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The photoelectrochemical cell offers a way to use solar power to efficiently split
water into hydrogen and oxygen. A semiconductor electrode is used to generate
electrical power from sunlight and drive the hydrogen and oxygen evolution re-
actions in aqueous environment. The work in this thesis aims to improve the
understanding of the dynamics of the semiconductor electrode in a photoelectro-
chemical cell by implementing a numerical model of the system. The model is
used to solve the carrier densities during the operation, when the charge carriers
in the semiconductor are not in thermal equilibrium due to the incident radiation
generating electron–hole pairs. The simulated results are compared to experimen-
tal study of different GaAs–based photoelectrodes.
For the experimental study both p– and n–type GaAs photoelectrodes were fab-
ricated. In addition, a sample with a thin epitaxial n–type layer on a p–type
substrate was studied. Chopped light voltammetry and electrochemical impedance
spectroscopy measurements were used to characterize the samples. The results
show that p–type GaAs is not effective as a photoelectrode due to large over-
potential required before any photocurrent was observed. The n–type layer was
found to slightly improve the results. The current from the n–type sample was
observed to be significantly better, but this is likely to be attributed to dissolving
of the sample instead of water splitting reaction. The implementation of the
numerical model was successful, but the accuracy of the simulated results leaves
room for improvement. The implementation of drift–diffusion model used for the
simulation cannot explain all of the measured results, and a more sophisticated
model would be required for predictive simulations. Based on the results, key
issues are identified and future development ideas suggested.

Keywords: renewable energy, photoelectrochemical cell, water splitting, numeri-
cal simulation
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Valosähkökemiallinen kenno tarjoaa keinon käyttää aurinkoenergiaa tehokkaasti
hajottamaan vettä vedyksi ja hapeksi. Puolijohde–elektrodi generoi sähkövirtaa
auringon valon avulla sekä ajaa vedyn ja hapen kehitysreaktioita vesipitoisessa
ympäristössä. Tämän diplomityön tavoitteena on tutkia puolijohde–elektrodin
dynamiikkaa valosähkökemiallisessa kennossa kehittämällä numeerinen malli. Mal-
lin avulla voidaan laskea varauskuljettajien tiheydet kennon toiminnan aikana,
jolloin elektronit ja aukot eivät ole termisessä tasapainotilassa valaistuksen luomien
varauskuljettajaparien vuoksi. Simuloituja tuloksita verrataan kokeelliseen työhön,
jossa käytettiin erilaisia GaAs–pohjaisia elektrodeja.
Kokeellista työtä varten valmistettiin sekä p– että n–tyypin GaAs–elektrodit.
Lisäksi valmistettiin p–tyypin näyte, jonka päälle kasvatettiin ohut n–tyypin
kerros. Näytteistä mitattiin virta–jännite -käyrä katkotulla valaistuksella sekä
sähkökemiallinen impedanssispektri. Tulokset osoittavat, että p–tyypin GaAs ei
ole tehokas elektrodi veden hajottamiseen, sillä se vaatii korkean ylijännitteen
ennen kuin valon tuottama virta on havaittavissa. Kasvatetun n–tyypin kerroksen
havaittiin parantavan tuloksia. N–tyypin näytteen tuottama virta havaittiin huo-
mattavasti paremmaksi, mutta todennäköisesti kyse on näyteen hajoamisreaktiosta
veden hajottamisen sijaan. Tulosten perusteella numeerisen mallin tarkkuuden
parantamiseksi esitetään jatkotoimia, sillä simulaation taustalla oleva fysikaalinen
malli ei kykene selittämään aivan kaikkia mitattuja tuloksia.

Avainsanat: uusiutuvat energianlähteet, valosähkökemiallinen kenno, veden ha-
jottaminen, numeerinen simulointi
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Symbols

A area
c speed of light in vacuum
C capacitance
CE scaling constant for electric field
Cj scaling constant for carrier fluxes
Cp scaling constant for carrier densities
Cx scaling constant for position
Cφ scaling constant for electrostatic potential
D diffusion constant
e Euler’s number
E energy
Ered reduction potential
E0 standard potential
Eg band gap energy
EF Fermi level
E electric field magnitude
f frequency
F Faraday constant
G Gibbs free energy
G(x) carrier photogeneration rate
h Planck constant
I current
j0 exchange current density
J current density
kB Boltzmann constant
ktr transfer rate constant
n electron density
ni intrinsic carrier density
n0i bulk equilibrium density of electrons
NA acceptor density
ND donor density
NC conduction band density of states
NV valence band density of states
p hole density
p0i bulk equilibrium density of holes
Ps solar power density
q elementary charge
Qr reaction quotient
rd residual of differential equations
rb residual of boundary conditions
rs surface recombination rate
R resistance, gas constant
R(x) carrier recombination rate
S(x) function for evaluating attempted solution
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T absolute temperature
Uc chemical potential
Ue electrochemical potential
V voltage
VH Helmholtz voltage
VSC electrostatic voltage across semiconductor
Vfb flat band voltage
Vref measured voltage against RHE
Vth thermal voltage Vth = kBT/q
w depletion region width
x position
X solution mesh
Y attempted solution
Z impedance
α absorption coefficient
ε permittivity, ε = εrε0
χ electron affinity
η overpotential
ηelec faradaic efficiency
ηST H solar-to-hydrogen efficiency
κ fitted component values
λ wavelength
µ mobility
τ carrier lifetime
φ electrostatic potential
Φ photon flux, global error function
θ phase angle
ζ Fermi level distance from conduction/valence band

Abbreviations
ALD atomic layer deposition
BVP boundary value problem
DIW de–ionized water
EIS electrochemical impedance spectroscopy
IPA isopropanol (isopropyl alcohol)
MOVPE metalorganic vapor phase deposition
MQS micro– and quantum systems
NHE normal hydrogen electrode
RHE reversible hydrogen electrode
SHE standard hydrogen electrode
SEI semiconductor electrolyte interface
PEC photoelectrochemical



1 Introduction
Liquid hydrocarbon fuels have proved to be an irreplacable energy source for trans-
portation. Quite recently electric vehicles have entered the market, but they suffer
from high charging times, and low range and high cost compared to gasoline engine.
The energy density of current battery technologies, both per volume and per mass,
also prevents their use in aviation. The incentive to replace fossil fuels is not limited
to mitigating climate change, but also includes concerns for fuel supply security.
In order to pursue these goals, fossil fuel use should be reduced, but without a
good alternative this would result in large socioeconomic issues. In addition to
alternative technologies such as electric power, fossil fuels could also be replaced by
synthetic, carbon neutral fuels. This solution would retain all the benefits of liquid
hydrocarbon fuels such as high energy density and ease of transport, and could use
the infrastructure already in place for distributing the fuel. Fuels produced from
biomass, such as different plants or algae are already available. The work in this
thesis is part of a research towards a completely synthetic hydrocarbon fuel, produced
from water, and CO2 captured from air using solar power.
Using electrolysis, water can be split into hydrogen and oxygen by applying electrical
power. Depending on the source of the electrical power, this process can be used
for environmentally friendly hydrogen production. By the end of 2017, majority
of hydrogen production is done by extracting it from fossil hydrocarbons [1]. This
method is counterproductive to the goal of replacing fossil fuels, and an efficient
way of utilizing solar power to harvest hydrogen from water would be invaluable
for moving towards carbon–neutral energy economy. Even with the rapid decline of
the price of solar power, using traditional solar cells for driving water electrolysis
remains inefficient [2, 3]. An alternative solution for a water splitting system is to
use a photoelectrochemical (PEC) cell, where a semiconductor photoelectrode acts
simultaneously as the solar absorber and reaction–driving electrode. The PEC cell
as a technology offers potential for higher efficiencies than photovoltaic electrolysis
due to the direct coupling of the photon absorption and electrolysis [4]. It also offers
economical advantages due to its simpler design and reduced fabrication cost.
The first PEC cell was presented already in 1972 [5]. By the end of 2017, there has
been a lot of research arising in the field of PEC cells, but no commercial applications
exist. Although PEC cells offer an evironmentally friendly way to store solar energy
with good scaling potential [6], in order to economically compete with fossil fuels, the
total efficiency of the system has to be increased [3]. A state of the art multijunction
PEC cell can reach solar-to hydrogen efficiency of 16% [7]. Regardless of the extensive
research on the topic, the dynamics of a PEC system are not well understood, and
time consuming experimental studies are required to quantify the effects of design
choices. [8, 9] The number of parameters affecting the efficiency is not limited to the
material choice, but also includes the electrolyte solution and advanced techniques
such as deposition of co-catalyst nanoparticles on the semiconductor surface. [10–13]
The work in this thesis aims toward a numerical model that could predict the effect
of different system parameters on the efficiency of the cell. A reliable model would
enable research on PEC cells by educated design, as opposed to screening the effects
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of different parameters via experimental study.
In this thesis, a numerical model for a semiconductor photoelectrode in a photo-
electrochemical cell is implemented. Section 2 will explain the relevant theoretical
background and those physical phenomena on which the model is based. A detailed
explanation of the mathematics used for solving the numerical system is provided
in section 3. For the experimental study, the sample fabrication and methodology
for the electrochemical measurements are presented in section 4, and all the results
for both the simulation and experimental parts in section 5. Finally, in Section 6 a
conclusion is provided and some insight to the future of the research of this thesis is
offered.
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2 Theory of photoelectrochemical cells
This section will offer an overview of the theoretical background of photoelectro-
chemical cells with the focus on the phenomena that are most relevant to this work.
Multidisciplinary research often runs into inconsistent terminology, and the topic
of photoelectrochemical water splitting is not an exception. Therefore, the relevant
terminology, as it is used in this thesis, is defined so that the connection between the
concepts in chemistry and semiconductor physics is clear.

2.1 The reference potential
The cell potentials in any electrochemical cell are typically defined as standard
potentials, which are potentials measured against a hydrogen electrode that has a
defined standard electrode potential of 0 V at specific conditions. There are two
conventions for these conditions: the normal hydrogen electrode (NHE)[10, 12, 14–17]
and the standard hydrogen electrode (SHE)[18–20]. For most purposes the SHE and
the NHE can be considered identical, but there is a difference in their definitions[21].
Both are defined as the potential of the reaction shown in eq. (2.1) on a platinum
electrode acting as a catalyst at 25 ◦C. The platinum itself takes no part in the
reaction.

2 H+ + 2 e− −−→ H2. (2.1)

The NHE is defined in a 1 N (normality) acid with hydrogen bubbled through it
at 1 atm pressure (101 325 Pa) [21]. This system can be realized, but the exact
measured potential depends on activity and fugacity instead of concentration and gas
pressure. Chemical activity is the effective concentration of a species, and will differ
from the concentration in any non–ideal solution. Fugacity has a similar relation
to partial pressure as the activity has to concentration: it is the effective partial
pressure that takes into account the non–ideal behaviour of any real gas. The SHE
is then defined in a solution of 1 M (molarity) of H+ with activity of unity and H2
fugacity of 100 kPa [22]. This definition is exact, but it ignores the effects of the
ionic interaction between the H+ ions and treats hydrogen as ideal gas. Therefore
this is a theoretical ideal solution that cannot be constructed in reality.[21, 23] The
difference of potential between the NHE and the SHE is only 5.7 mV, assuming
hydrogen ion activity of 0.8 for the NHE.[21] In many recent publications NHE
and SHE are used interchangeably, or even claimed to be the equivalent to each
other[23–25], so it can be argued that the definition of the NHE has changed to be
equal to SHE. The standard electrode potentials for all real electrodes are defined
as the difference in their reaction potential versus the SHE. For all measurements
in this thesis a third standard, the reversible hydrogen electrode (RHE), is used
instead. The RHE is defined as the potential of the same reaction used for SHE and
NHE, eq. (2.1). However, as it is used in various solutions of different pH values, its
standard potential changes according to the Nernst equation shown in eq. (2.2). The
RHE is a realizable version of the SHE, that can be used directly in the solution of
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the experiment, and it has lately become a popular choice as a reference electrode [6,
26].[20]

The Nernst equation for a half–cell reduction potential is

Ered = E0
red − RT

zF
ln Qr, (2.2)

where Ered is the reduction potential at conditions defined by Q, E0
red the standard

reduction potential, R the gas constant, T the absolute temperature, F the Faraday
constant, z the number of electrons transferred in the half–cell reaction and Q the
reaction quotient describing the ratio of the activities of the different reactants. For
the hydrogen electrode reaction given in eq. (2.1), eq. (2.2) simplifies to

E0
RHE = E0

SHE − 0.059[V ]pH. (2.3)

The constant 0.059 V ≈ 2.3qkBT is a product of an approximation of the conversion
from natural to base 10 logarithm used in the definition of the pH value and the
thermal voltage Vth = qkBT at 25 ◦C.

In short, the chemical potential scale is defined by E0
SHE = 0 V, and measure-

ments can be related to the scale by measuring potentials against RHE and then
using eq. (2.3). In solid state physics, the energy levels inside a semiconductor
are related to the local vacuum level via the electron affinity. The electron affinity
is the energy needed to move an electron from vacuum immediately outside the
semiconductor into the conduction band. The potential against the local vacuum
level At standard conditions of 25 ◦C temperature and 1 bar pressure the absolute
potential of the SHE is by defined as approximately −4.44 V. [27], so it follows that
the absolute potential of the RHE varies with the pH of the electrolyte. At pH 0
E0

RHE = E0
SHE = 0.

2.2 Electrochemical and electrostatic potential
Electrochemical potential refers to the voltage that can be measured across the
device, which is the difference of the Fermi levels between the measurement points.
When the system is in thermal equilibrium, there is no net current and therefore
no electrochemical potential difference. Any initial differences in the Fermi levels
will be neutralized by charge accumulation, which will generate electric fields in
the system. In equilibrium the drift current related to the field is counteracted by
diffusion of the charge carriers towards lower concentration, resulting in zero net
current. The electric potential, or electrostatic potential of a charge is defined as the
amount of work done against an electric field in order to move the charge, in this
case an electron.

φ(x) = −
∫ x

x0
E(x)dx, (2.4)

where φ is the electrostatic potential, x the spatial coordinate, x0 a reference point of
zero potential and E the electric field. Just like the drift and diffusion currents, the
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Figure 1: A simplified band diagram of a PEC cell. The vacuum level follows the electrostatic
potential curve caused by the charge accumulation at the interfaces. However, the electrochemical
potential, or the Fermi level EF , is constant across the whole system, and the external voltage
measured by a voltmeter is zero. There is no net carrier flow i.e. electric current anywhere in the
system.

gradients of the electrostatic potential are cancelled by the corresponding gradient in
the chemical potential of the electrons, which is caused by the uneven concentration
of the carriers. The total effective, measurable potential in the system is the
electrochemical potential of the electrons, which is the sum of the electrostatic
potential resulting from the charge distribution and the chemical potential resulting
from the concentration distribution.

Ue(x) = φ(x) + Uc(x), (2.5)

where Ue is the electrochemical potential and Uc the chemical potential. This total
electrochemical potential is more rigorously defined as the partial derivative of a free
energy in a system with respect to the amount of species in the system. Assuming
that temperature and pressure are held constant,

Ue(x) = ∂G

∂N
, (2.6)

where G is the Gibbs free energy and N the number of electrons in the system. This
can be interpreted as the average amount of work required to add an electron to the
system, and it follows that the electrochemical potential is equal to the Fermi level.
Even though the electrostatic potential has no direct influence over the effective
voltage or current of the system, it is still an important quantity when analyzing a
semiconductor system. The conduction and valence band positions as well as the
local vacuum potential depend on the electrostatic potential, and therefore are not
necessarily constant when the system is in equilibrium. The vacuum level bending
has to be accounted for when the vacuum level is used as a reference. This is also
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why any reference has to be at the local vacuum level at a specific point, as the
vacuum level will not be constant over the whole system. Figure 1 shows an example
of a semiconductor photoelectrochemical cell with a flat Fermi level and resulting
bending of the conduction and valence bands and the vacuum level. In the electrolyte
region, the local vacuum level is by definition 4.44 V above the SHE, so that the
absolute potential at the local vacuum level of the electrolyte is 0 V.
As voltage is defined as the difference in potential, it is necessary to state which
definition of potential is used when discussing voltage. In this thesis, voltage refers
to the difference of the electrochemical potential, unless explicitly stated otherwise.

2.3 The Fermi level
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SemiconductorElectrolyte

0

−1

1

2

−2

−3

−4

−5

SHE −4.44V

−5

−4

−3

−2

0

−1

1

V
st

a
n
d
a
rd

p
o
te

n
ti
a
l
[

]

a
b

s
o

lu
te

e
n

e
rg

y
[e

V
]

EC

EV

EFp

EFn

VSC

VH
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Vacuum level

Eg

RHE @pH 0 2H+/H2

H2O/O2

ζ
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ηn

Figure 2: Potential diagram of a N–type cell under illumination. The absolute energy and standard
potential are connected by the absolute potential of the SHE at −4.44 V. The voltage between
the reference electrode and the Fermi level at the rear surface of the semiconductor Vref can be
measured. The electron affinity χ, the Fermi level distance from the conduction band in the bulk
ζ, and the band gap energy Eg are known properties of the semiconductor. VH is the Helmholtz
voltage and VSC the electrostatic potential drop across the semiconductor.

The standard potential of a semiconductor electrode is defined by its Fermi level
position at the electrolyte interface. The conduction band position is related to the
local vacuum level via the work function of the semiconductor, but finding the Fermi
level position is a little more complicated. The Fermi level in a semiconductor can
be thought of as an energy level at which there is a 50% chance that an energy state
is occupied by an electron. The probability of an energy state being occupied at
thermal equilibrium is given by the Fermi-Dirac distribution

f(E) = 1

1 + e
E−Ef
kBT

, (2.7)
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where Ef is the Fermi level, so that f(Ef) = 0.5. Assuming that the exponential
term in eq. (2.7) is large enough the distribution can be approximated with the
Maxwell-Boltzmann distribution

f(E) ≈ e
− (E−EF )

kBT . (2.8)

0.8 0.9 1 1.1 1.2

E/E
f

0

0.2

0.4

0.6

0.8

1
n

E = E
f
+3k

B
T

Figure 3: Comparison of the Fermi-Dirac distribution (solid line) and Maxwell-Boltzmann distri-
bution (dashed line). The x-axis shows the energy relative to the Fermi level and the y-axis the
fraction of the filled states. The conventional limit of a good approximation, E = Ef + 3kBT is
marked.

Conventionally used limit for the approximation is |E − Ef | ≥ 3kBT , which
results in the exponential term having a value of e3 ≈ 20 and an error of under 5%
in the probability distribution. This is illustrated in fig. 3. The Maxwell–Boltzmann
approximation is practical, because it allows relating the carrier densities to the
Fermi level position analytically. The derivation of these relations is not included
here, but the resulting equations are: [28]

n = NCe
EF −EC

kBT (2.9a)

p = NV e
EV −EF

kBT , (2.9b)

where NC and NV are the effective densities of states in the conduction and valence
bands. In thermal equilibrium the carrier densities are related to each other via

np = n2
i , ni =

√
NCNV e

− Eg
2kBT , (2.10)

where ni is the intrinsic carrier density. Assuming full ionization of the dopant atoms
the majority carrier density is equal to the doping density of the semiconductor, and
the minority carrier density is found with eq. (2.10). The result is that the Fermi
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level position relative to the conduction and valence bands depends on the doping of
the semiconductor: in n–type materials it is located near the conduction band and
in p–type materials near the valence band.
As mentioned earlier, the Fermi level in a material is equal to the local electrochemical
potential of electrons. A direct consequence is that the electrochemical potential,
or Fermi level, of electrons is constant in thermal equilibrium state. It also follows
that the measurable voltage from the back surface of the semiconductor to the
electrolyte is the voltage between the Fermi level in the semiconductor and the RHE.
In order to make any use of this measured voltage, a way to connect the Fermi level
to the electrochemical scale is required. This is where the vacuum level becomes
useful, as the conduction band position of a semiconductor is directly related to the
vacuum level via the electron affinity. The separation between the Fermi level and
the conduction band at the back surface can be solved from (2.9). Assuming an
ohmic contact at the back surface the majority carrier density will always be close to
equilibrium value, and equal to the doping density. For n–type semiconductor

ζ = EF − EC = ln NC

ND

, (2.11)

where ζ is the fermi level distance from the conduction band and ND the donor
density. The distance of the Fermi level from the valence band can be calculated in
similar fashion for p–type materials.

The two remaining unknown elements of the energy diagram in fig. 2 are the
Helmholtz voltage VH and the electrostatic potential drop across the semiconductor
VSC . Knowledge of the electrostatic potential drop across the semiconductor is
essential for the implementation of the numerical simulation. Relating VSC to
the measured voltage Vref is straightforward after the Helmholtz voltage is known.
Methods for estimating the Helmholtz voltage will be discussed in section 2.6.

When the semiconductor piece is taken out of thermal equilibrium, for example
by illumination with sufficiently energetic photons, eq. (2.10) no longer holds and the
Fermi levels defined in eqs. (2.9) are not equal to each other. However, the relations
in eqs. (2.12) can still be used by simply treating these separate Fermi levels for
electrons and holes as quasi–Fermi levels. [28]

n = NCe
EF n−EC

kBT (2.12a)

p = NV e
EV −EF p

kBT . (2.12b)

Even if the system is not in thermal equilibrium, it can still reach a state where
the photon and carrier fluxes in and out of the system are constant and the system
itself is in a steady, quasi–static state. This quasi–equilibrium model is valid when
the carrier scattering time constant is smaller than the smallest time constant of the
device, such as the modulation frequency of the illumination. In general, in order for
a dynamic system to reach a steady state, the system response has to be faster than
the changes in the input. For electrochemical measurements this is not an issue, since
typical scattering times for semiconductors are on the order of 100 fs [28], while the
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fastest timescale of interest is up to 1 MHz impedance spectroscopy measurement,
which corresponds to 1 µs.

2.4 Electrochemical reactions

EC

EV

EF

equilibrium illuminated

EC

EV

metal

V
ph

semiconductorelectrolytemetal semiconductorelectrolyte

EFp

EFn

Figure 4: Minimal example of photoelectrochemical cell with n-type semiconductor. When the
semiconductor and the metal counter electrode are short circuited, the electron quasi-Fermi level
aligns with the Fermi level of the metal. In dark equilibrium these Fermi levels set to the level of
the electrolyte redox potential, forming a single flat Fermi level across the whole device. When
illuminated, the Fermi level in the semiconductor is split into quasi–Fermi levels, generating
photovoltage and photocurrent.

Simply put, a photoelectrochemical cell is a device that acts simultaneously as
a photoelectric cell generating electricity from sunlight and an electrochemical cell
driving an electrochemical redox reaction. A minimal example of this is a semi-
conductor working electrode and a metal counter electrode immersed in electrolyte
solution and connected by a wire, shown in fig. 4. The semiconductor working
electrode is responsible for the photoelectric part of the cell that creates the photo-
voltage responsible for driving the cell current. Absorbed incident light generates free
electron–hole pairs that are then separated by the electric field that is present at the
semiconductor–electrolyte interface (SEI). In a cell made of n–type semiconductor
the holes are the minority carriers and they also flow towards the electrolyte interface
where they reduce oxygen from water. The electrons flow to the back surface of
the semiconductor and then via the wire to the counter electrode. Assuming that
the carriers have sufficient electrochemical potential to exceed the water stability
region shown in fig. 5, the excess electrons and holes then react with the electrolyte
according to the reactions shown in eqs. (2.13) to (2.16):[5][25]

4 OH− + 4 h+ −−→ 2 H2O + O2 E0
ox = 0.401 V, (2.13)

4 H2O + 4 e− −−→ 2 H2 + 4 OH− E0
red = −0.829 V, (2.14)

where h+ is an electron hole in the valence band of the semiconductor. With acidic
electrolyte the reactions are:

4h+ + 2 H2O −−→ O2 + 4 H+ E0
ox = 1.229 V, (2.15)

4e− + 4 H+ −−→ 2 H2 E0
red = 0 V. (2.16)
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Figure 5: Pourbaix diagram of water showing the stable region of water. The shaded area marks
the region where water is stable. At lower potentials hydrogen gas is formed and at higher potentials
oxygen. At low pH values the active ion in the solution if H+ and respectively at high pH the
reactions involve OH–

With an n-type cell the oxidation reaction happens at the semiconductor electrode
(anode) and the reduction at the counter electrode (cathode). A p–type semiconductor
acts as the cathode driving the hydrogen evolution instead. The total reaction is in
both cases

2 H2O −−→ O2 + 2 H2. (2.17)

The standard reaction potential values E0 are all given as reduction potentials,
but eqs. (2.13) and (2.15) are in this case oxidation reactions. The total cell potential
is then given by

E0
cell = E0

red − E0
ox. (2.18)

The oxidation reactions are usually written with electrons e− on the right hand side
instead of holes h+ on the left hand side. In this thesis the hole notation is used
as the hole flow dynamics ties the reactions more intuitively to the semiconductor
physics and to the simulation results.

Even though adjusting the pH value has no effect on the total reaction potential,
increasing the concentration of the ions taking part in the reaction results in faster
kinetics and reduces the effect of the electrolyte on the measurements. Splitting
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Table 2: Effect of the doping type of the semiconductor electrode

N type P type
photoanode photocathode
holes react electrons react
oxidation reduction
oxygen evolution hydrogen evolution
4 h+ + 2 H2O −−→ O2 + 4 H+ 4e– + 4 H+ −−→ 2 H2

of pure water is also made difficult by the low conductivity, and either strong acid
or strong base is typically used [29]. The mathematical model implemented in this
thesis also assumes high enough ion concentration in the electrolyte so that the
current is limited only by the properties of the semiconductor. Regardless of the pH
of the electrolyte the total potential of the water splitting cell is −1.23 V at standard
conditions, which corresponds to energy of 236.96 kJ/mol. This is the minimum
voltage required to drive the reactions and as such gives a lower bound for the
semiconductor band gap in water splitting cells. In practice a non-zero overpotential
is needed in addition to the 1.23 V to have a driving force for overcoming the kinetic
barriers of the reaction. In other words, the reaction can thermodynamically happen
at 1.23 V but it would be infinitely slow. Additionally, the energy released by hydrogen
combustion is 285.58 kJ/mol, which is higher than the minimum electrical energy
input. The energy difference is provided by the reaction consuming heat from the
environment in addition to electricity. In order to drive the reaction isothermally, a
voltage of 1.481 V is required. [30]. In practice this makes little difference, as part of
the incident radiation is absorbed into heat anyway. A commonly used kinetic model
for metal electrodes is the Butler-Volmer equation, shown in eq. (2.19). The total
current is the sum of anodic and cathodic currents represented by the exponential
terms and approaches zero with zero overpotential.

j = j0
(
e

αazF η
RT − e− αczF η

RT

)
, (2.19)

where η is the overpotential, i.e. potential exceeding the redox potential of the
reaction that is driven at the electrode, α is the charge transfer coefficient j is the
actual current density, j0 is the exchange current density and z is the number of
electrons transferred in one reaction. A similar relation exists for semiconductor
electrodes, called the Gerischer model, that accounts for the energy difference between
the conduction and valence bands [25]

jp = jp
0e

ηp
Vth

−1 (2.20)

jn = jn
0 e

−ηn
Vth

−1
, (2.21)

where jp
0 and jn

0 are the exchange current densities for holes and electrons, and jp

and jn the actual hole and electron currents. This model was used as the boundary
condition at the SEI for the numerical model implementation.
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2.5 Fermi level of the electrolyte
The Fermi level of the electrolyte, also called redox potential, is somewhat ambiguous
term, as there are no free electrons in the solution. The electrons in the ions do
however have electrochemical potential, and the Fermi level of the electrolyte can
then be defined as the average potential of these electrons. In a thermal equilibrium
the Fermi levels of any electrodes in the electrolyte will align with the Fermi level
of the electrolyte, assuming that the transient charge transfer before the system
achieves the equilibrium state does not significantly affect the Fermi level of the
electrolyte. As the volume of the electrolyte is typically orders of magnitude larger
than the space–charge region formed in the semiconductor, this assumption can
be considered valid. The exact value of the redox potential depends on the pH of
the solution according to the Nernst equation, meaning it has the same 59 mV/pH
slope as the hydrogen and oxygen evolution reactions. The location of the redox
potential between the water stability limits then depends on the relative activity of
the H2 / H2O and H2O / O2 redox couples [25]. The reaction activities depend not
only on the concentration of the respective ions (pH), but also on the concentration of
dissolved O2 and H2, with high O2 concentration bringing the redox potential closer to
the oxygen evolution potential.[30]. As all electrolytes used in the measurements for
this thesis were purged of dissolved oxygen with nitrogen, the electrolyte Fermi level
is assumed to lie close to the hydrogen evolution potential, which is approximately
0 V vs. the RHE at any pH.

2.6 Helmholtz layer
The name ’Helmholtz layer’ is commonly used to refer to any double layer model
that forms in a liquid in contact with a solid surface. The dynamics of the layer
formation depend heavily on the properties of both the solid surface and the liquid.
The simplest model for the Helmholtz layer is that the ions in the electrolyte will
form a charged layer as a reaction to the electric field created by the space–charge
region in the semiconductor electrode. In the case of this thesis the surface material
for the samples is TiO2, which is in itself an ionic oxide material and will have oxygen
vacancies at the surface that adsorb hydroxyl groups (OH– ) from the electrolyte.
These groups will then reach an equilibrium with the electrolyte that depends only
on the pH of the electrolyte and not on the charge in the semiconductor side of the
interface. This kind of surface is better modeled with a Stern model, that includes
separate adsorption and diffuse surface layers as shown in fig. 6. At the electrolyte
side of the SEI, the ions in the solution will adsorb on the electrode surface forming
a charged layer. This is the inner layer of the Stern model, and its composition is
determined mostly by the available ion concentrations, which are related to the pH
value of the electrolyte. Just outside the adsorption layer layer is the Gouy–Chapman
region, which is the diffuse charge layer created by the electric field of the space–
charge region of the semiconductor.[31]
The potential drop across the inner layer can be modeled as a simple equilibrium of
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Figure 6: The formation of the electrical double layer at the SEI. Depending on the operating
point of the electrode, a depletion region forms inside the semiconductor. This attracts opposite
charge from the electrolyte, forming a charged layer on the electrolyte side. Beyond the Helmholtz
layer a diffuse layer is formed, where the ion concentration reaches the bulk value. In this thesis
the potential drop across the diffuse layer is included in VH .

adsorbed ions on the surface,
[HS

+]
[H3O+]

= ae
VH
Vth , (2.22)

where [HS
+] is the concentration of adsorbed hydrogen ions, [H3O+] the concentration

of hydronium ions in the electrolyte and a some constant. Setting VH = 0 at
pH = pHIEP leads to

VH = 2.3Vth(pH − pHIEP), (2.23)

where pHIEP is the isoelectric point, defined as the point of zero net surface charge.
For TiO2 pHIEP is around 5.8–7.5. [31]. However, the validity of eq. (2.23) is not
guaranteed for all materials, and also determining the value of pHIEP experimentally
would be difficult. Another approach is to find the flat band potential, and use it to
calculate the potential drop across the Helmholtz layer.
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2.7 The Flat band potential
The flat band potential is the measured potential Vref required to eliminate the band
bending caused by the alignment of the Fermi levels at equlibrium. At flat band
conditions, there is no electrostatic potential drop across the semiconductor, and the
only unknown quantity is the Helmholtz voltage.

VH = Eabs
SHE − 1

q
(χ + ζ) + V SHE

fb , (2.24)

where Eabs
SHE = −4.44 V is the absolute potential of the SHE and V SHE

fb the measured
flat band potential against the SHE. The flat band potential can be found by
measuring the capacitance of the space–charge layer at the semiconductor side
of the SEI as function of the measured voltage Vref . Using the depletion region
approximation for the semiconductor, the relation between the measured voltage
and capacitance is given by the Mott–Schotky equation

1
C2 = 2

εqNDA2 (Vref − Vfb − Vth), (2.25)

where C is the capacitance in the depletion region, ε the permittivity of the semicon-
ductor, ND the doping density, A the surface area and Vfb the flat band potential
against RHE [25]. The inverse square of the measured capacitance should have a
linear dependence on the measured voltage, and the flat band potential can be found
by extrapolating the linear relation to C−2 = 0. When the capacitance–voltage
relation is known, the doping density can be solved from eq. (2.25), resulting in

ND = 2
εq ∆C−2

∆Vref

, (2.26)

where ∆C−2

∆Vref
is the slope of the linear relationship. For highly doped semiconductors

the distance of the Fermi level from the conduction band at the back contact ζ is
relatively small. The flat band potential relative to the hydrogen and oxygen reaction
potentials can then be related to the band edge positions at the SEI, and therefore
the ability of the semiconductor to drive the reactions. Additionally, the slope of the
line gives information about the doping density of the semiconductor via

ND = 2
(qε∆C−2

∆V

). (2.27)

Equations (2.25) and (2.27) can be also used for p–type semiconductors simply by
substituting ND = −NA. In other words, a negative slope of the measured inverse
square of the capacitance against the voltage implies p–type doping.
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2.8 Semiconductor physics
When a semiconductor material is hit by a photon, there is a chance that the photon
gets absorbed. If the energy of the photon is sufficiently high, it can lift an electron
from the valence band of the semiconductor to the conduction band and form what
is called an electron-hole pair. The minimum energy needed for this to happen is the
band gap energy of the semiconductor, which is a property of the specific material
used. Any photoelectric system designed for energy production will eventually have
to work efficiently using natural sunlight as the illumination source. The AM1.5G
spectral irradiance, which is the solar irradiance when filtered with 1.5 times the
average thickness of the Earth’s atmosphere, is shown in fig. 7 [32]. However, as one
photon will only ever be able to generate one electron–hole pair, a more relevant
quantity is the photon flux of the sun. The spectral photon flux can be calculated
from the spectral irradiance by

Φ(λ) = Ee(λ)
hc
λ

, (2.28)

where Φ is the photon flux in photons per area per wavelength and Ee the spectral
irradiance. This can be converted to a function of the photon energy by

Φ(Eph) = Φ(λ)
∂Eph

∂λ

,
∂Eph

∂λ
= hc

λ2 , (2.29)

where Eph is the photon energy. This photon flux per unit area per photon energy is
shown in fig. 8. The number of absorbed photons equals the number of generated
carriers, which will directly affect the amount of generated photocurrent.
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Figure 7: Spectral irradiance of AM1.5G solar radiation spectrum. Data from [32].

After the creation of the hole-electron pair, both charge carriers are affected by
both diffusion due to the uneven concentration of the carriers and drift due to the
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Figure 9: Two possible charge separation processes. a) at the SEI, b) at pn–junction.

electric field generated by the charge distribution. A space–charge region formed in a
pn–junction or at the SEI will cause the opposite charges to separate. Both carriers
are generated at the same rate, but the generation of the minority carriers has a much
larger relative impact to the local carrier density and consequently the quasi–Fermi
level. In the case of a buried junction as shown in fig. 9 b), the pn–junction will
dominate the charge separation and the effective current direction. The carriers
flowing to the electrolyte are now the majority carriers, and the larger available
concentration of reactive carriers should increase the reaction rate[33, 34]. The excess
carriers distributed throughout the semiconductor will tend to reach equilibrium via
recombination. The recombination of the photogenerated carriers is lost in energy
and with the help of the proper design of a photoelectric cell one should try to avoid
this recombination loss. The mathematical representation of the charge separation
and current flow in the cell is more thoroughly discussed in section 3.
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Good light absorption properties are clearly required from the semiconductor in
order to provide energy to drive the reaction. Semiconductor light absorption has
been extensively studied for electricity production with solar cells, and the maximum
efficiency for converting solar energy to electricity is with a band gap of 1.34 eV for a
single pn junction, as shown in fig. 10 [35]. This is known as the Shockley-Queisser
limit, named after the scientists who discovered it in 1961 [36]. Low band gaps will
be able to absorb most of the solar photon flux, but most of the power from the
photons is lost. Any single photon will only generate a single electron–hole pair, that
is limited to the energy of the band gap. On the other hand, too high band gap will
prevent large part of the spectrum from being absorbed at all.

0 0.5 1 1.5 2 2.5 3

Band gap [eV]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
a

x
im

u
m

 e
ff
ic

ie
n

c
y

1500 1000 750 600 500 430 375 333 300 

Wavelength [nm]

Figure 10: Schockley–Queisser maximum single junction solar cell efficiency.

2.9 The photoelectrochemical cell
Combining the theories of using semiconductors for photogeneration of light and
chemical reactions for water splitting in aqueous electrolytes allows the use of sunlight
to generate hydrogen and oxygen from water. The simplest way to achieve this goal
is to connect traditional solar cells in series for large enough voltage and drive the
electrolysis through metal electrodes. However, the solar–to–hydrogen efficiency of
the complete system can be improved by using the semiconductor as an electrode
directly in a PEC cell[4].

Many different materials have been considered for the semiconductor part of the
photoelectrochemical cell. The requirements of a good material choice are quite
strict, and there seems to be no consensus for an optimal material. The properties
required from a good material for water splitting applications are [37]

• good light absorption
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• band edges beyond the potential required to drive the reaction

• chemical stability

• efficient charge transport

• low overpotentials for the redox reaction(s)

• low cost
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Figure 11: Energy band locations and band gaps of some semiconductors considered for photo-
electrochemical cells at pH 0. The band edge positions in this figure are calculated directly from
the electron affinity, and do not take into account the potential drop in the Helmholtz layer.

Figure 11 shows the band edge locations of some semiconductor materials that
have been proposed for use in photoelectrochemical cells. These band edge positions
do not account for any potential drop in the Helmholtz layer, and may vary drastically
between applications. They are, however, a useful starting point when trying to
figure out if a specific material could be used for water splitting.

The optimal absorption efficiency at Eg = 1.34 eV is only barely above the 1.23 V
that is required for the water splitting reactions, assuming that the band edges can
be positioned perfectly to straddle the hydrogen and oxygen evolution reactions.
Even with perfect band edge positioning, driving the reactions at any reasonable
rate requires application of overpotential, typically at least 0.5 V [12, 26]. When this
kinetic loss is combined with the thermodynamic losses of the system, and taking into
account that the actually useful potential difference is not between the conduction
and valence bands but between the quasi–Fermi levels [29], a realistic minimum band
gap for a water splitting cell is approximately 2 eV for a single junction cell [26, 38,
39]. The need for such a high energy means that silicon, which is an obvious choice
for solar cells with its band gap of 1.14 eV close to the optimal efficiency, cannot be
directly used for water splitting cells. In addition to its low bang gap, silicon also
forms insulating silicon dioxide layer in presence of oxygen, which makes it unsuitable
for oxygen evolution.
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The required resistance to corrosion makes metal oxide semiconductors such as
TiO2 or Cu2O good candidates for photoanodes as they are already oxidized and will
not react with the oxygen. TiO2 has been shown to have good catalytic properties
leading to low overpotentials, especially with metallic co-catalyst or dye extending
its absorption range. [40]. The high band gap allows good band edge positions, but
results in poor photoconversion efficiency. Figure 8 shows how only a small fraction
of the solar photon flux lies at energies that TiO2 cell can utilize. In addition, the
low carrier mobility limits the useful layer thickness due to increasing recombination
losses. As expected from a metal oxide, TiO2 has been shown to be chemically stable
in aqueous electrolytes [41]. Other materials proposed include for example Fe2O3
(hematite) [42], CuO2 with TiO2 overlayers [43] and even silicon despite its low band
gap [17]. Silicon has a clear advantage as being an economical choice, but the low
band gap severely limits the available voltage range. Therefore, silicon cannot be
used to drive full water splitting reaction without external potential source.
For the work in this thesis, GaAs was chosen as the electrode material. It has
good electron mobility which should limit recombination losses even with thicker
electrodes [26], but suffers from poor corrosion resistance[41]. The corrosion issue can
be mitigated by adding a protective layer on top of the electrode, that prevents direct
contact between the GaAs and the electrolyte. The band gap is only slightly higher
than the minimum 1.23 V required, which is why a single–junction GaAs–based
electrode is not expected to be efficient driving the full water splitting reaction. The
major benefit from using GaAs is that it allows for easy engineering of the doping
levels and additional layers via metalorganic vapour phase epitaxy (MOVPE), with
the eventual goal being a multilayer device capable of stand–alone water splitting,
shown in fig. 12 d. Even if the single layer samples fabricated for this thesis do not
produce sufficient photovoltage to drive the full water splitting reaction, they can be
characterized by supplying additional bias voltage from the potentiostat used for the
measurements.

2.10 Efficiency of a PEC cell
Generally, the efficiency of any system is defined as the ratio of the total output
power to the input power. In the case of a PEC cell, the commonly used efficiency
figure is the solar-to-hydrogen efficiency, which is the ratio of input solar power to
the effective power produced as hydrogen fuel. This definition becomes problematic
if the cell requires applied electrical power in addition to the solar radiation, as as
is the case with the GaAs cells studied in this thesis. In order to characterize the
effectiveness of the cell, the power supplied by the potentiostat at the operating point
has to be taken into account. The solar-to-hydrogen efficiency is calculated as

ηST H = J · 1.23 [V]ηelec

Ps

, (2.30)

where ηST H is the solar-to-hydrogen efficiency, J the operating current density, and Ps

the input solar power density. ηelec is the Faradaic efficiency, which is the ratio of the
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Figure 12: Different configurations of photoelectrochemical cells with pn junctions. a) is the
simple, single doped semiconductor type. b) shows n–type photoanode and p–type photocathode
connected to increase the overall usable voltage. c) is a buried pn–junction cell, which does not
significantly increase the photovoltage, but might result in better charge transport efficiency at
the SEI [33, 34]. d) is the eventual goal of the research this thesis is based on, a structure with a
photovoltaic cell connected in series via a tunnel junction in order to generate sufficient photovoltage
to drive the water splitting reaction without external bias.

total cell current to the current associated with the electrolysis reaction. For water
splitting cells the faradaic efficiency can be assumed to be 1 [44]. If the cell cannot
produce the voltage required to drive the reaction, the constant 1.23 V in eq. (2.30)
has to be replaced with the voltage that is saved by using the photoelectrode instead
of a non–photosensitive electrode. This dark reference (not to be confused with the
reference electrode used for the three–electrode measurement setup) could be for
example a metallic electrode, or the semiconductor electrode itself in dark conditions.
In this work, an ideal electrode, which is able to drive the relevant reaction with
zero overpotential, is used as the reference. This allows the calculation of the power
saved–efficiency [44]. For n–type cells

ηST Hsaved = J · (Vref − ERHE
red )ηelec

Ps

, (2.31)

where ERHE
red is the reaction potential of the relevant evolution reaction. For p–type

cells the sign of the difference between the reaction potential and Vref has to be
changed.
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3 Simulation
This section will explain the mathematical methods used to implement the numerical
simulation of a PEC cell, and present the key results obtainable from the simulations.
The model combines the drift–diffusion equations within the semiconductor and the
Gerischer model from eqs. (2.20) and (2.21) for the SEI currents. The simulation is
also capable of modelling a buried pn–junction within the semiconductor in addition
to the electrolyte interface.
The drift-diffusion model used for the system consists of six equations [45]. The
definitions for current directions used in this thesis differ from those in [45], so the
equations have been adjusted accordingly. In the formulation used in this thesis, the
system is solved for electron and hole fluxes instead of electric current contributions,
so that both electron and hole currents are positive when the respective charge
carriers are flowing in positive x-direction. These currents then have opposite effects
on the actual electric current of the photoelectric cell.

As mentioned already in section 2, the currents in the system are composed of
drift and diffusion currents. These are defined separately for both charge carrier
types in the following equations

jp = qnµpE − qDp
∂p

∂x
, (3.1a)

jn = −qpµnE − qDn
∂n

∂x
, (3.1b)

where q is the elementary charge, µp and µn are the carrier mobilities, and Dp and
Dn are the diffusion constants. The drift currents caused by the electric field are to
opposing directions for holes and electrons. The diffusion is towards the negative
gradient for both, so that the carriers tend to flow from higher concentration region
to lower.
The carrier fluxes are related to the net generation rate via the continuity equation.
The general continuity equation for any transport system is

∂ρ

∂t
+ ∇ · j = σ, (3.2)

where ρ is the density of the quantity to be transported, j is the flux of the quantity
and σ is the net generation rate. In the case of a one dimensional steady state model
the time derivatives of the carrier densities are zero, so the continuity equations for
the charge carriers can be written as

1
q

∂jp

∂x
− G(x) + R(x) = 0, (3.3a)

1
q

∂jn

∂x
− G(x) + R(x) = 0, (3.3b)

where G(x) is the carrier photogeneration rate and R(x) the recombination rate.
The recombination model used is the simple, direct band to band recombination of
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excess carriers

R(x) = 1
NA,Dτ

(
n(x)p(x) − n2

i

)
, (3.4)

where NA,D is the doping density of the semiconductor, τ the lifetime of the minority
carriers and ni the intrinsic carrier density, defined as the product np in thermal
equilibrium.
The carrier generation rate G(x) in eqs. (3.3a) and (3.3b) is calculated by integrating
the illumination spectrum from zero wavelength to the band gap of the working
electrode material. For this work, the AM1.5G solar spectrum shown in fig. 7 and
the spectrum of the lamp used for the experimental study were used. The incident
photon flux is calculated from the power spectrum by

Φ(λ) = P (λ)
Ep(λ) , (3.5)

where Φ(λ) is the incident photon flux per area per wavelength, P (λ) the incident
power per area per wavelength (spectral irradiance) and Ep(λ) the energy of a photon
at the corresponding wavelength. The total absorbed photon flux is then the result
of the integral

Φa =
∫ λG

0
Φ(λ)dλ, (3.6)

where λG the wavelength corresponding to the band gap of the semiconductor and
Φa the absorbed photon flux per area. The number of photogenerated electron–hole
pairs is then calculated using the Beer–Lambert law

G(x) = αΦae−αx, (3.7)

where α is the absorption coefficient of the semiconductor and x the distance from
the illuminated surface into the semiconductor.
The electric field within the system is related to the carrier densities via Poisson’s
equation

∂E
∂x

= q

ε
(p − n + ND − NA), (3.8)

where ε = ε0εr is the permittivity of the material. Finally, an equation relating the
electric field to the electrostatic potential within the semiconductor is needed

E = −∂φ

∂x
. (3.9)

The eqs. (3.1), (3.3), (3.8) and (3.9) form the complete drift–diffusion model to be
solved, and will be referred to as the system equations. They have six dependent
variables that are unknown functions of the spatial coordinate x . x is defined to be
zero at the SEI (semiconductor-electrolyte interface). The system variables to be
solved are:
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• p(x): hole density

• n(x): electron density

• jp(x): hole current

• jn(x): electron current

• E(x): electric field

• φ(x): electric potential

In addition to the system equations, boundary conditions are required. The boundary
conditions in eqs. (3.10) are identical for all cell types, with effective current direction
being determined by the overpotentials caused by the quasi–Fermi level positions at
the SEI.

jp
0e

ηp
Vth + jp(0) = 0, (3.10a)

jn
0 e

−ηn
Vth + jn(0) = 0, (3.10b)

φ(0) + VSC − φ0 = 0, (3.10c)
qrs (p(d) − p0i) − jp(d) = 0, (3.10d)
qrs (n(d) − n0i) − jn(d) = 0, (3.10e)

φ(d) − φ0 = 0, (3.10f)

where j0 are the exchange current densities for the carriers, VSC is the electrostatic
voltage drop across the semiconductor, rs the back surface recombination rate, ni the
intrinsic carrier concentration of the semiconductor and φ0 the electrostatic potential
at the back contact. d is the sum of the layer thicknesses, which is the x-coordinate
of the back surface.
Equations (3.10a) to (3.10c) define the boundary conditions at the SEI. A commonly
used boundary condition for the charge transport across the SEI is based on a transfer
rate constant, where the current is related to the amount of excess carriers at the
interface [8, 18, 46].

jn + qktr(n(0) − ndark(0)) = 0, (3.11)

Where ktr is the transfer rate constant, n(0) is the electron density at the interface,
and ndark(0) the electron density at the interface at the dark equlibrium state. This
model, however fails to account for the difference between the equilibrium potential
Eredox, and the reaction potentials E0

red from eqs. (2.13) to (2.16). In this work,
instead of using the transfer rate constant, the current is related directly to the
overpotential η shown in fig. 2 via the Gerischer model eqs. (2.20) and (2.21). As
the relation between the carrier density and the quasi–Fermi level is exponential as
seen in eqs (2.12), the boundary condition is effectively the same, with the addition
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of accounting for the potential barrier required to reach the reaction potential. The
free parameter ktr is replaced with the exchange current density j0.

The electrostatic potential at the SEI is the sum of the back contact potential
and VSC . The conditions at the back contact are explained by eqs. (3.10d) to (3.10f).
The surface recombination rate rs depends on the characteristics of the back junction.
At an ohmic contact there should be no excess carriers, which can be modeled with
a sufficiently high surface recombination rate.

In the case of a buried pn–junction, all six system variables are simply required to
be continuous across the junction. The only exception is the electric field E(x), which
will have a discontinuity in heterojunctions of materials with different permittivities.

3.1 Analytic model for the dark equilibrium
Before the drift–diffusion equations can be solved, the dark carrier concentrations,
the carrier generation rate and VSC must be known. In order to relate the simulation
to the experimental work, the simulation controls the potential between the sample
back surface Fermi level and the RHE in the electrolyte. The photocurrent can then
be solved as a function of the voltage vs. RHE Vref and illumination. The relation
between Vref and VSC can be seen from fig. 2. The dark carrier concentrations are
solved analytically using depletion region approximation at both the SEI and the
pn–junction.

n(x) = n0e
q(φ(x)−φ(d))/Vth (3.12)

p(x) = p0e
q(−φ(x)+φ(d)/Vth , (3.13)

φ(x) = φ(d) − sign(VSC)qNd

2ε
(w − x)2, (3.14)

where w is the width of the depletion region

w =
√

2ε

qNd|VSC |
. (3.15)

The potential drop across the semiconductor is calculated from the energy diagram
in fig. 2. For example for n-type semiconductor electrodes

VSC = −VH − 1
q

(χ − ζ) + Vref . (3.16)

For the buried junctions the potential across the pn–junction is assumed to be equal
to the built in potential

Vbi = Vth ln NdNa

n2
i

, (3.17)

and the rest of VSC is across the space–charge layer at the SEI. This allows the
forming of an initial solution in the dark equilibrium used as a starting point for the
numerical solver.
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3.2 Numerical solver
The system is solved using a built in MATLAB general purpose boundary value
problem (BVP) solver bvp5c, that implements the four stage Lobatto IIIa formula[47].
The formula is an implicit Runge-Kutta method, and as such it is able to solve
moderately stiff problems such as the drift-diffusion systems in this thesis. The solver
works by evaluating the derivatives of the system variables at collocation points, so
the system equations eqs. (3.1), (3.3), (3.8) and (3.9) have to be rewritten with the
derivatives solved

∂n

∂x
= − 1

qDn

jn + µn

Dn

nE , (3.18a)

∂p

∂x
= − 1

qDp

jp − µp

Dp

pE , (3.18b)

∂jn

∂x
= q(−G + R), (3.18c)

∂jp

∂x
= q(G − R), (3.18d)

∂E

∂x
= q

ε
(p − n + ND − NA), (3.18e)

∂φ

∂x
= E . (3.18f)

The dependent variables of the system have a wide dynamic range of absolute values
when represented in SI units ranging from carrier densities at up to O 1028 m−3 to
current densities around O 10−10 A/m2. In order to make the system numerically
stable and solvable, the problem is presented in a nondimensional form, where the
dimensional quantities are scaled with intrinsic properties of the system. For example
all carrier densities are divided by the doping density of the material to give a value
with dimensionless units of m3/m3. In other words, the system is scaled to use ’one
doping density’ as a unit of density, which brings the numerical value of the density
represented in the dimensionless form much closer to unity than the original value in
SI units.

The process begins by figuring out the dimensions of all variables of the system. In
this case there are a total of seven variables with five different dimensions, which are
presented in table 3 with their conventional units. Before the nondimensionalization
each variable is scaled to SI base units. It is easiest to begin with the independent
variable x. A new variable x′ is defined as

x′ = x

Cx

, (3.19a)

∂

∂x
x′ = 1

Cx

, (3.19b)

where x is the original variable in meters, Cx is the chosen characteristic length in
meters and x′ is the new dimensionless variable. All the other variables are functions
of x, so in addition to scaling, the new dimensionless variables have to be written as
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Table 3: Variables of the drift-diffusion model

Symbol Variable unit Dimension
x distance from SEI nm length
p hole concentration cm−3 length−3

n electron concentration cm−3 length−3

jp hole current A/cm2 current × length−2

jn electron current A/cm2 current × length−2

E electric field magnitude V/m voltage × length−1

φ electric potential vs. back surface V voltage

functions of x′ instead. In addition to the variables, the system also contains their
differentials with respect to x. Equations (3.20) show the scaling of the hole density,
but the process is identical for all the variables.

p′(x′) = p(x)
Cp

⇔ p(x) = Cpp′(x′), (3.20a)

∂

∂x
p(x) = ∂

∂x
Cpp′(x′). (3.20b)

Taking the constant out of the right hand side differentiation and applying the chain
rule to eq. (3.20b) gives eq. (3.21a).The other derivatives are solved similarly.

∂

∂x
p(x) = Cp

∂

∂x′ p
′(x′) ∂

∂x
x′ = Cp

Cx

∂

∂x′ p
′(x′), (3.21a)

∂

∂x
n(x) = Cp

Cx

∂

∂x′ n
′(x′), (3.21b)

∂

∂x
jp(x) = Cj

Cx

∂

∂x′ j
′
p(x′), (3.21c)

∂

∂x
jn(x) = Cj

Cx

∂

∂x′ j
′
n(x′), (3.21d)

∂

∂x
E(x) = CE

Cx

∂

∂x′ E
′(x′), (3.21e)

∂

∂x
φ(x) = Cφ

Cx

∂

∂x′ φ
′(x′). (3.21f)
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With the help of eqs. (3.19a) and (3.21), eqs. (3.18) can now be rewritten as

∂p′

∂x′ = − 1
qDp

CjCx

Cp

j′
p + µnCxCE

Dp

p′E ′, (3.22a)

∂n′

∂x′ = − 1
qDn

CjCx

Cp

j′
n − µnCxCE

Dn

n′E ′, (3.22b)

∂j′
p

∂x′ = q
Cx

Cj

(G − R), (3.22c)

∂j′
n

∂x′ = q
Cx

Cj

(G − R), (3.22d)

∂E ′

∂x′ = Cx

CE

q

ε
(Cp(p′ − n′) + ND − NA), (3.22e)

∂φ′

∂x′ = −CxCE

Cφ

E ′, (3.22f)

and the boundary conditions from eqs. (3.10) as

jp
0e

ηp
Vth − Cjjp = 0, (3.23a)

jn
0 e

−ηn
Vth − Cjjn = 0, (3.23b)

φ(0) + VSC − φ0 = 0, (3.23c)
qrs(Cpp(d) − p0i) − Cjjp = 0, (3.23d)
qrs(Cpn(d) − n0i) − Cjjn = 0, (3.23e)

Cφφ(d) − φ0 = 0. (3.23f)

Equations (3.22) and (3.23) define the system that is supplied to the solver bvp5c.
While the equations are not strictly speaking dimensionless, they have all the di-
mensions in the coefficients instead of variables. By assigning values to the scaling
constants Cx, Cp, Cj, CE and Cφ in their corresponding units the dimensions in the
coefficients also cancel out. The numerical values of the scaling constants can be freely
chosen to simplify the system. Ideally, the values of these parameters would not affect
the solution as it is always scaled back to SI units using the same scaling constants
in the other direction. However, due to limitations of floating point arithmetic, they
do affect the accuracy, speed and stability of the numerical solver. For the case
presented in this thesis trial and error with educated guesses was enough to find
satisfactory values.
The basic idea behind solving a BVP numerically is to try and find a satisfactory
approximation S(x) of the true, unknown solution y(x) by simultaneously minimizing
the residual of the differential equations

rd(x) = S ′(x) − f(x, S(x)) (3.24)

where f(x, y) is the set of system equations, in this case eqs. (3.22), and the residual
of the boundary conditions

rb(x) = g(S(0), S(d)), (3.25)
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where g(y(0), y(d)) is the set of boundary conditions, in this case eqs. (3.23) [47].
The solver bvp5c does not use the residual as such directly, but instead the solver
seeks a solution to

Φ(X, Y ) = 0, (3.26)

where X is a mesh containing values of the independent variable x (the collocation
points), Y contains the attempted solutions S(x) at the mesh points defined in X,
and Φ is a function for evaluating the error of the attempted solution, based on the
definition of the residual. Φ can then be minimized by computing the global Jacobian

dΦ
dY

, (3.27)

and using simple zero–finding schemes such as Newton’s method. For detailed
information about the numerical solver the reader is referred to the papers the
authors of bvp5c have written about their solver and its predecessor bvp4c [47, 48].
A direct consequence of this type of error minimization is that the found solution
will be a local minimum of the error function Φ. Therefore a reasonably good initial
guess is required so that the solver converges to the correct solution. The nature of
BVPs is that it is not apparent from the problem if there is a solution, or if there
are infinitely many solutions. The quality of the initial guess is therefore extremely
important for the performance of the solver. The initial solution is first calculated
analytically for the dark equilibrium, which is then used a a starting point for the
numerical solver. The solution is then extended by increasing the illumination in
small steps, always using the solution from the previous step as the initial guess for
the next step. This is a commonly used scheme when solving differential equations
numerically called the continuation method. After a solution with full illumination
is found, the same principle of continuation can be applied for varying any of the
other parameters of the simulation such as the measured voltage Vref .

3.3 Data analysis
After the solution is found, calculating the interesting quantities such as photovoltage
and photocurrent is straightforward. The quasi–Fermi levels can be calculated
with eq. (2.12), and the effective electrical current is the difference between the hole
and electron currents. As seen in fig. 13, the simulator can reproduce results for
the hematite cell studied in [18]. This is a reasonably strong confirmation that the
model has been implemented correctly, and that the more generalized, overpotential
based boundary conditions do agree with the simple transfer rate constant model
used by [18].

The accuracy of the numerical method is ultimately limited by the double–
precision floating point arithmetic used by the solver. The carrier densities can
be almost constant over the bulk semiconductor and have rapid changes of up to
ten orders of magnitude close to the interfaces. This results in a relatively stiff
system. The Lobatto IIIa formula implemented in bvp5c is a collocation formula,
that automatically adapts the collocation point mesh to fit the nature of the problem.
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Figure 13: On the left numerical results by Cendula et al. in [18]. The curves labeled Gärtner [49]
and Reichmann [50] are analytic models and Tilley [51] and Dotan [52] experimental results. On the
right the result from the simulator implementaed in this thesis, with material parameters from [18],
33 nm of FeO2.

The global error given by eq. (3.26) can be reduced not only by varying Y , but
also by varying X. Increasing the mesh density around critical regions will mean
that each element of Y has to approximate the solution for a shorter distance, thus
reducing the error. The adaptive mesh is shown in fig. 14.
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Figure 14: Example solution for 200 nm n–type GaAs on 1000 nm p–type. Higher mesh density is
required at the SEI and at the pn–junction, where the carrier densities change rapidly. The peak at
200 nm is caused by a duplicate mesh point at the intermediate boundary at the pn–junction.

List of parameter values used for the simulations is given in table 4. the number of
parameters needed for the simulation is large, and analyzing the complete parameter
space is not a reasonable effort. Depending on the system, the simulator can solve
1–5 datapoints per second running on Intel R⃝ CoreTM i5–3570K processor @ 4.1 GHz.
Mapping the whole parameter space for 19 parameters, with ten datapoints each,
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the runtime would be on the order of 1019 seconds, or 1011 years. It is therefore
important to figure out which parameters should be varied, and what values the
constant parameters are set to. For this work, the material parameters were held
constant at literature values, and the focus was on simply verifying the current–voltage
response against measured data.

Table 4: Parameters required for the simulation

symbol parameter value
Material parameters

χ electron affinity 4.07 V
εr relative permittivity 12.9 Fm−1

Eg band gap 1.42 eV
α absorption coefficient 5 × 104 cm−1

Vfb flat band voltage measured
d layer thickness varied

Charge carrier parameters
ND, NA doping density varied
NC density of states for electrons 4.7 × 1017 cm−3

NV density of states for holes 9.0 × 1018 cm−3

µn electron mobility 8000 cm2V−1s−1

µp hole mobility 320 cm2V−1s−1

Dn electron diffusion constant 200 cm2s−1

Dp hole diffusion constant 10 cm2s−1

τn electron lifetime 5 ns
τp hole lifetime 3 × 104 ns
j0 exchange current density varied

External parameters
pH electrolyte pH varied
Vref voltage against RHE varied
P illumination power 500 Wm−2



31

4 Research material and methods
This section will describe the methodology used for the experimental work. First,
the methods and materials used for sample fabrication are presented. For the work
in this thesis, three different sample types were studied. The operating principles of
the equipment used for the electrochemical measurements are explained, and finally
the measurements taken are listed.

4.1 Fabrication methods

Ga

As

Zn

organic
N2

DEZn TBAs TMGa

Figure 15: Working principle of MOVPE. When growing an n–type layer, the added zinc
impurities replace gallium atoms in the crystal and act as electron donors. The precursor used for
growing n–type GaAs are diethylzinc (C2H5)2 Zn, tertiarybutylarsine C4H11As and trimethylgallium
(CH3)3 Ga.

The samples were fabricated using doped GaAs wafers as substrate. Before any
fabrication processes the samples were cleaned by rinsing first with acetone, then
with isopropanol (IPA) and finally de–ionized water (DIW). Any residual water
was dried with a nitrogen gun. The buried pn–junctions were made by growing a
layer of n–doped GaAs on top of p–type wafer using MOVPE. The name of the
method describes the growth mechanism: the precursors contain the metal atoms to
be deposited in molecules with organic groups. These precursors flow over the sample
as vapour in the inert carrier gas, and react on the surface depositing the metal
atoms as a continuation of the original surface crystal structure. The organic parts
of the precursors are then carried away in the exhaust. The operation principle for
n–doped layer growth is shown in fig. 15: the carrier gas (N2) is bubbled through the
liquid precursors. The flow rates of each precursor are controlled separately, and the
resulting vapour mixture is then carried through the reactor chamber. MOVPE is an
efficient method for fabricating doped layers of III–V semiconductors as the dopants
are directly included during the growth process removing the need for additional
doping process step.

The protective TiO2 layer was added on using atomic layer deposition (ALD).
The operating principle of ALD is similar to MOVPE in that the growth material is
carried to the sample by vapour phase precursors, but there are several key differences.
In MOVPE, all precursors flow through the reactor chamber simultaneously, driving
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continuous growth of the deposited layer. In ALD, the precursors are used sequentially,
purging the reactor in between exposures to the different precursors. The precursors
are chosen so that they only react with the opposite material at the surface, for
example in case of TiO2 deposition the titanium will only attach to the oxygen atoms
at the surface, without growing a continuous titanium layer. By alternating the
exposure to the precursors the film thickness can optimally be controlled within the
thickness of one atomic layer. This makes ALD a lucrative choice for depositing
extremely thin films on the order of 10 nm, as long exposure times can be used to
ensure uniform film coverage without increasing the resulting film thickness.

All sample types were then coated with 10 nm of TiO2 using ALD. Finally,
back side ohmic contacts were fabricated by evaporating a 200 nm layer of indium
directly on the samples. The indium coating was done by electron beam evaporation,
where an electron beam emitted from a filament is directed at the metal target
with magnetic field. The target material then evaporates and covers the sample
surface. Evaporation was chosen as the deposition method out of personal preference,
sputtering would just as valid option.

n-GaAs substrate

TiO2  ALD layer 10nm

~350µm p-GaAs substrate

TiO2 ALD layer 10nm

~350µm

p-GaAs substrate

n-GaAs epitaxial layer

TiO2 ALD layer 10nm

200nm

200nm

~350µm

Evaporated indium

Evaporated indium 200nmEvaporated indium 200nm

a) b)

c) d)

p-GaInP

p-GaAs 

n-GaInP

n-GaAs

tunnel junction

protective layer

back contact

Figure 16: Cross sections of the fabricated samples. a) n–type sample, b) p–type sample, c) p–type
sample with n–type epitaxial layer. d) is an example of the multi–junction structure that could
drive the water splitting reaction without external voltage bias.

4.2 Measurement methods
All electrochemical measurements were made using 0.1M H2SO4 as electrolyte, which
corresponds to pH ≈ 2. Before measurements the samples were cleaned using the
same cleaning process as before the fabrication: rinsing first with acetone, then with
IPA and finally with DIW. After the cleaning the samples were dried with N2. The
samples were then placed in the cell one at a time for measurements. The electrolyte
solution was purged with nitrogen for 30 minutes before measurements to ensure
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minimal amount of error from unknown amounts of dissolved hydrogen and oxygen.
Figure 18 illustrates the used three–electrode setup and the cell. The sample is
secured so that it is exposed to the electrolyte from the side onto which the active
layers were fabricated. A rubber o–ring ensures a watertight seal. The reference
and counter electrodes are then inserted into the electrolyte through the top of the
cell. The main potentiostat controlling the measurement was Zennium pro from
ZAHNER–elektrik. A secondary potentiostat, PP211 from the same manufacturer,
was used to control the illumination. The illumination control is done by utilizing a
feedback photosensor placed next to the cell, within the light beam from the lamp.
The feedback sensor was initially calibrated for the setup by using a calibration sensor
with known response in place of the photoelectrochemical cell. The calibration allows
the illumination to be controlled by directly specifying the desired power density at
the sample, with the potentiostat automatically adjusting the driving current of the
lamp based on the feedback signal. The intensity spectrum of the lamp is shown
in fig. 17. Comparing the spectrum to the AMG1.5 spectrum from figs. 7 and 8
shows that the lamp can not be considered as a good solar simulator, since most of
its radiation lies at wavelengths shorter than the band gap of GaAs. As a result the
photocurrents measured at a set power density can be expected to be higher than if
a solar simulator, or real sunlight, were used at the same power density.

Figure 17: Intensity spectrum of the lamp used for the photoelectrochemical measurements, as
provided by the manufacturer ZAHNER elektrik.

For potentiostatic measurements the current through the counter electrode is
controlled to keep the voltage between the reference electrode and the working
electrode, i.e. the sample, at a set value. The reference electrode used for the
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Figure 18: schematic of the measurement setup used with the potentiostat.

measurements was Gaskatel HydroFlex R⃝ RHE. The RHE will follow the hydrogen
evolution potential shown in fig. 5. Since no current is allowed through the reference
electrode, in steady state the current at the counter electrode is equal to the current at
the working electrode. The measurements done for all samples included the following

• open circuit voltage

• chopped light voltammetry

• impedance spectroscopy.

Measuring the open circuit voltage is straightforward: the current at the counter
electrode is set to zero and the voltage of the sample against the reference electrode
is then measured. The measured voltage is the difference between the potential of
the reference electrode and the equilibrium Fermi level at the rear surface of the
sample. For voltammetry measurements the workstation adjusts the current at the
counter electrode until the voltage of the working electrode vs. the reference electrode
reaches the desired value. This is repeated for a range of voltages so that a current–
voltage curve can be obtained. The voltammetry measurements were done under
chopped illumination of 500 Wm−2, with six second cycle time. The voltage ramp
rate used was 10 mVs−1, and the voltage range was varied between -1.5 and 1.5 V
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Figure 19: The principle of the three–electrode measurement: voltage is measured between the
working electrode and the reference electrode, and current between the working electrode and the
counter electrode.

depending on the sample. The chopped illumination allows the measurement of both
the illuminated and dark currents at the same time, and the effective photocurrent
can then be calculated as the difference from these two.
The electrochemical impedance spectroscopy (EIS) measures the impedance of the
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Figure 20: Illustration of the EIS measurement. The continuous line represents a typical nonlinear
I-V response of a PEC cell. The dashed line is the linear extrapolation of the local differential
resistance at the measurement point. The AC excitation causes the current–voltage curve to form
an ellipse as shown in the inset. The arrow points the direction of the signal for capacitive loads.

cell as a function of input signal frequency. As shown in fig. 20, the operating point
(VDC ,IDC) is set as in voltammetry measurements. A small amplitude AC signal is
then added on top of the DC bias and the differential resistance

Rdiff = |VAC |
|IAC |

, (4.1)

is measured. If the AC amplitude is small enough, the I–V curve can be locally ap-
proximated as linear (R is locally constant). From this approximation the impedance
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can be calculated by

Z(f) ≈ VAC(f)
IAC(f) eiθ, (4.2)

where f is the frequency, VAC is the AC voltage amplitude, IAC is the AC current
amplitude, and θ is the phase angle between the voltage and the current. [53]
The EIS measurements were done with a frequency range from 1 Hz to 1 MHz. The
frequency step used was the default setting of the instrument, with 10 data points per
decade at frequencies above 66 Hz and 5 steps per decade below it. The frequency
sweep was repeated for voltages from -0.7 to 1 V for the n–type sample and -1 to
0.7 V for the p–type and buried np–junction samples. The voltage ranges were chosen
based on the voltammetry measurements with the assumption that the flat band
voltage should be close to the observed photocurrent onset voltage.
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5 Results
The simulated results were computed using the parameters from table 4. For the
simulations, the Helmholtz voltages were calculated from the measured flat band
voltages with eq. (2.24). The cell thickness used was 800 nm for the one–layer cases.
This is orders of magnitude lower than the actual thickness of the samples, which
was roughly 350 µm. Even with the ability to adapt the mesh according to the
solution, simulating a system with thousand times the size of the depletion region is
not feasible with the numerical method used in this thesis. As both the chemical
reactions and the light absorption happen at or close to the SEI, the added thickness
excluded from the simulation is assumed to contribute a purely ohmic load to the
system.
Another disparity between the simulation and the measurements is the doping
densities of the semiconductors. The wafers used for fabricating the samples were
very highly doped, at 1 × 1018 cm−3 for the n–type and 1 × 1019 cm−3 for the p–type.
These densities are higher than the densities of states for electrons and holes in GaAs,
and result in a degenerate semiconductor. The simulations were made with lower
doping densities at 1 × 1017 cm−3 to ensure the validity of the Maxwell–Boltzmann
statistics used in the derivation of the transport model.
Finally, the exchange current density was adjusted in order to get the best possible
fit to the measured current–voltage response. The exchange current density mainly
affects the required overpotential for photocurrent onset, and is limited by the
requirement of the quasi–Fermi levels to stay 3kBT inside the band gap.

5.1 Flat band voltages
Equivalent RC–circuits were fitted to the cell frequency responses acquired from the
EIS measurements. The equivalent circuit models were fitted by minimizing the sum
of squares of the residuals

r =
n∑

i=1
|Z ′(κ, fi) − Z(fi))|2, (5.1)

where r is the total residual to be minimized, n the number of frequency points, Z ′

is the impedance transfer function of the equivalent circuit, κ a vector containing
the fitting parameters, i.e. the values of the components of the circuit, f is the
frequency vector, and Z is the measured complex impedance. The circuits used for
the fitting are shown in fig. 21. The series resistor R3 corresponds to the total series
resistance of the system. This resistance comes mostly from the electrolyte between
the working and counter electrodes. The parallel RC–circuit formed by R1 and C1
models the resistance and the capacitance at the SEI, and R2 and C2 a secondary
capacitive response detected in some measurements. This secondary capacitance
could be from the Helmholtz layer, of from poor back side contact. Even if the source
of the capacitance is uncertain, it has to be included in the model to ensure a good fit
and to be able to extract the capacitance formed in the semiconductor space–charge
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layer. However, the full five–element model could not be used in cases where the
semiconductor capacitance dominates the response as the curve fitting converges to
a solution with two roughly identical capacitance values instead of one dominating
the other. This prevents the extraction of the semiconductor capacitance from the
solution, so the simpler, three–element model was used instead when required.

Table 5: Flat band voltages

illumination p–type n–overlayer n–type
0 Wm−2 704 mV −14 mV 237 mV
500 Wm−2 271 mV 335 mV −420 mV

R1

C1

R3

R1

C1

R2

C2

R3

Figure 21: Equivalent circuit topologies tried used for extracting the capacitance. The simpler
circuit on the left was used when the measured impedances were dominated by one capacitance.

5.2 P–type sample
The p–type sample is expected to act as a photocathode, driving the hydrogen
evolution reaction at the SEI. In the 0.1M H2SO4 electrolyte the standard potential
for the hydrogen evolution reaction is −0.12 V. The measured current should be
negative when the electron quasi–Fermi level is more negative than the reaction
potential. The Mott–Schottky plots in fig. 22 show a clear, linear relationship
between the inverse square of the capacitance and the voltage. It is apparent, that
the capacitance–voltage characteristics and the flat band voltage depend on the
illumination. The slope is negative for both cases, as expected from a p–type sample.
The slope of the linear fit to the measurements made in the dark corresponds to a
doping density of 5.2 × 1019 cm−3, calculated from eq. (2.26). The value is quite high
compared to the wafer specifications, but not entirely out of scope considering the
inaccuracies in both the measurement and wafer manufacturing. In both the dark
and illuminated cases a flat region is visible in the middle of the linear slope. This
response confirms the presence of surface energy states within the band gap, which
are not taken into account in the numerical model.
The measured current–voltage curve is shown in fig. 23. The photocurrent is clearly
visible, but the overpotential required for the current to start is massive. The
measured potential is the Fermi level at the back of the semiconductor, and the
photovoltage generated in the semiconductor causes the electron quasi–Fermi level
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to be even more negative. As the measured voltage is below the reaction potential
when photocurrent is generated, the cell is less efficient than an ideal, externally
powered electrolysis system. The measured power density in fig. 23 is the power
saved compared to ideal electrode, which results in negative power density at voltages
below the reaction potential.
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Figure 22: Mott-Schottky plots of p-type GaAs with TiO2 coating using the three–element circuit.
The flat band voltages were determined by extrapolating the linear fits.
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Figure 23: The measured current and power density (chopped curves) measured from the p–type
sample compared to the simulated result (smooth curves).

The simulated response is drastically different. The simulator cannot account
for the excessive overpotential shown in the experimental results. The simulated
overpotential depends on the exchange current density for the conduction band
reaction, which is a free parameter. Decreasing the exchange current density moves
the simulated photocurrent onset towards more negative potentials, but at the same
time it increases the carrier density required at the SEI to drive the current. Too low
values of the exchange current density will quickly result in degenerate conditions
at the SEI, which cannot be accurately explained by the simulation. The simulated
saturation photocurrent magnitude is also observed to be much higher than the
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measured current density.
The simulated carrier densities at the maximum power point are shown in fig. 24 a).
The majority carrier density differs only slightly from the analytic solution for the
dark equilibrium. However, the illumination causes large increase in the minority
carrier density and forms an inversion layer at the SEI. Figure 24 b) shows the
energy bands at the same operating point. The rear contact potential is at the
quasi-Fermi level of holes at the back surface. The finite value used for the back
surface recombination in eqs. (3.23d) and (3.23e) means that the simulated back
contact is not perfectly ohmic, and the quasi–Fermi levels are not necessarily equal to
each other. The effective photovoltage produced by the cell is the difference between
the majority carrier quasi–Fermi level at the back surface, and the minority carrier
quasi–Fermi level at the SEI. The figure also shows that the electron quasi–Fermi
level at the SEI is very close to the conduction band. The simulated overpotential
could be increased by reducing the exchange current density, but this would force
the quasi–Fermi level inside the conduction band.
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Figure 24: a) Carrier concentrations of the p–type electrode at the simulated maximum power
point Vref = −0.20 V. b) The energy bands at the same operating point.

5.3 Buried np–junction
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Figure 25: Mott-Schottky plot of p–type GaAs with n–type epitaxial layer and TiO2 coating using
the five–element circuit. The flat band voltage was determined by extrapolating the linear fit.

According to the theory explained in section 2, a photoelectrode with n–type
epitaxial layer on top of p–type substrate should have a similar response as the simple
p–type photoelectrode: the reactive carriers are electrons, and the net photocurrent
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should be negative. Figure 26 shows that both the measured and the simulated
systems have the expected photocurrent response. The current–voltage curves are
quite similar to those of the p–type case, but both the simulated and the measured
systems show a slight increase in the photocurrent magnitude. The simulated
overpotential cannot be matched with the measured one for the same reason as the
p–type case: it would require highly degenerate carrier density at the SEI. Figure 27
a) shows a slight accumulation layer at the SEI at the simulated maximum power
point. In the energy band diagram shown in fig. 27 b) the band bending caused by
the buried pn–junction is clearly visible. The Mott-Schottky plots in fig. 25 show
n–type response at the SEI, confirming the theory for the effect of the epitaxial
layer. The measured photocurrent increases towards negative potentials, where the
Mott–Schottky plot is flat.
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Figure 26: The measured current and power density (chopped curves) measured from the sample
with the buried pn–junction compared to the simulated result (smooth curves).
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Figure 27: a) Carrier concentrations of the 200 nm n–type layer on p–type electrode at the
simulated maximum power point Vref = 0.03 V. b) The energy bands at the same operating point.

5.4 N–type sample
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Figure 28: Mott-Schottky plot of n-type GaAs with TiO2 coating using the five–element circuit.
The flat band voltage was determined by extrapolating the linear fit.

According to the theory, the n–type sample should be capable of driving the
oxygen evolution reaction, which requires the hole quasi–Fermi level to exceed
the standard potential of the reaction. Therefore, the expected result is positive
photocurrent increasing towards more positive measured voltage.

The measured photocurrent from the n–type sample shown in fig. 29 is significantly
better than the one from the p–type. The curve in fig. 29 looks promising, and in
this case the measured sample seems to be more efficient than the simulated device.
However, comparing the power saved efficiency, calculated with eq. (2.31), of 15%
from a simple, n–type cell to the state-of-the-art multi–layer device by Young et
al. [7] that achieved efficiency of 16% suggests caution. Comparing the measured
photocurrent onset at −0.1 V against the oxygen evolution reaction potential for
the measured system at roughly 1.11 V, implies a photovoltage of at least 1.2 V, not
including the overpotential required for the reaction. The photovoltage predicted by
the simulation, including the overpotential, is 0.9 V. It is possible that the reaction
happening at the n–type electrode is not the oxygen evolution reaction, but corrosion
of the GaAs. This implies failure of the protective TiO2 layer, and should be verifiable
by for example scanning electron microscopy of the used sample.
The simulated results for the n–type electrode are quite similar to those of the
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Figure 29: The measured current and power density (chopped curves) measured from the n–type
sample compared to the simulated result (smooth curves).

p–type, with the difference of the current direction. These are expected results, as
the simulations of the different electrode types differ only by the kinetic parameters,
which mainly affect the required overpotential, and the different carrier transport
parameters for electrons and holes. The carrier densities in fig. 30 a) show a similar
inversion layer to fig. 24 a), only in the opposite direction. The energy band diagram
in fig. 30 b) show the hole quasi–Fermi level at the SEI just barely exceeding the
oxygen evolution potential of 1.11 V against the SHE. This means that the simulated
overpotential is at its minimum, and the simulated photocurrent onset cannot be
moved further to the negative direction by adjusting the kinetic parameters.
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Figure 30: a) Carrier concentrations of the n–type electrode at the simulated maximum power
point Vref = 0.58 V. b) The energy bands at the same operating point.
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5.5 Discussion
As can be seen from the presented results, the numerical model can predict the
qualitative response of the system. The directions of the simulated photocurrents for
all samples match the experimental results, but the simulation cannot account for
the extreme overpotential that is required to drive the hydrogen evolution reaction.
The simulated overpotential can be increased by decreasing the exchange current
density, but this has the consequence of increased carrier density at the surface.
Assuming that the measured flat band voltage is accurate, the measured current–
voltage response corresponds to highly degenerate carrier densities, which cannot be
accurately modeled with Maxwell–Boltzmann statistics. The simulation also takes
the flat band voltage into account only as a constant value. However, the results
indicate that the flat band voltage is not constant, but depends on the operating
point of the cell. This would effectively lead to band edge unpinning, where the band
edge positions, and the Helmholtz voltage, vary with the flat band voltage. While
the flat region in the Mott-Schottky plots was only visible for the p–type sample,
this was also the only sample for which a good impedance fit was achieved using the
three–element equivalent circuit. The poor fit of the simple model to the sample with
the buried junction was expected, as the pn–junction will have its own capacitance.
For the n–type sample it is possible that the corrosion affected the measurement,
as the runtime for the full EIS scan was over 30 minutes. This variation of the flat
band potential could be explained by the presence of surface trap states, that allow
carriers with energies inside the band gap at the SEI [54].
All the other parameters also have inaccuracies associated with them. For example, the
carrier mobilities and diffusion coefficients are modeled as constant values. However,
the electric fields at the SEI and the pn–junction can be of the order of 10 kV/cm,
which is enough to cause drift velocity saturation and reduced mobility. This electric
field dependence of the diffusion parameters should be taken into account for more
accurate results.
It is also unclear, whether the effect of the protective TiO2 layer can be ignored.
Even if the layer is thin enough not to restrict charge carrier exchange between the
GaAs and the electrolyte, it could well contribute to the amount and position of
the surface states. The immediate surface layer of the electrode is also what mostly
defines the catalytic properties of the electrode, and therefore the kinetics of the
redox reactions. In this thesis, the kinetics are modeled with two parameters, namely
the exchange current density and the flat band voltage. As all the measured samples
shared the same TiO2 overlayer, any effect caused by it is included in the kinetic
parameters. For future development of the photoelectrochemical cell, the ability to
quantify the effects of the TiO2 layer would be helpful.
The recombination model used in the bulk semiconductor only accounts for direct band
to band radiative recombination. Even though this should be the main recombination
type in a direct band gap material such as GaAs, including other recombination
models would improve the accuracy especially if the simulation is used for materials
with indirect band gaps, such as silicon.
Changing the pH of the electrolyte will shift both the hydrogen and oxygen evolution
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potentials according to fig. 5. The theory for the Helmholtz layer results in identical
shift of the band edge positions given in eq. (2.23), so the pH value should have no
direct effect on the energetics of the system. It will however affect the conductivity of
the solution and whether the majority of the reactions at the electrodes will be with
H+ or OH– ions. The ion concentration could have effect on the chemical stability
of the electrode, so in general the effect of the electrolyte pH should be studied.
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6 Conclusion
The implementation of the numerical model of the semiconductor electrode in a
photoelectrochemical cell was successful. The simulator can solve the carrier densities,
currents and the electric field in the semiconductor, and consequently model the
current–voltage response. The model is general enough so that it works for both n–
and p–type cells without changing boundary conditions, and can correctly predict
the qualitative effect of a buried pn–junction. Comparison to experimental results
shows, that the physical model behind the simulation is inadequate for quantitatively
predicting the response of a real semiconductor electrode. The disparity between
the simulated and measured response is most likely explained by the exclusion of
surface phenomena from the model, such as surface trap states within the band gap
and unpinning of the band edges.
The experimental results achieved suggest that p–type GaAs is not very efficient in
driving the hydrogen evolution reaction. The most critical part to improve would
be reducing the required overpotential. This could be done for example by adding
co–catalyst nanoparticles on the electrode surface [15]. Adding the epitaxial n–type
layer somewhat improves the result, but it is still less efficient than a good, metallic
electrode that is not photoactive. However, the result is in line with the theory of thin,
oppositely doped layer increasing the efficiency of a semiconductor photoelectrode.
For the experimental work, the sample size in this work is too small to draw any
strong conclusions. More measurements are needed to control for the effects of
corrosion of the electrode, pH of the electrolyte and TiO2 overlayer. Especially in the
case of the n–type cell, assuming that the measured current for the n–type sample is
due to corrosion and not water oxidation, a better solution for the protective layer is
required.
In order to build a model that could reliably predict the response of a semiconductor
photoelectrode, a better understanding of the surface interaction at the SEI is needed.
This includes a model that could predict the band edge positions as function of both
illumination power and voltage bias. In addition, the assumption of non–degenerate
carrier densities is severely limiting. However, computing the Fermi–Dirac integrals
numerically for each iteration during the solver run would be computationally too
expensive.
Even though the simulator cannot accurately predict the response of a PEC cell, it
shows potential for future development. Most of its shortcomings arise from simply
excluding physical phenomena that have significant effects on the system. For the
future development of the model, taking into account the effects of the surface
states to the charge transfer between a semiconductor and electrolyte should be
considered [46, 55]. The results could also be improved by better modeling of the
carrier transport in degenerate semiconductors [56], or by including charge diffusion
in the electrolyte [57]. Regardless of its inaccuracy, the simulation can already offer
insight into the internal dynamics of a PEC cell, and it will be a useful tool in the
continued research of the cells.
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