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ABSTRACT 

 For the past decade, the number of users on social networks has grown 

tremendously from thousands in 2004 to billions by the end of 2015. On social networks, 

users create and propagate billions of pieces of information every day. The data can be in 

many forms (such as text, images, or videos). Due to the massive usage of social 

networks and availability of data, the field of social network analysis and mining has 

attracted many researchers from academia and industry to analyze social network data 

and explore various research opportunities (including information diffusion and influence 

measurement).  

 Information diffusion is defined as the way that information is spread on social 

networks; this can occur due to social influence. Influence is the ability affect others 

without direct commands. Influence on social networks can be observed through social 

interactions between users (such as retweet on Twitter, like on Instagram, or favorite on 

Flickr). In order to improve information diffusion, we measure the influence of users on 

social networks to predict influential users. The ability to predict the popularity of posts 

can improve information diffusion as well; posts become popular when they diffuse on 
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social networks.  However, measuring influence and predicting posts popularity can be 

challenging due to unstructured, big, noisy data. Therefore, social network mining and 

analysis techniques are essential for extracting meaningful information about influential 

users and popular posts. 

 For measuring the influence of users, we proposed a novel influence measurement 

that integrates both users’ structural locations and characteristics on social networks, 

which then can be used to predict influential users on social networks. centrality analysis 

techniques are adapted to identify the users’ structural locations. Centrality is used to 

identify the most important nodes within a graph; social networks can be represented as 

graphs (where nodes represent users and edges represent interactions between users), and 

centrality analysis can be adopted. 

 The second part of the work focuses on predicting the popularity of images on 

social networks over time. The effect of social context, image content and early 

popularity on image popularity using machine learning algorithms are analyzed. A new 

approach for image content is developed to represent the semantics of an image using its 

captions, called keyword vector. This approach is based on Word2vec (an unsupervised 

two-layer neural network that generates distributed numerical vectors to represent words 

in the vector space to detect similarity) and k-means (a popular clustering algorithm). 

However, machine learning algorithms do not address issues arising from the nature of 

social network data, noise and high dimensionality in data. Therefore, topological data 

analysis is adopted. It is a noble approach to extract meaningful information from 

high-dimensional data and is robust to noise. It is based on topology, which aims to 

study the geometric shape of data. In this thesis, we explore the feasibility of 
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topological data analysis for mining social network data by addressing the problem of 

image popularity. 

 The proposed techniques are employed to datasets crawled from real-world social 

networks to examine the performance of each approach. The results for predicting the 

influential users outperforms existing measurements in terms of correlation. As for 

predicting the popularity of images on social networks, the results indicate that the 

proposed features provides a promising opportunity and exceeds the related work in 

terms of accuracy. Further exploration of these research topics can be used for a variety 

of real-world applications (including improving viral marketing, public awareness, 

political standings and charity work). 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

 The explosion of social networks has attracted many people from the business, 

healthcare, and political sectors into using social networks to achieve multiple goals. 

They can reach out to millions of people through social networks in minutes. People from 

these sectors are able to maximize their objectives since social networks have changed 

the way that information is exposed and propagated. A social network can be defined as: 

Definition 1: A Social interaction si,j= {ui —> uj} is an action on SN that represent an 

activity from users up to uj. 

Social networks allow users to create profiles, share posts and interact with each other 

users [1]. For example, users share images on Instagram, while users share tweets where 

on Twitter. Posts are propagated using social interactions. Social interactions can be 

defined as: 

Definition 2: A Social interaction si,j= {ui —> uj} is an action on SN that represent an 

activity from users ui to uj. 

For example, user u1 can interact with user u2 on Twitter by retweeting a post 

shared by u2, where the retweet is represented as s1,2 = {u1 —> u2}. 
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 The simplicity of social networks has made them popular platforms for 

information diffusion (i.e., information spread), and, as a result, attracted billions of users 

to generate, consume and propagate content. In 2015, Twitter had a total of 310 million 

active users, sharing 500 million tweets per day [2]. Flicker had a total of 92 million users 

in 2014, who shared about 1 million images per day and contributed to 2 million groups 

[3]. Instagram has more than 300 million daily active users, sharing more than 95 million 

images and videos per day which receive about 4.2 billion likes daily [4]. The roles that 

Facebook and Twitter played during the 2008 U.S presidential elections and the Arabic 

spring are examples of information diffusion within social networks, where both showed 

a dominant role in the content generation and propagation [5].   

 Analyzing social network data can help us understand and improve many 

phenomena, including information diffusion and influence measurement. Information 

diffusion on social networks occurs through influencing other users to spread posts. 

Influence on a social network can be defined as: 

Definition 3: Influence on social networks is the ability to make users react to posts of ui 

by performing social interaction toward the post of ui [6]. 

For example, when users u1 share a tweet, several users can endorse the tweet by 

retweeting it. Understanding what influenced the users to retweet the tweet can improve 

information diffusion. Influence on social networks can be observed in the form of social 

interaction, and measuring influence can be used to predict influential users that diffuse 

posts massively on social networks.  
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 When posts diffuse on social networks, they become popular. Understanding what 

makes a post popular can also help to improve information diffusion since posts can be 

diffused based on their content. Popularity on a social network can be defined as: 

Definition 4: Popularity is a degree of social interactions that a post is receiving from 

other users. 

By this definition, an image that receives 5,000 likes on Instagram is more popular than 

an image that gets 50 likes.  

 Analyzing social network data can be very challenging due to unstructured, big, 

noisy data. Therefore, social network mining and analysis techniques are essential for 

extracting meaningful information about influential users and popular posts. 

1.2 Research Problem 

 On social networks, there exist billions of posts that are created every day by 

millions of users. Among these posts, only a few diffuse and become popular, while the 

majority get ignored or little attention. It is our desire to investigate what makes the few 

posts become popular. It is true that a post has a higher chance of becoming popular if it 

is posted by an influential user (since influential users can influence other users to 

perform social interactions). Due to a large number of users, we need to identify the most 

influential users. Moreover, we observed that not all the posts created by the same user 

become popular; this motivated us to investigate the influence of the post itself. In 

addition, the popularity of a post can change over time. Therefore, we predict the 

popularity of the post over time. By employing machine learning algorithms, we 
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predicted what makes posts diffuse on social networks. However, traditional machine 

learning algorithms do not address problems arising from the nature of the social 

networks, such as noisy and high dimensional data, and due to the exponential growth of 

social networks, it is necessary to develop a technique that analyzes social networks data 

to predict information diffusion efficiently that addresses these problems. Therefore, a 

different approach is employed, i.e., topological data analysis, to predict the popularity of 

images on social networks. Topological data analysis can handle noise and high 

dimensionality in data, which will be discussed further. The two sub-problems are 

formalized below: 

Problem 1 Predicting the Influential Users: Users can influence others using their 

structural locations and/or attributes. Social networks can be represented by a graph, 

where users are denoted by nodes and social interactions are denoted by edges. Since 

nodes can have attributes (such as activeness) and the structure of the graph can have 

some meaning, we measure the influence of users to predict the most influential.  

Problem 2 Predicting the Popularity of posts: Popularity of posts can be changed over 

time; it can be increased or decreased. There are many factors that can affect the changes 

in popularity over time. Therefore, we use social context, content, and early popularity to 

predict the future popularity of posts. However, the nature of social network data is noisy 

and high-dimensional, therefore, we investigate a different approach to address these 

challenges. 

1.3 Research Scope 
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 We focused on Instagram and Flickr (two of the most widely used multimedia 

social networks), Digg (a well-known news social network), and StackOverflow (a social 

network for programmers) for our data source. For the features that are used in the 

influential user prediction, we employ users’ structural locations on social networks and 

users’ characteristics. We focused on images and employ social context, content and 

early popularity to predict an image’s future. We adopt likes on Instagram, favorite and 

comment on Flickr, and vote on Digg to identify social interactions. 

1.4 Motivation behind the research 

 In this dissertation, we investigate the problem of using social network mining 

and analysis techniques to analyze social network data to improve information diffusion. 

We tackle this problem for the purpose of predicting influential users and popular images, 

which can have a variety of applications (including the improvement of viral marketing, 

public awareness, the credibility of presidential candidates, or charity campaigns).   

 Although many researchers have already investigated different problems found in 

social network analysis, the available approaches that analyze social network data for 

improving information diffusion are limited. Our idea for predicting influential users is 

motivated by the fact that using different aspects of influence can play a key role in 

enhancing the prediction of influential users. Our reasoning for predicting the popularity 

of images is motivated by the fact that time plays an important role in increasing or 

decreasing popularity (since popularity can be dynamic). For investigating these two 

problems, our goal is to improve information diffusion. However, the nature of social 

network data has many challenges, such as noisy and high dimensional data. Therefore, 
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we further investigate the feasibility of topological data analysis for analyzing 

information diffusion on social networks.  

1.5 Potential Contributions of the Proposed Research  

 This dissertation has several potential contributions. The potential contributions of 

the dissertation are summarized as follows: 

1. A novel influence measurement (based on users' structural location and attributes) 

is proposed to predict influential users on social networks, which outperforms 

existing influence measurements in terms of correlation. 

2. We investigate the adaptability of the influence measurements to different social 

networks by employing the influence measurements to Digg and Flicker. 

3. We predict the popularity of images by considering the dynamics of popularity 

over time, using social context, content and early popularity. 

4. A novel approach is proposed, built upon well-established techniques in the field 

of natural language processing (NLP) and clustering; it represents the semantics 

of images using their captions, which aims to represent multiple meanings from 

multiple keywords.  

5. We investigated the feasibility of topological data analysis for social network 

analysis and mining since topological data analysis has not been previously 

investigated for social network analysis and mining to address the issues arising 

from the nature of social network data by addressing the problem of image 

popularity on social networks.  
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CHAPTER 2: LITERATURE SURVEY 

 Recently, the investigation of information diffusion on social networks has 

attracted many researchers from computer science because it has real-world applications. 

To improve information diffusion on social networks, the prediction of the influential 

users and popular posts needs to be addressed. In this chapter, we provide a 

comprehensive survey that reviews the state of art. In order to predict the influential users 

on social networks, we categorize the influence measurements by three folds: (1) model, 

(2) type, (3) algorithm (as shown in Figure 2.1). We categorize the recent research by 

three aspects to predict the popularity of images on social networks: (1) social network 

data types, such text, (2) approach (such as learning models), and (3) problem 

formalization (such as classification).  

2.1 Predicting Influential Users Survey  

 First, Zafarani et al., proposed Influence measurement by models to categorize 

influence measurements. Their classification describes the characteristics of the influence 

measurements, for example, users’ attributes such as activeness [7]. The influence 

measurement models are categorized into observation-based and predicting-based 

models. However, this classification does not cover the various points of view of those 
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measurements. Therefore, we add two more classifications that consider different points 

of view. They are Influence measurement by types and algorithms.  

 For the second classification, the influence measurement by types describes the 

kinds of structures that are used for measuring influence. This classification includes (i) 

Context, (ii) Content, and (iii) Hybrid. In the context category, researchers consider only 

network structure, while in the content category, they consider only content from social 

networks, such as posted images on Flicker. In the hybrid category, both content and 

context are used.  

 The third classification, i.e, the influence measurement by algorithms, consists of 

the techniques that are used to build the measurements. The algorithms used in this 

classification include (i) Social Network Measures, such as centrality analysis, (ii) Social 

Network Properties, such as a number of tweets on Twitter, and (iii) Information Cascade 

Modeling, such as diffusion of content. 

2.1.1 Models 

 Below, we discuss the influence measurement models and their subcategories. 

They are prediction-based and observation-based models [7]. 

2.1.1.1 Prediction-based Model 

  In order to measure influence, the prediction-based model utilizes the structural 

location of users in a network or users’ attributes. This model is classified into location 

model, attribute model, and location and attribute model [7]. In the location model, the 

influence of a user is determined by the user’s structural location on social networks. This 

approach uses network measures, such as centrality analysis to measure influence [7].  
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 Several papers study users’ influence on Twitter. Weng et al.,  propose 

TwitterRank to identify influential users [8]. They define influence as the ability to 

generate content with interesting topics. They predict influential users based on the 

topical similarity between users and link structure. Sun and Ng predict influential users 

based on the interactions of posts [9]. They define influence as the ability to share posts 

that generate many implicit and explicit interactions. They consider two types of 

interactions: explicit interactions, i.e., replays and implicit interactions, i.e. posts that talk 

about the same topic. Cha et al., propose several measurements that are based on different 

models [10]. One of their measurements defines influence as the ability to attract many 

users to follow influential users. Kwak et al., propose three influence measurements [11]. 

Two of their measurements are based on the structural location of users. One 

measurement defines influence as the ability to attract users to follow other users. The 

second measurement defines influence as the ability to attract important neighbors. 

Maharani et al.,  use two influence measurements to predict influential users [12]. Their 

measurements can be defined as users who attract many important users to follow them. 

They build their influence model using undirected relationships between users. Weibo is 

also one of the social networks that papers have used to measure influence. Li et al., 

proposes a new measurement based on the user-to-user influence [13]. The user-to-user 

influence considers four factors that represent four types of interactions on social 

networks. They define influence as the ability to generate content that generates high 

retweeting strength, commenting density, mentioning density, and tweets that are similar 

to the influential user’s tweets. Liao et al., propose WeiboRank to rank users [14]. They 

define influence as the ability to attract many important followers based on three 
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processes, i.e., follow, repost, and comment-only. They introduce dependence to trace the 

source of influence. Zhang et al., analyze influence using three social actions, i.e., 

following, retweeting, and commenting [15]. They define influence as the ability to attract 

many actions from important neighbors.  

 Other papers have used Digg, Flicker, and Delicious to measure influence.  Ghosh 

and Lerman predict influential users on Digg [16]. They define influence as the average 

number of votes that each story receives. They state that non-conservative models are the 

best in predicting influential users. An example of a non-conservative model is 

information spread. Their methodology shows that users with the most important 

neighbors are the most influential users. Lu et al., propose LeaderRank to identify 

influential users on social networks [17]. They define influence as the ability to attract 

important neighbors to perform interactions such as voting. Their measurement is based 

on the users’ structural locations on social networks. 

 In attribute model, users influence others using their personal attributes. This 

approach employs network measurements to quantify the influence of each user. For 

example, a user can be called active if the user has shared many posts. This can be 

measured by the weight of each node [8]. Leavitt et al., are one of the first research 

groups to study the effect of users’ attributes on influencing users on Twitter [6]. The 

measurement utilizes the attribute model based on the users’ abilities to make other users 

engage in conversations. Cha et al., propose another measurement that is based on the 

popularity of users on Twitter [10]. They define influence as the ability to make other 

users engage in conversations. Anger and Kittl use several influence measurements on 

Twitter that are based on different models [18]. One of their measurements is based on 



 
  

11 

the popularity of users. They define influence as the ability to attract many users to follow 

the influential users. Another measurement is users’ activeness. It is based on the users’ 

contribution level. They define influence as the ability to generate many posts, which can 

show users’ activeness. Erlandsson et al., predicted influential users on Facebook based 

on their activities; they define influence as the ability to generate a post that attracts many 

interactions [19]. Ishfaq et al., proposed a measurement to predict influential bloggers 

[20]; they define influence as the ability to publish many posts that have a positive review 

and is relatively popular is considered influential. In this paper, the authors proposed a 

model to predict measurements for identifying influential bloggers [20]; the 

measurements are based on the sentiments of blogs, the number of posts, and the 

popularity of users based on how interactive they are. Khan et al., proposed a 

measurement to rank users on Twitter based on how active they are; they simply ranked 

users using the number of tweets [21]; they define influence as the ability to post many 

tweets. Oro et al., proposed a measurement to detect topical influential users on Twitter 

and Yelp based on the content of the message and the context of the social network; they 

define influence as the ability to express opinions on popular topics [22]. 

2.1.1.2 Observation-based Model 

 Observation-based models use the amount of influence that each user generates, 

for example, the number of influenced people, users’ ability to spread information, and 

the power of users to increase the value of products. This approach can be classified into 

two models: Role Model and Diffusion Model [8].  

 In role model, the influence of each user is based on the power of users; for 

example, a teacher can influence students because the teacher is in a position of power. 
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The teacher’s influence can be measured by the number of students [8]. Lee et al., 

identify influential users on Twitter with the time series of information adoption [23]. 

They define influence as the ability to generate content that is read by many people. They 

assume that influence is time-sensitive where users who tweet first have a higher 

probability of becoming influential. They track tweets to measure the spread. The user 

who has many effective readers is regarded as the role model. Sun et al., define influence 

as the number of effective audience members that users have [24]. The effective audience 

can be implicit or explicit. The implicit effective audience is the users who follow other 

users and are exposed to their posts. On the other hand, the explicit effective audience is 

the users who perform interactions toward the influential users’ posts. 

 In the diffusion model, the influence of users is measured by their ability to 

spread information. The influence is measured by how much the information has diffused 

on a social network. For example, tweets on Twitter can spread if they are transferred 

among many users in a short period of time. Influence can be measured using the cascade 

size [8]. Bakshy et al.,  propose an influence measurement by tracking the diffusion of 

URLs on Twitter [25]. Influence is defined as the ability to generate a URL that diffuses 

massively on Twitter. They define the cascade size as the reposts of URLs from the 

user’s followers and their followers. Several papers define influence as the ability to 

generate content that spread on social networks. They use the diffusion of tweets to 

measure influence [6], [10]-[11], [18], [26]. 
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2.1.2 Types 

 In this section, we discuss the types of structure that influence measurements are 

based on. They are classified into the context, content, and hybrid. 

 Context measurements measure influence using the structural properties of social 

networks by considering users on social networks and the relationships between the 

users. Context measurements use the graph theory to present users as nodes and 

relationships as edges. Two papers analyze influence using the followers and friendship 

networks [11], [18]. Lu et al.,  measure influence using the friendship network [17]. Cha 

et al., propose a measurement using the follower's network [10]. 

 Content measurement use content produced by users in measuring influence. In 

this type, researchers use content in building the influence model such as the diffusion of 

tweets on Twitter. Several works consider the power of generated content by users as an 

effective indicator of influence, such as the number of tweets in different topics and 

tweets’ similarity [10]-[11], [18], [21], [23], [26]-[27]. Ishfaq et al., used the users' blogs 

[20].  

 Hybrid measurements integrate network structure and content. In this type, the 

focus is on the dynamic process that takes place on social networks. For example, 

favorites on Flicker or retweets on Twitter. Researchers build the influence model based 

on the users’ posts as nodes and the dynamic processes as edges. Therefore, each user 

will be represented as a node where the node can be weighted to represent the number of 

shared posts and a directed edge between two users when they interact through their 

posts. For example, [16] build the influence model using the users who vote on stories on 
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Digg, where the edges represent votes on the images and users as nodes. Several studies 

propose influence measurements that use followers network and content [8], [12]-[15], 

[22], [24]. 

2.1.3 Algorithm 

 In this section, we present three major algorithm types used in identifying 

influential users. They are social network measures, information cascade modeling, and 

social network properties. Social network measures are based on social network theory. 

Information cascade modeling uses the information diffusion theory. Social network 

properties use existing social network measurements such as the number of retweets on 

Twitter. Network measures fundamentally show the power of users while information 

cascade modeling shows the power of content 

 Social networks can be presented as graphs that are comprised of nodes and 

edges. Nodes can represent actors, where edges represent relationships between actors 

[25], [28]. Since networks are represented as graphs, several network measurements can 

be utilized for social networks. There are two main network measurements that have been 

applied to identify influential users: centrality analysis and network algorithms. 

 Centrality analysis ranks users by their structural locations on social networks. 

Centrality represents the importance of users on networks [8], [29]. There are different 

centrality analysis techniques are used to reflect the importance of standing positions of 

the users. Centrality analysis techniques will be discussed in more details in the next 

chapter. 
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 Lee et al., apply PageRank on Twitter [23]. There are many proposed algorithms 

that are based on PageRank. For example, WeiboRank applies PageRank on Weibo [14]. 

Zhang et al., use weighted PageRank that combines several interaction types such as 

follow and retweet [15]. Yi et al., combine interactions and connections [30]. Li et al., 

considers four types of interactions [13]. Twitter- Rank uses the topical similarity 

between users [8]. Ghosh and Lerman propose the normalized   centrality [16]. 

Normalized   centrality utilizes   centrality [31]. Lu et al., propose LeaderRank [17]. It 

is similar to PageRank. The difference between them is LeaderRank is parameter-free. 

Sun and Ng  propose a measurement to identify starter posts [9]. They identify starter 

posts using a modified degree centrality. Starter posts have many followers and follow 

very few. Maharani et al., propose using complex degree centrality. 

 Few researchers used well-known networking algorithms to find the influential 

users. For example, Sun and Ng identify starters based on the Shortest Path Cost 

algorithm [9]. The basic idea behind this algorithm is to measure the influence of a node 

by observing how many other nodes will be affected if that node is removed. Oro et al., 

employ a three-layer network to model the interactions of users on topics using keywords 

[22]. 

 In order to measure influence, several researchers use existing social network 

properties from social networks, such as the number of retweets or the number of tweets 

on Twitter. These measurements can reflect many characteristics such as the popularity 

of users or diffusion of posts. Kwak et al.,  rank users using the total number of retweets 

on Twitter [11]. This measurement can reflect the popularity of tweets. Cha et al., use the 

total number of mentions, which can show the ability of users to make other users engage 
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in conversations [10]. Anger and Kitll combine several Twitter properties in two 

measurements [18]. The first measurement is the average number of followings over the 

total number of followers. Their other measurement computes the total number of 

mentions and Retweets. Leavitt et al.,  also propose two measurements that use Twitter 

properties [6]. The first measurement reflects the spread of content where the second 

measurement reflects the conversational activities that the tweet generates. The first 

measurement is based on the total sum of Retweets and attribution over tweets, while the 

second measurement is the total sum of replays and mentions over the number of tweets. 

Reilly et al., use the number of tweets and the number of Retweets in identifying 

influential users [26]. Their measurement considers the diffusion of tweets. They consider 

the percentage of the diffused tweets over the users’ tweets. Ishfaq et al., used the 

properties of blogs in addition to analyzing the sentiments of blogs using machine 

learning [20].  Khan et al., used the number of tweets provided by Twitter [21]. 

 The theory of information cascade is defined as how information is transferred to 

users’ followers and so on [7]. A simple example of information cascade is Retweet on 

Twitter. However, a retweet is considered a social network property technique since it 

uses the Retweet property. In information cascade modeling, researchers use the 

information cascade theory to model and measure influence to identify influential users 

 Lee et al., identify influential users on Twitter using the adoption of tweets based 

on adoption times [23]. Their model basically considers the users who are first exposed to 

the users' tweets, i.e., effective readers. Since many people follow more than one user, 

each user can tweet the same information. They consider the first person who posted the 

tweet as influential. Therefore, early users are more influential. 
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 Bakshy et al., propose an information diffusion model to identify influential users 

on Twitter [25]. Their model uses the repost of users' posts that contain the URLs based 

on time. Their model uses an influence tree that represents the influential user's post as 

the seed node and the users who repost the URLs as leaves. They do not use retweet; they 

track the actual posts that contain URLs. They measure the cascade size from the total 

number of users in the influence tree. Their model has two cases when it comes to 

assigning influence scores to users. The first case gives full credit to the first person who 

posts the URL in the influence tree. The second case occurs when one user follows two 

people who post the same URL. In this case, the influence score can be given to the last 

user who posts the URL or it can be divided equally among the users who posted the 

URL. Erlandsson et al., employed association rule learning to predict the influential 

users; they have used the number of users and number of posts  [19].  

Table 2.1. Classification of the state of art by their definitions, models, number of measurements, types, 

algorithms, and datasets. 

Influence 

Definition 

Influence 

Model 

#Measuremen

ts 
Model Type Algorithms Reference 

Average number 

of votes 
Graph-based 1 

Location 

Model 
Hybrid 

Centrality 

Analysis 
[16] 

Number of posts 

that generate many 

implicit and explicit 

interactions 

 

Graph-based 

 

3 

 

Location 

Model 

 

Hybrid 

Centrality 

Analysis, Network 

Algorithms 

 

[9] 

Number of topics 

posted in tweets that 

further generate 

many other tweets 

 

Graph-based 

 

1 

 

Location 

Model 

 

Hybrid 

 

Centrality 

Analysis 

 

[8] 

Number of 

followers, 

number of users that 

engage in 

conversations, the 

diffusion size of 

tweets 

 

 

Graph-based 

 

 

3 

 

Location 

Model, 

Attribute 

Model, 

Diffusion 

Model 

 

Context, 

Hybrid, 

Content 

 

Centrality 

Analysis, Social 

Network 

Properties 

 

[10] 
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Number of 

followers, 

number of important 

neighbors, number 

of tweets that are red 

by many people 

 

Graph-based, 

Tree-based 

 

 

3 

 

Location 

Model, 

Role Model 

 

Context, 

Content 

 

Centrality 

Analysis, 

Information 

Cascade Modeling 

 

 

[23] 

Number of important 

neighbors that 

perform interaction 

 

Graph-based 

 

1 

 

Location 

Model 

 

Context 

 

Centrality 

Analysis 

 

[17] 

Number of important 

Followers based on 

interaction 

 

Graph-based 

 

1 

 

Location 

Model 

 

Hybrid 

 

Centrality 

Analysis 

 

[14] 

Number of actions 

from important 

neighbors 

 

Graph-based 

 

1 

 

Location 

Model 

 

Hybrid 

 

Centrality 

Analysis 

 

[15] 

Number of important 

followers, number of 

retweets 

Graph-based, 

Tree-based 

 

2 

 

Location 

Model 

 

Hybrid 

Centrality 

Analysis, 

Social Network 

Properties 

 

[11] 

Number of people 

that are engaged in 

conversation 

 

Graph-based 

 

1 

 

Location 

Model 

 

Hybrid 

 

Centrality 

Analysis 

 

[13] 

Number of important 

followers based on 

interactions, size of 

tweets propagation 

 

Linear-based 

 

2 

 

Attribute 

Model, 

Diffusion 

Model 

 

Hybrid 

 

Social Network 

Properties 

 

[6] 

Number of tweets 

that make users 

popular or make 

them active, 

diffusion size of 

tweets 

 

Linear-based 

 

 

2 

 

Attribute 

Model, 

Diffusion 

Model 

 

Context, 

Content 

 

Social Network 

Properties 

 

 

[18] 

Certain personal 

attributes and many 

important neighbors 

 

Linear- based 

 

2 

Attribute, 

Location 

Model 

 

Hybrid 

 

Centrality 

Analysis 

 

[30] 

Diffusion size of 

URL on Twitter 
Tree-based 2 

Diffusion 

Model 
Content 

Information 

Cascade 

Modeling 

[25] 

Diffusion size of 

content 
Tree-based 2 

Diffusion 

Model 
Content 

Information 

Cascade 

Modeling 

[26] 

Number of 

interactions 

between users 

Graph-based 2 
Location 

Model 
Hybrid Centrality analysis [12] 
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Number of effective 

audience 

Graph-based, 

Tree-based 
6 Role Model Context 

Information 

Cascade 

Modeling 

[24] 

Number of posts that 

attracts many 

interactions 

Linear-based 1 
Attribute 

Model 
Content 

association rule 

learning 
[19] 

Number of positive 

blogs and how active 

a user is 

Linear-based 2 
Attribute 

Model 
Content 

Social Network 

Properties, 

Machine learning 

[20] 

Number of posts Linear-based 1 
Attribute 

Model 
Content 

Social Network 

Properties 
[21] 

Number of posts that 

express opinions on 

popular topics 

Graph-based 1 

Location 

Model 

 

Hybrid 
Network 

algorithms. 
[22] 

2.2 Predicting the popularity of social network posts 

 We reviewed the recent research on the topic of post popularity prediction and 

categorize the research in terms of the data type, approach, and problem type; these three 

categories can explain the research in detail.  

2.2.1 Social network data type: 

 In this category, we classify the research studies based on the social network data 

type that they are focused on (which are text and multimedia, with a focus on images).  

 Yu et al., tried to predict how many times a tweet is Retweeted using user, text, 

and temporal features [32].  Hong et al., predicted the popularity of tweets using tweet 

content, topical information of tweets, users, and temporal features [33]. Zaman et al., 

focused on predicting whether a tweet will be Retweeted or not by analyzing the 

interaction patterns between users, users information, and tweet content [34]. They all 

measured popularity using the number of Retweets [32]-[34].  
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 McParlane et al., predicted the popularity of images on Flickr using image 

content, image content, and user information [35]; they classified the images according to 

a set number of scenes for the image content. They measured popularity using the 

number of comments and views. Khosla et al., predicted how many times an image is 

viewed on Flickr using image content and social context [36]. Cappallo et al., predicted 

the popularity of images on Flickr and Twitter using images content [37]. The study 

considered content from both popular and unpopular images; they measured popularity 

using a normalized number of views. Can et al., predicted the popularity of images posted 

on Twitter and Flickr using hashtags, user information, along with image low and high-

level features (such as color) [38]. The researchers measured the popularity of images on 

Twitter based on the number of favorites and retweet, and a number of views and 

comments on Flickr. Yamaguchi et al., employed social, content, and text features to 

predict the popularity of images on Chictopia (a fashion-based social network) [39]. The 

team measured popularity based on the number of votes. Totti et al. classified the 

popularity of images using aesthetical, semantic and social features on Pinterest [40]; 

they measured popularity using the number of repins. Fiolet classified the popularity of 

images on Instagram by ranking the popularity of images, using user information and 

image information [41]. He measured popularity based on the number of likes. Niu et al., 

ranked the popularity of images using network-based modeling on Flickr [42]; the 

number of views was used as a popularity measurement. Gelli used visual sentiments, 

image content, and context features to predict the normalized number of views of images 

on Flickr [43]. Aloufi et al., used users’ information, number of groups that users belong 

to, number of tags, images’ colors, gist, and sentiments to predict the popularity of 
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images on Flickr; they have selected the number of views as a popularity measurement 

[44]. Hu et al., have predicted the popularity of images on Flickr using tag feature and 

visual features [45]; they selected the number of views as the popularity measurement. 

Mazloomet al., have predicted the popularity of images on Instagram using visual and 

brand features [46]; they selected the number of likes as the popularity measurement. 

2.2.2 Approach: 

 The approaches represent the algorithms or models that researchers use to 

perform the prediction. The related work either used a learning model (such as machine 

learning) or a non-learning model (such as network measures).  

 Yu et al., employed a logistic regression model [32]. Hong et al. used a logistic 

regression classifier [33]. Zaman et al., employed a collaborative filtering model [34]. 

Several papers used support vector machine [35]. Several papers employed a regression 

model based on support vector machine [36]-[37], [43], [46]. Can et al., used a regression 

model based on linear regression, support vector machine, and random forest [38].  

Yamaguchi used regression analysis [39], while Totti et al., used random forest [40]. 

Aloufi et al., employed support vector machine [44]. Han et al.  

 On the other hand, some researchers used non-learning models. Fiolet simply 

ranked the images based on different features, without using any prediction model [41]. 

Niu et al., employed a weighted bipartite graph model [42]. 

2.2.3 Problem Type: 

 Recent works have formalized the problem of popularity prediction in three ways: 

classification, retrieval, and regression. In regression, researchers try to quantify the 
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popularity of posts; in classification, they classify the popularity to a set of classes (e.g. 

popular or not popular). In retrieval, researchers rank the images from most to least 

popular (as in search engine performance evaluation). 

 Yu et al., formalized the problem as regression [32]. Several papers formalized 

the problem as a classification problem [34]- [35], [40], [44], [47]. Several other papers 

formalized the problem as that of retrieval [32], [36]-[37], [41]-[43], [46]. 

Table 2.2. State of art on image popularity prediction. 

Social 

network data 

type 

Problem Approach 
Popularity 

Measurement 

Social 

Network 
Reference 

Text Regression 
Learning 

model 

Number of 

retweets 
Twitter [32] 

Text 
Classificati

on 

Learning 

model 

Number of 

retweets 
Twitter [33] 

Text 
Classificati

on 

Learning 

model 

Number of 

retweets 
Twitter [34] 

Image 
Classificati

on 

Learning 

model 

Number of 

comments and 

views 

Flickr [35] 

Image Retrieval 
Learning 

model 
Number of views Flickr [36] 

Image Retrieval 
Learning 

model 
Number of views Flickr [37] 

Image Regression 
Learning 

model 

Number of 

favorites and 

retweet (Twitter), 

and Number of 

views and 

comments 

(Flickr) 

Twitter and 

Flickr 
[38] 

Image Retrieval 
Learning 

model 
Number of votes Chictopia [39] 

Image 
Classificati

on 

Learning 

model 
Number of repins Pinterest [40] 
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Image Retrieval 

None-

Learning 

model 

Number of likes Instagram [41] 

Image Retrieval 

None-

Learning 

model 

Number of views Flickr [42] 

Image Retrieval 
Learning 

model 
Number of views Flickr [43] 

Image Retrieval 
Learning 

model 
Number of views Flickr [44] 

Image Regression 
Learning 

model 
Number of views Flickr [45] 

Image Retrieval 
Learning 

model 
Number of likes Instagram [46] 
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CHAPTER 3: BACKGROUND THEORY 

 We employ several approaches several approaches to predict influential users and 

popular posts (including centrality analysis, Gaussian naïve Bayes, word2vec, and k-

means). The approaches are used to analyze social network data. 

3.1 Centrality Analysis 

 One of the most important concepts in social network analysis is centrality 

analysis. In this chapter, we will discuss this approach and explain the different 

techniques used to analyze the centrality of nodes on social networks.   

 Graph theory has been previously used to represent social networks. Graphs are 

used to represent social networks in terms of nodes and edges. Nodes represent users, 

while edges represent interactions between users. Centrality analysis is used to find 

important nodes on social networks, based on their structure. Freeman (1978) and 

Newman (2001) state that centrality is an important attribute of social networks [41]- 

[42]. There are several centrality analysis algorithms (which include in-degree centrality, 

weighted in-degree centrality, eigenvector centrality, and page rank centrality).   

3.1.1 Centrality Analysis Techniques: 

 Centrality analysis techniques are categorized as degree-based, distance-based, 

and network-based techniques. Categories are determined by how the centrality of nodes 

is computed. 
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3.1.1.1 Degree-based centrality analysis: 

 The degree of actors on social networks is considered as an indicator of 

importance in this type. 

  Degree Centrality: 

  Degree centrality (i.e., Cn) considers the number of neighbor nodes as a measure 

of importance [7]. The idea behind this algorithm is that people who have many direct 

neighbors are important. The degree can compute using the following equation:   

iid dvC )(            (3.1) 

,where    is the number of connections to node i.  

 However, in some cases, a graph can be directed. For example, on Twitter users 

can follow other users but others can choose to not follow them back. Therefore,    is 

further divided into   
    

 and   
     

, where   
    

 is the number of direct incoming 

connections and   
     

 is the number of outgoing connections; these two measures are 

also considered centrality analysis techniques (which are called in-degree and out-degree 

respectively). In the case of weighted and direct graphs, new centrality analysis 

techniques can be introduced:     
      

 and    
     

, where   
      

 considers the weighted 

outgoing edges, and   
     

 considers the incoming weighted edges. 

  Modified degree centrality:  
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 Modified degree centrality, i.e., Cmd, measures centrality of nodes by computing 

the difference between in-degree and out-degree for all nodes. It is computed using the 

following equation:   

       
      

            (3.2) 

, where   
   represents the nodes that point to v and   

    represents the nodes that v 

points to. 

  Complex degree centrality:  

 Complex degree centrality (i.e. Cc) considers the Probabilistic Partnership Index 

to compute the centrality of node [12]. It is calculated as follows: 

               
                  (3.3) 

, where wdv is the weighted degree of A.  

3.1.1.2 Distance-based centrality analysis: 

 The focus is on the distance between actors on the social network of this type. 

  Betweenness Centrality:  

 Intermediate people are important in the real world; they connect other people 

together. Cb ranks node i in term of how many nodes i connect. Let ∀ nodes j that interact 

with s that go through i, where i connects j and s [7]. We compute the number of shortest 

paths between s and j that go through node i. For example, if Charlie has two followers, 

he would have the highest centrality since he is the only one who can connect all the 

users. Let          
       

   
       where         is the shortest paths between nodes j and 
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s that pass through i, and     is the number of shortest paths between j and s. We 

normalize Cb by the max Cb. To implement this algorithm, we adopted the algorithm 

proposed in [10]. 

))(max(

)(
)(

iv

ib
ib

vC

vC
vC           (3.4) 

  Closeness Centrality:  

 Nodes that are located in the middle of the network and not far from other nodes 

are considered more important, based on this measure. Closeness measures the centrality 

of nodes by computing the length of' the average shortest path between a node and all the 

other nodes in a graph [7]. It is normalized by the total number of nodes -1. It is 

computed as follows: 












 




1

),(1
)(

1

n

jidN
j

vC ic
        ( 0.5) 

, where        is the distance between nodes i and j, and n is the number of nodes in the 

graph. 

 In Figure 3.1, the centrality analysis techniques discussed earlier are applied to a 

few graphs to illustrate the importance of each node. In the example, we compare 

between the centralities of nodes x and y (where x has a higher centrality than y). In the 

first graph, we apply degree centrality; since degree centrality computes the number of 

neighbor nodes, x has a centrality of 4 where y has a centrality of only 1. In the next 

graph, we applied in-degree (where x has also a centrality of 4, while y has a centrality of 
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0) since it is based on the number of incoming edges. In the next graph, we applied out-

degree centrality. As we can see, x has a centrality of 4, while y has only 0 (because x has 

four outgoing edges, while y has none). When using Betweenness centrality, x has a 

centrality of 1, while Y has centrality of 0.86. If using the closeness equation, x has a 

centrality of 0.67, while y has a centrality of 0.57 because x is more in the middle than y.  

 

Figure 3 1. Basic centrality analysis techniques. 

 However, in some cases, the importance of nodes are also related to the 

importance of the neighbor nodes. For example: if node x has many adjacent nodes that 

are not important, and node y has few adjacent nodes that are important, then y can be 

more important than x. Therefore, more centrality analysis techniques are needed to 

consider the depths of the graphs. 

3.1.1.3 Network-based centrality analysis: 

 The focus is on the structure of the social network as well as actors in this type of 

analysis. 
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  Eigenvector Centrality:  

 Eigenvector centrality (i.e., Ce) was the first centrality analysis algorithm that 

considered the depth of social networks [7]. In eigenvector centrality, the importance of 

nodes is determined by their neighbors’ importance. It is computed using the following 

equation: 





n

j

ieie vAvC
1

)(
1

)(


          (3.6) 

, where    is the adjacency matrix and   is a constant representing the largest eigenvalue. 

  PageRank Centrality: 

  Pagerank (i.e., Cp) is a variation of eigenvector centrality [7]. Eigenvector 

centrality encounters some problems. For example, the centrality of nodes is passed to all 

neighboring nodes, which can make them have the same centralities. This is not efficient 

because not all the nodes linked to popular nodes are necessarily popular. In Pagerank, 

the importance of nodes that is passed to neighboring nodes is divided by the number of 

neighboring nodes. For example, a node is important if it is being pointed by nodes that 

are also being pointed at by many other nodes. Pagerank is computed using the following 

equation [7]. 





n

j
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j

ip

ijip
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vC
AvC
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,
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)(          (3 0.7) 
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, where   is an attenuation constant, and   is a constant used to avoid zero centralities x, 

A is the adjacency matrix, and   
    is the out-degree of nodes. However, if the out-

degree of any node is null, then   
    will be equal to 1. 

  Normalized   centrality:  

 Normalized   centrality (i.e., CN ) considers the importance of the incoming 

neighbors as well as external factors. Bonacich and Lloyd state that the centrality of users 

do not only depends on their connections, but they also depend on some external factors 

[31]. Therefore, they proposed    centrality where    represents the importance of 

endogenous versus exogenous factors. Endogenous factors represent the importance of 

incoming connections where exogenous factors represent the external factors.  -centrality 

is calculated using the equation below: 

                
               (3 0.8) 

,where v represents the vector of exogenous factors and   is the adjacency matrix. Ghosh 

and Lerman (2010) further normalized this measure by the total    ∀ i neighbors [16]. 

Ghosh and Lerman (2010) further proved that their measurement converges [16]. 

    
  

           
 
   

          (3.9) 

,where             
 
    represents the centrality value between j and i. 
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LeaderRank:  

 LeaderRank, i.e., Cld, is very similar to PageRank. However, it adds a node to the 

graph, called ground node, which makes the graph well connected; this makes the 

algorithm parameter-free. LeaderRank computes the influence score si for each node at 

time t. However, it neglects the score for the ground node. LeaderRank is computed as 

below: 
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, where 
    

  
    represents the random walk of nodes, and aji represents the directed edge 

from j to i. Therefore, if the an edge exists, aji = 1 otherwise aji = 0.   
    is the out-degree 

of j, i.e. number of nodes that j point to. 

 For example, in Figure 3.2, using eigenvector centrality analysis, we computed 

the centrality of the nodes. As shown in the figure, node A has the most centrality with a 

centrality rate of 0.182, where nodes B, C, and D come next with a centrality rate of 

0.091. 

 

Figure 3.2. Eigenvector centrality analysis technique. 
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3.2 Naïve Bayes 

 Naïve Bayes classifiers are a supervised learning probabilistic classifiers that are 

based on the Bayes’ theorem. Bayes theorem describes the probability that an event will 

happen based on a condition. Bayes’ theorem works well with conditional cases. For 

example, the relationship between a person who has cancer and his/her age [48]. Naïve 

Bayes can be useful in solving many problems, including natural language processing. 

3.2.1 Bayes Theorem 

 Bayes’ theorem is mathematically computed based on the probabilities of two 

random variables A and B, and the conditional probability that observing one variable 

given the occurrence of the other variable [49]. It is mathematically represented as 

followed: 

       
           

    
         (3 0.11) 

, where P(A) and P(B) are the probabilities of observing the two random variables A and 

B regardless of each other, and P(A|B) is the conditional probability of observing A given 

the occurrence of the B. 

3.2.2 Naïve Bayes Classifiers 

 Naïve Bayes classifiers are a group of classifiers that are based on Bayes’ theorem 

[48]. Using naïve Bayes, we formalize the problem as a supervised learning problem, 

where we use a vector X to classify a variable Y, which is equivalent to the conditional 

probability of computing the occurrence of Y given X, i.e., P(Y|X).  
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X can be represented as {x1; x2 : : : ;xn}, where xi is a Boolean  random variable in vector 

X and xi ∈ {−1, 1}. For example, let’s assume that we want to classify the price of a house 

as high or low. Y can be the classes representing the status of the prices, where X can be a 

vector containing group variables, such as size, and location. Therefore, we can 

mathematically represent the Bayes rule as: 

                 
                        

                          
     (3 0.12) 

, where ym represents the mth possible value for Y, xk represents the kth possible vector 

value for X, and where the summation is over all values of the random variable Y.  Now, 

we can define the conditional probability as followed:  

               
                     

                        
     (3 0.13) 

 Now to classify a new variable Y, we derive the Naïve Bayes classification rule 

below: 

            
                     

                        
      (3 0.14) 

 There are three types of Naïve Bayes classifier: Gaussian Naïve Bayes, 

Multinomial Naïve Bayes, and Bernoulli Naïve Bayes. Multinomial and Bernoulli Naïve 

Bayes classifiers work with discrete variables, while Gaussian Naïve Bayes classifier 

works with continuous variables.  

3.2.2.1 Gaussian Naïve Bayes 

 Sometimes, X variables are not Boolean, they are continuous, and the classic 

naïve Bayes classifier works with Boolean variables. In order to tackle this problem, the 
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Gaussian Naïve Bayes classifier is proposed [50]. Therefore, using a Gaussian Naïve 

Bayes, we assume that for each variable Yi . Xi is represented as a Gaussian distribution, 

which is defined by a mean and standard deviation, and are needed for training the 

classifier [50]. 

                         (3 0.15) 

   
             

                (3 0.16) 

,where µ and σ are the mean and standard deviation. We compute the probability of X as 

follows: 
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,where π represent the probability of Y.  

3.3 Word2Vec 

 NLP is a field of computer science that deals with representing human language. 

It combines artificial intelligent and computational linguistics to process human 

languages [51]. One of the most complicated problems in NLP is to make a computer 

program understand the meaning of words. In order to tackle this problem, many 

researchers use neural networks [52]. Researchers use neural networks to find the most 

meaningful representation of words by generating numerical vectors. Recently, 

Word2vec was proposed by researchers from Google [53]. 
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 Word2vec is an unsupervised algorithm based on a neural network that aims to 

learn distributed representation of words. As known before, neural networks take a long 

time to process text, but Word2vec learns much faster than other neural-network based 

algorithms [53]. Simply, Word2vec takes the text as an input and generates numerical 

vectors for words that represent each word in the vector space. When training Word2vec, 

words against other words that neighbor those words in the input corpus are considered 

by either considering the context to predict a word or using a word to predict a context. 

That is accomplished by implementing continuous bag of words and skim-gram 

architectures. Continuous bag of words is used when using the context to predict the 

word, while skim-gram is used when a word is used to predict a context. Skim-gram 

architecture has shown to be more accurate on large datasets. Figure 3.3 shows the two 

architectures.  

 

Figure 3.3. Continuous Bag of words and skim-gram architectures [53]. 
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 Wrod2vec can be used to solve many problems in NLP, such as semantic 

similarity detection, next word prediction, sentiment analysis, and word 

recommendations. Word2vec results were surprising and interesting to many researchers 

in the NLP field; for example, it detects similarity between two words from different 

languages that have similar meanings, such as thanks and gracias, which means thanks in 

Spanish. Also, it was found to be useful in analogies, such as “man” is to “boy” what 

“woman” is to “girl” [53]. Since Word2vec represent words by numerical values, we can 

simply project them in the vectors. For example, as seen as in Figure 3.4, numbers are 

projected near each other, where animals are projected near each other as well.   

 

Figure 3.4. Words represented by word vectors generated using Word2vec and projected in the vector 

space. 
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3.3 k-means 

 Clustering problems are one of the most classic learning problems. In clustering 

problems, researchers try to group objects that are similar to each other [54]. One of the 

most popular clustering algorithms is k-means, which is an unsupervised algorithm [55]. 

The basic idea is to choose a fixed number of clusters and define a centroid for each 

cluster. At first, centroids are selected randomly. Then, the object is placed within the 

nearest centroid. After the first round of classifying the objects, the centroids are re-

computed based on all the objects in the cluster. Then the objects are assigned to the 

nearest centroid again. We repeat these steps until no changes exist. k-means aims to 

maximize an objective function, which is computed as follows: 
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, where k  is the number of clusters, n is the number of objects,  x is each object, c is the 

centroid,    
   
     

 

is the square distance between each object and the centroid. k-

means can help in analyzing social network data to solve many problems, such as word 

clustering as shown in Figure 3.5.  

To summarize, k -means is performed in four steps: 

1. Choose k clusters and place a centroid in each cluster. 

2. Assign each object to a cluster based on the nearest centroid. 

3. Recalculate each centroid after assigning all objects.   

4. Repeat step 2 and 2, until no changes exist to the centroids. 
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 We employ the discussed approaches to solve the two problems stated in Chapter 

3, which are predicting the influential users and popularity of images on social networks. 

 In order to predict influential users based on the importance of users in terms of 

network structure, we employ centrality analysis. For predicting the future popularity of 

images and stability of image popularity on social networks, we employ several features 

including the content of images, and in order to extract and represent the content of 

images, we employ Word2vec and k-means.  For predicting the popularity of images, we 

use Gaussian naïve Bayes. The two problems are addressed in the following two chapters. 

 

Figure 3.5. Words clustering using k-means. 

3.4 Topology 

 The history of topology goes back to 1736 when Leonhard Euler applied graph 

theory to the problem of the Seven Bridges of Koenigsberg [56]. The problem of the 

Seven Bridges of Koenigsberg resulted from the fact that the Pregel River crosses the city 
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of Koenigsberg, which results in four islands. These four islands were connected using 

seven bridges. Euler wondered if it was possible to walk through Koenigsberg by 

crossing each bridge only once. Euler collected information about the city and bridges, 

and then converted the problem to a graph G (V, E) of V (|V| = n) nodes and E (|E| = m) 

edges as shown in the right diagram in Figure 3.6. By representing the problem as a 

graph, he observed that it is actually not possible to cross the city by passing the bridges 

only once. In addition, he discovered that by stretching or squeezing the graph without 

tearing it apart, the solution is not affected. This was the basis that coined topology. 

 

Figure 3.6. The problem of the Seven Bridges of Konigsberg. The left figure represents a map of the city, 

and the island [75] . 

 Topology is a branch of mathematics that is concerned with qualitative geometric 

information, e.g., the study of identifying the connected components of a space, more 

generally connectivity and homology .[75]  Topology studies the properties of space that 

are algebraically invariant (i.e., spaces that stay unchanged under any kind of algebraic 

transformation without tearing or gluing) [75] . Topology has two main tasks: shape 

measurement and representation. Topology can be defined as below: 

Definition 1.  

Assume a set X that contains a collection τ of subsets of X. τ is defined as a topology 

of X if it has the following properties)  :[75]  
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1. Both ∅ and X are in τ, 

2. the union of the elements of any subcollection of τ is in τ, and 

3. the intersection of the elements of any finite subcollection of τ is in τ. 

If τ is a topology of X, then the ordered pair (X,τ) is called a topological space. 

Moreover, a subset u of X is called an open set, if u ∈τ. The following example illustrates 

the concept of topology and topological space. 

Example 1. 

Set X contains three elements, X= {a,b,c}. Many possible topologies τ of X can be found. 

For example, one topology contains X, and another topology contains X, {{a,b},c} as 

shown in Figure 3.7. 

 Points, as well as a set of neighbor points for each point, construct a topological 

space [59]. Any two topological spaces (E,τE) and (N,τN) have homeomorphism between 

them if there is a function f that is continuous, one to one, and a bijection between the 

two spaces. Then, the two topological spaces would have the same topological type and 

are basically the same in terms of topology. A widely-known example of 

homeomorphism is the homeomorphism between a donut and a mug. Homology 

measures connectivity by counting the number of wholes, connected components, faces, 

and triangles  .[06] It can relate a serial of algebraic objects to topological space. A 

simplex is a topological space made of points, lines, segments, triangles, or their n-

dimensional counterparts. A simplicial complex consists of multiple simplexes and 

complexes as shown in Figure 3.8. 

 

http://www.mdpi.com/1099-4300/19/7/360/htm#fig_body_display_entropy-19-00360-f001
http://www.mdpi.com/1099-4300/19/7/360/htm#fig_body_display_entropy-19-00360-f002
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3.4 Topological Data Analysis 

 Topological data analysis is a set of techniques invented to extract insight from 

data by studying its shape, which is driven by the fact that data has a shape, and a shape 

has some meaning [61]. Topological data analysis is based on algebraic topology, a 

subfield of topology that aims to quantify shapes using persistent homology. Persistent 

homology is used to compute the topological features, such as holes, components and 

graph structure, of data at different resolutions by considering different radii from the 

data points [62] as shown in Figure 3.9. It increases the radius to connect more data 

points. First, persistence homology must represent the space as a simplicial complex, and 

then we apply homology to discover the holes in the simplicial complex [62]. The 

persistent homology concept provides stability and robustness against noise due to the 

fact that noise cannot be persistent [63].  

 

Figure 3.7.  Possible topologies of set X. In the left diagram, t = X, while t = X, {{a,b},{c}} is in the right 

diagram. 

 

Figure 3.8. The upper diagrams are examples of simplexes: a point, a line, a triangle, and a tetrahedron. The 

lower diagrams are examples of a simplicial complex: many triangles with many lines and one triangle with 

one line. 
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Topological data analysis studies shapes that have three main properties [64]: 

1. The shapes are not dependent on specific coordinates, 

2. the shapes are not changed under any transformation without tearing the shape 

apart, and 

3. the shapes are produced in a compressed representation that contains infinite 

distances. 

 In topological data analysis, high dimensional data in a point cloud is represented 

by distances, which are one-dimensional information. Therefore, it is independent of the 

dimensions of the data as shown in the following example. This makes topological data 

analysis a powerful technique to address high dimensional data. 

 

Figure 3.9.  Example of how persistent homology increase the radii. 

Example 2.  

On Twitter, let us have two users called U1 and U2. Each user uses a profile image to 

represent his/her visual identity. For each user, one vector is used to store the pixels for 

the user’s profile image, which has 1000 dimensions. For users U1 and U2, we store their 

images in vectors A and B, respectively. Cosine distance is one metric to evaluate the 

distance or closeness. The cosine distance between A and B based on their profile images 

provides the distance or closeness of the two users, which is one-dimensional 

information. 
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 In order to perform topological data analysis, mapper algorithm is adapted [57], 

[65]-[66]. Mapper is a method for topological data analysis. The aim of this algorithm is 

to extract, simplify and visualize high dimensional data. The mapper algorithm takes an 

inter-point distance matrix (D ∈RN×N, where N= the number of data points) as the input. 

As for the parameters, users specify f, called a filter function in mapper, (which is 

computed for each data point and used to partition the data, such as density estimation), 

clustering algorithm (such as hierarchical clustering), and a cover method that is 

responsible for dividing the filter function output ranges of data points into intervals by 

specifying the number of intervals S, and overlap ratio p. Here, the overlap is needed to 

determine connectivity between two intervals in topological data analysis. All data points 

in one cluster are in the same interval. All data points in one interval, however, are not 

necessarily in the same cluster. 

 Mapper generates a simplicial complex that represents clusters of data points and 

the relationship between them. The simplicial complex consists of nodes and edges. Each 

cluster is represented by a node, while edges represent the connectivity between the 

clusters (if p≠0). Clustering algorithms are used to move from a topological version to a 

statistical one, where mapper is not dependent on a specific clustering algorithm. A 

summary of the mapper is presented below; for an in-depth description, refer to [66]. 

 Let U = {U }  ∈A be a finite covering of the space X, so that set A is finite. We 

define the simplicial complex N {U} whose vertex set is the indexing set A, and where a 

family { 0,  1,..,  k} spans a k-simplex in N(U) if and only if corresponding clusters 

have a point in common. It is necessary to generate reference maps f: X→Z, where X is a 

given point cloud and Z is the reference metric space. With the reference maps, 
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subsets X =f
1
U  are constructed. Different filters can be used: density estimation, 

eccentricity, and graph laplacians [66]. 

 A simple example of a circle using mapper is shown in Figure 3.10. The left 

figure is a point cloud of a circle with random variation, X, and the right figure is the 

simplicial complex of the point cloud, N (U). We arbitrarily selected four levels for this 

example. The colors represent how filtered the data are. In this example, density 

estimator is used for filtering the data (red being the densest and blue being the least 

dense). Edges show the connectivity of clusters of the point cloud. If this is an example of 

the image popularity analysis, then the left figure is a point cloud of the social media 

image dataset, and the right is the clustering output of the image dataset from mapper. In 

addition, the output of mapper can be interpreted in such a way that the shape of the point 

cloud is a circle, and closer clusters may have higher similarity. 

 

Figure 3.10. A unit circle and the result of topological analysis using a mapper. The size of the nodes on the 

right indicate the size of the cluster, and the numbers written inside the nodes indicate the number of data 

points. 

http://www.mdpi.com/1099-4300/19/7/360/htm#fig_body_display_entropy-19-00360-f003
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CHAPTER 4: PREDICTING THE INFLUENTIAL USERS 

 In this chapter, we discuss the approaches used to predict influential users on 

social networks. We further explain the experiment and display the results. 

4.1 Overview 

 In social studies, social influence is defined as "change in an individual's 

thoughts, feelings, attitudes or behaviors that result from interaction with another 

individual or a group [67]." Therefore, sociologists have been studying social influence 

for a long time because it is very important in decision making and information spread 

[68]. Katz states that influence is related to three main values: finding the personification 

of certain values, competence, and the position in a strategic social location [69]. The 

first value is based on the people's attributes, the second value is about people's 

knowledge and experiences, while the third value is represented by people's social 

locations in a group [69]. Because of the availability of social network data, measuring 

influence on social networks can be used for predicting influential people. In addition, 

most of the social networks provide their own APIs that can provide users with simple 

access methods, such as Flickr API
1
 and Twitter API

2
.  

                                                           

1 https://www.ftickr.com/services/api/  
2 https:lldev.twitter.com 
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 Influential people are users on social networks who attract many people to their 

posts on social networks using social network interactions including tweets on Twitter, 

and photos on Flickr. Users can interact with each other by performing social interactions 

such as retweet and follow on Twitter, and comment and favorite on Flickr. Influential 

users can be employed in many useful applications including viral marketing, 

recommendations systems, and expert search engines [9]-[11], [23], [56], [70]-[74]. As 

mentioned in Chapter 3,  we are going to predict the influential users using their 

structural location and attributes. 

4.2 Approach 

 Predicting influential users on social networks encounter several challenges. First, 

current measurements do not consider all the characteristics of social networks. Second, 

influence measurements are not feasible for all social networks. To address the first 

challenge, we consider two aspects of social networks i.e., user's structural location in a 

network and attributes. We do not build our measurements on specific social network 

properties. 

 The third challenge is the absence of ground truth data [73]. To address this issue, 

Gosh and Lerman proposed an empirical estimate of influence that is used as ground truth 

data [16]. They state that the average number of votes can estimate the users' influence 

effectively as shown below:  

nodesneigbourofNumber

nsinteractiosocialofNumber
InfluenceofEstimate      (4.1) 
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 They show the statistical significance of their measure using the URN model [16]. 

We adopt their approach as a ground truth.  To measure influence, we propose a hybrid 

measurement to predict influential users. This measurement integrates:  

(1) Users' structural location in a network, and  

(2) Users' attributes.  

 The structural location in a network can be computed using centrality analysis.  

On the other hand, users' attributes on social networks such as users activeness are 

counted for measuring influence because users' attribute is one of the three influence 

types of the Katz communication model [75]. In order to improve the performance of 

influence measurement, we employ different centrality analysis algorithms to our 

measurement and integrate it with users' attributes to predict the influential users. In order 

to model influence, we use the graph theory since social networks can represent as a 

graph.  

4.3 Influence Model 

 Influence on social networks is modeled using the graph theory. In a graph G(V, 

E), we can represent users in social networks as nodes V, and interactions as edges E. 

Edges can be either directed or undirected and either weighted or unweighted depending 

on the characteristics of social networks. For example, retweet on Twitter is directed 

while friendship on Facebook is undirected. In a graph, influence flows between users 

through edges. A graph can be denoted using adjacency matrix or adjacency list [76]. As 

shown in [77], social networks can be sparse networks. Therefore, adjacency lists are 



 
  

49 

more efficient to represent social networks in terms of time and space because of the 

following explanation. In adjacency lists, only the node that points to other nodes will be 

stored in row cells. For example, there are three nodes a, band c where a points to band c 

and b points to c. In the first row, there are a, b and c. In the second row, we have band c, 

while in the third row, we have the only c. This example shows how space is utilized 

effectively as shown in Figure 4.1. In this work, we sort the adjacency list using 

MergeSort [76].  

 

Figure 4.1. A representation of social network using adjacency list. 

4.4 Influence Measurement 

 As mentioned before, influence can be measured using structural location and 

users' attributes. In this section, we explore the different measurements used in predicting 

influential users. 

4.4.1 Structural location of users on social networks 

 Different centrality analysis techniques are used to reflect the importance of the 

standing positions of the users. Overall, all these centrality analysis techniques can be 

used to show the importance of nodes in a graph. Therefore, to represent the structural 



 
  

50 

location of users on social networks, we propose a user location module that is used to 

measure users’ structural locations using centrality analysis.  The user location module 

applies one of the centrality analysis techniques to the influence model to measure the 

influence of users.  Note that the influence model represents the actual interactions 

between users as a graph. Figure 4.2 shows a representation of the module. 

 

Figure 4.2. User Structural Module. 

4.4.2 Users Attributes 

 In this module, attributes are used to measure the nodes influence such as 

activeness as shown in Figure 4.3. We use weights to consider the importance of each 

attribute, i.e., User Attribute Module [78]. The equation below is used to compute the 

influence of nodes: 





n

j

iii wattvUI
0

)(

         (4.2) 



 
  

51 

, where       
   . Each wi will be assigned to each attribute denoted as atti. 

 

Figure 4.3. User Attribute Module. 

4.4.3 Users Structural location and attributes 

 In this module, we integrate the users’ structural locations and attributes to 

compute a node’s influence on a graph as shown in Figure 4.4. 

 We use a parameter τ to controls the relative importance of the two 

measurements. It is computed as below:   

                           (4.3) 

, where τ  value will be evaluated in experiments. 

4.5 Experimental Set up 

 In this section, we discuss the evaluation criteria and equation used in evaluating 

the influence measurements. We further represent the datasets used in the experiments. 

Note that the influence measurements are implemented using Java. 
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Figure 4.4. Users Structural location and attributes. 

4.5.1 Evaluation  

 In order to measure the statistical significance of between rankings produced by 

the influence measurements and the ground truth, we use Pearson’s Correlation 

Coefficient. Pearson’s Correlation Coefficient measures how much two variables are 

related to each other by measuring the linear dependence between them. The possible 

outcomes from Pearson’s Correlation is a value, i.e., r, between [−1, 1] representing the 

negative and positive relationship strength respectively. A strong correlation exists if r ≥ 

±0.5 where medium correlations exist when ±0.5 ≤ r and r ≥ ±0.3; otherwise, there is a 

weak relationship or no relationship when r = 0 [79]. It is calculated as follows: 

        
                               
   

          
        ( 0.4) 

, where EM refers to the rankings of users ranked using the ground truth, and PRD is the 

ranking of users ranked using the influence measurements. 
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4.5.2 Dataset 

 We have used three datasets to assess the measurements discussed in this thesis: 

Flickr and Digg datasets to investigate the adaptability of influence measurements to 

different social networks. Flicker is a social network that is based on images. The dataset 

is retrieved from one of the groups in Flicker that includes users, images, interactions, 

and other metadata such as photo tags using the Flickr API. A total of 30.759 users have 

participated in the group. Some of them can be popular by posting images, while others 

only interact with other users. For example, 1.559 users have uploaded 4.991 images. 

There are 46.059 interactions between users representing comments and favorites. Digg is 

a social network that allows users to share news stories. Users can interact with each 

other by voting on stories. The dataset contains 139.409 users and 1.534.314 edges 

representing voting. Among these users, 474 users have shared 3.553 stories. This dataset 

is provided by [33].  StackOverflow is a social network for programmers; programmers 

can ask and answer questions related to programming. In this social network, users can 

rate the questions and answers. The interactions between users can be in the form of 

answers or ratings. The dataset contains 40.395 nodes and 246.492 edges, which 

represent the interaction between users in the form of answers. There are 26836 users 

who posted 263264 threads. This dataset is provided by [79] and can be downloaded 

from 
3
. These datasets are different in nature. Digg is focused on news, Flicker is focused 

on images and photographers and StackOverflow is focused on programmers.   

 By conducting our analysis on these datasets, we are considering different 

behaviors on social networks. Table 4.1 shows the characteristics of datasets including 

                                                           

3 https://www.ics.uci.edu/~duboisc/stackoverflow/ 



 
  

54 

the number of nodes, which represents the number of users, the number of edges that 

represent interactions, and a number of posts 

Table 4.1. Datasets characteristic. 

Dataset Number of nodes Number of edges Number of posts 
Number of 

contributors 

Flicker 30759 46213 4838 Images 1420 

Digg 139409 1534314 3553 Stories 474 

StackOverFlow 40395 246492 263264 threads 26836 

4.6 Preliminary results 

 In the experiments, we employed the measurements discussed earlier to the 

Dataset to retrieves from Flickr and Digg. The results shown are grouped into three 

groups based on the correlation results for each dataset, i.e., Gr1, Gr2, and Gr3. These 

groups contain weak, medium and strong correlations respectively according to [79]. 

4.6.1 Structural-Based Influence Measurements  

 First, we employed the measurements based on the structural locations to both 

datasets and compared the rankings produced by these measurements with the ground 

truth. First, we employed the measurement to Flickr, which is discussed in the next 

paragraph. 

 As shown in Table 4.2 and Figure 4.5, on Flickr, the weighted in-degree centrality 

is the most correlated measurement with EM. The weighted incoming interactions 

represent the tie strength between users. This shows that tie strength is a good indicator of 

influence. Eigenvector and PageRank centrality come in the second and third places 
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respectively, which shows that considering the importance of nodes is also an important 

indicator of influence. In-degree centrality is the fourth most correlated measurement 

with EM, followed by degree centrality. This shows that the number of connections a user 

has is a good indicator of influence. Note that the correlation results from these 

measurements are assigned to GR2. The closeness and Betweenness centrality techniques 

have weak correlations with EM and therefore assigned to Gr1.  

 When we employed the measurements to Digg, most the correlations rates have 

significantly increased. However, the order of the most correlated measurements has 

changed slightly. The weighted in-degree centrality is still the most correlated 

measurement with EM, with a correlation rate of 0.74. PageRank centrality jumped into 

the second place. Eigenvector centrality dropped one position, and in-degree jumped one 

position, making them come in the third place. Degree centrality has jumped to the third 

place as well. Note that all correlation rates produced by these measurements are now 

assigned to Gr3. The closeness and Betweenness centrality techniques are still the least 

correlated measurements; however, their correlation rates have increased to become 

medium correlations, and therefore are assigned to Gr2.  

 Then, we employed the measurements to StackOverflow, most the correlations 

rates have increased from the results produced on Flickr. However, the order of the most 

correlated measurements has changed slightly. The weighted in-degree centrality is still 

the most correlated measurement with EM, with a correlation rate of 0.61. Degree 

centrality comes in the second place with a correlation rate of 0.37, while in-degree 

comes in the third place with a correlation rate of 0.34. PageRank and Eigenvector 

centrality techniques come next with a correlation rata of 0.16.  The closeness and 
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Betweenness centrality techniques are still the least correlated measurements with no 

correlation. The weighted in-degree is assigned to Gr3, degree and in-degree centrality 

techniques are assigned to Gr2, and the rest of the measurements are assigned to Gr1.  

Table 4.2. Correlation between structural and attributes based influence measurements and an estimate of 

influence. 

Structural-Based Influence 

Measurements 

Flickr Dataset Digg Dataset 
StackOverflow 

Dataset 

Correlation Rate 

Closeness Centrality 0.28 0.18 -0.01 

Betweenness Centrality 0.29 0.48 -0.09 

Degree Centrality 0.30 0.66 0.37 

In-degree Centrality 0.312 0.66 0.34 

Weighted In-degree 

Centrality 
0.42 0.74 0.61 

Eigenvector Centrality 0.323 0.66 0.32 

PageRank Centrality 0.316 0.70 0.32 

Attribute Measurement 0.49 0.89 0.61 

4.6.2 Attribute-Based Influence Measurement 

 We employed the attribute-based measurement, which represents how active users 

are, to the datasets. As shown in Table 4.2 and Figure 4.5, the attribute measurement 

achieves higher correlation than the structural-based measurements, which show that 

when a user is more active, the user can have more influence. However, on 

StackOverflow, the attribute measurement archives the same correlation rate as the 

weighted in-degree. The correlation rate in Flickr is medium, while it becomes strong on 

Digg and StackOverflow. 



 
  

57 

 

Figure 4.5. Correlation between the estimate of influence and structural and attributes influence 

measurements. The X-axis represents the correlation rates, where the Y-axis represents the influence 

measurements. 

4.6.3 Hybrid Influence Measurements 

 We selected the top correlated structural-based measurements with EM, and 

integrate them with attribute-based measurement according to the equation presented 

before. We varied the   value to observe the importance of the measurements over each 

other, and to find the optimal correlation rate.  

 First, as shown in Table 4.3 and Figure 4.6, we employed the four hybrid 

measurements to Flickr. For the correlation between the hybrid measurements and EM, a 

hybrid eigenvector is correlated with the ground with a correlation rate = 0.5. Hybrid 

PageRank has a correlation with EM with a rate equal to 0.503. Hybrid weighted in-

degree has a correlation with EM with a rate of 0.502, while the correlation for hybrid in-
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the most correlated measurement with EM. The measurements still have medium 

correlation rates, however, the correlation rates have increased over the previous 

measurements. Since the hybrid measurements act differently using different   values, we 

apply different   values ranging from 0.0005 to 0.9 to the hybrid measurements. We 

found that hybrid PageRank starts with 0.49 and then slightly increase to 0.5 and then 

slightly decrease to 0.49 when   values are between 0.0005 and 0.45. Moreover, hybrid 

PageRank starts to decrease after that. This shows that hybrid PageRank performs better 

when the attribute-based influence measurements are more important than the structural-

based influence measurement. For hybrid eigenvector, we found that the correlation stays 

within the same range for all the   values which shows that attribute-based influence 

measurements are as important as structural-based influence measurements. Hybrid 

weighted in-degree starts with a high correlation with EM and then starts to decrease. 

This shows that the attribute-based influence measurement is more important than the 

structural-based influence measurements. Hybrid in-degree also starts with high 

correlation with EM and then dramatically decrease, which shows that attribute-based 

influence measurements are much more important than the structural-based influence 

measurements.  

 We further employed the measurements to Digg dataset. As shown in Table 4.3 

and Figure 4.6, the correlation rates between the hybrid measurements and EM. The 

hybrid eigenvector is correlated with EM, with r = 0.903. Hybrid PageRank has a 

correlation with EM with a rate of 0.904. Hybrid weighted in-degree has a correlation 

with EM of 0.901 while the correlation for hybrid in-degree and EM decreases to 0.89. 
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Among these measurements, the hybrid PageRank is the most correlated measurement 

with the ground truth.  

 As for the importance of the attribute-based influence measurements over the 

structural-based influence measurements, we found that hybrid PageRank starts with 0.9 

and then slightly increase to 0.904 and then slightly decrease to 0.8 when   values are 

between 0.0005 and 0.05. However, hybrid PageRank starts to decrease after that. This 

shows that hybrid PageRank performs better when the attribute-based influence 

measurement is more important than the structural-based influence measurement. For 

hybrid Eigenvector, we found that the correlation stays within the same range for all the 

values which show that attribute-based influence measurement is as important as 

structural-based influence measurements. Hybrid weighted in-degree starts with a high 

correlation with EM and then starts to decrease. This shows that the attribute-based 

influence measurement is more important than the structural-based influence 

measurements. Hybrid in-degree also starts with high correlation with EM and then 

dramatically decrease, which shows that attribute-based influence measurements are 

much more important than the structural-based influence measurements. 

 We further employed the measurements to StackOverflow dataset. As shown in 

Table 4.3 and Figure 4.6, the correlation rates between the hybrid measurements and EM. 

The hybrid eigenvector is correlated with EM, with r of 0.61. Hybrid PageRank has a 

correlation with EM with a rate of 0.62. Hybrid weighted in-degree has a correlation with 

EM of 0.62 while the correlation for hybrid in-degree and EM decreases to 0.61. Among 

these measurements, the hybrid PageRank is the most correlated measurement with the 

ground truth.  
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 As for the importance of the attribute-based influence measurements over the 

structural-based influence measurements, we found that hybrid PageRank starts with a 

correlation rate of 0.61 and then decrease to 0.49. This shows that hybrid PageRank 

performs better when the attribute-based influence measurement is more important than 

the structural-based influence measurement. For hybrid Eigenvector and weighted in-

degree, we found that the correlation stays within the same range for all the values which 

show that attribute-based influence measurement is as important as structural-based 

influence measurements. Hybrid in-degree also starts with high correlation with EM and 

then decrease, which shows that attribute-based influence measurements are much more 

important than the structural-based influence measurements (Figures 4.7, 4.8 and 4.9 

illiterates the behavior of the hybrid measurements using different   values). 

Table 4.3. Hybrid influence measurements comparison in terms of correlation. 

Hybrid Influence 

Measurements 

Flickr Dataset Digg Dataset 
StackOverflow 

Dataset 

Correlation Rate 

Hybrid Eigenvector 0.50 0.903 0.62 

Hybrid PageRank 0.503 0.904 0.62 

Hybrid In degree 0.496 0.89 0.62 

Hybrid Weighted In 

degree 
0.502 0.901 0.62 

4.6.4 Comparison of related works measurements 

 We selected our proposed hybrid eigenvector to compare with the related works 

because it is the most stable hybrid measurements in terms of different   values. This 

measurement is empirically compared with seven of the state of art influence 
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measurements in Flickr and Digg datasets in terms of correlation. The results are shown 

in Table 4.4 and Figure 4.9. 

 For Flicker’s social network, degree centrality is assigned to Gr1, where hybrid 

Eigenvector is assigned to Gr3. The rest of the measurements are assigned to Gr2. This 

can show that users’ attributes and the number of followers are important factors for 

determining influential users since hybrid eigenvector is the only measurement that 

considers these characteristics. The only common thing between the measurements is that 

they all consider the degree of nodes, which shows that the number of followers each user 

has is an indicator of influence.  

 On Digg’s dataset, all measurements are classified to Gr3. However, one 

measurement shows a very strong correlation where the other measurements have similar 

correlations. Therefore, we further divide Gr3 into Gr3.1 and Gr3.2 for very strong and 

strong correlations, respectively. The hybrid eigenvector is classified to Gr3.1 while other 

measurements are classified to Gr.3.2. Results for Digg’s dataset have a similar trend to 

the results on Flicker. However, all correlation rates have significantly increased. Also, 

measurements that were classified to Gr.1 and Gr.2 have jumped to Gr.3.  

 On StackOverflow's dataset, only the hybrid measurement is assigned to Gr3. 

Complex and in-degree centrality techniques are assigned to Gr2, while the rest of the 

measurements are assigned to Gr1. This can show that users’ attributes and the number of 

followers are important factors for determining influential users since hybrid eigenvector 

is the only measurement that considers these characteristics. 
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 The hybrid eigenvector is the most correlated measurement with the EM in all the 

datasets. First as discussed earlier, we hypothesized that users’ attributes are an important 

indicator of influence, which is one of the bases of the hybrid eigenvector. Complex 

centrality is the second most correlated measurement in both datasets. It is due to the fact 

that it considers the tie strength. LeaderRank is the third top correlated measurement with 

the empirical measurement in both datasets. Eigenvector centrality is the fourth most 

correlated measurements with EM in Flicker's dataset, while it is the fifth most correlated 

measurement in the Digg’s dataset. Normalized Alpha Centrality is the fifth most 

correlated measurement in Flicker’s dataset, but its correlation increases to the top fourth 

correlated measurement in Digg’s dataset. PageRank is the sixth most correlated 

measurement in Flicker’s dataset, while it is the second most correlated measurement in 

Digg’s dataset. The previous four measurements have a similar correlation rate because 

they all consider the depth of the social network. However, they perform differently in 

both datasets. In-degree centrality is the seventh most correlated measurement in Flickr’s 

dataset, while it is the second most correlated measurement in  Digg’s dataset. Degree 

centrality is the least correlated measurement in the Flicker’s dataset, while it is the 

fourth top correlated measurement in Digg’s dataset. 

4.7 Result Discussion 

 The correlation rates of the measurements have significantly increased in Digg’s 

dataset compared to the other datasets. We hypothesize that this is because of the social 

network characteristics and nature; for example, Flicker is a social network that supports 

images, while Digg acts like a new medium. This means that feasibility of influence 
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measurements depends on their adaptability to social networks. We can conclude that 

hybrid-based influence measurements are better than single-based influence 

measurements, and users' attributes are more important than their structural locations in a 

network in term of correlation. 

4.8 Performance Analysis 

 The measurements are grouped into iterative and noniterative. In-degree, 

Complex, and modified degree are non-iterative techniques, where the rest of the 

measurements are iterative algorithms. As shown in Table 4.5, non-iterative 

measurements have a linear runtime complexity of O(m) since they only need to compute 

the degree of each node once it is given m edges. They have a space complexity of 

O(m+n) because they store the ranking of each node n based on its adjacent edges m. 

Iterative measurements have the same exponential runtime and space complexity of O(m) 

and O(m+n) per iteration, respectively, since they need to compute and store the ranking 

list for each iteration. All of the measurements have I/O cost of O(m+ n). To obtain a 

sense of their complexities in the implementation, we have computed the runtime of each 

measurement in the two datasets. The results confirmed the performance analysis in 

terms of O notation. In Flicker Dataset, modified degree and in-degree take 10 ms to 

complete using wall clock time, which makes them the fastest measurements. Complex 

centrality took slightly longer runtime because it computes the exponent for each node. 

These influence measurements are well suited for large-scale social networks. For 

eigenvector, PageRank, and LederRank, we limited the number of iteration to 55 since 

they are already proven to converge. PageRank takes 100 ms, where eigenvector is 
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executed in 170 ms. Hybrid measurement takes slightly more time than eigenvector since 

they are both based on computing the eigenvector. LeaderRank completes in 345 ms. 

Normalized Alpha centrality takes 26,876 ms since it iterates much more than the 

previous measurements. There was not a lot of variation in the performance of each 

measurement in the Digg dataset. Eigenvector centrality was the fastest iterative 

measurement where LeaderRank was the second fastest iterative measurement. 

Normalized Alpha Centrality again took the longest running time of 40,056 ms. These 

results reflect the complexities of influence measurements. Table 4.5 shows the summary 

of the performance evaluation for the selected influence measurements in term of 

complexity. Table 4.5 shows the runtime complexity that represents the number of steps 

to run the algorithm, and the space complexity shows the computational resources needed  

by the algorithms. I/O is the cost of input and output management. The runtime in both 

datasets represents the actual time spent by each algorithm. 

 

Figure 4.6. Correlation between the estimate of influence and hybrid influence measurements. The X-axis 

represents the correlation rates, where the Y-axis represents the influence measurements. 
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Figure 4.7. Hybrid influence measurements performance over different t values in terms of correlation on 

Flickr dataset. The X-axis represents the correlation rate where the Y-axis represents the t values.  

 

Figure 4.8. Hybrid influence measurements performance over different t values in terms of correlation on 

Digg dataset. The X-axis represents the correlation rate where the Y-axis represents the t values. 
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Figure 4.9. Hybrid influence measurements performance over different t values in terms of correlation on 

StackOverflow dataset. The X-axis represents the correlation rate where the Y-axis represents the t values. 

Table 4 0.4. Comparison between the proposed measurement and the existing measurements in terms of 

correlation. 

Influence Measurements 
Flickr Dataset Digg Dataset 

StackOverflow 

Dataset 

Correlation Rate 

Hybrid Measurement 0.50 0.90 0.62 

Complex Centrality [9] 0.38 0.70 0.36 

LeaderRank [17] 0.327 0.69 0.14 

Eigenvector Centrality 

[12] 
0.323 0.66 0.32 

PageRank Centrality [11] 0.316 0.70 0.32 

Normalized Alpha 

Centrality [16] 
0.42 0.74 0.144 

In-degree Centrality [10] 0.312 0.66 0.34 

Modified  Degree 

Centrality [9] 
0.27 0.67 0.37 

 

 

Figure 4.10. Comparison between the proposed measurement and the existing measurements in terms of 

correlation. The X-axis represents the correlation rates, where the Y-axis represents the influence. 

measurements. 
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Table 4.5. Performance of measurements, n = nodes, m = edge. 

Influence 

Measurements 

Runtime 

complexity 

Space 

complexity 
I/O cost 

Runtime in 

milliseconds 

(Flicker 

dataset) 

Runtime in 

milliseconds 

(Digg dataset) 

Hybrid 

Measurement 

O(m) per 

iteration 

O(m+ n) per 

iteration 
O(m +n) 

178 (iterations 

= 55) 

3396 

(iterations = 

55) 

Complex 

Centrality [9] 
O(m) O(m+n) O(m+n) 30 225 

LeaderRank [17] 
O(m) per 

iteration 

O(m+ n) per 

iteration 
O(m +n) 

345 (iterations 

= 55 

5435 

(iterations = 

55) 

Eigenvector 

Centrality [12] 

O(m) per 

iteration 

O(m+ n) per 

iteration 
O(m +n) 

170 (iterations 

= 55) 

3349 

(iterations = 

55) 

PageRank 

Centrality [11] 

O(m) per 

iteration 

O(m+ n) per 

iteration 
O(m +n) 

100 (iterations 

= 55) 

6045 

(iterations = 

Normalized Alpha 

Centrality [16] 

O(m) per 

iteration 

O(m+ n) per 

iteration 
O(m +n) 

26,876 (Alpha 

<0:1) 

40,056 

(Alpha< 0.05) 

In-degree 

Centrality [10] 
O(m) O(m+n) O(m+n) 10 40 

Modified  Degree 

Centrality [9] 
O(m) O(m+n) O(m+n) 10 45 
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CHAPTER 5: PREDICTING THE POPULARITY OF 

IMAGES USING MACHINE LEARNING ALGORITHMS 

 In this chapter, we discuss the approaches used to predict popular images on 

social networks. We further explain the experiments and show the results. 

5.1 Overview 

 As mentioned in Chapter 3, we will predict the popularity images along the 

timeline. Images have become important media for communication between users on 

social networks. As a result, a significant number of papers have investigated several 

topics related to images, including predicting image popularity [35]-[40], [43]. The 

previous works have not considered the prediction of image popularity along the 

timeline. However, image popularity can be decreased or increased over time. We 

investigate the information about an image within an hour of upload to predict its future 

popularity (after a day, after a week, or after a month) and stability of stability of 

popularity. We employ social, content and early popularity features to predict an image’s 

popularity over time.  

5.2 Popularity Measurement 

  Webster’s dictionary defines popularity as "the state of being liked, enjoyed, 

accepted, or done by a large number of people [80]." The reality of this definition can be 
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found on social networks, through users’ interactions. On Instagram, users can show their 

admiration for the image by liking it. Intuitively, an image that receives many likes can 

be considered popular. Therefore, we adopt the number of likes as our popularity 

measurement. We classify the number of likes to as either low or high, where low means 

unpopular and high means popular.  

 However, popularity is subjective. In order to determine popular and unpopular 

images, we adopt the Pareto principle (80%−20%) to compute the threshold using the 

number of likes as used in [35]. The Pareto Principle is the observation that 80% of 

effects are caused by 20% of the causes. An image that receives a number of likes that is 

greater or equal to this threshold is considered popular. In our dataset, we observe that 

20% of the images receive 99% of the total number of likes. The thresholds of popularity 

criteria are: likes greater or equal than 49 for the first hour, 69 for the next day, 75 for the 

next week, and 76 for the next month. For example, if image i receives 49 likes during the 

first hour it is shared, it will be considered popular. If the number of likes increases to 70 

within the first day, it will stay popular for the first day. However, if the number of likes 

during the week is less than 75, i will become unpopular after the first week. If the 

number of likes stays less than the threshold after one month, it will stay unpopular. 

Image i started out popular in the first hour, then it kept its popularity for the first day. 

However, it became unpopular after one week.  

 Figure 5.1 shows the distribution of the number of images with respect to the 

number of likes (in the first hour, next day, first week, and first month). Both axes are log 

scaled. The x-axis is the normalized number of likes by the popularity threshold for each 

time period; therefore, the overlapped line represents the normalized popularity 
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thresholds. Y-axis is the normalized number of images by the maximum number of 

images. 

 In order to represent image content, we introduce keyword vector. It is a novel 

approach, built upon well-established techniques in the field of NLP and clustering. It 

represents the semantics of images using their captions. Keyword vector represents 

multiple meanings from multiple keywords  

 As mentioned earlier, we observed that not all images posted by the same user 

become popular. This observation motivated us to investigate the relationship between 

the content and popularity 

5.3 Approach 

We investigate the relationship between social context, an image’s semantics and 

image’s early popularity, and their popularity. These features represent the early 

information that is retrieved in the first hour of image upload to Instagram. 

5.3.1 Social Context 

 We select the social context (which represents the information of the users who 

upload images) because several works showed that the popularity of the user who 

uploads an image is correlated with the image’s popularity [35], [37]-[40], [43]. To 

represent user popularity, we chose the number of followers because it is an indicator of a 

user’s popularity. We normalize the number of followers by the maximum number of 

followers because (from Figure 5.1), the normalized distributions are similar to each other 

and the change ratio is more important. This is computed using the following equation: 
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Si  
 og10 foli 1 

 og10  ax  Fol  
         (5.1) 

, where }1,0{fs and fol  is the number of followers. 

5.3.2 Images semantics 

 Oglesbee states that ” ooking at a picture without a caption is like watching 

television with the sound turned off” [81]. Understanding the meaning of images can be 

challenging; photographers use captions to describe images to help viewers understand 

the photographers’ point of view. Captions are a small description of images that are 

usually placed under the images (See Figure 5.2). As shown in Figure 5.2, the first image 

on the left is that of a house in the countryside. The caption reads as ”rustic residence”, 

which explains the meaning from the image. Thus, multimedia social networks (such as 

Flicker and Instagram) support captions. We are trying to find images that have a similar 

meaning. And since semantics are subjective, the text gives better results than computer 

vision for extracting semantics. 

 In this paper, we analyze the effect of an image’s semantics on its popularity. 

Using captions, we extract the semantics of an image using word2ve and clustering 

techniques by introducing the keyword vector. The keyword vector represents the 

semantics of an image in a numerical form.  Word2vec aims to map words that have a 

similar meaning to nearby points using a continuous vector space. For example, dog and 

cat would be mapped to nearby points because they are both pets. Word2vec uses a 

neural network to learn distributed representations of words. We understand that not all 

photographers provide captions, but still many do to explain the images. The process of 

extracting the image’s semantics has four steps: 
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1. Step 1: Captions Preprocessing  In this step, we remove stop words and special 

characters from captions and tokenized the remaining words [78]. The remaining 

words are referred to as keywords. For example, the two images shown in Figure 5.2 

are shared on Instagram and annotated with two captions: "rustic residence" and "the 

girl and the goat". If the captions have any special character (such as &) or stop 

words (such as and), they will be removed. We then tokenized the remaining 

keywords. Therefore, for the two captions: we will end up with the following 

keywords: ”rustic” and ”residence” as well as ”girl” and ”goat”. The result from this 

step is a caption words vector Wj , for each image containing the keywords extracted 

from image i caption. Wj = {w0, ..wn}, where wj represents a single keyword. 

2. Step 2: Vector representations of keywords  To understand the meaning behind 

keywords, we employ Word2Vec [52]. Word2Vec is an unsupervised two-layer 

neural network that generates distributed numerical vectors to represent words [52]. It 

groups similar words based on their vectors in the vector space to detect similarity. 

For example, with a pre-trained model using a Skip-gram model on 100 billion 

words, the vector of goat is [0.05, 0.04...]. When computing the most similar words to 

goat, we get goats, sheep, pig, llama, and cow with very high cosine similarities. The 

output from this step is a 300-dimensional vector, WVl for each keyword, Wj, WVi = 

{x0, ..x300}. 

3. Step 3: Semantic word clustering: Different words can be similar based on their 

semantics. For example, an oven and refrigerator can both indicate kitchen, food, or 

electronics. Therefore, words that have similar meaning should be clustered. To do 

so, k-means is employed. We cluster unique WV of all images into k number of 
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clusters using k-means. The result from this step is a dictionary that includes each 

keyword with its corresponding cluster, DW={[W0, WCk],….,[Wn,WCk]}. 

4. Step4: Keyword Vector Generation  Using captions, photographers can use 

different keywords to describe multiple objects in an image. Therefore, by a caption, 

one image may have multiple meanings from multiple keywords. Keyword vector is 

introduced to represent the multiple semantics of an image. The keyword vector is a 

binary vector representing the semantics of keywords with a length of k. We check 

WV for each image to see which clusters the W  fall into. The clusters corresponding 

to the WVs are represented as 1, otherwise as 0. With this bit info, we compose KWV 

for an image. Each image has one KWV. For example, using our model, we cluster 

the keywords from Figure 5.2. We end up with the following keyword clusters {girl : 

1, goat : 2, resident : 1, rustic : 3}, where k=3. We see that girl and resident are 

clustered together while goat and rustic are placed in clusters 2 and 3 respectively. 

The two keyword vectors for images 1 and 2 are KWV1 = [0, 1, 1] and KWV2 = [1, 1, 

0] which are computed using the following equations. 

},....,{ 0 mv ccKWV           (5.2) 

         
         ∈      

                       
         (5.3) 

where imagesc j  ]1,0[ . cy is a binary value representing whether the keywords belong 

to cluster ccx or not. 

 The keyword vector can explain the semantics of images by considering multiple 

keywords of different meanings due to the different semantic clusters of keywords. It also 
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combines similar keywords since keywords that are semantically similar will be 

considered as one meaning because they belong to the same semantic cluster. As shown 

in Algorithm 1, there are 10 simple steps to compute the keyword vectors for images. 

This algorithm accepts two lists and generates a dictionary containing the keyword vector 

for each image. We initialize lists and dictionaries used in the algorithm. We then remove 

the stop words from captions, tokenized each caption, and generate CWV for each image, 

which is implemented using NLTK [78]. Next, we apply Word2Vec to the words to 

compute the vectors for each word (VW) [82]. After that, we apply k-means to cluster the 

words based on the word vectors (KWV) implemented using Sklearn [83]. Then we 

create a dictionary consisting of words and clusters. We create the keyword vector for 

each image, then finally create the dictionary for images and keyword vectors.  

 

5.3.3 Early Popularity 

 There has not been any research that considers the early popularity in predicting 

images future popularity. As shown in Figure 5.1, the distribution of images and likes 

over different time frames show similar trends relatively; this can mean that there is a 
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possibility that early information about popularity can be used to predict future 

popularity. However, the popularity of an image is not necessarily constant over time; it 

can increase or decrease along the timeline. Based on our empirical analysis on our 

dataset, about 10% of the images have changing popularity over time.  

 We investigate the early popularity of an image to predict its future popularity as 

well as the stability of images popularity. On social networks, we collect popularity data, 

i.e., number of likes during the first hour the image is uploaded. We then employ the 

popularity threshold to classify the early popularity. This feature is a binary variable that 

represents popular images as 1 and 0 for unpopular. The popularity variable (EP) is 

computed based on the Pareto principle threshold as follows: 

      
                               

      
       (5.4) 

5.3.3 Prediction  

 For predicting the popularity of images, we employed several classifiers including 

SVM, Naïve Bays, Decision tree, and Random Forest. Gaussian Naïve Bays 

outperformed the other classifiers in terms of accuracy. Therefore, we only include the 

results generated by Gaussian Naïve Bays. Gaussian Naïve Bayes computes the 

probability of each class, instead of computing the distance as explained in Chapter 5. 

 To employ Word2Vec, we use Gensim, a python library that implements 

Word2vec [82]. The pre-trained model that is used for the experiments is provided by 
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[82]. This model is trained on 100 billion words from Google News and achieved an 

accuracy rate of 73%. It can be downloaded from 
4
. 

 For k-means, we varied k between 4 and 1000 and observed that when k > 250, we 

get better results. This is due to small clusters of words give better results than larger 

words clusters. For k-means, we varied k between 4 and 1000 and observed that when k > 

250, we get better results. This is due to small clusters of words give better results than 

larger words clusters. To implement the algorithms, we used the implementation from 

Scikit-learn [83]. 

5.4 Experimental Set up 

 In this section, we discuss the evaluation criteria used in evaluating the 

predictions models. We further represent the datasets used in the experiments. 

5.4.1 Evaluation 

 For evaluating the accuracy of our models, we adopt sensitivity (i.e., true positive 

rate). In the medical field, sensitivity is used to report the proportion of people with the 

disease who are correctly identified as sick [84]. It is widely used in the medical field 

because the percentage of people with the disease is much smaller than the percentage of 

healthy people [84]. We are interested in predicting the popular images which is much 

less than unpopular images. Therefore, sensitivity reflects the ability of our model to 

predict popular images. The sensitivity is computed as follow: 

                                                           

4 https://code.google.com/p/word2vec/. 
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         ( 05.5) 

where true positives are popular images that are correctly identified as popular.  

5.4.1 Datasets 

5.4.1.1 Instagram Dataset 

 We crawled the data using the Instagram API
5
. There are two methods to retrieve 

images from Instagram. The first method is to retrieve the recent images using given 

users IDs; the second method is to retrieve images based on a given geographical 

location. We choose the first method because we wanted our data to be completely 

random. This approach requires users’ IDs. Based on our experiment with the Instagram 

API, we noticed that Instagram users’ IDs are simply numbered from one to millions. 

Therefore, we randomly selected more than 1, 000, 000 IDs. Using these IDs, we 

triggered the Instagram API to check whether these users are private or public (since 

users have the choice to make their profiles publicly available to users or not). We found 

149, 520 users who are public. However, among these users, there are 89, 093 who 

shared at least ten images.  

 We use these users when we were collecting the data because they are active. We 

were able to retrieve two random datasets containing their images that were uploaded 

during the first hour. For our experiments, we retrieved 69, 000 images. However, after 

preprocessing, we have 51, 647 images. Set 1 contains 39, 302 images, while Set 2 has 

12, 345 images. Set 1 was retrieved between January 2016 and February 2016, while set 

                                                           

5 https://api.instagram.com/ 
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2 was retrieved between March 2016 and April 2016. Set 1 is used for training while 

testing is performed on Set 2. These images have received 16, 331, 397 likes. Instagram 

does not provide the timestamps of the likes; therefore, we tracked the number of likes for 

each image using its ID for the three time periods stated earlier.  

5.4.1.2 Flickr Dataset 

 We used Flickr data to analyze the effects of our proposed semantic feature on an 

image’s popularity.  cParlane et.al. used this data to predict the popularity of images 

[35]. For the popularity measurements, they adopted the number of views and number of 

comments. They provided the dataset, popularity measurements, and popularity 

thresholds. The dataset contains a total of 867, 312 images. The distribution of the dataset 

with regard to the popularity of measurements is shown in Figure 5.3. 

 

Figure 5.1. The graph represents the distribution of images and likes for the first hour, next-day, first week, 

and first month for the Instagram dataset. The line represents the overlapped normalized popularity 

thresholds. The x-axis is the normalized number of likes while the y-axis is the normalized number of 

images. 
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Figure 5 0.2. Two images retrieved from Instagram with their captions: the image on the left is described as 

”rustic house”, while the image on the right is described as ”the girl and the goat”. 

 

Figure 5 0.3. The graph shows the number of Views (left) and a number of comments (right), and the 

number of images distribution for the Flickr dataset used by McParlane et al., [31]. The red line is the 

popularity threshold based on the Pareto principle. 

 Figure 5.4 shows another example of how we create the keyword vector for an 

image extracted from Instagram. 
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Figure 5 0.4. Another example of representing the semantics of images using keyword vector. 

5.6 Preliminary Results 

 In this section, we present our preliminary results for predicting the future 

popularity of images as well as the stability of images popularity. 

5.6.1 Predicting the future popularity of images along the 

timeline on Instagram: 

 User information can predict popular images with a sensitivity rate of 0.55, as 

shown in Table 5.1. This indicates that images posted by powerful users can become 

popular based on the users’ popularity. However, not all images posted by the same users 

become popular. For predicting the popularity after one week and one month, the 

sensitivity rates decreased slightly. This shows that as time passes, the correlation 

between the popularity of users and popularity of their images decrease, which means 
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that an image posted by a popular user can become popular in a short period of time, 

however, as time passes, it may not be able to keep its popularity. Table 7 shows that 

image semantics is the least important feature for popularity prediction, with a sensitivity 

rate around 0.38. This shows that there is a weak correlation between images semantics 

and their popularity. For popularity prediction over time, there is a slight improvement in 

the popularity prediction accuracy from 0.38 to 0.40. This improvement means that 

images semantics have more effect on popularity as time passes, which is the opposite 

from the social context. This shows that in long-term popularity, an image’s semantics 

can be more important than the user’s information. Images early popularity is the most 

crucial feature in popularity prediction with a sensitivity rate of 0.90 as shown in Table 

5.1.  

 We observe that early popularity is linked closely to future popularity. This is 

because popularity may become saturated after the first hour. However, there are no 

improvements on prediction during different periods. This suggests that more features are 

needed to determine the changes in popularity over time. The results are shown in Figure 

5.5. 

5.6.2 Predicting the stability of images popularity on Instagram: 

 Based on the analysis of images popularity on Instagram, we see that images who 

usually start popular stay popular, and images that start unpopular stay unpopular. 

However, this is not the case all the time. We observed that the popularity of several 

images had changed over time. In this experiment, we investigate what may drive such a 

behavior. We employ the three features discussed earlier to predict the stability of 
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popularity. Our results show that early popularity and user information cannot predict the 

changes of popularity, even so, they are observed to be important in predicting image 

future popularity, where image semantics can predict the popularity changes with a 

sensitivity rate of 0.34, which shows that the semantics of an image has an effect on it 

popularity as time passes.  

 On the other hand, we investigated what makes the popularity of an image stay 

stable over time. We found that social context and early popularity are perfectly linked 

with stable popularity with a perfect sensitivity rate of 1.0. For the early popularity result, 

we hypothesize that this can be because popularity may be saturated after the first hour. 

Moreover, the social context result indicates that a user's popularity can make the 

popularity of his/her images stable over time. An image's semantics is also highly 

correlated with stable popularity with a sensitivity rate of 0.76, which also shows that the 

content of an image can make the image keep its popularity for a long time. The results 

are shown in Figure 5.6. 

5.6.3 Comparison between our semantic feature and the related 

work:  

 We use the MIR-Flickr 1M Collection to compare our work with [35]. McParlane et al., 

provided the experimental settings, including the testing and training data [35]. They also used 

the Pareto Principle to compute the popularity threshold adopted in this work. For fairness of 

comparison, we used the same accuracy matrix (the proportion of the total number of predictions 

that were correct), testing data, and popularity measurements (views and comments). They 

reported that there are only 1,000 test samples provided in their dataset but we found 1, 657 

samples. Therefore, we choose 1,000 samples randomly for testing. They employed a 
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combination of social, context and visual features. They achieved accuracy rates of 0.76 and 0.59 

for comments and views, respectively. As shown in Table 5.2, our semantic feature outperforms 

the related work and increased the accuracy rates to 0.78 and 0.69 for comments and views 

respectively. 

Table 5 0.1. The accuracy of future popularity over different time periods. 

Future Popularity Accuracy Image’s semantics Early Popularity 

Day 0.57 0.38 0.90 

Week 0.56 0.39 0.90 

Month 0.55 0.40 0.90 

 

 

Figure  05.5. The accuracy of future popularity over different time periods. 

Table 5.2. The accuracy of stability of popularity prediction using social context, content and early 

popularity. 

Stability of 

popularity 

Accuracy 

 

Social Context 

 

Content 

 

Early popularity 

Constant 1 0.76 1 

Changing 0 0.34 0 
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Figure  05.6. The accuracy of stability of popularity prediction using social context, content and early 

popularity. 

Table 5 0.3. Comparison of our proposed semantic feature to the features used by McParlane et al., [35]. 

 

Approach 

Accuracy 

Views Comments 

Our approach 0.69 0.78 

McParlane et al. [8] 0.59 0.76 
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CHAPTER 6: PREDICTING THE POPULARITY OF 

IMAGES USING TOPOLOGICAL DATA ANALYSIS 

 In this chapter, a new approach for analyzing social network data is presented. 

This approach is based on topological data analysis.  

6.1 Overview 

These days, finding meaningful data from social networks can be challenging 

because social network data can be high dimensional and noisy [85]-[87]. Therefore, 

extracting meaningful information from such data has become more critical. Topological 

data analysis as an alternative approach for mining social network data. Topological data 

analysis is an approach based on applied mathematics that analyzes data using a set of 

techniques from topology [57], [88]. It analyzes high dimensional data by analyzing the 

geometric shape of the data and has been shown to be robust to noise [57], [89]-[91], 

which will be further discussed in the upcoming sections. Topological data analysis has 

been adopted in many areas of study, such as biology [59], [89], [91], image processing 

[66], and financial analysis [92], [93]. 

A topological data analysis approach is used to address the problem of image 

popularity on social networks, specifically on Instagram, to investigate the feasibility of 

topological data analysis for social network analysis and mining since topological data 

http://www.mdpi.com/1099-4300/19/7/360/htm#sec3-entropy-19-00360
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analysis has not been previously investigated for social network analysis and mining to 

address the issues arising from the nature of social network data. The same popularity 

measurement proposed in Chapter 5 is used.  

6.2 Features 

 Social context, as well as image semantics, are employed to analyze the effect of 

these features on an image’s popularity.  

6.2.1 Image Content 

In order to extract semantics from images, we use images’ captions as used in 

Chapter 5, however, the approach is different. To extract semantics from captions, 

Word2vec is used. As mentioned earlier, Word2vec [53] aims to map words that have a 

similar meaning to nearby points using a continuous vector space. When enough data, 

usage, and contexts are provided, Word2vec can guess a word’s meaning based on past 

appearances using the neural network, which is used to learn distributed representations 

of words; it represents each word in the vector-space using a 300-dimensional vector 

[53]. These vectors can be used to establish a word’s association with other words in 

terms of the similarity between the words’ meanings. For example, apple is to fruit is 

like orange is to fruit. 

In our approach, we first tokenized the image’s caption. Then, we remove 

stopwords and special characters, such as with. Since one caption from each image can 

have a number of words and each word has its own contribution to the image, all words-

vectors from a caption are averaged to make one representative caption vector 



 
  

87 

considering all the contributions of the words for one image. After this, each image has 

one caption vector with 300 dimensions, CC, which is computed as follows: 

   
 

 
                

 
                           (6.1) 

where n represents the number of words, and V represents the 300-dimensional vector for 

each word. 

For example, let us have an image with a caption of “kitchen with refrigerator and 

oven”. First, we tokenized the words from the caption, we will have five words: [kitchen, 

with, refrigerator, and, oven]. Then, the stop words are removed. Therefore, [with, and] 

are removed. The three remaining words will be converted to numerical forms using 

Word2vec. Each word is represented by a 300-dimensional vector, called v. Finally, we 

compute the average of the three vectors to represent the image 

content, CC=13(vkitchen+vrefrigerator+voven). This example is illustrated in Figure 6.1. 

 

Figure 6.1. An example of how the image content is represented. 

http://www.mdpi.com/1099-4300/19/7/360/htm#fig_body_display_entropy-19-00360-f004
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6.2.2 Social Context 

 As proposed in Chapter 5, the normalized number of followers is selected. The 

number of followers is normalized because we want to focus more on the order of 

magnitude of the followers, which shows that the ratios of the number of followers are 

more important than the exact number of followers.  

6.2 Approach  

 Topological data analysis can be generalized to solve various problems. As 

mentioned earlier, the input to mapper is a distance matrix, while the output is a set of 

clusters. 

 A distance matrix is a square matrix that represents the distances between the 

elements in a set [94]. Since there are many problems that can be solved using clustering 

algorithms, topological data analysis can be adapted to solve many research problems on 

social network analysis and mining. Moreover, any distance metric can be used, such as 

Euclidean or cosine distances.  

 For the content feature, we compute the distances between any two 

images i and j using the cosine distance [95], called CD, of their 300-dimensional caption 

vectors, i.e., CC, which is calculated as follows: 

                                              cos          (6.2) 

cos   
                      

                      
           (6.3) 
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 Cosine distance is used because the similarity between cci and ccj is shown using 

the directions of the two vectors. For the social context feature, we compute the distances 

between any two images i and j using the Euclidean distance [96] of their one-

dimensional feature, called D, which is calculated as follows: 

                          (6.4) 

 Euclidean distance is used because the distance between any two users based on 

their number of followers is shown by computing the difference between the number of 

followers each user has. 

 With these distances, a distance matrix M is created for each feature. Then, each 

distance matrix is employed separately to mapper to cluster the data to analyze the 

relationship between the popularity of images and each feature. 

 Because the 80/20% rule was used to determine popularity, the ratio of popular 

images in each cluster is normalized by 0.2. Therefore, if the normalized ratio of popular 

images in a cluster is 1.0, then the effects of the feature on the popularity of the cluster 

were neutral. However, if the ratio of popularity is greater than 1.3, the popularity ratio is 

considered high, while if the ratio is less than 0.70, it is considered as a low ratio of 

popularity. 

 Regarding the images’ popularity, the clusters can be classified into three groups: 

the low possibility of popularity, Gr1; neutral, Gr2; and the high possibility of 

popularity, Gr3, based on the criteria discussed above. If an image falls into Gr3, then it 

can be said that the image has a higher possibility of becoming popular, and if an image 

falls into Gr1, it has a lower possibility of becoming popular. Note that the ratio of 
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popularity in each cluster is computed for three intervals: during the first hour, after the 

first day, and after the first week. Therefore, an image can belong to Gr1 in the first hour, 

then belongs to Gr3 after the first day, if the ratio of the popularity in that cluster 

increases after one day. 

6.3 Prediction 

 Our mechanism predicts image popularity based on the cluster with the nearest 

centroid, which is determined by computing the distance between each image and the 

cluster’s centroid. The centroid of a cluster d, i.e., Cd is computed as follows: 

   
 

 
     ∈             (6.5) 

where N represents the number of images in the cluster d, while x contains the images in 

the cluster, which are represented using either of the two features discussed earlier. 

 For the prediction of images using the image content’s feature, the cosine distance 

is used to compute the distance. Therefore, in order to predict the popularity of images, 

the nearest cluster’s centroid is determined by finding the cluster with the centroid that 

has the lowest cosine distance with the image’s content. The objective function is 

computed as follows: 

  arg       CD Ci CCj            (6.6) 

where y represents the cluster with the highest cosine distance to the image’s content. 

 On the other hand, for predicting the popularity of images using the social 

context’s feature, Euclidean distance is used. In this case, the images will belong to the 
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cluster that has the shortest distance to the image’s social context. In this case, the 

objective function will change slightly, which is computed as follows: 

  arg  min  d Ci Sj            (6.7) 

where y represents the cluster with the shortest Euclidean distance to the image’s social 

context. 

 Moreover, the images in our dataset are already labeled into popular and 

unpopular images using the Pareto principle as discussed Chapter 5; therefore, we use 

these labels to determine whether the images are assigned to the correct clusters, i.e., Gr1 

or Gr3 or not. For example, if an image is popular, and clustered to one of the Gr3 

clusters, it means that it is correctly identified as popular. If an image is clustered in one 

of the Gr1 clusters, and the image is unpopular, it means that it is correctly identified as 

unpopular. However, if a popular image is clustered to Gr1, this means that it is not 

correctly identified as a popular image. In our experiments, we predict both the popular 

and unpopular images. 

6.4 Experimental Setup  

 For this experiment, the Instagram dataset presented in Chapter 5 is used. 

However, only three tie intervals are included: 1 hour, 1 day, and 1 week.  

6.4.1 Implantation 

 As mentioned earlier, a mapper [65] is implemented to perform topological data 

analysis. It is available in a Python package. Density estimation as the filter function is 

used. 
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 In order to convert captions to numerical form, Gensim, a Python library that 

implements Word2vec is implemented as discussed in Chapter 5. In order to compare 

topological data analysis and clustering algorithms, k-means and hierarchical clustering 

are implemented. Hierarchical clustering is implemented using Scikit-learn [83]; we have 

used an average linkage, and for connectivity, we have employed kneighbors graph 

algorithm. In order to determine the cut-off, we have used the parameter n–cluster in 

[83]. 

 In addition, k-means is implemented using the Natural Language ToolKit [97]. 

For selecting the initial means, k-means++  is used [98]. Both packages are implemented 

in Python. The number of clusters varies between 5 and 15 to observe their effects on 

popularity; however, only experiments with five clusters are presented since the results 

are almost identical. 

6.4.2 Evaluation 

 In order to evaluate the accuracy of the three approaches, the F-score is computed. 

F-score computes both precisions and recalls to compute the accuracy of the test, which 

represents the harmonic mean of precision and recall. It is computed as below: 

F  2  
percision recall

precision recal
         (6.8) 

 F-score is computed for both prediction classes: popular and unpopular images. 
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6.5 Empirical Results Using Topological Data Analysis 

 In this section, we discuss the experiments and results for topological data 

analysis. Topological data analysis is employed using the two features discussed earlier 

to cluster the images in the training dataset and then compute the ratio of popularity in 

each cluster to identify clusters with high or low ratios of popularity. The number of 

intervals used in the experiment is five as mentioned earlier. Then, we predict the 

popularity of images using the proposed approach. 

6.5.1 Clustering 

 First, we employed the mapper using the image content feature. The results show 

that from cluster 1 to cluster 5, the ratios of popular images increases. Cluster 1 has the 

lowest ratio, 30% lower than neutral, and cluster 5 has the highest, 55% higher than 

neutral, while clusters 2–4 have neutral ratios of popularity. Therefore, we assigned 

cluster 1 to Gr1, cluster 2–4 to Gr2 and cluster 5 to Gr3. 

 Next, we employed the social context feature to the mapper, and the results show 

that the ratios of popularity have increased significantly. In this experiment, the ratios of 

popularity decreased from clusters one to five, which produces a monotonic decrease 

relationship between the clusters. Cluster 1 has the highest ratio of popularity, 305% 

higher than neutral, while cluster 5 has the lowest ratio of popularity, 95% lower than 

neutral. No cluster with a neutral ratio of popularity is observed in this experiment. 

Clusters 1 and 2 are assigned to Gr3, while the remaining clusters are assigned to Gr1. 

Both features generate a monotonic trend since the ratios of popularity increases or 
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decreases along the clusters. The trends are shown using a sample from the dataset in 

Figures 6.2 and 6.3. 

 

Figure 6.2. (Figure a) represents the clusters generated by mapper using the content feature, while (Figure 

b) represents the ratio of popularity in the cluster among the clusters (x-axis represent the clusters, while 

the y-axis represents the ratio of popularity. 
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Figure 6.3. (Figure a) represents the clusters generated by mapper using the social context feature, while 

(Figure b) represents the ratio of popularity in the cluster among the clusters (x-axis represent the clusters, 

while the y-axis represents the ratio of popularity. 
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6.5.2 Prediction 

 In this experiment, we have predicted the popular and unpopular images using the 

two features. Using the image content, topological data analysis achieved an accuracy of 

23% for predicting the popular images during the first hour. The accuracy of prediction 

has stayed the same for first day and first week periods. As for the prediction of 

unpopular images, topological data analysis achieved an accuracy of 68% for the first-

hour prediction. Then, the accuracy has decreased to 31% for the first day and first week 

periods. 

 On the other hand, the results have increased significantly when the social context 

is used. During the first hour, topological data analysis achieves an accuracy of 67% for 

predicting the popular images. For predicting the unpopular images, the accuracy has 

increased to 82%. For both predictions of popular and unpopular images, the accuracy 

stayed the same over the first day and week periods. The results are summarized in the 

following Table. For both features, the accuracy rates for the prediction of unpopular 

images are higher than the accuracy rates for the prediction of popular images because 

80% of the images in our dataset are unpopular based on the Pareto principle. 

6.6 Empirical Results Using Clustering Algorithms 

 In order to compare the topological data analysis approach with the clustering 

algorithms, we employed k-means and hierarchical clustering. In addition, the same 

distance metrics that are used for topological data analysis are used for k-means and 

hierarchical clustering. 
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6.6.1 k-means 

 k-means [99] is one of the most popular clustering algorithms. It clusters data into 

a set of clusters, i.e., k, based on the nearest mean. In k-means, connectivity has no 

meaning. Therefore, there are no relationships between clusters. k-means is employed 

using both features. 

6.6.1.1 Clustering 

 First, we employed the image content feature, and the results show that clusters 

2–5 have neutral ratios of popularity and are assigned to Gr2. However, cluster 1 has a 

low ratio of popularity, 6% lower than neutral, and therefore is assigned to Gr1. 

 Second, the social context feature is used. The ratios of popularity have increased 

significantly as observed using topological data analysis. The result shows that clusters 2 

and 3 have low ratios of popularity, 28% lower than neutral and 66% lower than neutral, 

respectively. They are assigned to Gr1. Other clusters have high ratios of popularity. 

Cluster 4 has a perfect ratio of popularity, at 100%. Cluster 5 has a popularity ratio that is 

58% higher than neutral, while cluster 1 has a ratio that is 232% higher than neutral. 

Clusters 1 and 4–5 are assigned to Gr3. 

Table 6.1. Accuracy of topological data analysis for predicting the popular and unpopular images using the  

6.6.1.2 Prediction 

 As discussed in the previous subsection, k-means failed to find any cluster with a 

high ratio of popularity when the image content is employed. Therefore, the prediction 

accuracy rate for predicting the popular images is 0.0%. However, for predicting the 
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unpopular images, k-means achieved an accuracy rate of 0.39% for the first-hour 

prediction, and then the accuracy rate has decreased to 0.31% for the first day and week. 

 On the other hand, the accuracy rate of popular images using the social context 

has increased significantly to 0.63%. Moreover, the accuracy rates for predicting the 

unpopular images have increased to 0.85%. For the two predictions, the accuracy rates 

have stayed the same over the three-time frames. The results are summarized in the 

following table. 

Table 6.1. The accuracy of topological data analysis for predicting the popular and unpopular images using 

the image content and social context. 

Accuracy Rates 

Periods 

Image Content Social Context 

Popular 

Images 
Unpopular Images 

Popular 

Images 
Unpopular Images 

Hour 0.23 0.68 0.67 0.82 

Day 0.23 0.31 0.67 0.82 

Week 0.23 0.23 0.67 0.82 

 

Table 6.2. Accuracy of k-means for predicting the popular and unpopular images using the image content 

and social context. 

Accuracy Rates 

Periods 

Image Content Social Context 

Popular 

Images 
Unpopular Images 

Popular 

Images 
Unpopular Images 

Hour 0 0.39 0.63 0.85 

Day 0 0.17 0.63 0.85 

Week 0 0.17 0.63 0.85 
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6.6.2 Hierarchical Clustering 

 In hierarchical clustering algorithm [100], clustering is performed differently. It 

builds a hierarchy of clusters. In hierarchical clustering, connectivity exists. Therefore, 

relationships exist between clusters. 

6.6.2.1 Clustering 

Using the image content feature, the result shows a new case, which occurred in 

cluster 4. Cluster 4 has a popularity ratio of 0, which means that in this cluster, the 

possibility for an image to become popular is 0%. This cluster is assigned to Gr1. The 

remaining clusters have neutral ratios of popularity and are assigned to Gr2. However, 

the ratio of popularity in cluster 1 has become higher than neutral after the first hour. 

Therefore, cluster 1 is assigned to Gr3 for the first day and week periods. For the 

connectivity part, no meaningful trend is detected. 

Next, we employed the social context feature, and as observed in the other 

experiments that are based on the social context feature, the ratios of popularity have 

increased significantly. Cluster 4 has a popularity ratio of 0. Cluster 1 has a ratio that 

is 32% lower than neutral. Both clusters are assigned to Gr1. Clusters 3, 4 and 5 have 

high ratios of popularity: 140%, 180%, and 295% higher than neutral, respectively. They 

are assigned to Gr3. Moreover, the connectivity between these clusters is represented as a 

monotonic increase in the ratios of popularity along the connected clusters. 

6.6.2.2 Prediction 

As discussed in the previous subsection, hierarchical clustering failed to find 

any clusters with a high ratio of popularity during the first hour using the image 
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content feature. Therefore, the accuracy rate for predicting the popular images 

is 0.0% during the first hour. However, as mentioned earlier, the ratio of popularity in 

cluster 1 has become higher than neutral; therefore, hierarchical clustering predicted 

popular images with an accuracy rate of 0.19 for the first day and week time frames. 

For predicting the unpopular images, hierarchical clustering achieved an accuracy of 

49% during the first hour, and 18% for the first day and week. 

As for the social context feature, the accuracy rate for predicting the popular 

images has increased significantly to 0.66%. Moreover, the accuracy rates for 

predicting the unpopular images have increased to 0.81%. For the two predictions, the 

accuracy rates have stayed the same over the three time periods. The results are 

summarized the following table. 

Table 6.3. Accuracy of hierarchical clustering for predicting the popular and unpopular images using the 

image content and social context. 

Accuracy Rates 

Periods 

Image Content Social Context 

Popular 

Images 
Unpopular Images 

Popular 

Images 
Unpopular Images 

Hour 0 0.49 0.66 0.81 

Day 0.19 0.18 0.66 0.81 

Week 0.19 0.18 0.66 0.81 

6.7 Comparison  

 In this section, we will compare the performances of the three approaches in 

terms of accuracy using the two features. 



 
  

101 

6.7.1 Image Content 

 In Figures 6.5 and 6.5, we plot the accuracy rates for predicting the popular and 

unpopular images using the three approaches. The results show that topological data 

analysis outperforms the other approaches for predicting the popular and unpopular 

images. This shows that topological data analysis performs better than traditional data 

mining techniques when a high dimensional feature is employed, i.e., image content. 

In terms of the changes in the prediction accuracy rates over time, three approaches 

achieved high accuracy rates for predicting the unpopular images during the first hour. 

 However, the accuracy rates decreased after that. However, for predicting the 

popular images, the three approaches have the same accuracy rated over different  time 

frames, except for hierarchical clustering, because, as discussed before, during the first 

hour, hierarchical clustering could not find any cluster with a high ratio of popular 

images. The results show that the popularity of images is saturated during the first 

week. 

 

Figure 6.4. Accuracy rates for the three approaches using the image content feature for the prediction of 

popular images. 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

Hour Day Week 

F1
  S

co
re

s 

Image LifeTime 

Prediction of Popular Images 

TDA K-means Hierarcheal 



 
  

102 

 

Figure 6.5. Accuracy rates for the three approaches using the image content feature for the prediction of 

unpopular images. 
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data analysis. 

The results show that social context achieves higher accuracy than image 

content, which supports the results produced by other studies that indicate that user’s 
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information has a large impact on images’ popularity [35], [37]-[40], [43]. The results 

are plotted in  Figures 6.6 and 6.7. 

 
1 

Figure 6.6. Accuracy rates for the three approaches using the social context feature for the prediction of 

popular images. 

 

Figure 6.7. Accuracy rates for the three approaches using the social context feature for the prediction of 
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6.8 Dealing with Noise 

 As mentioned before, topological data analysis connects data points by increasing 

the radii to find the shape of the data. The shapes are called homology. Topological data 

analysis aims to find the real shape of the data, not a noisy shape, which is not 

meaningful. The real shape of the data is the shape with longer persistent holes. The 

persistence of a hole is represented as the lifetime of the hole. Persistence homology 

analyzes the holes between the connected data samples to measure the persistent of the 

holes where the holes that stay longer is more persistent than holes that stay shorter, i.e., 

the longevity of the hole. As mentioned before, persistence homology computes the 

topological features of data at a different resolution. Therefore, if the hole doesn't last at a 

different resolution, it has low persistence and therefore is noise. The persistence of the 

hole is represented using a barcode. The long barcode represents significant feature while 

short barcode represents topological noise. The following example will explain this 

concept. 

 The example is shown in Figure 6.8. In this figure, we begin with a set of data 

points in the first upper lower subgraph.  From the first figure, we can see that the shape 

of the data is a circle. In order to find the real shape of the data, we employ persistent 

homology with different level of radii. After increasing the radii, the second subgraph 

shows that there are many holes among the data points, which shows that the real shape is 

still not found because there are many holes with short persistent. The third subgraph has 

two holes with higher persistence; it also shows that many holes with short persistence 

have died. Then we increase the radii, and all the following subgraphs show one hole with 



 
  

105 

high persistence because this hole has lasted at a different resolution. Therefore, we can 

stop because we have a shape with a high persistent hole and all low persistent holes have 

died. Persistence homology is robust to noise because the shape of the data is not noisy 

due to the fact that the shape has a hole with high persistence. Note that in the first two 

subgraphs, the shape of the data that is noisy because there are many holes with short 

persistence. After the shape is found, we can take look at the data to observe the meaning 

of the shape. For example, in the experiment discussed in Sec. 6.5, the shape of the data 

was a line and the meaning of the shape is the monotonic relationship of the popularity 

ratio between the clusters.  

 In order to assess this process, we have conducted another experiment that 

performs high resolution, where we select 11 clusters instead of 5 to compare it with the 

topology presented in Sec. 6.5.  

 First, we employed the mapper using the image content feature. Cluster 1 has the 

lowest ratio of popular images, 65% lower than neutral. The ratio increases as it goes 

through the other clusters towards cluster 11. Cluster 11 is the highest, 85% higher than 

neutral. Cluster 1 and 3 are more than 30% lower than neutral, so they are assigned to 

Gr1. Clusters 9-11 show higher than 30% at one-hour data, so they are assigned to Gr3. 

All the other clusters are considered neutral, so they are assigned to Gr2. Like the low-

resolution results, it shows a monotonic increase trend except in cluster 2.  

 Then, we employed the mapper using the social context feature. The highest ratio 

of popularity is found in cluster 1, 365% more than neutral, while the lowest ratio of 

popularity is found in clusters 9-11, 95% lower than neutral. As observed in the low-
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resolution experiment, the ratios of popularity decrease along the clusters. On the other 

hand, this experiment has a cluster with a neutral ratio of popularity, i.e., cluster 4. 

Clusters 1-3 are assigned to Gr3, cluster 4 is assigned to Gr2, and clusters 5-11 are 

assigned to Gr1. Using both features, the topologies and trends of popularity are similar 

to the low-resolution experiment, which shows that the shapes have holes with high 

persistent. The shapes of the data points for the two experiment is still a line as found in 

Sec. 6.5. However, the meanings of the two shapes produce almost monotonic 

relationships between the clusters, which show that these two shapes can have a little bit 

of noise. The results of both experiments are shown in Figures 6.9 and 6.10.  

 

Figure 6.8. Example of how persistent homology compute persistence. The first upper left subgraph 

represents the data samples before we employ the persistent homology. All the figures follow is after 

applying the persistent homology with different radii. 



 
  

107 

 

Figure 6.9. (Figure a) represents the clusters generated by mapper using the social content feature, while 

(Figure b) represents the ratio of popularity in the cluster among the clusters (x-axis represent the clusters, 

while the y-axis represents the ratio of popularity (High-resolution experiment). 
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Figure 6.10. (Figure a) represents the clusters generated by mapper using the social context feature, while 

(Figure b) represents the ratio of popularity in the cluster among the clusters (x-axis represent the clusters, 

while the y-axis represents the ratio of popularity (High-resolution experiment). 
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6.9 Discussion 

 In this chapter, the feasibility of topological data analysis for mining social 

network data is explored. The problem of image popularity is investigated by analyzing 

the effects of image content and social context on image popularity. In order to address 

this problem, random images are crawled along with their metadata from Instagram. 

Then, the images’ captions are converted to numerical vectors using Word2vec. In 

addition, the normalized number of followers is used to represent the social context. 

Then, the distances of each feature are calculated and applied it to the mapper. These 

features are then employed to k-means and hierarchical clustering for comparing 

topological data analysis and clustering algorithms. Then, both the popular and unpopular 

images are predicted based on how close the images are to the centroid of the clusters. 

The results exhibited several outcomes: 

1. Topological data analysis is feasible for social network analysis and mining; 

2. Image content and social context have correlations to image popularity; 

3. Topological data analysis significantly outperformed traditional clustering 

algorithms using the high dimensional feature, i.e., image content. It achieved 

higher accuracy rates than k-means and hierarchical clustering algorithms. It also 

generated meaningful connection between the clusters, i.e., a monotonic increase 

in the popularity ratio along the connected clusters; 

4. For predicting the popularity of images using the low dimensional feature, i.e., 

social context, traditional data mining techniques perform as well as topological 

data analysis; 
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5. The results show that using the context feature improves the accuracy rates 

significantly, which confirms that the popularity of images is highly related to 

users’ popularity; 

6. For the changes of popularity over time, a trend is only observed for the 

prediction of popular images using the image content; 

7. Lastly, the results show that popularity of images is saturated in a short period of 

time. 

 In conclusion, in order to address high dimensional and noisy data, topological 

data analysis proved to outperform traditional clustering algorithms. It also showed that 

the geometric shape of data matters and can be adapted to produce meaningful 

information. With regard to future work, it would be interesting to investigate feature 

integration using topological data analysis since topological data analysis relies on 

distances. 
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CHAPTER 7: CONCLUSIONS 

In this thesis, social networks data is analyzed to improve information diffusion by 

predicting influential users and popular images. The proposed approaches are employed 

to several social networks, including Flickr, Instagram, and Digg.  

For measuring the influence of users, a hybrid influence measurement is proposed, 

which is based on users' structural network locations and their attributes. For measuring 

users' influence based on their users' structural locations, several centrality analysis 

techniques, including PageRank and Eigenvector are employed. As for computing the 

user's influence based on their attributes, we adopt users’ attributes from social networks, 

more specifically users’ activeness. In order to represent users’ activeness, the number of 

uploaded posts is used. Both types of influence are integrated to predict the influential 

users. The influence measurements are then compared with the ground truth in term of 

correlation. The results show that users attributes outperform users’ structural location in 

predicting influential users. Moreover, the correlation increases when we integrate both 

features. The approach outperforms existing measurements with a correlation rate of 0.50 

on Flickr dataset, and 0.90 on Digg dataset. Integrating both user’s structural location and 

characteristics shows stable performance in different social networks. 

In order to predict the future popularity of images, social context, content and early 

popularity are employed. In order to represent the social context, the number of followers 
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of users who uploaded the images is used to analyze the effect of users’ popularity on 

images popularity. For analyzing the effect of image content on its popularity, the 

keyword vectors is introduced to represent the semantics of images using their captions. 

The keyword vector is built on NLP and clustering techniques. Early popularity is further 

employed because our analysis shows that images' popularity can be saturated within a 

short time of images uploads. The results show that the social context can predict the 

future popularity of images with a sensitivity of 0.57, however, the sensitivity decreases 

over time to 0.55. The semantic feature is able to predict images popularity with a 

sensitivity of 0.38. Moreover, the accuracy increases over time to 0.40. The early 

popularity outperforms the other features in predicting the future popularity of images 

with a sensitivity rate of 0.90.  

The stability of popularity of images is further investigated and the results show that 

the semantic of images is only feature that can predict the changes of popularity over 

time with a sensitivity rate of 0.34, where social context and early popularity improve the 

accuracy in predicting the stable popularity of images with a perfect accuracy rate of 1. 

The proposed semantic feature outperforms the related work in term of accuracy, 

increasing the accuracy rates to 0.69 and 0.78 on the benchmarked data. 

However, traditional techniques used to predict the popularity of posts do not 

address the challenges arising from the nature of social network data, including noise and 

high dimensionality in data. Therefore, topological data analysis is adopted. Topological 

data analysis proved to be feasible for analyzing social network data and it also 

outperforms traditional machine learning algorithms. It also showed that the geometric 

shape of data matters and can be adapted to produce meaningful information. With 
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regard to future work, it would be interesting to investigate applying topological data 

analysis to other problems in social network research. It also interesting to investigate 

feature integration using topological data analysis since topological data analysis relies 

on distances. 

 

 

 



 
  

114 

REFERENCES 

[1] N. B. Ellison, "Social network sites: Definition, history, and scholarship," Journal 

of Computer‐Mediated Communication, vol. 13, pp. 210-230, 2007. 

[2] Twitter, "Twitter-Company," 2015. [Online]. Available: 

https://about.twitter.com/en_us/company.html. [Accessed: 29- Jan- 2015]. 

[3] D. Etherington, "Flickr at 10: 1M photos shared per day, 170% increase since 

making 1TB free," February, vol. 10, pp. 25-45, 2014. 

[4] Instagram, ""Our Story," 2016. [Online]. Available: https://instagram-

press.com/our-story/. [Accessed: 15- Jan- 2016]. 

[5] A. Guille, H. Hacid, C. Favre, and D. A. Zighed, "Information diffusion in online 

social networks: A survey," ACM SIGMOD Record, vol. 42, pp. 17-28, 2013. 

[6] A. Leavitt, E. Burchard, D. Fisher, and S. Gilbert, "The influentials: New 

approaches for analyzing influence on Twitter," Web Ecology Project, vol. 4, pp. 

1-18, 2009. 

[7] R. Zafarani, M. A. Abbasi, and H. Liu, Social media mining: an introduction: 

Cambridge University Press, pp. 73–251, 2014.  

[8] J. Weng, E.-P. Lim, J. Jiang, and Q. He, "Twitterrank: finding topic-sensitive 

influential twitterers," in Proceedings of the third ACM international conference 

on Web search and data mining, pp. 261-270, 2010. 



 
  

115 

[9] B. Sun and V. T. Ng, "Identifying influential users by their postings in social 

networks," in Ubiquitous Social Media Analysis, ed: Springer, pp. 128-151, 2013. 

[10] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi, "Measuring user 

influence in Twitter: the million follower fallacy," ICWSM, vol. 10, pp. 30, 2010. 

[11] H. Kwak, C. Lee, H. Park, and S. Moon, "What is Twitter, a social network or a 

news media?," in Proceedings of the 19th international conference on World wide 

web, pp. 591-600, 2010. 

[12] W. Maharani and A. A. Gozali, "Degree centrality and eigenvector centrality in 

Twitter," in Telecommunication Systems Services and Applications (TSSA), 2014 

8th International Conference on, pp. 1-5, 2014. 

[13] X. Li, S. Cheng, W. Chen, and F. Jiang, "Novel user influence measurement 

based on user interaction in microblog," in Proceedings of the 2013 IEEE/ACM 

International Conference on Advances in Social Networks Analysis and Mining, , 

pp. 615-619, 2013. 

[14] Q. Liao, W. Wang, Y. Han, and Q. Zhang, "Analyzing the influential people in 

Sina Weibo dataset," in 2013 IEEE Global Communications Conference 

(GLOBECOM), , pp. 3066-3071, 2013. 

[15] Y. Zhang, J. Mo, and T. He, "User influence analysis on micro blog," in 2012 

IEEE 2nd International Conference on Cloud Computing and Intelligence 

Systems, pp. 1474-1478, 2012. 

[16] R. Ghosh and K. Lerman, "Predicting influential users in online social networks," 

arXiv preprint arXiv:1005.4882, 2010. 



 
  

116 

[17] L. Lü, Y.-C. Zhang, C. H. Yeung, and T. Zhou, "Leaders in social networks, the 

delicious case," PloS one, vol. 6, pp. e21202, 2011. 

[18] I. Anger and C. Kittl, "Measuring influence on Twitter," in Proceedings of the 

11th International Conference on Knowledge Management and Knowledge 

Technologies, pp. 31, 2011. 

[19] F. Erlandsson, P. Bródka, A. Borg, and H. Johnson, "Finding influential users in 

social media using association rule learning," Entropy, vol. 18, pp. 164, 2016. 

[20] U. Ishfaq, H. U. Khan, and K. Iqbal, "Modeling to find the top bloggers using 

sentiment features," in Computing, Electronic and Electrical Engineering (ICE 

Cube), 2016 International Conference on, , pp. 227-233, 2016. 

[21] R. Khan, H. U. Khan, M. S. Faisal, K. Iqbal, and M. S. I. Malik, "An analysis of 

Twitter users of Pakistan," International Journal of Computer Science and 

Information Security, vol. 14, pp. 855, 2016. 

[22] E. Oro, C. Pizzuti, N. Procopio, and M. Ruffolo, "Detecting topic authoritative 

social media users: a Multilayer network approach," IEEE Transactions on 

Multimedia, 2017, to be published. 

[23] C. Lee, H. Kwak, H. Park, and S. Moon, "Finding influentials based on the 

temporal order of information adoption in Twitter," in Proceedings of the 19th 

international conference on World wide web, , pp. 1137-1138, 2010. 

[24] C. Sun, L. Zhang, and Q. Li, "Who are influentials on micro-blogging services: 

evidence from social network analysis," in PACIS, , p. 25, 2013. 



 
  

117 

[25] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, "Everyone's an 

influencer: quantifying influence on Twitter," in Proceedings of the fourth ACM 

international conference on Web search and data mining, , pp. 65-74, 2011. 

[26] C. F. Reilly, D. Salinas, and D. De Leon, "Ranking users based on influence in a 

directional social network," in Computational Science and Computational 

Intelligence (CSCI), 2014 International Conference on, , pp. 237-240, 2014. 

[27] U. Brandes, "A faster algorithm for betweenness centrality*," Journal of 

mathematical sociology, vol. 25, pp. 163-177, 2001. 

[28] J. Scoot, "social network analysis," ed: Newberry Park CA: Sage, pp. 110–180, 

1992. 

[29] L. Tang and H. Liu, "Community detection and mining in social media," 

Synthesis Lectures on Data Mining and Knowledge Discovery, vol. 2, pp. 1-137, 

2010. 

[30] X. Yi, Y. Han, and X. Wang, "The evaluation of online social network’s nodes 

influence based on user’s attribute and behavior," in Frontiers in Internet 

Technologies, ed: Springer, pp. 9-20, 2013. 

[31] P. Bonacich and P. Lloyd, "Eigenvector-like measures of centrality for 

asymmetric relations," Social networks, vol. 23, pp. 191-201, 2001. 

[32] H. Yu, X. F. Bai, C. Huang, and H. Qi, "Prediction algorithm for users Retweet 

times," vol. 83, pp.9-13, 2015. 

[33] L. Hong, O. Dan, and B. D. Davison, "Predicting popular messages in Twitter," in 

Proceedings of the 20th international conference companion on World wide web, 

, pp. 57-58, 2011. 



 
  

118 

[34] T. R. Zaman, R. Herbrich, J. Van Gael, and D. Stern, "Predicting information 

spreading in Twitter," in Workshop on computational social science and the 

wisdom of crowds, nips, pp. 17599-601, 2010. 

[35] P. J. McParlane, Y. Moshfeghi, and J. M. Jose, "Nobody comes here anymore, it's 

too crowded; Predicting image popularity on Flickr," in Proceedings of 

International Conference on Multimedia Retrieval, p. 385, 2014. 

[36] A. Khosla, A. Das Sarma, and R. Hamid, "What makes an image popular?," in 

Proceedings of the 23rd international conference on World wide web, pp. 867-

876, 2014. 

[37] S. Cappallo, T. Mensink, and C. G. Snoek, "Latent factors of visual popularity 

prediction," in Proceedings of the 5th ACM on International Conference on 

Multimedia Retrieval, , pp. 195-202, 2015. 

[38] E. F. Can, H. Oktay, and R. Manmatha, "Predicting Retweet count using visual 

cues," in Proceedings of the 22nd ACM international conference on Conference 

on information & knowledge management, , pp. 1481-1484, 2013. 

[39] K. Yamaguchi, T. L. Berg, and L. E. Ortiz, "Chic or social: Visual popularity 

analysis in online fashion networks," in Proceedings of the 22nd ACM 

international conference on Multimedia, pp. 773-776, 2014. 

[40] L. C. Totti, F. A. Costa, S. Avila, E. Valle, W. Meira Jr, and V. Almeida, "The 

impact of visual attributes on online image diffusion," in Proceedings of the 2014 

ACM conference on Web science, pp. 42-51, 2014. 



 
  

119 

[41] Fiolet, "Analyzing image popularity on a social media platform," M.S. Thesis Col. 

of Sci., University of Amsterdam, 2014. Accessed on January, 4, 2015, 

Unpublished   

 [42] X. Niu, L. Li, T. Mei, J. Shen, and K. Xu, "Predicting image popularity in an 

incomplete social media community by a weighted bi-partite graph," in 2012 

IEEE International Conference on Multimedia and Expo, pp. 735-740, 2012. 

[43] F. Gelli, T. Uricchio, M. Bertini, A. Del Bimbo, and S.-F. Chang, "Image 

popularity prediction in social media using sentiment and context features," in 

Proceedings of the 23rd ACM international conference on Multimedia, , pp. 907-

910, 2015. 

[44] S. Aloufi, S. Zhu, and A. El Saddik, "On the prediction of Flickr image popularity 

by analyzing heterogeneous social sensory data," Sensors, vol. 17, p. 631, 2017. 

[45] J. Hu, T. Yamasaki, and K. Aizawa, "Multimodal learning for image popularity 

prediction on social media," in Consumer Electronics-Taiwan (ICCE-TW), 2016 

IEEE International Conference on, pp. 1-2, 2016. 

[46] M. Mazloom, R. Rietveld, S. Rudinac, M. Worring, and W. van Dolen, 

"Multimodal popularity prediction of brand-related social media posts," in 

Proceedings of the 2016 ACM on Multimedia Conference, pp. 197-201, 2016. 

[47] T. Hogg and K. Lerman, "Social dynamics of Digg," EPJ Data Science, vol. 1, 

pp. 1-26, 2012. 

[48] K. P. Murphy, "Naive Bayes classifiers," University of British Columbia, pp. 1–8, 

2006. 



 
  

120 

[49] V. N. Vapnik and V. Vapnik, Statistical learning theory vol. 1: Wiley, New York, 

pp. 1–12, 1998. 

[50] A. Jordan, "On discriminative vs. generative classifiers: A comparison of logistic 

regression and naive Bayes," Advances in neural information processing systems, 

vol. 14, p. 841, 2002. 

[51] G. G. Chowdhury, "Natural language processing," Annual review of information 

science and technology, vol. 37, pp. 51-89, 2003. 

[52] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, "Distributed 

representations of words and phrases and their compositionality," in Advances in 

neural information processing systems, pp. 3111-3119, 2013. 

[53] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "word2vec," ed: accessed 2014-

04--15. T. Mikolov, K. Chen, G. Corrado, and J. Dean, "word2vec," ed: accessed 

2014-04--15. https://code.google.com/archive/p/word2vec/, 2014.  

[54] A. K. Jain and R. C. Dubes, Algorithms for clustering data: Prentice-Hall, Inc., 

pp. 55–57, 1988. 

[55] J. MacQueen, "Some methods for classification and analysis of multivariate 

observations," in Proceedings of the fifth Berkeley symposium on mathematical 

statistics and probability, pp. 281-297, 1967. 

[56] C. C. Aggarwal, "An introduction to social network data analytics," in Social 

network data analytics, ed: Springer, pp. 1-15, 2011. 

[57] G. Carlsson, "Topology and data," Bulletin of the American Mathematical 

Society, vol. 46, pp. 255-308, 2009. 



 
  

121 

[58] J. R. Munkres, Elements of algebraic topology vol. 2: Addison-Wesley Menlo 

Park, pp. 54-59, 1984. 

[59] S. Bansal and D. Choudhary, "Topological Data Analysis," pp. 3-17, 2014 

[60] H. Cartan and S. Eilenberg, Homological Algebra (PMS-19) vol. 19: Princeton 

University Press, pp. 53–70, 2016. 

[61] N. Murphy, "Topological Data Analysis," M.S. Thesis, Dept. of Math. and Stat., 

Colby College,  2016. Accessed on: Jun., 15, 2017. Available: 

https://www.colby.edu/math/program/honorsprojects/2016-Murphy-

HonorsThesis.pdf  

[62] A. Zomorodian and G. Carlsson, "Computing persistent homology," Discrete & 

Computational Geometry, vol. 33, pp. 249-274, 2005. 

[63] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, "Stability of persistence 

diagrams," Discrete & Computational Geometry, vol. 37, pp. 103-120, 2007. 

[64] B. MICHEL, "Statistics and Topological Data Analysis." 

[65] D. Müllner and A. Babu, "Python Mapper: An open-source toolchain for data 

exploration, analysis, and visualization," http://math.stanford. 

edu/muellner/mapper, 2013. 

[66] G. Singh, F. Mémoli, and G. E. Carlsson, "Topological methods for the analysis 

of high dimensional data sets and 3D object recognition," in SPBG, pp. 91-100, 

2007. 

[67] L. Rashotte, Social influence. The Blackwell encyclopedia of social psychology, 

pp.562-563, 2004. 

http://math/


 
  

122 

[68] D. J. Watts and P. S. Dodds, "Influentials, networks, and public opinion 

formation," Journal of consumer research, vol. 34, pp. 441-458, 2007. 

[69] E. Katz, "The two-step flow of communication: An up-to-date report on an 

hypothesis," Public opinion quarterly, vol. 21, pp. 61-78, 1957. 

[70] M. S. Granovetter, "The strength of weak ties," American journal of sociology, 

pp. 1360-1380, 1973. 

[71] H. Li, J.-T. Cui, and J.-F. Ma, "Social influence study in online networks: A 

three-level review," Journal of Computer Science and Technology, vol. 30, pp. 

184-199, 2015. 

[72] J. Li, W. Peng, T. Li, and T. Sun, "Social network user influence dynamics 

prediction," in Asia-Pacific Web Conference, pp. 310-322, 2013. 

[73] F. Probst, D.-K. L. Grosswiele, and D.-K. R. Pfleger, "Who will lead and who 

will follow: Identifying influential users in online social networks," Business & 

Information Systems Engineering, vol. 5, pp. 179-193, 2013. 

[74] J. Sang and C. Xu, "Social influence analysis and application on multimedia 

sharing websites," ACM Transactions on Multimedia Computing, 

Communications, and Applications (TOMM), vol. 9, pp. 53, 2013. 

[75] E. Katz and P. F. Lazarsfeld, Personal Influence, The part played by people in the 

flow of mass communications: Transaction Publishers, pp. 271-280, 1966. 

[76] A. V. Aho and J. E. Hopcroft, The design and analysis of computer algorithms: 

Pearson Education India, pp. 44–90, 1974.  

[77] B. A. Huberman, D. M. Romero, and F. Wu, "Social networks that matter: Twitter 

under the microscope," Available at SSRN 1313405, 2008. 



 
  

123 

[78] S. Bird, E. Klein, and E. Loper, "Natural language processing with Python: 

Analyzing text with the natural language toolkit," O'Reilly Media, Inc., pp. 109–

128, 2009. 

[79] J. Benesty, J. Chen, Y. Huang, and I. Cohen, "Pearson correlation coefficient," in 

Noise reduction in speech processing, ed: Springer, pp. 1-4, 2009. 

[80] Merriam-Webster, "Popularity," https://www.merriam 

webster.com/dictionary/popularity, 2011. 

[81] L. Oglesbee, "Writing captions," Communication: Journalism Education Today, 

vol. 32, pp. 2-6, 1998. 

[82] R. Rehurek and P. Sojka, "Software framework for topic modelling with large 

corpora," in In Proceedings of the LREC 2010 Workshop on New Challenges for 

NLP Frameworks, pp. 46-50, 2010. 

[83] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., 

"Scikit-learn: Machine learning in Python," Journal of Machine Learning 

Research, vol. 12, pp. 2825-2830, 2011. 

[84] H. Honest and K. S. Khan, "Reporting of measures of accuracy in systematic 

reviews of diagnostic literature," BMC health services research, vol. 2, p. 1, 2002. 

[85] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, "Data mining with big data," IEEE 

transactions on knowledge and data engineering, vol. 26, pp. 97-107, 2014. 

[86] J. Fan, F. Han, and H. Liu, "Challenges of big data analysis," National science 

review, vol. 1, pp. 293-314, 2014. 

https://books.google.com/books?hl=en&lr=&id=KGIbfiiP1i4C&oi=fnd&pg=PR5&dq=Natural+language+processing+with+Python&ots=Y3zlE8GGL-&sig=vf0fKIdMWX6f5aXByTehSYUhZ9o
https://books.google.com/books?hl=en&lr=&id=KGIbfiiP1i4C&oi=fnd&pg=PR5&dq=Natural+language+processing+with+Python&ots=Y3zlE8GGL-&sig=vf0fKIdMWX6f5aXByTehSYUhZ9o


 
  

124 

[87] H. Becker, M. Naaman, and L. Gravano, "Learning similarity metrics for event 

identification in social media," in Proceedings of the third ACM international 

conference on Web search and data mining, pp. 291-300, 2010. 

[88] H. Edelsbrunner, D. Letscher, and A. Zomorodian, "Topological persistence and 

simplification," Discrete and Computational Geometry, vol. 28, pp. 511-533, 

2002. 

[89] M. Nicolau, A. J. Levine, and G. Carlsson, "Topology-based data analysis 

identifies a subgroup of breast cancers with a unique mutational profile and 

excellent survival," Proceedings of the National Academy of Sciences, vol. 108, 

pp. 7265-7270, 2011. 

[90] H. Edelsbrunner, D. Letscher, and A. Zomorodian, "Topological persistence and 

simplification," in Foundations of Computer Science, 2000. Proceedings. 41st 

Annual Symposium on, , pp. 454-463, 2000. 

[91] M. Nicolau, R. Tibshirani, A.-L. Børresen-Dale, and S. S. Jeffrey, "Disease-

specific genomic analysis: identifying the signature of pathologic biology," 

Bioinformatics, vol. 23, pp. 957-965, 2007. 

[92] M. Gidea and Y. A. Katz, "Topological Data Analysis of financial time series: 

Landscapes of crashes," 2017. 

[93] K. B. Schebesch and R. W. Stecking, "Topological Data Analysis for extracting 

hidden features of client data," in Operations Research Proceedings 2015, ed: 

Springer, pp. 483-489, 2017. 



 
  

125 

[94] D. Bonchev and N. Trinajstić, "Information theory, distance matrix, and 

molecular branching," The Journal of Chemical Physics, vol. 67, pp. 4517-4533, 

1977. 

[95] B. Larsen and C. Aone, "Fast and effective text mining using linear-time 

document clustering," in Proceedings of the fifth ACM SIGKDD international 

conference on Knowledge discovery and data mining, pp. 16-22, 1999. 

[96] M. M. Deza and E. Deza, "Encyclopedia of distances," in Encyclopedia of 

Distances, ed: Springer, pp. 1-583, 2009. 

[97] S. Bird, "NLTK: the natural language toolkit," in Proceedings of the 

COLING/ACL on Interactive presentation sessions, pp. 69-72, 2006. 

[98] D. Arthur and S. Vassilvitskii, "k-means++: The advantages of careful seeding," 

in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete 

algorithms, pp. 1027-1035, 2007. 

[99] J. A. Hartigan and M. A. Wong, "Algorithm AS 136: A k-means clustering 

algorithm," Journal of the Royal Statistical Society. Series C (Applied Statistics), 

vol. 28, pp. 100-108, 1979. 

[100] S. C. Johnson, "Hierarchical clustering schemes," Psychometrika, vol. 32, pp. 

241-254, 1967. 

 

  

 


