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Abstract

Introduction: Renal cell carcinoma is the most common type of kidney cancer. A better understanding of 
the critical pathways and interactions associated with alterations in renal function and renal tumour properties 
is required. Our final goal is to combine the knowledge provided by a regulatory network with experimental 
observations provided by the dataset. Methods: In this study, a systems biology approach was used, integrating 
immunohistochemistry protein expression profiles and protein interaction information with the STRING and 
MeV bioinformatics tools. A group consisting of 80 patients with renal cell carcinoma was studied. The expres-
sion of selected markers was assessed using tissue microarray technology on immunohistochemically stained 
slides. The immunohistochemical data of the molecular factors studied were analysed using a parametric sta-
tistical test, Pearson’s correlation coefficient test. Results: Bioinformatics analysis of tumour samples resulted 
in 2 protein networks. The first network consists of proteins involved in the angiogenesis pathway and the 
apoptosis suppressor, BCL2, and includes both positive and negative correlations. The second network shows 
a negative interaction between the p53 tumour suppressor protein and the glucose transporter type 4. Conclu-
sion: The comprehensive pathway network will help us to realise the cooperative behaviours among pathways. 
Regulation of metabolic pathways is an important role of p53. The pathway involving the tumour suppressor 
gene p53 could regulate tumour angiogenesis. Further investigation of the proteins that interact with this path-
way in this type of tumour may provide new strategies for cancer therapies to specifically inhibit the molecules 
that play crucial roles in tumour progression. (Int J Biomed Sci 2011; 7 (4): 273-282)

Keywords: glucose transporters; hypoxia; p53 pathway; protein interactions; renal cell carcinoma; relevant networks

Corresponding author: V. Medina Villaamil, INIBIC, Oncology Group, 
CHU A Coruña, C/ Xubias de Abaixo s/n, 15006, A Coruña, Spain. Tel: 
+34 981 178000 ext. 292872; Fax: +34 981 178273; E-mail: vanessa. 
medina.villaamil@sergas.es.					   
Received March 16, 2011; Accepted June 7, 2011			 
Copyright: © 2011 Villaamil et al. This is an open-access article distribut-
ed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited.

INTRODUCTION

Cancer is an extraordinarily complex disease of un-
controlled cellular growth, proliferation, and metastasis 
beyond the original tumour. Cancer is also an integrated 
network of signalling pathways and chemical interactions 
between the cancer and its human host. Renal cell carci-
noma (RCC) is the most common type of kidney cancer, 
and it generally follows an unpredictable disease course. 
In 50% of human cancers, p53 is mutated, and it has be-

ORIGINAL ARTICLE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/154757634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Relevant networks in Renal Cell Carcinoma

December  2011    Vol. 7  No. 4    Int  J  Biomed  Sci    www.ijbs.org 274

come one of the most studied molecules in science (1). 
While at least 58 studies have investigated the role of p53 
in RCC, relatively little is known with certainty about the 
status of p53 in RCC, in striking contrast to some other 
cancers. The primary cellular function of p53 is to detect 
acute or chronic alterations in normal cellular physiology 
and, more specifically, in DNA and chromosomal integrity 
(2, 3). However, p53 plays a number of other key roles in 
development (4) and tissue differentiation (5-8) and is a 
negative regulator of stem cell potential, demonstrating a 
clear relationship with cancer development (9). 

Alterations in p53 expression have been observed in 
approximately 6–65% of human renal cancers (10), but 
controversy regarding their prognostic significance re-
mains. Immunohistochemical (IHC) overexpression of 
p53 appears to be accompanied by metastatic progression 
of the disease and poor survival of patients with RCC (11). 
In conventional RCC, p53 expression has been correlat-
ed with the TNM Classification of Malignant Tumours 
(TNM) stage and metastasis, which suggests that p53 
might have an important role in the progression of RCC 
(11). In addition, p53 overexpression is correlated with 
RCC tumour subtype and grade and is frequently found in 
the papillary, chromophobe, and clear cell RCC subtypes, 
as well as in high tumour grades (12, 13).

The complex interaction between genetic and environ-
mental factors that affect multiple cellular pathways plays 
a role in the pathogenesis of RCC (14). The completion of 
the Human Genome Project in 2003 allows the system-
atic characterisation of comprehensive disease-associated 
profiles of the whole human genome. This promotes the 
identification of both disease-specific and stage-specific 
molecular signatures and biomarkers for diagnosis and 
prognosis prediction and targets for drug therapy (15).

Regulatory networks in eukaryotic cells consist of even 
more complex interactions, because numerous post-trans-
lational interactions are involved in all critical biological 
functions. By examining post-translational interactions, 
we can potentially understand all direct or indirect inter-
actions between proteins that occur after their formation, 
including post-translational changes, protein-complex in-
teractions, competition between pathways, sequestration, 
release, and complex inactivation (16). 

Functional partnerships between proteins are at the 
core of complex cellular phenotypes, and the networks 
formed by interacting proteins have provided researchers 
with crucial scaffolds for modelling, data reduction and 
annotation. A number of algorithms have been devised 
that allow de novo prediction of functional links between 

proteins, albeit usually with considerable rates of false 
positives and without providing details about the specific-
ity and type of predicted interaction (17). Many molecular 
network analyses go beyond protein-by-protein analysis to 
shed light on a system level understanding of molecular re-
lationships between individual proteins and networks (18, 
19). The dynamic structure of the human protein interac-
tion network has been examined to aid in predicting cancer 
prognosis, suggesting that changes in network modularity 
can be used to identify tumour phenotypes (20). 

Because p53 integrates multiple signalling pathways 
and activates numerous genes that are essential for growth 
arrest and apoptosis, it is considered an important inhibi-
tor of cell proliferation and an inducer of apoptosis. Many 
cancers do not have p53 mutations but show reduced p53 
expression (21). Links between apoptosis gene family 
members and key renal growth factors such as insulin-like 
growth factor 1, transforming growth factor β, and epider-
mal growth factor have been described (22).

Motivated by the dynamic structure of the human 
protein interaction network and the idea that interacting 
proteins tend to result in similar disease phenotypes when 
deregulated (23), we designed the present study to under-
stand the protein-level molecular relationship between p53 
and other molecules belonging to essential pathways for 
growth, invasiveness and tumour aggressiveness, such as 
angiogenic, apoptotic and metabolic pathways. Utilising 
IHC analysis, we carried out in vivo verification of our in 
silico results in our cohort of RCC samples. 

Understanding the complexity of cancer depends on 
the elucidation of the underlying networks in the cellular, 
intercellular and temporal dimensions.

MATERIALS AND METHODS

Case material
Clinical and pathological data were obtained from pa-

tients diagnosed with RCC and who had surgery at the 
Department of Urology of Modelo Hospital, A Coruña, 
Spain, between 1996 and 2006. The study group consisted 
of 80 patients whose original pathological specimens were 
available for evaluation. The average age of the study pop-
ulation was 62 years, with a sex distribution of 66% male 
and 34% female. 

The Institutional Review Board of Modelo Hospital 
(A Coruña, Spain) approved the retrospective review of 
the medical records and the use of archived tumour speci-
mens. Informed consent was obtained from each partici-
pant.
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TMA construction
TMAs were constructed as previously described (24). 

Briefly, areas containing viable tumour were marked on 
the paraffin wax tissue blocks. Triplicate 2 mm tissue cores 
were taken from different areas of the same tissue block 
for each case (ie three cores per case), and these cores were 
used to construct the TMAs using an arraying machine 
from Durviz Instruments (Valencia, Spain). A tissue core 
of normal cerebellum was also included on the arrays as a 
negative control. Array blocks were sectioned to produce 
4 μm sections.

Immunohistochemistry
Fifteen molecular markers were chosen for investiga-

tion in this study. The choice was made taking into ac-
count proteins that we already know actively participate in 
providing tumour drug resistance, proteins that are thera-
peutic targets and, finally, proteins that have a large in-
volvement in the growth and development of RCC. These 
included markers for apoptosis (BAX, BCL2, MDM2, p53 
and Survivin), metabolism (Glucose transporters 1-5) and 
molecules involved in the angiogenesis pathway (CA9, 
HIF1α, VEGFA, VEGFR2 and VHL). The working dilu-
tion for the antibody panel was determined using positive 
controls, as indicated in the literature. Additional sections, 
running in parallel to but with the omission of the primary 
antibody, served as negative controls.

The tissue sections were deparaffinised by incubation 
in xylene and rehydrated in a graded series of ethanol and 
water solutions. The antigen was retrieved with 0.01 M 
citrate buffer (pH6.0) by heating the samples in a micro-
wave vacuum histoprocessor (2100 Retriever™, PickCell 
Laboratories) at a controlled final temperature of 121ºC 
for 15 minutes. Primary antibodies were diluted in Dako 
antibody diluent (Dakocytomation) with background-re-
ducing components. Primary antibodies were incubated at 
room temperature for 30 minutes and detected using the 
Dako EnVision system and diaminobenzidine according 
to the manufacturer’s instructions.

Scoring
All slides were scored by the same pathologist (LV). 

The immunoreactivity score (IRS) was evaluated simi-
larly to other groups by multiplying the percentage of 
positive cells (PP %) and the staining intensity (SI). First, 
the PP % was scored as 0 for <1%, 1 for 1-24%, 2 for 25-
49%, 3 for 50-74%, and 4 for ≥ 75%. Second, the SI was 
scored as 1 for weak, 2 for medium, and 3 for intense 
staining.

Each slide was carefully examined at the area of the 
tumour that contained the greatest fraction of positively 
stained cancer cells.
Data analysis and statistics

Data are expressed as the mean ± standard deviation 
(SD). Scored results for the triplicate cores were consoli-
dated into one score, with higher positive staining results 
always superseding weaker positive, negative, or uninter-
pretable staining results. To analyse the potential correla-
tion between p53 protein expression and the pathological 
features of the study subjects, the statistical significance 
of the differences discovered was evaluated at the 95% 
confidence level by non-parametric statistics, the Mann-
Whitney U and Kruskal-Wallis tests. P values <0.05 were 
considered significant. The standard Pearson correlation 
values for IHC data of the molecular factors studied were 
calculated. All of the statistical analyses were performed 
using commercially available software (SPSS 17.0 for 
Windows).

Bioinformatics
Protein-protein interactions were obtained from the 

STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins) database (17), which contains known and 
predicted physical and functional protein-protein interac-
tions. STRING was used in protein mode. The number of 
associations stored in STRING was shown separately for 
each data source and confidence range (low: scores <0.4, 
medium: scores from 0.4 to 0.7, and high: scores >0.7). To 
verify these predicted interactions in our samples and find 
relevant networks, we used the Multi Experiment Viewer 
4.6.2 (MeV), an open-source genomic analysis software 
package created by the MeV Development Team and part 
of the TM4 Software Suite (25).

RESULTS

Case series description
The patient cohort included 80 patients treated with a 

partial or radical nephrectomy for RCC, including chro-
mophobe, papillary and clear cell variants, between 1996 
and 2006. The patients consisted of 53 men and 27 women, 
ranging in age from 34 to 87 years old, with a mean age of 
64. There were 57 clear cell type RCC (cRCC), 15 chromo-
phobe RCC (chRCC), 6 papillary RCC (pRCC), and 2 sam-
ples studied as histological type not determined. Regard-
ing location, 50.6% had a right-sided tumour location, and 
49.4% had left-sided tumour location. Renal pelvic invasion 
was present in 11% of tumours and absent in 82.5%. Only 
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2.5% of the cases studied showed invasion of the lymphatic 
vessels and the remaining 97.5% showed no lymphatic in-
vasion. We found renal capsule rupture in 15% of tumours 
(n=80). Only one case showed invasion of the veins, and 
98.8% were negative for this pathological parameter. Re-
nal hilar invasion occurred in 7.3% of cases. Tumour size 
ranged from 2-140 cm in length. The highest level of p53 
expression was observed in the papillary RCC histologi-
cal type, with 2 as the highest score, indicating that a small 
number of cells were stained with this antibody. Regarding 
the degree of tissue differentiation (the Fuhrman Grade), we 
found that p53 expression had a significant correlation with 
cases identified as well differentiated and in which a Grade 
I p53 nuclear reaction was detected (p=0.031). The nuclear 
reaction for p53 was visualised almost exclusively in those 
cases with renal pelvis invasion, although this was not a 
statistically significant correlation (p=0.630). We could not 
detect differences in p53 expression among cases with or 
without ruptured capsules (p=0.568). Regarding tumour 
staging, we found that p53 was expressed more frequently 
in tumours diagnosed as T1-2 and in the N1-0 (p=0.078 and 
p=0.499, respectively).

Identification of p53 interacting proteins
We used the STRING database to identify and predict 

interactions of the p53 protein with other proteins in the 
apoptosis, proapoptosis, angiogenesis and metabolic path-
ways. STRING assigns a confidence score to each predict-
ed association (for more information visit the info section 
on the website http://string-db.org). The scores are derived 
from benchmarking the performance of the predictions 
against a common reference set of trusted, true associa-
tions. The results from a STRING search are visualised 
in Figure 1, and scores for predicted interactions are sum-
marised in Table 1.

The database shows interactions that have association 
scores in the very high confidence range because only 
8.5% of the data present had a score between 0.4 and 0.7, 
with the remaining scores above 0.7.

As a preliminary analysis, our group decided to study 
the proteins whose interactions may be viewed in detailed 
in Figure 2. The purpose of this analysis is to understand 
the interactions between these proteins in the samples of 
our patients that were previously predicted with STRING 
to have important interactions.

Biostatistical analysis of molecular associations
Correlation between expression levels of chosen pro-

teins are listed in Table 2. 

Official Symbol Name
ATM ataxia telanglectasia mutated
BAX BCL2-associated X protein
BBC3 BCL2 binding component 3
BCL2 B-cell CLL/lymphoma 2
BIRCS 
(SURVIVIN)

baculoviral IAP repeat-containing 5

CA9 carbonic anhydrase IX
EP300 E1A binding protein p300
FLT1 fms-related tyrosine kinase 1
HIF1A hypoxia inducible factor 1, alpha subunit
KDR 
(VEGFR2)

kinase insert domain receptor

MDM2 Mdm2 p53 binding protein homolog (mouse)
TCEB2 transcription elongation factor B (SIII), 

polypeptide 2
TP53 Tumor protein p53
SLC2A1 solute carrier family 2 (facilitated glucose 

transporter), member 1
SLC2A2 solute carrier family 2 (facilitated glucose 

transporter), member 2
SLC2A3 solute carrier family 2 (facilitated glucose 

transporter), member 3
SLC2A4 solute carrier family 2 (facilitated glucose 

transporter), member 4
SLC2A5 solute carrier family 2 (facilitated glucose 

transporter), member 5
VEGFA vascular endothelial growth factor A
VHL von Hippel-Lindau tumor suppressor

Figure 1. This is the confidence view. Stronger association are 
represented by thicker lines.
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Among the associations, those found between p53 
and Glut1, Glut4 and VEGFA (Pearson correlation coef-
ficient r=0.291, significance level 0.009; r=0.456, signifi-

cance level <0.01; and r=0.241, significance level 0.031, 
respectively) should be emphasised. An analysis using the 
Pearson’s correlation coefficient measured the strength of 
the linear relationship between p53 and proteins involved 
in the metabolic and angiogenic pathways. In the case of 
Glut1 and VEGFA, the r values were close to 0.3, suggest-
ing some association between them. For Glut 4, we found 
a weak positive association, with r close to 0.5. 

Another apoptosis regulator, BCL2, showed a strong 
negative linear correlation (r close to -0.7) with proteins 
involved in the metabolic and angiogenic pathways: Glut4, 
Glut5, HIF1α and VEGF-A. Negative values indicate a re-
lationship between BCL2 and these proteins; as the values 
for BCL2 increase, the values for these proteins decrease. 
BCL2 also showed a strong positive association with KDR 
(VEGFR-2), with an r value close to 0.7.

Relevance Networks
A relevance network (26) is a group of proteins whose 

expression profiles are highly predictive of one another. 
Using a permutation test, we evaluated the similarity of 
features by comprehensively comparing all features with 
each other in a pair-wise manner for the same cases. The 
correlation coefficients between proteins were calculated 
using the MeV module by comparing the expression pat-
tern of each protein to that of every other protein. The 
ability of each protein to predict the expression of an-
other protein was judged by the correlation coefficient. 
All features were connected to all other features with 

Table 1. The combined score between pair of proteins 

Node 1 Node 2 Combined 
score Node 1 Node 2 Combined 

score

GLUT1 VEGFA 0.842 HIF1α EP300 0.999

TCEB2 VHL 0.999 VEGFA VHL 0.978

ATM BAX 0.507 GLUT1 TP53 0.800

KDR FLT1 0.986 CA9 VEGFA 0.799

EP300 VHL 0.597 VEGFA TCEB2 0.573

CA9 HIF1α 0.979 GLUT1 BCL2 0.800

VEGFA TP53 0.955 VEGFA FLT1 0.999

HIF1α TCEB2 0.979 CA9 GLUT1 0.813

HIF1α VHL 0.999 BCL2 MDM2 0.805

BCL2 EP300 0.983 BBC3 TP53 0.999

VEGFA Survivin 0.562 VEGFA HIF1α 0.999

TP53 MDM2 0.999 ATM MDM2 0.990

BCL2 TP53 0.999 BBC3 BAX 0.996

HIF1A BCL2 0.832 CA9 TCEB2 0.419

HIF1A FLT1 0.995 BAX MDM2 0.955

GLUT4 TP53 0.800 GLUT4 GLUT1 0.811

ATM TP53 0.999 BBC3 MDM2 0.957

HIF1A BAX 0.952 BBC3 BCL2 0.999

BBC3 Survivin 0.430 Survivin BAX 0.627

VEGFA EP300 0.962 Survivin MDM2 0.430

CA9 TP53 0.629 BCL2 Survivin 0.727

VEGFA BCL2 0.955 VEGFA MDM2 0.901

CA9 EP300 0.543 BCL2 BAX 0.999

KDR VEGFA 0.999 ATM BBC3 0.688

CA9 VHL 0.807 GLUT5 GLUT2 0.912

BAX EP300 0.949 TP53 VHL 0.690

VEGFA BAX 0.740 GLUT1 HIF1α 0.997

GLUT2 VHL 0.571 EP300 MDM2 0.999

KDR HIF1α 0.802 GLUT1 EP300 0.924

BAX TP53 0.999 Survivin TP53 0.736

HIF1α TP53 0.999 TP53 EP300 0.999

HIF1α MDM2 0.999 BBC3 EP300 0.489

The score is computed under the assumption of independence for 
the various sources in a naïve Bayesian fashion.

Figure 2. STRING interaction for proteins studied to find rel-
evant networks in RCC. The score interaction is summarized 
in Table 1.
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Table 2. Biostatistical analysis of protein correlations using Pearson ś correlation coefficient test

Proteins Glut1 Glut2 Glut3 Glut4 Glut5 Hif1-α VEGF-A VEGFR-2 CA9 VHL BAX MDM2 Survivin Bcl-2 p53

Glut1 r=-0.045 r=0.256 r=0.209 r=0.359 r=0.122 r=0.199 r=0.044 r=0.362 r=-0.003r=0.097 r=0.219 r=-0.088 r=-0.105 r=0.291

p=0.022 p=0.001 p=0.001 p=0.009

Glut2 r=-0.045 r=-0.025 r=-0.154 r=-0.055 r=-0.032 r=0.127 r=0.067 r=0.097 r=0.041 r=0.008 r=0.006 r=-0.1 r=-0.051 r=0.087

Glut3 r=0.256 r=-0.025 r=-0.083 r=0.229 r=0.202 r=0.148 r=-0.187 r=0.270 r=0.053 r=-0.256 r=-0.002 r=-0.178 r=-0.123 r=0.090

p=0.022 p=0.041 p=0.016 p=0.022

Glut4 r=0.209 r=-0.154 r=-0.083 r=0.117 r=0.087 r=0.019 r=0.119 r=-0.042 r=-0.011 r=-0.1 r=0.194 r=0.169 r=-0.646 r=0.456

p<0.01 p<0.01

Glut5 r=0.359 r=-0.055 r=0.229 r=0.117 r=0.520 r=0.229 r=-0.490 r=0.283 r=-0.028r=-0.291 r=0.171 r=0.072 r=-0.646 r=0.103

p=0.001 p=0.041 p<0.01 p=0.041 p<0.01 p=0.011 p=0.009 p<0.01

Hif1-α r=0.122 r=-0.032 r=0.202 r=0.087 r=0.520 r=0.225 r=-0.382 r=0.286 r=-0.131 r=-0.199 r=0.087 r=0.074 r=-0.665 r=0.061

p<0.01 p=0.047 p=0.001 p=0.011 p<0.01

VEGF-A r=0.199 r=0.127 r=0.148 r=0.019 r=0.229 r=0.225 r=-0.009 r=-0.027 r=0.043 r=-0.111 r=-0.017 r=-0.083 r=-0.360 r=0.241

p=0.041 p=0.047 p=0.001 p=0.031

VEGFR-2 r=0.044 r=-0.067 r=-0.187 r=0.119 r=-0.490 r=-0.382 r=-0.009 r=-0.119 r=0.263 r=0.182 r=0.042 r=-0.153 r=0.631 r=0.187

p<0.01 p=0.001 p=0.018 p<0.001

CA9 r=0.362 r=0.097 r=0.270 r=-0.042 r=0.283 r=0.286 r=-0.027 r=-0.119 r=0.176 r=0.171 r=0.243 r=-0.015 r=-0.160 r=0.083

p=0.001 p=0.016 p=0.011 p=0.011 p=0.030

VHL r=-0.003 r=0.041 r=-0.053 r=-0.011 r=-0.028 r=-0.131 r=0.043 r=0.263 r=0.176 r=0.090 r=0.116 r=-0.119 r=0.254 r=-0.010

p=0.018 p=0.023

BAX r=0.007 r=0.008 r=-0.256 r=-0.1 r=-0.291 r=-0.199 r=-0.111 r=0.182 r=0.171 r=0.090 r=-0.064 r=0.024 r=0.256 r=0.2

p=0.022 p=0.009 p=0.022

MDM2 r=0.219 r=0.006 r=-0.002r=0.194 r=0.171 r=0.087 r=-0.017 r=0.042 r=0.243 r=0.116 r=-0.064 r=0.157 r=-0.080 r=0.091

p=0.030

Survivin r=-0.088 r=-0.1 r=-0.178 r=0.169 r=0.072 r=0.074 r=-0.083 r=-0.153 r=-0.015 r=-0.119 r=0.024 r=0.157 r=-0.195 r=0.049

Bcl-2 r=-0.105 r=-0.051 r=-0.123 r=-0.646 r=-0.646 r=-0.665 r=-0.360 r=0.631 r=-0.106 r=0.254 r=0.256 r=-0.080 r=-0.195 r=-0.075

p<0.01 p<0.01 p<0.01 p=0.001 p<0.01 p=0.023 p=0.022

p53 r=0.291 r=0.087 r=0.090 r=0.456 r=0.103 r=0.061 r=0.241 r=0.187 r=0.083 r=-0.010 r=0.2 r=0.091 r=0.049 r=-0.075

p=0.009 p<0.01 p=0.031

an absolute squared correlation coefficient (r2). We hy-
pothesise that features with a high absolute (r2) represent 
hypotheses of a biological relationship. The program dis-
plays only the fraction of relationships at or above the 
chosen threshold, r2 =1. Groups of features that are con-
nected to each other with an absolute r2 higher than the 
threshold will aggregate and form a cluster or a relevance 
network. Figure 3 and Figure 4 show the relevance net-
work and cluster results of the analysis of 15 markers in 
80 cases of RCC. 

Bioinformatics analysis leads us to 2 protein relevant 
networks. The first network consists of proteins involved 
in the angiogenesis pathway and the apoptotic suppressor, 

BCL2, and includes both the positive and negative corre-
lations. The second network shows a negative interaction 
between the p53 tumour suppressor protein and the glu-
cose transporter type 4.

DISCUSSION

Recent advances in systems biology have enabled to 
create a cell-wide map of complex molecular interactions 
with the aid of the literature-based knowledgebase of mo-
lecular pathways (27). Relevant networks display nodes 
with varying degrees of cross-connectivity. An example 
of this can be observed in the networks in Figures 1 and 
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2, where different proteins actively involved in cancer and 
disease progression (cell cycle phase transitions, apopto-
sis, and cell migration) are highly cross-connected. They 
could represent the most trusted associations. Regulatory 
networks in eukaryotic cells hold complex interactions, 
however, because numerous post-translational interactions 
are involved in all critical biological functions. 

To verify the in silico observations of the p53 protein 
network interaction in vivo, we conducted IHC studies in 
our cohort of RCC samples of 15 biomarkers contribut-
ing to renal carcinogenesis that can be divided into three 
categories by functional annotation. For proteins involved 
in the angiogenesis pathway, rapid tumour cell growth cre-
ates intracellular hypoxia, which initiates a series of cell 

Hif1α
Hif1α↑

Hif1α↑

Bcl-2↑

Flk1↑

Glut5↓

Glut5↓

Glut5↓

VEGFR2↓

Glut5↑

Glut4↓
Glut4↑

Glut5↑

Glut5↑

VEGFR2↑

Hif1α↓

Hif1α↓

Bcl-2↓

p53↑
p53↓

Bcl-2↑

Bcl-2↑

Bcl-2↓

Bcl-2↓

Flk1↓

Bcl-2

VEGFR2

GLUT5 p53 GLUT4

Network1

Network2

Figure 3. Relevance networks constructed. Proteins are represented as nodes in a network and edges are drawn between thm if their cor-
relation coefficient falls between the minimum (r2=0.97) and maximum (r2=1) thresholds specified in the MeV module. Features without 
an association at ± 0.97 were removed. Links colored in red represent elements that are positively correlated while links colored in blue 
represent elements that are negatively correlated.

GLUT5

GLUT4
p53

FLK1
HIF1-α
Bcl-2

Immunoreactivity Score
Staining Intensity

Negative = 0
Weak = + (1)

Moderate = ++ (2)
High = +++ (3)

% of positive cells
1-24% = 1

25-49% = 2
50-74% = 3
75-100% = 4

×

Figure 4. Subnets generated by the MeV module containing information about the IHC score expression of the 80 RCC samples regard-
ing the networks predicted.
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signalling events that promote angiogenesis. Therefore, 
proteins that respond to changing intracellular oxygen 
concentration are likely to play critical roles in renal carci-
nogenesis. Among the significant proteins identified based 
on the STRING network (Figure 1), 11 belonged to the an-
giogenesis pathway or interacted with it, and 8 proteins 
(CA9, SLC2A1 (Glut1), SLC2A4 (Glut4), SLC2A5 (Glut5), 
HIF1α, VEGFA, VEGFR2 and VHL) were shown to have 
significant associations with proteins belonging to the 
angiogenesis, apoptosis, or metabolic pathways in the 80 
RCC studied. Proteins involved in the apoptosis pathway 
regulate the balance between cell proliferation and apop-
tosis and are influenced by genes that contribute to the 
development of cancer (oncogenes) and those that encode 
proteins that normally suppress tumour formation (tumour 
suppressor genes). A hallmark of cancer is the acquired re-
sistance to programmed cell death or apoptosis. Therefore, 
proteins annotated with cell survival might be important 
in carcinogenesis. Of the 7 significant proteins identified 
by the STRING database of interacting proteins related to 
the apoptosis pathway, 4 showed significant correlations 
in the tumours studied: BAX, BCL2, MDM2 and p53. For 
proteins involved in the metabolic pathway, alterations in 
metabolism can have fundamental effects on almost ev-
ery aspect of cell behaviour, including the ability to regu-
late proliferation, growth, and survival under conditions 
of variable nutrient and oxygen availability (28). The five 
significant proteins identified based on the STRING net-
work, SLC2A1 (Glut1), SLC2A2 (Glut2), SLC2A3 (Glut3), 
SLC2A4 (Glut4), and SLC2A5 (Glut5), were annotated as 
having a meaningful role in our RCC cohort except for 
Glut2 (24).

Bioinformatics  and  biostatistical  analysis  of the IHC 
scores obtained from 15 markers  studied  in samples  of 
patients affected by renal tumours  seems to suggest the 
association of proteins  related to different  functional as-
pects in the tumour cell.

Because the  study design  emerged from our inter-
est in understanding the p53  protein  in  the renal tu-
mours under study, the associations found for this 
marker should be emphasised. Our results revealed a sig-
nificant interaction between the p53 inducer of apoptosis 
and  Glut1,  Glut4  and  VEGFA. The regulation of meta-
bolic pathways is an important facet of p53 function that 
may provide some novel and effective therapeutic targets 
for cancer. It is almost impossible to address the meta-
bolic changes in cancer without reference to the War-
burg effect. The Warburg effect is the observation that 
most cancer cells predominantly produce energy by a high 

rate of  glycolysis followed by  lactic acid fermentation  in 
the  cytosol, in contrast to the comparatively low rate of 
glycolysis followed by oxidation of pyruvate in  the mito-
chondria of most normal cells (29). The hypoxia inducible 
factor (HIF) directly activates the expression of most gly-
colytic enzymes. This fate may provide a partial expla-
nation for the increased need for glycolysis-derived ATP 
because glycolysis is an oxygen-independent mechanism 
(28). Functions of p53 that can contribute to the dampen-
ing of glycolysis include the downregulation of expres-
sion of several glucose transporters (28). Bioinformatics 
analysis of RCC samples by the MeV tool revealed a rel-
evant network between Glut4 and p53 that has a negative 
correlation. The trend in our samples is little detection of 
wild type p53, which could lead to increased Glut4 pro-
tein expression because transcriptional repression would 
only be very slight. One explanation for this finding is the 
knowledge that the inhibitory effect of p53 on the tran-
scriptional activity of the GLUT4 promoter is significantly 
greater than its effect on the GLUT1 promoter. This may 
be due to the fact that Glut1 is a general “housekeeping” 
glucose transporter, whereas Glut4 is a tissue-specific and 
insulin-sensitive glucose transporter (30). 

Tumours cannot grow beyond 2 to 3 mm without an 
adequate vascular supply. For this reason, tumours tend 
to recruit new blood vessels from the pre-existing vas-
culature by neoangiogenesis (31), and there is complex-
ity and a richness of tumour vasculature in RCC. One 
of the most important drivers of metabolic reprogram-
ming in a cancer cell is the response to hypoxia. Inter-
estingly, hypoxia has also been shown to activate p53, 
although the mechanisms involved in this  are not yet 
clear. Using a biostatistics test approach, we showed that 
p53 and VEGFA (a HIF1α transcriptional target) have a 
significant positive correlation in RCC samples. Under 
normoxic conditions, both p53 and HIF1α are low due 
to proteosome-mediated degradation. Mild or moderate 
hypoxia activates HIF1α-dependent angiogenesis, but 
it is not stringent enough to induce p53 accumulation. 
Under severe hypoxic conditions, p53 also accumulates, 
and when it reaches a threshold level, it binds to the oxy-
gen dependent domain of HIF1α (32). Research on the 
relationship between p53 adaptation to low oxygen levels 
will help us understand this pathway and will provide 
new strategies for anti-tumour therapy.

One limitation of this work is that the analysis was 
restricted to only 15 biomarkers. This study is a prelimi-
nary trial in which we have studied a small number of bio-
markers associated with the signalling pathways that are 
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responsible for cellular processes, including proliferation, 
differentiation, apoptosis, and metastasis.

A second limitation of the analysis is that the approach 
to the expression of selected markers by means of TMA 
and IHC has not been combined with molecular biology 
techniques as (for example microarrays, polymerase chain 
reaction and western blotting) . TMA has many advan-
tages: (1) sections from TMA blocks can be utilised for the 
simultaneous analysis of up to 1,000 different tumours at 
the DNA, RNA or protein level; (2) TMA is highly repre-
sentative of donor tissues; (3) TMA can improve the con-
servation of tissue resources and experimental reagents, 
improve internal experimental controls, increase sample 
numbers per experiment, and can be used for large-scale, 
massively parallel in situ analysis; and (4) TMA facilitates 
the rapid translation of molecular discoveries to clinical 
applications. IHC is the most routinely practiced technique 
for various analyses of histological samples including tu-
mour identification. A high variability in staining is ob-
served in intra-laboratory and inter-laboratory tests. This 
may be due to differences in antigenic epitopes, batch to 
batch variability in antibodies, differences in staining pro-
cedures and differences in the observation and interpreta-
tion of the staining results. TMA overcomes these factors 
and promises highly reliable quality assurance for IHC.

We have used IHC of primary tumours from patients 
to demonstrate for the first time the relevant interactions 
involved in different pathways that regulate cell fate.

An important next step will be to discover new protein 
interactions that could be extracted from in vitro biological 
networks, such as additional p53-related targets upstream 
and downstream of p53 that can be identified and validated 
for future discovery of novel compounds that target p53 
signalling pathways (33). From this perspective, this work 
provides a comparison of biological knowledge of molecu-
lar interactions with experimental data.
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