q,F3,
and X = K(E3) are collinear. The fact that E0 is also collinear with these
points follows from K(BP ′E3) = E0QK(E3) and the collinearity of B,P ′, E3.
Similarly, Q,E3, F0, and K(F3) are collinear. This shows (b) ⇒ (c), (d).

Next, we show (c) and (d) are equivalent. Suppose (c) holds. The line
F3E0 = E0K(E3) = K(BE3) is the complement of the line BE3, hence the two
lines are parallel and

AF3

F3B
=

AE0

E0E3
. (1)

Conversely, if this equality holds, then the lines are parallel and F3 lies on the
line through K(E3) parallel to P ′E3, i.e. the line K(P ′E3) = QK(E3), so (c)
holds. Similarly, (d) holds if and only if

AE3

E3C
=

AF0

F0F3
. (2)

A little algebra shows that (1) holds if and only if (2) holds. Using signed
distances, and setting AE0/E0E3 = x, we have AE3/E3C = (x + 1)/(x − 1).
Similarly, if AF0/F0F3 = y, then AF3/F3B = (y + 1)/(y − 1). Now (1) is
equivalent to x = (y + 1)/(y − 1), which is equivalent to y = (x + 1)/(x − 1),
hence also to (2). Thus, (c) is equivalent to (d). Note that this part of the
lemma does not use that H is defined.

Now assume (c) and (d) hold. We will show (b) holds in this case. By the
reasoning in the previous paragraph, we have F3Q ‖ E3P

′ and E3Q ‖ F3P
′,

so F3P
′E3Q is a parallelogram. Therefore, F3Q = P ′E3 = 2 · QK(E3), so

F3K(E3) = K(E3)Q. This implies the triangles F3K(E3)B and QK(E3)E are
congruent (SAS), so AF = BF3 = QE. Similarly, AE = CE3 = QF , so (b)
holds.

4



Theorem 2.2. The locus LA of points P such that H = A is a subset of the
conic CA through B,C,E0, and F0, whose tangent at B is K−1(AC) and whose
tangent at C is K−1(AB). Namely, LA = CA \ {B,C,E0, F0}.

Proof. Given E on AC we define F3 as F3 = E0K(E3) · AB, and F to be the
reflection of F3 in F0. Then we have the following chain of projectivities (G is
the centroid):

BE Z E Z E3

G

[ K(E3)
E0

[ F3 Z F Z CF.

Then P = BE ·CF varies on a line or a conic. From the lemma it follows that:
(a) for a point P thus defined, H = A; and (b) if H = A for some P , then P
arises in this way, i.e. F3 is on E0K(E3).

Now we list four cases in the above projectivity for which H is undefined,
namely when P = B,C,E0, F0. Let A∞, B∞, C∞ represent the points at infinity
on the respective lines BC,AC, and AB.

1. For E = B∞ = E3 = K(E3), we have E0K(E3) = AC so F3 = A,F = B,
and P = BE · CF = B.

2. For E = C, we have E3 = A,K(E3) = D0, E0K(E3) = D0E0 ‖ AB,F =
F3 = C∞, so P = BE · CF = C.

3. For E = E0, we have E3 = E0 and K(E0) is the midpoint of BE0, so
F3 = B,F = A, and P = BE · CF = E0.

4. For E = A, we have E3 = C,K(E3) = F0, F3 = F = F0, and P = BE ·CF =
F0.

Since the four points B,C,E0, F0 are not collinear, this shows that the locus
of points P = BE ·CF is a conic CA through B,C,E0, F0. Moreover, the locus
LA of points P such that H = A is a subset of CA \ {B,C,E0, F0}.

We claim that if E is any point on line AC other than A,C,E0, or B∞, then
P is a point for which H is well-defined. First, E3 is an ordinary point because
E 6= B∞. Second, because E 6= B∞, the line E0K(E3) is not a sideline of ABC.
The line E0K(E3) intersects AB in A if and only if K(E3) lies on AC, which
is true only if E3 = B∞. The line E0K(E3) intersects AB in B iff K(E3) is on
BE0, which holds iff E3 is on K−1(B)B = BE0, and this is the case exactly
when E = E3 = E0. Since K(E3) lies on K(AC) = D0F0, the line E0K(E3)
is parallel to AB iff K(E3) = D0, giving E3 = A and E = C. Thus, the line
E0K(E3) intersects AB in an ordinary point which is not a vertex, so F3 and
F are not vertices and P = BE · CF is a point not on the sides of ABC.

It remains to show that P does not lie on the sides of the anticomplementary
triangle of ABC. If P is on K−1(AB) then F = F3 = C∞, which only happens
in the excluded case E = C (see Case 2 above). If P is on K−1(AC) then
E = B∞, which is also excluded. If P is on K−1(BC) then P ′ is also on
K−1(BC) so Q = K(P ′) is on BC.
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Figure 2: The conics CA (red), CB (purple), CC (green), and ι(l∞) (blue).
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To handle the last case, suppose Q is on the same side of D0 as C. Then
P ′ is on the opposite side of line AD0 from C, so it is clear that CP ′ intersects
AB in the point F3 between A and B. If Q is between D0 and C, then F3 is
between A and F0 (since F0, C, and G are collinear), and it is clear that F3E0

can only intersect BC in a point outside of the segment D0C, on the opposite
side of C from Q. But this is a contradiction, since by construction F3, E0, and
K(E3) are collinear, and Q = K(P ′) lies on K(BE3) = E0K(E3). On the other
hand, if the betweenness relation D0 ∗ C ∗ Q holds, then F3 is between B and
F0, and it is clear that F3E0 can only intersect BC on the opposite side of B
from C. This also applies when P ′ = Q is a point on the line at infinity, since
then F3 = B, and B,E0 and Q = A∞ (the point at infinity on BC) are not
collinear, contradicting part (c) of Lemma 2.1. A symmetric argument applies
if Q is on the same side of D0 as B, using the fact that parts (c) and (d) of
Lemma 2.1 are equivalent. Thus, no point P in CA \ {B,C,E0, F0} lies on a
side of ABC or its anticomplementary triangle, and the point H is well-defined;
further, H = A for all of these points.

Finally, by the above argument, there is only one point P on CA that is on
the line K−1(AB), namely C, and there is only one point P on CA that is on
the line K−1(AC), namely B, so these two lines are tangents to CA.

This theorem shows that the locus of points P , for which the generalized
orthocenter H is a vertex of ABC, is the union of the conics CA∪CB∪CC minus
the vertices and midpoints of the sides. The Steiner circumellipse is tangent to
the sides of the anticomplementary triangle K−1(ABC), so the conic CA, for
instance, has the double points B,C in common with ι(l∞). Since the conic CA
lies on the midpoints E0 and F0, which lie inside ι(l∞), it follows from Bezout’s
theorem that the set CA − {B,C} lies entirely in the interior of ι(l∞), with
similar statements for CB and CC .

In the next proposition and its corollary, we consider the special case in
which H = A and D3 is the midpoint of AP ′. We will show that, in this case,
the map M is a translation. (See Figure 4.) We first show that this situation
occurs.

Lemma 2.3. If the equilateral triangle ABC has sides of length 2, then there is
a point P with AP ·BC = D and d(D0, D) =

√
2, such that D3 is the midpoint

of the segment AP ′ and H = A.

Proof. (See Figure 3.) We will construct P ′ such that D3 is the midpoint of
AP ′ and H = A, and then show that P satisfies the hypothesis of the lemma.
The midpoint D0 of BC satisfies D0B = D0C = 1 and AD0 =

√
3. Let the

triangle be positioned as in Figure 3. Let Ã be the reflection of A in D0, and
let D be a point on BC to the right of C such that D0D =

√
2. In order to

ensure that the reflection D3 of D in D0 is the midpoint of AP ′, take P ′ on
l = K−2(BC) with P ′Ã = 2

√
2 and P ′ to the left of Ã. Then Q = K(P ′) is on
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K−1(BC), to the right of A, and AQ =
√

2. Let E3 and F3 be the traces of P ′

on AC and BC, respectively.

We claim BF3 =
√

2. Let M be the intersection of BC and the line through
F3 parallel to AD0. Then triangles BMF3 and BD0A are similar, so F3M =√

3 ·MB. Let N1 be the intersection of BC and the line through P ′ parallel to
AD0. Triangles P ′N1C and F3MC are similar, so

F3M

MC
=
P ′N1

N1C
=

AD0

P ′Ã+ 1
=

√
3

2
√

2 + 1
.

Therefore, √
3

2
√

2 + 1
=
F3M

MC
=

√
3 ·MB

MB + 2

which yields that MB = 1/
√

2. Then BF3 =
√

2 is clear from similar triangles.

Now, let F be the reflection of F3 in F0 (the midpoint of AB). Then AQF
is an equilateral triangle because m(∠FAQ) = 60◦ and AQ ∼= BF3

∼= AF ,
so ∠AQF ∼= ∠AFQ. Therefore, QF ‖ AC. It follows that the line through
F0 parallel to QF is parallel to AC, hence is a midline of triangle ABC and
goes through D0. Hence, the point O, which is the intersection of the lines
through D0, E0, F0, parallel to QD,QE,QF , respectively, must be D0, giving
that H = K−1(O) = A. Clearly, P = AD · CF is a point outside the triangle
ABC, not lying on an extended side of ABC or its anticomplementary triangle,
which satisfies the conditions of the lemma.

The next proposition deals with the general case, and shows that the point
P we constructed in the lemma lies on a line through the centroid G parallel to
BC. In this proposition and in the rest of the paper, we will use various facts
about the center Z of the cevian conic CP = ABCPQ, which we studied in
detail in the papers [8] and [9]. Recall that Z lies on the nine-point conic NH .
We also recall the definition of the affine reflection η from II, p. 27, which fixes
the line GV , with V = PQ · P ′Q′, and moves points parallel to the line PP ′.

Proposition 2.4. Assume that H = A,O = D0, and D3 is the midpoint of
AP ′. Then the circumconic C̃O = ι(l), where l = K−1(AQ) = K−2(BC) is
the line through the reflection Ã of A in O parallel to the side BC. The points
O,O′, P, P ′ are collinear, with d(O,P ′) = 3d(O,P ), and the map M taking C̃O
to the inconic I is a translation. In this situation, the point P is one of the two
points in the intersection lG ∩ C̃O, where lG is the line through the centroid G
which is parallel to BC.

Proof. (See Figure 4.) Since the midpoint R′1 of segment AP ′ is D3, lying on
BC, P ′ lies on the line l which is the reflection of K−1(BC) (lying on A) in the
line BC. It is easy to see that this line is l = K−2(BC), and hence Q = K(P ′)
lies on K−1(BC). From I, Corollary 2.6 we know that the points D0, R

′
1 = D3,

and K(Q) are collinear. Since K(Q) is the center of the conic NP ′ (the nine-
point conic of quadrilateral ABCP ′; see III, Theorem 2.4), which lies on D0
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and D3, K(Q) is the midpoint of segment D0D3 on BC. Applying the map
T−1P ′ gives that O = T−1P ′ (K(Q)) is the midpoint of T−1P ′ (D3D0) = AT−1P ′ (D0). It

follows that T−1P ′ (D0) = Ã is the reflection of A in O, so that Ã ∈ C̃O. Moreover,

K(A) = O, so Ã = K−1(A) lies on l = K−1(AQ) ‖ BC.

Next we show that C̃O = ι(l), where the image ι(l) of l under the isotomic
map is a circumconic of ABC (see Lemma 3.4 in [10]). It is easy to see that
ι(Ã) = Ã, since Ã ∈ AG and ABÃC is a parallelogram. Therefore, both conics
C̃O and ι(l) lie on the 4 points A,B,C, Ã. To show they are the same conic, we
show they are both tangent to the line l at the point Ã. From III, Corollary
3.5 the tangent to C̃O at Ã = T−1P ′ (D0) is parallel to BC, and must therefore be
the line l. To show that l is tangent to ι(l), let L be a point on l ∩ ι(l). Then
ι(L) ∈ l∩ ι(l). If ι(L) 6= L, this would give three distinct points, L, ι(L), and Ã,
lying on the intersection l ∩ ι(l), which is impossible. Hence, ι(L) = L, giving
that L lies on AG and therefore L = Ã. Hence, Ã is the only point on l ∩ ι(l),
and l is the tangent line. This shows that C̃O and ι(l) share 4 points and the
tangent line at Ã, proving that they are indeed the same conic.

From this we conclude that P = ι(P ′) lies on C̃O. Hence, P is the fourth
point of intersection of the conics C̃O and CP = ABCPQ. From III, Theorem
3.14 we deduce that P = Z̃ = ROK

−1(Z), where RO is the half-turn about
O; and we showed in the proof of that theorem that Z̃ is a point on the line
OP ′. Hence, P,O, P ′ are collinear, and applying the affine reflection η gives
that O′ = η(O) lies on the line PP ′, as well (see III, Theorem 2.4). Now, Z
is the midpoint of HP = AP , since H = K ◦ RO is a homothety with center
H = A and similarity factor 1/2. Since Z lies on GV , where V = PQ · P ′Q′
(II, Prop. 2.3), it is clear that P and Q are on the opposite side of the line GV
from P ′, Q′, and A. The relation K(Ã) = A means that Ã and also O are on
the opposite side of GV from A and O′. Also, J = K−1(Z) = RO(Z̃) = RO(P )
lies on the line GV and on the conic C̃O. This implies that O lies between J
and P , and applying η shows that O′ lies between J and P ′. Hence, OO′ is a
subsegment of PP ′, whose midpoint is exactly J = K−1(Z), since this is the
point on GV collinear with O and O′. Now the map η preserves distances along
lines parallel to PP ′ (see II, p. 27), so JO′ ∼= JO ∼= OP ∼= O′P ′, implying
that OO′ is half the length of PP ′. Furthermore, segment QQ′ = K(PP ′)
is parallel to PP ′ and half as long. Hence, OO′ ∼= QQ′, which implies that
OQQ′O′ is a parallelogram. Consequently, OQ ‖ O′Q′, and III, Theorems 3.4
and 3.9 show that M is a translation. Thus, the circumconic C̃O and the inconic
I are congruent in this situation. This argument implies the distance relation
d(O,P ′) = 3d(O,P ).

The relation O′Q′ ‖ OQ implies, finally, that TP (O′Q′) ‖ TP (OQ), or
K(Q′)P ‖ A0Q = AQ, since O′ = T−1P K(Q′) from [7], Theorem 6; TP (Q′) = P
from I, Theorem 3.7; TP (O) = TP (D0) = A0; and A0 is collinear with A and
the fixed point Q of TP by I, Theorem 2.4. Hence, PG = PQ′ = PK(Q′) is
parallel to AQ and BC.

There are many interesting relationships in the diagram of Figure 4. We
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point out several of these relationships in the following corollary.

Corollary 2.5. Assume the hypotheses of Proposition 2.4.

a) If Qa is the vertex of the anticevian triangle of Q (with respect to ABC)
opposite the point A, then the corresponding point Pa is the second point of
intersection of the line PG with C̃O.

b) The point A3 = TP (D3) is the midpoint of segment OD and P is the centroid
of triangle ODQ.

c) The ratio OD
OC =

√
2.

Proof. The anticevian triangle of Q with respect to ABC is T−1P ′ (ABC) =
QaQbQc. (See I, Cor. 3.11 and III, Section 2.) Since D3 is the midpoint of
AP ′, this gives that T−1P ′ (D3) = A is the midpoint of T−1P ′ (AP ′) = QaQ. There-
fore, Qa lies on the line AQ = K−1(BC), so P ′a = K−1(Qa) lies on the line l
and is the reflection of P ′ in the point Ã. Thus, the picture for the point Pa

is obtained from the picture for P by performing an affine reflection about the
line AG = AÃ in the direction of the line BC. This shows that Pa also lies on
the line PG ‖ BC. The conic C̃O only depends on O, so this reflection takes C̃O
to itself. This proves a).

To prove b) we first show that P lies on the line QÃ. Note that the segment
K(P ′Ã) = AQ is half the length of P ′Ã, so P ′Ã ∼= QaQ. Hence, QaQÃP

′ is
a parallelogram, so QÃ ∼= QaP

′. Suppose that QÃ intersects line PP ′ in a
point X. From the fact that K(Q) is the midpoint of D3D0 we know that Q
is the midpoint of K−1(D3)A. Also, D3Q

′ lies on the point λ(A) = λ(H) = Q,
by II, Theorem 3.4(b) and III, Theorem 2.7. It follows that K−1(D3), P =
K−1(Q′), P ′ = K−1(Q) are collinear and K−1(D3)QX ∼ P ′ÃX, with similarity
ratio 1/2, since K−1(D3)Q has half the length of P ′Ã. Hence d(X,K−1(D3)) =
1
2d(X,P ′). On the other hand, d(O,P ) = 1

3d(O,P ′), whence it follows, since
O is halfway between P ′ and K−1(D3) on line BC, that d(P,K−1(D3)) =
1
2d(P, P ′). Therefore, X = P and P lies on QÃ.

Now, P = AD3OQ is a parallelogram, since K(AP ′) = OQ, so opposite
sides in AD3OQ are parallel. Hence, TP (P) = DA3A0Q is a parallelogram,
whose side A3A0 = TP (D3D0) lies on the line EF = TP (BC). Applying the
dilatation H = KRO (with center H = A) to the collinear points Q,P, Ã shows
that H(Q), Z, and O are collinear. On the other hand, O = D0, Z, and A0 are
collinear by [7], Corollary 5 (since Z = R is the midpoint of AP ), and A0 lies on
AQ by I, Theorem 2.4. This implies that A0 = H(Q) = AQ ·OZ is the midpoint
of segment AQ, and therefore A3 is the midpoint of segment OD. Since P lies
on the line PG, 2/3 of the way from the vertex Q of ODQ to the opposite side
OD, and lies on the median QA3, it must be the centroid of ODQ. This proves
b).

To prove c), we apply an affine map taking ABC to an equilateral triangle.
It is clear that such a map preserves all the relationships in Figure 4. Thus
we may assume ABC is an equilateral triangle whose sidelengths are 2. By
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Lemma 2.3 there is a point P for which AP ·BC = D with D0D =
√

2, O = D0,
and D3 the midpoint of AP ′. Now Proposition 2.4 implies the result, since the
equilateral diagram has to map back to one of the two possible diagrams (Figure
4) for the original triangle.

By Proposition 2.4 and III, Theorem 2.5 we know that the conic CA lies
on the points P1, P2, P3, P4, where P1 and P2 = (P1)a are the points in the
intersection C̃O ∩ lG described in Corollary 2.5, and P3 = (P1)b, P4 = (P1)c are
the anti-isotomcomplements of the points (Q1)b, (Q1)c, since these points all
have the same generalized orthocenter H = A. (See Figure 2.) It can be shown
that the equation of the conic CA in terms of the barycentric coordinates of the
point P = (x, y, z) is xy+xz+ yz = x2 (see [7]). Furthermore, the center of C̄A
lies on the median AG, 6/7-ths of the way from A to D0.

Remarks. 1. The polar of A with respect to the conic C̄A is the line lG through
G parallel to BC. This holds because the quadrangle BCE0F0 is inscribed in
C̄A, so its diagonal triangle, whose vertices are A,G, and BC · l∞, is self-polar.
Thus, the polar of A is the line lG.

2. The two points P in the intersection C̄A∩ lG have tangents which go through
A. This follows from the first remark, since these points lie on the polar a = lG
of A with respect to C̄A. As a result, the points D on BC, for which there is a
point P on AD satisfying H = A, have the property that the ratio of unsigned
lengths DD0/D0C ≤

√
2. This follows from the fact that C̄A is an ellipse:

since it is an ellipse for the equilateral triangle, it must be an ellipse for any
triangle. Then the maximal ratio DD0/D0C occurs at the tangents to C̄A from
A; and we showed above that for these two points P , D = AP · BC satisfies
DD0/D0C =

√
2.

3 The locus of points P for which M is a trans-
lation.

We can characterize the points P , for which M is a translation, as follows. We
will have occasion to use the fact that M = TP ◦K−1 ◦ TP ′ is symmetric in the
points P and P ′, since TP ◦ K−1 ◦ TP ′ = TP ′ ◦ K−1 ◦ TP . This follows easily
from the fact that the maps TP ◦K−1 and TP ′ ◦K−1 commute with each other.
See III, Proposition 3.12 and IV, Lemma 5.2.

Theorem 3.1. Let P and P ′ be ordinary points not on the sides or medians of
ABC or K−1(ABC). Then the map M = TP ◦K−1 ◦TP ′ is a translation if and
only if any one of the following statements holds.

1. OQQ′O′ is a parallelogram;

2. P is on the circumconic C̃O;

3. O and O′ lie on PP ′;

13



4. Z lies on QQ′;

5. The signed ratio GZ
ZV = 1

3 ;

6. U = K−1(Z) = K(V ).

Proof. It is easy to see that M is a translation if and only if OQQ′O′ is a
parallelogram, since M(O) = Q and M(O′) = Q′ and the center of M is the
point S = OQ · GV = OQ · O′Q′. (See III, Theorem 3.4 and the proof of III,
Theorem 3.9.) Thus, we will prove that the statements (2)-(6) are equivalent
to (1).

First we prove that (1) ⇒ (4). If OQQ′O′ is a parallelogram, then OQ ‖
O′Q′. By IV, Propsition 3.10, q = OQ is the tangent to the conic CP = ABCPQ
at Q and q′ = O′Q′ is the tangent to CP at Q′. It follows that q · q′ is on l∞,
which is the polar of the center Z of CP . Therefore, QQ′ lies on Z.

Conversely, assume (4). Then Z ∈ QQ′ implies that q ·q′ lies on l∞, so OQ ‖
O′Q′, giving that S ∈ l∞ and M is a translation. Hence, (4)⇒ (1). Furthermore,
(1) ⇒ (3), as follows. M is a translation so QM(Q) ∼= OM(O) = OQ, i.e. Q is
the midpoint of OM(Q), where M(Q) = TP ′ ◦K−1 ◦TP (Q) = TP ′(P

′). But Q is
also the midpoint of PV , so triangles PQO and V QM(Q) are congruent, giving
M(Q)V ‖ OP . We know M(Q)V = K−1(PP ′) by II, Proposition 2.3(f) and IV,
Theorem 3.11(7.). Since the line through P parallel to K−1(PP ′) is PP ′, O lies
on PP ′. Hence, η(O) = O′ also lies on PP ′, giving (3).

Now (4) holds if and only if Z is the midpoint of QQ′ (Z lies on GV , the fixed
line of η, and η(Q) = Q′). The point V is the midpoint of segment K−1(PP ′)
(II, Proposition 2.3), so K(V ) is the midpoint of segment PP ′ and K2(V ) is
the midpoint of K(PP ′) = QQ′. Hence, (4) holds if and only if K2(V ) = Z,
which holds if and only if K−1(Z) = K(V ). Thus, (4) ⇐⇒ (6). This allows
us to show (4) ⇒ (2), as follows. Since (4) also implies (1) and (3), we have
that OO′ = QQ′ = 1

2PP
′. Also, K(V ) on GV is the midpoint of PP ′ and OO′.

Since OQ ‖ GV and QP ′ intersects GV at G, it is clear that O and P lie on the
same side of line GV . Hence, O must be the midpoint of PK(V ) (the dilation
with center U = K(V ) takes OO′ to PP ′). Now K(V ) = K−1(Z) ∈ C̃O, since
Z ∈ NH = K(C̃O); so P = RO(K−1(Z)) lies on C̃O, hence (2). Thus (4)⇒ (2).

We next show that (2) ⇒ (3). Assume that P lies on C̃O. Then P is the
fourth point of intersection of the conics C̃O and CP = ABCPQ. From III,
Theorem 3.14 we deduce that P = Z̃ = RO ◦K−1(Z). Furthermore, Z̃ lies on
OP ′. Hence, P,O, P ′ are collinear, and applying the affine reflection η gives
that O′ lies on the line PP ′, as well.

Now suppose that (3) holds, so that O lies on PP ′. From II, Corollary
2.2 we know that TP (P ′) lies on PP ′, so that IV, Theorem 3.11 implies that
O = OQ ·PP ′ = TP (P ′). Let H̃ = T−1P (H) = T−1P ′ (Q), as in III, Theorem 2.10.
Note that

M(H̃) = TP ◦K−1 ◦ TP ′(H̃) = TP ◦K−1(Q) = TP (P ′) = O.

14



Hence, M(H̃O) = OQ. Part III, Lemma 3.8 says that O is the midpoint of H̃Q,
so M(H̃O) ∼= H̃O. (Note that H̃ = T−1P ′ (Q) 6= T−1P ′ ◦ K(Q) = O.) The result
of III, Theorem 3.4 says that M is a homothety or translation. A homothety
expands or contracts all segments on lines by the same factor k, so if M were
not a translation, the factor k = ±1. But k 6= 1 since M is not the identity
map and k 6= −1 since it preserves the orientation of the segment H̃O on the
line OQ. Hence, M must be a translation. This proves (3) ⇒ (1), and therefore
(1)⇒ (4)⇒ (2)⇒ (3)⇒ (1).

Furthermore, (5) ⇐⇒ (6). If U = K−1(Z) = K(V ), then taking signed
distances yields GZ = GK(U) = 1

2UG = 1
4GV , which gives that GZ

ZV = 1
3 .

Conversely, if GZ
ZV = 1

3 , then GZ
GV = 1

4 , which implies Z = K2(V ), since K2(V ) =

K(K(V )) is the unique point X on GV for which the signed ratio GX
GV = 1

4 .
Thus, (5) ⇐⇒ (6) ⇐⇒ (4) (from above).

This completes the proof that (1)-(6) are equivalent.

Corollary 3.2. Under the hypotheses of Theorem 3.1, if M is a translation:

1. HK−1(Z)PV is a parallelogram;

2. TP (P ) is the midpoint of segment HV ;

3. TP (P ′) = O;

4. The points P ′, O′, U = K−1(Z), O, P are equally spaced on line PP ′;

5. OH is tangent to the conic CP = ABCPQ at H.

Proof. (See Figure 5.) Statements (3) and (4) were proved in the course of
proving (3) ⇒ (1) and (4) ⇒ (2) above. With U = K−1(Z) = K(V ), (4)
gives that that UO = 1

2UP , so UO ∼= K(UP ) = ZQ′. This shows that UO ‖
ZQ′ and OZQ′U is a parallelogram. Thus, K−1(OZQ′U) = HUPV is also a
parallelogram. In particular, QQ′ ‖ PP ′ ‖ HV . Since M(U) = M ◦K−1(Z) =
Z (by the Generalized Feuerbach Theorem in III) and Z is the midpoint of
segment UV , the translation M maps parallelogram OZQ′U to QVM(Q′)Z,
where M(Q′) = TP ◦K−1◦TP ′(Q′) = TP (P ). As Z is the center of parallelogram
HUPV and O is the midpoint of the side UP , while Q is the midpoint of side
PV , it follows that Q′ is the midpoint of side HU and M(Q′) = TP (P ) = OZ ·
HV is the midpoint of HV , proving statement (2). Finally, let O∗ = PP ′ ·QH.
Triangles PO∗Q and UO∗H are similar (UH ‖ PV = PQ) and PQ = 1

2UH,
so PQ is the midline of triangle UO∗H and PO∗ = UP = 1

2PP
′. This implies

PO∗

O∗P ′ = − 1
3 = − PO

OP ′ , and therefore O∗ is the harmonic conjugate of O with
respect to P and P ′. Thus, O∗ is conjugate to O with respect to the polarity
induced by CP . As in the proof of the theorem, q = OQ is tangent to CP at Q,
so Q is also conjugate to O. Thus, the polar of O is o = QO∗ = QH and since
H and Q are on CP (III, Theorem 2.8), this implies that OH is the tangent to
CP at H. This proves (5).
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(teal) and C̃O (blue).

16



Remark. The statements in Corollary 3.2 are actually all equivalent to the
map M being a translation. For the sake of brevity, we leave this verification to
the interested reader.

The set of points P = (x, y, z), for which M is a translation, can be deter-
mined using barycentric coordinates. This is just the set of points for which
S ∈ l∞. It can be shown (see [5], eq. (8.1)) that homogeneous barycentric
coordinates of the point S are

S = (x(y + z)2, y(x+ z)2, z(x+ y)2),

where P = (x, y, z). Thus, the the locus in question has the projective equation

ES : x(y + z)2 + y(x+ z)2 + z(x+ y)2 = 0.

Setting z = 1− x− y, so that (x, y, z) are absolute barycentric coordinates, the
set of ordinary points for which M is a translation has the affine equation

(3x+ 1)y2 + (3x+ 1)(x− 1)y + x2 − x = 0. (3)

Since the discriminant of this equation, with respect to y, is D = (x− 1)(3x+
1)(3x2 − 6x− 1), this curve is birationally equivalent to

Y 2 = (X − 1)(3X + 1)(3X2 − 6X − 1).

Using X = u−1
u+3 , Y = 8v

(u+3)2 , this equation can be written in the form

E ′S : v2 = u(u2 + 6u− 3),

which is an elliptic curve with j-invariant j = 54000 = 243353 and infinitely
many points defined over real quadratic fields. Thus, we see that there are
infinitely many points for which M is a translation. Note that E ′S is isomorphic to
the curve (36A2) in Cremona’s tables [4] (via the substitution u = x−2, v = y).
Consequently, E ′S has the torsion points T = {Õ, (0, 0), (1,±2), (−3,±6)} (Õ
is the base point) and rank r = 0 over Q. These 6 points correspond to the
vertices of triangle ABC and the infinite points on its sides; the latter points
are (0, 1,−1), (1, 0,−1), (1,−1, 0).

It is not hard to calculate, using the equation (3) and the equation xy+xz+
yz = x2 for CA that the intersection ES ∩ CA consists of the points B = (0, 1, 0)
and C = (0, 0, 1), with intersection multiplicity 2 at both points, together with
the points

P =

(
1

3
,

1 +
√

2

3
,

1−
√

2

3

)
and Pa =

(
1

3
,

1−
√

2

3
,

1 +
√

2

3

)
, (4)

where P and Pa are the points pictured in Figure 4. (These points are labeled
P1 and P2 in Figure 2.) That these are the correct points follows from the fact
that

P −G = P −
(

1

3
,

1

3
,

1

3

)
=

√
2

3
(0, 1,−1),
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and therefore PG ‖ BC. The affine coordinates of P on (3) are (x, y) =(
1
3 ,

1+
√
2

3

)
, which corresponds to the point P̃ = (u, v) = (3, 6

√
2) on E ′S . The

double of the latter point is [2]P̃ =
(

1
2 ,
√
2
4

)
, and [4]P̃ =

(
169
8 ,− 2483

√
2

32

)
. Using

[12], Theorem VII.3.4 (p. 193) with p = 2 over the local field K = Q2(
√

2), the
coordinates of the last point show that P̃ is a point of infinite order on E ′S , and
therefore P is a point of infinite order on (3). Hence, there are infinitely many
points on ES which have coordinates in the field Q(

√
2).

It follows from this calculation that the only points, other than the vertices
of ABC, in the intersection ES ∩L of ES and the locus L = LA ∪LB ∪LC of
Section 2 are the 6 points obtained by permuting the coordinates of the point
P in (4). There are, however, 6 more important points on the curve ES . These
are the intersections of ES with the medians of triangle ABC, which are found
by setting two variables equal to each other in the equation for ES . This yields
the following six points on ES , paired with their isotomic conjugates:

P1 = (1,−2 +
√

3,−2 +
√

3), P ′1 = (1,−2−
√

3,−2−
√

3)

P2 = (−2 +
√

3, 1,−2 +
√

3), P ′2 = (−2−
√

3, 1,−2−
√

3)

P3 = (−2 +
√

3,−2 +
√

3, 1), P ′3 = (−2−
√

3,−2−
√

3, 1).

These correspond to the six points

(x, y) =

(
1± 2

3

√
3,∓
√

3

3

)
,

(
±
√

3

3
, 1∓ 2

3

√
3

)
,

(
±
√

3

3
,±
√

3

3

)

on (3); and to the six points

(u, v) = (−3± 2
√

3, 0), (3± 2
√

3, 12± 6
√

3), (3± 2
√

3,−12∓ 6
√

3)

on E ′S . Together with the points in T , these points form a torsion group T12 of
order 12 defined over Q(

√
3), with T12 ∼= Z2 ⊕ Z2 ⊕ Z3. The points in T12 are

the points which are excluded in Theorem 3.1 and Corollary 3.2. In particular,
there are only two excluded points on each median, for which M is a translation.

The equation (3) is a special case of the equation

Ea : (ax+ 1)y2 + (ax+ 1)(x− 1)y + x2 − x = 0,

which we call the geometric normal form of an elliptic curve. It can be shown
that for real values of a /∈ {3, 0,−1, 9}, the set of points (not a vertex or an
infinite point on the sides of ABC) on this elliptic curve is the locus of points
P for which the map M is a homothety with ratio k = 4

a+1 ; and every elliptic
curve defined over R is isomorphic to a curve in this form.
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4 Constructing the elliptic curve.

In this section we will use the results of the previous section to give a geometric
construction of the elliptic curve ES . We start with the following lemma.

Lemma 4.1. Assume that P is a point for which the map M is a translation.
Then the line GZ = GV does not intersect the conic CP , which is a hyperbola.

Proof. We will use the characterization of CP as the set of points Y for which
P, Y , and TP (Y ) are collinear (II, Corollary 2.2).

Let Y be a point onGV and Y ′ = PTP (Y )·GV the projection of YP = TP (Y )
onto GV from P . The mapping Y → YP is projective, since TP is an affine map,
so the mapping π : Y Z Y ′ is a projectivity from GV to itself. We will show
that π has no invariant points. This will imply the lemma, since if Y ∈ CP , then
Y lies on PTP (Y ), implying that Y = Y ′.

We will show that the projectivity π has order 3 by showing that π coincides
with the projectivity UZV Z ZV U on GV . First, π(U) = Z, because TP (U) =
TP (K−1(Z)) = Z is already on GV . Also, since Z is the midpoint of QQ′, TP (Z)
is the midpoint of TP (QQ′) = QP . This implies that π(Z) = QP · GV = V .
Now, TP (V ) is the intersection of TP (PQ) = QTP (P ) and TP (P ′Q′) = OP =
PP ′ by Corollary 3.2. Hence, π(V ) = PTP (V ) ·GV = PP ′ ·GV = U .

Since π has order 3, it cannot have any invariant points. See [2], p. 43 or
[3], p.35, Exercises. Finally, since GV lies on the center Z of CP , but does not
intersect CP , the conic must be a hyperbola. This completes the proof.

Thus, the line GV is an exterior line of CP ([2], p. 72), so its pole V∞ is an
interior point, which implies that the line GV∞ ‖ PP ′ is a secant for the conic
CP , and therefore meets CP in two points E and F . (These are different points
from the similarly named points in Figure 4.) Hence, as η fixes the line EF and
maps the conic CP to itself (II, p. 27), we have η(E) = F and G on GV is the
midpoint of segment EF . But EF = GV∞ is the polar of V with respect to CP ,
so V E and V F are tangent to CP at E and F , respectively. We choose notation
so that E is the intersection of GV∞ with the branch of the hyperbola through
P ′ and Q′, which exists since P ′ and Q′ are on the same side of the line GV .

Proposition 4.2. Assume P is a point for which M is a translation. If E′ and
F ′ are the midpoints of segments EG and GF , then the lines ZE′ and ZF ′ are
the asymptotes of CP .

Proof. (See Figure 6.) We know Z = K(U) is the midpoint of segment UV
and the center of CP . If we rotate the tangents EV and FV by a half-turn
about Z, we obtain two lines E′′U and F ′′U through U which are also tangent
at points E′′ and F ′′ respectively. In particular, Z is the midpoint of segments
EE′′, FF ′′, and UV . This implies F ′′V ‖ UF and Z is the center of the
parallelogram V F ′′UF . Now define E′ to be the midpoint of UF ′′. The line
ZE′ is halfway between F ′′V and UF , hence ZE′ ‖ F ′′V .
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Next we show that EF ′′G′G is a parallelogram, where G′ = RZ(G). Now,
Z is the midpoint of EE′′ and FF ′′, so EF ′′E′′F is a parallelogram. Since G
is the midpoint of EF , G′ is the midpoint of E′′F ′′. This implies F ′′G′ ∼= EG,
which proves EF ′′G′G is a parallelogram. Also, using part (6.) of Theorem
3.1 it is easy to see that G is the midpoint of UG′ so UG ∼= GG′ ∼= EF ′′ and
EF ′′GU is a parallelogram, with center E′. This verifies that E′ is the midpoint
of segment EG.

But E′ on EG = v implies V lies on its polar e′. Also, E′ is on UF ′′ = f ′′,
so F ′′ lies on e′. Together, this implies e′ = F ′′V , so from the first paragraph
of the proof, e′ ‖ ZE′. Hence, e′, ZE′, and l∞ are concurrent. The dual of
this statement says that E′, l∞ · e′, and Z are collinear. Thus, the infinite point
l∞ · e′ lies on ZE′, which its own polar! Hence, l∞ · e′ must lie on the conic and
ZE′ must be an asymptote. Applying the map η shows that ZF ′ = η(ZE′) is
also an asymptote.

We now consider a fixed configuration of points, as in Figure 6, consisting
of the parallelogram HUPV , its center Z, the point O which is the midpoint
of side UP , the point G = UV · HO, the midpoints Q,Q′ of opposite sides
HU and PV , and the points O′, P ′ which are the affine reflections of the points
O,P through the line UV = GZ in the direction of the line UP , together with
the conic C = PQHQ′P ′. By Theorem 3.1 and Corollary 3.2 this configuration
arises from a triangle ABC and the point P (not on the sides of ABC or
K−1(ABC)), for which the map M is a translation, and such a configuration
certainly exists because it can be taken to be the image under an affine map
of the configuration constructed in Lemma 2.3 and Proposition 2.4. For this
configuration the conclusions of Lemma 4.1 and Proposition 4.2 hold, so that C
is a hyperbola. Our focus now is on finding all triangles A1B1C1 inscribed in the
conic C = CP for which the map MP corresponding to A1B1C1 is a translation.
This will lead us to a synthetic construction of the elliptic curve ES discussed
in Section 3.

Let A1 be any point on the conic C = PQHQ′P ′, and define D0 = K(A1),
where K is the dilation about G with signed ratio −1/2. Further, let C(A1) be
the reflection of the conic C in the point D0. If the conics C(A1) and C intersect
in two points B1, C1, then A1B1C1 is the unique triangle with vertex A1 and
centroid G which is inscribed in C. This is because D0 must be the midpoint
of side B1C1 in any such triangle, and lying on C, B1 and C1 must both lie on
C(A1). Since C(A1) is the reflection of C in D0, its asymptotes c = RD0

(a) and
d = RD0(b) are parallel to the respective asymptotes a and b of C. It follows
that C ∩ C(A1) can consist of at most two points other than the infinite points
on the asymptotes.

Lemma 4.3. The conics C(A1) and C = PQHQ′P ′ intersect in two ordinary
points if and only if A1 does not lie on either of the closed arcs of C between the
lines EF = GV∞ and P ′P .

Proof. It suffices to prove the lemma for the configuration pictured in Figures
7 and 8, since any two configurations for which M is a translation are related
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by an affine map. In particular, Corollary 3.2 shows that one configuration can
be mapped to any other by an affine map taking the parallelogram HUPV for
the one configuration to the corresponding parallelogram for the other.

Let c = RD0
(a) and d = RD0

(b) be the asymptotes of C(A1), where a = ZF ′

and b = ZE′ are the asymptotes of C. When A1 = E, then D0 = K(E) = F ′

lying on a = ZF ′, so the lines a, c coincide. Then C and C(A1) have the common
tangent a = c, so they intersect with multiplicity at least 2 at a · l∞. They also
intersect with multiplicity 1 at b · l∞, since they have different tangents at that
point (D0 = F ′ is on a but not b, so b 6= d). Hence, they can have at most
one ordinary point in common. However, reflecting in D0 (lying on a = c and
therefore in the exterior of C), any ordinary intersection of C and C(A1) would
yield a second intersection, so the two conics can’t have any ordinary points in
common. On the other hand, if A1 = P ′ on arc EP ′, then D0 = K(P ′) = Q
lies on C ∩ C(A1) and also on the tangent OQ to C, so that C and C(A1) touch
at D0 = Q. Thus, they don’t intersect in any other ordinary point.

We also claim that there are no ordinary points on C ∩ C(A1) when A1 lies
between E and P ′ on the open arc E = EP ′. In this case D0 = K(A1) lies on
the open arc of the conic K(C) between F ′ and Q. For any A1 on the left branch
of C, let A′1 be the reflection of the point A1 in D0. Using D0 = K(A1) it is easy
to see that A′1 = K−1(A1), so the tangent ` to C at A1 is mapped to a parallel
tangent `′ = K−1(`) to C′ = K−1(C) at A′1. On the other hand, ` is mapped by
reflection in D0 to a line through A′1 parallel to `, so it must also be mapped to
`′. Therefore, `′ is tangent to both conics C′ and C(A1) = RD0

(C) at A′1. Hence,
these conics intersect with multiplicity 2 at A′1, and since their asymptotes are
parallel, this is the only ordinary point where they can intersect. This holds
for any point A1 on the left branch of C, and therefore the right branch of the
conic C′ is an envelope for the right branches of the conics C(A1). For all A1

on the left branch of C, D0 lies below the asymptote K(b) of K(C), which is
parallel to and lies halfway between b and the asymptote b′ = K−1(b) = UF of
C′; hence, the asymptote d of C(A1) lies below b′, implying that the right branch
of C(A1) lies in the interior of the right branch of C′. Since C′ intersects C at
K−1(Q′) = P and K−1(Q) = P ′, it crosses C at P , and points on C′ to the right
of P lie in the interior of C. For A1 = E, the right branches of C and C(A1) are
also asymptotic in the direction of line c = a. Therefore, as A1 ∈ E moves from
E to P ′, the right branch of C(A1) moves to the right, separated from the right
branch of C by the asymptote c and the conic C′ and remaining in the interior
of C. It follows that the right branch of C(A1) contains no ordinary points of C
for A1 ∈ E . Since D0 is in the exterior of C for these points A1, any intersection
of the left branch of C(A1) and the left branch of C would reflect through D0

to an intersection of the right branches. The left branch of C(A1) also does not
intersect the right branch of C since it is the reflection of that branch in D0.
This proves the claim.

Now assume A1 lies outside the closed arc E on the left branch of C. First, if
A1 lies above the point E, then D0 lies below the point F ′ on K(C), and since c
lies on the same side of the line a as D0, c lies to the left of the line a in Figure
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7. Since c lies on a · l∞ and is not the tangent a at that point, it must intersect
the conic C in a second, ordinary, point. It cannot intersect the right branch of
C because that branch is on the other side of the line a. Hence, c intersects the
left branch of C, whence it follows that the left branch of C(A1) intersects C as
well (because this branch of C(A1) is asymptotic to an exterior ray of line d in
one direction and to c in the other direction). At the same time, this shows that
the asymptote a of C intersects the right branch of C(A1), so the right branch
of C intersects the latter. It is easy to see that these two intersection points are
reflections of each other in the point D0.

On the other hand, if A1 lies below the point P ′ on the left branch of C,
then D0 lies above Q on K(C). Since Q ∈ C ∩K(C), points to the right of Q on
K(C) are in the interior of C, so the reflection Q0 of the point Q in D0 lies on
the left branch of C(A1) in the interior of C. It follows that the left branch of
C(A1) must intersect the right branch of C in two points. The same arguments
apply to points A1 on the right branch of C, and this completes the proof.

Lemma 4.4. The points A1 = Q,Q′ are the only points on C = PQHQ′P ′ for
which A1 lies on C(A1).

Proof. Certainly Q′ ∈ C(Q′) because D0 = K(Q′) is the midpoint of segment
Q′P , soQ′ = RD0(P ) lies on C(Q′), the reflection of C inD0. The same argument
holds for Q. If A1 is any point lying on C(A1), then A1 and its reflection A′1 in
D0 = K(A1) both lie on the conic C and are collinear with the point G. Since
A′1 = K−1(A1), the locus of points A′1 coincides with the conic C′ = K−1(C),
whose asymptotes are parallel to the asymptotes of C. Hence, C′ intersects
C in only the two points P = K−1(Q′) and P ′ = K−1(Q). This proves the
lemma.

We now fix a parallelogram H1U1P1V1 with center Z1, distinguished point
G1 = U1V1 ·H1O1, and its corresponding conic C = P1Q1H1Q

′
1P
′
1, as in Figure

6. We will call this configuration the P1 configuration, and consider it fixed for
the following discussion.

Let ABC be a given triangle. For any point P , not on a median of ABC, for
which the map M, defined relative to ABC and P , is a translation, there is an
affine map A−1 taking the parallelogram HUPV for ABC to the parallelogram
H1U1P1V1. (We avoid points on the medians of ABC, because for these points,
the conic CP = ABCPQ = AP∪BC and parallelogram HUPV are degenerate.)
Since ABC is inscribed in the cevian conic CP = ABCPQ = PQHQ′P ′ for P ,
and the points P ′, Q,Q′ are defined by simple affine relationships in terms of the
parallelogram HUPV , the image triangle A−1(ABC) = A1B1C1 under the map
A−1 is a triangle inscribed in the conic C = P1Q1H1Q

′
1P
′
1. By Theorem 3.1 and

Corollary 3.2 all the same relationships hold for the two configurations. Hence,
the centroid G maps to the centroid G1 in the P1 configuration. It follows from
Lemma 4.3 and Lemma 4.4 that the image A1 of the point A must lie in the
complement of the union of closed arcs E (from E to P ′1) and F (from F to P1)
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on C, and that A1 is also distinct from the points Q1, Q
′
1 (as there is no triangle

A1B1C1 for these two points). Thus,

A1 ∈ A = C − (E ∪F ∪ {Q1, Q
′
1, A∞, B∞}), (5)

where A∞ = a · l∞ and B∞ = b · l∞ are the infinite points on the asymptotes.
The set A is a union of 6 open arcs on C.

Conversely, let A1 ∈ A and let A1B1C1 be the corresponding triangle in-
scribed in CP1 . Then the centroid of A1B1C1 is G1, and the cevian conic
for A1B1C1 and P1 is A1B1C1P1Q

′
1 = CP1 , coinciding with the conic C =

P1Q1H1Q
′
1P
′
1. Moreover, the point P1 does not lie on a median of A1B1C1;

otherwise one of the vertices of the triangle would be collinear with P1 and G1,
implying that this vertex would have to coincide with Q1 or Q′1. This conic
has center Z1, and the pole of G1Z1 is the point V∞ = P1P

′
1 · l∞. Now we use

the characterization of the isotomic conjugate ι(P1) (with respect to A1B1C1)
as the unique point different from P1 lying in the intersection CP1

∩ P1V∞ =
C ∩ P1V∞ to deduce that ι(P1) = P ′1. (See II, p. 26.) Theorem 3.1 shows that
M1 = MP1

for the triangle A1B1C1 must be a translation. If A is an affine
map taking A1B1C1 to ABC, then Theorem 3.1 shows once again that the map
M = AM1A

−1 is a translation for the point P = A(P1). Hence, P lies on the
elliptic curve ES of Section 3. The argument of the previous paragraph shows
that every point P on ES , other than the 12 points in its torsion group T12, is
the image P = A(P1) for some triangle A1B1C1 inscribed in C and an affine
map A for which A(A1B1C1) = ABC. This proves the following theorem.

Theorem 4.5. Fix a parallelogram H1U1P1V1 and the corresponding hyperbola
C = P1Q1H1Q

′
1P
′
1, as in Figure 6. The elliptic curve ES, minus the torsion

subgroup T12, corresponding to the vertices of ABC, the infinite points on its
sides, and the points lying on the medians of ABC, is the locus of images A(P1),
where A1 is a point in the set A ⊂ C (a union of six open arcs on the hyperbola
C), B1 and C1 are the unique points on C for which triangle A1B1C1 has centroid
G1, and A is one of the two affine maps for which A1(A1B1C1) = ABC or
A2(A1C1B1) = ABC.

By virtue of the above discussion, we have taken the situation of Figure
8, where P1 is fixed and the triangle A1B1C1 varies, and transformed it, via
the locus of maps A corresponding to A1 ∈ A , to the fixed triangle ABC and
varying point A(P1) = P lying on the elliptic curve ES .
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