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Symbols and Abbreviations

Symbols
Ha analysis hop size
Hs synthesis hop size
k DFT bin number
K DFT size (number of bins)
m frame time index
n discrete time
N frame size
Rn noisiness
Rs tonalness
Rt transientness
rt frame transientness
R set of all real numbers
wa analysis window function
ws synthesis window function
x input signal
X analysis STFT
y output signal
Y synthesis STFT
Z set of all integers
κ heterodyned phase increment
ω normalized frequency
ωinst instantaneous frequency

Abbreviations
COLA constant overlap-add
DFT discrete Fourier transform
FBS filter-bank summation
FFT fast Fourier transform
OLA overlap-add
PSOLA pitch-synchronized overlap-add
STFT short-time Fourier transform
SOLA synchronized overlap-add
TSM time-scale modification
WSOLA waveform-similarity overlap-add



1 Introduction
Time-scale modification (TSM) is an audio signal processing technique which alters
the duration of an audio signal while retaining its local frequency content [1, 2, 3].
TSM has many applications, such as fast browsing of speech recordings [4], music
production and DJing [5, 6], foreign language learning [7], fitting a piece of music to
a prescribed time slot [8], and slowing down the soundtrack for slow-motion video [9].
Additionally, TSM is often used as a processing step in pitch shifting, which aims
at changing the local frequency content of the signal, while preserving its duration
[2, 3, 8, 10, 11].

By itself, changing the duration of a sound by some factor is a straightforward
task. Changing the duration in such a way, that the modified audio corresponds
to the expectations of the listener however, is not. As an example, consider an
orchestra playing a piece of music. When modifying the time scale of such a signal,
it is typically desired for the modified audio to sound as if the orchestra was actually
playing the piece faster or slower. Thus, it seems like high-level information about
what different instruments sound like when played at different speeds is needed in
order to carry out such a transformation.

For the bowed string instruments, such as the violin, analyzing the time-varying
frequency content of the sound, and re-synthesizing a sound of different duration with
the same frequency content seems like a reasonable approach for natural-sounding
TSM. Consider the snare drum however. As opposed to the sustained notes played
by the violin, playing of the snare drum consists of short staccato sounds. Playing a
snare drum pattern with a different speed has little or no effect on how the individual
drum hits sound like. Thus, TSM of such a sound should consist of separating the
individual drum hits and moving them in time according to the desired modification
factor. Finally, many musical sounds, such as the notes played on the piano or on the
glockenspiel, consist of a sharp impulsive sound, followed by a sustained tonal part.
When modifying the time scale of such sounds, the duration of the sharp attack part,
that is, the transient, should be preserved, whereas the duration of the tonal part
should be altered according to the desired modification factor.

Most TSM techniques fall into two main categories: time-domain techniques, and
time-frequency-domain techniques. Standard time-domain techniques, such as the
synchronized overlap-add (SOLA) [12], the waveform-similarity overlap-add (WSOLA)
[13], and the pitch-synchronous overlap-add (PSOLA) [14] are most suitable for TSM
of quasi-harmonic signals. That is, signals which can be considered as a sum of
slowly-varying sinusoids with frequencies that are roughly harmonically related to
each other. In the above discussion, the sustained notes played by the violin, and
the tonal part of the notes played by the piano and the glockenspiel fall into this
category. Considering transient sounds however, some modifications to the standard
methods are needed in order to achieve a meaningful transformation. Furthermore,
time-domain techniques suffer from artifacts when applied to polyphonic signals,
since they are only able to preserve the most dominant periodicity in the input
signal [3].

Time-frequency-domain TSM techniques are typically based on the phase vocoder



2

(e.g. [15, 16, 17]), which was originally introduced by Flanagan and Golden in
1966 [18]. By means of analyzing the short-time spectra of the sound, phase vocoder
based techniques are able to preserve all the periodicities in the input signal. Therefore,
these techniques can provide a meaningful transformation of the time-scale even for
polyphonic signals. However, since the processing in the phase vocoder is based on a
sinusoidal model of the input signal, it is most suitable for modifying sounds which
can be considered as a sum of slowly-varying sinusoids. Transients processed with
the phase vocoder suffer from a softening of the perceived attack, often referred to
as “transient smearing” [2, 3, 19]. Thus, similarly as with time-domain methods,
transients need to be handled separately in order to increase the subjective quality
of the transformation.

In this thesis, existing literature on TSM techniques is reviewed, and a novel
TSM technique is developed which addresses some of the problems arising in these
techniques. The proposed TSM technique relies on the new concept of fuzzy clas-
sification of points in the time-frequency representation of the input signal. The
points are assigned to three signal classes: tonalness, noisiness, and transientness.
Each time-frequency point belongs to all of the classes simultaneously, with a certain
degree of membership for each class. The information from the classification is used
to preserve the subjective quality of these distinct signal classes during TSM. To
evaluate the quality of the proposed method, a listening test was conducted. The
results of the listening test suggest that the proposed method is competitive against
a state-of-the-art academic TSM method and a commercial TSM software.

The remainder of this thesis is structured as follows. In Section 2, a few of
the most notable time-domain techniques for TSM are reviewed and discussed. In
Section 3, fundamentals of phase-vocoder-based TSM are presented, and typical
problems arising in such processing are introduced. In Section 4, extensions to
the standard phase-vocoder-based processing which alleviate some of the typical
problems, are reviewed. In Section 5, the developed TSM technique is presented. In
Section 6, performance of the proposed technique is evaluated by means of a listening
test. Finally, Section 7 concludes the thesis.
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2 Time-Domain Techniques for Time-Scale Mod-
ification

Time-domain techniques for TSM are based on an analysis and synthesis procedure.
In the analysis, the input audio is split into short segments. Each segment contains
the local frequency content of the signal around the analysis time instant. In the
synthesis, the frames are relocated in time, such that either a time contracted or
a time expanded signal is obtained. The time-segments are also often modified by
means of applying a weighting with a window function. There are various techniques
which use this approach, each with slight differences on how these steps are carried
out. All of these techniques fall under the overlap-add (OLA) family.

2.1 Standard Overlap-Add
The standard OLA procedure is visualized in Figure 1. As shown in Figure 1a,
the procedure begins by selecting a time-limited analysis frame xm[n] from the
input signal x[n]. Next, an analysis window w[n] is applied to the analysis frame
to obtain the synthesis frame ym[n]. Then, the synthesis frame is added to the
output signal y[n] (Figure 1b). The next analysis frame xm+1[n] is selected from
the input signal at a specific distance Ha, which is known as the analysis hop size
(Figure 1c). The analysis window is applied to the new analysis frame to obtain the
next synthesis frame ym+1[n]. Finally, the synthesis frame is added to the output
signal at a distance from the previous synthesis frame determined by the synthesis
hop size Hs (Figure 1d). The amount of time expansion or contraction is denoted
by the TSM factor α, which is determined by the ratio between the analysis and
synthesis hop sizes:

α = Hs

Ha

, (1)

such that Hs > Ha results in time expansion, while Hs < Ha results in time
contraction of the input signal.

A digital implementation of the OLA technique for TSM was first introduced
by Lee [20]. The implementation is based on a ring buffer. A write pointer moves
around the buffer at some speed, writing values of the input signal to the buffer.
Simultaneously, a read pointer moves around the buffer at a speed equal to the
systems output sampling rate, reading values from the memory to the output. A
time-contracted output signal is obtained if the write pointer moves faster than the
read pointer, and a time-expanded signal is obtained if the write pointer moves slower
than the read pointer. In this approach, the transition to a new segment in the
output happens when the read and write pointers cross each other.

This simple method suffers from three artifacts: discontinuities, pitch distortions,
and transient duplication or skipping. Discontinuities occur at the transitions between
two segments. Two consecutive segments are unlikely to be aligned in a way that
there is a smooth continuation from the end of one segment to the start of the next
one. This problem is avoided by choosing an analysis window which tapers to zero
at the edges of the analysis frame. However, pitch distortions still occur when the
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Figure 1: The OLA procedure for TSM. (a) An analysis frame xm[n] is segmented
from the input signal. (b) The analysis frame is weighted by an analysis window
w[n] to obtain the synthesis frame ym[n], which is added to the output signal. (c)
The next analysis frame xm+1[n] is picked at a distance Ha, denoted as the analysis
hop size, from the previous analysis time instant. (d) The new analysis frame is
weighted by the analysis window, and added to the output signal, at a distance Hs,
denoted as the synthesis hop size, from the previous synthesis time instant. This
example is of time contraction, as the synthesis hop size is smaller than the analysis
hop size. The figure has been adopted from [3].

pitch periods in two consecutive segments are not aligned. That is, when a transition
happens from one segment to the next, the output waveform suddenly jumps from
one position in the pitch period to another. This can alter the perceived pitch in
the output signal. Transient duplication occurs in time expansion when multiple
time-shifted synthesis frames contain the same transient due to the analysis hop size
being shorter than the synthesis hop size. Conversely, transient skipping can occur in
time contraction, when the analysis hop size is greater than a short transient event,
and the frames skip the transient location during analysis.
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2.2 Overlap-Add Variants
To overcome the limitations of the OLA technique, several improvements to the
standard technique have been proposed. In the following, a few of the most notable
ones are reviewed.

2.2.1 Synchronous Overlap-Add

In order to solve the issues with the standard OLA procedure for TSM, some
sensitivity to the input signal needs to be introduced to the processing. To smoothly
transition from one synthesis frame to the next, the pitch periods in the overlapping
regions of two consecutive frames should be aligned. In the synchronous overlap-add
(SOLA) algorithm [12], this is achieved by allowing some flexibility in choosing the
time region in which the transition from one frame to the next occurs. The SOLA
technique is visualized in Figure 2. First, similarly as in the standard OLA procedure,
the input signal is split into partially overlapping analysis frames xm[n], using a fixed
analysis hop size Ha and an analysis frame length N , as shown in Figure 2a. No
fixed analysis window is applied to the analysis frames to obtain the synthesis frames.
The synthesis is initialized by adding the first analysis frame to the beginning of the
output signal:

y[n] = x0[n], for n = 0, 1, ..., N − 1, (2)

where N is the analysis frame length.
The following analysis frames xm[n] are synchronized to the neighborhood

y[n+mHs] of the output signal on a frame-by-frame basis. That is, the new frame
is first moved to a fixed location determined by the frame index m and the synthesis
hop size Hs, as shown in Figure 2b. Next, the frame is time-shifted slightly, such
that the preceding synthesized output signal and the added frame are maximally
similar in their overlapping region, as shown in Figure 2c. The optimal location
for adding the new frame is found as time lag ∆, which gives the maximum of the
normalized cross-correlation between the two signals:

rm[∆] =
∑L−1
n=0 y[mHs + ∆ + n]xm[n](∑L−1

n=0 y
2[mHs + ∆ + n]∑L−1

n=0 x
2
m[n]

)1/2 , (3)

where L is the length of the overlap between the time-shifted analysis frame and the
synthesized output signal. Denoting the maximum of the cross-correlation by ∆m,
the new frame is then added to the output as follows:

y[n+mHs + ∆m]

=

(1− f [n])y[n+mHs + ∆m] + f [n]xm[n], for 0 ≤ n ≤ Lm − 1
xm[n], for Lm ≤ n ≤ N − 1,

(4)

where Lm is the length of overlap between the synthesized signal and the analysis
frame further time-shifted by ∆m. Here, f [n] is a weighting function obtaining values
in the interval [0, 1] which is used to smoothly transition to the new frame in the



6

(a)

(b)

(c)

Figure 2: Synchronized overlap-add (SOLA) time-scale modification (TSM). (a)
The input signal is segmented into analysis frames, which are computed at a rate
determined by the analysis hop sizeHa. (b) The frames are relocated in time according
to the TSM-factor α, leaving an overlap of length L between two consecutive frames.
(c) Inside the overlap interval of two consecutive frames, the position of the latter
frame is adjusted such that the periodic structures in the frames are maximally
aligned. The figure has been adapted from [8].

output. A standard choice for the weighting, given an overlap of length Lm, is the
linear function

f [n] = n

Lm − 1 , for 0 ≤ n ≤ Lm − 1. (5)

Proper alignment of pitch periods in consecutive frames in the synthesized output
signal is based on the search of the maximum cross-correlation in Equation (3). The
maximum cross-correlation is likely to occur when the pitch periods of the added
frame, and the existing synthesized signal are aligned. Naturally, the approach only
allows preserving the most dominant periodicity in the input signal, as that will have
the largest effect on the cross-correlation function. Thus, the SOLA technique is not
applicable to TSM of polyphonic signals, as pitch distortions will still remain on the
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Figure 3: (a) A harmonic input signal and its time-scale modified versions with factor
α = 1.8, using (b) standard OLA, and (c) SOLA. The standard OLA technique is
unable to preserve the shape and periodicity of the original waveform, whereas the
SOLA technique preserves both.

periodic components besides the most dominant one.
Figure 3 shows the results of TSM with the OLA and SOLA techniques when

applied to the harmonic signal shown in Figure 3a. A TSM-factor α = 1.8 was used
for the example. As seen in Figure 3b, the OLA technique is unable to preserve
the waveform shape and fundamental frequency of the input signal. Since the
technique works on fixed analysis and synthesis hop sizes, it has no sensitivity to
the periodicities in the input signal. Thus, the harmonic waveforms in consecutive
synthesis frames are in arbitrary phase to each other, and either constructive or
destructive interference occurs at their overlapping segment. Conversely, in the
SOLA technique, the synthesis hop size is adjusted on a frame-by-frame basis, such
that each new synthesis frame added to the output signal is maximally aligned with
the preceding waveform. Therefore, the SOLA technique is able to preserve the
waveform shape and the fundamental frequency of the harmonic input signal, as can
be seen in Figure 3c.
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The SOLA technique is most applicable to signals, which contain a clear periodicity,
such as the one in the example of Figure 3. However, most natural sounds, such
as music and speech, also contain transients which play an important role in the
perceived sound. To improve the quality of SOLA TSM with signals containing
transients, techniques with a time-varying TSM factor have been suggested. In
[21, 22], the transient and steady portions of the input signal are separated, and
the TSM is only applied to the steady portions, while the transient portions are left
unaffected. Because the original duration of the transient portions is preserved, the
time scale in the steady portions needs to be contracted or expanded excessively in
order to maintain the desired TSM factor. These methods were shown to increase the
intelligibility of modified speech when compared to the standard SOLA procedure.

2.2.2 Pitch-Synchronous Overlap-Add

The pitch-synchronous overlap-add (PSOLA) [14, 23, 24] is a modification to the stan-
dard OLA procedure which is widely used in voice and speech processing. Contrary to
the fixed analysis rate of the OLA and SOLA procedures, in PSOLA, the segmenting
of the audio signal to obtain the analysis frames is done in a pitch-synchronous
manner. The analysis stage in the PSOLA technique is visualized in Figure 4. It
consists of finding the pitch marks, which are the time instants where the input
signal obtains its maximum value of each pitch period. The analysis frames are then
obtained by multiplying the signal with a series of analysis windows time shifted to
the pitch marks:

xm[n] = wm[n− tm]x[n], (6)

where wm[n] is the analysis window used for computing the mth analysis frame and
tm are the locations of the analysis pitch marks. The length of the analysis window
is proportional to the local pitch period, typically such that the window length for
the mth analysis frame is

Nm = µPm, µ ∈ {2, 4}, (7)

where Pm is the local pitch period. The cases µ = 2 and µ = 4 correspond to 50%
and 75% overlap between successive analysis windows, respectively. During portions
of the input signal where there is no clear periodicity, such as unvoiced portions of
speech, a constant rate analysis is used.

TSM with the PSOLA technique is based on determining the locations of the
synthesis pitch marks based on the TSM factor α and the locations of the analysis
pitch marks. The time difference between the synthesis pitch marks at time n is
chosen as the time difference between the analysis pitch marks at time n/α. After
determining the locations of the pitch marks tq, where q is the synthesis frame index,
appropriate synthesis frames yq[n] need to be computed for each pitch mark. This
is illustrated in Figure 5, where a mapping between the synthesis pitch marks and
the corresponding analysis time instants is shown. Given a synthesis pitch mark
location tq, a straightforward solution is to directly use the analysis frame closest to
the time tq/α. An alternative solution is to take the weighted average of the two
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Figure 4: PSOLA analysis. First, pitch marks are extracted from the input signal.
Next, the analysis frames are obtained by multiplying the signal with a series of
analysis windows time shifted to the pitch marks. In the figure, the window length
is µ = 2 times the local period Pm, which corresponds to 50% overlap between
successive analysis frames. The figure has been adopted from [8].

closest analysis frames, according to their distance to the time tq/α. Finally, the
output signal can be obtained by the least-squares overlap-add synthesis scheme of
Griffin and Lim [25]:

y[n] =
∑
q∈Z yq[n− tq]wq[n− tq]∑

q∈Zw2
q [n− tq]

, (8)

where wq[n] is the synthesis window at frame index q. The denominator compensates
for the energy modifications over time that are caused by the time-varying window
and hop sizes.

2.2.3 Waveform-Similarity Overlap-Add

An alternative means of adapting the OLA technique to the main periodicity in the
input signal was proposed by Verhelst and Roelands [13]. Contrary to the SOLA
procedure, where some flexibility was allowed in the position of the synthesis frames,
the WSOLA is based on allowing some flexibility in the position of the analysis frames.
In the standard OLA, the fixed time position of the mth analysis frame is given by
mHa. In the WSOLA, the fixed analysis time can be shifted by ∆m ∈ [−∆max,∆max],
where ∆max is the absolute value of the maximum allowed time shift. The adapted
analysis time of the mth frame is then given by mHa + ∆m.

Figure 6 visualizes the principle of WSOLA. The adapted analysis frames
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Figure 5: TSM with the PSOLA technique. The upper figure corresponds to time
expansion, and the lower to time contraction. The analysis pitch marks tm are shown
as the unfilled circles, and the synthesis pitch marks tq are shown as filled circles.
A dashed line points from the corresponding analysis time to the synthesis pitch
marks. The synthesis frame at that time instant is chosen either as the analysis
frame closest to the corresponding analysis time instant, or as a weighted average of
the two closest analysis frames. The figure has been adapted from [14].

windowed at the time shifted analysis positions are denoted by x′m:

x′m[n] =

x[n+mHa + ∆m], for n ∈ [−N/2, N/2− 1],
0, otherwise,

(9)

where N is the length of the analysis frames. The synthesis is initialized by adding
the first adapted analysis frame to the beginning of the output signal:

y[n] = x′0[n], for n ∈ [−N/2, N/2− 1]. (10)

Next, the problem is to find the optimal modified analysis time instant, such that
the periodic structures of the new analysis frame x′m+1 align optimally with the
previously synthesized frame ym = x′m, when it is added at a distance corresponding
to the synthesis hop size Hs from the previously synthesized frame. As shown in
Figure 6b, if no constraints are applied on the possible analysis time instants, the
optimal choice is at time (m+ 1)Hs, which corresponds to the natural progression
x̃m of the adjusted analysis frame x′m. However, only variations up to ∆max from
the fixed analysis time instant are allowed when searching for the optimal frame
position. Thus, the next adjusted analysis frame must be inside the extended frame
region x+

m + 1, which is visualized with the solid blue box in Figure 6b.
Similarly to SOLA, the optimal analysis time is found as the time shift which

maximizes the normalized cross-correlation

rm[∆] =
∑N/2−1
n=−N/2 x̃m[n]x+

m+1[n+ ∆](∑N/2−1
n=−N/2 x̃m[n]2∑N/2−1

n=−N/2 x
+
m+1[n+ ∆]2

)1/2 . (11)
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Figure 6: TSM with the WSOLA technique. (a) The synthesis is initialized by
adding the first adjusted analysis frame x′m[n] to the beginning of the output signal.
(b) The natural progression x̃m[n] is the analysis frame which is perfectly aligned
with the previous synthesis frame. (c) The next analysis time position is searched
for in the extended frame region x+

m + 1, such that the computed analysis frame is
maximally similar to the natural progression x̃m of the previous frame. (d) The new
analysis frame is added to the output at a distance defined by the synthesis hop size
Hs from the previous synthesis frame. The figure has been adopted from [3].

That is, the optimal adjusted analysis frame is considered as the frame inside the
extended frame region x+

m+ 1, which is maximally similar to the natural progression
x̃m of the adjusted analysis frame x′m, as measured by cross-correlation (Figure 6c).
Finally, as shown in Figure 6d, the output is the sum of the adjusted analysis frames
synthesized at a fixed rate determined by the synthesis hop size.

WSOLA suffers from the some of the typical problems of the time-domain
techniques. The transient duplication artifact in the case of time expansion with the
WSOLA is visualized in Figure 7. As shown in the upper panel of Figure 7, during the
analysis, a single transient is included in two consecutive analysis frames x′m[n] and
x′m+1[n]. During the synthesis, the frames are time shifted further apart from each
other, which results in the transient being synthesized in two different time instants
of the output signal. Furthermore, similarly to the time-domain techniques SOLA
and PSOLA, the WSOLA is only able to preserve the most dominant periodicity in
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Figure 7: Transient duplication in time expansion with the waveform-similarity
overlap-add (WSOLA) technique. The figure has been adopted from [3].

the input signal. Contrary to PSOLA, however, it does not require explicit pitch
detection in order to preserve the periodicity in the synthesized signal. However, the
analysis window size has to be selected such that at least a full period of the periodic
pattern is captured in each frame.
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3 Phase Vocoder Based Time-Scale Modification
As discussed in Section 2, time-domain methods, such as SOLA, WSOLA and
PSOLA are only able to maintain the most dominant periodicity in the input signal
during TSM. In order to improve the quality of TSM for signals which consist
of multiple periodic components, the modification must be done in a way which
preserves the periodicities of all signal components. This can be achieved with time-
frequency processing. In time-frequency processing, the one-dimensional input signal
is transformed into a two-dimensional representation of itself. Next, the obtained
time-frequency representation is modified in some way. Finally the output signal
is synthesized from the modified representation. This procedure is illustrated in
Figure 8.

Figure 8: Time-frequency processing pipeline. The figure has been adopted from
[26].

For audio and speech manipulation, time-frequency processing is typically based
on the phase vocoder. In contrast to the magnitude-only representation of the original
channel vocoder [27], the phase vocoder is based on the use of both magnitude and
phase spectra. Thus, it allows perfect reconstruction of the original time-domain signal
from the phase vocoder representation. The term phase vocoder was first introduced
by Flanagan and Golden [18]. It refers to an analysis and synthesis procedure on a
signal by means of its short-time Fourier transform (STFT). Additionally, in the
phase vocoder, the rough frequency estimates of the STFT are made more accurate
by combining information of two or more consecutive frames.

In 1976, Portnoff [28] introduced an implementation of the phase vocoder utilizing
the fast Fourier transform (FFT) [29]. This significantly reduced the computational
complexity involved, and allowed the phase vocoder to become a widely used tool
for audio and speech processing. Another important improvement to the phase
vocoder was the introduction of the phase difference method for computation of
the instantaneous frequency [30], instead of the phase derivative method originally
employed by Flanagan and Golden [18].
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TSM using the phase vocoder is based on an analysis, modification and syn-
thesis procedure, as illustrated in Figure 8. The analysis consists of obtaining a
time-frequency representation of the signal by means of the STFT. The STFT repre-
sentation is then modified to obtain the synthesis STFT. Finally, the output signal
is obtained by synthesizing a time-domain signal from the modified representation
by means of the inverse-STFT.

3.1 Short-Time Fourier Transform Analysis and Synthesis
3.1.1 Analysis

During the analysis, short-time spectra of the input signal are computed at a rate
defined by the analysis hop size Ha, resulting in the analysis STFT [28, 31, 32, 33]:

X[m, k] =
∞∑

n=−∞
x[n]wa[n−mHa]e−jωkn (12)

where x[n] is the input signal, wa[n] is the analysis window function, and ωk is
the normalized center frequency of the kth vocoder channel, often also denoted as
the kth bin. If the number of samples in the computed discrete Fourier transform
(DFT) is given by K, the normalized center frequency of the kth bin is given by
ωk = 2πk/K. The analysis window wa(n) is typically non-zero only in a finite interval
n = 0, ..., N − 1, with analysis window length N . When the analysis window length
N ≤ K, the sampling in the DFT will not cause time aliasing [34]. The mth analysis
frame is centered around time n = mHa. Given that the analysis window is non-zero
only in a finite interval, practical computation of the STFT can be done by:

X[m, k] =
N/2−1∑
n=−N/2

x[n+mHa]w[n]e−jωkn, (13)

where the summation is done over a finite number of samples N . In this definition,
the input signal is time shifted while the analysis window remains fixed around time
0.

The analysis STFT provides a time-frequency representation of the input signal.
That is, the one-dimensional input signal x[n] is represented by the complex-valued
points X[m, k] in the analysis STFT. For signal analysis and modification, the
complex-valued STFT is usually decomposed to the magnitude and phase components,
|X[m, k]| and ∠X[m, k], respectively, such that the original STFT can be retrieved
by:

X[m, k] = |X[m, k]|ej∠X[m,k]), (14)

where | · | gives the magnitude of a complex number and ∠· gives the angle.
The STFT can be interpreted using two different points of view: the OLA and

filter-bank summation (FBS) points of view [34, 35]. One view is the Fourier dual
of the other. Figure 9 illustrates the OLA interpretation of the STFT analysis. As
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Figure 9: The OLA view of the STFT analysis.

shown in the top row of Figure 9, short-time signals are obtained from the input
signal by a sample-wise multiplication with the time-shifted analysis window function:

xm[n] = x[n]wa[n−mHa]. (15)

In the figure, the analysis window is time shifted instead of the input signal for easier
visualization. However, in practice the short-time signals are computed by:

xm[n] = x[n+mHa]wa[n]. (16)

The second row of Figure 9 shows the short-time signals obtained from the input
signal in the top row. The short-time signals are computed at a rate determined
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Figure 10: A single channel k of the STFT filter bank.

by the analysis hop size Ha. That is, a short-time signal is computed every Hath
sample. Next, the DFT is taken of each short-time signal:

Xm[k] =
N/2−1∑
n=−N/2

xm[n]e−jωkn, (17)

where it is assumed that the short-time signals have been computed as in Equation
(16). This results in an interpretation of the STFT as a time sequence of short-time
spectra Xm[k]. In the lower two rows in Figure 9, the computed magnitude and
phase spectra of the short-time signals are shown.

An alternative way to interpret the the STFT is the FBS point of view. While
in the OLA interpretation, the STFT is considered a time sequence of short-time
spectra, in the FBS interpretation, the STFT is considered a frequency-ordered
collection of narrow-band time-domain signals [34]. That is, the computation of the
STFT in Equation (12) is interpreted as a parallel bank of K bandpass filters. In
the computation of the STFT, the input signal is first modulated by the complex
exponential in Equation (12), which results in the “heterodyned signal”:

x̂k[n] = x[n]e−jωkn. (18)

Modulation of the time-domain input signal with a complex exponential of frequency
−ωk, is the Fourier dual of rotating the spectrum of the signal along the unit circle
of the z plane towards zero frequency by ωk. The heterodyned signals are then
convolved with the time-reversed analysis window function w̃a, which results in the
output signal:

Xk[n] = (x̂k ∗ w̃a)[n], (19)

where w̃a[n] = wa[−n]. The convolution by the time-reversed analysis window
function corresponds to low-pass filtering of the spectrum of the heterodyned signal.
Since the frequency ωk is shifted to 0 before low-pass filtering, the filter effectively
works as a band-pass filter centered at ωk. The operations of Equations (18) and (19)
are illustrated as a block diagram in Figure 10, which represents a single channel in
the STFT filter-bank.

To obtain an analysis STFT which is equal to the one described by Equation (12),
the sub-band signals must be downsampled. Figure 11 illustrates the downsampled
STFT filter bank. Each sub-band signal is downsampled by the factor Ha, which
corresponds to the hop size in the OLA interpretation. That is, each sub-band signal
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Figure 11: Downsampled STFT filter bank.

is evaluated at every Hath sample. The downsampled STFT can be written as

Xk[m] =
∞∑

n=−∞

(
x[n]e−jωkn

)
wa[n−mHa] (20)

=
∞∑

n=−∞
x̂k[n]wa[n−mHa]

= (x̂k ∗ w̃a)[m],

where the mth sampling instant is at time n = mHa.

3.1.2 Synthesis

First, let us consider the OLA interpretation of the STFT. In the synthesis, short
time signals ym[n] are obtained by an inverse DFT on the synthesis frames Ym[k]:

ym[n] = 1
K

K−1∑
k=0

Ym[k]ejωkn. (21)

The output signal can be reconstructed by summing all the short-time signals
ym[n] [31]:

y[n] =
∑
m∈Z

ym[n−mHs]ws[n−mHa] (22)

where ws[n] is the synthesis window. The synthesis frame rate is defined by the
synthesis hop size Hs. That is, the mth time shifted short-time signal ym[n−mHs]
is centered around time n = mHs. If no modifications are done before re-synthesis,
that is, Y [m, k] = X[m, k] and Hs = Ha, Equation (22) yields an output signal that



18

is equal to the input signal, given that the product of the analysis and synthesis
windows satisfies the constant overlap-add (COLA) condition [34]:∑

m∈Z
wa[n−mHa]ws[n−mHs] = 1,∀n ∈ Z (23)

A typical choice is to use the Hann window as both the analysis and synthesis
windows. Then, the combined effect of the analysis and synthesis windows is the
squared Hann window, which satisfies the COLA condition in Equation (23), when
the synthesis hop size is set to any Hs = M/(3+v), where v is a positive real number,
given that the value of the fraction is a whole number [34].

It should be noted that a modified STFT Y [m, k] may not correspond to the
STFT of any signal y[n]. In this case, the reconstruction with Equation (22) yields an
output signal y[n] whose STFT is an approximation of Y [m, k]. In [25], an alternative
reconstruction is proposed. It is based on setting the synthesis window equal with
the analysis window, and scaling the short time signals ym[n] by the total power of
the window functions:

y[n] =
∑
m∈Z ym[n−mHs]ws[n−mHs]∑

m∈Zw2
s [n−mHs]

. (24)

Using Equation (24) for reconstruction minimizes the mean squared error between
the modified STFT Y [m, k] and the STFT computed from the reconstructed signal
y[n].

Now, let us consider the FBS interpretation of the STFT synthesis stage. The
synthesis filter bank is illustrated in Figure 12. Let us consider a synthesis STFT
Y [m, k], which is viewed as a frequency-ordered collection of narrow-band time-
domain signals Yk[m]. First, the narrow-band signals are upsampled according to
the synthesis hop-size Hs. Next, the signals are convolved with the time-reversed
synthesis window function w̃s:

ŷk[n] = (Yk ∗ w̃s)[n], (25)

where Yk[n] are the upsampled sub-band signals. The output signal is the sum of
the sub-band signals frequency shifted by ωk:

y[n] =
K−1∑
k=0

ŷk[n]ejωkn. (26)

Again, if no modifications are done before re-synthesis, that is, Y [m, k] = X[m, k]
and Hs = Ha, the output signal is equal to the input signal if the window functions
satisfy the COLA condition in Equation (23).

3.2 Time-Scale Modification with the Phase Vocoder
TSM with the phase vocoder is based on two modifications to the STFT. First,
a different hop size is used during analysis and synthesis, that is Ha 6= Hs. This
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Figure 12: STFT synthesis filter bank.

means that the synthesis frames are relocated to a different time position than the
corresponding analysis frames. Second, in order to preserve the periodicities in the
input signal, the phases of the synthesis frames are modified. The phase modifications
are done in a way that the periodic components in the time-shifted synthesis frames
overlap coherently [15, 17, 36].

The modifications are based on a sinusoidal model of the input signal. The input
signal is considered as a sum of I[n] sinusoids, with time-varying amplitudes Ai[n]
and instantaneous frequencies ωi [36, 17]:

x[n] =
I[n]∑
i=1

Ai[n]ejφi[n], with (27)

φi[n] = φi[0] +
n∑

m=0
ωi[m], (28)

where φi[n] is the instantaneous phase of the ith sinusoid, and ωi[n] is the instanta-
neous frequency. Assuming a constant TSM-factor α = Hs/Ha, the ideal synthesis
phase of the ith sinusoid at time n would be:

φs[n] = φs[0] + α
n∑

m=0
ωi[m], (29)

where φs[0] is an arbitrary initial synthesis phase. Rearranging the terms in Equation
(28), and inserting the solution to (29), the ideal synthesis phase can be written as:

φs[n] = φs[0] + α
(
φi[n]− φi[0]

)
. (30)

The modifications done on the STFT representation in phase-vocoder TSM
attempt to produce these ideal time-scaled sinusoids. The amplitudes of the time-
scaled sinusoids are obtained by setting |Y [m, k]| = |X[m, k]. Since the hop size
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during synthesis is different from the analysis hop size, the amplitudes of the sinusoids
vary slower or faster, depending on the TSM factor, after re-synthesis of the output
signal from the STFT representation.

To obtain the synthesis phases from the STFT representation, the instantaneous
frequencies of the analysis STFT bins are estimated by:

ωinst[m, k] = ωk + 1
Ha

κ[m, k], (31)

where κ[m, k] is the estimated “heterodyned phase increment”:

κ[m, k] =
[
∠X[m, k]− ∠X[m− 1, k]−Haωk]

]
2π
. (32)

Here,
[
·
]

2π
denotes the principal determination of the angle, i.e., the operator wraps

the input angle to the range [−π, π[. An illustration of the estimation of the instan-
taneous frequency is shown in Figure 13, where the analysis phases are represented
as unit vectors on the complex plane. The left panel shows the instantaneous phases
for the bin k for two consecutive analysis frames. A rough estimate for the frequency
of the sinusoid the bin is representing is given by the bin’s center frequency. Based
on the analysis phase of the previous frame ∠X[m− 1, k], the bin’s center frequency
ωk, and the hop size Ha, a prediction is made that the instantaneous phase of the
bin in the current frame is close to

∠X̃[m, k] = ∠X[m− 1, k] +Haωk. (33)

Since the analysis phase of the current frame is known, the frequency estimate can be
improved by taking into account the difference between the principal determination of
the estimated instantaneous phase ∠X̃[m, k], and the actual analysis phase ∠X[m, k],
which is the heterodyned phase increment described above.

The instantaneous frequency is an estimate of the rate of change of the analysis
phase, i.e., the time derivative of the phase. Once the instantaneous frequencies
have been estimated for the analysis bins, the synthesis phases can be computed by
integrating the instantaneous frequencies over time, according to the synthesis hop
size:

∠Y [m, k] = ∠Y [m− 1, k] +Hsωinst[m, k], (34)
where the discrete-time integration is done by summation.

3.2.1 Phase Coherence

In the phase vocoder, the input signal is modeled as a sum of sinusoids, such that
each sinusoid corresponds to one frequency bin in the analysis STFT. The frequencies
of the sinusoids are given by the estimated instantaneous frequencies. The phase
propagation applied during TSM ensures that there are no phase discontinuities
in these sinusoids between the time shifted synthesis frames. Thus, it is said that
the phase vocoder ensures the “horizontal phase coherence” in the synthesis STFT.
However, the phase relations across the bins in the frequency direction are lost in
this process. This results in the loss of “vertical phase coherence”.
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Figure 13: Estimation of the instantaneous frequency in the phase vocoder. The
figure has been adapted from [3].

The loss of vertical phase coherence results in an artifact in the modified signal
typically described as “phasiness”, or as loss of clarity. For a constant-amplitude
sinusoidal chirp signal, the loss of vertical phase coherence leads to fluctuations in
the amplitude of the chirp. This is demonstrated in Figure 14, where the amplitude
of a constant-amplitude sinusoid is shown after phase vocoder TSM with TSM-factor
α = 1.6. The amplitude of the sinusoid is dependent on the phase relationships of
the bins representing the sinusoid in the synthesis STFT. As they are different in
each synthesis frame, the amplitude of the chirp signal varies over time. The problem
of phase coherence is discussed further in Section 4, where methods which attempt
to preserve the vertical phase coherence are discussed.
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Figure 14: (a) The amplitude of a constant-amplitude chirp. (b) The amplitude of
the constant-amplitude chirp after phase vocoder TSM with TSM factor α = 1.6.
The figure is adapted from [17].
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3.2.2 Transient Smearing

Transients processed with the phase vocoder also suffer from the loss of vertical
phase coherence. As the phase relationships across the frequency bins representing a
transient are lost, the concentrated energy of the transient in the analysis frame gets
smeared inside the synthesis frame after re-synthesis with the modified phase values.
This is illustrated in Figure 15. An analysis frame xm[n], containing a transient is
shown in Figure 15a. After applying phase propagation, the corresponding synthesis
frame ym[n], which is shown in Figure 15b, is obtained. Due to loss of vertical phase
coherence, the energy of the transient is distributed more evenly across the synthesis
frame, and the impulsive nature of the transient is lost.

0 20 40 60 80

Time (ms)

-1

0

1

x
m
[n
]

(a)

0 20 40 60 80

Time (ms)

-1

0

1

y
m
[n
]

(b)

Figure 15: Transient smearing due to loss of vertical phase coherence in phase vocoder
TSM. (a) An analysis frame containing a transient. (b) The corresponding synthesis
frame which has the same magnitude spectrum as the analysis frame, but a different
phase spectrum due to the phase modifications.

Furthermore, because a single transient is represented in several consecutive
analysis frames, the transient energy also gets smeared across several synthesis
frames. In the case of time expansion, in which the synthesis hop size is larger than
the analysis hop size, this means that the transient’s energy gets even further spread
in time.
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4 Phase Vocoder Extensions
In this section, some extensions to the standard phase vocoder based TSM are
reviewed. Most of the methods aim in some way to improve the vertical phase
coherence during modification. Other methods address the problems arising from
the fixed time and frequency resolution of the STFT.

4.1 Intra-Sinusoidal Phase Locking
As explained in Section 3, the phase vocoder is based on a sinusoidal model of the
input signal. Let us consider a constant-frequency sinusoid as the input signal:

x[n] = ejωn. (35)

Considering a time-limited analysis window of length N , its DFT is given by:

Wa[k] =
N/2−1∑
n=−N/2

wa[n]e−jωkn. (36)

Taking the DFT of the sinusoid in Equation (35), using the analysis window wa[n],
yields:

X[k] =
N/2−1∑
n=−N/2

ejωnwa[n]e−jωkn = Wa[k −
ω

2πK], (37)

where K ≥ N denotes the number of frequency bins in the DFT. The resulting
spectrum is the DFT of the analysis window frequency shifted by the sinusoid’s
frequency ω. Thus, in the phase vocoder analysis, a constant frequency sinusoid
excites not only one, but multiple frequency bins in each STFT frame. The number
of excited bins depends on the bandwidth of the analysis window. If the analysis
window is chosen as the Hann window, in the general case, a sinusoid excites four
bins [16]. In the special case that the sinusoid’s frequency is exactly tuned to a DFT
bin’s frequency, only three bins are excited.

Figure 16 shows a constant-frequency sinusoid windowed with three Hann windows,
each with different phase characteristics. Figure 16a shows the regular Hann window
shape, where the maximum is in the middle of the window, and the end points
are at zero amplitude. Figure 16b shows the zero-phase Hann window, where the
maxima of the window are at the edges, and there is a trough in the middle. Finally,
Figure 16c shows a random-phase Hann window, which was obtained by taking the
DFT of the regular Hann window, randomizing the phases in the frequency domain,
and re-synthesizing the resulting spectrum back to time domain. The magnitude
spectrum of these three signals are equal. They all have the magnitude spectrum of
the Hann window frequency shifted by the sinusoid’s frequency. The phase spectra
are different however. In the case of Figure 16a, the phases of the excited bins are
alternately π radians out of phase. In the case of Figure 16b, the excited bins are
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Figure 16: A constant-frequency sinusoid windowed with (a) the regular Hann
window, (b) the zero-phase Hann window, and (c) a random-phase Hann window.

exactly in phase. Finally, as explained above, in Figure 16c, the phase relations
between the bins are random.

To further illustrate the way sinusoids are represented in the STFT, Figure 17
shows the magnitude and phase spectrum of a zero-phase-windowed harmonic signal.
Figure 17a shows the signal windowed by the linear-phase Hann window which
reaches it maximum value at the center of the frame, and tapers to zero at the
edges. To obtain a zero-phase spectral representation of the signal, samples inside
the analysis frame are circularly shifted such that the samples in the latter half of
the frame are located in the start of the frame and vice versa. This results in the
signal shown in Figure 17b. The DFT is computed for this signal, which results in
the magnitude and phase spectra shown in Figures 17c and 17d, respectively. It
can be seen that the five sinusoids composing the harmonic signal each excite either
three or four bins in the spectrum. As the signal is zero-phase windowed, the bins
representing each sinusoid are exactly in phase. The excited bins are highlighted
with orange lines.

Now consider the phase propagation applied in the standard phase-vocoder-based
TSM, which was given in Equations (31–34). For each bin in the analysis STFT, the
instantaneous frequencies are estimated, and the phases are modified accordingly to
obtain the synthesis STFT. Therefore, the phases of the bins representing a single
sinusoid are modified individually. If there are any errors in the estimation of the
instantaneous frequencies, the phase relations of the bins in the synthesis STFT are
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Figure 17: (a) A harmonic signal weighted by an analysis window. (b) A zero-phase
version of the signal which was obtained by circularly shifting the samples such that
the latter half of the signal moves to the start of the frame, and vice versa. (c) The
magnitude spectrum of the signal. The bins representing the sinusoidal components
of the signal are shown in orange. (c) The phase spectrum of the zero-phase signal.
The phases of the sinusoidal bins are aligned, which appears as flat sections in the
phase spectrum.

not equal to the ones in the analysis STFT. Also, in phase-vocoder-based TSM,
the phase propagation is applied in an iterative fashion: the phases of the current
synthesis frame depend not only on the current and previous analysis STFT frames,
but also on the previous synthesis frame. Thus, even if the instantaneous frequencies
of the bins are estimated correctly on the current frame, the phase relations of the
previous synthesis frame have an effect on the resulting phases. If the original phase
relations have been lost at any frame before the current one, the phases will not be
aligned in any future frames either.

Thus, when the modified spectrum is synthesized back to time domain, the
amplitude envelope of the synthesized signal does not necessarily have the shape of
the original analysis window. For instance, it is possible that if the analyzed short-
time signal corresponds to Figure 16a, the synthesized short-time signal resembles the
one in Figure 16c, due to the applied phase modifications. Because the synthesized
signal is no longer at zero amplitude in the edges, a synthesis window needs to be
applied. The energy of the signal is no longer concentrated at the center and as such,
applying the synthesis window results in an additional loss of energy. This leads to
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fluctuations in the amplitude of the modified signal, since different short-time signals
lose different amounts of energy when the synthesis window is applied, depending on
how the energy is distributed in each short-time signal. This is the main cause of
the phasiness artifact in the phase vocoder. To solve this problem, there needs to
be a way to retain the phase relations of bins representing an individual sinusoid.
This is referred to as preservation of the intra-sinusoidal phase coherence, or simply,
phase locking.

4.1.1 Loose Phase Locking

The problem of intra-sinusoidal phase coherence was first addressed by Puckette [16].
The idea is that after the phases of the bins in the synthesis STFT have been computed
using standard phase vocoder processing, a phase correction is then applied such
that the phases of the neighboring bins affect each other. If zero-phase windowing is
used in computing of the short-time spectra, the final synthesis phase for each bin is
the phase of the complex number

Z[m, k] = Y [m, k] + Y [m, k − 1] + Y [m, k + 1], (38)

where Y [m, k] is the synthesis STFT computed with the standard phase vocoder.
The phase of each bin is a weighted average of the phases of the bin itself and its
two neighboring bins in the frequency direction. The weighting is determined by
the magnitudes of the bins: when complex numbers are summed, the number with
the largest magnitude affects the phase of the resulting number the most. Thus,
considering a sinusoidal signal in a synthesis STFT frame which affects three adjacent
bins, where the amplitude of the middle bin is the largest, the phases of the bins
with the smaller magnitude approach the phase of the middle bin.

4.1.2 Rigid Phase Locking

Alternative phase locking schemes were proposed by Laroche and Dolson [17, 36]. As
opposed to the method of Puckette [16], in which the same processing is applied to
each bin, these methods are based on finding peaks in the spectrum, and processing
the bins related to each peak in a joint fashion. Peaks in the spectrum are defined as
bins whose amplitude is larger than its four closest bins in the frequency direction.
For each peak bin, the surrounding bins are attached to the bin’s “region of influence”,
and as such, the frequency axis in each short-time spectra is subdivided into these
regions. The upper limit of the region of a peak is chosen as the bin whose frequency
is closest to the average frequency of that peak bin and the next one. Alternatively,
the bin with the lowest magnitude between two consecutive peaks can be chosen as
the boundary between two bin regions.

The idea is then to apply standard phase vocoder processing only to the peak
bins, and to somehow lock the phases of the remaining bins to the phase of their
corresponding peak bin. Two phase locking schemes are introduced: 1) identity
phase locking, and 2) scaled phase locking. In identity phase locking, the idea is that
for each peak bin and the surrounding bins, the phase relations between the bins
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in the synthesis STFT are equal to the ones in the analysis STFT. Given a peak
bin Y [m, kp] in the synthesis STFT whose phase has been computed according to
Equations (31–34), the phases of the bins in its region of influence are updated as:

∠Y [m, k] = ∠X[m, k] +
[
∠Y [m, kp]− ∠X[m, kp]

]
2π
, (39)

where X[m, k] is the analysis STFT. Thus, for each non-peak bin, the phase update
consists only of adding a value to its analysis phase. The value added is the principal
determination of the phase difference between the corresponding peak bin’s synthesis
and analysis phases.

Scaled phase locking is an extension of the identity phase locking scheme, in
which peak trajectories are formed between peaks in consecutive frames. Consider
a sinusoid whose frequency varies such that its peak bin moves from bin k0 to bin
k1 between the previous and current frame. In this case the phase integration in
Equation (34) should be modified such that

∠Y [m, k1] = ∠Y [m− 1, k0] +Hsωinst[m, k1], (40)

where the phase increment is added to the phase of the peak bin in the previous
frame, rather than the phase of the current peak bin in the previous frame. For each
peak bin in the current frame, the corresponding peak bin in the previous frame is
determined by finding the region of influence the current peak bin is in the previous
frame, and finding the peak bin of that region.

Given a peak bin in the current frame k1 and a corresponding peak bin in the
previous frame k0, the heterodyned phase increment is then computed as:

κ[m, k1] =
[
∠X[m, k1]− ∠X[m− 1, k0]− Ha

2 (ωk1 + ωk0)
]

2π
, (41)

where the average of the bin frequencies of the two peak bins are used. The
instantaneous frequency is given by:

ωinst[m, k1] = ωk1 + ωk0

2 + 1
Ha

κ[m, k1], (42)

and the synthesis phase of the peak bin is then computed according to Equation (40).
The phases of the non-peak bins are locked to the peak bin phase by

∠Y [m, k] = ∠Y [m, k1] + β
[
∠X[m, k]− ∠X[m, k1]

]
2π
, (43)

where β is a phase scaling factor. Setting β = 1 corresponds to identity phase
locking. Alternative choices of β are also discussed, but no definite “correct” choice
is given. However, it is stated that the value should be between 1 and the TSM
factor α.

4.2 Transient Preservation
The assumption in the way the phase modifications are done in the phase vocoder is
that the input sound can be represented as a sum of slowly varying sinusoids. In the
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case that there is an abrupt increase in energy, that is, a transient in the input signal,
this assumption is not valid. Therefore, when standard phase vocoder processing is
applied to transients, the results are often of poor quality. The loss of quality can
be attributed to the loss of vertical phase coherence between frequency bins which
represent the transient. Because the phase relations between the bins are modified,
the synthesized transient does not resemble the original analyzed transient.

To overcome this limitation, several solutions which attempt in some way to
preserve the vertical phase coherence of bins related to transients in the input signal
have been proposed. This means that a way to detect transients is needed. A natural
solution for preserving the vertical phase coherence is to apply a phase reset at
detected transient locations of the input signal. That is, when a transient is detected,
the phases of the bins in the analysis STFT are directly used in the synthesis STFT.
This approach was originally introduced by Quatieri et al. [37]. In this method,
whenever a local maximum (in the time direction) is detected at a STFT bin, a phase
reset is applied to that bin. The method relies on the assumption that a transient
appears as local maxima at several bins simultaneously to preserve the vertical phase
coherence.

4.2.1 Vertical Phase Coherence at Transients

The concept of applying a phase reset at transients was further explored by Bonada [38].
First, it must be noted that the method differs from the standard phase vocoder
based TSM in that the same hop size is used during analysis and synthesis. Figure 18
illustrates the approach used. When a TSM factor α > 1 is used, that is, the time
scale of the signal is expanded, some analysis frames are used twice during the
synthesis. In the case of time contraction α < 1, some analysis frames are omitted
from the synthesis. This approach can be considered as a time-varying TSM factor,
which changes locally whenever analysis frames are either reused or omitted.

Because the TSM factor is varied locally, it is possible to set the TSM factor
to one during transients, similar to the approach in the SOLA extensions [21, 22]
presented in Section 2. Whenever a transient is detected, all the analysis frames
are used exactly once in the synthesis. The local change in the TSM factor needs
to be compensated in the steady state regions of the sound, such that the average
TSM factor corresponds to the desired amount of TSM. Transients are detected by
considering the changes in the STFT bin energies, and the changes in the computed
Mel cepstrum coefficients. The transient detection stage can distinguish between
transients which only affect the energy in the high frequencies, low frequencies or in
the whole band. According to the type of the transient, a phase reset is applied to
bins in the region of influence of the transient, while standard phase modifications
are applied to the remaining bins.

A similar approach for transient preservation was proposed by Duxbury et al. [39].
It is also based on locally changing the TSM factor to one during detected transients,
and compensating for it in the steady state regions. The transients are detected from
changes in the estimated transient energy. The transient energy is estimated by first
splitting the input signal to a steady state component, and a residual component,
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Figure 18: Analysis and synthesis frames used in the method of Bonada [38], where
the analysis frames are either used more than once, or omitted completely during
synthesis, depending on whether time expansion or time contraction is desired,
respectively. The figure has been adapted from [38].

which contains the transients and noise, using a multi-resolution technique presented
in [40]. The transients are detected as local maxima in the time derivative of the
low-pass-filtered transient energy function. For the first frame in a set of subsequent
transient frames, the heterodyned phase increment is computed as

κ[m, k] =
[
∠X[m, k]− ∠Y [m− 1, k]−Hsωk

]
2π
, (44)

where the difference between the current analysis phase ∠X[m, k] and the predicted
synthesis phase ∠Y [m− 1, k] +Hsωk is used instead of the standard way, where the
predicted analysis phase ∠X[m − 1, k] + Haωk is compared to the actual analysis
phase. Apart from the estimation of the heterodyned phase increment, standard
phase propagation is applied as in Equations (31, 34). This preserves the vertical
coherence of the synthesis STFT bins such that the phase relations between the
synthesis frame bins are equal to the ones in the analysis STFT, though the exact
phase values are not.

The above methods suffer from the need to set the TSM factor to one during
transients. Furthermore, these methods preserve the vertical phase coherence in
relatively wide frequency bands [38] or for the whole audio band [39]. A method
which addresses these limitations was proposed by Röbel [19]. In this method, the
transient detection and preservation are done on the level of spectral peaks. The
transients are detected as soon as the analysis window slides over them. A transient
which is located on the edge of the window can be detected by the center of gravity
(COG) of the analysis frame:

ncog[m] =
∑N/2−1
n=−N/2 nx

2
m[n]∑N/2−1

n=−N/2 x
2
m[n]

, (45)
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Figure 19: The COG of the analysis frame (marked with the black dashed line) when
the transient is at (a) the right edge, (b) the center, and (c) the left edge of the
analysis window.

where xm[n] is the mth analysis frame of length N . Figure 19 shows the COG of
the short-time signal as the analysis window slides over a transient. A large positive
value of ncog indicates that the analysis window has slid over a transient (Figure
19a). A frame COG value close to zero indicates that the transient is close to the
center of the analysis frame (Figure 19b), whereas a negative ncog value indicates
that the analysis window has slid over the transient (Figure 19c). Thus, COG values
above a certain threshold can be used for transient detection.

In order to detect transient on a level of spectral peaks, the computation of the
COG can be performed using a subset of the STFT frequency bins:

ncog =
∑kh
k=kl
−∂∠|X[m,k]|

∂k
|X[m, k]|2∑kh

k=kl
|X[m, k]|2

, (46)

where kl and kh are the lowest and highest frequency bins in the region of influence of
the spectral peak, respectively. The robustness of the transient detection is improved
by a statistical model, which attempts to distinguish between positive COG values
introduced by transients, from ones introduced by amplitude modulated sinusoids or
noise.

Transients detected at the level of spectral peaks are further grouped on a sub-
band level. When a transient onset is detected on a sub-band, the spectral peaks
whose COG values are above a threshold are collected into a non-contracting set of
transient bins Kt, until the end of the transient event is detected. In order to prevent
transient smearing, during synthesis, the magnitude and instantaneous frequencies
of the previous frame are used for the transient bins. When the end of the transient
event is detected, that is, when the analysis window is centered on the transient, the
phases of the transient bins are reset. Since the frames preceding the transient frame
do not contribute to the transient‘s energy, the magnitude of the transient bins is
compensated by multiplying them with 1.5.

4.2.2 Harmonic and Percussive Separation

In [41], a method for transient preservation which is not based on phase resets or
phase locking was proposed. Figure 20 illustrates the method. The input signal is first
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Figure 20: Time-scale modification (TSM) based on harmonic and percussive separa-
tion. The figure has been adopted from [3].

separated into harmonic and percussive components. The harmonic and percussive
separation is based on the median filtering technique proposed by Fitzgerald [42].
Due to the distinct nature of the separated signal components, the harmonic and
percussive signals are processed using different techniques. Standard phase vocoder
processing, using a relatively long analysis window is used for the harmonic signal,
whereas standard OLA processing is used for the percussive signal. The output
is the superposition of the two separately processed signals. It was shown that
standard OLA processing with a short enough window provided surprisingly good
TSM quality when applied to transient signals. The method is appealing in that it
can preserve transients during TSM without the need to detect individual transient
locations, which is considered a difficult and error-prone task. Furthermore, it
allows simultaneously using an analysis window with a good frequency resolution
for the harmonic signal, and an analysis window with a good time resolution for the
percussive signal.

4.3 Shape-Invariance
The various phase-locking schemes reviewed in Section 4.1 considered the preservation
of the vertical phase coherence for individual sinusoids in the input signal. The
methods for transient processing reviewed in Section 4.2 considered the preservation
of the vertical phase coherence for bins representing a transient in the input signal.
What these methods do not address, however, is the preservation of the phase
relations between the partials of a harmonic signal. The loss of inter-sinusoidal phase
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Figure 21: (a) The input sawtooth waveform and (b) the sawtooth modified with
the phase-locked vocoder.

coherence changes the waveform of the processed harmonic signal. Figure 21 shows
a sawtooth waveform which has been processed with the phase-locked vocoder using
identity phase locking [17], such that the intra-sinusoidal phase coherence has been
preserved but the inter-sinusoidal phase coherence has not been addressed. It can be
seen that the original shape of the sawtooth is not preserved during TSM. While
the loss of the shape of the time-domain waveform is uncritical for most signals, it is
clearly audible for speech, because the perception of the underlying excitation pulses
is affected.

This problem has been addressed by introducing “shape-invariant processing”
for the phase vocoder. A solution was first proposed by Quatieri and McAulay in
the context of sinusoidal modeling of speech signals [43]. Röbel applied the shape-
invariant property for phase vocoder based speech transformation [44]. The phase
propagation in the shape-invariant phase vocoder is given by:

∠Y [m, k] = ∠X[m, k] + (κ[m, k] + 2πk
K

)∆m, (47)

where ∆m is the time shift which has to be applied to the synthesis frame in order
to maximize alignment with the preceding synthesis frame. Similarly to the time-
domain techniques SOLA and WSOLA, the optimal time shift is determined by
cross-correlation. In the shape-invariant phase vocoder, the cross-correlation is
computed for two consecutive synthesis frames in the frequency domain by:

rm[∆] =
K∑
k=0

Y ∗m[k]Ym−1[k]ejωkn, (48)

where K is the number of bins in each short-time spectra, Y ∗m[k] is the complex
conjugate of the current synthesis frame, and Ym−1 is the previous synthesis frame. To
ensure that the estimated optimal time shift is only affected by the tonal components
of the input signal, a sinusoidal mask can be applied to the synthesis frames prior
to the computation of the cross correlation sequence. The optimal time shift ∆m is
searched from the cross-correlation sequence rm[∆] by finding the time shift which
maximizes its value after taking into account the effect of the analysis windows in
the synthesis frames.
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4.4 Other Extensions
4.4.1 Sinusoidal Modeling

An important technique related to the phase vocoder is sinusoidal modeling, which
was originally introduced by Quatieri and McAulay [45, 46]. In sinusoidal modeling,
the time-frequency representation of the input signal which is obtained by phase
vocoder analysis, is explicitly modeled as a sum of time-varying sinusoids. For each
short-time spectra, the most dominant peaks are estimated. Then, for each peak,
the amplitudes, frequencies and phases of sinusoids which correspond to these peaks
are estimated. Additionally, sinusoidal peak continuation is enforced by forming
trajectories between sinusoidal peaks in consecutive frames. After estimating the
sinusoidal parameters and forming the trajectories, the modeled signal is obtained
by additive synthesis of the estimated sinusoids.

The sinusoidal model was later extended with the sinusoids and noise model by
Serra [47]. In the sinusoids and noise model, the part of the input signal which is not
modeled by the time-varying sinusoids, known as the residual, is modeled as noise.
The residual can be computed by subtracting the signal which was given by the
sinusoidal model from the original signal. This can be done on a frame-by-frame basis,
which results in a series of short-time spectra which represent the noise component.
The short-time noise spectra are modeled by estimating their spectral envelopes.
The modeled residual can be re-synthesized to the time domain from the short-time
spectra by applying random phases to all the spectral bins and using standard phase
vocoder synthesis on the resulting representation.

Because the sinusoids and noise model represents the input signal as a sum of
slowly-varying sinusoids and noise, it is unable to preserve the quality of transients
in the input signal. Thus, the model was extended by separate transient modeling,
which resulted in the sinusoids, transients and noise model [48, 49]. In the method,
the transients are first extracted from the input signal, and the remainder is modeled
by sinusoids and noise. During TSM, the individual transients remain unmodified,
and are only shifted in time according to the desired modification factor. The TSM
for the sinusoids and noise is achieved by modifying the rate at which the sinusoidal
and noise parameters evolve over time [50].

4.4.2 Multiresolution Techniques

Several techniques have been proposed which aim to alleviate the problems arising
from the fixed time and frequency resolution of standard phase vocoder analysis.
In [51], a technique based on the theory of nonstationary Gabor frames [52, 53] is
proposed. In this technique, short-time spectra at each analysis time-instant are
computed using multiple analysis window sizes, resulting in analyses with different
time and frequency resolutions. Then, for each analysis time instant, the short-time
spectra which gives the optimal representation of the underlying short-time signal is
selected for the final time-frequency representation. The resolution is automatically
adapted using an entropy-based sparsity criterium, which is based on the Rényi
entropies [54]. A re-synthesis procedure from the adapted analysis coefficients is
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also proposed. It is shown that for the problem of TSM, the adaptive method
provides higher quality transformation when compared to results obtained with a
fixed resolution, even when the fixed resolution is chosen optimally for each test
signal. A different technique based on the theory of nonstationary Gabor frames is
proposed in [55].

In [56], a multiresolution TSM technique is proposed, which is based on the
multi-scale STFT [57]. In the multi-scale STFT, the input signal is first decomposed
into multiple layers of various levels of “transientness”. Then, the STFT is computed
for each layer separately, such that the length of the analysis window is adjusted
according to the transientness of the layer. That is, the analysis window is shorter for
the more transient layers. In the TSM technique, standard phase propagation is first
applied on the analysis STFT of the whole input signal. Next, the obtained synthesis
phase values are applied to the STFTs computed for the different layers. Finally,
the output signal is re-synthesized by applying standard phase vocoder synthesis for
each layer separately and summing the signals together.

4.4.3 Partial Phase Derivatives

In the standard phase propagation procedure of the phase vocoder, as shown in
Equations (31, 32, 34), the phase is first differentiated in the time direction to find
the instantaneous frequencies, and then integrated according to the TSM-factor
to compute the synthesis phases. Thus, the standard phase propagation does not
take into account the partial phase derivative in the frequency direction in any way.
In [58], a technique is developed in which the phase propagation is based on the
full phase gradient estimated during the analysis stage. During the synthesis, the
phase is propagated using the real-time phase gradient heap integration algorithm
[59] which is able to take into account the partial phase derivative in the frequency
direction. It was shown that the technique is able to preserve the quality of the
transients during modification, even though no special handling of transients is done.
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5 A Novel Time-Scale Modification Technique
In this section, a novel phase vocoder based TSM technique is proposed in which
the applied phase propagation is based on the characteristics of the input audio.
The input audio characteristics are quantified by means of fuzzy classification of
spectral bins into sinusoids, noise, and transients. The information about the nature
of the spectral bins is used for preserving the intra-sinusoidal phase coherence of the
tonal components, while simultaneously preserving the noise characteristics of the
input audio. Furthermore, a novel method for transient detection and preservation
based on the classified bins is proposed. Most of the material in this section and in
Section 6 has recently been published in [60].

5.1 Fuzzy Classification of Bins in the Spectrogram
The proposed method for the classification of spectral bins is based on the observation
that, in a time-frequency representation of a signal, stationary tonal components
appear as ridges in the time direction, whereas transient components appear as
ridges in the frequency direction [42, 61]. Thus, if a spectral bin contributes to the
forming of a time-direction ridge, most of its energy is likely to have originated from
a tonal component in the input signal. Similarly, if a spectral bin contributes to
the forming of a frequency-direction ridge, most of its energy is probably from a
transient component. As a time-frequency representation, the STFT is used:

X[m, k] =
N/2−1∑
n=−N/2

x[n+mHa]w[n]e−jωkn, (49)

where x[n] is the input signal, Ha[a] is the analysis hop size, w[n] is the analysis
window, N is the analysis frame length and the number of frequency bins in each
frame, and ωk = 2πk

N
is the normalized center frequency of the kth STFT bin.

Figure 22 shows the STFT magnitude of a signal consisting of a melody played on
the piano, accompanied by soft percussion and a double bass. The time-direction
ridges introduced by the harmonic instruments, and the frequency-direction ridges
introduced by the percussion are apparent on the spectrogram.

The median filtering technique proposed by Fitzgerald [42] is used to compute
the tonal and transient STFTs Xs[m, k] and Xt[m, k], respectively:

Xs[m, k] = median(|X[m− Lt
2 + 1, k]|, ..., |X[m+ Lt

2 , k]|) (50)

and
Xt[m, k] = median(|X[m, k − Lf

2 + 1]|, ..., |X[m, k + Lf
2 ]|), (51)

where Lt and Lf are the lengths of the median filters in time and frequency directions,
respectively. For the tonal STFT, the subscript s (denoting sinusoidal) is used and for
the transient STFT the subscript t. Median filtering in the time-direction suppresses
the effect of transients in the STFT magnitude, while preserving most of the energy
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Figure 22: Spectrogram of a signal consisting of piano, percussion and double bass.

of the tonal components. Conversely, median filtering in the frequency-direction
suppresses the effect of tonal components, while preserving most of the transient
energy [42].

The two computed STFTs are used to estimate the tonalness, noisiness, and
transientness of each analysis STFT bin. We estimate tonalness by the ratio

Rs[m, k] = Xs[m, k]
Xs[m, k] +Xt[m, k] . (52)

We define transientness as the complement of tonalness:

Rt[m, k] = 1−Rs[m, k] = Xt[m, k]
Xs[m, k] +Xt[m, k] . (53)

Signal components which are neither tonal nor transient, can be assumed to be
noiselike. Experiments on noise signal analysis using the above median filtering
method show that the tonalness value is often approximately Rs = 0.5. This is
demonstrated in Figure 23, where a histograms of the tonalness values of STFT
bins of pink noise and white noise signals signal are shown. It can be seen, that the
tonalness values are approximately normally distributed around the value 0.5. Thus,
we estimate noisiness by

Rn[m, k] = 1− |Rs[m, k]−Rt[m, k]| =

2Rs[m, k], if Rs[m, k] ≤ 0.5
2(1−Rs[m, k]), otherwise.

(54)

The tonalness, noisiness, and transientness can be used to denote the degree of
membership of each STFT bin to the corresponding class in a fuzzy manner. The
relations between the classes are visualized in Figure 24.

Figure 25 shows the computed tonalness, noisiness, and transientness values for
the STFT bins of the example audio used above. The tonalness values are close to 1
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Figure 23: Spectrograms of (a) white noise and (c) pink noise. (b, d) show the
histograms of their tonalness values.
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Figure 24: The relations between the fuzzy classes.

for bins which represent the harmonics of the piano and double bass tones, whereas
the tonalness values are close to 0 for bins which represent the percussion hits. The
noisiness values are close to 1 for bins which do not significantly contribute to the
representation of either tonal or transient components in the input audio. Finally, it
can be seen that the transientness values are complementary to the tonalness values.
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Figure 25: (a) Tonalness, (b) noisiness, and (c) transientness values for the STFT
bins of the example audio signal. Cf. Figure 22.

5.2 Time-Scale Modification Technique
This section introduces the new TSM technique that is based on the fuzzy classification
of spectral bins defined above.
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5.2.1 Proposed Phase Propagation

As discussed in Section 3, phase vocoder TSM is based on the differentiation and
subsequent integration of the analysis STFT phases in time. This process is known
as phase propagation. The phase propagation in the new TSM method is based on
a modification to the phase-locked vocoder by Laroche and Dolson [17], which was
reviewed in Section 4.1.2. For clarity, a brief description of the phase-locked vocoder
is included here also. The phase propagation in the phase-locked vocoder can be
described as follows. For each frame in the analysis STFT (49), peaks are identified.
Peaks are defined as spectral bins, whose magnitude is greater than the magnitude
of its four closest neighboring bins in the frequency direction.

The phases of the peak bins are differentiated to obtain the instantaneous fre-
quency for each peak bin:

ωinst[m, k] = ωk + 1
Ha

κ[m, k], (55)

where κ[m, k] is the estimated “heterodyned phase increment”:

κ[m, k] =
[
∠X[m, k]− ∠X[m− 1, k]−Haωk

]
2π
. (56)

Here,
[
·
]

2π
denotes the principal determination of the angle, i.e., the operator

wraps the input angle to the range [−π, π[. The phases of the peak bins in the
synthesis STFT Y [m, k] can be computed by integrating the estimated instantaneous
frequencies according to the synthesis hop size:

∠Y [m, k] = ∠Y [m− 1, k] +Hsωinst[m, k], (57)

where Hs is the synthesis hop size. The ratio between the analysis and synthesis hop
sizes determines the TSM factor α = Hs/Ha. In the standard phase vocoder TSM
[15], this kind of phase propagation is applied to all bins, not only peak bins. In
the phase-locked vocoder [17], the way the phases of non-peak bins are modified is
known as phase locking. It is based on the idea that the phase relations between all
spectral bins, which contribute to the representation of a single sinusoid, should be
preserved when the phases are modified. This is achieved by modifying the phases
of the STFT bins surrounding each peak such that the phase relations between the
peak and the surrounding bins are preserved from the analysis STFT. Given a peak
bin kp, the phases of the bins surrounding the peak are modified by:

∠Y [m, k] = ∠X[m, k] +
[
∠Y [m, kp]− ∠X[m, kp]

]
2π
, (58)

where ∠Y [m, kp] is computed according to (55–57). This approach is known as
identity phase locking.

From the motivation behind phase locking, it seems that it should only be applied
to bins that are considered to represent a sinusoidal component in the input signal.
When applied to non-sinusoidal bins, phase locking introduces a metallic sounding
artifact to the processed sound. Since the tonalness, noisiness, and transientness
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Figure 26: A contour plot of the phase randomization factor An, with bn = bα = 4.

of each bin has been determined, this information can be used when phase locking
is applied. We want to be able to apply phase locking to bins which represent
a tonal component, while preserving the randomized phase relationships of bins
representing noise. Thus, phase locking is first applied to all the bins. Secondly,
phase randomization is applied to the bins according to the estimated noisiness
values. The final synthesis phases are obtained by adding uniformly distributed noise
to the synthesis phases computed with the phase-locked vocoder:

∠Y ′[m, k] = ∠Y [m, k] + πAn[m, k](u[m, k]− 1
2), (59)

where u[m, k] are the added noise values and ∠Y [m, k] are the synthesis phases
computed with the phase-locked vocoder. The pseudo-random numbers u[m, k] are
drawn from the uniform distribution U(0, 1). An[m, k] is the phase randomization
factor, which is based on the estimated noisiness of the bin Rn[m, k] and the TSM
factor α:

An[m, k] = 1
4
[

tanh(bn(Rn[m, k]− 1)) + 1
][

tanh(bα(α− 3
2)) + 1

]
, (60)

where constants bn and bα control the shape of non-linear mappings of the hyperbolic
tangents. The values bn = bα = 4 were used in this implementation. The phase
randomization factor An, as a function of the estimated noisiness Rn and the TSM
factor α, is shown in Figure 26. The phase randomization factor increases with
increasing TSM factor and noisiness. The phase randomization factor saturates as
the values increase, such that at most, the uniform noise added to the phases gets
values in the range [−0.5π, 0.5π].



41

5.2.2 Transient Detection and Preservation

For transient detection and preservation, a similar strategy is adopted as in [19].
However, the proposed method is based on the estimated transientness of the STFT
bins. Using the measure for transientness, the smearing of both the transient onsets
and offsets is prevented. The transients are processed so that the transient energy is
mostly contained on a single synthesis frame, effectively suppressing the transient
smearing artifact which is typical for the phase vocoder based TSM.

Detection
To detect transients, the overall transientness of each analysis frame is estimated,
and denoted as frame transientness:

rt[m] = 1
N − 1

N−1∑
k=1

Rt[m, k]. (61)

The analysis frames which are centered on a transient component appear as local
maxima in the frame transientness. Transients need to be detected as soon as the
analysis window slides over them in order to prevent the smearing of transient onsets.
To this end, the time derivative of frame transientness is used:

d

dm
rt[m] ≈ 1

Ha

(rt[m]− rt[m− 1]), (62)

where we approximate the time derivative with the backward difference method. As
the analysis window slides over a transient, there is an abrupt increase in the frame
transientness. These instants appear as local maxima in the time derivative of the
frame transientness. Local maxima in the time derivative of the frame transientness
that exceed a given threshold, are used for transient detection.

Figure 27 illustrates the proposed transient detection method using the same
audio excerpt as above, containing piano, percussion, and double bass. The transients
appear as local maxima in the frame transientness signal in Figure 27a. Transient
onsets are detected from the time derivative of the frame transientness, from the
local maxima which exceed the given threshold (the red dashed line in Figure 27b.
The detected transient onsets are marked with orange crosses. After an onset is
detected, the analysis frame which is centered on the transient is detected from the
subsequent local maxima in the frame transientness. The detected analysis frames
centered on a transient are marked with purple circles in Figure 27a.

Preservation
To prevent transient smearing, it is necessary to concentrate the transient energy in
time. A single transient contributes energy to multiple analysis frames, because the
frames are overlapping. During the synthesis, the phases of the STFT are modified,
and the frames are relocated in time, which results in smearing of the transient
energy.

To remove this effect, transients are detected as the analysis window slides over
them. When a transient onset has been detected using the method described above,
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Figure 27: Illustration of the proposed transient detection. (a) Frame transientness.
Locations of the detected transients are marked with purple circles. (b) Time
derivative of the frame transientness. Detected transient onsets are marked with
orange crosses. The red dashed line shows the transient detection threshold.

the energy in the STFT bins is suppressed according to their estimated transientness:

|Y [m, k]| = (1−Rt[m, k])|X[m, k]|. (63)

This gain is only applied to bins whose estimated transientness is larger than 0.5.
Similar to [19], the bins to which this gain has been applied are kept in a non-
contracting set of transient bins Kt. When it is detected that the analysis window
is centered on a transient, as explained above, a phase reset is performed on the
transient bins. That is, the original analysis phases are kept during synthesis for
the transient bins. Subsequently, as the analysis window slides over the transient,
the same gain reduction is applied for the transient bins as during the onset of
the transient (63). The bins are retained in the set of transient bins until their
transientness decays to a value smaller than 0.5, or until the analysis frame slides
completely away from the detected transient center. Finally, since the synthesis
frames before and after the center of the transient do not contribute to the transient’s
energy, the magnitudes of the transient bins are compensated by

|Y [mt, kt]| =
∑
m∈Zw

2[(mt −m)Hs]
w2[0]

∑
k∈Kt

Rt[mt, k]
|Kt|

|X[mt, kt]|, (64)
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where mt is the transient frame index, |Kt| denotes the number of elements in the
set Kt, and kt ∈ Kt, which is the defined set of transient bins.

This method aims to prevent the smearing of both the transient onsets and
offsets during TSM. In effect, the transients are separated from the input audio, and
relocated in time according to the TSM factor. However, in contrast to methods
where transients are explicitly separated from the input audio [50, 49, 62, 41],
the proposed method is more likely to keep transients perceptually intact with
other components of the sound. Since the transients are kept in the same STFT
representation, phase modifications in subsequent frames are dependent on the phases
of the transient bins. This suggests that transients related to the onsets of harmonic
sounds, such as the pluck of a note while strumming a guitar, should blend smoothly
with the following tonal component of the sound. Furthermore, the soft manner in
which the amplitudes of the transient bins are attenuated during onsets and offsets
should prevent strong artifacts arising from errors in the transient detection.

Figure 28 shows an example of a transient processed with the proposed method.
The original audio shown in Figure 28a consists of a solo violin overlaid with a
castanet click. Figure 28b shows the time-scale modified sample with TSM factor
α = 1.5, using the standard phase vocoder. In the modified sample, the energy of
the castanet click is spread over time. This demonstrates the well known transient
smearing artifact of standard phase vocoder TSM. Figure 28c shows the time-scale
modified sample using the proposed method. It can be seen that while the duration
of the signal has changed, the castanet click in the modified audio resembles the one
in the original, without any visible transient smearing.
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Figure 28: An example demonstrating the proposed transient preservation method.
(a) shows the original audio, consisting of a solo violin overlaid with a castanet
click. Also shown are the modified samples with TSM factor α = 1.5, using (b) the
standard phase vocoder, and (c) the proposed method.
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6 Listening Test
To evaluate the quality of the proposed TSM technique, a listening test was conducted.
The listening test was realized online using the Web Audio Evaluation Tool [63]. The
test subjects were asked to use headphones. The test setup used was the same as
in [41]. On each trial, the subjects were presented with the original audio sample and
four modified samples processed with different TSM techniques. The subjects were
asked to rate the quality of time-scale modified audio excerpts using a scale from
1 (bad) to 5 (excellent). A screenshot of the listening test environment is included in
Appendix A.

All 11 subjects who participated in the test reported having a background in
acoustics, and 10 of them had previous experience of participating in listening tests.
None of the subjects reported hearing problems. The ages of the subjects ranged
from 23 to 37, with a median age of 28. From the 11 subjects, ten were male and
one was female.

In the evaluation of the proposed method, the following settings were used: the
sample rate was 44.1 kHz, a Hann window of length N = 4096 was chosen for the
STFT analysis and synthesis, the synthesis hop size was set to Hs = 512, and the
number of frequency bins in the STFT was K = N = 4096. The length of the
median filter in the frequency direction was 500Hz, which corresponds to 46 bins.
In the time direction, the length of the median filter was chosen to be 200ms, but
the number of frames it corresponds to depends on the analysis hop size, which is
determined by the TSM factor according to (1). Finally, the transient detection
threshold was set to td = 10−4 = 0.00010.

In addition to the proposed method (PROP), the following techniques were
included: The standard phase vocoder (PV), using the same STFT analysis and
synthesis settings as the proposed method; a recently published technique (HP)
[41], which uses harmonic and percussive separation for transient preservation; the
élastique algorithm (EL) [64], which is a state-of-the-art commercial tool for time
and pitch-scale modification. The samples processed by these methods were obtained
using the TSM toolbox [65].

Eight different audio excerpts (sampled at 44.1 kHz) and two different stretching
factors α = 1.5 and α = 2.0 were tested, for the four techniques. This resulted in
a total of 64 samples rated by each subject. The audio excerpts are described in
Table 1. The lengths of the original audio excerpts ranged from 3 to 10 seconds. To
estimate the quality of the techniques, mean opinion scores (MOS) were computed
for all samples from the ratings given by the subjects. The results are shown in
Table 2. A bar diagram of the mean opinion scores is also shown in Figure 29.

As expected, the standard PV performed worse than all the other tested methods.
For the CastViolin sample, the proposed method (PROP) performed better than the
other methods, with both TSM factors. This suggests that the proposed method
preserves the quality of the transients in the modified signals better than the other
methods. The proposed method also scored best with the Jazz excerpt. In addition to
the well-preserved transients, the results are likely to be explained by the naturalness
of the singing voice in the modified signals. This can be attributed to the proposed
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Table 1: List of audio excerpts used in the subjective listening test.

Name Description

CastViolin Solo violin and castanets, from [65]
Classical Excerpt from Bólero, performed by the London Symphony Orchestra
JJCale Excerpt from Cocaine, performed by J.J. Cale
DrumSolo Solo performed on a drum set, from [65]
Eddie Excerpt from Early in the Morning, performed by Eddie Rabbit
Jazz Excerpt from I Can See Clearly, performed by the Holly Cole Trio
Techno Excerpt from Return to Balojax, performed by Deviant Species and Scorb
Vocals Excerpt from Tom’s Diner, performed by Suzanne Vega

Table 2: Mean opinion scores (MOS) for the audio samples.

α = 1.5 α = 2.0
PV HP EL PROP PV HP EL PROP

CastViolin 1.8 3.8 3.6 4.1 1.4 3.6 3.3 4.1
Classical 2.3 3.5 3.7 3.3 1.6 3.0 3.7 2.8
JJCale 2.7 2.5 3.4 2.9 1.2 2.5 3.1 3.2
DrumSolo 1.5 3.5 3.2 2.3 1.7 2.4 2.5 1.8
Eddie 1.9 3.1 4.2 3.2 1.2 2.2 3.6 3.1
Jazz 1.9 3.6 3.4 3.6 1.5 3.3 2.7 3.7
Techno 1.3 2.7 3.3 4.1 1.6 2.5 3.1 2.7
Vocals 1.7 3.5 2.9 3.4 1.5 3.3 2.7 3.1
Mean 1.9 3.3 3.5 3.4 1.5 2.9 3.1 3.1

phase propagation, which allows simultaneous preservation of the tonal and noisy
qualities of the singing voice. This is also reflected in the results of the Vocals
excerpt, where the proposed method also performs well, scoring slightly lower than
HP, however. For the Techno sample, the proposed method scored significantly higher
than the other methods with the TSM factor α = 1.5. For TSM factor α = 2.0,
however, the proposed method scored lower than EL. The proposed method also
scored highest for the JJCale sample with TSM factor α = 2.0.

The proposed method performed poorer on the excerpts DrumSolo and Classical.
Both of these samples contained fast sequences of transients. It is likely that the
poorer performance is due to the individual transients not being resolved during the
analysis, because of the relatively long analysis window used. Also on the excerpt
Eddie, EL scored higher than the proposed method.

The preferences of subjects over the tested TSM methods seem to depend signifi-
cantly on the signal being processed. Overall, the mean values computed from all
the samples suggest that the proposed method yields a slightly better quality than
HP with the large TSM factor α = 2.0, and practically the same quality as EL. The
processed audio excerpts are available online at http://research.spa.aalto.fi/
publications/papers/applsci-ats/.

The proposed method introduces some additional computational complexity

http://research.spa.aalto.fi/publications/papers/applsci-ats/
http://research.spa.aalto.fi/publications/papers/applsci-ats/
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Figure 29: Mean opinion scores (MOS) for eight audio samples using four TSM
methods for (a) medium (α = 1.5) and (b) large (α = 2.0) TSM factors. The
rightmost bars show the average score for all eight samples. (PV = Phase Vocoder;
HP = Harmonic-Percussive Separation [41]; EL = Élastique [64]; PROP = Proposed—
this work).

when compared to the standard phase-locked vocoder. In the analysis stage, the
fuzzy classification of the spectral bins requires median filtering of the magnitude
of the analysis STFT. The number of samples in each median filtering operation
depends on the analysis hop size and the number of frequency bins in each short
time spectra. In the modification stage, additional complexity arises from drawing
pseudo-random values for the phase randomization. Furthermore, computing the
phase randomization factor, as in Equation (60), requires the evaluation of two
hyperbolic tangent functions for each point in the STFT. Since the argument for the
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second hyperbolic tangent depends only on the TSM factor, its value needs to be
updated only when the TSM factor is changed. Finally, due to the way the values
are used, a lookup table approximation can be used for evaluating the hyperbolic
tangents without significantly affecting the quality of the modification.
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7 Conclusions
In this thesis, a novel TSM technique was developed. The technique is based on the
new concept of fuzzy classification of spectral bins. In the proposed classification
scheme, each bin in the STFT representation of the input signal is assigned to three
classes: tonalness, noisiness and transientness. The bins are allowed to belong to all
of the classes simultaneously, with a certain degree of membership for each class which
is estimated from the STFT representation. The information from the classification
stage is used to guide the magnitude and phase modifications that are applied to the
STFT during TSM, such that the subjective quality of the tonal, noise, and transient
components is preserved.

By means of a listening test, the proposed method was compared to three TSM
methods: the standard phase vocoder (PV), a state-of-the-art academic method
(HP), and a commercial software (EL). The proposed method achieved higher scores
than the standard phase vocoder with all processed audio excerpts. Overall, the
proposed method performed slightly better than HP, and scored similarly as EL.
For all methods, the quality of the transformation seemed to be highly dependent
on the type of signal being processed. The proposed method performed best with
samples such as a solo violin overlaid with a castanet, a jazz recording with vocals
and with a techno song. The method performed worse when applied to a classical
music recording, and to a drum solo.

While the method can preserve the quality of highly time-localized transients,
such as the castanet click even using a large analysis window, it still suffers to some
extent on the fixed time and frequency resolution of the STFT. With an input signal
containing a fast sequence of transients, the individual transients can not be resolved
in the STFT analysis if the time difference between consecutive transients is less
than the length of the analysis window. Thus, applying the proposed techniques on a
multiresolution time-frequency transformation is of future research interest. Finally,
while this thesis only considered TSM, the proposed method for fuzzy classification
of spectral bins could be useful in various audio signal processing problems, where
information about the nature of the input signal is needed.
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A Listening Test Environment
A screenshot of the listening test environment is shown in Figure A1. The listening
test was created using the Web Audio Evaluation Tool [63]. The participants rated
the samples using the vertical sliders, which were initially set to random positions
on each page. The participants had to listen to all samples on each page in order
to move onto the next one. However, they did not have to listen to the samples
fully. Furthermore, the participants had to move all the sliders on each page before
allowing to continue onto the next page.

Figure A1: Screenshot of the listening test environment.
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