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A NOVEL COMPUTER VISION-BASED FRAMEWORK 

FOR SUPERVISED CLASSIFICATION OF ENERGY 

OUTBREAK PHENOMENA 

ABSTRACT 

Today, there is a need to implement a proper design of an adequate surveillance 

system that detects and categorizes explosion phenomena in order to identify the explosion 

risk to reduce its impact through mitigation and preparedness. This dissertation introduces 

state-of-the-art classification of explosion phenomena through pattern recognition 

techniques on color images. Consequently, we present a novel taxonomy for explosion 

phenomena. In particular, we demonstrate different aspects of volcanic eruptions and 

nuclear explosions of the proposed taxonomy that include scientific formation, real 

examples, existing monitoring methodologies, and their limitations. In addition, we 

propose a novel framework designed to categorize explosion phenomena against non-

explosion phenomena. Moreover, a new dataset, Volcanic and Nuclear Explosions 

(VNEX), was collected. The totality of VNEX is 10, 654 samples, and it includes the 

following patterns: pyroclastic density currents, lava fountains, lava and tephra fallout, 

nuclear explosions, wildfires, fireworks, and sky clouds. 
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In order to achieve high reliability in the proposed explosion classification 

framework, we propose to employ various feature extraction approaches. Thus, we 

calculated the intensity levels to extract the texture features. Moreover, we utilize the 

YCbCr color model to calculate the amplitude features. We also employ the Radix-2 Fast 

Fourier Transform to compute the frequency features. Furthermore, we use the uniform 

local binary patterns technique to compute the histogram features. Additionally, these 

discriminative features were combined into a single input vector that provides valuable 

insight of the images, and then fed into the following classification techniques: Euclidian 

distance, correlation, k-nearest neighbors, one-against-one multiclass support vector 

machines with different kernels, and the multilayer perceptron model. Evaluation results 

show the design of the proposed framework is effective and robust. Furthermore, a trade-

off between the computation time and the classification rate was achieved. 
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CHAPTER 1: INRTODUCTION 

 Explosion phenomena today are considered a significant concern that needs to be 

detected and analyzed with a prompt response in order to benefit military and civilians. In 

this section, we explore the explosion problem and scope, and we illustrate the motivation 

behind this research. In addition, we outline the contributions of the proposed research.      

1.1 Research Problem and Scope 

This dissertation presents state-of-the-art explosion classification through pattern 

recognition techniques on color images including feature extraction approaches and 

classification techniques. Consequently, color images are taken within the visible light 

spectrum range of approximately 400-700nm wavelength. These processed color images 

are 2-dimensional arrays of pixels with each pixel having RGB components. 

We define the explosion term as a rapid increase in volume, and a release of kinetic 

energy or potential energy. Kinetic energy includes radiant, electrical, or thermal energy, 

while potential energy includes nuclear or chemical energy. The explosion generates a blast 

pressure wave or shock wave, high temperature, release of gases, and loud sounds caused 

by the incidents that are associated with the occurrence of each explosion phenomena [1]. 

An explosion can be a natural disaster such as a volcanic eruption [2]. On the other 

hand, it can be a critical man-made disaster such as a nuclear explosion [3,4]. In addition, 

an explosion may happen when chemicals, substances, and gases are exposed to heat, 
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improperly stored and treated, or kept in an unstable state such as a refinery explosion, an 

industrial explosion, and others [5].  

We present in this dissertation a novel taxonomy of the explosion phenomena with 

an emphasis on natural explosions (e.g. volcanic eruptions) and man-made explosions (e.g. 

nuclear explosions).  

Consequently, we propose the design of a novel computer vision-based 

classification system with an associated framework for some of explosion phenomena 

namely: volcanic eruptions that include pyroclastic density currents, lava fountains, and 

lava and tephra fallout. Additionally, our framework addresses nuclear explosion 

phenomena that form a mushroom-shaped cloud, against some of non-explosion 

phenomena namely: wildfires, fireworks, and sky clouds.  

Supervised learning is used to map the input frames to the desired outputs and 

divide the space into regions or categories. The objectives of employing feature extraction 

approaches and classification techniques in the proposed framework are twofold. First, we 

compute features which have the most relevant information that characterize explosion 

phenomena from the input image data that will result in reducing the computational cost. 

This factor is often considered as the challenge to perform the desired classification task of 

any application. Second, we employ multiple classification techniques to categorize those 

phenomena and evaluate their performance of the developed system. 

In this context, we describe each image using multiple feature extraction 

approaches including: texture features by utilizing intensity levels, amplitude features by 

applying YCbCr color model, frequency features by exploiting Radix-2 Fast Fourier 

Transform (Radix-2 FFT) algorithm, and histogram features by employing Uniform Local 
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Binary Patterns (ULBP) technique. The Principal Component Analysis (PCA) technique is 

then applied on each feature class to calculate the most significant 100 eigenvectors and 

the corresponding eigenvalues. Furthermore, these discriminative features are collectively 

encapsulated into a single vector of 400 length. 

In order to achieve high reliability of the explosion detection and classification 

system, we propose developing a system that has the following characteristics: First, an 

explosion event is represented by different feature sets or classes. These discriminative 

features computed using our proposed research methodology are invariant in terms of 

translation, illumination, rotation, and scale. Second, images are processed by multiple 

types of analysis such as texture analysis, spatial (spectral) analysis, frequency analysis, 

and histogram analysis. Third, our research methodology provides different views or 

interpretations for the same scene of an explosion or non-explosion phenomena, and 

finally, combining texture, amplitude, frequency, and histogram features provides a 

valuable insight into the images under consideration in this research. 

Furthermore, these features were fed into several multiclass classification methods.  

As a result, the one-against-one multiclass SVM with degree 3 polynomial kernel tackled 

the problem at hand producing the highest classification rate. This classification model uses 

the Sequential Minimal Optimization (SMO) learning algorithm. 

Towards the supervised classification goal, there was a need for a large dataset. 

However, there is a lack of public datasets on explosion phenomena under consideration in 

this dissertation. Therefore, we had to collect our own dataset. The new dataset 

includes 10, 654 samples. 
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In addition, satellite remote sensing instruments that are installed to monitor 

volcanic eruptions have limitations in terms of the transmission time. For example, the 

Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves ash clouds images 

within a lengthy time frame of fifteen to thirty minutes [6]. In view of this, our proposed 

technical solution categorizes an explosion image in a timely manner as compared to 

MODIS satellite remote sensing instrument. 

Table 1.1 summarizes the problems related to the classification of explosion 

phenomena the dissertation explores associated with the solutions the dissertation 

provides.   

 

 

 Table 1.1 Summary of problems and solutions related to explosion classification. 

 

Problem Solution 

There is no comprehensive taxonomy for the 

domain of explosion phenomena. 

We propose a novel taxonomy of explosion phenomena. 

 

Explosion classification is an unsolved problem in 

the pattern recognition field on color images. 

We propose a framework design including feature 

extraction approaches and classification techniques. 

A proper explosion patterns’ representation does 

not exist. 

We represent an explosion event using different feature 

sets including texture, amplitude, frequency, and 

histogram features. 

Selection of the suitable feature extraction 

methodologies. 

We compute image intensity levels, YCbCr color model, 

Radix-2 Fast Fourier Transform, Uniform Local Binary 

Patterns, and Principal Component Analysis. 

Selection of the classifier design and learning. We apply the one-against-one multiclass SVM with 

degree 3 polynomial kernel. It uses the Sequential 

Minimal Optimization (SMO) learning algorithm. 

No public dataset on explosion phenomena is 

available. 

We collect a new dataset of color images that 

includes 10, 654 samples. 

Lengthy time frame for detecting and transmitting 

explosion images using satellite systems. 

We achieve a reasonable execution time using the 

proposed research methodology.  
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1.2  Motivation behind the Research 

Today, the emphasis on the risk identification as the first and critical step of the risk 

management process is arising. Hence, the development of technology as well as science 

will lead to saving lives and properties when they are linked to reliable automatic early 

warning systems and effective evacuation procedures.  

In a large explosive volcanic eruption at which a volcano vents pyroclastic flows 

and surges, and depending on the location of the volcanic eruption, its consequences can 

be experienced globally or by an entire hemisphere. Additionally, detecting an explosive 

volcanic eruption will lead to protecting citizens not only from primary effects of 

Pyroclastic Density Currents (PDCs) that are among the deadliest disasters for populations 

living around the volcano, but also from the secondary effects of volcanic eruptions that 

may trigger under proper conditions lahar, tsunami, and fires. Furthermore, locating the 

eruption cloud downwind is a necessity because it is crucial to aviation safety [7,8]. 

In addition, unlike some natural disasters such as fires, hurricanes, tsunami, 

earthquakes, and tornadoes where people can rebuild and repair structure in the location of 

the phenomenon, lava ejected from an effusive eruption buries agricultural lands, homes, 

and crops in its path where people are rarely able to use land buried by lava flows and 

fountains [9]. 
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Moreover, installing a system to classify the event as a nuclear explosion will 

support military forces to gain battlefield awareness for the future as well as improve 

battlefield tactics. 

In a broad sense, ordinary explosions [3] of the proposed taxonomy including 

natural gas, dust, petroleum, industrial, residential, and refinery explosions typically can 

cause property damage and potential loss of life. Consequently, heat and flying debris 

associated with these explosions may cause injuries, burns, and even death for individuals 

who are within the explosion radius [5]. Moreover, inhalation of smoke, chemicals, fumes, 

and dust resulting from an explosion cause symptoms, diagnosis, and intoxication for 

people. As important as it is in practice, deploying a classification system that can identify 

the event as an explosion at early stages will be valuable, and will play a significant role 

by providing rapid emergency alert not only to notify people about threats to their safety 

once an unexpected explosion event has occurred, but also to help community 

organizations and directors provide assessment for civilians and explosion victims in a 

minimal time.  

Furthermore, because of the limitations of the current surveillance techniques for 

explosion phenomena [6, 10-15], the need arises for maintaining the progress of developing 

new technical solutions that can perform a collaborative effort with the existing monitoring 

systems to identify imminent explosion hazards. In this context, the motivation behind 

designing our classification system are fourfold. (1) Encounters diminishing of the 

explosion phenomena, (2) mitigation of the explosions’ effect to save lives and properties, 

(3) defining physical properties of explosions that can be measured using RGB color 
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images, and (4) designing a technical solution that can detect and categorize explosion 

phenomena in a timely manner.  

 

1.3  Contributions of the Proposed Research 

In this dissertation, we present state-of-the-art pattern classification for explosion 

phenomena. As a result, this in-depth study depicts a new trend to rethink about how to 

cope with the challenges and constraints that govern the design, implementation, 

evaluation, and optimization of technical solutions for categorizing explosion phenomena 

using pattern recognition techniques. Contributions of this dissertations are as follows: 

(1) We propose a taxonomy for the main types of explosion phenomena. Key 

characteristics of the taxonomy include an explosion category, classification criteria, 

sub-categories, and a brief description. 

(2) We seek knowledge about the science behind volcanic eruptions and nuclear explosions 

of the proposed taxonomy in terms of how they occur through real examples. 

Subsequently, understanding the science has led to define different patterns of 

explosion phenomena from image processing point of view. Furthermore, the focus on 

these two categories of the proposed taxonomy among others was due to our ability of 

collecting images of these phenomena for conducting experiments. 

(3) We collect a new dataset of color images called VNEX that includes four patterns of 

explosion phenomena: pyroclastic density currents, lava fountains, lava and tephra 

fallout, and nuclear explosions, against three patterns of non-explosion phenomena: 

wildfires, fireworks, and sky clouds. The totality of VNEX is 10, 654 samples. In view 
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of this, using a large training set, a better approximation of the features that define the 

patterns are obtained. Hence, the classifiers will have a high generalization capability 

to perform precisely on new samples. Moreover, using a large testing set will result in 

getting a high confidence in the anticipated error rate. In fact, the error rate of any 

supervised classification system is anticipated by all obtainable images that are usually 

divided into training and testing sets. 

(4) We contribute the design and implementation of a novel computer vision-based 

framework for explosion phenomena using pattern recognition techniques including 

feature extraction approaches and classification techniques. In order to achieve high 

reliability in the proposed explosion classification system, we calculated the intensity 

levels to extract the texture features. Moreover, we utilize the YCbCr color model to 

calculate the amplitude features. We also employ the Radix-2 Fast Fourier Transform 

to compute the frequency features. Furthermore, we use the uniform local binary 

patterns technique to compute the histogram features. Then, principle component 

analysis algorithm is applied on each feature class to calculate the most 100 significant 

eigenvectors and eigenvalues. These features were combined into a single input vector 

that provides valuable insight of the images, and then fed into several classification 

techniques. 

(5) We evaluate the effectiveness of the proposed features extraction methodology on the 

target application domain and provide a comparison between numerous multiclass 

classification techniques in terms of the classification rate. These methods are 

Euclidean distance, correlation, K-Nearest Neighbors (KNN), the multilayer 

perceptron model (MPL), and the one-against-one approach for multiclass Support 
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Vector Machines (SVMs) with various kernels including: linear, polynomials of 

different degrees, Radial Basis Function (RBF), and sigmoid.  

(6) We assess our proposed methodology on three different testing sets. The first is the 

testing samples of VNEX dataset that includes 5, 327 color images. The second testing 

set consists of 980 frames of video sequences that we downloaded from the YouTube 

website, where each class comprises 140 frames that were retrieved by the system from 

computer folders for evaluation. These videos were taken in real outdoor environments 

for the seven scenarios of the respective defined classes. The third testing set consist of 

980 frames of the same YouTube video sequences. However, in this case the frames 

were captured using a drone in a real-time indoor environment, because we do not have 

access to explosion zones. 

 (7) We calculate the classified versus misclassified samples of the testing sets under 

evaluation, confusion matrices of classifiers that produced the highest accuracy, and 

the execution time for testing an input image using our research methodology. 
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CHAPTER 2: EXPLOSION TAXONOMY 

After exploring the domain of explosion phenomena, we propose to introduce a 

comprehensive novel taxonomy that includes main types of explosion phenomena. 

Consequently, the explosion problem domain includes the following main categories and 

subcategories: (1) volcanic eruptions that can be either explosive or effusive eruptions [2]; 

(2) nuclear explosions that have five sub-categories as follows: high altitude nuclear 

explosion (outer space detonation), atmospheric nuclear explosion (air burst), surface 

nuclear explosion, deep underground nuclear explosion, and shallow underwater nuclear 

explosion [4]; (3) dust explosions [16]; (4) natural gas explosions [5]; (5) petroleum 

explosions that can be either pipeline explosions or tank explosions [5]; (6) industrial 

explosions that include four subcategories as follows: chemical explosions, pipeline 

explosions, plant explosions, and warehouse fires [5]; (7) residential gas explosions that 

include the following three sub-categories: boiler and furnace explosions, appliance 

explosions, and wiring explosions [5]; and (8) refinery explosions [5,17]. 

Figure 2.1 represents the proposed explosion taxonomy, and Table 2.1 illustrates 

the details of the proposed taxonomy that include an explosion category, classification 

criteria, sub-categories, and a brief description. 

This dissertation will only focus through the experiments on identifying and 

classifying the volcanic eruptions (natural explosions) and nuclear explosions (man-made 

explosions) because of the lack of images of other explosions categories of the proposed 

taxonomy. 



11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.1 Proposed explosion taxonomy. 
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Table 2.1 Classification criteria of the proposed taxonomy. 

 

Explosion 

category 

Classification 

criteria 
Sub-categories Brief description 

Volcanic 

eruptions 

Explosive 

style  

Explosive 

(violent) 

The eruption produces pyroclastic density currents that are typically 

the most dangerous of all volcanic phenomena [2]. 

Effusive 

(quiet) 
 

The eruption generates lava fountains and flows that steadily ejected 

from the volcano onto the ground [2]. 

Nuclear 

explosions 

 

 

Location of 

the point of 

burst in 

relation to 

ground zero  

Shallow 

underwater 

The nuclear explosion is conducted under the surface of the water 

[4]. 
 

Deep 

underground 
 

The nuclear weapons are detonated at varying depths under the 

Earth’s surface [4]. 

Surface 
A surface explosion occurs either at the actual surface of the land or 

water, or slightly above [4]. 

Atmospheric 

(air burst) 

A nuclear weapon is detonated in the air/ atmosphere using balloons, 

towers, barges, or dropped from an airplane at an altitude below 

100,000 feet, and above the Earth’s surface at a height where the 

fireball, at its maximum growth, does not touch the surface of the 

Earth [4]. 

High-altitude 

(outer space) 

A nuclear explosion takes place above altitudes of 30 km (100,000 

feet) [4]. 

 

Natural gas 

explosions 

 

Energy 

resource 
N/A 

 
 

Gas is typically pumped out of the ground directly into a central 

processing unit, then processed into different gases, transported to 

destinations, and distributed to retail centers and homes. Throughout 

this long process, a devastating explosion may occur due to a variety 

of reasons including: (1) leaks as a result of broken seals, loose 

valves, and improperly maintained pipes, (2) dangerous 

transportation, (3) manufacturing error, and (4) dangerous storage 

[5]. 

Dust 

explosions  

 

Dispersion of 

powdered 

combustible 

materials 

N/A 

Explosion occurs by five factors including: (1) oxygen, (2) heat, (3) 

fuel (dust), (4) sufficient quantity and concentration of the dust 

particles’ dispersion, and (5) confinement. The resultant pressure 

rises and it could generate an explosion. Further, dust that may 

explode include: (1) natural organic materials (e.g. sugar, coal, and 

grains), (2) synthetic organic material (e.g. plastic, and pesticides), 

(3) metals (e.g. zinc, aluminum, and iron), and (4) any unstable oxide 

[16]. 

 

 

Petroleum 

explosions 

 

 

 

Energy 

resource 

based on the 

mean of 

transport from 

the source of 

drilling. 

 

 

Pipeline 

 

Crude oil is transported over long distances to processing plants via 

pipelines once it is pumped from the ground. Failure to inspect and 

maintain these pipelines will result in an explosion. Petroleum 

contains a large amount of paraffin wax that may build up and cause 

lack of oil flow, and this may increase the pressure in the pipeline. 

If the pipeline bursts near a spark or a flame, an explosion will occur 

[5]. 

 

Tank 

 

 

Petroleum is stored in tanks before and after it is processed. There 

are several faults that may cause a petroleum tank to explode 

including: (1) leaks, (2) dangerous transportation, (3) poor 

maintenance/installation, and  (4) manufacturing defect [5].   
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Industrial 

explosions 
Manufacturing 

task 

Chemical 

Chemical explosions may occur because of the following actions 

regardless of the safety measures in place: (1) dangerous chemical 

reactions, (2) smoking near dangerous chemicals, (3) improperly 

maintained boilers, and (4) equipment malfunction [5]. 

Pipeline 

Pipelines transport liquid and gases from the plant for hundreds of 

miles. Usually, pipes do not come in lengths long enough to cover 

the entire distance needed. Therefore, they are made from segments. 

Explosions occur because of multiple main reasons including: (1) 

owners’ negligence to have pipelines inspected to ensure the softy 

of plant workers, and (2) faults which include: weak welds, 

excessive pressure, improper construction, and faults in the seams 

where the segments are connected. Theses faults may allow 

combustible substances to leak, that in turn may come into contact 

with a spark and cause the substance to explode [5]. 

Plant 

Plant explosions may occur because of some reasons such as: (1) if 

heavy machinery was not well-maintained and expected, (2) failure 

to utilize reasonable care in handling combustible substances, (3) 

faulty electrical systems, (4) unsafe work conditions, and (5) 

chemical spills [5]. 

Warehouse 

 

Most industrial plants utilize warehouses to store chemicals and 

materials necessary to carry out their functions. Warehouse fires lead 

to explosions, and they occur because of negligent actions which 

include: (1) smoking near flammable liquids, (2) carelessly 

transporting potentially combustible substances, and (3) stacking 

reactive substances close together [5]. 
 

Residential 

gas  

explosions 

Utility that 

provides a 

residential 

service 

 

Boiler and 

furnace 

 

Explosions occur because of matter’s out of the homeowner’s 

control which include: (1) installation errors, (2) design defects, and 

(3) maintenance errors [5]. 

 

Appliance 

 

 

Explosions happen because of the following causes: (1) poorly 

designed or manufactured, (2) improperly maintained and repaired, 

and (3) improperly installed [5]. 

 

Wiring 

 

Homes are equipped with a network of wires to transfer electricity 

into homes from the power grid. If faulty wiring come into contact 

with natural gas, an explosion will happen [5]. 

Refinery 

explosions 

Production 

facility for 

crude oil 

N/A 

Large quantities of flammable gases can be produced during several 

cases including: (1) undetected leaks in the operating equipment, (2) 

from upset conditions in the normal refinery operations, (3) from 

startups and emergency shutdowns, and (4) during scheduled 

maintenance activities of the refinery. Today, the flaring safety 

technique is being required for the control of gaseous combustible 

emission from refinery sources. However, the flare system itself can 

present an explosion potential of a flare [5,17]. 
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CHAPTER 3: THE ART OF READING EXPLOSION 

VERSUS NON-EXPLOSION PHENOMENA 

In this section, we present the science behind the volcanic eruptions (natural 

explosions) and nuclear explosions (man-made explosions) in terms of how they normally 

occur. In this context, we describe different physical properties of these phenomena that, 

in turn, have led to interpret the patterns of color images from image processing point of 

view. Consequently, color images are taken within the visible light spectrum range of 

approximately 400-700nm wavelength. These processed color images are 2-dimensional 

arrays of pixels with each pixel having RGB components. 

 

3.1 Volcanic Eruptions 

A volcano is a spectacular event in the life of the Earth, and it is proof that the Earth 

is alive, active, and ever-changing. Thus, it is the Earth’s natural mechanism of cooling off 

and releasing internal pressure and heat, which in turn causes rocks to melt and produce 

magma that is allowed to escape from the magma chamber through a vent in the Earth’s 

crust. Therefore, as magma moves up, it loses dissolved gas and bubbles form in it. This is 

a driving force behind eruptions [2,18,19]. 

The violence of volcanic eruptions is controlled by two factors including silica 

content and gas content. As the silica content of magma is increases, the magma gets more 

viscous and it becomes stickier.  Consequently, the stickier the magma is, the more viscous 

the magma, and the more violent the generated eruption will be, and it becomes more 
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difficult for the gas to escape from magma that is highly viscous. The gas content of the 

magma is the second factor. Hence, the more gas, the more violent the eruption will be, 

while the less gas, the less violent the eruption will be [2]. 

Based on the eruptive style of the volcano and materials ejected during the eruption, 

three patterns types of a volcanic eruption scene can be defined including: (1) patterns of 

pyroclastic density currents, (2) patterns of lava fountains, and (3) patterns of lava and 

tephra fallout. Consequently, the description of each phenomenon is given as follows:  

 

3.1.1 Patterns of Pyroclastic Density Currents 

Pyroclastic Density Currents (PDCs) phenomena are usually the most destructive 

and deadly of all types of volcanic phenomena [8]. PDCs are mixtures of hot gases 

associated with pyroclastic materials that flow over the ground under the effect of gravity. 

The PDC phenomenon may generate from different mechanisms [1, 20-24]. For example, 

gravitational collapse of domes (Figure 3.1a) [25], partial column collapse (Figure 3.1b) 

[26], dome explosions (Figure 3.1c) [27], overpressure at the vent (Figure 3.1d) [28], 

steam-driven eruption column (Figure 3.1e) [29], lateral blast (Figure 3.1f) [30], boiling-

over (Figure 3.1g) [31], and continuous column collapse (Figure 3.1h) [31].  

Furthermore, the PDC phenomenon can be either a short-lived or relatively long-

lived. The short-lived PDC is considered highly unsteady phenomenon, whereas the 

relatively long-lived PDC is considered sustained unsteady to quasi-steady phenomenon. 

The duration of both the transient current (short-lived) and sustained current (long-lived) 

rely on the volumetric flow rate as well as the total flow volume, influencing the behavior 
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of the PDCs phenomena [22]. Figure 3.1a-f represent mechanisms of short-lived PDCs. In 

contrast, Figure 3.1g and Figure 3.1h represent mechanisms of long-lived PDCs. 

From image processing point of view, PDCs patterns have color property that can 

be white (e.g., Figure 3.1e), or brown/brownish (e.g., Figure 3.1d), or dark colors ranging 

from gray to black shades (e.g., Figures 3.1f, g), have non-luminous dense cloud shapes, 

and have multiple manifestation (shapes) including: vertical column, laterally spread, 

avalanches that are generated by lava dome and moving downslope of the volcano, and 

some volcanic eruptions can produce natural mushroom clouds under the gravity force. 

 

 

 

 

(a) (b) (c) (d)  

                         

 

 

                    (e) (f) (g) (h)  

Figure 3.1 Patterns of PDCs. (a) The volcanic eruption of Soufriere Hills in Montserrat occurred 

on January 16, 1997 (photo credit: Richard Heard, Montserrat Volcano Observatory) [25]; (b) 

Mayon volcano occurred on September 23, 1984 (photo credit: Nicolas Lardot, Wikimedia 

Commons website) [26]; (c) Soufriere Hills volcano, Montserrat (photo credit: Barry Voight, 

National Science Foundation website - date of the image is unknown) [27]; (d) Bromo volcano, 

East Java, Indonesia, occurred on 8 June, 2004 (photo credit: D. Wijayanto, Tom Pfeiffer/ 

www.VolcanoDiscovery.com) [28]; (e) The eruption of Guagua Pichincha volcano, west of the 

capital Quito, Ecuador occurred on October 7, 1999 (photo credit: U.S. Geological Survey, 

Department of the Interior) [29]; (f) Mt. St. Helens volcano, Washington State, USA, occurred on 

May 18, 1980 (photo credit: U.S. Geological Survey, Department of the Interior) [30]; (g) The 

Tonga undersea volcanic eruption occurred on March 18, 2009 (photo credit: YouTube website) 

[31]; (h) The photo description and credit as per Figure 3.1g [31]. 
 

 

http://www.volcanodiscovery.com/
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3.1.2 Patterns of Lava Fountains 

Effusive eruptions such as shield volcanoes and fissure volcanoes produce lava that 

is magma rises towards the surface of the Earth, and flows out of the volcano as a viscous 

liquid. Typically, lava fountains and flows are varied and have multiple physical properties 

including [32]: (1) thickness, (2) length, (3) shape, and (4) width which depends on the 

following factors: lava type that is being erupted, discharge, slope of the ground where the 

lava travels, and the eruption duration. For example, Figure 3.2a shows Kamoamoa 

eruption in Kilauea, Hawaii, on March 5, 2011 [33], and Figure 3.2b displays the Kilauea's 

East Rift Zone (Puʻu ʻŌʻō) eruption on September 1983 [34].  

 

 

 

 

 
 

 

 

 

 

(a) (b) 
 

 

Figure 3.2 Patterns of lava fountains. (a) Fissure volcano: Kamoamoa eruption, Kilauea, Hawaii, 

on March 5, 2011 [33] (photo credit: U.S. Geological Survey, Department of the Interior); (b) The 

outpouring of lava fountains from the active shield volcano of Kilauea's East Rift Zone (Puʻu ʻŌʻō) 

on September 1983 (photo credit: U.S. Geological Survey, Department of the Interior) [34]. 
 

 

Lava fountains patterns have two properties from image processing point of view. 

First, a luminous glowing region. Second, the color of the lava during the eruption [1]. 

Accordingly, the color of the lava is based on its temperature. For example, it is stated in 

[35] that lava may glow white at approximately 1150 ºC, golden yellow when its 
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temperature nearly 1090 ºC, orange at about 900 ºC, bright cherry red at almost 700 ºC, 

dull red when its temperature around 600 ºC, or has the lowest visible red color at 

approximately 475 ºC. As a matter of fact, the hotter the object, the brighter the light 

emitted will be. This process is called incandescence where the heat energy is turning into 

light energy. 

 

3.1.3 Patterns of Lava and Tephra Fallout 

During an explosive or effusive eruption, a pattern can be formed when both the 

lava and tephra fallout are emitted directly from a volcano [1]. Tephra can be defined as a 

generic phrase for the accumulation of any airborne pyroclastic materials, for instance, fine 

ash, coarse ash, lapilli (cinders), Pele’s hair, Pele’s tears, blocks, bombs, and others. These 

materials are different in terms of type, size, shape, and condition when ejected from a 

volcanic vent [36].  

Furthermore, Figure 3.3a depicts a volcanic fissure at which lava fountains of 100-

400m high and massive billowing volcanic ash clouds expelled near the Montagnola 

summit on July 24, 2001 [37]. Figure 3.3b represents lava and tephra fallout generated 

from the Eruption of Pu‘u ‘Ö‘ö, Kilauea, Hawaii, in 1984. Tephra fallout, in this example, 

is a combination of cinder, Pele’s hair, and Pele’s tears [38]. Figure 3.3c demonstrates lava 

and tephra fallout generated from the explosive eruption of Eyjafjallajökull in the island of 

Iceland that occurred on April 14, 2010 [39]. Figure 3.3d illustrates the effusive eruption 

(basaltic volcanism) of Mt. Etna, Sicily, Italy which occurred in November 2002 [40]. 
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(a)                                    (b) (c)                                       (d) 

Figure 3.3 Patterns of lava and tephra fallout. (a) Lava fountains and massive billowing volcanic 

ash clouds expelled near the Montagnola summit of Etna volcano which occurred on July 24, 2001 

(photo credit: Tom Pfeiffer/ www.VolcanoDiscovery.com) [37]; (b) lava and tephra fallout 

generated from the Pu‘u ‘Ö‘ö eruption, Kilauea, Hawaii, in 1984 (photo credit: U.S. Geological 

Survey, Department of the Interior) [38]; (c) Explosive eruption of Eyjafjallajökull in the island of 

Iceland occurred on April 14, 2010 (photo credit: David Karnå, Wikimedia Commons website) 

[39]; (d) Effusive eruption (basaltic volcanism) of Mt. Etna, Sicily, Italy, occurred in November 

2002 (photo credit: Tom Pfeiffer/ www.VolcanoDiscovery.com) [40]. 
 

 

From image processing point of view, lava and tephra patterns have the following 

properties. (1) A luminous glowing region that represents the lava, (2) a non-luminous 

region that represents the tephra fallout, (3) the color of the lava that relates to its 

temperature, and (4) the color of the tephra that depends on the pyroclastic materials types 

that are being emitted during an explosive or effusive eruption [1]. For example, the tephra 

fallout can be either dark colored pyroclastic of basaltic to andesitic scoria or light colored 

pyroclastic of felsic pumice and ash [41]. 

 

3.2 Nuclear Explosions 

A nuclear explosion is defined as an explosion for which the energy is released by 

a nuclear transformation, either by fission or fusion [4]. Typically, nuclear explosions are 

classified based on the location of the point of burst in relation to ground zero [1]. Hence, 

http://www.volcanodiscovery.com/
http://www.volcanodiscovery.com/
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nuclear explosions have the following five subcategories. (1) high altitude nuclear 

explosion (outer space detonation), (2) atmospheric nuclear explosion (air burst), (3) 

surface nuclear explosion, (4) deep underground nuclear explosion, and (5) shallow 

underwater nuclear explosion. In contrast, we propose to classify nuclear explosions based 

on the shape characteristic from image processing point of view. Thus, we define two 

patterns. (1) a mushroom-shaped cloud that is typically formed by the following types of 

nuclear explosions: atmospheric, surface, deep underground, and shallow underwater, and 

(2) an artificial aurora view associated with an ionized region that is formed by the space 

(high-altitude) explosion. A brief description behind the scientific formation of both 

nuclear explosion patterns is given in this section.  

 

3.2.1 Patterns of Mushroom-Shaped Clouds 

The formation of a nuclear mushroom-shaped cloud can be described through an 

example of a shallow underwater explosion, the Baker test that was conducted at Bikini 

Lagoon in 1946 [42]. At the beginning of the explosion, the water near the explosion was 

illuminated by the fireball formation. However, the water waves caused distortion on the 

surface of the lagoon that prevented a clear view of the fireball. The hot gas bubble 

underwater initiates a shock wave. Intersection of the shock wave with the surface produces 

a slick that is a ring of darkened water that is rapidly expanding, while the reflection of the 

water shock wave at the surface causes a crack. A crack is a white circular patch behind 

the dark region. Then, a spray dome (a column of broken water and spray) is thrown up 

over the point of burst. The sides of the spray dome become steeper when the water rises. 
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The disturbance created by the underwater burst causes a series of waves to move outward 

from the center of the explosion across the surface of the lagoon, where the test was 

conducted. The water flowed into the cavity as the pressure of the bubble was released that 

caused the water to be thrown up as a hollow cylinder, or chimney of spray, called the 

“column/plume.” The radioactive contents of the bubble were vented through the hollow 

column and formed a cauliflower-shaped cloud at the top in a shallow underwater 

explosion that concealed part of the upper portion of the column. The cloud contained some 

of the fission products, weapon residues, and a large amount of water in droplet form [42]. 

Figure 3.4 depicts the mushroom-shaped cloud of the underwater Baker nuclear explosion 

[43].  

 

 

 

 

 

 

 

 

 

 

  

 

 

 
 

Figure 3.4 Mushroom-shaped cloud of the underwater Baker nuclear explosion in 1946 (photo 

courtesy of National Nuclear Security Administration/ Nevada Field Office) [43]. 
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From image processing viewpoint, nuclear explosions patterns have the following 

five properties. First, the color property where the initial color of the mushroom cloud of a 

nuclear expulsion is red/reddish. When the fireball cools, water condensation leads to the 

white color characteristic of the explosion cloud [4], and secondly, growth of the nuclear 

mushroom-shaped cloud, where it keeps rising until it reaches its maximum height. Third, 

the shape which can be either mushroom-shaped cloud, or artificial aurora display with 

ionized region in case of space explosions. Fourth, the luminous region of the image at 

which a luminous fireball can be viewed as flash or light from hundreds of miles away for 

about 10s, and then it is no longer luminous. Thus, the non-luminous growing cloud 

appears for approximately 1–14 minutes, and fifth, the orientation where the mushroom-

shaped cloud has a single orientation. 

 

3.2.2 Patterns of the Artificial Aurora Display with an Ionized 

Region 

The display of the artificial aurora with an ionized region is due to the effect of the 

electromagnetic pulse (EMP) of the high-altitude nuclear explosion from outer space. EMP 

effect can be described as follows [4]: a photon has an energy of several million electron 

volts that is a typical energy for gamma radiation emitted by a high-altitude nuclear 

explosion. When photons interact with atoms of the air in the atmosphere (nitrogen and 

oxygen), large parts of its energy will be transferred to the electrons on atoms. As a result 

of this collision process, gamma rays have reduced energy, while the electrons have 

accelerated and are thus stripped from atoms, producing an extensive ionized region called 
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a “deposition region” where the electron currents are formed. This is known as the 

Compton Effect. A charged particle (electrons) in the magnetic field of the Earth will 

describe a circular motion. In order to maintain a circular motion or helical path, the 

electrons must continually accelerate inward toward the circle’s center. The acceleration is 

due to the continual charge in the direction of the electron velocity, and it produces 

electromagnetic radiation known as synchrotron radiation. These effects make up an EMP. 

However, this representation is not possible for other kinds of explosion phenomena. 

Figure 3.5 represents the artificial aurora with deposition region formed by Starfish space 

explosion in 1962 [44]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Starfish artificial aurora with deposition region as seen from an aircraft in 1962 (photo 

credit: Gregory Walker, Trinity Atomic Web Site) [44]. 
  

 

This dissertation will only focus through the experiments on identifying and 

classifying the nuclear explosions that form the mushroom-shaped cloud because of the 

lack of images of the high-altitude explosions. 
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3.3 Non-Explosion Phenomena 

In this section, we propose to define three patterns of non-explosion phenomena 

from image processing point of view against the aforementioned patterns of explosion 

phenomena that were defined in sections 3.1 and 3.2. Consequently, non-explosion patterns 

include: wildfires, fireworks, and sky clouds. The aim of adding these patterns to the 

framework is to evaluate the reliability and the robustness of the strategy adopted in this 

dissertation. 

3.3.1 Patterns of Wildfires 

Wildfires patterns from image processing point of view contain a non-luminous 

region, a luminous region, or both. The luminous region that usually appears in the scene 

of a wildfire is related to the flame that is produced during the flaming phase of the 

combustion process, and its color variation depends on the type of the material being 

burned, how hot it's burning, and the amount of oxygen that is available to turn all the 

carbon into Carbon dioxide (CO2). The flame color of the wildfires typically glows red 

transmitting to orange, then to yellow. On the other hand, the non-luminous region of a 

wildfire scene is related to the smoke that is generated during the smoldering phase of the 

combustion process. This smoke tends to reflect the light making the smoke appears white. 

Likewise, tree trunks and big branches may have large amounts of moisture that are prone 

to smolder and emit steam that turns the smoke white. In addition, a black soot of fine 

particles is formed and released into the air during the hot burning of the dry underbrush. 

Thus, the smoke may appear black in a wildfire scene [1,45].  
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3.3.2 Patterns of Fireworks 

Fireworks patterns from image processing point of view have the following 

properties. First, a black background because they are typically displayed in the night. 

Second, they have multiple ignitable shapes such as: glitter, spinner, tail, willow, brocade, 

stars, and others. Third, they have different colors that are related to the type of the metal 

salt which produces a light that travels at a specific wavelength [46-48]. 

 

3.3.3 Patterns of Sky Clouds 

Clouds patterns from image processing point of view have different shapes. For 

example, high-level clouds include Cirrus that have wispy and feathery shape, Cirrostratus 

have relatively transparent form of a widespread veil-like layer, and Cirrocumulus that are 

layered clouds performed with small cumuliform lumpiness, and have rippled shapes, 

whereas mid-level clouds include Altostratus that possess a flat and uniform type texture, 

Altocumulus that are heap-like clouds, and Nimbostratus that have dark, thick, and lumpy 

layer. Furthermore, low-level clouds include Stratus that are dull gray clouds that 

developed horizontally, and Cumulus that are the stereotypical fluffy clouds that developed 

vertically, Stratocumulus that are small lumpy clouds, and Cumulonimbus that are tall and 

fluffy. In addition, color of the clouds is the second property. When all different colors of 

light hit a water droplet or ice crystal of the cloud that has an average size of about 10 

micrometers. They scatter equally into colors of rainbow; then they combine to produce a 

white light. Hence, clouds typically appear white [49,50]. 
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CHAPTER 4: LITERATURE SURVEY 

In this section, we explore existing literature that addresses various approaches for 

detection and categorization of nuclear explosions and volcanic eruptions. Moreover, we 

provide examples of the current programs for monitoring these phenomena in the United 

States. In addition, we highlight the limitations of the existing surveillance systems for 

explosions.  

 

4.1  Existing Literature on Monitoring Volcanic Eruptions and 

Nuclear Explosions 

Roth and Guritz [51] developed a system to predict and to display volcanic ash 

cloud movements utilizing meteorological data and eruption parameters for input. The 

model can predict the volcanic ash particle density in the atmosphere as a time function.  

Eruption parameters for the model include: the volcano’s geographical location, time, the 

eruption duration, the plume’s altitude, the particle density, and the distribution of the 

particle density.  

Ando [52] conducted experiments to remove the interfering signals of temperature 

and pressure from the output of continuously running spring gravity meters. Hence, more 

accurate results can be achieved using high sensitive instruments in a harsh environment 

to monitor an active volcano such as the Mt. Etna volcano located in Italy. Furthermore, 

Ando monitored the physical behavior of lava flow by measuring two components of the 

cooling process of lava flow that included conductive and radiant heat transfers. 
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Nugroho and Winarko [53] built a conceptual surveillance system for volcanic 

eruptions by integrating the Geographical Information System (GIS) and the concept of 

Service-Oriented Architecture (SOA) using Enterprise Service Bus software (ESB). This 

system may improve the job performance of geologists and volcanologists when volcanoes 

occur in order to mitigate the volcanoes’ impact.  

Werner-Allen et al. [54] deployed a small wireless sensor array for three days at 

the Tungurahua volcano in Ecuador in 2004. Three Mica2 motes equipped with 

microphones were installed to detect infrasonic signals (low frequency acoustic) that were 

produced from the erupting volcano. In addition, an event detector was developed to trigger 

the transmission of data automatically as soon as multiple nodes received a well-correlated 

signal. This technique was evaluated based on bandwidth usage, reduced energy, and 

detection accuracy of infrasonic signals.  

Likewise, Werner-Allen et al. [55] deployed a sensor network of 16 nodes for 19 

days on the Reventador volcano in Ecuador. Moteiv TMote Sky platform of the wireless 

sensor network was used. Each node was equipped with a seismometer and a microphone 

to gather seismic and acoustic data of the volcanic eruption activity. Data were transmitted 

through a multi-hop path to a gateway node which, in turn, is connected to a long-distance 

FreeWave modem that provides a radio connectivity with a laptop. Additionally, a GPS 

receiver was used for time synchronization.  

Tan et al. [56] proposed a real-time quality-driven technique to detect volcanic 

earthquakes. Two sensing algorithms were developed: (1) the Bayesian detection approach 

that used the joint statistical model of the seismic signal energy as well as the frequency 

spectrum, and (2) a sensor selection algorithm. Furthermore, a two-phase earthquake onset 
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time estimation technique was developed. Lastly, these algorithms were implemented on a 

24 TelosB motes testbed, and then experiments were conducted based on traces of real data 

gathered for five and a half months from the Mt. St. Helens volcano, which contained over 

128 important earthquake events. 

In addition to the wireless sensor-based techniques used to detect seismic and 

acoustic data of volcanic eruptions, several computer vision-based techniques were used 

to monitor volcanic eruptions. In this view, Jinguuji and Ehara [57] proposed a remote 

sensing system by employing satellite images to compute the volcanic ash. This system is 

based on a physical model of volcanic ash motion. The model was tested on the Kuju 

volcanic eruption in Japan that occurred in 1995.  

In the Lawrence Livermore National Laboratory [58], researchers presented the use 

of radar images taken from satellites that used the InSAR technique to monitor the Earth’s 

surface from space. Researchers analyze these images to detect very small subsurface 

changes caused by underground nuclear explosions, and volcanic hazards. In addition, 

these researchers run simulations to characterize deformations.  

Andò and Pecora [59] presented a new measurement tool that performed a real-

time automatic thermographic analysis that used frames acquired by a thermal camera for 

volcanic activities of Mt. Etna and Stromboli in Italy. After the processing of a frame 

sequence, various information was provided that includes: the typology of the eruption, 

aspect, aspect ratio, maximum height, maximum width, and the duration of the analyzed 

sequence. 

Langer et al. [60] classified volcanic tremor data at Mt. Etna in Italy based on 

supervised and unsupervised pattern classification techniques. Supervised classification 
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was applied on an image dataset of four target categories namely: post-eruptive, eruptive, 

pre-eruptive, and lava fountain (effusive eruption). The totality of their dataset was 425 

samples. Furthermore, the power feature was measured in frequency intervals, then a 

multilayer perceptron technique (MPL) and support vector machine approach (SVM) were 

employed for classification. During the testing scheme, the output label was either ‘1’ for 

the class, or ‘0’ for all other classes. The SVM achieved an accuracy of 94.8%, and the 

MLP achieved an accuracy of 81.9%. On the other hand, unsupervised categorization was 

attained by employing self-organizing maps and cluster analysis approaches.  

Iyer et al. [61] introduced a detection system for volcanic eruptions based on 

infrasonic signals. These signals contain information regarding the volcano’s intensity that 

provides an approximation of ash column height. Consequently, unique cepstral-based 

features were extracted from the infrasonic signature of the volcano, and then fed into a 

radial basis function neural network to distinguish eruptive activity among these three 

volcanoes including: Kasatochi located in Alaska, Tungurahua located in Ecuador, and Mt. 

St. Helens located in USA. Consequently, a total number of 25, 356 infrasonic data was 

obtained from the global infrasonic monitoring network dataset, and the waveform of each 

class was divided into 20 segments. Volcanic eruptions, based on the height of the ash 

column, were classified into the following classes: Strombolian, Vulcanian, Subplinian, 

and Plinian. As a result, a classification rate of 97% was achieved.  

Also, Picchiani et al. [62] employed a single layer neural network to classify ash, 

or non-ash, and to retrieve the ash mass. Moreover, five datasets of MODIS images in the 

TIR spectral range were gathered in the 2001, 2002, and 2006 from the Mt. Etna volcanic 

eruptions. Each dataset includes 810, 000 samples. The architecture of the neural network 
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included: the input space of three MODIS channels: CH28, CH31, and CH32, as well as a 

single hidden layer, and a single output layer. Results showed that approximately 90% 

accuracy was achieved. 

Additionally, Marzano et al. [63] utilized a ground-based microwave weather radar 

system to perform the detection (dynamical monitoring) of a volcanic ash cloud, a 

quantitative retrieval of a volcanic ash cloud, concentration, and fall rate. The quantitative 

information was based on three classes: lapilli, coarse ash, and fine ash. As a result, in 

Plinian and sub-Plinian volcanic eruptions cases, ash particles can be characterized through 

modeling results and experimental results. 

Similarly, Boccia et al. [64] introduced a ground-based remote sensing system for 

volcanoes using the L-band microstrip array. The developed antenna is part of the Volcano 

Doppler Radar (Voldorad). The system retrieves the mass data and the velocity. The 

proposed array configuration was designed via shortened rectangular patch antennas 

(microstrip radiators with improved directivity). Hence, the Voldorad antenna was 

integrated with the radar for the remote sensing of the summit eruptions of Mt. Etna [64].   

Aside from the discussion of volcanic eruptions monitoring found in the literature, 

several researchers studied many techniques to monitor nuclear explosions.   

Dickinson and Tamarkin [15] explored several approaches to retrieve detection, 

location, and time information about nuclear explosions that are conducted in the 

atmosphere and in space (high-altitude). These approaches include: (1) acoustic; (2) debris 

sampling; (3) radio flash or electromagnetic pulse (EMP); (4) satellites which use 

instruments to measure radiation from a nuclear detonation, such as X-rays, gamma-rays, 

and neutrons; (5) atmospheric fluorescence; (6) radio techniques that include: very low 
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frequency (VLF), low frequency (LF), high frequency (HF), radio sounders, cosmic noise 

(Riometer); (7) magnetic telluric; and (8) sunlight resonance scatter from debris.  

Additionally, Lindgen [65] provided criteria on how to identify and detect seismic 

waves of underground nuclear explosions versus earthquakes.  

 

 

4.2  Programs for Monitoring Volcanic Eruptions and Nuclear 

Explosions in the U.S. 

Current literature addresses how the U.S. Geological Survey (USGS) monitors 

volcanic eruption phenomena [10, 66-69]. Figure 4.1 depicts the volcanic monitoring 

techniques that are employed by the USGS Volcano Hazards Program as follows: (1) 

detecting volcanic tremor (harmonic tremor); (2) hydrologic monitoring; (3) gas emission; 

(4) temperature measurements using thermocouples, Thermal Infrared Radiation (TIR) 

video cameras, and infrared satellite sensors; (5) satellite remote sensing such as Moderate 

Resolution Imaging Spectroradiometer (MODIS); and (6) monitoring volcano ground 

deformation by using: Electronic Distance Meter (EDM), Tiltmeter, Global Positioning 

System (GPS), and Interferometric Synthetic Aperture Radar (InSAR) images. 
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Figure 4.1 Volcanic monitoring techniques that are employed by the USGS Volcano Hazards 

Program (photo credit: U.S. Geological Survey, Department of the Interior) [68]. 

 

 

In addition to the programs that are currently applied by USGS to monitor volcanic 

eruptions, the EarthScope USArray program deploys a dense network of seismographic 

stations across United States. USArray consists of 400 broadband stations in a 

Transportable Array (TA) in a grid of locations with approximately 70 km spacing. Data 

that are acquired and analyzed from TA will lead to detection of abnormal seismic events 

such as an underground nuclear explosion [70]. Figure 4.2 illustrates the TA [71]. 
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Figure 4.2 Transportable Array (photo credit: IRIS Data Management Center, EarthScope, and 

National Science Foundation) [71]. 
 

 

 

 
 

 

4.3 Limitations of the Existing Surveillance Systems for 

Explosions 

Current systems that are installed for monitoring volcanic eruptions have 

limitations in temperature measurements, detection of ash clouds, detection of ground 

deformation, and transmission time of satellite systems. For example, the thermocouple 

probe that is used for measuring the lava temperature cannot be applied to difficult volcano 

locations. Since volcanologist can only perform the direct temperature measurements 

within the vicinity of a volcano, safe conditions must exist. Temperature measurements 

can also be made from a distance with cameras that measure thermal infrared radiation 
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(TIR). However, TIR cameras can be completely or partially obscured by volcanic thick 

clouds (PDCs). Moreover, existing infrared satellite sensors capture only lava images of 

large areas with low resolution that limit the retrieval of fine-scale details from the volcanic 

thermal features [10].  

Another limitation occurs when ground-based microwave radar systems are 

employed to measure volcanic fine ash. The fine ash becomes invisible to the radar system 

for distances greater than 50 km. Hence, the radio waves will not be reflected towards 

Earth, and might not be detected [11]. Conversely, ash cloud height and depth can be 

measured through observations generated from ground-based Light Detection and Ranging 

(LiDAR) optical systems. LiDAR systems typically demonstrate a higher sensitivity to the 

content of ash clouds as compared to microwave instruments, but counterbalanced by 

stronger path attenuation effects [12]. The data collection and processing performed by 

LiDAR systems can be time consuming. LiDAR equipment is also expensive [13]. 

The GPS is deployed to monitor the ground deformation of a volcano. However, 

the operational utility of the GPS is limited because it provides a small spatial and temporal 

coverage [14]. Furthermore, the limitation of the MODIS satellite remote sensing 

instrument is that MODIS retrieves ash clouds images within a lengthy time frame of 

fifteen to thirty minutes [6]. 

With regard to the limitations of nuclear detection systems that are deployed in the 

atmosphere and space, there are several contextual problems and difficulties related to the 

grid pattern of the system, the geography, and the site location.  

Accordingly, acoustic systems can be affected by some natural phenomena such as 

volcanic eruptions, tornado, aurora, meteor, earthquake, wind patterns, and noise 
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background. Moreover, debris sampling methodology can be impacted by previous tests, 

and patterns of the wind. Furthermore, electromagnetic pulse (EMP) can be affected by 

atmospheric lightning. In addition, satellites that use instruments to measure radiation from 

a nuclear detonation include: neutrons, gamma-rays, and x-ray are influenced by cosmic 

ray showers, solar radiation, and trapped particles. Additionally, atmospheric fluorescence 

is influenced by lightning and cloud cover. In contrast, radio techniques (VLF, LF, HF, 

radio sounders, and Riometer) are mainly affected by ionospheric disturbances, polar zone, 

auroral regions, and the creation of a proper grid pattern in some locations. Additionally, 

the local noise affects HF, radio sounders, and Riometer among other radio techniques. 

Another technique, referred to as magnetic-telluric, can be influenced by ionospheric 

disturbances, auroral disturbance, and magnetic disturbance. Lastly, debris resonance is 

impacted by previous tests, natural dust, and wind patterns that form at a high altitude that 

results in unpredictable grid pattern [15]. 
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CHAPTER 5: DESIGN OF THE PROPOSED FRAMEWORK 

The proposed framework operates in three steps: preprocessing, training (learning), 

and testing (classification). The following factors were taken into consideration when the 

framework was designed and implemented: (1) definition of pattern classes, (2) pattern 

representation, (3) feature extraction methodologies, (4) classification techniques design and 

learning, and (5) selection of training and test samples. 

 

5.1  Feature Extraction Approaches 

5.1.1 Texture Features: Principal Component Analysis 

The Principal Component Analysis (PCA) algorithm is a mathematical approach 

that projects the high-dimensional data onto a low-dimensional space. The reason for 

reducing the dimensions is that we can focus on those dimensions where there is a high 

difference between images in our dataset (i.e., high variance). Hence, in order to represent 

each sample using the most significant 100 basis vectors, the PCA algorithm is employed. 

During the preprocessing stage, we resize the color images to 64×64 pixels. Then, each 

sample (Ii) is converted to 8-bit grayscale vector (Γ𝑖). Consequently, the PCA steps during 

training (learning) are as follows [72]: 

(1) Obtain images for training phase I1, I2 ⋯ IM, where M = 5, 327, and represent each 

image Ii as a vector Γi. 

(2) Find the average vector.   
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(3) Find the mean adjusted vector for every image vector Γ𝑖, by subtracting the average 

vector from each sample, and then assemble all data samples in a mean adjusted matrix.  

(4) Compute the covariance matrix C.   

(5) Calculate the eigenvectors (V) and eigenvalues (λ) of the computed covariance matrix 

C. After computing the eigenvalues, we will sort the eigenvalues (λ) by magnitude, 

and we will only keep the highest 100 eigenvalues and discard the rest. 

(6) Compute the basis vectors. Thus, from the previous step, we have 100 

eigenvectors (EV0, ⋯ , EV99). These vectors will be assembled into an eigenvector 

matrix EV. Then, we will multiply EV by the mean adjusted matrix computed in step 

3 to form the basis vectors. 

(7) Describe each sample using a linear combination of basis vectors. These basis vectors 

have a magnitude of 1, and they are mutually orthogonal— meaning that the inner 

product of any two vectors will produce zero. This also can be described such that there 

is 90° angle between any two vectors in the eigenspace. These 100 features are 

invariant in terms of translation, illumination, and scale.  

 

The training dataset contains 5, 327 samples. Hence, after applying the PCA to 

compute the most significant 100 eigenvectors and the corresponding eigenvalues, 

dimensions of the 2D training matrix are (5327×100). Figure 5.1 summarizes steps of PCA 

algorithm during training (learning).  
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Figure 5.1 Steps of PCA algorithm during training (learning). 

 

During the testing phase, each test image is resized to 64 × 64 pixels and then 

converted to a vector of size 4096 × 1 pixels. After that, the average image from the 

training process is subtracted from each test sample, resulting in the mean adjusted image. 

Consequently, the mean adjusted image of each sample gets projected on the eigenspace 

of 100 significant eigenvectors. As a result, dimensions of the 2D testing matrix are 

(5327×100).  

 

5.1.2 Amplitude Features: 𝐘𝐂𝐛𝐂𝐫 Color Model 

Color is one of the physical properties of explosion and non-explosion phenomena, 

as the color depends on the temperature and the composition of each phenomenon of the 

proposed application. 

Amplitude (spectral) features in the proposed framework are extracted by linear 

transformation of bitmap pixel component intensities (R, G, and B) to YCbCr color space 

[73]. YCbCr represents color as luminance component Y, and chrominance components Cb, 

which is blue minus luma (B − Y), and Cr, which is red minus luma (R − Y). Figure 5.2a 

depicts an input color image of 64×64 pixels of RGB components [74-78], and Figure 5.2b 
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illustrates the corresponding YCbCr output image of 64×64 pixels for the seven categories 

of explosion and non-explosions phenomena under consideration. 

The choice of the appropriate color model depends on the target application and the 

effectiveness of the color transformation algorithm. Typically, YCbCr is used in the context 

of digital images such as JPEG images. Furthermore, computing YCbCr of an image is more 

efficient than RGB, because the human eye is more sensitive to change in brightness than 

change in color. Benoit Payette stated in [79] that red, green, blue, and luma components 

are in the gamma corrected space. No gamma correction is applied to color difference 

components Cb and Cr . Accordingly, RGB color space can be described as an illumination 

dependent color model. Moreover, engineers found that 60% to 70% of luminance 

(brightness) is in the green component of RGB. In the chrominance part Cb and Cr , the 

brightness information is removed from the blue and red colors. To overcome this 

disadvantage of RGB, we employ YCbCr. 

In our experiments, we resize the RGB color images to 64×64 pixels during the 

preprocessing phase. For each image, R, G, and B color components are extracted and 

converted to YCbCr. Thus, we implement the following formula that describes the 

conversion of RGB color space into YCbCr color space according to ITU-R BT.601 [73]:  

 

    [

Y
Cb

Cr

] =  [
16

128
128

] + [
0.257 0.504 0.098

−0.148 −0.291 0.439
0.439 −0.368 −0.071

] ∙ [
R
G
B

] , (1) 

 

where 8-bit representation of each component of  YCbCr is specified by the 

recommendation 601, and R, G, B ∈ [0,255], Y ∈ [16,235], and Cb and Cr ∈  [16,240]. Y 
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has an excursion of 219 and an offset of +16, placing black at code 16 and white at code 

235, whereas Cb and Cr  have excursions of ±112 and offset of +128.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b)  

Figure 5.2 (a) Input color image of 64×64 pixels of RGB components; (b) The corresponding 

YCbCr output image of 64×64 pixels. Pyroclastic density currents: (photo credit: U.S. 

Geological Survey, Department of the Interior) [74]; Lava fountains: (photo credit: U.S. 

Geological Survey, U.S. Department of the Interior) [75]; Lava and tephra fallout: (photo 

credit: Tom Pfeiffer/ www.VolcanoDiscovery.com) [37]; Nuclear explosions: (photo credit: 

Gregory Walker, Trinity Atomic Web Site) [44]; Wildfires: (photo credit: John Newman, 

Wikimedia Commons website) [76]; Fireworks: (photo credit: PEXELS blog website) [77]; 

Sky cloud: (photo credit: Saperaud, Wikimedia Commons website) [78].  

 

Pyroclastic density Current 
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Lava and tephra fallout 

Nuclear explosion 
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Sky cloud 

http://www.volcanodiscovery.com/
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After we represent 5, 327 samples of the training set using the YCbCr color model, 

the dimensions of the 2D training matrix will be (5327 × 12288). Then, we apply PCA 

to extract the 100 most significant eigenvectors and eigenvalues. The 2D components 

matrix for the training phase is of dimensions (5327 × 100), whereas the components 

matrix for testing 5, 327 samples is of dimensions (5327 × 100). As seen in Figure 5.3, 

the block diagram shows the proposed YCbCr algorithm in the time domain.  

 

 

 

 

Figure 5.3 Block diagram for extracting the highest 100 eigenvectors after employing time 

domain YCbCr encoding schema. 

 

 

5.1.3 Frequency Features: Radix-2 Fast Fourier Transform 

In the proposed framework, features in the transform domain are calculated using 

the Radix-2 Fast Fourier Transform (Radix-2 FFT) algorithm. The Radix-2 FFT is a 

mathematical mechanism used to convert a spatial-domain image representation into a 

frequency-domain representation. It decomposes the image into a weighted sum of 

complex exponential functions called spectral components. The weighted terms at each 

frequency are the complex amplitude and phase. The speed of Radix-2 FFT comes at a cost 

of complexity at which the total computation is proportional to Nlog2(N), and the discrete 

definition of Radix-2 FFT is given as follows [1]:  
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 Χk =  ∑ x2m
 e−

2πi

N

N 2⁄ −1

m=0

(2m)k +  ∑ x2m+1
 e−

2πi

N

N 2⁄ −1

m=0

(2m + 1)k . (2) 

 
 

Before extracting the frequency features, a preprocessing step is required which is 

twofold. First, resizing each input color image in the time domain to 64×64 pixels. Second, 

converting the image (Ii) to a grayscale vector (Γ𝑖) of 8-bit intensity values. Consequently, 

The Radix-2 FFT algorithm can be achieved on 2D images by employing the following 

steps [80-83]: 

(1) Perform a time-domain decomposition using a bit-reversal sorting algorithm to 

transform the input spatial image into a bit-reverse order array, and there are log2 N stages 

needed for this decomposition, for example, a 16-point signal (24) requires 4 stages.  

(2) A two-dimensional FFT can be executed as two one-dimensional FFT in sequence 

where 1D FFT is performed across all rows, replacing each row with its transform. Then, 

1D FFT is performed across all columns, replacing each column with its transform.  

(3) Combine the N frequency spectra in the correct reverse order at which the 

decomposition in the time domain was achieved. This step involves calculation of the core 

computational module of base-2-domain FFT algorithm, which is called a butterfly 

operation.  

Figure 5.4a depicts an input color image of 64×64 pixels of RGB components for 

the seven categories of explosion and non-explosions phenomena under consideration in 

this research [74-78], Figure 5.4b displays the corresponding gray image of 64×64 pixels 

that generated during the preprocessing step, and Figure 5.4c illustrates the corresponding 

log plot for amplitude of Radix-2 FFT output image of size 64×64 pixels. 



43 

 

Pyroclastic density Current 

Lava fountain 

Lava and tephra fallout 

Nuclear explosion 

Wildfire 

Sky cloud 

Fireworks 

   

    

 

  

 

 

 

  

   

 

  

 

  

 

  

  

 

  

 

 

 

                                                                                                                                

(a)                        (b) (c)    

 

Figure 5.4 (a) Input color image of 64×64 pixels of RGB components; (b) The corresponding gray 

image of 64×64 pixels; (c) Log plot for amplitude of Radix-2 FFT output image of size 64×64 

pixels. Pyroclastic density currents: (photo credit: U.S. Geological Survey, Department of the 

Interior) [74]; Lava fountains: (photo credit: U.S. Geological Survey, U.S. Department of the 

Interior) [75]; Lava and tephra fallout: (photo credit: Tom Pfeiffer/ www.VolcanoDiscovery.com)  

[37]; Nuclear explosions: (photo credit: Gregory Walker, Trinity Atomic Web Site) [44]; Wildfires: 

(photo credit: John Newman, Wikimedia Commons website) [76]; Fireworks: (photo credit: 

PEXELS blog website) [77]; Sky cloud: (photo credit: Saperaud, Wikimedia Commons website) 

[78]. 
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Moreover, computing the frequency features of the image using Radix-2 FFT has 

the following advantages. 

(1) Spectral analysis of the image using Radix-2 FFT reveals a significant amount of 

information about the geometric structure of 2D spatial images because of the use of 

orthogonal basis functions. Consequently, representing an image in the transform domain 

has a larger range than in the spatial domain.  

(2) An image can contain high-frequency components if its gray levels (intensity values) 

are changing rapidly, or low-frequency components if its gray levels are changing slowly 

over the image space. For detecting such a change, Radix-2 FFT can be efficiently applied. 

(3)  The frequency spectrum of an image is represented in terms of the sum of sinusoidal 

waves using the Radix-2 FFT algorithm. These waves are eignfunctions of linear, constant-

coefficient, and differential equations. Hence, they preserve their identity in a linear system 

where they can change the amplitude and the phase of the sinusoids, however, cannot 

change their basis structure [81].  

After converting 5, 327 samples of the training set from the spatial domain into the 

frequency domain, the dimensions of the 2D training matrix will be (5327 × 4096). Then, 

we apply the PCA algorithm to extract the 100 most significant eigenvectors and 

eigenvalues, hence removing the noise. The components matrix for the training phase is of 

dimensions (5327 × 100), and the dimensions of the components matrix for testing 

5, 327 samples are (5327 × 100). Figure 5.5 depicts a block diagram for extracting the 

100 highest eigenvectors after employing the Radix-2 FFT algorithm.  
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Figure 5.5 Block diagram for extracting the highest 100 eigenvectors after employing Radix-

2 FFT algorithm.  

 

5.1.4 Histogram Features: Uniform Local Binary Patterns  

The Uniform Local Binary Patterns (ULBP) approach is employed to extract 

histogram features of the images of our application domain. ULBP is considered a local 

matching approach for pattern recognition, and it uses a set of local observations obtained 

from an explosion image to derive a model of a precise explosion pattern, which is 

subsequently used for classification. Indicating only uniform patterns of the entire image 

contributes to dimensionality reduction of the features vector length, computational 

simplicity, and increasing the classifiers performance as the computed histogram features 

are invariant to image rotation, scaling, illumination, and translation.  

Consequently, we resize each input color image to 92×112 pixels, and we convert 

it into 8-bit gray scale. Then, we divide the gray scale image into 5 × 5 blocks. The LBP 

operator creates labels for image pixels in each block through thresholding the eight 

neighborhoods with the center pixel value. The new value for the center pixel (xc, yc) is 
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computed through concatenating all binary numbers in a clockwise direction. The value of 

the LBPP,R operator of  (xc, yc) is defined as follows [84]: 

 

      LBPP,R(xc, yc) =  ∑ f(ip − ic)2pP−1
P=0                                                   (3)               

 

where the representation (P, R) denotes pixel neighborhoods at which P is the sampling 

points on a circle that has a radius R, and the symbols ic and ip are the values of the gray 

levels of the central pixel as well as the surrounding pixels. In our implementation P = 8, 

and R = 1. Additionally, the function f(h) is given as follows [84]: 

 

f(h) =  {
1,       if h ≥ 0
0,      if h < 0

 }                                                             (4) 

 

 

Figure 5.6 illustrates the basic LBP operator such that the binary number 01111100 

is equivalent to 124 decimal number. Therefore, (xc, yc) value will be modified to 124. 

This process is repeated by iterating over the entire block, and keeps updating each pixel 

value.   

 

 

 

 

 

Figure 5.6 An illustration of the basic local binary pattern operator utilizing a nuclear explosion example. 

 

Furthermore, we compute the uniform patterns for the entire image through the 

following procedure. We generate uniform patterns for each block if there are no more than 

two bitwise transitions from zero to one or vice versa once the binary bit pattern is 

circularly traversed. For instance, 00000001 (2 transactions) is a uniform pattern. Whereas, 
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01000001 (4 transactions) is a non-uniform pattern. As a result, the uniform patterns for 

the entire block will be within [0-57], and then we concatenate all regional histograms to 

construct a global description of the nuclear explosion image in our example. Hence, each 

image is represented by (5×5×58) features. Figure 5.7 depicts this procedure. 

 

 

 

 

 

 

Figure 5.7 A uniform pattern histogram is extracted for each block in the entire image, and then all 

histograms are concatenated in a single histogram. 

 

After representing 5, 327 samples of training and testing sets using ULBP 

algorithm, dimensions of the corresponding 2D matrices are (5327×1450). In fact, the 

background of any image will be preserved using ULBP because most of the pixels 

typically have the same gray level value within each background region of the same image. 

In order to overcome this drawback, we compute the most significant 100 eigenvectors and 

the corresponding eigenvalues using the PCA technique. Therefore, both 2D components 

matrix for training set as well as for testing set are of dimensions (5327×100). 

 

5.2  Classification Techniques 

The supervised learning task is performed in order to map the input data to the 

desired output data at which both data are labeled. Thus, the space will be separated into 
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classes or regions. In this section, we discuss the following multiclass classification 

techniques that we employ in our experiments. 

 

5.2.1 Conventional Statistical Methods 

Each example in the learning dataset is represented by a set of four vectors as 

follows: the first vector (at) consists of 100 texture features calculated using PCA algorithm 

on image intensity levels. The second vector (bt) comprises 100 amplitude features 

computed using YCbCr + PCA. The third vector (ct) contains 100 frequency features 

calculated using Radix-2 FFT + PCA, and the fourth vector (dt) includes 100 histogram 

features measured using ULBP + PCA. 

Subsequently, these vectors are combined in one input vector for the training phase 

called Training Combiner Vector (TRCVi) that has length of 400. Equation 5 summarizes 

the combination step. Likewise, this procedure will be repeated for each sample (i) in the 

testing set. As a result, each unknown sample will be presented using a Testing Combiner 

Vector (TTCVi) during the testing stage. 

 

[TRCVi]400×1 =  [
[at0, at1, ⋯ , at99] + [bt0, bt1, ⋯ , bt99] +
[ct0, ct1, ⋯ , ct99] +  [dt0, dt1, ⋯ , dt99] 

  

]

400×1

                                 (5) 

 

Thus, we apply the following conventional statistical methods. 

 

5.2.1.1  Euclidean Distance 

Image vectors are considered points in the feature space. Hence, for each image 

feature vector TTCVi in the testing set, the Euclidean distance (ED) is measured with every 
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image feature vector in the training set TRCV (0,⋯, n-1), where n = 5, 327. Consequently, 

the minimum distance is stored, and its corresponding label is calculated. Euclidean 

distance is defined as follows. 

     

                            EDTRCV,TTCV = √∑ (TRCVi − TTCVi)2n−1
i=0                                        (6)    

 

5.2.1.2  Correlation 

The correlation indicates the strength and direction of the inner relationship 

between two image feature vectors in the feature space. Hence, for each image feature 

vector TTCVi in the testing set, the correlation is measured with every image vector in the 

training set TRCV (0, ⋯ , n − 1), where n = 5, 327. Then, the maximum correlation value 

is stored, and its corresponding label is calculated. Correlation is given as follows. 

 

 CTRCV,TTCV =
∑ (TRCVi−TRCV̅̅ ̅̅ ̅̅ ̅̅ )(TTCVi−TTCV̅̅ ̅̅ ̅̅ ̅̅ )n−1

i=0

√∑  n−1
i=0 (TRCVi−TRCV̅̅ ̅̅ ̅̅ ̅̅ )2  ∑  n−1

i=0 (TTCVi−TTCV̅̅ ̅̅ ̅̅ ̅̅ )2
                               (7) 

 

5.2.2 Classifiers 

The abovementioned feature vectors in the sequence {(at), (bt), (ct), and (dt)} for 

each sample of the training set were normalized to be within the interval [-1,1]. Hence, for 

each component of a particular features vector, we subtract the mean (μ), then divide by 

the standard deviation of that corresponding vector values (σ). Then, these four feature 

vectors were combined in one input vector of length 400 (TRCVi). Therefore, equation (8) 

describes a modified version of equation (5) after applying the normalization function. 
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Moreover, Figure 5.8 depicts the combining procedure of the measured features of the first 

input image in the training set where the number of training samples (TS) is  5, 327, and 

AddRange is a method in C# language that adds the elements of a normalized vector to the 

end of a list.  

 

 

[TRCVi]400×1 =
[normalize([at0, at1, ⋯ , at99]) +  normalize ([bt0, bt1 , ⋯ , bt99]) +

normalize ([ct0, ct1, ⋯ , ct99]) + normalize([dt0, dt1, ⋯ , dt99] )] 
400×1

           (8)          

 

Similarly, normalization is employed to the computed feature vectors values for 

each sample of the testing set before being combined in one input vector (TTCVi ) of length 

400. Consequently, we employ the following classifiers.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 5.8 A graph for combining features that represents the first image in the training set. 
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5.2.2.1  K-Nearest Neighbors 

K-Nearest Neighbors (KNN) is a non-parametric approach for performing a 

supervised classification. It aims to determine a predefined value (K) of training samples 

(TS) closest in terms of distance to a new sample and predict its label among TS. Thus, an 

unknown test sample is classified as it belongs to the category among its nearest neighbors 

that has the majority vote [85]. In our work, KNN is tested where K = 1, 3, or 5, TS = 

5, 327, the number of output classes (M) = 7, and [TRCVi]400×1 is the corresponding input 

vector of each sample (i) of TS. 

 

5.2.2.2  One-Against-One Multiclass Support Vector 

Machine 

This technique concurrently decreases the empirical error of the categorization 

while finding the superlative separating hyperplane which maximizes the margin between 

the closest points of classes. The margin represents the distance from the hyperplane to the 

closest data points in the feature space. Data points that are residing along the margin are 

called “support vector points.” Hence, a linear combination of only these data points 

represents the solution [86].  

The effectiveness of the SVM classifier relies on selecting the appropriate kernel 

function K(xi , xj). This step is considered the first and the most important step in applying 

SVM to real-world data sets, and it is usually declared as the “kernel trick.” Accordingly, 

we employ the most common kernels to map the data points of an input space to a high-
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dimensional feature space. Thus, exploring the kernel that leads to generate the highest 

classification rate. These kernels are [87]:  

• Linear kernel, which is given as follows:   

                     K(xi , xj) =  xi
Txj                                                     (9) 

• Polynomial kernels of degree 2 ,3, 4, 5, and 6, which is given as follows: 

 K(xi, xj) =  (γxi
Txj + r)

d
, γ > 0                                     (10) 

• Gaussian kernel: Radial Basis Function (RBF), which is given as follows: 

K(xi, xj) = exp (−γ‖xi − xj‖
2

) , γ > 0                               (11) 

• Sigmoid function, which is given as follows:  

     K(xi, xj) = tanh(γxi
T + r)                                             (12)                                 

where d, γ, r are kernel parameters.  

Typically, SVM is considered a binary classification technique. However, it is 

possible to enhance it in order to handle multinomial classification problem through 

constructing multiple machines. Thus, we employ one-against-one SVM approach to deal 

with the multiclass problem under consideration. During training process, this approach 

creates a machine for each pair of categories, producing K =  M(M − 1) 2⁄  machines, 

where M = 7 target classes,  K = 21 machines, and TS= 5, 327, and [TRCVi]400×1is the 

corresponding input vector of each sample (i) of TS. Furthermore, the Sequential Minimal 

Optimization (SMO) algorithm is used because it can quickly solve the SVM optimization 

quadratic problem (QP) to discover the optimal combination of the hyperplane parameters 

by dividing the problem into lower dimensional sub-problems and solving it without 

significantly depending on a numerical optimization technique [88].  
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During the testing phase of the SVM classifier, a new unknown test sample (sa) is 

categorized as belonging to class l∗ whose decision function (fl∗) generates the maximal 

value. The equation is provided as follows [1]:  

 

 

l∗ =  arg max
l=1,⋯,M

f1(sa) = arg max
l=1,⋯,M

(wl
Tφ(x)  +  bl)                  (13) 

 

  

5.2.2.3  Multilayer Perceptron Model 

It is a non-linear neural network model that is useful for solving supervised learning 

problems. MPL approximates a classification function that maps the input vector 

[TRCVi]400×1  into a particular class. The architecture of the MLP model used in our 

experiments comprises three layers of nodes as follows: (1) one input layer that is identical 

in terms of length to the TRCVi input vector, (2) hidden layers ranging from one to four, 

and (3) one output layer where the number of the output neurons is seven. Figure 5.9a 

shows a single layer architecture, whereas Figure 5.9b depicts a multilayer architecture 

[84]. 

Furthermore, the sigmoid activation function is employed, and the Mean Square 

Error (MSE) is used as a criterion of the classification accuracy of the target application.  

While training this model, the backpropagation algorithm using Stochastic Gradient 

Descent (SGD) is employed. The objective of backpropagation training algorithm is to 

reduce the MSE between the correct target output and the actual output from perceptron. 

Backpropagation training algorithm operates in the following two main phases [89]:  
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• The network takes the training input vector TRCVi that will be allowed to pass 

forward through various layers in order to calculate the output for each node. Then, 

these outputs of the neuron nodes in the output layer are compared as opposed to their 

desired answers or responses to yield the error term. 

• A backward pass via neural network during which the proper error signal propagates 

to each node, as well as the corresponding changes of weights are modified.  

During the testing phase of MPL, each unknown input pattern is allowed to 

propagate through various layers, and it is typically classified as it belongs to the category 

of the output node that produces a high value, compared with lower values in all other 

nodes. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

                                                      

               

(a) 
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(b) 
 

Figure 5.9 Architectures of MPL. (a) Single layer architecture; (b) Multilayer architecture [84], 

PDC: (photo credit: U.S. Geological Survey, Department of the Interior) [74], LF: (photo credit: 

Jeffrey B. Judd, U.S. Geological Survey) [90], LT: (photo credit: Tom Pfeiffer/ Volcano Discovery 

website) [91], NC: (photo credit: Gregory Walker, Trinity Atomic Web Site) [44], WF: (photo 

credit: John Newman, Wikimedia Commons website) [76], F: (photo credit: PEXELS blog website) 

[77], SC: (photo credit: Michael Jastremski, Wikimedia Commons website) [92]. 
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CHAPTER 6: DATASET 

Towards the supervised classification goal, there was a need for a large dataset. 

However, there is a lack of public datasets on explosion phenomena under consideration in 

this dissertation. Therefore, we had to collect our own dataset. In this section, we provide a 

description of our dataset that includes: the name that was given to our dataset, who collected 

the dataset samples, some resources of the dataset images, time frame of collecting the 

dataset, images type, patterns of the dataset, image editing before performing the 

preprocessing step by the classification techniques, and the number of images for training 

and testing phases of the classification task.  

6.1  Volcanic and Nuclear Explosions (VNEX) Dataset  

Our new dataset of color still images was collected by Sumaya Abusaleh during 

2014-2017. In this dissertation, we will abbreviate our dataset as (VNEX) that stands for 

Volcanic and Nuclear Explosions. Furthermore, images of VNEX dataset were downloaded 

from different resources. For example, USGS website [93], Wikimedia Commons [94], 

Volcano Adventures website [95], Volcano Discovery website [96], National Weather 

Service/ National Oceanic and Atmospheric Administration (NOAA/NGDC) website [97], 

Exploratorium [98], Trinity Atomic website [44], blogs [77,99], and others.  

VNEX dataset consists of 10, 654 color images distributed among 7 classes 

including 4 classes for explosion phenomena patterns, against 3 classes for non-explosion 

phenomena patterns.  Explosion phenomena classes include: (1) pyroclastic density currents 
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(PDC), (2) lava fountains (LF), (3) lava and tephra fallout (LT), and (4) nuclear mushroom-

shaped clouds (NC). On the other hand, non-explosion phenomena classes include: (1) 

wildfires (WF), (2) fireworks (F), and (3) sky clouds (SC).  

Furthermore, the proposed categorization system works in two stages: training and 

testing. Tainting and testing images of VNEX are independent. Overall, there are 5, 327 

training images and 5, 327 testing images. Table 6.1 illustrates the number of images in each 

class of training and testing sets. 

Since VNEX categories are imbalanced distributions of images per each category, 

each class of VNEX dataset is divided into 50% images for training and 50% images for 

testing for consistency. Furthermore, while collecting the images of VNEX, we faced a 

difficulty on finding a large number of nuclear mushroom-shaped clouds (NC) images and 

the lava and tephra fallout (LT) images. Therefore, in the scenario where if the VNEX dataset 

was divided into 30 % for training and 70% for testing per each category, we will have about 

913 of PDC samples for training, and 2131 of PDC samples for testing, and this division in 

this case can be considered sufficient for performing the desired classification task. In 

contrast, we will have about 236 of NC samples for training, and about 552 NC samples for 

testing. Similarly, we will have about 208 LT samples for training and about 484 LT samples 

for testing. Consequently, about 236 of NC training samples and 208 of LT training samples 

are relatively not enough to learn the classifiers under consideration. As a result, we have 

found through our experiments that the small number of samples for training will not be 

enough to learn the best hyperplane (decision surface) that can fit the training input vector 

properly, and hence have led to low accuracy using multiclass SVMs with different kernels, 

and MPL that uses the backpropagation training algorithm. 
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Furthermore, an explosion and non-explosion phenomenon may occur during the day 

or the night. Therefore, VNEX images have different backgrounds. In addition, we crop the 

area of an explosion or non-explosion of VNEX images manually, and then we save all 

samples using JPEG file format. Figure 6.1 displays nine random examples from the 

respective seven classes. 

 

 

Table 6.1 Categories of VNEX dataset 

 

 

 

 

 

 

Category 

Number of Images 
 

Total 
Training Testing 

Explosions 

 

Pyroclastic Density Currents (PDC) 1522 1522 3044 

Lava fountains (LF) 966 966 1932 

Lava and tephra fallout (LT) 346 346 692 

Nuclear mushroom clouds (NC) 394 394 788 

Non-explosions 

Wildfires (WF) 625 625 1250 

Fireworks (F) 980 980 1960 

Sky clouds (SC) 494 494 988 

Total 5327 5327 10654 
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Figure 6.1 Random samples of VNEX dataset. PDC: a-d (photos credit: U.S. Geological Survey, 

Department of the Interior) [74,100-102], e (photo credit: Dr. Allan Sauter, SCRIPPS, and National 

Oceanic and Atmospheric Administration, U.S. Department of Commerce, U.S. Office of Ocean 

Exploration and Research.) [103], f (photo credit: Itu, Wikimedia Commons) [104], g (photo credit: 

Paginario, Wikimedia Commons) [105], h (photos credit: YouTube website) [31], and i (photo credit: 

R. Russell, Alaska Department of Fish and Game, U.S. Geological Survey) [106]; LF: a (photo credit: 

Jeffrey B. Judd, U.S. Geological Survey) [90], b and c (photos credit: U.S. Geological Survey, U.S. 

Department of the Interior) [75], d (photo credit: Nordic Volcanological Institute, Reykjavik, Iceland, 

Photographer: Gudmundur E. Sigvaldason, U.S. Geological Survey website) [107], and e-i (photos 

credit: Tom Pfeiffer/ Volcano Discovery website) [108-111]; LT: a-i (photos credit: Tom Pfeiffer/ 

Volcano Discovery website) [91,112-114]; NC: a-d, and f-i (photos credit: Gregory Walker, Trinity 

Atomic Web Site) [44], and e (photo credit: Nevada Field Office, National Nuclear Security 

Administration) [43]; WF: a (photo credit: John Newman, Wikimedia Commons website) [76], b (photo 

credit: Tatiana Bulyonkova, Wikimedia Commons website) [115], c (photo credit: Tilo, Wikimedia 

Commons website) [116], d (photo credit: Evil Saltine, Wikimedia Commons website) [117], e (photo 

credit: Ramos Keith, Wikimedia Commons website) [118], f (photo credit: U.S. Fish and Wildlife 

Service, Gerald Vicker, Wikimedia Commons website) [119], g (photo credit: Flip Schulke, U.S. 

National Archives and Records Administration, Wikimedia Commons website) [120], h (photo credit: 

US Air Force, Wikimedia Commons website) [121], and i (photo credit: Tatiana Bulyonkova, 

Wikimedia Commons website) [122]; F: a-i (photos credit: PEXELS blog website) [77]; SC: a-c, and e 

(photos credit: National Oceanic and Atmospheric Administration, Department of Commerce, National 

Weather Service) [49], d (photo credit: Simon Eugster, Wikimedia Commons website) [123], f (photo 

credit: Saperaud, Wikimedia Commons website) [78], g (photo credit: Simon Eugster, Wikimedia 

Commons website) [124], h (photo credit: Joniprittie, Wikimedia Commons website) [125], and i (photo 

credit: Michael Jastremski, Wikimedia Commons website) [92]. 

http://www.commerce.gov/
http://oceanexplorer.noaa.gov/about/welcome.html
http://oceanexplorer.noaa.gov/about/welcome.html
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CHAPTER 7: EXPERIMENTAL RESULTS AND 

DISCUSSION 

We implemented the classification system using C# language under the Microsoft 

.Net framework 4.6, and it was operated on a workstation with an Intel(R) Core(TM) i7 CPU 

at 3.20 GHz, RAM (20.0 GB), and 64-bit OS. Experiments are divided into two main 

scenarios as follows.  

 

7.1  Results of the VNEX Testing Set 

Extensive experiments were conducted to determine the classification model that 

can achieve the best performance in terms of classification rate of testing instances of 

VNEX dataset. The classification rate in the proposed framework was computed using the 

following formula:  

                         Accuracy =
TP+TN

TP+FP+TN+FN
× 100% ,     (14) 

 

where TP, TN, FP, and FN are the number of true positive, true negative, false positive, 

and false negative cases, respectively. 

Consequently, the one-against-one multiclass SVM with degree 3 polynomial 

kernel has a superior classification rate in comparison to other classification methods being 

applied. It generates the highest accuracy of 79.16% and 90.85% when extracting 300 

features (texture, color, and frequency) and 400 features (texture, color, frequency, and 

histogram), respectively. In addition, results inclusively show that extracting 400 features 
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performs consistently better when utilizing all multiclass classification techniques under 

consideration including: Euclidean distance, correlation, KNN, SVM, and MPL, rather 

than extracting 300 input features with the increase in the number of new testing samples. 

Table 7.1 demonstrates a performance comparison between different multiclass 

classification methods under consideration in terms of accuracy when extracting 300 

features as opposed to 400 features of VNEX testing dataset. 

Devoting to analyzing the behaviors of the multiclass classification systems that we 

addressed, conventional statistical methods including Euclidean distance (ED) and 

correlation (C) are not suitable to classify samples of VNEX dataset, because they are 

complex and in a large-scale space. Hence, giving a preference to predict the output label 

based on the minimum distance or maximum correlation has produced a poor performance 

of 77.42% and 78.02% using Euclidean distance and correlation, respectively.   

Although KNN demonstrates a short time interval for the training phase, it has two 

drawbacks as follows: (1) each neighbor is equally important, and (2) the imbalanced 

training data is more likely to affect the performance of KNN. Thus, classes that have a 

large number of samples typically have a higher possibility to win. Intuitively, that explains 

why the KNN accomplished a poor classification rate of 77.42%, 76.70%, 76.22% when 

the value of k was set to 1, 3, and 5, respectively.  

Furthermore, the kernel takes relationships in the data that are normally implicit 

and makes them explicit. As a result, the patterns classification takes place more easily. 

This is the reason behind the success of the kernel-based approaches such as SVM [126]. 

In this context, our results show the impact of selecting the proper kernel as a critical step 

when employing one-against-one multiclass SVM approach. Accordingly, the polynomial 
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kernel of degree 3 has led the SVM classifier to produce the highest classification rate of 

90.85% for testing VNEX samples of 400 input features vector. Figure 7.1 illustrates the 

shape of the degree 3 polynomial kernel of a binary SVM model [86]. Hence, the one-

against-one multiclass SVM with degree 3 polynomial kernel outperforms the SVM with 

a linear kernel, the SVM with a RBF kernel, and the SVM with a sigmoid kernel that 

produced a classification rate of 85.24%, 35.09 %, and 81.72%, respectively. Also, the 

empirical classification error using SVM increases as higher degree polynomials kernels 

are employed, which in turn tend to cause overfitting in the training set. Thus, polynomials 

4, 5, and 6, generated a classification rate of 83.54%, 28.57%, and 28.57%, respectively. 

 

 

Table 7.1 Performance comparison of multiclass classification methods when extracting 300 features against 

400 features of VNEX testing set (5, 327 samples). 

 

Category 
Accuracy  

(input vector of 300 features) 

Accuracy  

  (input vector of 400 features) 

ED 77.23% 77.42% 

C 77.81% 78.02% 

 

KNN 

K value = 1 77.25% 77.42% 

K value = 3 76.42% 76.70% 

K value = 5 76.00% 76.22% 

 

 

SVM 

 

Linear 73.21 % 85.24% 

Polynomial 2 75.60 % 86.77% 

Polynomial 3 79.16 % 90.85% 

Polynomial 4 70.87 % 83.54% 

Polynomial 5 24.82 % 28.57% 

Polynomial 6 24.82 % 28.57% 

RBF 32.38% 35.09 % 

Sigmoid 71.92 % 81.72% 

MPL 72.24% 82.05% 
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Figure 7.1 The shape of the degree 3 polynomial kernel of a binary SVM model [86]. 

 

Consequently, Table 7.2 presents a comparison between various multiclass 

classification techniques in terms of classified against misclassified images of VNEX 

testing set of a total 5, 327. The system evaluated two cases as follows. First, when texture, 

color, and frequency features of the proposed features extraction methodology were 

collectively accumulated in one input features vector of 300 length. Secondly, when 

texture, color, frequency, and histogram features of the proposed features extraction 

methodology, are accumulated in one input vector of 400 length for each sample.  
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Table 7.2 Classified against misclassified images of VNEX testing set (5, 327samples) when the 

input vector length = 300, as compared to the input vector of length 400 

 

 

 

 

 

Concerning MPL, we employ many architectures while performing our 

experiments. However, we only present in this section the architectures of MPL associated 

with their corresponding parameters that generated the highest classification rates on 

VNEX data. Accordingly, classification rate of 72.24%, and 82.05% were accomplished, 

when 300 features were fed into the network (architecture 1), in contrast to feeding an input 

features vector of length 400 (architecture 2), respectively. Table 7.3 lists the details of 

both architectures.  

 

 

Category 
Input vector = 300 Input vector = 400 

  Classified    Misclassified   Classified    Misclassified 

ED 4114 1213 4124 1203  

C 4145 1182 4156 1171 

 

KNN 

K value = 1 4115 1212 4124 1203 

K value = 3 4071 1256 4086 1241 

K value = 5 4049 1278 4060 1267 

 

SVM 

 

Linear 3900 1427 4541 786 

Polynomial 2 4027 1300 4622 705 

Polynomial 3 4270 1057 4840 487 

Polynomial 4 3775 1552 4450 877 

Polynomial 5 1322 4005 1522 3805 

Polynomial 6 1322 4005 1522 3805 

RBF 1725 3602 1869 3458 

Sigmoid 3831 1496 4353 974 

MPL 3848 1479 4371 956 
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Table 7.3 Comparison between two architectures of MPL associated with their corresponding parameters 

and accuracy when extracting 300 features against 400 features of VNEX testing dataset (5, 327samples). 

 

 

 

 

 

 

 

 

 

 

 

It is worth mentioning that when hidden layers increase while employing MPL, the 

accuracy decreases. Consequently, providing the aforementioned information of 

architecture 2  with the change of the numbers of hidden layers and the numbers of neurons 

per each layer, we have found that multiple hidden layers tend to reduce the accuracy of 

categorizing VNEX testing samples because of the overfitting. Figure 7.2 depicts a graph 

for the change of the accomplished classification rate based on the change of the number 

of hidden layers.  

MPL Architectures and parameters Accuracy  

Architecture 1  

 

Mean Square Error (MSE) = 0.009 

72.24% 

Training iterations (epochs) = 17 

Training rate = 0.0005 

Error Threshold = 0.01 

Max iteration = 500 

Number of training samples = 5327 

Number of testing samples = 5327 

Input layer = 300 features vector 

Hidden layer = 1 

Hidden neurons (in the hidden layer) = 1000 

Output layer = 7 

Activation function: sigmoid  

Architecture 2 

Mean Square Error (MSE) = 0.005 

82.05% 

Training iterations (epochs) = 24 

Training rate = 0.0005 

Error Threshold = 0.01 

Max iteration = 500  

Number of training samples = 5327 

Number of testing samples = 5327 

Input layer = 400 features vector 

Hidden layer = 1 

Hidden neurons (in the hidden layer) = 2000 

Output layer = 7 

Activation function: sigmoid  
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Figure 7.2 Graph illustrates the relationship between the classification rate and the number of 

hidden layers, where the input vector = 400, the output classes = 7, and using the testing set of 

VNEX dataset. 
 

Moreover, Figure 7.3 illustrates a chart of classified versus misclassified samples 

of the VNEX dataset, where the total number of testing samples is 5, 327, input features 

vector = 400, and the classification method is one-against-one multiclass SVM with degree 

3 polynomial kernel. Out of 1522 for PDC samples, 966 for LF samples, 346 for LT 

samples, 394 for NC samples, 625 for WF samples, 980 for F samples, and 494 for SC 

samples, the number of misclassified samples were 58, 62, 65, 30, 105, 15, and 45, 

respectively. In this view, the lowest number of misclassified samples attained while 

categorizing F samples. In contrast, the highest number of misclassified samples obtained 

while classifying LT samples.  
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Figure 7.3 Graph of classified as opposed to misclassified images of VNEX testing set using the 

multiclass SVM with degree 3 polynomial kernel, and the input vector length = 400. 
 

 

As seen in Table 7.4, the confusion matrix is also used to evaluate the performance 

of the multiclass SVM classifier with degree 3 polynomial kernel on VNEX dataset, at 

which the testing set of 5, 327 samples were represented by 400 features, and the number 

of the output classes (labels) is equal to 7. It illustrates the correctly and incorrectly 

recognized samples for each class. The fact derived from the confusion matrix is that 

samples of the VNEX dataset are complex because of the similarity of regions among some 

still images of the phenomena under consideration. As a result, the average accuracy 

obtained was 90.85%. Precisely, the highest accuracy of 98.47% accomplished while 

testing fireworks samples with a few samples misclassified into LT and LF categories, 

because all three categories have a luminosity property. In contrast, the lowest accuracy of 

81.21% achieved while testing LT samples with some samples misclassified into PDC, LF, 

WF, and F, as the nature of LT phenomena involves the existence of two regions including 
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lava (luminous region) and tephra (non-luminous region) with varied density and color 

combinations of both regions in the scene during explosive or effusive eruptions. Likewise, 

WF achieved an accuracy of 83.2% with some of its samples misclassified into PDC, LF, 

LT, and F because of the presence of either visible flame region (luminous), smoke region 

(non-luminous) of white or gray to black colors of the smoke with different thickness, or 

both regions.  

Consequently, evaluation results presented in the confusion matrix demonstrate that 

approximately a classification rate of 96.19%, 93.58%, 92.39%, and 90.89% were achieved 

for PDC, LF, NC, and SC, respectively. This indicates the effectiveness of the developed 

system. Nevertheless, the difficulty of the problem is obvious in the following cases. When 

a PDC phenomenon generated from a steam-driven, boiling-over, and continuous column 

collapse mechanisms, it may produce white dense clouds, which in turn will increase the 

possibility of incorrectly classifying some of PDC samples as they belong to SC category. 

Also, some volcanoes may produce natural mushroom clouds under the gravity force, and 

thus those PDC samples may be incorrectly predicted by the classifier as NC. Similarly, 

sky clouds (SC) typically have a white color, some types form at low levels, and have 

different shapes such as vertical, heap, and fluffy resulting in misclassification for some 

SC samples as if they belong to PDC. Additionally, some SC samples were misclassified 

as if they belong to WF at which a dense white smoke appears in some observation during 

the smoldering stage of the combustion. Moreover, during the time frame of the growth of 

the nuclear mushroom cloud, a luminous fireball appears that results in misclassification 

of some samples as LF, LT, and WF. On the other hand, when the fireball is no longer 

luminous, some dense clouds were misclassified as if they belong to PDC.  
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Table 7.4 Confusion matrix for the multiclass degree-3 polynomial kernel SVM classifier, with input features vector 

of length 400.  

 

 

 

 

 

 

 

In addition, we examine the computational time required to categorize one test 

sample of VNEX dataset during the testing phase. To accomplish this goal, we split the 

total time frame into the following stages: (1) the time needed for computing 100 texture 

features using PCA, (2) the time consumed for extracting 100 color features using YCbCr + 

PCA, (3)  the time consumed for extracting 100 frequency features using Radix-2 FFT + 

PCA, (4) the time consumed for extracting 100 histogram features using ULBP + PCA, 

(5) the time  utilized to combine the measured 400 features in an input vector, (6) the time 

needed to pass the test sample to the SVM, and (7) the categorization time utilized to 

predict the test sample label. Thus, the total execution time for classifying one test image 

was nearly 117ms. Table 7.5 provides the execution time related to each stage. As a result, 

we achieve a trade-off between the computation time and the accuracy while employing 

our proposed classification system. 

Actual 

Predicted results 

Accuarcy 
PDC LF LT NC WF F SC 

PDC (1522) 1464 8 24 1 19 0 6 96.19% 

LF (966) 28 904 8 1 15 10 0 93.58% 

LT (346) 30 22 281 0 10 3 0 81.21% 

NC (394) 14 5 8 364 3 0 0 92.39% 

WF (625) 32 50 14 0 520 9 0 83.2% 

F (980) 0 13 2 0 0 965 0 98.47% 

SC (494) 43 0 0 0 2 0 449 90.89% 
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Table 7.5 Analysis of the execution time in milliseconds for testing one test sample.  
 

 

 

 

 

 

 

Thus, if we processed every fourth frame of a 30fps video, our system can do a near 

real-time recognition of an explosion. 

 

7.2  Results of a YouTube Video Testing Set  

In this section, we used the training set of VNEX dataset that includes 5, 327 samples 

for training the multiclass degree-3 polynomial kernel SVM classifier. In contrast, for the 

testing phase of the classification system, we extracted seven videos from multiple videos 

that were downloaded from the YouTube website [127-131]. The number of retrieved frames 

of video sequences for each category was 140 frames. Hence, the totality of the testing set is 

980 samples. Accordingly, once the one-against-one multiclass degree-3 polynomial kernel 

SVM model is trained, our goal is to test how this model will behave on a new testing set 

that differs from VNEX testing set. 

Consequently, the extracted videos were saved using MPEG file format, and their 

resolution was 720 × 480 pixels at 29 frames per second (fps). These videos were converted 

to frames and saved using JPEG file format. Since the length of the extracted videos varied, 

Stage  Execution time  

Extracting 100 texture features using PCA  15 

Extracting 100 color features using YCbCr+ PCA 19 

Extracting 100 frequency features using Radix-2 FFT+ PCA 32 

Extracting 100 histogram features using ULBP + PCA 21 

Combining 400 features in an input vector  11 

Passing 1 image to the classifier  1 

Categorizing 1 image into a specific category  18 

Total time in milliseconds  117 ms 
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the max number of test samples for each category was determined based on the length of the 

shortest video among them for consistency. Accordingly, the first 140 frames of each video 

were used for testing the proposed classification methodology. These frames were resized to 

64 × 64 pixels. Figure 7.4 displays some of the retrieved video sequences for the seven 

categories under consideration.  

 
 

Figure 7.4 Some samples of the retrieved video sequences in the testing set [127-131].  
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During the testing phase of the classification system, each frame was defined by 100 

features after extracting texture features using the PCA algorithm on intensity levels, 100 

color features after applying YCbCr + PCA, and finally, 100 frequency features after applying 

Radix-2 FFT + PCA. Furthermore, these 300 features were combined into one input vector, 

and then passed to a degree-3 polynomial kernel SVM classifier and assigned to a specific 

category. Table 7.6 illustrates details of videos of the seven classes under consideration as 

well as a comparison between patterns of the proposed classification system in terms of 

accuracy (classification rate).  

 

 

 

Table 7.6 Comparison between patterns in terms of accuracy. 

 

 

Category Frame rate 

Resolution 

of video 

sequences 

Number of 

retrieved 

frames for 

testing 

Frames 

resized during 

preprocessing 

Features 

input 

vector 

Accuracy 

 

 

Video 1—PDC 

 

 

29 fps 

 

 

720 × 480 

 

 

140 

 

 

64 × 64 

 

 

300 

 

 

98.57% 

 

Video 2—LF 29 fps 720 × 480 140 64 × 64 300 90.71% 

Video 3—LT 29 fps 720 × 480 140 64 × 64 300 83.57% 

Video 4—NC 29 fps 720 × 480 140 64 × 64 300 100% 

Video 5—WF 29 fps 720 × 480 140 64 × 64 300 85.71% 

Video 6—F 29 fps 720 × 480 140 64 × 64 300 100% 

Video 7—SC 29 fps 720 × 480 140 64 × 64 300 100% 
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The proposed explosion categorization system achieved 94.08% accuracy, where 

NC, F, and SC samples were classified correctly with 100% accuracy, followed by PDC, LF, 

WF, and LT that achieved 98.57%, 90.71%, 85.71%, and 83.57%, respectively. However, 

LT and WF phenomena are the complex.  

Figure 7.5 depicts a chart of classified versus misclassified input test sets of 140 

samples for each category of the proposed application. Out of 140 frames of each testing set, 

2, 13, 23, and 20, were misclassified for PDC, LF, LT, and WF, respectively. In contrast, all 

frames of NC, F, and SC testing sets were classified correctly.  

 

Figure 7.5 Chart of classified versus misclassified samples of the video sequences testing set. 

 

Table 7.7 demonstrates the confusion matrix for multiclass degree-3 polynomial 

kernel SVM classifier where testing samples of 140 for each category are represented by 

300 features. Nevertheless, the data of images are complex. In this view, the LT category 

is a combination of lava and tephra fallout products that deposited together directly by an 

effusive eruption in this example. The display of some LT scenes results in misclassified 

samples among PDC and LF. Likewise, because of the luminous region (lava) which is 
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similar to the flame, and non-luminous region of the image (tephra) that is similar to the 

dark smoke, some LT scenes were misclassified as WF.  

Moreover, WF is also a complex category; the video we played displays a wildfire 

that occurred during the day and another during the night. Wildfire produce flames 

(luminous region) during the flaming stage of the combustion process, and smoke 

(flameless region) during smoldering combustion (non-flaming stage of fire). Flames of 

wildfires typically glow red then orange and then transmitting to yellow. Then, hot flaming 

combustion transfers more fuel (wood) into carbon compounds that formed into tiny 

elements. These particles absorb light making them appear as gray to black smoke. On the 

other hand, smoldering combustion typically reflects light, producing a white color 

appearance from the smoke. Thus, wildfire may generate white smoke. As a result, some 

of the WF samples were classified as if they belong to PDC, LF, and F. 

 

Table 7.7 Confusion matrix for multiclass degree-3 polynomial kernel SVM classifier, where input 

vector = 300 features.  

 

 

 

 

 

 

 

 

 

Actual 
Predicted results 

PDC LF LT NC WF F SC 

PDC (140) 138 0 2 0 0 0 0 

LF (140) 0 127 0 0 0 13 0 

LT (140) 10 8 117 0 5 0 0 

NC (140) 0 0 0 140 0 0 0 

WF (140) 5 9 0 0 120 6 0 

F (140) 0 0 0 0 0 140 0 

SC (140) 0 0 0 0 0 0 140 
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Furthermore, a few PDC samples were misclassified as LT because of the non-

luminosity property they both share. Furthermore, some lava samples were classified as if 

they belong to the fireworks class because of its luminosity property that both categories 

share. In particular, the video displays a lava fountain that was venting during the night. 

Luminosity of lava is related to its color (physical property) that indicates the composition 

and temperature. On the other hand, light from the fireworks is due to the chemical 

reactions of metal salts. In a consequence, once fireworks are ignited by lighter or a match, 

the energy absorbed by an atom of a metal salt reorganizes its electrons from the lowest-

energy state that is called the ground state, up to a higher-energy state that is called an 

excited state. The excess energy of the excited state is released as a light that has a specific 

color to be displayed as ignitable shapes. 

In an effort to improve the classification rate of 94.08%, we employed the proposed 

research methodology on the same video testing set where 140 frames per each class were 

retrieved. Each frame was defined by using an input vector of 400 in length that combined 

the texture, color, frequency, and histogram features. Then, the input vector was fed into the 

multiclass SVM with degree 3 polynomial kernel. As a result, we achieved a significant 

increase of 4.08% in the average accuracy from 94.08% to 98.16% because of the 

approximate increase of 1.43 % in PDC precision, 9.29% in LF precision, 8.57% in LT 

precision, and 9.29 % in WF precision. Figure 7.6 illustrates the comparison between both 

approaches in terms of the accuracy (classification rate) for the seven classes under 

consideration.   
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Figure 7.6 Comparison between the accuracy of the multiclass SVM with degree 3 polynomial 

kernel when the input vector is 300 features as compared to the input vector of 400 features 

using the video sequence testing set where each class includes 140 frames.  
 

 

 

7.3  Results of Video Frames Captured in a Real-Time 

Environment Using a Drone 

Since we had no access to outdoor explosion zones, we were only able to conduct 

indoor experiments. We performed our indoor experiments using a drone in real-time and 

the YouTube videos previously mentioned in section 7.2 [127-131]. 

In reality, drones can access very dangerous locations where explosions occur, 

which are difficult for humans to explore. Once an active volcano has erupted, the area 

around the volcano’s crater becomes hazardous for a few years and access is restricted to 

guarantee people’s safety. Typically, video cameras are deployed permanently to monitor 

any volcanic eruptions. Once an eruption occurs, these cameras will be damaged, and the 



77 

 

restricted area around the volcano will make it impossible to replace any of the video 

cameras. For example, in 1990, approximately all of the camera sensors malfunctioned 

during the eruption of Mt. Unzen-Fugen in Japan. So, retrieving any volcanic data was 

difficult. In this scenario, a drone quadcopter would have been a viable option in order to 

collect observations for the classification purpose. 

In addition, drones are increasingly relied upon by military forces to observe 

nuclear activities. In tactical situations, drones can monitor battlefields. Thus, the need for 

military personnel is diminished. 

Traditionally, a transducer provides inputs for a pattern recognition system in order 

to gather real-time observations to be classified. In our experiments, the transducer is the 

camera sensor at the front of the quadcopter, Parrot AR. Drone 2.0. This embedded frontal 

camera is a CMOS sensor with 90° angle lens. The resolution of the drone’s frontal camera 

is 640 X 360 (360p), and it can capture up to 30fps [132].  

Furthermore, we chose to use AR.Drone 2.0 for the following reasons: (1) ready-

to-use sensory and control equipment, (2) designed to fly indoor or outdoor, (3) an 

autonomous Unmanned Aerial Vehicles (UAV) that have the capability to hover in mid-

air and can fly in all directions, (4) the availability of open-access control system and a 

software development kit for a real-time video processing application, and (5) a low cost 

platform [132]. Figures 7.7a and 7.7b depict a front view of the AR.Drone 2.0 that shows 

the embedded camera at the front, and a top view of AR.Drone 2.0, respectively.  
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(a)                                                                              (b) 
 

 

Figure 7.7 (a) Front view of AR.Drone 2.0 quadcopter (photo credit: Sumaya Abusaleh, University 

of Bridgeport); (b) Top view of AR.Drone 2.0 (photo credit as per Figure 7.7a). 
 

In our application, the graphical user interface (GUI) was implemented using the 

Java Development Kit (JDK) 1.8, and the eclipse IDE. Furthermore, AR.Drone 2.0 was 

controlled using an open source framework called “Yet another drone.” This framework 

allows developers to build applications for the AR.Drone 2.0 in Java [133]. Figure 7.8 

represents a snapshot during the flight of the AR.Drone 2.0 to capture a real-time video 

streaming of lava fountain activity. 

 

 
 
 

Figure 7.8 A snapshot during the flight of the AR.Drone 2.0 to capture a real-time video streaming 

of lava fountain activity. 
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The drone has three degrees of freedom to position the drone and three degrees for 

orientation (pitch, roll, and yaw) [133]. In order to communicate with the drone from a 

laptop, the user should first connect to the drone’s WiFi. Also, the drone monitors battery 

voltage that is converted into a battery life percentage. Typically, the drone’s battery life 

provides a flight time of 12 minutes while capturing streaming video in real-time.  Figures 

7.9a and 7.9b are screen shots for the GUI during the flight of the drone while detecting a 

nuclear explosion, and a pyroclastic density current, respectively.  

 

 

                                                            
                                                         

                                                             (a) 

 
                                                              

 

                                                               (b) 

Figure 7.9 (a) Live video streaming for NC; (b) Live video streaming for PDC. 
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The number of frames for the testing phase of each experiment can be specified by 

the user. Hence, the drone will stop capturing automatically once the pre-defined value of 

the max frame count is reached. Figure 7.10 displays some of the video frames captured 

by the camera sensor at the front of AR.Drone 2.0, and streamed via WiFi to the laptop.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10 Some of the video frames captured by the camera sensor at the front of AR.Drone 2.0 

 

PDC 

LF 

LT 

NC 

WF 

F 

SC 
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As illustrated in Table 7.8, videos of the seven classes under consideration are 

listed. The frame rate of the drone’s front camera was selected to be 30fps, and the max 

number of frames was set to 140 for each category for consistency. Furthermore, the 

resolution of retrieved frames by the drone was 640×360 pixels, and they were saved on 

the client device using JPEG file format. For the testing phase of the classification system, 

frames were resized to 64×64 pixels. Each frame was defined using the research 

methodology of extracting 400 features that were combined in one input vector and fed 

into the multiclass SVM with degree 3 polynomial kernel. A comparison between patterns 

of the proposed classification system in terms of accuracy (classification rate) is provided 

in Table 7.8.  

 

 

Table 7.8 Comparison between patterns in terms of accuracy after capturing real-time test frames using 

the front camera of AR.Drone 2.0 

 

 Category Frame rate 

Resolution 

of captured 

frames  

Max frames 

count 

Frames resized 

during 

preprocessing 

Features 

input 

vector 

Accuracy 

 

 

Video 1—PDC 

 

 

30 fps 

 

 

640 × 360 

 

 

140 

 

 

64 × 64 

 

 

400 

 

 

100% 

Video 2—LF 30 fps 640 × 360 140 64 × 64 400 100% 

Video 3—LT 30 fps 640 × 360 140 64 × 64 400 91.43% 

Video 4—NC 30 fps 640 × 360 140 64 × 64 400 100% 

Video 5—WF 30 fps 640 × 360 140 64 × 64 400 95.00% 

Video 6—F 30 fps 640 × 360 140 64 × 64 400 100% 

Video 7—SC 30 fps 640 × 360 140 64 × 64 400 100% 



82 

 

As a result, an average classification rate of 98.06% was achieved as compared to 

an average classification rate of 98.16% that were accomplished when video sequences 

were retrieved from computer folders by the classification system. The small difference in 

the classification rate, from 98.16% to 98.06% was due to the focal length of the drone’s 

camera and its Field of View (FOV). Hence, PDC, LF, NC, F, and SC samples were 

classified correctly with 100% accuracy, followed by WF, and LT that accomplished a 

classification rate of 95.00% and 91.43%, respectively.  

Furthermore, Table 7.9 demonstrates the confusion matrix for the multiclass 

degree-3 polynomial kernel SVM classifier where testing samples of 140 for each category 

were represented by 400 features. Consequently, WF samples were classified as if they 

belong to PDC, LF, and F, whereas the display of LT scenes results in misclassified 

samples among PDC, LF, and WF. Thus, evaluation results show the design of the 

proposed system is effective and robust.   

 

Table 7.9 Confusion matrix for the multiclass degree-3 polynomial kernel SVM classifier for testing frames 

that were retrieved using the AR.Drone 2.0 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Actual 
Predicted results 

PDC LF LT NC WF F SC 

PDC (140) 140 0 0 0 0 0 0 

LF (140) 0 140 0 0 0 0 0 

LT (140) 6 4 128 0 2 0 0 

NC (140) 0 0 0 140 0 0 0 

WF (140) 4 2 0 0 133 1 0 

F (140) 0 0 0 0 0 140 0 

SC (140) 0 0 0 0 0 0 140 
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Typically, the complexity of any classification problem in the real-time outdoor 

experiments depends on the limitations, characteristics, and hardware complexity of the 

transducer such as the bandwidth, resolution, sensitivity, latency, distortion, and so forth. 

Therefore, the indoor environment is constrained, and in order to apply the proposed 

system in outdoor environments including the battlefield and the locations of volcanoes, 

powerful drone in terms of their ability to sustain in extreme weather conditions, having 

high resolution RGB color cameras, having long connectivity range, and having long 

battery life are needed. In addition, using the proposed research methodology in this 

dissertation, images were resized to 64×64 regardless of the resolution of the original 

frames captured by the drone’s camera. Therefore, we conclude that the focal length of the 

drone’s camera and its field of view (FOV) may affect the results in a real-time outdoor 

environment. 

 

7.4   Statistical Power Analysis 

In this section, statistical power analysis is performed to estimate the required 

minimum sample size for the experiment that is sufficient to attain adequate power, and 

test the alternative hypothesis. From the experimental results, it is concluded that one-

against-one multiclass SVM with degree 3 polynomial kernel outperformed one-against-

one multiclass SVM with degree 2 polynomial kernel in terms of the classification rate. In 

this regard, power analysis is used to prove this hypothesis. The power of a statistical test 

is the probability that the test will reject the null hypothesis when the null hypothesis is 

false by confirming the alternative hypothesis when the alternative hypothesis is true. 
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Consequently, the two-tailed test will be used, and the statistical hypothesis is given 

as follows: 

H0:  μSVM (degree-3 polynomial kernel) = μSVM (degree-2 polynomial kernel),  

Ha: μSVM (degree-3 polynomial kernel) > μSVM (degree-2 polynomial kernel), 

Where μSVM (degree-3 polynomial kernel) is the classification rate of the one-against-one multiclass 

SVM with degree 3 polynomial kernel classifier, and μSVM (degree-2 polynomial kernel) is the 

classification rate of the one-against-one multiclass SVM with degree 2 polynomial kernel 

classifier. In other words, the classification rate of the one-against-one multiclass SVM 

with degree 3 polynomial kernel classifier is greater than the classification rate of the one-

against-one multiclass SVM with degree 2 polynomial kernel classifier. 

The significance of an observed difference is determined by the chosen level of 

significance (α). Commonly, 5% (0.05) or 1% (0.01) are used for α. 

In order to determine the required sample size (n), three parameters are used in 

this decision as follows: 

• The level of significance (α) that is used = 5%. 

• The required power of the test (p) = 80%. 

• The effect size is (d). 

 

Based on the work of Cohen [134] that is illustrated in Table 7.10, we will be using 

the t-test on Means calculation with the effect size index “d” of a large set. The minimum 

required sample size is calculated using equation 15.  
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Table 7.10 Effect size values 

 

 

Sample size (n) =  
N×p(1−p)

[[N−1 ×(d2

z2⁄ )]+p(1−p)]
                                          (15) 

 

where N= 5327, which is the general population size of all possible requests, 

p =80% = 0.8, which is the required power of the test. Thus, p (1-p) = 0.8 (0.2) = 0.16, 

d is the level of significance, so d = 5%, d2= (0.05)2 =  0.0025, and  

z is the t-value of α/2, where α= 5%. To find z α/2, we need to calculate α/2 as follows: 

 
𝛼

2
 =  

0.05

2
= 0.025. Therefore, by looking up the value for z×0.025 in the t-table, we find 

that: z×0.025 = 1.96, and 𝑧2 = 3.842, 

Thus, sample size (n) can be calculated as: 

 

Sample size (n) =  
5327 × 0.16

[[5326 × (
0.0025
3.842 )] + 0.16]

=  
852.32

3.47 + 0.16
=  

852.32

3.63
≈ 235 

 

 

 
Effect size Index Small Medium Large 

t-test on Means d 0.20 0.50 0.80 

t-test on Correlations r 0.10 0.30 0.50 

F-test ANOVA f 0.10 0.25 0.40 

F-test regression f2 0.02 0.15 0.35 

Chi-Square Test w 0.10 0.30 0.50 
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Then, the parameters below are computed in order to make the decision of the 

hypothesis. 

Mean (X̅) =  
∑ x

n
= 0.9085 (16) 

Variance (σ2) =  
∑(x − x̅)2

n
= 0.083 (17) 

Standard Deviation (σ) =  √σ22
= 0.289 (18) 

 

Degree of freedom (d. f) = n − 1 = 235 − 1 = 234 (19) 

Confidence Level (1 − α) = 0.95         (20) 

Significance level (α) = 0.05                                                                                        (21)              

Critical t =  TINV (α , d. f) =  TINV (0.05 , 234) = 1.97 (22)  

Standard Error (Sx) =
σ

√n
=

0.289    

√235
=  

0.289    

15.3
= 0.019 (23)                   

Lower limit = X̅ − Critical t × Sx =   0.9085 − (1.97 × 0.019) = 0.87 (24)                    

Upper limit = X̅ + Critical t × Sx = 0.9085 + (1.97 × 0.019) = 0.95  (25)     

Hypothesis (Ho) = 50%  (26)    

t Value =  
X̅−Ho

 Sx
=

0.9085−0.5

0.019 
=

0.4085

0.019 
= 21.5    (27)    

 

To reach our conclusion, the t value and critical t value are used. If the t value is 

greater than the critical t (probability that Ho is true is low), Ho is rejected. In this test: t 

value (21.5 ) > critical t (1.97). This means Ho is rejected and Ha is accepted. Using the 

power analysis reveals that a sample set of 235 is sufficient to prove that the one-against-

one multiclass SVM with degree 3 polynomial kernel classifier has better efficiency than 

one-against-one multiclass SVM with degree 2 polynomial kernel. The used sample is 

sufficient to prove the stated hypothesis with a high degree of accuracy and confidence. 
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CHAPTER 7: CONCLUSION 

The safety of citizens during explosion occurrences is the product of collaborative 

efforts by scientists, experts, governments, military, local agencies, and qualified 

emergency professionals. Thus, suitable actions and procedures can be initiated to control 

the explosion risks. In this dissertation, we present a novel taxonomy of explosion 

phenomena. Consequently, we propose the design of a novel computer vision-based 

framework for supervised classification of volcanic eruptions and nuclear explosions. 

Moreover, we collected a new dataset of color images referred to as VNEX. The totality of 

VNEX is 10, 654 samples that includes the following patterns: pyroclastic density 

currents, lava fountains, lava and tephra fallout, nuclear explosions, wildfires, fireworks, 

and sky clouds. 

Through our experience and experiments, we determine that VNEX samples are 

complex. Nevertheless, the one-against-one multiclass SVM with degree 3 polynomial 

kernel produced the highest classification rate of 90.85% when employed on 5, 327 

samples of VNEX testing set, and a reasonable execution time of approximately 117ms 

was consumed to classify one test sample. This classifier outperformed several multiclass 

approaches such as Euclidean distance, correlation, KNN, and the MPL classifier. More 

specifically, we represent the VNEX samples using several feature extraction approaches 

including: intensity levels, YCbCr color model, Radix-2 FFT, and ULBP. Then, we 

compute the PCA method to calculate the most significant 100 eigenvectors and the 

corresponding eigenvalues on each feature class. Furthermore, we combine these features 
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in one input vector of length 400. Hence, these encapsulated features in a single input 

vector are intuitively invariant in terms of translation, illumination, scale, and rotation 

providing a meaningful insight into VNEX samples. As a result, these discriminative 

features have led the multiclass degree-3 polynomial kernel SVM classification model to 

cast a proper decision to predict the class label for each unknown test sample. 

Moreover, the proposed research methodology was evaluated on 980 frames of 

YouTube video sequences for the seven scenarios of the respective defined classes that 

were retrieved from computer folders. Results show that a high classification rate of 

98.16% was achieved. In addition, we conducted experiments where a drone was flown to 

collect real-time observations while playing the same YouTube video sequences in an 

indoor environment. Evaluation results show a classification rate of 98.06% was achieved. 

Thus, we conclude that the proposed framework is robust and reliable.   

 

7.1  Future Work 

The proposed framework is pluggable and scalable. Thus, we discuss the future 

trends for implementing advanced solutions to improve the classification rate in the context 

of the seven categories.  

Our vision for future improvements involves applying different deep learning 

architectures to achieve supervised classification of the VNEX dataset. In this context, the 

autoencoder neural network can be employed. The Autoencoder is a nonlinear model that 

generalizes the PCA technique.  It utilizes an adaptive, multilayer network called “encoder” 

in order to map the high dimensional data into a lower dimensional code. Furthermore, 
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there is a similar “decoder” network that performs data recovery from the code [135]. Thus, 

the autoencoder sets the target values to be equal to the input values. During the learning 

phase, the autoencoder discovers weights to identify useful low-level features such as 

edges, primitive shapes, and more complex shapes. Then, the autoencoder combines them 

into a high feature space, and automatically learn the best nonlinear hyperplane that 

separate the input data into regions or categories.  

Another alternative deep learning architecture that can be applied on the VNEX 

dataset called the Convolutional Neural Network (CNN). Recently, CNN has accomplished 

a remarkable performance in the computer vision field and has solved complex problems 

successfully [136-140]. Typically, the CNN comprises of numerous layers: (1) 

convolutional layers, (2) pooling layers, and (3) fully-connected layers. By fine-tuning the 

CNN architecture design, learning a representation of the discriminative features of the 

domain of our target application can be achieved automatically. 

Furthermore, the Recurrent Neural Networks (RNN) using the Long Short-Term 

Memory (LSTM) architecture can be adopted to perform a supervised sequence learning 

on a dataset of videos for the respective seven classes. This model can be considered a 

convenient approach to monitor an explosion activity over time because of its capability 

on the prediction of time series, and context dependent pattern classification tasks [141-

143].  

In addition to utilizing color images of VNEX dataset, a classification system based 

on extracting thermal descriptors from thermal infrared images of the seven classes can be 

tailored and implemented [144].  
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