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ABSTRACT 

Recent advances in Convolutional Neural Networks (CNNs) have obtained 

promising results in difficult deep learning tasks. However, the success of a CNN depends 

on finding an architecture to fit a given problem. A hand-crafted architecture is a 

challenging, time-consuming process that requires expert knowledge and effort, due to a 

large number of architectural design choices. In this dissertation, we present an efficient 

framework that automatically designs a high-performing CNN architecture for a given 

problem. In this framework, we introduce a new optimization objective function that 

combines the error rate and the information learnt by a set of feature maps using 

deconvolutional networks (deconvnet). The new objective function allows the 

hyperparameters of the CNN architecture to be optimized in a way that enhances the 

performance by guiding the CNN through better visualization of learnt features via 

deconvnet. The actual optimization of the objective function is carried out via the Nelder-

Mead Method (NMM). Further, our new objective function results in much faster 

convergence towards a better architecture. The proposed framework has the ability to 

explore a CNN architecture’s numerous design choices in an efficient way and also allows 

effective, distributed execution and synchronization via web services. Empirically, we 

demonstrate that the CNN architecture designed with our approach outperforms several 

existing approaches in terms of its error rate. Our results are also competitive with state-

of-the-art results on the MNIST dataset and perform reasonably against the state-of-the-

art results on CIFAR-10 and CIFAR-100 datasets. Our approach has a significant role in 
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increasing the depth, reducing the size of strides, and constraining some convolutional 

layers not followed by pooling layers in order to find a CNN architecture that produces a 

high recognition performance. 

Moreover, we evaluate the effectiveness of reducing the size of the training set on 

CNNs using a variety of instance selection methods to speed up the training time. We 

then study how these methods impact classification accuracy. Many instance selection 

methods require a long run-time to obtain a subset of the representative dataset, especially 

if the training set is large and has a high dimensionality. One example of these algorithms 

is Random Mutation Hill Climbing (RMHC). We improve RMHC so that it performs 

faster than the original algorithm with the same accuracy. 
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CHAPTER 1:  INTRODUCTION 

Deep convolutional neural networks (CNNs) recently have shown remarkable 

success in a variety of areas such as computer vision [1-3] and natural language 

processing [4-6]. CNNs are biologically inspired by the structure of mammals’ visual 

cortexes as presented in Hubel and Wiesel’s model [7]. In 1998, LeCun et al. followed 

this idea and adapted it to computer vision. CNNs are typically comprised of different 

types of layers, including convolutional, pooling, and fully-connected layers. By stacking 

many of these layers, CNNs can automatically learn feature representation that is highly 

discriminative without requiring hand-crafted features [8, 9]. In 2012, Krizhevsky et al. 

[1] proposed AlexNet, a deep CNN architecture consisting of seven hidden layers with 

millions of parameters, which achieved state-of-the-art performance on the ImageNet 

dataset [10] with an error test of 15.3%, as compared to 26.2% obtained by second place. 

AlexNet’s impressive result increased the popularity of CNNs within the computer vision 

community. Other motivators that renewed interest in CNNs include the number of large 

datasets, fast computation with Graphics Processing Units (GPUs), and powerful 

regularization techniques such as Dropout [11]. The success of CNNs has motivated 

many to apply them to solving other problems, such as extreme climate events detection 

[12] and skin cancer classification [13], etc. 



 

 

2 

 

Some works have tried to tune the AlexNet architecture design to achieve better 

accuracy. For example, in [14], state-of-the-art results are obtained in 2013 by making 

the filter size and stride in the first convolutional layer smaller. Then, [3] significantly 

improved accuracy by designing a very deep CNN architecture with 16 layers. The 

authors pointed out that increasing the depth of the CNN architecture is critical for 

achieving better accuracy. However, in [15, 16] showed that increasing the depth harmed 

the performance, as further proven by the experiments in [17]. Additionally, a deeper 

network makes the network more difficult to optimize and more prone to overfitting [18].  

The performance of a deep CNN is critically sensitive to the settings of the 

architecture design. Determining the proper architecture for a CNN is challenging 

because the architecture will be different from one dataset to another. Therefore, the 

architecture design needs to be adjusted for each dataset.  Setting the hyperparameters 

properly for a new dataset and/or application is critical [19].  Hyperparameters that 

specify a CNN’s structure include: the number of layers, the filter sizes, the number of 

feature maps, stride, pooling regions, pooling sizes, the number of fully-connected layers, 

and the number of units in each fully-connected layer. The selection process often relies 

on trial and error, and hyperparameters are tuned empirically. Repeating this process 

many times is ineffective and can be very time-consuming for large datasets. Recently, 

researchers have formulated the selection of appropriate hyperparameters as an 

optimization problem. These automatic methods have produced results exceeding those 

accomplished by human experts [20, 21]. They utilize prior knowledge to select the next 

hyperparameter combination to reduce the misclassification rate [22, 23]. 
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In this dissertation, we present an efficient optimization framework that aims to 

design a high-performing CNN architecture for a given dataset automatically. In this 

framework, we use deconvolutional networks (deconvnet) to visualize the information 

learnt by the feature maps. The deconvnet produces a reconstructed image that includes 

the activated parts of the input image. A good visualization shows that the CNN model 

has learnt properly, whereas a poor visualization shows ineffective learning. We use a 

correlation coefficient based on Fast Fourier Transport (FFT) to measure the similarity 

between the original images and their reconstructions. The quality of the reconstruction, 

using the correlation coefficient and the error rate, is combined into a new objective 

function to guide the search into promising CNN architecture designs. We use the Nelder-

Mead Method (NMM) to automate the search for a high-performing CNN architecture 

through a large search space by minimizing the proposed objective function. We exploit 

web services to run three vertices of NMM simultaneously on distributed computers to 

accelerate the computation time [23]. 

1.1 Research Problem and Scope  

Constructing a proper CNN architecture for a given problem domain is a 

challenge as there are numerous design choices that impact the performance [19]. 

Determining the proper architecture design is a challenge because it differs for each 

dataset and therefore each one will require adjustments.  Many structural 

hyperparameters are involved in these decisions, such as depth (which includes the 

number of convolutional and fully-connected layers), the number of filters, stride (step-
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size that the filter must be moved), pooling locations and sizes, and the number of units 

in fully-connected layers. It is difficult to find the appropriate hyperparameter 

combination for a given dataset because it is not well understood how these 

hyperparameters interact with each other to influence the accuracy of the resulting model 

[24]. Moreover, there is no mathematical formulation for calculating the appropriate 

hyperparameters for a given dataset, so the selection relies on trial and error. 

Hyperparameters must be tuned manually, which requires expert knowledge [25]; 

therefore, practitioners and non-expert users often employ a grid or random search to find 

the best combination of hyperparameters to yield a better design, which is very time-

consuming given the numerous CNN design choices. 

1.2 Motivation behind the Research 

The success of a CNN depends on finding an architecture to fit a given problem. 

A hand-crafted architecture is a challenging, time-consuming process that requires expert 

knowledge and effort, due to the large number of architectural design choices. In this 

dissertation, we propose a framework that finds a good architecture automatically for a 

given dataset that will maximize the performance.  This allows non-expert users and 

practitioners to find a good architecture for a given dataset in reasonable time without 

hand-crafting it. 

1.3 Contributions 

We propose an efficient framework for automatically discovering a high-
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performing CNN architecture for a given problem through a very large search space 

without any human intervention. This framework also allows for an effective parallel and 

distributed execution.  

We introduce a novel objective function that exploits the error rate on the 

validation set and the quality of the feature visualization via deconvnet. This objective 

function adjusts the CNN architecture design, which reduces the classification error and 

enhances the reconstruction via the use of visualization feature maps at the same time. 

Further, our new objective function results in much faster convergence towards a better 

architecture. 

Instance selection is a subfield in machine learning that aims to reduce the size of 

the training set. One example of these algorithms is Random Mutation Hill Climbing 

(RMHC). We propose a new version of RMHC that works quickly and has the same 

accuracy as the original RMHC. 

Some of the best current facial recognition approaches use feature extraction 

techniques based on Principle Component Analysis (PCA), Local Binary Patterns (LBP), 

or Autoencoder (non-linear PCA), etc. We employed the power of combining Multiple 

Classifiers (MC) and deep learning to build a system that uses different feature extraction 

algorithms PCA, LBP+PCA, LBP+NN. The features from the above three techniques are 

concatenated to form a joint feature vector. This feature vector is fed into a deep Stacked 

Sparse Autoencoder (SSA) as a classifier to generate the recognition results.  
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CHAPTER 2:  BACKGROUND AND LITERATURE REVIEW 

2.1 Deep Learning 

Deep learning is a subfield of machine learning that has achieved a great 

performance in a variety of applications in computer vision and natural language 

processing [3-6, 10]. Deep learning uses multiple hidden layers of non-linear 

transformations that attempt to learn a hierarchy of features and abstractions, where 

higher levels of the hierarchy are composed from lower-level features [6]. With enough 

such transformations, very complex functions can be learned. For object recognition, 

higher layers of representation amplify aspects of the inputs that are important for 

discrimination and suppress irrelative variation [26]. The pixels of the image are fed into 

the first layer, which can learn low-level features such as point, edges, and curves. In 

subsequent layers, these features are combined into a measure of the likely presence of 

higher level features; for example, lines are combined into shapes, which are then 

combined into more complex shapes. Once this is done, the network provides a 

probability that these high-level features comprise a particular object or scene. Deep 

learning is motivated by understanding how the human brain processes information. The 

brain is organized as a deep architecture with many layers that manipulates the 

information among many levels of non-linear transformation and representation [27].   

 The main aspect of deep learning is learning discriminative features from the raw 

data automatically without human-engineered features. The popular models for deep 
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learning include Deep Belief Network (DBN), Recurrent Neural Network (RNN), 

Stacked Autoencoder (SA), and Convolutional Neural Networks (CNN) [9, 28].  

2.2 Backpropagation and Gradient Descent 

The backpropagation algorithm [29]is a popular training method that uses 

gradient descent to update the parameters of deep learning algorithms to find the 

parameters (weights 𝑤 and biases 𝑏) that minimize certain loss functions in order to map 

the arbitrary inputs to the targeted outputs as closely as possible.   

During the forward phase, the algorithm forwards through the network layers to 

compute the outputs. As a result, the error of the loss function is compared to the expected 

outputs. During the backward phase, the model computes the gradient of the loss function 

with respect the current parameters, after which the parameters are updated by taking a 

step in the direction that minimizes the loss function. 

The forward phase starts by feeding the inputs through the first layer, so producing 

output activations for the successive layer. This procedure is repeated until the loss 

function at the last layer is computed. During the backward phase, the last layer calculates 

the derivative with respect to its own learnable parameters as well as its own input, which 

serves as the upstream derivatives for the previous layer. This procedure is repeated until 

the input layer is reached [30].  

Gradient descent can be categorized into two main methods: Batch Gradient 

Descent (BGD) and Stochastic Gradient Descent (SGD). The main difference between 

both approaches is the size of the sample to consider for calculating the gradient. BGD 
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uses entire the training set to update the gradient at each iteration, while SGD performs 

the gradient for each training example (𝑥(𝑖), 𝑦(𝑖)). Since the gradient of BGD is calculated 

for the whole training set, it can be very slow and expensive, particularly when the size 

of the training set is very large. However, the convergence is smoother and the 

termination is more easily detectable. SGD is less expensive; however, it suffers from 

noisy steps and its frequent updates can make the loss function fluctuate heavily [31].   

SGD with mini-batch takes the best of both BGD and SGD. It updates the gradient 

by taking the average gradient on a mini-batch of   𝑚′ examples  ℚ =

((𝑥(𝑖), 𝑦(𝑖)), … … … , (𝑥(𝑚′), 𝑦(𝑚′))  [32]. The advantage of mini-batch SGD is that it 

reduces the variance of the parameter updates, which can lead to more stable 

convergence. In addition, SGD with mini-batch allows the benefits from parallelism 

available in GPU, which are frequently used in deep learning frameworks such as Theano 

and Tensorflow.  The size of 𝑚′ mini-batch is defined by the user and can be up to few 

hundred examples. The estimate gradient of SGD with mini-batch is formed as: 

∇𝑤=
1

𝑚′ 
∇𝑤 ∑ ℓ(

𝑚′

𝑖=1

𝑥(𝑖), 𝑦(𝑖), 𝑤) (2.1) 

∇𝑏=
1

𝑚′ 
∇𝑏 ∑ ℓ(

𝑚′

𝑖=1

𝑥(𝑖), 𝑦(𝑖), 𝑏) (2.2) 

where ℓ( 𝑥(𝑖), 𝑦(𝑖), 𝑤) is the loss function over the mini-batch samples ℚ selected 

from the training set. Once the gradients of the loss are computed with backpropagation 

with respect to the parameters, they are used to perform a gradient descent parameter 
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update along the downhill direction of the gradient in order to decrease the loss function 

as follows: 

𝑤 = 𝑤 −  𝜖. ∇𝑤

𝑏 = 𝑏 −  𝜖. ∇𝑏

(2.3) 

(2.4) 

where 𝜖 is the learning rate, which is a small positive value between 0 ≤ 𝜖 ≤ 0 

that controls the step size of the update.  Algorithm (2.1) highlights the essential steps of 

SGD with mini-batch in iteration 𝑘. 

Algorithm 2.1. Stochastic Gradient Descent with mini-batch at iteration 𝑘 

1: Input: Learning rate 𝜖 , initial parameters 𝑤, 𝑏 , mini-batch size (𝑚′) 

2: while stopping criterion not met do 

3: 
          Pick a random mini-batch with size 𝑚′  from the training set 

           (𝑥(1), … … … . , 𝑥(𝑚))  with corresponding outputs  𝑦(𝑖)  

4: Compute gradient  for 𝑤: ∇𝑤=
1

𝑚′ ∇𝑤 ∑ ℓ(𝑚′

𝑖=1 𝑥(𝑖), 𝑦(𝑖), 𝑤) 

5: Compute gradient  for 𝑏: ∇𝑏=
1

𝑚′ ∇𝑏 ∑ ℓ(𝑚′

𝑖=1 𝑥(𝑖), 𝑦(𝑖), 𝑏) 

6: Apply update for 𝑤 :  𝑤 =  𝑤 −  𝜖. ∇𝑤 

7: Apply update for 𝑏 :  𝑏 =  𝑏 −  𝜖. ∇𝑏 

8: end while 

2.3 Convolutional Neural Networks  

CNN is a subclass of neural networks that takes advantage of the spatial structure 

of the inputs. CNN models have a standard structure consisting of alternating 

convolutional layers and pooling layers (often each pooling layer is placed after a 
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convolutional layer). The last layers are a small number of fully-connected layers, and the 

final layer is a softmax classifier as shown in Figure 2.1.  

The critical advantage of CNNs is that it is trained end-to-end from raw pixels to 

classifier outputs to learn feature representation automatically without depending totally 

on human-crafted features [10, 11]. Since 2012, many researches have improved the 

performance of CNNs in different directions, e.g. layer design, activation function, and 

regularization, or applying CNNs in other areas [12, 13]. CNNs have been implemented 

using large data sets such as MNIST [33], CIFAR-10/100 [34], and ImageNet [35] for 

image recognition.   

 

Figure 2.1. The standard structure of a CNN. 

2.3.1  Convolutional Layers 

The convolutional layer is comprised of a set of learnable kernels or filters which 

aim to extract local features from the input. Each kernel is used to calculate a feature map. 

The units of the feature maps can only connect to a small region of the input, called the 
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receptive field. A new feature map is typically generated by sliding a filter over the input 

and computing the dot product (which is similar to the convolution operation), followed 

by a non-linear activation function as shown in Equation 2.5 to introduce non-linearity 

into the model.  

𝑥𝑓
(𝑙)

= 𝑓 (∑ 𝑥 
(𝑙−1)

𝐹,𝐹

∗ 𝑤𝑓
(𝑙)

+ 𝑏𝑓
(𝑙)

) (2.5) 

where * is convolution operation ,𝑤𝑓
(𝑙)

 is convolution filter with size 𝐹 × 𝐹 ,  

𝑥 
(𝑙−1) is the output of previous layer  , 

l

jb is shared bias of the feature map, and f is non-

linear activation function. 

During the backward phase, we compute the gradient of the loss function with 

respect to the weights (𝑤) and biases (𝑏) of the respective layer as follows: 

∇
𝑤𝑓

(𝑙)ℓ = ∑ (∇
𝑥𝑓

(𝑙+1)𝐹,𝐹 ℓ)𝐹,𝐹   (𝑥𝐹,𝐹
(𝑙)

 ∗ 𝑤𝑓
(𝑙)
 (2.6) 

∇
𝑏𝑓

(𝑙)ℓ = ∑(∇
𝑥𝑓

(𝑙+1)

𝐹,𝐹

ℓ)𝐹,𝐹 (𝑥𝐹,𝐹
(𝑙)

 ∗ 𝑏𝑓
(𝑙)

) (2.7) 

All units share the same weights (filters) among each feature map. The advantage 

of sharing weights is the reduced number of parameters and the ability to detect the same 

feature, regardless of its location in the inputs [36]. 

Several nonlinear activation functions are available, such as sigmoid, tanh, and 

ReLU. However, ReLU [f(x) = max (0, x)] is preferable because it makes training faster 

relative to the others [1, 37]. The size of the output feature map is based on the filter size 
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and stride, so when we convolve the input image with a size of (H × H) over a filter with 

a size of (F × F) and a stride of (S), then the output size of (W × W) is given by: 

𝑊 = ⌊
𝐻 − 𝐹

𝑆
⌋ + 1 (2.8) 

The hyperparameters of each convolutional layer are filter size, the number of 

learnable filters, and stride. These hyperparameters must be chosen carefully in order to 

generate desired outputs.  

2.3.2  Pooling Layers 

The pooling, or down-sampling layer, reduces the resolution of the previous 

feature maps. Pooling produces invariance to a small transformation and/or distortion. 

Pooling splits the inputs into disjoint regions with a size of (R × R) to produce one output 

from each region [38]. Pooling can be max or average based. If a given input with a size 

of (W × W) is fed to the pooling layer, then the output size will be obtained by: 

𝑃 = ⌊
W 

𝑅
⌋ (2.9) 

During the forward phase, the maximum value of non-overlapping blocks from 

the previous feature map 𝑥(𝑙−1) is calculated as follows: 

𝑥(𝑙) = 𝑚𝑎𝑥𝑅,𝑅 (𝑥(𝑙−1))𝑅,𝑅 (2.10) 

Max pooling does not have any learnable parameters. During the backward phase, 

the gradient from the next layer is passed back only to the neuron that achieved the max 
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value; all of the other neurons receive zero gradient.  

2.3.3  Fully-connected Layers 

The top layers of CNNs are one or more fully-connected layers similar to a feed-

forward neural network, which aims to extract the global features of the inputs. Units of 

these layers are connected to all of the hidden units in the preceding layer. The outputs of 

the fully-connected layer are computed as shown in Equation 2.11: 

𝑥(𝑙) = 𝑓((𝑤(𝑙))𝑇 ∙  𝑥(𝑙−1) + 𝑏(𝑙)) (2.11) 

 where ∙ is a dot product , 𝑥(𝑙−1) is the output of the previous layer, 𝑥(𝑙), 𝑤(𝑙), 

and 𝑏(𝑙) denotes the activations, weights, and biases of the current layer (𝑙) respectively, 

and 𝑓 is the non-linear activation function.  

During the backward phase, the gradient is calculated with respect to the weights 

and biases as follows: 

     ∇𝑤(𝑙)ℓ = (𝑥(𝑙))𝑇 (∇𝑥(𝑙+1)  ℓ)
   (2.12) 

    ∇𝑏(𝑙)ℓ = (𝑥(𝑙))𝑇 (∇𝑥(𝑙+1)  ℓ) (2.13) 

where ∇𝑥(𝑙+1) is the gradient of the next higher layer.  

The fully-connected layer has only one hyperparameter, which is the number of 

neurons (the number of learnable parameters connecting the input to the output).   

 The last layer is a softmax classifier, which estimates the posterior probability of 



 

 

14 

 

each class label over K classes as shown in Equation (2.14) [27]. 

 
𝑦𝑖 =

exp (−𝑧𝑖)

∑ exp (𝑧𝑗)𝐾
𝑗=1

 
(2.14) 

2.4 CNN Architecture Design  

In this dissertation, our learning algorithm for the CNN (Λ) is specified by a 

structural hyperparameter  which encapsulates the design of the CNN architecture as 

follows: 

𝜆 = ((𝜆1
𝑖 , 𝜆2

𝑖 , 𝜆3
𝑖 , , 𝜆4

𝑖 )𝑖=1,𝑀𝑐
, (𝜆1

𝑗
)𝑗=1,𝑁𝑓

) (2.15) 

where    defines the domain for each hyperparameter, (𝑀𝐶) is the number of 

convolutional layers, and (𝑁𝐹) is the number of fully-connected layers (i.e., the depth = 

𝑀𝐶 + 𝑁𝑓). Constructing any convolutional layer requires four hyperparameters that must 

be identified. For example, for convolutional layer i: 𝜆1 
𝑖  is the number of filters, 𝜆2 

𝑖  is the 

filter size (receptive field size), and 𝜆3
𝑖  defines the pooling locations and sizes. If 𝜆3

𝑖  is 

equal to one, this means there is no pooling layer placed after convolutional layer i; 

otherwise, there is a pooling layer after convolutional layer i and the value 𝜆3
𝑖  defines the 

pooling region size. 𝜆4
𝑖  is stride step. 𝜆5

𝑗
 is the number of units in fully-connected layer j. 

We also use ℓ(Λ, 𝑇𝑇𝑅 , 𝑇𝑉) to refer to the validation loss (e.g., classification error) obtained 

when we train model Λwith the training set (𝑇𝑇𝑅) and evaluate it on the validation set 

( 𝑇𝑉 ). The purpose of our framework is to optimize the combination of structural 
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hyperparameters * that designs the architecture for a given dataset automatically, 

resulting in a minimization of the classification error as follows: 


∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ℓ(Λ, 𝑇𝑇𝑅 , 𝑇𝑉) (2.16) 

We define the most important hyperparameters in designing a CNN architecture 

below:  

Depth: defines the number of convolutional layers ( 𝑀𝐶)  and the number of fully-

connected layers 𝑁(𝑓). So the depth= (𝑀𝐶 + 𝑁𝑓). 

Filter size: The height and width of each filter. Generally, the sizes of the filters are 

quadratic, i.e. have the same width and height. 

Number of filters: defines output volume and controls the number of learnable filters 

connected to the same region of the input volume. Each filter detects a different feature in 

the input. 

Stride: step-size that the filter must be moved. 

Pooling layer location: this defines whether the current convolutional layer is followed by 

a pooling layer. 

Pooling region size: The amount of down-sampling to be performed. In current deep 

learning frameworks such as Keras and Tensorflow, the hyperparameters of the pooling 

layer are filter size and stride. In our work, the pooling region size is equivalent to the filter 

size, and we always assume that the stride is equal to the filter size, which means the 

pooling is always non-overlapped.   
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2.4.1  Literature Review on CNNN Architecture Design 

A simple technique for selecting a CNN architecture is cross-validation [39], 

which runs multiple architectures and selects the best one based on its performance on 

the validation set. However, cross-validation can only guarantee the selection of the best 

architecture amongst architectures that are composed manually through a large number 

of choices. The most popular strategy for hyperparameter optimization is an exhaustive 

grid search, which tries all possible combinations through a manually-defined range for 

each hyperparameter. The drawback of a grid search is its expensive computation, which 

increases exponentially with the number of hyperparameters and the depth of exploration 

desired [40]. Recently, random search [41], which selects hyperparameters randomly in 

a defined search space, has reported better results than grid search and requires less 

computation time. However, neither random nor grid search use previous evaluations to 

select the next set of hyperparameters for testing to improve upon the desired architecture.  

Recently, Bayesian Optimization (BO) methods have been used for 

hyperparameter optimization [21, 42, 43]. BO constructs a probabilistic model ℳ based 

on the previous evolutions of the objective function f. Popular techniques that implement 

BO are Spearmint [21], which uses a Gaussian process model for  ℳ, and Sequential 

Model-based Algorithm Configuration (SMAC) [42], based on a random forest of the 

Gaussian process. According to [44], BO methods are limited because they work poorly 

when high-dimensional hyperparameters are involved and are very computationally 

expensive. The work in [21] used BO with a Gaussian process to optimize nine 

hyperparameters of a CNN, including the learning rate, epoch, initial weights of the 
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convolutional and full-connected layers, and the response contrast normalization 

parameters. Many of these hyperparameters are continuous and related to regularization, 

but not to the CNN architecture. Similarly, Ref. [24, 45, 46] optimized continuous 

hyperparameters of deep neural networks. However, Ref. [46-51] proposed many 

adaptive techniques for automatically updating continuous hyperparameters, such as the 

learning rate momentum and weight decay for each iteration to improve the coverage 

speed of backpropagation. In addition, early stopping [52, 53] can be used when the error 

rate on a validation set or training set has not improved, or when the error rate increases 

for a number of epochs. In [54], an effective technique is proposed to initialize the weights 

of convolutional and fully-connected layers. 

Evolutionary algorithms are widely used to automate the architecture design of 

learning algorithms. In [25], a genetic algorithm is used to optimize the filter sizes and 

the number of filters in the convolutional layers. Their architectures consisted of three 

convolutional layers and one fully-connected layer. Since several hyperparameters were 

not optimized, such as depth, pooling regions and sizes, the error rate was high, around 

25%. Particle Swarm Optimization (PSO) is used to optimize the feed-forward neural 

network’s architecture design [55].Soft computing techniques are used to solve different 

real applications, such as rainfall and forecasting prediction [56, 57]. PSO is widely used 

for optimizing rainfall–runoff modeling. For example, Ref. [58] utilized PSO as well as 

extreme learning machines in the selection of data-driven input variables. Similarly, [59] 

used PSO for multiple ensemble pruning. However, the drawback of evolutionary 

algorithms is that the computation cost is very high, since each population member or 



 

 

18 

 

particle is an instance of a CNN architecture, and each one must be trained, adjusted and 

evaluated in each iteration. In [60], ℓ1 Regularization is used to automate the selection of 

the number of units only for fully-connected layers for artificial neural networks. 

Recently, interest in architecture design for deep learning has increased. The 

proposed work in [61] applied reinforcement learning and recurrent neural networks to 

explore architectures, which have shown impressive results. Ref. [62] proposed a 

CoDeepNEAT-based Neuron Evolution of Augmenting Topologies (NEAT) to 

determine the type of each layer and its hyperparameters. Ref. [63] used a genetic 

algorithm to design a complex CNN architecture through mutation operations and 

managing problems in filter sizes through zeroth order interpolation. Each experiment 

was distributed to over 250 parallel workers to find the best architecture. Reinforcement 

learning, based on Q-learning [64], was used to search the architecture design by 

discovering one layer at a time, where the depth is decided by the user. However, these 

promising results were achieved only with significant computational resources and a long 

execution time. 

Visualization approach in [14, 65] is another technique used to visualize feature 

maps to monitor the evolution of features during training and thus discover problems in 

a trained CNN. As a result, the work presented in [14] visualized the second layer of the 

AlexNet model, which showed aliasing artifacts. They improved its performance by 

reducing the stride and kernel size in the first layer. However, potential problems in the 

CNN architecture are diagnosed manually, which requires expert knowledge. The 

selection of a new CNN architecture is then done manually as well.  
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2.5 Regularization  

In CNNs, overfitting is a major problem, which regularization can effectively 

reduce. There are several techniques to combat this problem, including L1, L2 weight 

decay, KL-sparsity, early stopping, data augmentation, and dropout. Dropout has proven 

itself an effective method to reduce overfitting due to its ability to provide a better 

generalization on the testing set. Because dropout is such a powerful technique, it has 

encouraged recent success in CNNs 

Dropout [11] is a powerful technique for regularizing full connected layers within 

neural networks or CNN. The idea of dropout is each neuron is selected randomly with 

probability p to be dropped (setting the activation to zero) for each training case. This 

helps to prevent hidden neurons from co-adapting with each other too much; forcing the 

model based on a subset of hidden neurons. The error back-propagated through only 

remaining neurons that are not dropped. On the other hand, we can look to the dropout as 

model averaging of large number of neural network models. 

Early stopping [52, 53] is a kind of regularization that helps to avoid overfitting 

by monitoring the performance of the model on the validation set. Once the performance 

on the validation dataset decreases or saturates for a number of iterations, the model stops 

the training procedure. 

2.6 Weight initialization 

Weight initialization [18] is a critical step in CNNs that influences the training 

process. In order to initialize the model’s parameters properly, the weights must be within 
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a reasonable range before the training process begins. As a result, this will make the 

convergence faster. Several weight initialization methods have been proposed, including 

random initialization, naive initialization, and Xavier initialization. The two most widely 

used are naive initialization and Xavier initialization.  

 Naive initialization, the weights are initialized from a Gaussian distribution with 

a mean of zero and a small value of standard deviation. 

 Xavier initialization [54] has become the default technique for weight 

initialization in CNNs. It tries to keep the variance between the layers 

approximately the same. The advantage of Xavier initialization is that it makes 

the network converge much faster than other approaches. The weight sets it 

produces are also more consistent than those produced by other techniques. 

2.7 Visualizing and Understanding CNNs 

There are three main methods for understanding and visualizing CNNs as follows: 

 Layer activations: this simple technique shows the activations of a network 

during the forward pass. The drawback, however, is that some activation maps’ 

outputs are zero for the input images, which indicates dead filters. Additionally, 

the size of the activation maps is not equal to the input image, especially in higher 

layers.   

 Retrieving images that maximally activate a neuron: this strategy feeds a large 

set of images through the network and then keeps track of which images maximize 

the activations of the neurons. However, the limitation of this technique is that the 
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ReLU activation function does not always have semantic meaning by itself. This 

method can involve a high computational cost to find the images that maximize 

the neurons’ values [66]. 

 Deconvolutional networks: aims to project the learned features in higher layers 

down to the input pixel space for a trained CNN. This results in a reconstructed 

image the same size as the input image. It contains the regions of the input image 

that were learned by a given feature map. A visualization similar to the input 

image indicates that the CNN architecture learned properly. Since the 

reconstructed image is the same size as the input, this allows us to measure the 

similarity between the inputs and their reconstruction effectively [67] (Details in 

5.3) 

2.8 Similarity Measurements between Images  

Several methods are used to compare the similarity between two images or 

vectors. The most widely used are Euclidean distance, mutual information, and a 

correlation coefficient. Each one of these methods has advantages and disadvantages.  

 The Euclidean distance between two images is the sum of the squared intensity 

differences of corresponding pixels in sequences as shown in Equation 2.17. The 

drawback of Euclidean distance is that it is very sensitive to normalization of the 

data, so any tiny errors will produce inaccurate results. Euclidean distance between 

two vectors q and p is computed by: 
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𝑑(𝑝, 𝑞) = √∑(𝑝𝑖

𝑦

𝑖=1

− 𝑞𝑖)2
(2.17) 

 Mutual information is a concept derived from information theory. The mutual 

information measures the dependencies between two images, or the amount of 

information that one image contains about the other. The value of mutual 

information will be large when the similarity between a pair of images is high. 

Mutual information denoted as 𝑀𝐼(𝑋, 𝑌) between two grayscale images 𝑋 and 𝑌 

is given by: 

𝑀𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)

255

𝑦=0

255

𝑥=0

 (2.18) 

            where p(x) and p(y) are marginal distributions of 𝑋, 𝑌 respectively, and p(x, y) is a 

joint probability distribution. The key advantage of mutual information is that it 

detects the non-linear dependence between two images.  The drawback of mutual 

information is that it is computationally very expensive [68]. 

 Correlation distance is the linear dependence between two images.  Fast Fourier 

Transform (FFT) provides another approach to calculate the correlation coefficient 

with a high computational speed as compared to the original correlation coefficient 

formula and mutual information (further detail is provided in Chapter 3.1.3). 

2.9 Sparse Autoencoder 

Sparse autoencoder (SA) is a kind of unsupervised NN aiming to approximate an 
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identical function 𝑓(𝑥) = 𝑥  by making the target outputs equal to the inputs during the 

training phase. SA applies backpropagation to learn meaningful features from unlabeled 

data. SA includes encoder and decoder steps. The encoder takes the input vector x to the 

hidden layer representation y with a non-linear activation function, such as sigmoid 𝑓, as 

shown in the following equation: 

𝑦 = 𝑓(𝑊𝑥 + 𝑏)                    (2.19) 

The decoder maps the hidden representation y back into reconstruction 𝑧 of the 

same input vector 𝑥 as shown in Figure 2.2. 

𝑦 = 𝑓(𝑊′𝑦 + 𝑏) ≃ 𝑥                   (2.20) 

SA is trained by back-propagation usually via gradient descent to reduce the 

average reconstruction error 𝐿(𝑧, 𝑥) = ||𝑧 − 𝑥||2. SA imposes sparsity on many hidden 

neurons’ outputs to make them zero or close to zero in order to discover interesting an 

feature representation and removing redundant and noisy information from the inputs 

[69].  

Therefore, the cost function of sparse autoencoder is obtained by:        

(𝑊, 𝑏) =
1

2𝑚
∑ ∥ 𝑥(𝑖)

𝑛

𝑖=1

− 𝑧(𝑖) ∥2+
𝜆

2
∥ 𝑊 ∥ +𝛽 ∑ 𝐾𝐿(𝜌 ∥

𝑠

𝑗=1

𝜌 ̂) 
 (2.21) 

The first term of cost function in Equation 2.11 is an average sum of squares error 

which describes the discrepancy error between the inputs x(i) and its reconstruction z(i) 

over the entire training samples. The second term is weight decay, which is a 

regularization technique for preventing overfitting. The last term is an extra penalty term 
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to provide sparsity constraint, where 𝜌 is the sparsity parameter and typically takes a 

small value, n is number of neurons in the hidden layer, and the index j sums over the 

hidden neurons in our network. A 𝐾𝐿(𝜌  𝜌̂ ) is a Kullback-Leibler (KL) divergence 

between 𝜌̂ which is an average activation (averaged over the training data) of hidden 

neuron j, and the target activations 𝜌𝑖 which can be defined as: 

𝐾𝐿(𝜌||𝜌̂𝑗) = 𝜌 𝑙𝑜𝑔
𝜌

𝜌̂𝑗
+ (1 − 𝜌) log

1 − 𝜌

1 − 𝜌̂𝑗
 (2.22) 

where 𝜌 is a sparsity parameter, typically a small value close to zero (say 𝜌 = 

0.05). Therefore, we would like the average activation of each hidden neuron 𝑗 to be close 

to 0.05. To satisfy this constraint, the hidden unit’s activations must mostly be near zero. 

 

Figure 2.2. Sparse Autoencoder structure: The number of units in input layer is equal to number of units in 

output layer. 

2.10 Analysis of optimized instance selection algorithms on large 

datasets with CNNs  

It is common that training set consists of instances that are useless. Therefore, it 

is probable to get acceptable performance and enhance the training execution time 
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without non-useful instances; this process is called instance selection [70, 71].  

Instance selection aims to choose subset (𝑇𝑆)  from training set (𝑇𝑇𝑅)  where 

( 𝑇𝑆 ⊂ 𝑇𝑇𝑅) to accomplish the original task of classification application with little or no 

performance degradation as if the entire training set (𝑇𝑇𝑅) is used. This training set might 

contain superfluous instances which can be redundant or noisy. Removing these instances 

is required because they may cause performance deterioration [72]. Furthermore, 

reducing the training set will shrink the amount of computation and memory storage, 

especially if the amount of training set is large with high dimensionality. Each instance 

in a training set can be either border instance or interior instance. Border instance is its k 

nearest neighbors (k-NN) belonging to other classes that usually are closer to the decision 

boundary. Interior instance is its k nearest neighbors belonging to the same class [73]. 

Instance selection can be divided into three types of algorithms: condensation, 

edition, and hybrid [74]. Condensation techniques aim to retain border instances. This 

leads to make the accuracy over training set high but it might reduce the generalization 

accuracy over the testing set. The reduction rate is high in condensation methods [75]. 

Edition methods aim to discard the border instances and retain interior instances. 

Consequently, this leads to a smoother decision boundary between classes, which can 

improve the classifier accuracy over the testing set. Finally, hybrid methods seek to 

choose a subset of the training set containing border and interior instances to maintain or 

enhance the generalization accuracy. 

  An instance selection search can be incremental, decremental or mixed. 

Incremental methods start with empty subset 𝑇𝑆= , and add each instance to 𝑇𝑆 from 𝑇𝑇𝑅 
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if it qualifies for some criteria. Decremental search starts with 𝑇𝑆=𝑇𝑇𝑅and removes any 

instance 𝐼𝑖𝑚𝑔from 𝑇𝑆 if it does not fulfill specific criteria. Mixed search starts with pre-

selected subset 𝑇𝑆 and iteratively can add or remove any instance meet the specific criteria 

[71, 74].  

All instance selection methods work under the following assumption: 𝑇𝑇𝑅 is the 

training set; 𝐼𝑖𝑚𝑔_𝑖 is i-th instance in 𝑇𝑇𝑅. Subset 𝑇𝑆 is selected from  𝑇𝑇𝑅; 𝐼𝑖𝑚𝑔_𝑗 is j-th 

instance in 𝑇𝑆. 𝑇𝑉 is the validation set. 𝑇𝑇𝑆 is the testing set. Typically, the accuracy of 

instance selection methods is determined by k Nearest Neighbors (k-NN) [76]. The 

Euclidean distance function is used to calculate the similarity between two instances q 

and p as shown in Equation 2.17. 

2.10.1  Literature Review for Instance Selection 

Condensed Nearest Neighbor (ConNN) [77] was first algorithm of instance 

selection. The algorithm is an incremental method that starts with adding one instance of 

each class to the subset 𝑇𝑆 randomly from training set 𝑇𝑇𝑅. Then, for each instance 𝐼𝑖𝑚𝑔 

in  𝑇𝑇𝑅 is classified using the instances in 𝑇𝑆. If the instance 𝐼𝑖𝑚𝑔 is incorrectly classified, 

it will be added to 𝑇𝑆. This guarantees all instances in 𝑇𝑇𝑅  are classified correctly. Based 

on this criterion, noisy instance will be retained because they are commonly classified 

wrongly by their k-NN.  

The  Edited Nearest Neighbor (ENN) [78] algorithm starts with 𝑇𝑆 =𝑇𝑇𝑅, and then 

each instance 𝐼𝑖𝑚𝑔 in 𝑇𝑆 is removed from 𝑇𝑆 if it does not agree with the majority of k-NN 
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(e.g. k=3). The ENN discards noisy instances as well as border instances to yield smooth 

boundaries between classes by saving interior instances.  

All k-NN [79] belongs to the family of ENN. The algorithm works as follows: for 

i=1 to k, flags as bad for each instance misclassified by its k-NN. Once the loop is ended, 

it discards any instance from 𝑇𝑆 if it is flagged as bad.  

Skalak [80] exploited Random Mutation Hill Climbing (RMHC) method [81] to 

select the subset 𝑇𝑆 from 𝑇𝑇𝑅.  This algorithm has two parameters should be defined by 

the user early: (1) 𝑁𝑆 is the size of the subset or the training sample 𝑇𝑆. (2) 𝑁𝑖𝑡𝑒𝑟 is number 

of iterations. The algorithm is based on coding instances in 𝑇𝑇𝑅 into binary string format. 

Each bit represents one instance, where 𝑁𝑆  bits are equal to one randomly (they 

represent 𝑇𝑆). For 𝑁𝑖𝑡𝑒𝑟iterations, the algorithm randomly mutates a single bit of zero to 

one. The accuracy will be computed, if the change increases the accuracy, the change will 

be kept, otherwise, roll-backed. This algorithm gives high chance to increase the size of 

𝑇𝑆 with increasing iteration 

In [74] explained RMHC in a different way as follows: the algorithm begins to 

select 𝑁𝑆 instances randomly from 𝑇𝑇𝑅 to represent 𝑇𝑆. For 𝑁𝑖𝑡𝑒𝑟 iterations: the algorithm 

replaces one instance selected randomly from 𝑇𝑆 with instance selected randomly from 

(𝑇𝑇𝑅-𝑇𝑆). If the change improves the accuracy on the testing data using 1-NN, the change 

will be maintained, otherwise, the change will be roll-backed. The size of 𝑇𝑆 in this way 

is fixed with length 𝑁𝑆 . 
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2.11 A Deep Architecture for Face Recognition Based on Multiple 

Feature Extractors 

  In recent decades, face recognition has been widely explored in the areas of 

computer vision and image analysis due to its numerous application domains such as 

surveillance, smart cards, law enforcement, access control, and information security. 

With the number of face recognition algorithms that have been developed, face 

recognition is still a very challenging task with respect to the changes in facial expression, 

illumination, background and pose [82]. 

The performance of each individual classifier has shown sensitivity to some 

changes in facial appearance. Combining Multiple Classifiers (MC) in one system has 

become a new direction which integrates many information resources and is likely 

enhance the performance. The combination of MC can be applied at two levels: the 

decision level and the feature level. The decision level addresses how to combine the 

outputs of MC. In the feature level, each classifier produces a new representation that will 

be concatenated in a feature vector to be fed into the new classifier [83]. This is the 

approach we follow in our work. MC is only useful if combined classifiers are mutually 

complementary, and they do not make coincident errors [84]. MC is a very effective 

solution for classification problems involving a lot of classes and noisy input data [85].  

In general, an MC system has three main topologies: parallel, serial and hybrid 

[86]. The design of an MC system consists of two main steps: the classifier ensemble and 

fuser. The classifier ensemble defines the selection of combined classifiers to be most 

effective. The fuser step combines the results that are obtained by each individual 
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classifier [87]. The final classification can be greatly improved using deep learning. 

In this dissertation, we also employ the power of combining MC and deep learning 

to build a system that uses different feature extraction algorithms, namely PCA, 

LBP+PCA, and LBP+NN, to ensure that each classifier produces its own basis 

representation in a meaningful way. We then form a joint feature vector by concatenating 

the outputs of the above three MCs. This joint feature vector is then fed into a deep SA 

with two hidden layers to generate the classification results with probabilistic distribution 

to approximate the probability of each class label. We present the results of a series of 

experiments for different existing MC systems, replacing different classifiers with SSA, 

to exhibit the efficiency of deep SSA classification as compared to other classifiers 

implementation.  

2.11.1  Literature Review for Multiple Classifiers 

Lu et al [88] combined the basis vectors of PCA, ICA and LDA.  The authors used 

sum rule as well as RBF network strategies to integrate the outputs of three classifiers, 

using matching scores. The outputs of the classifiers are concatenated into one vector to 

be used as input to the RBF network to get the final decision. All feature extractors used 

in this system are holistic techniques which utilize the information of the entire face to be 

projected into subspace. The drawback of this approach is    that the classification results 

(not features) are combined from each classifier, whereas in this work, we combine the 

individual features from different classifiers in a balanced way into a deep learning based 

final classifier. Thus, preserving the entire feature information from an individual 
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classifier until the final result is produced. 

 Lawrence et al [89] proposed a hybrid neural network comprising of local image 

sampling, a self-organizing map (SOM) neural network and convolution neural networks 

(CNN). SOM is used for reducing dimensionality and invariance to small changes in the 

images. CNN provides partial distortion invariance. Replacing SOM by the Karhunen-

Loeve transform produced a slightly worse result. While this approach produces good 

results and to some extent is invariant to small changes in the input image, the 

classification depends only on features obtained from dimensionality reduction. The best 

reported result on the ORL dataset was 96.2%, whereas the approach in this work which 

relies on diverse features from different techniques (including dimensionality reduction) 

achieves an accuracy of 98% on the ORL database. 

 Eleyan and Demirel [90] proposed two systems for face recognition; PCA 

followed by neural network (NN) and LDA followed by (NN). PCA and LDA are used 

for dimensionality reduction to be fed into NN for classification. LDA+ NN outperforms 

PCA+NN.  

Lone et al [91] developed a single system for face recognition that combines four 

individual algorithms namely PCA, Discrete Cosine Transform (DCT), Template 

Matching using correlation (Corr) and Partitioned Iterative Function System (PIFS). In 

addition, they compared the results by combining two techniques of PCA-DCT, and three 

techniques based on PCA-DCT-Corr. The results show that combining four Algorithms 

outperforms combination of two as well as three Algorithms.  They obtained 86.8% 

accuracy rate on ORL database. 
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Liong et al [92] proposed a new technique, called deep PCA, to obtain a deep 

representation of data, which will be discriminant and better for recognition. The 

approach comprises of two layers which are whitening and PCA. The outputs of first layer 

will be inserted into the second layer to perform whitening and PCA again.  

 



 

 

32 

 

CHAPTER 3:  RESEARCH PLAN 

3.1 A Framework for Designing the Architectures of Deep CNNs 

In existing approaches to hyperparameter optimization and model selection, the 

dominant approach to evaluating multiple models is the minimization of the error rate on 

the validation set. In this work, we describe a better approach based on introducing a new 

objective function that exploits the error rate as well as the visualization results from 

feature activations via deconvnet. Another advantage of our objective function is that it 

does not get stuck easily in local minima during optimization using NMM. Our approach 

obtains a final architecture that outperforms others that use the error rate objective 

function alone.  

In this section, we present information on  the framework model consisting of 

deconvolutional networks, the correlation coefficient, and the objective function. NMM 

guides the CNN architecture by minimizing the proposed objective function, and web 

services help to obtain a high-performing CNN architecture for a given dataset. For large 

datasets, we use instance selection and statistics to determine the optimal, reduced 

training dataset as a preprocessing step. A general framework flowchart and components 

are shown in Figure 3.1. In order to accelerate the optimization process, we employ 

multiple techniques, including training on an optimized dataset, parallel and distributed 

execution, and correlation coefficient computation via FFT. 
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Figure 3.1. General components and a flowchart of our framework for discovering a high-performing CNN 

architecture 

3.1.1  Reducing the Training Set 

Training deep CNN architectures with a large training set involves a high 

computational time. The large dataset may contain redundant or useless images. In 
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machine learning, a common approach of dealing with a large dataset is instance 

selection, which aims to choose a subset or sample (𝑇𝑆) of the training set (𝑇𝑇𝑅) to 

achieve acceptable accuracy as if the whole training set was being used. Many instance 

selection algorithms have been proposed and reviewed in [71]. Albelwi and Mahmood 

[76] evaluated and analyzed the performance of different instance selection algorithms 

on CNNs. In this framework, for very large datasets, we employ instance selection based 

on Random Mutual Hill Climbing (RMHC) [80]as a preprocessing step to select the 

training sample (𝑇𝑆) which will be used during the exploration phase to find a high-

performing architecture. The reason for selecting RMHC is that the user can predefine 

the size of the training sample, which is not possible with other algorithms. We employ 

statistics to determine the most representative sample size, which is critical to obtaining 

accurate results. 

In statistics, calculating the optimal size of a sample depends on two main factors: 

the margin of error and confidence level. The margin of error defines the maximum range 

of error between the results of the whole population (training set) and the result of a 

sample (training sample). The confidence level measures the reliability of the results of 

the training sample, which reflects the training set. Typical confidence level values are 

90%, 95%, or 99%. We use a 95% confidence interval in determining the optimal size of 

a training sample (based on RHMC) to represent the whole training set. 

3.1.2  CNN Feature Visualization Methods 

Recently, there has been a dramatic interest in the use of visualization methods to 
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explore the inner operations of a CNN, which enables us to understand what the neurons 

have learned. There are several visualization approaches. A simple technique called layer 

activation shows the activations of the feature maps [93] as a bitmap. However, to trace 

what has been detected in a CNN is very difficult. Another technique is activation 

maximization [94], which retrieves the images that maximally activate the neuron. The 

limitation of this method is that the ReLU activation function does not always have a 

semantic meaning by itself. Another technique is deconvolutional network [14], which 

shows the parts of the input image that are learned by a given feature map. The 

deconvolutional approach is selected in our work because it results in a more meaningful 

visualization and also allows us to diagnose potential problems with the architecture 

design. 

3.1.2.1 Deconvolutional Networks 

Deconvolutional networks (deconvnet) [14] are designed to map the activities of 

a given feature in higher layers to go back into the input space of a trained CNN. The 

output of deconvnet is a reconstructed image that displays the activated parts of the input 

image learned by a given feature map. Visualization is useful for evaluating the behavior 

of a trained architecture because a good visualization indicates that a CNN is learning 

properly, whereas a poor visualization shows ineffective learning. Thus, it can help tune 

the CNN architecture design accordingly in order to enhance its performance. We attach 

a deconvnet layer with each convolutional layer similar to [14], as illustrated at the top of 

Figure 3.2. Deconvnet applies the same operations of a CNN but in reverse, including 

unpooling, a non-linear activation function (in our framework, ReLU), and filtering.  
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Figure 3.2. The top part illustrates the deconvnet layer on the left, attached to the convolutional 

layer on the right. The bottom part illustrates the pooling and unpooling operations [14].  

The deconvnet process involves a standard forward pass through the CNN layers 

until it reaches the desired layer that contains the selected feature map to be visualized. 

In a max pooling operation, it is important to record the locations of the maxima of each 

pooling region in switch variables because max pooling is non-invertible. All feature 

maps in a desired layer will be set to zero except the one that is to be visualized. Now we 

can use deconvnet operations to go back to the input space for performing reconstruction. 

Unpooling aims to reconstruct the original size of the activations by using switch 

variables to return the activation from the layer above to its original position in the 

pooling layer, as shown at the bottom of Figure 3.2, thereby preserving the structure of 

the stimulus. Then, the output of the unpooling passes through the ReLU function. 

Finally, deconvnet applies a convolution operation on the rectified, unpooled maps with 
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transposed filters in the corresponding convolutional layer. Consequently, the result of 

deconvnet is a reconstructed image that contains the activated pieces of the input that 

were learnt. Figure 3.3 displays the visualization of different CNN architectures. As 

shown, the quality of the visualization varies from one architecture to another compared 

to the original images in grayscale. For example, CNN architecture 1 shows very good 

visualization; this gives a positive indication about the architecture design. On the other 

hand, CNN architecture 3 shows poor visualization, indicating this architecture has 

potential problems and did not learn properly. 

The visualization of feature maps is thus useful in diagnosing potential problems 

in CNN architectures. This helps in modifying an architecture to enhance its performance, 

and also evaluating different architectures with criteria besides the classification error on 

the validation set. Once the reconstructed image is obtained, we use the correlation 

coefficient to measure the similarity between the input image and its reconstructed image 

in order to evaluate the reconstruction’s representation quality. 

 

Figure 3.3. Visualization from the last convolutional layer for three different CNN architectures. Grayscale 

input images are visualized after preprocessing. 
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3.1.3  Correlation Coefficient 

The correlation coefficient (Corr) [95] measures the level of similarity between 

two images or independent variables. The correlation coefficient is maximal when two 

images are highly similar. The correlation coefficient between two images A and B is 

given by: 

𝐶𝑜𝑟𝑟(𝐴, 𝐵) =
1

𝑛
∑(

𝑎𝑖 − 𝑎̅

𝜎𝑎
)

𝑛

𝑖=1

 (
𝑏𝑖 − 𝑏̅

𝜎𝑏
) (3.1) 

where 𝑎̅ and  𝑏̅ are the averages of A and B respectively, 𝜎𝑎 denotes the standard 

deviation of A, and 𝜎𝑏 denotes the standard deviation of B. Fast Fourier Transform (FFT) 

provides an alternative approach to calculate the correlation coefficient with a high 

computational speed as compared to Equation (3.1) [96, 97]. The correlation coefficient 

between A and B is computed by locating the maximum value of the following equation: 

 𝐶𝑜𝑟𝑟(𝐴, 𝐵) = ℱ−1[ℱ(𝐴) ∘ ℱ∗(𝐵)] (3.2) 

where ℱ is an FFT for a two-dimensional image, ℱ−1 indicates inverse FFT, * is 

the complex conjugate, and ∘ implies element by element multiplication. This approach 

reduces the time complexity of the computing correlation from 𝑂(𝑁2) to 𝑂(𝑁 log 𝑁). 

Once the training of the CNN is complete, we compute the error rate (Err) on the 

validation set, and choose Nfm feature maps at random from the last layer to visualize their 

learned parts using deconvnet. The motivation behind selecting the last convolutional 

layer is that it should show the highest level of visualization as compared to preceding 

layers. We choose Nimg images from the training sample at random to test the deconvnet. 
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The correlation coefficient is used to calculate the similarity between the input images 

Nimg and their reconstructions. Since each image of Nimg has a correlation coefficient 

(Corr) value, the results of all Corr values are accumulated in a scalar value called 

(𝐶𝑜𝑟𝑟𝑅𝑒𝑠) . Algorithm 3.1 summarizes the processing procedure for training a CNN 

architecture: 

Algorithm 3.1. Processing Steps for Training a Single CNN Architecture. 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

Input: training sample 𝑇𝑆, validation set 𝑇𝑉, Nfm feature maps, and Nimg images 

Output: Err and  𝐶𝑜𝑟𝑟𝑅𝑒𝑠 

Train CNN architecture design using SGD 

Compute error rate (Err) on validation set 𝑇𝑉 

𝐶𝑜𝑟𝑟𝑅𝑒𝑠 = 0 

For i = 1 to Nfm 

Pick a feature map fm at random from the last convolutional layer 

For j = 1 to Nimg 

Use deconvnet to visualize a selected feature map fm on image Nimg[j] 

𝐶𝑜𝑟𝑟𝑅𝑒𝑠 = 𝐶𝑜𝑟𝑟𝑅𝑒𝑠+ correlation coefficient (Nimg[j], reconstructed image) 

Return Err and 𝐶𝑜𝑟𝑟𝑅𝑒𝑠 

3.1.4  Objective Function 

Existing works on hyperparameter optimization for deep CNNs generally use the 

error rate on the validation set to decide whether one architecture design is better than 

another during the exploration phase. Since there is a variation in performance on the 

same architecture from one validation set to another, the model design cannot always be 

generalized. Therefore, we present a new objective function that exploits information 

from the error rate (Err) on the validation set as well as the correlation results (𝐶𝑜𝑟𝑟𝑅𝑒𝑠) 

obtained from deconvnet. The new objective function can be written as: 
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𝑓(𝜆) = 𝜂(1 − 𝐶𝑜𝑟𝑟𝑅𝑒𝑠) + (1 − 𝜂) 𝐸𝑟𝑟 (3.3) 

where 𝜂 is a correlation coefficient parameter measuring the importance of 𝐸𝑟𝑟and 

𝐶𝑜𝑟𝑟𝑅𝑒𝑠. The key reason to subtract 𝐶𝑜𝑟𝑟𝑅𝑒𝑠 from one is to minimize both terms of the 

objective function. We can set up the objective function in Equation (3.3) as an 

optimization problem that needs to be minimized. Therefore, the objective function aims 

to find a CNN architecture that minimizes the classification error and provides a high level 

of visualization. We use the NMM to guide our search into a promising direction for 

discovering iteratively better-performing CNN architecture designs by minimizing the 

proposed objective function. 

3.1.5  Nelder Mead Method  

The Nelder-Mead algorithm (NMM), or simplex method [98], is a direct search 

technique widely used for solving optimization problems based on the values of the 

objective function when the derivative information is unknown. NMM uses a concept 

called a simplex, which is a geometric shape consisting of n + 1 vertices for optimizing n 

hyperparameters. First, NMM creates an initial simplex that is generated randomly. In 

this framework, let [Z1, Z2,…, Zn+1] refer to simplex vertices, where each vertex presents 

a CNN architecture. The vertices are sorted in ascending order based on the value of 

objective functions f(Z1)  f(Z2) … f(Zn+1) so that Z1 is the best vertex, which provides 

the best CNN architecture, and Zn+1 is the worst vertex. NMM seeks to find the best 

hyperparameters * that designs a CNN architecture that minimizes the objective function 

in Equation 3.3 as follows: 
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𝜆∗ = arg min
𝜆∈Ψ

𝑓(𝜆) (3.4) 

The search is performed based on four basic operations: reflection, expansion, 

contraction, and shrinkage, as shown in Figure 3.4. Each is associated with a scalar 

coefficient of α (reflection), β (expansion), γ (contraction), and δ (shrinkage). In each 

iteration, NMM tries to update a current simplex to generate a new simplex which 

decreases the value of the objective function. NMM replaces the worst vertex with the 

best that has been found from reflected, expanded or contracted vertices. Otherwise, all 

vertices of the simplex, except the best, will shrink around the best vertex. These 

processes are repeated until the stop criterion is accomplished. The vertex producing the 

lowest objective function value is the best solution that is returned. The main challenge 

in finding a high-performing CNN architecture is the execution time and, 

correspondingly, the number of computing resources required. We can apply our 

optimization objective function with any derivative-free algorithm such as genetic 

algorithms, particle swarm optimization, Bayesian optimization, and the Nelder-Mead 

method, etc. The reason for selecting NMM is that it is faster than other derivative-free 

optimization algorithms, because in each iteration, only a few vertices are evaluated. 

Further, NMM is easy to parallelize with a small number of workers to accelerate the 

execution time. 

During the calculation of any vertex of NMM, we added some constraints to make 

the output values positive integers. The value of 𝐶𝑜𝑟𝑟𝑅𝑒𝑠  is normalized between the 

minimum and maximum value of the error rate in each iteration of NMM. This is critical 

because it affects the value of 𝜂 in Equation (3.3). 
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Figure 3.4. Nelder Mead method operations: reflection, expansion, contraction, and shrinkage. 

Below, we provide details of our proposed framework based on the serial NMM 

and the new objective function in Alg. 3.2 to obtain a good CNN architecture.     

Algorithm 3.2. The Proposed Framework Pseudocode with Serial NMM 

1: Input: n: Number of hyperparameters 

2: Input: α, ρ, γ, σ: reflection, expansion, contraction and shrink coefficients 

3: Output: Best vertex (𝑍 [1]) found  

4: Create initial Simplex (𝑍) with n+1 vertices: 𝑍1,n+1 

5: Determine training sample TS using RMHC 

6: Initialize the Simplex vertices (𝑍1:𝑛+1) randomly from Table 4.1 

7: Train and evaluate each vertex of 𝑍 according Alg. 3.1 

8: While stop criterion not met 

9: Scale values of 𝐶𝑜𝑟𝑟𝑅𝑒𝑠between the max and min of Err of all vertices of   

(𝑍.Compute f (𝑍i) based on Equation. 33. for all vertices  

10: 𝑍 = sort vertices of current vertex so that f(𝑍 1) , f(𝑍 2),…, f(𝑍 n+1)  in the 

descending 

     order. 

11: Set 𝐵 = 𝑍1, 𝐴 = 𝑍𝑛, 𝑊 = 𝑍𝑛+1 

12: Compute centroid vertex without worst    vertex 𝐶=i=1, n (𝑍 c/n) 

13: Compute reflection: 𝑅=𝐶+ α(𝐶 - 𝑊).Train f(𝑅) according to Alg. 3.1 
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14: Scale 𝐶𝑜𝑟𝑟𝑅𝑒𝑠 of  f(𝑅) 

15: Compute new accuracy based on Equation. 3.3. 

16: Scale values of 𝐶𝑜𝑟𝑟𝑅𝑒𝑠between the max and min of Err of all vertices of  

   (𝑍.Compute f (𝑍i) based on Equation. 33. for all vertices  

17: If f(𝐵)<f(𝑅) < f(𝑍)  

18: 𝑍n+1= 𝑅 

19: Else 

20 If f(𝑅) f(𝐵)  

21 Expansion 𝐸= 𝑅+ γ(𝑅- 𝐶) 

22: Train f(𝐸) according to Alg. 3.1 

23: Scale 𝐶𝑜𝑟𝑟𝑅𝑒𝑠 of f(𝐸) 

24: If f(E)< f(𝑅) 

25: 𝑍n+1= 𝐸 

26: Else  

27: 𝑍n+1= 𝑅 

28: Else  

29: b=true 

30: If ( f(𝑅)f(𝐴) 

31: Contraction 𝐶𝑜𝑛= ρ𝑅+(1- ρ) 𝐶 

32: Train f(𝐶𝑜𝑛) according to Alg. 3.1 

33: Scale 𝐶𝑜𝑟𝑟𝑅𝑒𝑠 of f(𝐶𝑜𝑛) 

34: If f(𝐶𝑜𝑛)<f(𝑅) 

35: 𝑍n+1= 𝐶𝑜𝑛 

36: b=false 

37: If b=false 

38: shrink toward the best solution 

39: for i= 2 to n+1: 

40: 𝑍i= 𝐵+ σ (𝑍i- 𝐵) 

41: Train  𝑍i according to Alg. 3.1 

42: end while 

43: Return 𝑍 [1] 
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3.1.1  Accelerating Processing Time with Parallelism 

Since serial NMM executes the vertices sequentially one vertex at a time, the 

optimization processing time is very expensive for deep CNN models. For this reason, it 

is necessary to utilize parallel computing to reduce the execution time; NMM provides a 

high degree of parallelism since there are no dependences between the vertices. In most 

iterations of NMM, the worst vertex is replaced with either the reflected, expanded, or 

contracted vertex. Therefore, these vertices can be evaluated simultaneously on 

distributed workers. There are two main types of parallelism models: asynchronous 

master-slave and synchronous master-slave.  

Asynchronous master-slave model: The workers never stop to wait for any slower 

workers. However, it does not work exactly like a serial NMM. This technique is not 

suitable for our work because in some steps in the NMM, there is dependence in the 

calculation that requires all workers to stop. In addition, the implementation requires strict 

conditions and complex programming to ensure the program works properly. The final 

result is different than the serial NMM. 

We implement a synchronous master-slave NMM model, which distributes the 

running of several vertices on workers while the master machine controls the whole 

optimization procedure. The master cannot move to the next step until all of the workers 

finish their tasks. A synchronous NMM has the same properties as a serial NMM, but it 

works faster. A serial NMM requires small changes in the implementation to work in a 

parallel way. 

Recently, web services [68] provide a powerful technology for interacting 
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between distributed applications written in different programming languages and running 

on heterogeneous platforms, such as operating systems and hardware over the internet 

[69,70]. There are two popular methods for building a web service application to interact 

between distributed computers: Simple Object Access Protocol (SOAP) and 

Representational State Transfer (RESTful). We use RESTful [71] to create web services 

because it is simple to implement as well as lightweight, fast, and readable by humans; 

unlike RESTful, SOAP is difficult to develop, requires tools and is heavyweight. A 

RESTful service submits CNN hyperparameters into worker machines. Each worker 

builds and trains the architecture, computes the error rate and the correlation coefficient 

results, and returns both results to the master computer. Moreover, when shrinkage is 

selected, we run three vertices at the same time. This has a significant impact in reducing 

the computation time. Our framework is described in Algorithm 3.3, which details and 

integrates the techniques for finding the best CNN architecture. 

Algorithm 3.3. The Proposed Framework Pseudocode with Parallel NMM 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

Input: n: Number of hyperparameters 

Output: best vertex (𝑍[1]) found that minimizes the objective function in 

Equation 3.3.  

Determine training sample TS using RMHC 

Initialize the Simplex vertices (𝑍1:𝑛+1) randomly from Table 4.1 

L = ⌈(𝑛 + 1)/3⌉ # 3 is the number of workers  

For j = 1 to L 

Train each 3 vertices of 𝑍1,n+1 in parallel according to Alg. 3.1  

For l= 1 to Max_ _iterations:  

Normalize values of 𝐶𝑜𝑟𝑟𝑅𝑒𝑠 between the max and min of Err of vertices of 

(𝑍) 

Compute 𝑓(𝑍𝑖) based on Equation 3.3. for all vertices i = 1:n+1 
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14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

29: 

30: 

31: 

32: 

33: 

34: 

35: 

36: 

37: 

38: 

39: 

40: 

41: 

42: 

43: 

44: 

45: 

46: 

47: 

Z = order the vertices so that f(𝑍1)  f(𝑍2),…,< f(𝑍n+1). 

Set 𝐵 = 𝑍1, 𝐴 = 𝑍𝑛, 𝑊 = 𝑍𝑛+1 

Compute the centroid 𝐶 of vertices without considering the worst vertex:𝐶 =
1

𝑛
∑ 𝑍𝑖

𝑛
𝑖=1  

Compute reflected vertex: 𝑅 = 𝐶 + α(𝐶 − 𝑊) 

Compute Expanded vertex 𝐸 = 𝑅 + γ (𝑅 − 𝐶) 

Compute Contracted vertex 𝐶𝑜𝑛 = ρ𝑅 + (1 − ρ)𝐶 

Train R, E, and Con simultaneously on workers 1,2, and 3 according to Alg. 

3.1 

Normalize 𝐶𝑜𝑟𝑟𝑅𝑒𝑠  of 𝑅, 𝐸, and 𝐶𝑜𝑛 between the max and min of Err of 

vertices of (𝑍) 

Compute 𝑓(𝑅), 𝑓(𝐸), and 𝑓(𝑐𝑜𝑛) based on Equation (3.3) 

If f(B) > R < W 

𝑍𝑛+1 = W 

Else If f(R)  f(B)  

If f(E) < f(R) 

𝑍𝑛+1 = E 

Else 

𝑍𝑛+1 = R 

Else 

d = true 

If f(R) ≤ f(A) 

If f(Con)  f(R) 

𝑍𝑛+1 = Con 

d = false 

If d = true 

shrink toward the best vertex direction 

L = ⌈𝑛/3⌉  

For k = 2 to n+1: # do not include the best vertex 

𝑍𝑘 = B + σ(𝑍𝑘−B) 

For j = 1 to L: 

Train each 3 vertices of (𝑍2:𝑛+1) in parallel on workers 1, 2, and 3 

according to Alg. 3.1 

Return 𝑍[1] 
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3.2 Analysis of optimized instance selection algorithms on large 

datasets with CNNs 

When we implemented RMHL according to [74], the execution time of 

calculating the training sample 𝑇𝑆  is very expensive. This is because each image in 

𝑇𝑇𝑆 computes the accuracy using 1-NN for all images in the 𝑇𝑆 . However, adding or 

removing an image will affect the neighbors of the image that was added or removed in 

the testing set 𝑇𝑇𝑆. Thus, there is no need to calculate the accuracy of all images in the 

testing set 𝑇𝑇𝑆. We improved RMHC to make it works faster compared to the original 

RMHC with the same accuracy as follows: we first define k with a big value (e.g. k50). 

Once the training sample is selected randomly from the training set with size 𝑁𝑆. In each 

iteration of 𝑁𝑖𝑡𝑒𝑟: choose one image 𝐼𝑖𝑚𝑔1 randomly from 𝑇𝑆 to be removed and replaced 

with another image 𝐼𝑖𝑚𝑔2 that selected randomly from (𝑇𝑇𝑅 − 𝑇𝑆 ). Then, we find the k-

NN images of 𝐼𝑖𝑚𝑔1 in the testing set 𝑇𝑇𝑆 and store them in (A). Also, we find the k-NN 

images of 𝐼𝑖𝑚𝑔2  in the testing set 𝑇𝑇𝑆 and store them in (B). Now, we compute the 

accuracy of A and B before and after the change. We have two cases as follows: 

 Case 1: before the change: 

Accuracy1= accuracy of A +accuracy of B using 1-NN 

 Case 2: After the change: 

Accuracy2= accuracy of A +accuracy of U using 1-NN 

If accuracy2 > accuracy1 maintains the change, otherwise, roll-backed change. This 

means we compute the accuracy of 4k images of the testing set instead of all the testing 
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set |𝑇𝑇𝑆| (see Algorithm 3.4). The experimental results show that our approach is much 

faster than the original RMHC with the same accuracy. We also investigated to study the 

impact of changing of the value of k on the running-speed and the accuracy. 

Algorithm 3.4. Our proposed approach of RMHC 

1: Inputs: Training set 𝑇𝑇𝑅 ,and  Testing set (𝑇𝑇𝑆) 

2: Inputs: 𝑁𝑆, 𝑁𝑖𝑡𝑒𝑟, and k (where k is a large number k50) 

3: Outputs: 𝑇𝑆 is 𝑎 subset or training sample  (𝑇𝑆  𝑇𝑇𝑅) 

4: 𝑁𝑆   instances or images will be selected randomly from 𝑇𝑇𝑅  to represent the 

training sample or subset 𝑇𝑆   

5: For i=1 to 𝑁𝑖𝑡𝑒𝑟 do: 

6: Select one image (𝐼𝑖𝑚𝑔1 ) randomly from 𝑇𝑆 to be removed 

7: Select one image (𝐼𝑖𝑚𝑔2 ) randomly from (𝑇𝑇𝑅 −𝑇𝑆 ) to be added to  𝑇𝑆  

8: Find the 𝑘 − 𝑁𝑁 images of  𝐼𝑖𝑚𝑔1 in testing set 𝑇𝑇𝑆  and store them in (A) 

9: Find the 𝑘 − 𝑁𝑁 images of  𝐼𝑖𝑚𝑔2 in testing set 𝑇𝑇𝑆  and store them in (B) 

10: //Before the change: 

11: Compute the accuracy of A and B (Acc1=Acc of A + Acc of B) 

12: //After the change 

13: Compute the accuracy of A and B (Acc2=Acc of A + Acc of B) 

14: If Acc1>Acc2 Then: 

15: Keep the change 

16: Else: 

17: Roll-back the change      

18: End For 

19: Return 𝑇𝑆 

 


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3.3 A Deep Architecture for Face Recognition based on Multiple 

Feature Extractors 

The architecture of our combined system is shown in Figure 3.5 We create 

different feature extractors such that each yields similar size feature vectors i.e., k features 

from each approach. This is done so that each feature type has equal importance until the 

final classification. The output of the three feature extractors i.e.,   PCA, LBP+PCA and 

LBP+NN is combined to produce a new feature vector of length 3k. Note that the outputs 

from the LBP feature extractor are further fed into another PCA and NN to ensure that 

each classifier produces k features. The outputs of NN are taken from the neurons in the 

hidden layer after training it on the test dataset. The feature vector is fed into a Stacked 

Sparse Autoencoder (SSA) as followed by a softmax classification stage. We provide 

details of the different modules in our recognition system in the following subsections. 

 

Figure 3.5. Our proposed system for face recognition 

3.3.1  Principle Component Analysis (PCA) 

PCA [99] is a dimensionality reduction algorithm, which uses a linear 
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transformation to convert high-dimensional  data into low-dimensional data by finding 

the directions that maximize the variation between the data, by keeping the most 

information in high dimensions. 

    In PCA, a given M training set [𝑥1,𝑥2, … … , 𝑥𝑀] is transformed into n×1 vectors. 

The covariance (C) of the combined data matrix is computed as: 

 

𝐶 = ∑(𝑥𝑖 − 𝑥̅

𝑀

𝑖=1

)(𝑥𝑖 − 𝑥̅)𝑇 (3.5) 

 where x is the mean of M training samples. Singular value decomposition (SVD) 

of covariance (C) is used for computing Eigen values and Eigen vectors. To achieve 

dimensionality reduction, only k Eigen vectors that correspond to the largest Eigen values 

are selected. These Eigen vectors are combined into a matrix U= [u1, u2,……..,uk]. Each 

Eigen vector in the U matrix is referred to as an Eigen face. We then project each data x 

onto the k Eigen faces to reduce the input dimensionality of n to k dimensional subspace 

as shown in Equation 3.6. 

 𝑃 = 𝑈𝑇(𝑥 − 𝑥̅) (3.6) 

3.3.2  Local Binary Pattern (LBP) 

Originally, LBP [100] was developed as a texture descriptor.  The main idea of 

LBP is that each center pixel will be compared with surrounding pixels. If the pixel value 

of the center is greater or equal to its neighbor, then it is given a value of 1, otherwise, a 

value of 0. The 1 or 0 assignment of each neighboring pixel of the center pixel is 
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combined into a binary number by selecting one neighbor pixel as a start point and then 

moving in a clockwise direction as shown Figure 3.6. The center pixel is then assigned 

this binary pattern. 

 In face recognition, LBP is used to produce a global description of the face by 

dividing the face into (m× n) blocks. Each block generates a local texture descriptor 

producing 59 histogram vectors for sampling in a 3×3 grid i.e.., each center pixel has 8 

neighbors; referred to as 8 points with radius 1 - P(8, 1). The final vector for each image 

is equal to m × n × 59 [18].  To make the feature size of each feature extractor to k features, 

the outputs of LBP are further fed to a PCA, and separately to an NN to make each 

classifier’s contribution equal in terms of number of features. 

 

Figure 3.6. LBP operator computation for  a 3×3 grid [101] 

3.3.3  Stacked Sparse Autoencoder (SSA)  

Stacked Sparse Autoencoder (SSA) is a neural network consisting of multiple 

layers of SA in which the outputs of each layer are connected to the inputs of the 

subsequent layer. The outputs of the last hidden layer are fed into the softmax classifier 
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for the classification task to estimate the probability of each class label in 𝐾 classes as 

shown in equation 2.14  

In this work, we construct an SSN with two hidden layers of SA (h=2) as 

illustrated in Figure 3.7. Each hidden layer of SSA is unsupervised, pre-training 

separately via SA in order to learn discriminative features on the input from the previous 

layer. So, after training the hidden layer using SA, we take the weights and biases of the 

encoder layer in the SA for an initialization of the hidden layer of the SSA. Once all 

weights and biases are initialized via SA, the second stage of SSA is a supervised fine-

tune to train the entire network similar to the traditional neural network to minimize the 

prediction error on a supervised task to map the inputs into the desired outputs as possible.  

Algorithm3.4 describes the steps for training SSA.  

 

Figure 3.7. An architecture of stacked sparse autoencoder (SSA) that consists of two hidden layers. 
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Algorithm 3.4. Training SSA procedure 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

Inputs: joint feature vectors of the database, 𝜌,  , h 

Step 1: pre-training hidden layers: 

For i= 0 to h : # number of hidden layers 

Initialize (Wi, bi) randomly for hidden layer h=i 

Find parameters of (Wi, bi) for h=i using SA by minimizing Equation 2.21 

End For 

Step 2: Training softmax classifier 

Train the softmax classifier (the inputs are the  

Outputs of last hidden layer) 

Step 3: Fine-tune the whole network with supervised learning 

Backpropagation with gradient descent 
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CHAPTER 4:  IMPLEMENTATION AND RESULTS 

4.1 A Framework for Designing the Architectures of CNNs 

4.1.1  Datasets 

The evaluation of our framework is done on the CIFAR-10, CIFAR-100, and 

MNIST datasets. The CIFAR-10 dataset [102] has 10 classes of 32 × 32 color images. 

There are 50K images for training, and 10K images for testing. CIFAR-100 [102] is the 

same size as CIFAR-10, except the number of classes is 100. Each class of CIFAR-100 

contains 500 images for training and 100 for testing, which makes it more challenging. 

We apply the same preprocessing on both the CIFAR-10 and CIFAR-100 datasets, i.e., 

we normalize the pixels in each image by subtracting the mean pixel value and dividing 

it by the standard deviation. Then we apply ZCA whitening with an epsilon value of 0.01 

for both datasets. Another dataset used is MNIST [33], which consists of the handwritten 

digits 0–9. Each digit image is 28 × 28 in size, and there are 10 classes. MNIST contains 

60K images for training and 10K for testing. The normalization is done similarly to 

CIFAR-10 and CIFAR-100, without the ZCA whitening. 

The previous works cited in our literature conduct experiments on CNN 

architecture design using four image classification datasets: MNIST, CIFAR-10, CIFAR-

100, and SVHN. However, the previous works usually select and test the performance of 

their works on two or three of these datasets only.  The advantage of selecting these 
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datasets is that we can compare our results with others instead of implementing their 

approaches.  

 

 

Figure 4.1. CIFAR-10 dataset, each rows shows different images of one class. 

4.1.2   Experimental Setup 

Our framework is implemented in Python using the Theano library [103] to train 

the CNN models. Theano provides automatic differentiation capabilities to compute 

gradients and allows the use of GPU to accelerate the computation. During the exploration 

phase via NMM, we select a training sample TS using an RMHC algorithm with a sample 

size based on a margin error of 1 and confidence level of 95%. Then, we select 8000 

images randomly from (TTR–TS) for validation set TV. 

Training Settings: We use SGD to train CNN architectures. The final learning 

rate is set to 0.08 for 25 epochs and 0.008 for the last epochs; these values are selected 

after doing a small grid search among different values on the validation set. We set the 
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batch size to 32 images and the weight decay to 0.0005. The weights of all layers are 

initialized according to the Xavier initialization technique [54], and biases are set to zero. 

The advantage of Xavier initialization is that it makes the network converge much faster 

than other approaches. The weight sets it produces are also more consistent than those 

produced by other techniques. We apply ReLU with all layers and employ early stopping 

to prevent overfitting in the performance of the validation set. Once the error rate 

increases or saturates for a number of iterations, the model stops the training procedure. 

Since the training time of a CNN is expensive and some designs perform poorly, early 

stopping saves time by terminating poor architecture designs early. Dropout [11] is 

implemented with fully-connected layers with a rate of 0.5. It has proven to be an 

effective method in combating overfitting in CNNs, and a rate of 0.5 is a common 

practice. During the exploration phase of NMM, each of the experiments are run with 35 

epochs. Once the best CNN architecture is obtained, we train it with the training set TTR 

and evaluate it on a testing set with 200 epochs. 

Nelder Mead Settings: The total number of hyperparameters n is required to 

construct the initial simplex with n + 1 vertices. However, this number is different for 

each dataset. In order to define n for a given dataset, we initialize 80 random CNN 

architectures as an additional step to return the maximum number of convolutional layers 

(Cmax) in all architectures. Then, according to Equation 2.15, the number of 

hyperparameters n is given by: 

n = Cmax × 4 + the max number of fully-connected layers. (4.1) 
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NMM will then initialize a new initial simplex (Z0) with n + 1 vertices. For all 

datasets, we set the value of the correlation coefficient parameter to 𝜂 = 0.20. We select 

at random Nfm = 10 feature maps from the last convolutional layer to visualize their 

learned features and Nimg = 100 images from the training sample to assess the 

visualization. The number of iterations for NMM is 25.  

Table 4.1 summarizes the hyperparameter initialization ranges for the initial 

simplex vertices (CNN architectures) of NMM. The number of convolutional layers is 

calculated automatically by subtracting the depth from the number of fully-connected 

layers. However, the actual number of convolutional layers is controlled by the size of 

the input image, filter sizes, strides and pooling region sizes according to Equations 2.8 

and 2.9. Some CNN architectures may not result in feasible configurations based on initial 

hyperparameter selections, because after a set of convolutional layers, the size of feature 

maps (W) or pooling (P) may become 1, so the higher convolutional layers will be 

automatically eliminated. Therefore, the depth varies through CNN architectures; this 

will be helpful to optimize the depth. There is no restriction on fully-connected layers. 

For example, the hyperparameters of the following CNN architecture are initialized 

randomly from Table 4.1, which consists of six convolutional layers and two fully-

connected layers as follows: 

[[85, 3, 2, 1], [93, 5, 1, 1], [72, 3, 2, 2], [61, 7, 2, 1], [83, 7, 2, 3], [69, 3, 2, 3], 

[715, 554]] 

For an input image of size 32 × 32, the framework designs a CNN architecture 
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with only three convolutional layers because the output size of a fourth layer would be 

negative. Thus, the remaining convolutional layers from the fourth layer will be deleted 

automatically by setting them to zeros as shown below: 

[[85, 3, 2, 1], [93, 5, 1, 1], [72, 3, 2, 2], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [715, 

554]] 

Hyperparameter Min. Max. 

Depth 5 10 

Number of fully-connected layers 1 2 

Number of filters 50 150 

Kernel sizes 3 11 

Number of pooling layers 4 7 

Pooling region sizes 1 4 

Number of neurons in fully-connected layers 250 800 

Table 4.1. Hyperparameter initialization ranges. 

4.1.3  Results and Discussion 

First, we validate the effectiveness of the proposed objective function compared to 

the error rate objective function. After initializing a simplex (Z0) of NMM, we optimize 

the architecture using NMM based on the proposed objective function (error rate as well 

as visualization). Then, from the same initialization (Z0), we execute the NMM based on 

the error rate objective function alone by setting 𝜂 to zero. Table 4.2 compares the error 

rate of five experiment runs obtained from the best CNN architectures found using the 

objective functions presented above on the CIFAR-10 and CIFAR-100 datasets 

respectively. The results illustrate that our new objective function outperforms the 



 

 

59 

 

optimization obtained from the error rate objective function alone. The error rate averages 

of 15.87% and 40.70% are obtained with our objective function, as compared to 17.69% 

and 42.72% when using the error rate objection function alone, on CIFAR-10 and 

CIAFAR-100 respectively. Our objective function searches the architecture that minimizes 

the error and improves the visualization of learned features, which impacts the search space 

direction, and thus produces a better CNN architecture. 

Expt. 

Num. 

Error Rate Based on the Error 

Objective Function 

Error Rate Based on Our 

Objective Function 

Results comparison on CIFAR-10 

1 18.10% 15.27% 

2 18.15% 16.65% 

3 17.81% 16.14% 

4 17.12% 15.52% 

5 17.27% 15.79% 

Avg. 17.69% 15.87% 

Results comparison on CIFAR-100 

1 42.10% 41.21% 

2 43.84% 40.68% 

3 42.44% 40.15% 

4 42.98% 41.37% 

5 42.26% 40.12% 

Avg. 42.72% 40.70% 

Table 4.2. Error rate comparisons between the top CNN architectures obtained by our objective function 

and the error rate objective function via NMM. 

We also compare the performance of our approach with existing methods that did 

not apply data augmentation, namely hand-designed architectures by experts, random 
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search, genetic algorithms, and Bayesian optimization. For CIFAR-10, [102] reported 

that the best hand-crafted CNN architecture design tuned by human experts obtained an 

18% error rate. In [25], genetic algorithms are used to optimize filter sizes and the number 

of filters for convolutional layers; it achieved a 25% error rate. In [104], SMAC is 

implemented to optimize the number of filters, filter sizes, pooling region sizes, and fully-

connected layers with a fixed depth. They achieved an error rate of 17.47%. As shown in 

Table 4.3, our method outperforms others with an error rate of 15.27%. For CIFAR-100, 

we implement random search by picking CNN architectures from Table 4.1, and the 

lowest error rate that we obtained is 44.97%. In [104], which implemented SMAC, an 

error rate of 42.21% is reported. Our approach outperforms these methods with an error 

rate of 40.12%, as shown in Table 4.3. 

Method CIFAR-10 CIFAR-100 

Human experts design [102] 18% - 

Random search (our implementation) 21.74% 44.97% 

Genetic algorithms [25] 25% - 

SMAC [104] 17.47% 42.21% 

Our approach 15.27% 40.12% 

Table 4.3. Error rate comparison for different methods of designing CNN architectures on 

CIFAR-10 and CIFAR-100. These results are achieved without data augmentation. 

In each iteration of NMM, a better-performing CNN architecture is potentially 

discovered that minimizes the value of the objective function; however, it can get stuck 

in a local minimum. Figure 4.2 shows the value of the best CNN architecture versus the 
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iteration using both objective functions, i.e., the objective function based on error rate 

alone and our new, combined objective function. In many iterations, NMM paired with 

the error rate objective function is unable to pick a new, better-performing CNN 

architecture and gets stuck in local minima early. The number of architectures that yield 

a higher performance during the optimization process is only 12 and 10 out of 25, on 

CIFAR-10 and CIFAR-100 respectively. In contrast, NMM with our new objective 

function is able to explore better-performing CNN architectures with a total number of 

19 and 17 architectures on CIFAR-10 and CIFAR-100 respectively, and it does not get 

stuck early in a local minimum, as shown in Figure 4.2 (b). The main hallmark of our 

new objective function is that it is based on both the error rate and the correlation 

coefficient (obtained from the visualization of the CNN via deconvnet), which gives us 

flexibility to sample a new architecture, thereby improving the performance. 

 

(a) 

 

 

(b) 

Figure 4.2. Objective functions progress during the iterations of NMM. (a) CIFAR-10; (b) CIFAR-100. 

We further investigated the characteristics of the best CNN architectures obtained by 

both objective functions using NMM on CIFAR-10 and CIFAR-100. We took the average 
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of the hyperparameters of the best CNN architectures. As shown in Figure 4.3 (a), CNN 

architectures based on the proposed framework tend to be deeper compared to 

architectures obtained by the error rate objective function alone. Moreover, some 

convolutional layers are not followed by pooling layers. As a result, we found that 

reducing the number of pooling layers shows a better visualization, and results in adding 

more layers. On the other hand, the architectures obtained by the error objective function 

alone result in every convolutional layer being followed by a pooling layer. 

 
Figure 4.3. The average of the best CNN architectures obtained by both objective functions. (a) The 

architecture averages for our framework; (b) The architecture averages for the error rate objective function. 

We compare the run-time of NMM on a single computer with a parallel NMM 

algorithm on three distributed computers. The running time decreases almost linearly (3×) 

as the number of workers increases, as shown in Table 4.4. In a synchronous master-slave 

NMM model, the master cannot move to the next step until all of the workers finish their 

jobs, so other workers wait until the biggest CNN architecture training is done. This 

creates a minor delay. In addition, the run-time of Corr based on Equation 3.1 is 0.05 
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second; when based on FFT in Equation 3.2, it is 0.01 second. 

Method 
Single Computer Execution 

Time 
Parallel Execution Time 

CIFAR-10 48 h 18 h 

CIFAR-100 50 h 24 h 

MNIST 42 h 14 h 

Table 4.4. Comparison of execution time by serial NMM and parallel NMM for Architecture Optimization. 

We compare the performance of our approach with state-of-the-art results and 

recent works on architecture search on three datasets. As seen in Table 4.5, we achieve 

competitive performance on the MNIST dataset in comparison to the state-of-the-art 

results, with an error rate 0.42%. The results on CIFAR-10 and CIFAR-100 are obtained 

after applying data augmentation. Recent architecture search techniques [61-64] show 

good results; however, these promising results were only possible with substantial 

computation resources and a long execution time. For example, GA [63] used genetic 

algorithms to discover the network architecture for a given task. Each experiment was 

distributed to over 250 parallel workers. Ref. [61] used reinforcement learning (RL) to 

tune a total of 12,800 different architectures to find the best on CIFAR-10, and the task 

took over three weeks. However, our framework uses only three workers and requires 

tuning an average of 260 different CNN architectures in around one day. It is possible to 

run our framework on a single computer. Therefore, our approach is comparable to the 

state-of-the-art results on CIFAR-10 and CIFAR-100, because our results require 

significantly fewer resources and less processing time. Some methods such as Residential 
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Networks (ResNet) [105] achieve state-of-the-art results because the structure is different 

than a CNN. However, it is possible to implement our framework in ResNet to find the 

best architecture. 

Method MNIST CIFAR-10 CIFAR-100 

Maxout [106] 0.45% 9.38% 38.57% 

DropConnect [107] 0.57% 9.32% - 

DSN [108] 0.39% 8.22% 34.57% 

ResNet(110) [105] - 6.61% - 

CoDeepNEAT [62] - 7.3% - 

MetaQNN [64] 0.44% 5.9% 27.14% 

RL [61] - 6.0% - 

GA [63] - 5.4% 23.30% 

Our Framework 0.42% 10.05% 35.46% 

Table 4.5. Error rate comparisons with state-of-the-art methods and recent works on architecture design 

search. We report results for CIFAR-10 and CIFAR-100 after applying data augmentation and results for 

MNIST without any data augmentation. 

To test the robustness of the selection of the training sample, we compared a 

random selection against RMHC for the same sample size; we found that RMHC 

achieved better results by about 2%. We found that our new objective function is very 

effective in guiding a large search space into a sub-region that yields a final, high-

performing CNN architecture design. Pooling layers and large strides show a poor 

visualization, so our framework restricts the placement of pooling layers: It does not 

follow every convolutional layer with a pooling layer, which shrinks the size of the 

strides. Moreover, this results in increased depth. We found that the framework allows 

navigation through a large search space without any restriction on depth until it finds a 
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promising CNN architecture. Our framework can be implemented in other problem 

domains where images and visualization are involved, such as image registration, 

detection, and segmentation. 

4.1.4  Statistic Power Analysis 

Power analysis can be used to calculate the required minimum sample size. We 

use the power analysis to estimate that our sufficient sample size of the data can attain 

adequate power. We used the result of our first experiment to conduct the power analysis. 

The power analysis also allows us to examine the alternative hypothesis. 

There are two kinds of statistical hypotheses: the null hypothesis (H0) and the 

alternative hypothesis (H1). The result of the exam will be: Accept H0 or reject H0. The 

statistical hypothesis of our work is that our proposed objective function performs better 

than the error rate objective function (Equation 3.3). There are several types of tests, we 

used the two-tailed test.  

The sample size (S) is computed as follows: 

𝑆 =
𝑁 ∗ 𝑃(1 − 𝑝)

[𝑁 − 1 ∗ (
𝑑2

𝑧2)] + 𝑝(1 − 𝑝)
 

(4.2)  

Where d is the effect size, p is the required power (commonly 80%), z is the t-

value of 𝛼/2. N is the total number of the training set. In our case, the values of N is 50,000 

for CIFAR-10, p=80%, d=3%, Significance (α) = 5%. Level of confidence (1- α) = 95%, 

z=1.96. According to Equation 4.2, the sample size (S) is calculated as follows: 
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𝑆 =
50,000 ∗ 0.8(1 − 0.8)

[50,000 − 1 ∗ (
0.032

1.962)] + 0.8(1 − 0.8)
=

8,000

1.4615
≃ 5474 

  

According to the result, the size of 5474 is adequate. Then, the parameters below are 

calculated in order to make the decision of the hypothesis. 

 Mean ( 𝑋̅ ) = 
 ∑ 𝑥

𝑛
 =0.8473 

 Variance (𝜎2)= 
 ∑(𝑥−𝑥 ̅)2

𝑛
= 0.1293 

 Standard Deviation (𝜎)=√𝜎=0.3597 

 Significance (𝛼)=0.05 

 Level of confidence (1 − 𝛼)=95% 

 Critical t =1.653 

 Standard Error (SE)= 
𝜎

√𝑆
 = 

0.3597

√5474
=0.00486 

 Hypothesis (Ho) = 50% 

 t value =  
𝑋̅−𝐻0

𝑆𝐸
=

0.8473−0.5

0.00486
= 71.46 

The H0 is rejected when the t value > Critical t. In our case, the t value (71.46) > 

critical t (1.653). Thus, it means Reject H0 and Accept H1. Furthermore, the power 

analysis shows that a sample set of 5474 is sufficient and can prove that our proposed 

method is efficient. 
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4.2 Analysis of optimized instance selection algorithms on large 

datasets with CNNs  

4.2.1  Dataset 

We evaluate instance selection methods on CIFAR-10 with the same network 

architecture. We split training set into two parts: 40000 images for training and 10000 

images for validation.  The preprocessing step only normalizes pixels values between [0, 

1].  

4.2.2  Training methodology 

Most of training parameters are similar  Krizhevsky et al. [1]. We trained our 

network using stochastic gradient descent (SGD) with mini-batch size of 32 instances, 

weight decay is 0.0005, we initialized learning rate at 0.01 for iteration <100000, 

otherwise 0.001 (iteration= number of training batches × epoch +mini batch index). We 

initialized the weights of all layers with mean-zero normal distribution with standard 

deviation 0.05 and all biases equal to 0. Dropout rate is 0.5 for fully-connected layers and 

ReLU activation function for all layers. The total number of epochs is 120 for training 

the network. All inputs were normalized between [0, 1]. Finally the last layer is softmax. 

The code is written by python for different instance selection methods and CNNs.  

The CNN architecture of our implementation is summarized in Table 4.6. This 

architecture is uniform for all obtained subsets.  
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Layer No. Layer type Feature map size Kernel size 

1 Color image 32×32×3 - 

2 Convolutional 28×28×30 5×5 

3 Max pooling 14×14×30 2×2 

4 Convolutional 10×10×40 5×5 

5 Max pooling 5×5×40 2×2 

6 Full connected 200×1 - 

7 Softmax layer 10×1 - 

Table 4.6. Uniform CNN architecture summary. 

4.2.3  Experimental results and discussion  

Table 4.7 shows the accuracy of different instance selection methods. Results are 

obtained from the average of five experiments with the same architecture as shown in 

Table 4.6. The reduction rate is based on the technique. ConNN gives the best accuracy 

compared to other instance selection algorithms. It retains noisy instances; this means 

that CIFAR-10 contains a lot of noisy and border instances. For this reason, the reduction 

rate is only 25%. In contrast, the reduction rate in ENN is high, but the accuracy is low 

(48.16%). ENN makes a smooth boundary between the classes.  

Method # instances in S  Reduction% Acc. % 

Entire Dataset 40000  0 % 73.02% 

Random subset  8632  78.42 % 58.21% 

CNN 30243  24.39 % 69.36% 

ENN 8632  78.42 % 48.16% 

All kNN 19750  50.62 % 62% 

RMHC 8632  78.42 % 59.42 

Clustering 8632  78.42 % 59.42 

Table 4.7.  Illustrates the accuracy of different instance 
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We compared the running time of the original RMHC with our improved 

approach. Table 4.8 shows the running time of one iteration (replacement) for both 

approaches. As shown, the running time of our approach takes 7.9 seconds and 150.86 

seconds on the original RMHC.  

Method  Time in Seconds 

Original RMHC 150.86 

Our proposed approach of RMHC 7.9 

Table 4.8 Running time comparison between original RMHC and our proposed approach of RMHC for one 

iteration.  

The running speed can be computed in the following equation: 

 
𝑠𝑝𝑒𝑒𝑑 =

|𝑇𝑠| × |𝑇𝑇𝑆| × 𝑁𝑖𝑡𝑒𝑟

4 × 𝑘 × |𝑇𝑠| × 𝑁𝑖𝑡𝑒𝑟
=

|𝑇𝑇𝑆|

4𝑘
 (4.3) 

Suppose k=100, the size of testing set is |𝑇𝑇𝑆|= 10,000, |𝑇𝑆|=3,000, and 𝑁𝑖𝑡𝑒𝑟 =

200 . The total number of operations for RMHC= |𝑇𝑇𝑆| × |𝑇𝑆 |× 

𝑁𝑖𝑡𝑒𝑟=10,000×3,000×200=6 × 109 while the total number of operations for our method 

= 4 × 𝑘 × |𝑇𝑆| × 𝑁𝑖𝑡𝑒𝑟= 4 × 200 × 3,000 × 100 = 24 × 107.  Based on Equation 4.3, 

the running speed of our approach is 25× faster than the original RMHC. We investigated 

further to find the relationship between the running speed and the value of k. As shown 

in Figure 4.4, we found that increasing the value of k reduces the running speed. The 

running speed of our approach is equal to the original RMHC when the value of k=2,500. 

Logically, it is correct because 4 × 𝑘 = 4 × 2,500 = 10,000 , which is equal to the 

testing set size |𝑇𝑇𝑆|.  
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Figure 4.4. The running speed with different values of k. 

We evaluated different types of instance selection methods in reducing the 

training set size in order to shorten the training time. Based on techniques that are 

evaluated, condensed nearest neighbor gave acceptable result compared to result of the 

entire dataset. We conclude from the comparison that retaining noisy instances is more 

important to get good accuracy. 

4.3 A Deep Architecture for Face Recognition Based on Multiple 

Feature Extractors  

4.3.1  Datasets   

The ORL (Olivetti Research Labs) database of faces [109] is a set of grayscale 

images, each with a size of 112 × 92 pixels. It consists of 400 images for 40 people. The 

images were taken under different lighting conditions, facial expressions and different 
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details, such as the subject wearing glasses. In our experiment, we specified the first 5 

images of each person for training and the remaining 5 for testing.  

The AR face database [110] has color images for 126 individuals (70 men and 56 

women). The images have high variation in facial expressions, illumination, and 

occlusion with scarves and sunglasses. The images were taken in two sessions separated 

by 2 weeks. Each session contains 13 images for each person. The first session was meant 

for training, whereas the second session for testing. We used the same images that were 

used in [111], in which all images were cropped and resized with 120 × 165 pixels for 50 

randomly-selected men and 50 randomly-selected women. 

4.3.2  Training setting 

The system was written in Python. We used gradient descent to train the neural 

networks, SA, and SSA. The value of the learning rate is set to 0.01 for all networks, with 

a weight decay of 0.0005 and momentum of 0.9. We initialized the weights according to 

the Xavier initialization technique [54], and biases are set to zero. The total number of 

epochs is 200. We apply sigmoid activation function to the layers. The number of features 

(k) is 150 and 250 on the ORL and AR databases respectively.  

In some classifiers, such as PCA and LBP, recognition is done by calculating the 

Euclidean distance (L2) between feature vectors in each testing image in the testing set 

with all training images. The minimum distance will be chosen as the recognized face. 

The activation function in our proposed approach is a sigmoid function (sigmoid in the 

range [0, 1]). Therefore, the outputs of PCA and LBP in the first stage will be normalized 
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between 0 and 1 before being forwarded into the NN or SSA.  

4.3.3   Experimental Results and Discussion  

Tables 4.9 and 4.10 show the results from a series of experiments designed to 

evaluate the effectiveness of our proposed system of combining MC with SSA. Table 4.9 

shows the results of different individual classifiers and MC methods. The results clearly 

show that our approach provides the highest accuracy compared to other techniques. After 

extracting feature vectors with length 3k, we also investigated whether we could replace 

some popular classifiers such as NN, Support Vector Machine (SVM) [112], and logistic 

regression [113] with SSA as a classifier in the last stage.  This comparison is necessary 

to show the effectiveness of SSA as a classifier in the last phase compared to other 

classifiers. It can be seen in Table 4.10 that SSA outperforms other classifiers with an 

accuracy of 98% and 81.67% on the ORL and AR databases respectively. Figure 4.5 

summarizes Tables 4.9 and 4.10 by comparing our approach to all individual classifiers 

and MC systems that have been implemented and tested [114,115]. 

Classifying test images based on the joint feature vector extracted from three 

different extraction techniques using Euclidean distance shows low accuracy. This means 

joint feature vectors do not provide diverse features between different classes. Thus, SSA 

can detect new features from these joint vector features in a hierarchical way to make the 

recognition task work effectively. The advantage of SSA is 1) unsupervised pre-training 

by sparse autoencoder extracts the more useful features from joint feature vectors and 

initializes the weights, and 2) supervised training in the next step modifies the boundaries 



 

 

73 

 

between classification classes and minimizes the classification error. 

Technique name ORL  AR 

PCA 89% 56.74% 

LBP 95% 60.52% 

LBP+PCA 93.50% 61.37% 

LBP+NN 95.50%p 73.60% 

Our system (MC+SSA) 98% 81.67% 

Joint feature vector   85.50% 63.38% 

Table 4.9. Performance of different classifiers on the ORL and AR databases, including individual classifiers 

and MC systems. 

Technique name ORL AR 

MC+ Logistic regression 97% 74.08% 

MC+NN 96.5% 67.61% 

MC+ SVM 86.0% 68.30% 

Our system (MC+SSA) 98% 81.67% 

Table 4.10. Performance of classifiers with the replacement of classifiers with SA in the last stage. 

While previous techniques combine the results of individual classifiers, we 

propose combining the features obtained from diverse approaches into a deep architecture 

for final classification. Even though we present results obtained from combining features 

from PCA and LBP approaches, our technique and implementation are open to accepting 

features from any new or existing feature extraction approach. The key is to concatenate 

the features from individual techniques in such a way that no single technique biases the 

result in its favor. We accomplish this by ensuring that features from all individual 
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techniques have the same dimensionality and are scaled between 0 and 1. The combined 

features are fed to a stacked sparse autoencoder to classify the results correctly. If a 

feature extraction technique results in a relatively larger (or smaller) number of features, 

we employ a preprocessing NN to match it to the number of features that other extractors 

have provided. In our detailed testing on face datasets, we accomplish better results than 

any of the previous works.  

 

Figure 4.5. Performance of all proposed classifiers in Tables 4.9 and Table 4.10. 
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CHAPTER 5:  CONCLUSIONS 

Convolutional neural networks (CNNs) have achieved impressive results in 

variety applications of computer vision and speech processing. Despite this, it is still 

difficult to optimize an architecture appropriately for a given problem. This dissertation 

addresses this issue by constructing a framework that automatically discovers a high-

performing architecture without hand-crafting it.  

In previous work on optimization, the error rate alone is used as the objective 

function; i.e., the error rate on the validation set is used to decide whether one architecture 

design is better than another. In this work, we present a new objective function that 

utilizes information from the error rate on the validation set as well as the quality of the 

feature visualization obtained from deconvnet. The objective function aims to find a CNN 

architecture that minimizes the error rate and provides a high level of feature 

visualization. We demonstrate that exploiting the visualization of feature maps via 

deconvnet in addition to the error rate in the objective function produces a superior 

performance. The advantage of the proposed objective function is that it does not get 

stuck in local minima easily as compared to the error rate objective function. Further, our 

new objective function results in much faster convergence towards a better architecture. 

Consequently, our results are better, as shown in the results section. 

To address high execution time in exploring numerous CNN architectures during 

the optimization process, we parallelized the NMM in conjunction with an optimized 

training sample subset. Our framework is limited by the fact that it cannot be applied 
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outside of the imaging or vision field because part of our objective function relies on 

visualization via deconvnet. We also investigated the effectiveness instance selection 

methods in reducing the training set size in order to shorten the running time. In addition, 

we proposed a new approach that makes RMHC works quickly with the same accuracy 

as the original RMHC. 

In our future work, we plan to implement our framework on different problems in 

the context of the images. We will also explore cancellation criteria to discover and avoid 

evaluating poor architectures, which will accelerate the execution time. 
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