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Mackenzie	Madison	

CELL	MODEL	OF	DJ-1-ASSOCIATED	PARKINSON’S	DISEASE	

Parkinson’s	disease	(PD)	is	a	neurodegenerative	disorder	characterized	by	progressive	

loss	of	motor	function	resulting	from	dopaminergic	neuronal	death	in	the	substantia	

nigra	pars	compacta	leading	to	subsequent	decreased	striatal	dopamine	levels.	The	

majority	of	PD	cases	are	diagnosed	as	sporadic	in	nature,	however	10%	-	15%	of	patients	

show	a	positive	family	history	of	the	disease.	While	many	genes	have	been	found	to	be	

implicated	in	the	familial	form	of	PD,	early-onset	autosomal	recessive	PD	has	been	

associated	with	mutations	in	PARK7,	a	gene	which	codes	for	the	protein	DJ-1.	While	

there	are	many	proposed	roles	of	DJ-1	across	numerous	systems,	the	function	of	DJ-1	in	

relation	to	the	development	and	progression	of	PD	remains	largely	unclear.	A	first	step	

towards	determining	this	function	is	the	creation	of	biologically	relevant	cell	models	of	

PD.	The	goal	of	this	work	was	to	design	a	representative	cell	model	of	DJ-1-associated	

PD	in	order	to	further	study	DJ-1	with	the	intention	of	elucidating	its	relevant	function	in	

relation	of	PD	pathogenesis.	

Quyen	Hoang,	Ph.D.,	Chair		 	
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INTRODUCTION	

1.1	PARKINSON’S	DISEASE	

Parkinson’s	disease	is	a	progressive	degenerative	neurological	disorder	that	is	estimated	

to	affect	1	in	100	people	age	65	and	older1,2	and	3	in	100	people	age	75	and	older.3	The	

overall	incidence	rate	is	roughly	13.4	per	100,000	after	adjusting	for	gender	and	age.	

There	is	a	higher	prevalence	among	men,	19.0	per	100,000,	than	among	women,	9.9	per	

100,000,	and	demonstrates	a	similar	incidence	rate	across	most	ethnicities.4		

1.2	HISTORY	OF	PARKINSON’S	DISEASE	

Parkinson’s	disease	was	first	characterized	at	length	by	Dr.	James	Parkinson	in	1817	in	

his	publication,	An	Essay	on	the	Shaking	Palsy.	In	this	manuscript,	he	described	the	

progression,	outcome	and	some	of,	what	are	known	as,	the	cardinal	symptoms	of	PD,	

distinguishing	them	from	other	confounding	diseases.5	Many	questions	Parkinson	

expressed	in	the	early	1800s	are	still	much	the	same	even	200	years	later.	Until	the	late	

twentieth	century,	genetic	predispositions	were	thought	to	play	an	insignificant	role	in	

the	development	of	PD.	The	prevailing	belief	was	that	environmental	factors,	not	

genetic,	led	to	the	onset	of	PD.	This	idea	was	reaffirmed	by	a	post-encephalitic	outbreak	

of	PD	in	the	early	1900s.	However,	a	number	of	papers	dating	back	to	as	early	as	1900	

have	noted	that	individuals	with	PD	often	have	an	affected	relative	and	even	provided	

documented	evidence	of	the	Mendelian	inheritance	of	PD.6,7	Interestingly	though,	two	

papers	were	published	showing	a	low	rate	of	concordance	in	both	monozygotic	and	

dizygotic	twins,	again	suggesting	an	absence	of	genetic	influence	on	PD.8,9		To	further	

bolster	this	argument,	in	the	early	1980s,	a	strain	of	synthetic	heroin	was	determined	to	
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be	the	cause	of	an	outbreak	of	aggressive,	rapid-onset	parkinsonism	cases.	The	toxin,	1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine	(MPTP),	was	found	to	be	the	responsible	

contaminate.10	MPTP	preferentially	enters	dopaminergic	neurons	resulting	in	the	

inhibition	of	complex	I	of	the	electron	transport	chain.	This	finding	elucidated	

mitochondrial	dysfunction	as	a	contributing	factor	to	the	development	of	PD.	This	also	

proved	to	be	a	landmark	finding	that	provided	a	mechanism	by	which	models	of	PD	

could	be	studied	in	animals	and	in	vitro.	The	idea	that	PD	may	have	a	genetic	

component	was	not	revisited	until	the	1990s	when	Marder	et	al.	published	a	study	

demonstrating	the	increased	risk	of	PD	among	first	degree	relatives.11	Genetic	

susceptibility	was	finally	confirmed	by	the	first	pathological	mutation	conclusively	

shown	to	cause	PD.12		

1.3	EARLY-ONSET	PARKINSON’S	DISEASE		

While	the	average	age	of	onset	is	estimated	to	be	around	60	years	of	age,	this	is	not	the	

only	cohort	to	be	affected	by	PD.	Early-onset	PD	(EOPD)	is	classified	as	having	an	onset	

before	the	age	of	50;	however	there	have	been	diagnoses	of	PD	in	individuals	as	young	

as	18,	perhaps	even	younger.13	The	overall	incidence	rate	of	PD	in	individuals	aged	30-

39	is	roughly	0.5	per	100,000	and	1.6	per	100,000	for	those	aged	40-49.4	Though	these	

numbers	may	seem	insignificant,	EOPD	makes	up	nearly	10%	of	all	PD	cases.14	

Furthermore,	studies	in	the	past	few	years	have	suggested	that	both	the	incidence	of	

EOPD15	and	PD,16	in	general,	are	on	the	rise.	This	could	be	attributed,	in	part,	to	the	

considerably	high	rate	of	pathogenic	mutations	found	in	two	genes	known	to	cause	

EOPD	in	comparison	to	genes	responsible	for	classic	or	late-onset	PD.17,18	Even	the	third	
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most	commonly	mutated	gene,	albeit	a	distant	third,	primarily	known	to	cause	late-

onset	PD,	has	been	shown	to	also	be	a	risk	factor	for	EOPD.19	

1.4	CLINICAL	MANIFESTATIONS	OF	PARKINSON’S	DISEASE		

While	PD	is	often	associated	with	tremors,	some	symptoms	of	Parkinson’s	disease	are	

hard	for	even	specialists	to	detect.	Parkinson’s	symptoms	can	be	different	for	every	

patient;	each	case	is	unique	and	the	pace	at	which	the	disease	progresses	can	vary	on	an	

individual	basis.	The	general	public	is	usually	most	familiar	with	the	motor	symptoms	of	

PD,	as	these	are	the	signs	of	the	disease	that	manifest	most	clearly	from	the	outside.	

These	symptoms,	known	as	the	cardinal	symptoms	of	Parkinson's	disease	include	resting	

tremor,	slowness	of	movement	and	rigidity.	Many	people	also	experience	balance	

problems	(postural	instability)	and	other	physical	symptoms,	such	as	gait	problems	and	

reduced	facial	expression.20	These	symptoms	often	appear	gradually	and	with	increasing	

severity	over	time.	Typically,	they	begin	on	one	side	of	the	body	and	with	time	migrate	

to	the	other	side.21		

There	is	increasing	recognition	of	both	the	presence	and	effects	of	non-motor	

symptoms	of	PD,	sometimes	called	"dopamine-non-responsive”	symptoms.	These	

symptoms	are	seen	more	commonly	in	non-classical	PD	cases;	however	even	classic	PD	

is	not	completely	exempt.	Symptoms	can	include:	cognitive	impairment,	mood	

disorders,	problems	sleeping	such	as	REM	sleep	disorder,	low	blood	pressure	when	

standing,	speech	and	swallowing	problems	as	well	as	loss	of	smell.22	Considering	the	list	

of	symptoms	and	current	treatment	options,	it	is	evident	that	no	one	medication	or	

treatment	will	work	to	minimize	all	symptoms	or	work	in	all	people.	That	being	said,	
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there	are	a	number	of	fruitful	treatment	options	for	Parkinson’s	disease,	the	most	

common	being	dopamine	replacement	therapy,	aimed	at	encouraging	the	brain	to	

synthesize	dopamine	with	the	replacement	compound	as	a	precursor.	Dopamine	

agonists	as	well	as	MAOIs	are	also	prescribed	to	treat	Parkinson’s.	Deep	brain	

stimulation	as	well	as	a	number	of	experimental	trials	are	also	possible	treatment	

options.	At	the	moment,	there	is	no	objective	test	or	biomarker	available	for	reliable	

diagnosis	of	PD	so	misdiagnosis	is	possible;	however	most	research	suggests	there	are	at	

least	one	million	people	in	the	United	States	with	PD	and	more	than	10	million	

worldwide.23	That	being	said,	most	certain	diagnosis	of	PD	can	be	made	post-mortem.	

1.5	PATHOLOGICAL	MANIFESTATIONS	OF	PARKINSON’S	DISEASE		

Lewy	bodies	are	insoluble,	eosinophilic	cytoplasmic	inclusions	typically	found	in	the	

substantia	nigra	pars	compacta,	but	are	not	localized	only	to	this	area.24	These	protein	

aggregates	are	considered	one	the	neuropathological	hallmarks	of	PD	and	is	used	as	a	

post-mortem	criterion	for	diagnosis	of	PD.25	Lewy	bodies	consist	primarily	of	α-synuclein	

but	it	is	not	known	what	molecular	events	lead	to	their	formation.26	Large	deposits	of	

ubiquitinated	protein	suggest	that	their	aggregation	may	be	due,	in	part,	to	proteasomal	

impairment	or	even	inhibition.27,28	In	support	of	this	idea,	studies	have	shown	a	

decreased	level	of	proteasomal	activity	in	the	substantia	nigra	of	PD	patients.29,30	

However,	because	unmodified	α-synuclein	is	typically	degraded	by	the	proteasome	

independent	of	ubiquitination,	it	is	possible	that	this	modified	α-synuclein	may	

overwhelm	the	proteolytic	pathway	and	instead	cause	abnormal	ubiquitination.31	
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Another	pathological	hallmark	of	PD	is	the	selective	death	of	dopaminergic	neurons	in	

the	substantia	nigra.	Interestingly,	the	effects	of	this	can	be	seen	in	the	brain,	post-

mortem,	without	staining	or	imaging	techniques	as	tyrosine,	dopamine’s	precursor,	is	a	

dark,	melanin	color;	two	neuromelanin	steaks	across	the	substantia	nigra	indicate	a	

healthy	individual,	where	light	or	non-existent	streaks	are	symptomatic	of	PD.32,33		

1.6	GENETICS	AND	HERITABILITY	OF	PARKINSON’S	DISEASE	

Over	20	years	after	the	first	description	of	a	causative	mutation	for	PD,	it	has	become	

evident	just	how	complex	this	disease	is.	Roughly	30	distinct	chromosomal	regions	have	

been	related	to	PD,	less	than	a	third	of	these	regions,	however,	contain	genes	with	

mutations	that	definitively	cause	monogenic	PD.34	Even	then,	these	mutations	only	

account	for	3-5%	of	disease	occurrences	suggesting	that	PD	may	be	caused	by	an	

association	of	multiple	factors.	A	non-exhaustive	list	could	include:	unreported	

pathways,	multiple	genes,	risk	factors/	susceptibility	alleles,	gene-environment	

interactions	or	environmental	exposure.	

Suspected	PD-causing	genes	are	given	the	nomenclature	of	PARK	and	are	numbered	in	

chronological	order	of	their	initial	report,	i.e.	PARK1,	PARK2,	PARK3,	etc.	This	list	is	not	

comprehensive	and	not	without	its	shortcomings.	First,	this	list	is	compromised	of	both	

verified	loci	and	loci	for	which	the	findings	could	not	be	replicated,	as	is	the	case	with	

UCH-L1.	Furthermore,	the	causative	gene	for	each	loci	has	not	yet	been	determined,	

such	as	PARK3.	That	being	said,	another	shortcoming	is	that	not	all	PARK	genes	are	

causative;	a	number	of	PARK	genes	are,	instead,	risk	factors	for	PD:	PARK10,	PARK12,	

PARK16.	
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All	currently	documented	monogenic	forms	of	PD	are	autosomal,	recessive	or	dominant,	

meaning	that	they	are	found	on	autosomally-linked	chromosomes	rather	than	the	sex-

linked.	Autosomal-dominant	disorders	require	only	one	mutation	to	display	the	

phenotype	while	autosomal	recessive	require	both	alleles	to	carry	the	mutation.	

Autosomal	dominant	mutations	are	able	to	overcome	the	normal	phenotype	in	one	of	

three	ways:	haploinsufficiency	–	meaning	that	a	single	copy	of	the	normal	allele	is	not	

able	to	compensate	to	provide	appropriate	function	of	the	protein;	the	dominant	

negative	effect	–	where	the	mutant	phenotype	is	nonfunctioning	causing	it	to	inhibit	the	

endogenous	function	of	the	normal	allele;	or	the	opposite	effect,	a	gain-of-function	

mutation	–	when	the	mutation	causes	the	protein	to	gain	a	new,	unendodgenous	

function.34	While	Mendelian	inheritance	patterns	provide	a	streamlined	theory	of	

disease	manifestation,	in	vivo,	diseases	rarely	follow	these	patterns	for	a	number	of	

reasons.35	These	patterns	often	become	convoluted	by	factors	such	as	reduced	

penetrance	–	failing	to	express	the	trait	even	though	one	may	carry	the	allele,36		and	

variable	expression	–	differences	in	the	way	individuals	may	express	the	associated	

disease	phenotype.37	Differences	seen	in	disease	phenotype	may	also	be	a	result	of	

molecular	aspects	such	as	the	location	of	mutation	(functional	domains,	binding	

pockets,	etc.)	which	could	lead	to	a	number	of	consequences	in	function.	

Most	pathogenic	PD	mutations	have	been	discovered	through	gene	mapping	or	

candidate	gene	approaches.	Gene	mapping	is	a	method	used	to	identify	location	of	

genes	in	relation	to	molecular	markers	and	can	be	used	with	no	prior	pathological	

hypothesis	as	it	takes	the	entire	genome	into	account.12,36	Gene	mapping	techniques	
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include	linkage	analysis	and	genome-wide	association	studies.	Candidate	gene	

approach,	instead,	is	based	on	associations	between	genetic	variants	within	genes	of	

interest	associated	with	specific	disease	phenotypes.38	With	advances	in	technology	and	

increasing	accessibility	of	the	genome,	the	latter	approach	has	become	outdated;	

however,	there	may	still	be	instances,	such	as	polymorphisms	with	low	allelic	frequency,	

in	which	candidate	gene	approach	would	be	more	appropriate.39	Nonetheless,	these	

studies,	have	helped	to	identify	over	20	PARK	genes	as	well	as	a	myriad	of	other	genes	

thought	to	play	a	role	in	the	development	and	progression	of	PD	(Table	1).	Select	genes	

have	been	explained	in	detail	and	are	the	subject	of	the	next	section.	
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Table	1.	Genes	implicated	in	Parkinson’s	disease	
Locus	 Chromosome	 Protein	

(Gene)	
Inheritance	
Pattern	

Phenotype	 Reference	

PARK1	
	

4q21-q22	 α-synuclein	
(SNCA)	

AD	 Early	onset,	Lewy	
Body	Dementia		

40		

PARK2	 6q25.2-q27	 parkin	
(PRKN)	

AR	 Early	onset,	slow	
progression	

41	

PARK3	 2p13	 	 AD	 Classic	PD	 36	
PARK4	 4q21-q23	 α-synuclein	

(SNCA)	
AD	 Early	onset,	Lewy	

Body	Dementia		

42	

PARK5	 4p13	 UCH-L1	 AD	 Classic	PD	 43	
PARK6	 1p35-p36	 PINK1	 AR	 Early	onset,	slow	

progression	

44	

PARK7	 1p36	 DJ-1	 AR	 Early	onset,	slow	
progression	

45	

PARK8	 12p11.2-
q13.1	

LRRK2	 AD	 Classic	PD	 46	

PARK9	 1p36	 ATPase	type	13A2	
(ATP13A2)	

AR	 Classic	PD,	
dementia	

47	

PARK10	 1p32	 	 Risk	factor	 Classic	PD	 48	
PARK11	 2q36-q37		 GRB10	interacting	

GYF	protein	2	
(GIGYF2)	

AD	 Late	onset	PD	 49	

PARK12	 Xq21-q25	 	 Risk	factor	 Classic	PD	 48,50-52	
PARK13	 2p12	 HtrA	serine	

peptidase	2	
(OMI/HTRA2)	

AD	 Classic	PD	 53	

PARK14	 22q13.1	 A2	phospholipase	
(PLA2G6)	

AR	 Early	onset	PD	
with	dystonia	

54	

PARK15	 22q12-q13	 F-box	protein	7	
(FBXO7)	

AR	 Early	onset	with	
dementia	

55	

PARK16	 1q32	 	 Risk	factor	 Classic	PD	 56	
PARK17	 16q11.2	 VPS35	 AD	 Classic	PD	 57	
PARK18	 3q27.1	 Eukaryotic	

translation	
initiation	factor	

(eIF4G1)	

AD	 Classic	PD	 58	

PARK19	 1p31.3	 DNAJC6	 AR	 Early	onset	PD	 59	
PARK20	 21q22.11	 SYNJ1	 AR	 Early	onset	PD	 60	
PARK21	 3q22	 	 AD	 Classic	PD	 61	
PARK22	 7p11.2	 CHCHD2	 AD	 Classic	PD	 56	
PARK23	 15q22.2	 VPS13C	 AR	 Early	onset	PD	 62	
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Table	1	cont.	Genes	implicated	in	Parkinson’s	disease	
Locus	 Chromosome	 Protein	

(Gene)	
Inheritance	
Pattern	

Phenotype	 Reference	

	 5q23.1-
q23.3	

Synphilin-1	
(SNCAIP)	

AD	 Classic	PD	 63	

	 2q22-q23	 Nuclear	receptor	
subfamily	4,	group	

A,	member	2	
(NR4A2)	

AR	 Classic	PD	 64	

	 19q13.32	 Apolipoprotein	
E	[ε2,	ε4	alleles]	

(APOE)	

Risk	factor	 Earlier	onset	of	
PD,	increased	risk	
of	dementia	

65-67	

	 1q22	 Glucosylceramidase	
Beta	
(GBA)	

Risk	factor	 Classic	PD	 68	

	 17q21.31	 Microtubule	
Associated	
Protein	Tau	
(MAPT)	

Risk	factor	 Classic	PD	 69,70	

	 20p13-
p12.3	

Transmembrane	
Protein	230	
(TMEM230)	

AD	 Classic	PD	with	
Lewy	Body	
Dementia	

71	

	 15q26.1	 Polymerase	
DNA	gamma	

(POLG)	

AR	 Early	onset	 72	

	 5q31.2	 mortalin	
(HSPA9)	

AD	 Early	onset	 73	

	 3q27.1	 Presenilin-
associated	

rhomboid	like	
protein	
(PARL)	

	 Early	onset	 74	

	 8p22	 N-acetyltransferase	
2	

(NAT2)	

Risk	factor	 Classic	PD	 75	

	 4p16.3	 Cyclin	G-
associated	kinase	

(GAK)	

Risk	factor	 Classic	PD	 76	

	 6p21.32			 HLA-DRA	 Risk	factor	 Classic	PD	 77	
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1.6.1	α-SYNUCELIN	

The	first	gene	linked	to	familial	PD	was	mapped	to	chromosome	4q21-q23	through	a	

multigenerational	study	of	an	Italian-American	family,	the	Contursi	kindred,	which	

examined	more	than	400	members	over	5	generations	and	identified	60	affected	

individuals	who	displayed	autosomal	dominant	disease	inheritance	with	early	onset	

progression.12		An	A53T	missense	mutation	was	found	in	the	gene	coding	for	α-synuclein	

in	these	affected	individuals.40	Later,	a	second	mutation	would	be	found	in	a	German	

family,	A30P,78	and	a	third	in	a	Spanish	family,	E46K.79	To	date,	there	are	roughly	30	

chromosomal	regions	associated	with	PD	in	α-synuclein;	however	less	than	10	are	

known	to	be	monogenic.34	α-synuclein	is	a	highly	conserved,	140	amino	acid	protein	

that	is	particularly	abundant	in	the	presynaptic	terminals	of	neurons	where	it	associates	

with	membrane	and	vesicular	structures.80-82	It	is	part	of	a	larger	family	of	synucleins,	

which	include	β-synuclein	and	γ-synuclein.83	α-synuclein	contains	multiple	domains:	an	

N-terminal	amphipathic	region	consisting	of	six	imperfect	repeats	and	is	proposed	to	

have	a	mitochondrial	targeting	sequence,84	a	hydrophobic	region	where	the	non-

amyloid-β	component	(NAC)	domain	resides,	and	an	acidic	C-terminal.	Depending	on	

the	environment,	α-synuclein	can	vary	structurally;	α-synuclein	is	intrinsically	

unstructured,	or	is	a	natively	unfolded	protein,	but	can	take	on	conformations	as	

monomeric	or	oligomeric	species	or	can	form	aggregated	protein	known	as	amyloids.85	

The	molecular	function	of	α-synuclein	remains	abstruse.	Normal	function	is	thought	to	

include	roles	such	as	dopamine	transport	regulation	and	dopamine	release,	fibrilization	

of	MAPT	and	neuroprotective	ability	in	non-dopaminergic	cells/neurons.	86-89	
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Pathologically,	α-synuclein	is	a	key	identifier	of	PD	and	other	synucleinopathies	as	it	is	

the	major	structural	component	of	Lewy	bodies.90	Mutations	in	α-synuclein	are	thought	

to	lead	to	PD	through	a	gain-of-function	mechanism	which	causes	increased	expression	

of	the	protein	and	self-aggregation,	ultimately	leading	to	Lewy	body	formation;	

compared	with	wild-type	α-synuclein,	both	the	A30P	and	A53T	mutants	exhibit	an	

increased	propensity	to	self-aggregate	and	form	oligomeric	species.91	It	is	unclear	how	

α-synuclein	produces	its	downstream	cytotoxic	effects.	Many	arguments	have	been	

made	suggesting	a	direct	interaction	between	α-synuclein	and	the	ubiquitin-proteasome	

system	(UPS).92-94	However,	alternative	pathways	have	also	been	considered	including	

the	autophagy,	or	lysosomal	degredation,	pathway.95	Some	have	suggested	that	the	

intermediates	of	oligomerization,	protofibrils,	may	be	the	pathogenic	cytotoxic	culprit	

rather	than	the	fibrils	themselves.	This	proposal	came	from	the	observation	that	A30P	

and	A53T	mutants	are	capable	of	inducing	the	oligomerization	but	not	fibrilization	of	α-

synuclein.96	Furthermore,	soluble	protofibrils	are	observable	in	human	brain	tissue	of	PD	

patients,	indicating	oligomeric	species	may	be	physiologically	relevant.97	However,	it	has	

been	demonstrated	that	β-amyloid	promotes	formation	of	α-synuclein	fibril-inclusions	

in	bigenic	mice	overexpressing	α-synuclein	and	mutant	amyloid	precursor	protein	

leading	to	a	more	severe	pathological	phenotype.98	Additionally,	increases	in	α-

synuclein	fibrilizaiton	has	been	associated	with	proteasomal	inhibition	causing	

formation	of	insoluble	fibril-inclusions	in	both	primary	neuronal	cultures	in	vitro99	and	in	

vivo.100	Delineation	of	the	precise	mechanism	in	which	α-synuclein	contributes	to	
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increased	cellular	toxicity	in	dopaminergic	neurons	will	be	key	to	understanding	its	role	

in	PD.	

1.6.2	PARKIN	

In	its	initial	discovery,	a	large	region	on	chromosome	6q25.2-q27	was	linked	to	a	rare	

form	of	autosomal	recessive	juvenile	onset	PD	in	multiple	consanguineous	Japanese	

families.101	Shortly	thereafter,	a	homozygous	deletion	was	found	in	a	microsatellite	

marker	of	an	individual	affected	with	parkinsonism	symptoms,	the	adjacent	gene	was	

appropriately	named,	parkin.41	Mutations	in	the	parkin	gene	are	fairly	common	in	

familial	PD.	Mutations	are	found	in	50%	of	early-onset,	recessive,	familial	cases	and	10%	

of	all	early-onset	cases.17	A	large	variety	of	pathogenic	mutations	have	been	described	

from	small	deletions	to	hundreds	of	kilobases,	repeats	as	well	as	missense	

mutations.102,103	Through	a	genome-wide	scan	of	families	with	early-onset	PD,	there	was	

significant	linkage	to	only	parkin,	indicating	a	critical	role	for	the	gene	in	the	

development/progression	of	early-onset	PD.52		The	parkin	gene	encodes	a	protein	465	

amino	acids	in	length.	It	contains	an	N-terminal	ubiquitin-like	(UBL)	domain	and	a	C-

terminal	RING	domain	with	two	RING	fingers	and	an	in-between-RING	(IBR)	domain.	

Parkin	can	function	as	an	E3	ubiquitin	protein	ligase	through	its	RING	finger	motifs,104,105	

and	can	interact	with	E2s	as	well	as	substrate	proteins	through	its	RING	domain.	Parkin	

has	been	shown	to	interact	with	E2	enzymes,	UbcH7	and	UbcH8,58	and	with	UBC6	and	

UBC7	which	are	endoplasmic	reticulum-associated	E2s.106	Pathogenic	mutations	are	

considered	loss-of-function	mutations	and	weaken	interactions	of	parkin	through	its	

RING	domain,	by	either	hindering	its	E3	ubiquitin	protein	ligase	activity	or	by	blocking	
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interactions	with	E2s	and	substrates.	These	mutations	are	thought	to	prompt	improper	

targeting	for	proteasomal	degredation	causing	neurotoxic	accumulation.	A	proteomic	

analysis	of	parkin	knockout	mice	showed	decreased	concentrations	of	proteins	involved	

in	mitochondrial	oxidative	phosphorylation,	such	as	NADH-ubiquinone	oxidoreductase,	

pyruvate	dehydrogenase	E1α1	and	cytochrome	c	oxidase,	as	well	as	peroxiredoxins	

1,2,6	which	are	thought	to	function	as	antioxidants	offer	protection	from	oxidative	

stress.107	These	reductions	were	further	associated	with	decreases	in	the	repiratory	

capacity	of	mitochondria	and	increases	in	age-related	oxidative	insult	suggesting	a	role	

for	parkin	in	the	matenince	of	mitochondrial	function.	Parkin	knockouts	in	other	models	

have	also	yielded	interesting	results;	Drosophila	parkin	knockouts	showed	reduced	

lifespan,	motor	deficits	(due	to	apoptotic	muscle	degeneration)	and	male	sterility.	These	

symptoms	are	important	indicators	of	mitochondrial	dysfunction	that	are	often	

accompanied	by	increased	oxidative	stress.108	How	parkin	mitigates	oxidative	sress	and	

stimulates	the	survival	of	dopimergic	neurons	is	still	unknown.	Overexpression	of	parkin	

in	cell	culture	not	only	demonstrates	a	resistance	to	agents	known	to	induce	

mitochondria-targeted	apoptosis	but	also	shows	a	localization	to	the	

outermitochondrial	membrane.109	Parkin	overexpression	has	been	shown	to	protect	

against	proteasome-inhibition-induced	toxicity	as	well	as	protection	against	increased	

expression	of	mutant	α-synuclein.110	Furthermore,	in	Drosophila	models,	overexpression	

of	parkin	has	been	shown	to	rescue	dopaminergic	neurons	from	α-synuclein-positive	

inclusions,	indicating	that	parkin	may	function	to	relieve	or	deter	aggregations	of	
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mutant	α-synuclein.111	Further	investigation	into	the	interacting	partners	of	parkin	may	

present	alternative	mechanisms	of	protection	against	cytotoxicity	in	relation	to	PD.	

1.6.3	PINK1	

Through	a	genome-wide	homozygosity	screening	of	a	Sicilian	family,	a	12.5	cM	region	

on	chromosome	1p35-p36	was	found	as	a	commonality	across	4	family	members	with	

early-onset	PD.112	This	region	was	later	found	to	have	positive	linkage	from	unrelated	

families	and	was	thereby	confirmed	as	a	relevant,	pathological	gene.113	Further	study	

revealed	a	handful	of	mutations	in	the	PINK1	gene	concentrated	mostly	across	its	

serine/threonine	protein	kinase	domain.114	PINK1	is	581	amino	acids	in	length,	contains	

an	N-terminal	mitochondrial	targeting	sequence,	the	aforementioned	serine/threonine	

protein	kinase	domain	and	a	C-terminal	autoregulatory	domain.	Although	mutations	of	

PINK1	are	most	commonly	found	in	exon	7	(serine/threonine	protein	kinase	domain),	

they	affect	all	8	exons	with	similar	frequencies.115	Mutations	in	PINK1	are	thought	to	

contribute	to	PD	through	loss-of-function	demonstrating	the	importance	of	the	

enzymatic	activity	of	PINK1	in	the	pathogenesis	of	PD.	PINK1	has	been	shown	to	use	its	

kinase	activity	to	phosphorylate	mitochondrial	proteins	in	response	to	oxidative	stress	in	

order	to	prevent	mitochondrial	dysfunction.44	Furthermore,	it	has	been	suggested	that	

PINK1	and	parkin	interact	through	a	common	pathway,	known	as	the	PINK1/parkin	

pathway,116	as	a	form	of	quality	control	for	the	mitochondria:	screening	and	eradicating	

damaged	mitochondria	from	the	mitochondrial	network.	PINK1	localizes	to	the	

mitochondria,	where	it	is	stabilized	by	a	lower	membrane	potential	and	then	recruits	
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cytosolic	parkin.	This	recruitment	causes	parkin	to	become	enzymatically	active	and	

stimulates	removal	of	the	mitochondria	through	mitophagy.117		

1.6.4	LRRK2			

Genome-wide	linkage	analysis	of	a	Japanese	family	with	autosomal	dominant	PD	

showed	positive	linkage	to	chromosome	12p11.23-q13.11.46	LRRK2	mutations	are	the	

most	common,	known	cause	of	late-onset	autosomal	dominant	PD.118	While	mutations	

are	common,	the	reported	pathological	findings	are	inconsistent,	ranging	from	Lewy	

body	pathology	to	substantia	nigaral	degeneration	without	Lewy	bodies,	both	with	and	

without	neurofibrillary	tangles.119	LRRK2	encodes	a	cytoplasmic	protein	that	is	2527	

amino	acids	in	length.	It	contains	an	N-terminal	leucine-rich	repeat	(LRR)	domain,	a	ROC	

(Ras	of	complex	protein)	domain,	COR	(C-terminal	of	ROC)	domain,	a	mitogen-activated	

protein	kinase	kinase	kinase	(MAPKKK)	domain	and	a	C-terminal	WD40	repeat	

domain.120	There	are	upwards	of	50	reported	missense	and	nonsense	mutations,121	of	

those	mutations,	at	least	16	are	deemed	to	be	pathogenic	in	nature.122	Interestingly,	

these	pathogenic	mutations	are	concentrated	to	10	exons,	encoding	the	C-terminal	

kinase	region.123	The	mechanism	by	which	LRRK2	dysfunction	leads	to	PD	is	unknown.	

Because	LRRK2	is	a	large	protein	with	many	domains	capable	of	their	own	unique	

functions	and	possibility	for	an	infinite	number	of	protein-protein	interactions,	there	is	

much	work	to	be	done	to	tease	apart	the	pathological	interactions	or	functions.	

1.6.5	UCH-L1	

Candidate	gene-screening	identified	previously	unreported	mutation,	heterozygous	

I93M,	in	the	gene	encoding	ubiquitin	carboxyl-terminal	hydrolase	L1	in	an	affected	
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sibling	pair.	Interestingly	though,	the	parent	transmitting	the	mutation	was	found	to	be	

asymptomatic.43	This	may	suggest	that	the	I93M	mutation	is	nonpathogenic	or	that	the	

mutation	may	cause	PD	through	incomplete	penetrance.	Another	mutation,	S18Y,	was	

found	through	a	case-control	study.124	However,	following	studies	failed	to	replicate	

these	findings	with	consistency.	UCH-L1	is	212	amino	acids	in	length	and	is	located	on	

chromosome4p13.	It	is	found	in	high	concentrations	in	neurons	and	is	part	of	a	

deubiquitinating	family	of	enzymes	that	hydrolyze	ubiquitin	chains	to	free	monomeric	

ubiquitin.125	It	has	been	suggested	that	UCH-L1	may	also	function	as	a	dimerization-

dependent	ubiquitin	protein	ligase	which	acts	to	maintain	ubiquitin	homeostasis	by	

binding	and	stabilizing	ubiquitin	monomers	in	neurons.	125,126	UCH-L1	has	also	been	

shown	to	localize	to	Lewy	bodies	and	can	promote	accumulation	of	α-synuclein	in	cell	

culture.127,128	It	is	thought	that	mutation	of	UCH-L1	hinders	its	ubiquitin	function	causing	

progression	of	PD;	however	it	is	unclear	from	current	literature	if	this	is	pathologically	

relevant	or	if	the	reported	mutations	were	the	result	of	a	coincidental	

polymorphism.129,130		

1.6.6	DJ-1		

In	2001,	homozygosity	mapping	of	a	family	with	multi-consanguinity	affected	with	EOPD	

demonstrated	significant	evidence	for	linkage	on	chromosome	1p36.	131	Shortly	

thereafter,	multiple	monogenic	mutations	were	found	in	studies	of	Italian	and	Dutch	

families.45	Following	these	findings,	novel	mutations	including	deletions,	splice	site	

alterations	and	missense	mutations	were	documented	in	a	number	of	other	families	

with	EOPD.132	Today,	roughly	20	pathogenic	mutations	have	been	reported	in	DJ-1	in	
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relation	to	EOPD	cases	(Table	2).	However,	mutations	to	DJ-1	comprise	only	a	very	small	

percentage	of	EOPD	cases,	roughly	1-2%.133,134		

DJ-1	encodes	for	a	highly	conserved	protein	189	amino	acids	in	length	belonging	to	the	

DJ-1/ThiJ/PfpI	family	and	is	currently	only	known	to	have	a	single	functional	domain	

(Figure	1).135	DJ-1	is	ubiquitously	expressed	in	both	the	brain	and	periphery.136,137	It	is	

found	in	neurons45,138	and	microglia,139	but	is	expressed	in	the	highest	amount	in	

astrocytes.140-145	DJ-1	was	originally	discovered	20	years	ago	as	an	oncogene	that	

transformed	cells	in	conjunction	with	H-Ras.146	Studies	have	confirmed	that	DJ-1	

expression	is	greatly	increased	in	multiple	types	of	cancer147,148	but	more	importantly,	

this	oncogenic	role	may	relate	to	regulation	of	the	phosphatase	and	tensin	homolog	

(PTEN)	tumor	suppressor,149	the	substrate	of	which,	is	necessary	for	pathways	related	to	

PD.150	Later	investigations	into	the	role	of	DJ-1	yielded	a	variety	of	activities	including	a	

protective	protein	present	in	rat	sperm,151	a	modulating	protein	for	androgen-receptor	

mediated	transcription152	and	part	of	the	regulatory	component	of	RNA-binding	protein	

complexes.153		

The	physiological	function	of	DJ-1	is	unknown.	Most	evidence	suggests	that	DJ-1	may	

function	as	a	redox	sensor	or	an	antioxidant	protein.154-157	In	cultured	cells	exposed	to	

oxidative	stressors,	DJ-1	exhibits	an	acidic	shift	in	isoelectric	point	(pI).	This	shift	can	be	

explained	by	the	oxidation	of	cysteine	residues	which	can	be	converted	to	a	cysteine-

sulfinic	acid	(C-SO2H).138,158	Furthermore,	DJ-1	is	able	to	self-oxidize	in	order	to	eliminate	

hydrogen	peroxide	(H2O2)	signifying	a	potential	role	as	a	direct-scavenger	of	reactive	

oxygen	species.159	Overexpression	of	DJ-1	protects	against	oxidative	insult	in	cell	culture	
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while	knockdown	of	DJ-1	increases	susceptibility	to	oxidative	stress.159	However,	cellular	

stress	does	not	only	modify	the	state	and	function	of	DJ-1,	it	also	causes	a	change	in	its	

location.	Various	studies	have	demonstrated	that	oxidative	stress	causes	DJ-1	to	localize	

to	the	outer	membrane	of	the	mitochondria.	Here,	it	is	believed	to	mitigate	

mitochondria-dependent	cell	death.138,160,161	It	has	been	documented	that	DJ-1	localizes	

to	the	mitochondria	in	response	to	oxidative	stress	and	then	moves	to	the	nucleus,	all	

within	a	specific	time	frame.138,161,162	Interestingly,	DJ-1	lacks	any	known	mitochondrial	

or	nuclear	targeting	sequences.	In	separate	studies,	DJ-1	has	been	shown	to	interact	

with	parkin,163,164	PINK1165-167	and	α-synuclein154,156,168	under	oxidative	stress	conditions	

which	could	suggest	that	linkage	in	a	larger	functional	pathway.	In	addition,	through	

knockdown	and	overexpression	studies,	DJ-1	has	been	shown	to	prevent	cell	death	by	

regulating	endoplasmic	reticulum	stress	as	well	as	proteasome	inhibition.169	These	

findings	suggest	that	DJ-1	may	play	a	significant	role	in	protecting	against	cell	death.		

1.6.6.1	CLINICAL	OVERVIEW	

Symptoms	of	EOPD	can	vary	significantly,	making	them	more	difficult	to	diagnose.	Less	

than	half	of	patients	experience	the	resting	tremor	characteristically	associated	with	PD.	

Patients	with	EOPD	also	have	a	slower	disease	progression	and	are	more	responsive	to	

treatment,	specifically	L-dopa.170	EOPD	typically	presents	with	dystonia	–	muscle	

contractions	which	lead	to	abnormal	presentations	of	limbs	or	posture.	According	to	

clinical	studies,	EOPD	patients	have	a	higher	rate	of	dyskinesia	–	impairment	or	difficult	

with	voluntary	movement,	and	a	worse	quality	of	life	when	compared	to	classic	PD	

patients.170-172	Furthermore,	there	is	a	higher	incidence	of	non-motor	symptoms	in	
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EOPD	but	a	lower	rate	of	psychological	and	cognitive	symptoms.170	Symptoms	alone	are	

not	enough	to	confidently	diagnose	EOPD;	however	imaging	studies	may	offer	better	

insight.	An	Italian	MRI	study	found	that	the	use	of	three	markers	–	unilateral	R2	of	the	

substantia	nigra,	fractional	anisotrophy	of	the	right	substantia	nigra	and	mean	diffusivity	

in	the	caudate	nucleus	or	putamen	–	were	able	to	accurately	distinguish	between	EOPD	

patients	and	controls.173		

1.6.6.2	PATHOLOGY	

Unlike	classic	PD,	EOPD	caused	by	DJ-1	is	not	associated	with	the	presence	of	Lewy	

bodies.	However,	it	has	been	suggested	that	DJ-1	may	be	able	to	associate	into	

filaments	because	of	its	homodimer	confirmation.	Crystal	structures	revealed	that	DJ-1	

dimers	were	stacked	linearly	and	formed	into	protofilaments	facilitated	by	inorganic	

phosphate,	and	then	bundled	into	filamentous	structures.174	It	is	known	that	the	

solubility	of	DJ-1	is	altered	resulting	in	the	formation	of	aggregates	and	insoluble	DJ-1	

aggregates	have	been	found	in	brains	of	PD	patients.142,175-177	However	this	study	only	

observed	DJ-1	aggregation	in	vitro,	warranting	further	study,	or	replication,	in	vivo.	

Subsequently,	it	remains	unclear	how	this	filamentous	confirmation	contributes	to	the	

development	or	progression	of	PD.	

1.6.6.3	GENETICS	AND	SEQUENCE	VARIANTS	

Pathogenic	mutations	are	thought	to	cause	PD	through	a	loss-of-function	mechanism,	

the	most	notable	of	these	being	the	L166P	mutant.	This	mutation	was	shown	to	cause	

destabilization	of	the	entire	protein	and	promotes	unfolding	of	the	C-terminus.45	

Unfolding	of	the	C-terminal	region	leads	to	a	loss	of	dimerization	and	is	thereby	an	
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easier	target	for	degradation	by	the	proteasome.177-179	The	L166P	mutant	has	also	been	

shown	to	diminish	the	neuroprotective	ability	of	DJ-1	in	cell	culture,	most	likely	as	a	

direct	consequence	of	its	lack	of	stability.159	Monogenic	mutations	in	DJ-1	have	also	

shown	to	affect	their	ability	to	interact	with	other	proteins	suggesting	that	interactions	

with	such	proteins	are	part	of	normal	function	and	integral	to	maintaining	their	role	in	

the	cell.165	Such	mutations	and	their	effects	are	listed	in	Table	2.	
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Table	2.	Pathogenic	mutations	of	DJ-1	
Mutation	 Inheritance	

Pattern	
Effect	 Reference	

L10P	 homozygous	 Protein	instability,	aggregation	 180,181	
M26I	 homozygous	 Protein	instability	 182	
A39S	 heterozygous	 Reduction	in	basal	levels	of	

PINK1	

165	

E64D	 homozygous	 unknown	 183	
R98Q	 heterozygous	 Polymorphism	 184	185	
G115T	 homozygous	 unknown	 165	
A104T	 heterozygous	 Increased	conformational	

stability	

186	187	

D149A	 heterozygous	 unknown	 182	
E163K	 homozygous	 Impaired	activity	 188	189	
L166P	 homozygous	 Protein	instability	 45	
A179T	 heterozygous	 unknown	 190	

g.168_185dup	 homozygous	 unknown	 188	
Ex1-5dup	 homozygous	 unknown	 190	
P158del	 homozygous	 Protein	instability,	aggregation	 181,190	
c.56delC	 heterozygous	 Frameshift,	protein	truncation	 186	

g.168_185del	 heterozygous	and	
homozygous	

Polymorphism	 186	

14-kb	del	 homozygous	 Loss	of	functional	protein	 45	
Ex5-7del	 heterozygous	 Altered	sequence	 184	

IVS5+2-12del	 heterozygous	 Altered	sequence	 184	
IVS6-1	G-C	 heterozygous	 Altered	sequence	 186	
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1.6.6.4	STRUCTURAL	BIOLOGY	

The	crystal	structure	of	DJ-1	revealed	a	flavodoxin-like	fold	similar	to	that	of	PH1704,	a	

bacterial	protease,	and	Hsp31,	a	stress-induced	homodimeric	protein	and	homolog	of	

human	DJ-1,	from	Escherichia	coli	and	yeast.191-193	These	structures	also	revealed	that	

DJ-1	exists	as	a	dimer	with	eight	α-helicies	and	11	β-strands	arranged	into	a	helix-turn-

helix	sandwich,177,178,194	typical	of	the	ThiJ/PfpI	superfamily	(Figure	2).		

Much	debate	has	been	centered	on	whether	the	active	site	of	DJ-1	is	considered	a	diad	

or	triad;	proponents	of	the	triad	point	out	the	similarities	to	catalytic	triad	active	sites	

(C-H-D/E)	with	C106,	H126	and	E18	filling	those	roles.	Catalytic	cysteine	residues	are	

conserved	across	the	ThiJ/PfpI	superfamily.191	However	this	orientation	is	not	as	

favorable	as	the	orientation	of	normal	cysteine	proteases	and	does	not	seem	to	be	

appropriate	for	functional	proton	transfer.193	This	suggests	that	DJ-1	may	instead	have	a	

catalytic	diad	consisting	of	C106	and	H126	only195	thereby	distinguishing	itself	from	

other	structural	homologs.		

Cysteine	residues	are	known	to	act	as	redox-sensitive	indicators	in	a	variety	of	

proteins.196	DJ-1	contains	three	cysteine	residues	C46,	C53	and	C106.	Of	these	three,	it	

has	been	shown	that	C106	is	the	most	sensitive	to	oxidative	stress.197	C106	is	easily	

oxidized	to	cysteine-sulfinate		(C106-SO2
-)	under	very	mild	conditions	and	even	

unintentionally.	138	Structural	analysis	revealed	that	this	moiety	is	stabilized	by	three	

hydrogen	bonds	to	adjacent	residues,	including	one	to	the	protonated	COOH	side	chain	

of	E18,	an	argument	in	favor	of	the	necessity	of	E18	in	catalytic	function.	138		
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Mutational	analysis	of	the	cysteine	residues	–	C46A,	C53A	and	C106A	–	revealed	

diminished	oxidation	and	decreased	ability	to	mitigate	cell	death	in	C106A	mutants	

only.138		Furthermore,	it	has	been	shown	that	C106A	binds	with	BcI-XL,	a	mitochondrial	

protein	located	on	the	outer	mitochondrial	membrane,	far	less	than	wt	DJ-1	suggesting	

that	the	ability	for	C106	to	be	oxidized	may	be	integral	for	the	localization	of	DJ-1	to	the	

mitochondria.	198		
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Figure	1.	Domains	of	DJ-1.	Designed	based	on	the	following	studies.	135,192,199	 	
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Figure	2.	Map	of	the	secondary	structure	of	DJ-1.	Designed	based	on	the	following	

findings.	191,193,199-201	 	



	 26	

1.7	MODELS	OF	PARKINSON’S	DISEASE	

The	first	models	of	PD	were	developed	after	Parkinson-like	systems	were	seen	in	a	

number	of	patients	who	had	been	exposed	to	a	contaminated	strain	of	synthetic	heroin,	

as	discussed	earlier.	Today	models	of	Parkinson’s	disease	often	aim	to	replicate	PD	

through	genetic	mutations,	knock-downs,	knock-outs,	overexpression	and	toxin-induced	

stressors,	such	pesticides	and	various	complex	I	inhibitors,	in	both	in	vivo	and	in	vitro	

approaches.202	In	this	particular	model,	we	used	neuroblastoma	cell	lines	infected	with	

our	constructs,	discussed	in	full	detail	later,	in	order	to	overexpress	the	wt	and	mutant	

proteins,	respectively.	

1.7.1	NEUROBLASTOMA	CELL	LINES	

Neuroblastomas	are	malignancies	that	form	in	nerve	cells.	Samples	taken	from	

cancerous	cells	are	often	used	for	cell	culture	studies	due	to	their	ability	to	divide	

indefinitely.	This	ability	is	due	to	the	fact	that	they	produce	telomerase,	where	normal,	

non-cancerous,	cells	do	not.	Telomerase	is	an	enzyme	that	adds	to	telomere	repeat	

sequences	at	the	ends	of	chromosomes	to	prevent	degradation	of	telomeres	and	

subsequent	replicative	senescence,	where	cells	cease	to	divide.	Neuroblastoma	lines,	

SH-SY5Y	and	M17,	were	chosen	for	use	in	this	study.	While	cells	in	vitro	can	be	

differentiated	using	substances	like	retinoic	acid	to	induce	further	cellular	specialization,	

cell	lines	in	this	study	were	not	differentiated.	It	has	been	shown	that	undifferentiated	

SH-SY5Y	and	M17,	opposed	to	differentiated,	cell	lines	are	more	representative	of	

catecholaminergic/dopaminergic	neurons	which	would	be	most	appropriate	for	the	

study	of	Parkinson’s	disease.203-205		
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1.7.1.1	SH-SY5Y	

SH-SY5Y	cells	were	originally	derived	from	a	metastasized	neuroblastoma	via	a	bone	

biopsy.	The	parental	cell	line,	SK-N-SH	was	subcloned	three	times,	first	to	SH-SY,	then	

SH-SY5	and	finally	into	SH-SY5Y.	SH-SY5Y	cells	are	genetically	female	and	contain	

neuroblastoma	morphology	and	are	positive	for	enzymes	tyrosine	hydroxylase	and	

dopamine-β-hydroxylase	both	of	which	are	characteristic	components	of	dopaminergic	

neurons.206	SH-SY5Y	cells	contain	a	low	level	of	tyrosine	hydroxylase,	the	rate-limiting	

enzyme	of	the	catecholamine	synthesis	pathway,	responsible	for	creating	dopamine’s	

precursor	from	tyrosine,	dopamine	can	then	be	further	converted	to	epinephrine	by	

dopamine-β-hydroxylase.207	

1.7.1.2	M17	

M17	cells	were	cloned	from	SK-N-Be(2)	neuroblastoma	cells	collected	from	a	

metastasized	site.	While	the	SH-SY5Y	cells	are	genetically	female,	M17	cells	are	

genetically	male	and	were	derived	from	the	bone	marrow	of	a	2-year-old	boy.	M17	cells	

also	contain	neuronal	marker	enzymes	and	enzymes	involved	in	the	catecholamine	

synthesis	pathway.208,209	

1.7.2	OXIDATIVE	STRESS	

Various	toxins	have	been	used	to	induce	oxidative	insult	that	leads	to	cell	death	

modeling	the	selective	death	of	dopaminergic	neurons	due	to	oxidative	stress.	Popular	

models	include	MPTP,	rotenone,	6-hydroxydopamine	paraquat	and	menadione.202,210,211	

These	compounds	lead	to	mitochondrial	dysfunction	in	various	ways	leading	to	reactive	

oxygen	species	(ROS)	production	and	subsequent	cell	death.	
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1.7.2.1	MENADIONE	

Vitamin	K3,	or	menadione,	is	a	mild	oxidative	stressor.	It	was	chosen	as	it	allows	easier	

control	over	concentrations,	most	consistent	stressor	used	by	the	lab.211	It	is	thought	

that	menadione	generates	ROS	through	redox	cycling,	but	the	exact	mechanism	is	still	

unclear.212	

1.8	LENTIVIRAL	TRANSFECTION	AND	TRANSDUCTION	

Lentiviruses	are	a	form	of	retrovirus	utilized	in	cell	culture	because	of	their	ability	to	

integrate	genetic	material	into	host	genomes	regardless	of	what	stage	of	the	cell	cycle	

the	cell	is	in.213	Furthermore,	by	integrating	into	the	host	genome,	lentivirus	are	able	to	

create	stable	cell	lines	opposed	to	transient	cell	lines	made	by	most	traditional	methods	

of	transfection.214		

1.8.1	PACKAGING	VECTORS		

Packaging	vectors	are	required	to	supply	the	proper	encapsulation	and	machinery	of	the	

virus.	Different	generations	of	lentiviral	expression	systems	require	different	packaging	

vectors.	This	system	required	three	vectors;	pRRE,	pRSV-REV	and	pVSV-G.	The	first,	

pRRE,	contains	three	components:	gag	which	codes	for	the	structural	viral	proteins,	pol	

which	is	responsible	for	retrovirus-specific	enzymes	and	RRE,	a	binding	site	for	the	REV	

protein.	The	second,	pRSV-REV,	contains	REV	which	facilitates	the	export	of	RNA	from	

the	nucleus.	The	third,	pVSV-G,	contains	the	vesicular	stomatitis	G	protein,	the	envelope	

plasmid,	which	enables	budding	from	the	packaging	cell,	utilizing	the	packaging	cell	

membrane	to	create	the	membrane	of	the	virus.215	All	three	packaging	vectors	were	a	

gift	from	the	lab	Dr.	Clark	Wells.	
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1.8.2	PACKAGING	CELL	

The	packaging	cells	we	used,	293T	dtx,	were	also	a	gift	from	the	Wells	lab.	Originally	

derived	from	a	human	kidney	cell	line,	293T	cells	are	known	for	their	high	transfection	

efficiency	due	to	its	expression	of	a	mutant	SV40	large	T	antigen.216	These	cells	are	most	

commonly	used	for	expression	and	production	of	retroviruses.217	Through	the	addition	

of	the	three	packaging	vectors,	293T	cells	serve	as	the	host	for	the	viral	components;	

the	membranes	of	which	become	the	membrane	of	the	virus	through	budding.	
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METHODS	AND	MATERIALS	

2.1	CONSTRUCTS	AND	VECTORS	

The	wt	human	DJ-1	construct	was	a	gift	to	the	lab	from	the	late	Dr.	Anthony	Fink	of	the	

University	of	California	Santa	Cruz	(Figure	3).	This	construct	was	mutated	using	Q5	Site-

Directed	Mutagenesis	to	create	the	DJC106A	mutant.	Presence	of	the	mutation	was	

verified	via	sequencing	(Figure	4).		

Lentiviral	acceptor	vectors,	mCherry	and	3x	FLAG,	were	obtained	from	the	Wells	Lab	at	

Indiana	University	School	of	Medicine.	Empty	vectors	with	no	acceptor	components	of	

mCherry	and	3x	FLAG	were	also	obtained	to	serve	as	controls	(Figures	5	and	6).	

2.2	CLONING		

ASCI/PACI	restriction	enzyme	sites	were	cloned	into	wt	and	mutant	DJ-1	constructs	

using	PCR.	Following	PCR,	all	constructs	and	vectors	were	double	restriction	enzyme	

digested	overnight.	The	restriction	enzyme	digest	products	were	run	on	a	DNA	gel	and	

the	appropriate	bands	were	extracted.	The	extracted	gel	products	were	then	purified	

and	ligated	for	a	minimum	of	2	hours.	The	ligation	products	were	transformed	into	

DH5α	cells,	spread	on	plates	and	incubated	at	37°C	overnight.	Colonies	were	selected	

and	subjected	to	colony	PCR	to	confirm	presence	of	the	insert.	Colonies	containing	the	

insert	were	then	selected	and	cultured	overnight.	Plasmid	purification	was	performed	

the	next	day	and	samples	were	sent	out	for	sequencing	as	secondary	verification	

(Figures	7-10).		
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Nucleic	acid	sequence:	
		
ATGGCTTCCAAAAGAGCTCTGGTCATCCTGGCTAAAGGAGCAGAGGAAATGGAGACGGTCATCCCTGTA
GATGTCATGAGGCGAGCTGGGATTAAGGTCACCGTTGCAGGCCTGGCTGGAAAAGACCCAGTACAGTGT
AGCCGTGATGTGGTCATTTGTCCTGATGCCAGCCTTGAAGATGCAAAAAAAGAGGGACCATATGATGTG
GTGGTTCTACCAGGAGGTAATCTGGGCGCACAGAATTTATCTGAGTCTGCTGCTGTGAAGGAGATACTG
AAGGAGCAGGAAAACCGGAAGGGCCTGATAGCCGCCATCTGTGCAGGTCCTACTGCTCTGTTGGCTCAT
GAAATAGGCTGCGGAAGTAAAGTTACAACACACCCTCTTGCTAAAGACAAAATGATGAATGGAGGTCAT
TACACCTACTCTGAGAATCGTGTGGAAAAAGACGGCCTGATTCTTACAAGCCGGGGGCCTGGGACCAGC
TTCGAGTTTGCGCTTGCAATTGTTGAAGCCCTGAATGGCAAGGAGGTGGCGGCTCAAGTGAAGGCTCCA
CTTGTTCTTAAAGACTGA	
	
	
Amino	acid	sequence:	
	
MASKRALVILAKGAEEMETVIPVDVMRRAGIKVTVAGLAGKDPVQCSRDVVICPDASLEDAKKEGPYDVVVL
PGGNLGAQNLSESAAVKEILKEQENRKGLIAAICAGPTALLAHEIGCGSKVTTHPLAKDKMMNGGHYTYSENR
VEKDGLILTSRGPGTSFEFALAIVEALNGKEVAAQVKAPLVLKD	
	
	
Figure	3.	Nucleic	acid	and	amino	acid	sequences	of	wt	DJ-1.	
	
	
	
Nucleic	acid	sequence:	
	
ATGGCTTCCAAAAGAGCTCTGGTCATCCTGGCTAAAGGAGCAGAGGAAATGGAGACGGTCATCCCTGTA
GATGTCATGAGGCGAGCTGGGATTAAGGTCACCGTTGCAGGCCTGGCTGGAAAAGACCCAGTACAGTGT
AGCCGTGATGTGGTCATTTGTCCTGATGCCAGCCTTGAAGATGCAAAAAAAGAGGGACCATATGATGTG
GTGGTTCTACCAGGAGGTAATCTGGGCGCACAGAATTTATCTGAGTCTGCTGCTGTGAAGGAGATACTG
AAGGAGCAGGAAAACCGGAAGGGCCTGATAGCCGCCATCGCTGCAGGTCCTACTGCTCTGTTGGCTCAT
GAAATAGGCTGCGGAAGTAAAGTTACAACACACCCTCTTGCTAAAGACAAAATGATGAATGGAGGTCAT
TACACCTACTCTGAGAATCGTGTGGAAAAAGACGGCCTGATTCTTACAAGCCGGGGGCCTGGGACCAGC
TTCGAGTTTGCGCTTGCAATTGTTGAAGCCCTGAATGGCAAGGAGGTGGCGGCTCAAGTGAAGGCTCCA
CTTGTTCTTAAAGACTGA	
	
Amino	acid	sequence:	
	
MASKRALVILAKGAEEMETVIPVDVMRRAGIKVTVAGLAGKDPVQCSRDVVICPDASLEDAKKEGPYDVVVL
PGGNLGAQNLSESAAVKEILKEQENRKGLIAAIAAGPTALLAHEIGCGSKVTTHPLAKDKMMNGGHYTYSEN
RVEKDGLILTSRGPGTSFEFALAIVEALNGKEVAAQVKAPLVLKD	
	
	
Figure	4.	Nucleic	acid	and	amino	acid	sequences	of	DJ-1	C106A	mutant.	Mutation	

denoted	in	bold	with	underline.	 	
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Figure	5.	Vector	map	of	empty	mCherry	lentivirus.	
	

	
Figure	6.	Vector	map	of	empty	3x	FLAG	lentivirus.	
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Figure	7.	Vector	map	of	mCherry-DJ-1.	
	

	
Figure	8.	Vector	map	of	3x	FLAG-DJ-1.	
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Figure	9.	Vector	map	of	mCherry-DJ-1	C106A.	
	
	

	
	
Figure	10.	Vector	map	of	3x	FLAG-DJ-1	C106A.	
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2.3	THAWING	AND	PLATING	OF	CELLS	

Cyrotubes	containing	empty	cell	lines	were	thawed	in	a	37°C	water	bath	briefly	and	

removed	when	only	a	small	piece	of	ice	remained.	The	outside	of	the	vial	was	sprayed	

with	70%	ethanol	and	were	added	drop-wise	immediately	to	a	plate	containing	10	mL	

complete	media.	The	plate	was	then	transferred	to	the	5%	CO2/95%	air	humidified	

incubator	at	37°C.		

2.4	MAINTENANCE	OF	CELL	LINE		

Two	different	neuroblastoma	cell	lines	(M17	and	SH-SY5Y)	were	infected	with	our	

constructs,	293T	dtx	cells	were	used	to	create	virus.	All	cell	lines	were	grown	in	10	cm	

polystyrene	plates	and	kept	in	a	5%	CO2/95%	air	humidified	incubator	at	37°C.	Both	

neuroblastoma	cell	lines	were	maintained	in	OptiMEM	medium	supplemented	with	10%	

fetal	bovine	serum	(FBS),	while	293T	dtx	cells	were	maintained	in	DMEM	medium	with	

10%	FBS.	Medium	was	changed	every	other	day.	Cells	were	passaged	once	they	reached	

75-85%	confluency.	Following	passage,	media	was	changed	after	4	hours.	

2.5	PASSAGE	OF	CELLS		

Old	media	was	removed	and	replaced	with	5	mL	PBS	to	wash	the	cells.	PBS	was	then	

removed	as	well	and	1	mL	0.05%	trypsin-EDTA	was	added	drop-wise	to	each	plate.	

Plates	were	then	placed	into	the	5%	CO2/95%	air	humidified	incubator	at	37°C	for	no	

more	than	3	minutes.	Complete	media	(OptiMEM	+	10%	FBS)	was	then	added	to	

inactivate	the	trypsin.	Cells	were	then	counted	and	plated	at	the	appropriate	density	in	

plates	containing	10	mL	complete	media.	
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2.6	TRANSFECTION	OF	VIRUS	

293T	dtx	cells	were	grown	to	65-70%	confluence	in	10	mm	plates.	In	styrene	tubes,	1	mL	

DMEM,	6	μg	pVSV-G,	5	μg	pRSV-Rev,	10	μg	pRRE	and	20	μg	lentiviral	DNA	construct	

were	combined.	The	tube	was	vortexed	while	simultaneously	adding	50	μg	PEI	drop-

wise.	The	tube	was	left	to	sit	for	5	minutes,	then	the	mixture	was	added	drop-wise	to	

the	293T	dtx	plates	and	incubated	for	4-8	hours	in	the	5%	CO2/95%	air	humidified	

incubator	at	37°C.	The	transfection	media	was	then	replaced	with	complete	medium	

and	left	to	incubate	for	48	hours	in	the	5%	CO2/95%	air	humidified	incubator	at	37°C.	

The	viral	media	was	then	collected	and	transferred	to	a	15	mL	conical	vial.	Polybrene	

was	added	and	the	mixture	was	centrifuged	at	400xg	for	2	minutes.		

2.7	INFECTION	OF	NEUROBLASTOMA	CELLS	

Cells	were	grown	to	80%	confluence,	media	was	removed	and	then	washed	with	PBS.	

Collected	viral	media	was	combined	with	complete	medium	in	a	1:3	ratio	of	viral	to	

complete	media	for	SH-SY5Y	cells	and	a	1:2	ratio	for	M17	cells.	Cells	were	then	

incubated	for	4-8	hours	in	the	5%	CO2/95%	air	humidified	incubator	at	37°C.	The	viral	

media	was	then	replaced	with	complete	medium	and	cells	were	placed	back	into	the	5%	

CO2/95%	air	humidified	incubator	at	37°C.	

2.8	PREPARATION	OF	WHOLE	CELL	LYSATES	

Protein	expression	after	oxidative	stress	was	analyzed	in	M17	and	SH-SY5Y	cell	lines	via	

Western	blot.	Cells	were	plated	at	a	density	of	1.0	x	106
	
cells	in	100mm	polystyrene	

plates.	Cells	were	collected	by	washing	once	with	ice-cold	1x	PBS	and	then	detached	
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with	0.05%	trypsin-EDTA.	Trypsin	was	neutralized	by	complete	media,	then	the	cells	

were	pipetted	into	15	mL	conical	tubes,	centrifuged	for	2	minutes	at	1100	rpm.	

Supernatant	was	removed	and	cells	were	resuspended	in	1x	PBS.	Cells	were	

immediately	put	on	ice	and	then	sonicated.	

2.9	DETERMINATION	OF	TOTAL	PROTEIN	CONCENTRATION	

Bradford	assay	was	used	to	determine	protein	concentration	in	M17	and	SH-SY5Y	cells.	

A	1:1000	ratio	was	used	(i.e.	1	uL	sample	to	1mL	20%	Bradford	assay	dye).	Protein	

concentrations	were	measured	in	NanoDrop	using	a	previously	generated	protein	

standard	curve	through	the	use	of	known	concentrations	of	a	protein	standard.	

2.10	PREPARING	AND	RUNNING	PROTEIN	GEL	

Twenty-five	mg	of	total	protein	was	loaded	for	both	cell	lines	and	across	all	constructs.	

The	volume	needed	for	the	protein	load	was	determined	using	the	protein	

concentration	obtained	via	Bradford	assay.	The	appropriate	amount	of	2x	loading	dye	

was	added	to	each	sample	and	were	boiled	for	2-3	min	to	denature	the	proteins.	The	

samples	were	loaded	on	a	12.5%	polyacrylamide	gel	and	run	at	20V	for	10	minutes	then	

120V	for	1	hour	and	30	minutes.		

2.11	DETECTION	OF	PROTEIN	VIA	WESTERN	BLOT	

Proteins	from	the	gel	were	transferred	to	PVDF	membrane	overnight	at	30V	at	4°C.	The	

next	day,	membranes	were	washed	with	PBS-T	(450	mL	ddH2O,	50	mL	10x	PBS	and	2.5	

mL	Tween	20)	and	then	blocked	for	2h	at	room	temperature	in	blocking	buffer	to	

prevent	non-specific	antibody	binding.	After	blocking,	primary	antibodies	were	added	
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directly	to	the	blocking	buffer	and	incubated	for	3	hours	on	an	orbital	shaker	at	room	

temperature.	Membranes	were	then	washed	3	times	with	PBS-T	for	10	minutes	at	a	

time.	Blocking	buffer	plus	secondary	antibodies	were	added	and	left	to	incubate	for	45	

minutes	at	room	temperature	on	an	orbital	shaker.	Membranes	were	washed	again,	3	

times	for	10	minutes	at	a	time	in	PBS-T.	Membranes	were	rinsed	with	ddH2O	and	left	for	

10	minutes	at	room	temperature	on	the	orbital	shaker.	Protein	bands	were	then	

visualized	using	a	Licor	scanner.	
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RESULTS	

3.1	OVEREXPRESSION	OF	CONSTRUCTS	IN	NEUROBLASTOMA	CELLS	

In	order	to	evaluate	if	both	cell	lines	had	been	infected	and	were	overexpressing,	they	

were	first	visualized	using	a	fluorescent	microscopy.	Vectors	containing	the	mCherry	tag	

would	fluoresce.	Full	transfection	could	be	visualized	48	hours	post-transduction	(Figure	

11).	Verification	of	all	constructs	was	done	via	Western	blot.	Anti-β-actin	and	anti-DJ-1	

primary	antibodies	were	used	to	confirm	expression	of	DJ-1.	Anti-β-actin	(42	kDa)	was	

blotted	as	control	and	is	red	(Figures	12-15).	Anti-DJ-1	showed	both	endogenous	and	

tagged	DJ-1	(Figures	12	and	14)	and	is	green	in	these	particular	blots.	DJ-1	is	

endogenously	expressed	in	both	SH-SY5Y	and	M17	cells.	Endogenous	DJ-1	(20kDa)	is	the	

lower	band	across	all	lanes	while	tagged	DJ-1	is	the	upper	band	in	lanes	5	and	6;	the	

shift	in	size	is	due	to	the	extra	28.8	kDa	from	the	mCherry	tag	or	2.9	kDa	from	the	3x	

FLAG	tag.	Further	validation	was	obtained	using	anti-β-actin	and	anti-FLAG	(Figures	13	

and	15).	Anti-FLAG	primary	antibody	was	used	to	independently	visualize	3x	FLAG-DJ-1,	

lane	6,	as	the	3x	FLAG	constructs	are	not	fluorescent.	Empty	3x	FLAG	is	too	small	to	

appear	on	Western	blots,	explaining	a	lack	of	banding	in	these	lanes.	In	the	anti-β-actin	

and	anti-FLAG	blots,	the	upper	green	bands	are	β-actin	at	~42	kDa	while	the	lower	band	

in	lane	6	is	3x	FLAG-DJ-1	(~23	kDa).	
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Figure	11.	mCherry	fluorescence.		
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Figure	12.	Western	blot	of	SH-SY5Y	using	anti-β-actin	and	anti-DJ-1.	From	the	left	(1)	

ladder,	(2)	uninfected	SH-SY5Y,	(3)	empty	mCherry,	(4)	empty	3x	FLAG,	(5)	mCherry-DJ-

1,	(6)	3x	FLAG-DJ-1.	

	
	

Figure	13.	Western	blot	of	SH-SY5Y	using	anti-β-actin	and	anti-FLAG.	From	the	left	(1)	

ladder,	(2)	uninfected	SH-SY5Y,	(3)	empty	mCherry,	(4)	empty	3x	FLAG,	(5)	mCherry-DJ-

1,	(6)	3x	FLAG-DJ-1.	
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Figure	14.	Western	blot	of	M17	using	anti-β-actin	and	anti-DJ-1.	From	the	left	(1)	ladder,	

(2)	uninfected	M17,	(3)	empty	mCherry,	(4)	empty	3x	FLAG,	(5)	mCherry-DJ-1,	(6)	3x	

FLAG-DJ-1.	

	

	
Figure	15.	Western	blot	of	M17	using	anti-β-actin	and	anti-FLAG.	From	the	left	(1)	

ladder,	(2)	uninfected	M17,	(3)	empty	mCherry,	(4)	empty	3x	FLAG,	(5)	mCherry-DJ-1,	(6)	

3x	FLAG-DJ-1.	
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DISCUSSION	

As	discussed	earlier,	neuroblastoma	cells	are	cancerous	nerve	tissue	intended	to	model	

dopaminergic	neurons.	However,	DJ-1	is	found	in	highest	concentration	in	astrocytes,	so	

why	model	them	in	neurons.	The	majority	of	DJ-1s	known	interactors	are	most	highly	

expressed	in	neurons,	so	it	is	most	appropriate	to	study	the	function	of	DJ-1	in	an	

environment	that	endogenously	expresses	interactors.	For	example,	Hsp31	is	known	to	

modulate	α-synuclein	aggregation	and	is	able	to	inhibit	fibrilization	in	vitro.218	Hsp31	

levels	also	increase	when	exposed	to	an	oxidative	stressor,	H2O2.	These	behaviors	would	

be	expected	to	be	similar	in	DJ-1,	as	Hsp31	is	a	homolog	of	DJ-1,	however	in	order	to	

create	the	right	conditions,	DJ-1	would	need	to	be	overexpressed	in	neurons	rather	than	

astrocytes.	Furthermore,	selective	dopaminergic	neuron	death	in	the	substantia	nigra	is	

one	of	the	known	hallmarks	of	PD	while	the	role	of	astrocytes	in	PD	has	been	less	

investigated.	

In	this	study,	we	were	interested	in	making	a	DJ-1-associated	model	of	Parkinson’s	

disease.	Mutant	DJ-1C106A	was	engineered	to	examine	the	importance	of	this	particular	

residue.	It	is	this	residue,	and	its	proximate	active	site,	that	arguments	surrounding	the	

enzymatic	activity	of	DJ-1	are	centered.	Considering	the	ubiquitous	nature	of	DJ-1,	it	is	

possible	that	DJ-1	has	both	chaperone	activity,	representative	of	Hsp31	and	other	

known	homolog	functions,	as	well	as	catalytic	activity,	suggested	by	the	putative	active	

site.	However,	further	experimentation	is	needed	to	either	confirm	or	deny	this	

hypothesis.		
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The	models	I	have	created	will	be	used	in	the	lab	for	future	studies.	The	first	of	which	

being	a	cell	viability,	or	MTT,	assay.	This	will	allow	us	to	determine	the	appropriate	

concentration	of	oxidative	stress	to	expose	cells	to	in	order	to	simulate	levels	of	

oxidative	stress	seen	in	PD.	Next,	cells	will	be	exposed	to	the	optimized	concentration	of	

oxidative	stress	and	affixed	to	slips	and	visualized	via	confocal	microscopy	utilizing	the	

mCherry	fluorescent	tag.	This	will	allow	us	to	examine	subcellular	localization	of	DJ-1	

under	oxidative	stress.	Next,	cells	will	be	exposed	again	to	oxidative	stress	and	

subjected	to	a	pull-down	assay.	DJ-1	will	be	purified	and	mass	spectrometry	will	be	

conducted	to	identify	any	potential	interactors.	

There	are	a	number	of	reasons	for	which	we	believe	that	exposure	to	oxidative	stress	

may	cause	interactions	with	DJ-1.	One	thought	involves	the	documented	localization	of	

DJ-1	to	the	mitochondria.	As	stated	earlier,	DJ-1	has	no	mitochondrial	targeting	

sequence	so	it	is	unclear	why	or	how	DJ-1	localizes	to	the	mitochondria.	It	is,	thus,	

possible	that	DJ-1	may	be	interacting	with	a	protein	with	a	mitochondrial	targeting	

sequence	under	oxidative	conditions	leading	DJ-1	to	localize	with	interactor.	A	different	

line	of	thinking	is	focused	on	the	role	of	the	C106	residue	specifically.	Mutational	

analysis	of	cysteine	residues	in	DJ-1	showed	that	C106	is	the	most	redox-sensitive	when	

mutated	to	C106A	demonstrating	diminished	oxidation	and	decreased	ability	to	deter	

cell	death.	This	mutation	has	also	been	shown	to	bind	an	outer	mitochondrial	

membrane	protein	far	less	than	wt	DJ-1	suggesting	that	the	ability	of	the	C106	residue	

to	be	oxidized	may	be	needed	for	the	localization	of	DJ-1	to	the	mitochondria.	However,	

this	study	brings	up	an	interesting	question.	Is	it	possible	that	the	C106A	mutant	binds	
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less	because	it	lacks	the	ability	to	be	oxidized	or	because	it	has	already	bound	another	

interactor	and	the	functional	ability	of	the	original	cysteine	residue	to	bind	and	release	

is	now	extinguished	by	mutating	the	106	residue.		

It	is	clear	that	elucidating	the	function	of	DJ-1	will	not	be	a	simple,	linear	progression.	It	

is	my	hope	that	the	constructs	I	made	in	order	to	model	DJ-1	associated	Parkinson’s	

disease	will	help	to	further	progress	in	order	to	better	understand	the	function	of	DJ-1	

in	PD.	
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