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Assessment of the patient, health system, and population 
eff ects of Xpert MTB/RIF and alternative diagnostics for 
tuberculosis in Tanzania: an integrated modelling approach
Ivor Langley*, Hsien-Ho Lin*, Saidi Egwaga, Basra Doulla, Chu-Chang Ku, Megan Murray, Ted Cohen, S Bertel Squire

Summary
Background Several promising new diagnostic methods and algorithms for tuberculosis have been endorsed by 
WHO. National tuberculosis programmes now face the decision on which methods to implement and where to place 
them in the diagnostic algorithm.

Methods We used an integrated model to assess the eff ects of diff erent algorithms of Xpert MTB/RIF and light-
emitting diode (LED) fl uorescence microscopy in Tanzania. To understand the eff ects of new diagnostics from the 
patient, health system, and population perspective, the model incorporated and linked a detailed operational 
component and a transmission component. The model was designed to represent the operational and epidemiological 
context of Tanzania and was used to compare the eff ects and cost-eff ectiveness of diff erent diagnostic options. 

Findings Among the diagnostic options considered, we identifi ed three strategies as cost eff ective in Tanzania. Full 
scale-up of Xpert would have the greatest population-level eff ect with the highest incremental cost: 346 000 
disability-adjusted life-years (DALYs) averted with an additional cost of US$36·9 million over 10 years. The 
incremental cost-eff ectiveness ratio (ICER) of Xpert scale-up ($169 per DALY averted, 95% credible interval [CrI] 
104–265) is below the willingness-to-pay threshold ($599) for Tanzania. Same-day LED fl uorescence microscopy is 
the next most eff ective strategy with an ICER of $45 (95% CrI 25–74), followed by LED fl uorescence microscopy 
with an ICER of $29 (6–59). Compared with same-day LED fl uorescence microscopy and Xpert full rollout, targeted 
use of Xpert in presumptive tuberculosis cases with HIV infection, either as an initial diagnostic test or as a follow-
on test to microscopy, would produce DALY gains at a higher incremental cost and therefore is dominated in the 
context of Tanzania. 

Interpretation For Tanzania, this integrated modelling approach predicts that full rollout of Xpert is a cost-eff ective 
option for tuberculosis diagnosis and has the potential to substantially reduce the national tuberculosis burden. It also 
estimates the substantial level of funding that will need to be mobilised to translate this into clinical practice. This 
approach could be adapted and replicated in other developing countries to inform rational health policy formulation.
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Introduction
The past decade has seen a renewal of activity and funding 
dedicated to the development of improved tuberculosis 
diagnostics. Several promising new diag nostic methods 
and algorithms have been recently endorsed by WHO.1–3 
For example, Xpert MTB/RIF is a cartridge-based, 
automated diagnostic test that can identify Mycobacterium 
tuberculosis (MTB) with improved accuracy and resistance 
to rifampicin (RIF). However, whether these new 
diagnostics will replace existing methods or will be used 
in combination with them is not yet clear. Although new 
diagnostic methods and algorithms have the potential to 
overcome many of the weaknesses of the present 
diagnostic processes, they might substantially increase 
the demands on scarce resources and funds.4 Before 
national tuberculosis pro grammes can fully scale up new 
tuberculosis diagnostics, policy makers need to 
understand the eff ects on patients, the health system, and 

the wider population. Failure to do so could lead to poor 
performance outcomes, un sustainable imple men tation, 
and wasted resources.5 

Trials of new tuberculosis diagnostic algorithms are 
essential for measuring their eff ect.6–9 However, these 
studies provide little quantifi cation of the eff ect that 
these methods will have in health systems and 
epidemiological contexts other than those in which the 
trials were done. Studies are also unable to predict 
longer-term eff ects of these algorithms on disease 
dynamics and it is usually not possible to predict how 
these new algorithms will aff ect the operational per-
formance of the health system. Using an integrated 
modelling approach that combines detailed operational 
and transmission components, we assessed the eff ects 
and cost-eff ectiveness of several new tuberculosis 
diagnostic algorithms for adult pulmonary tuberculosis 
in Tanzania. 
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See Online for appendix Methods
Study setting and diagnostic algorithms
In 2011, the incidence of tuberculosis in Tanzania was 
169 per 100 000, and 38% of patients were co-infected with 
HIV.10,11 The estimated proportion of multidrug-resistant 
(MDR) tuberculosis was 1·1% in patients with new 
infection and 3·1% in those undergoing re treatment.11,12 
We assessed the eff ects of eight WHO-endorsed 
diagnostic options for patients with pre sumptive 
tuberculosis, covering three diff erent processes and three 
diagnostic methods that might be diff erently targeted on 
the basis of HIV status (fi gure 1, table 1). The fi rst three 
algorithms (A) use sputum smear microscopy: A1 is the 
base case scenario of Ziehl-Neelsen (ZN) microscopy; A2 

replaces ZN microscopy with light-emitting diode (LED) 
fl uorescence microscopy; and A3 uses LED fl uorescence 
microscopy and two sputum samples provided on the 
same day.1 The algorithms in processes B and C represent 
the possible approaches to the use of Xpert MTB-RIF 
(Xpert) under present WHO recommendations.2 B1 tests 
all patients with presumptive tuberculosis with Xpert; B2 
and B3 target the use of Xpert to patients with presumptive 
tuberculosis who are HIV-positive. C1 and C2 use LED 
fl uorescence micro scopy as the primary method for 
tuberculosis diagnosis and target Xpert for smear-
negative individuals with HIV infection. 

The model
To assess the eff ects of diff erent diagnostic algorithms at 
the patient, health system, and population levels, we 
developed a modelling platform that integrates opera tional 
and transmission components.13 The operational 
component used the discrete-event simu lation approach 
and incorporated patient and sputum sample pathways 
based on WHO guidelines and the present diagnostic 
procedure in Tanzania.14–17 We calibrated the model using 
data from two diagnostic centres in Tanzania (Temeke and 
Kibong’oto) where diff erent microscopy techniques (ZN 
and LED fl uorescence) were in use and where there were 
plans to implement Xpert. We validated the outputs from 
the model against the results from the 2010 National TB 
and Leprosy Programme (NTLP) annual reports (appendix). 
The transmission component followed previous epidemic 
modelling approaches and further incorporated the care-
seeking pathway of patients with tuberculosis (appendix).18–20 
The model was calibrated to the epidemiological situation 
of tuberculosis in Tanzania with Bayesian melding.21 
Because the operational outcomes can aff ect trans mission, 
and conversely transmission outcomes can aff ect 
operations, the two components were linked, in that output 
of one served as input to the other component (fi gure 2).13 
Key input variables to the operational and transmission 
component are shown in table 2; other variables are 
presented in the appendix. The frequency and accuracy of 
clinical diagnosis (ie, diagnosis without microbiological 
confi rmation) and presumptive treatment will alter the 
expected eff ect of new diagnostic methods and algorithms.11 
For this study, we estimated the accuracy of such diagnostic 
practices using the known levels of smear-positive and 
smear-negative tuberculosis in Tanzania in conjunction 
with estimates of the sensitivity and specifi city of 
microscopy and the sensitivity of clinical judgment in 
smear-negative cases from published work7,37 (details of 
these calculations are shown in the appendix). Operational 
and transmission components of the model have been 
previously published and can be found in the appendix.13,20,37

Cost-eff ectiveness analysis 
We did cost-eff ectiveness analyses to compare diff erent 
diagnostic options. The incremental cost of implementing 
each alternative diagnostic option was derived from the 
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Figure 1: Summary patient pathways for three tuberculosis diagnostic processes
(A) Sputum smear microscopy. (B) Xpert MTB/RIF replacing microscopy. (C) Xpert MTB/RIF in addition to microscopy. 
MDR=multidrug resistant.
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Tanzanian health system perspective, and included the 
additional annual running costs (eg, consumables, 
tuberculosis and MDR-tuberculosis drugs, radiographs, 
equipment maintenance, and laboratory personnel) and 
the investment costs (eg, microscopes and the equipment 
related to Xpert implementation) (table 2, appendix). 
Following advice from the NTLP, other overhead costs 
were assumed to be unaff ected by a change in the 
diagnostic algorithm. Patients’ costs were not collected or 
included in this study, but an indication of how they 
could be used in the model is given in the appendix. 
Because the introduction of new tuberculosis diagnostics 
is expected to improve the survival of patients co-infected 
with tuberculosis and HIV, we estimated the incremental 
costs from additional antiretroviral therapy (ART) on the 
basis of the projected number of deaths from tuberculosis 
and HIV co-infection. The population eff ect on tuber-
culosis epidemiology was summarised using dis ability-
adjusted life-years (DALYs) without age weigh ting.36,38 
Costs and DALYs were calculated over 10 years with an 
annual discount rate of 3%.39 We calculated the average 
cost-eff ectiveness ratio (ACER) by comparing each 
alternative diagnostic option to the base case scenario 
(A1, table 1). Because the alternative diagnostic options 
are mutually exclusive interventions that compete for the 
same resources, we also calculated the incremental cost-
eff ectiveness ratios (ICER) to compare one option with 
the next less-eff ective option.40 The estimated ICER was 
compared with the willingness-to-pay threshold for 
Tanzania (US$599 based on gross domestic product 
[GDP] per capita in 2012).41,42

Uncertainty and sensitivity analysis
We did an uncertainty analysis using 1000 posterior 
simulations to estimate the 95% credible intervals 
(95% CrI) of the population-level eff ect on incidence, 

prevalence, mortality, and DALYs. The 95% CrIs are the 
Bayesian framework equivalent of confi dence intervals 
in the frequentist framework.43 We did one-way sensitivity 
analyses to explore the eff ect of input variables on ACER 
and ranking of diagnostic options using 1000 posterior 
simulations (appendix).

Role of the funding source
The funder had no role in study design, data collection, 
data analysis, data interpretation, or writing of the report. 
IL and H-HL had full access to all data in the study. 
Together with SBS they had fi nal responsibility for the 
decision to submit for publication.

Results
Full rollout of Xpert (B1) would have the greatest 
patient-level benefi ts among the alternative diagnostic 
options (table 3). The improved diagnostic sensitivity 
and the need for only one sputum sample for Xpert 
reduces mean patient visits for diagnosis by 
1·2 (95% CrI 1·1–1·3) visits, time to start treatment by 

Process (see fi gure 1) Diagnostic method(s) Comment

HIV 
positive

HIV negative 
or unknown 
status

A1 ZN microscopy base case A A ZN microscopy Algorithm used in most of Tanzania

A2 LED fl uorescence microscopy A A LED fl uorescence microscopy Being rolled out across Tanzania 

A3 Same-day LED fl uorescence microscopy A A LED fl uorescence microscopy As A2, but sputum samples collected on the same day

B1 Full Xpert rollout B B Xpert MTB/RIF Xpert used for all presumptive tuberculosis cases

B2 Xpert for known HIV-positive cases B A LED fl uorescence microscopy 
and Xpert MTB/RIF

Xpert targeted to those who have a known 
HIV-positive status

B3 Xpert for HIV-positive cases with 
additional HIV testing

B A LED fl uorescence microscopy 
and Xpert MTB/RIF

As B2, plus additional HIV testing before tuberculosis 
testing to increase known HIV-positive numbers

C1 Xpert for smear-negative and known 
HIV-positive cases 

C A LED fl uorescence microscopy 
and Xpert MTB/RIF

Initial test LED fl uorescence microscopy. If smear-
negative and known HIV-positive status use Xpert

C2 Xpert for smear-negative and 
HIV-positive cases with additional 
HIV testing

C A LED fl uorescence microscopy 
and Xpert MTB/RIF

As C1, but with additional HIV testing for smear-
negative cases to increase known HIV status

ZN=Ziehl-Neelsen. LED=light-emitting diode.

Table 1: Tuberculosis diagnostic algorithms modelled
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Figure 2: Linkage between the operational and transmission component of 
the integrated model
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Value Source

Operational component

Base case

Annual smear-positive and tuberculosis cases per district 47–500* NTLP operational data and the annual 
report 201022

Proportion of presumptive smear-positive tuberculosis cases 10·0–12·5%* As above

Proportion of smear-negative tuberculosis cases 34·0–53·9%* As above

Proportion of tuberculosis cases needing re-treatment 6·1–9·1%* As above

Proportion of HIV-positive tuberculosis cases 13·6–41·4%* As above

Proportion of smear-negative presumptive tuberculosis cases that had radiograph and antibiotic trial 70·0% As above

MDR tuberculosis in new tuberculosis cases 1·1% WHO, 201211

MDR tuberculosis in retreated tuberculosis cases 3·1% Tanzania Ministry of Health12

Diagnostic lost to follow-up rate 15·0% Squire and colleagues, 200523

Sensitivity and specifi city

Sensitivity of ZN microscopy for HIV-positive cases 44·6% Boehme and colleagues, 20117

Sensitivity of ZN microscopy for HIV-negative cases 72·3% As above

Specifi city of ZN microscopy for HIV-positive cases 100·0% As above

Specifi city of ZN microscopy for HIV-negative cases 99·4% As above

Sensitivity of clinical diagnosis 51·9% Swai and colleagues, 201124 

Sensitivity improvement of LED fl uorescence microscopy over ZN microscopy +6·0% WHO, 201125

Specifi city improvement of LED fl uorescence microscopy over ZN microscopy 0·0% As above

Sensitivity improvement of same-day LED fl uorescence microscopy over ZN microscopy –2·8% WHO, 20111

Specifi city improvement of same-day LED fl uorescence microscopy over ZN microscopy 0·0% As above

Sensitivity of Xpert for tuberculosis in smear-positive HIV-negative cases 98·4% Boehme and colleagues, 20117

Sensitivity of Xpert for tuberculosis in smear-negative HIV-negative cases 79·3% As above

Sensitivity of Xpert for tuberculosis in smear-positive HIV-positive cases 97·7% As above

Sensitivity of Xpert for tuberculosis in smear-negative HIV-positive cases 71·8% As above

Specifi city of Xpert for tuberculosis in HIV-negative cases 98·9% As above

Specifi city of Xpert for tuberculosis in HIV-positive cases 99·2% As above

Sensitivity of Xpert for MDR tuberculosis 94·0% Steingart and colleagues, 201326

Specifi city of Xpert for MDR tuberculosis 98·0% As above

Cost variables

LED fl uorescence microscope $1250·0 FIND negotiated price, 201227

Xpert cartridge cost per test $9·98 As above

Xpert MTB/RIF machine 4 cell $17 500·0 As above

Xpert annual maintenance 4 cell $1800·0 As above

Drug sensitivity cost per test $19·0 Tanzania NTLP, 2011

Microscopy cost per test $1·5 As above

Radiograph $6·9 As above

Monthly drug cost for standard regimen $3·0 As above

Monthly drug cost for retreatment regimen $17·8 As above

Monthly drug cost for MDR tuberculosis regimen $119·4 As above

Annual employment costs for a laboratory technician $3200·0 As above

Annual employment costs for a laboratory assistant $2240·0 As above

ART cost per year $430·5 Ministry of Health and Social Welfare 
Tanzania and US CDC, 201128

Transmission component†§

Transmission variable, smear-positive cases 5·9 per year (3·3–10·5);
7·7 per year (5·3–11·0)

Fitted to the observed tuberculosis epidemic 
before DOTS implementation.29 Also 
consistent with Trunz and colleagues, 200630

Relative magnitude of transmission variable, smear-negative cases (compared with smear-positive cases) 0·2 per year (0·13–0·36);
0·21 per year (0·11–0·31) 

Behr and colleagues, 199931

Primary progression rate, HIV-negative case 0·03 per year (0·0095–0·094);
0·021 per year (0·012–0·041)

Vynnycky and colleagues, 199732 

(Table 2 continues on next page)
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6·6 (95% CrI 5·9–7·3) days, and the diagnostic lost to 
follow-up rate by 7% (95% CrI 6–9), resulting in an 18% 
increase in the likelihood that a patient with tuberculosis 
will success fully complete diagnosis and treatment 
(80% [95% CrI 76–83] com pared with 62% 
[95% CrI 59–65] in the base case). The next best 
algorithms from the patient perspective include 
targeting of Xpert to HIV-positive cases alongside 
additional HIV testing (B3) and same-day LED 
fl uorescence microscopy (A3).

At the health-system level, full scale-up of Xpert (B1) 
would reduce the required number of sputum samples by 
34% (or 441 000 [95% CrI 404 000–479 000] compared with 
730 000 [95% CrI 705 000–769 000] samples per year) and 
require only 45% of the laboratory staff  time that is needed 
by the base case (table 4). New diagnostics have only a 
marginal eff ect on tuberculosis notifi cation, because the 
increase in cases diagnosed through the improved 
primary test are counterbalanced by the true-positive and 
false-positive cases identifi ed by the less specifi c secondary 

Value Source

(Continued from previous page)

Slow reactivation rate, HIV-negative cases 0·0003 per year (0·000021–0·0042);
0·00096 per year (0·000099–0·0023)

Vynnycky and colleagues, 199732

Partial immunity that decreases probability of fast progression after reinfection, HIV-negative cases 0·65 (0·56–0·75);
0·65 (0·59–0·72)

Cohen and colleagues, 200633

Proportion smear-positive among incident cases of pulmonary tuberculosis, HIV-negative cases 0·88 (0·85–0·92);
0·89 (0·85–0·92)

Calibrated manually to tuberculosis 
notifi cation data

Natural cure rate, HIV-negative cases 0·20 per year (0·12–0·34);
0·23 per year (0·13–0·34) 

Dye and colleagues, 199818

Death rate of those with active tuberculosis disease, smear-positive and untreated, HIV-negative cases 0·22 per year (0·13–0·36);
0·22 per year (0·16–0·31) 

Adapted from Hughes and colleagues, 200634

Death rate of those with active tuberculosis disease, smear-negative and untreated, HIV-negative cases 0·19 per year (0·11–0·32);
0·18 per year (0·13–0·32)

Adapted from Hughes and colleagues, 200634

Relapse rate after cure, HIV-negative cases 0·001 per year (0·00011–0·0096);
0·0022 per year (0·00019–0·010)

Cohen and colleagues, 200633

Eff ect of ART on HIV mortality and tuberculosis natural history variables Assume a reduction of excess risk by 
(0·50–1·00) compared with no ART; 0·72 
(0·54–1·00)

Assumption, and based on Lawn and 
Churchyard, 200935

Disability weight, active tuberculosis 0·33 (0·23–0·46);
same as prior value

Salomon and colleagues, 201236 

Disability weight, HIV-positive with low CD4 cell count 0·55 (0·40–0·69);
same as prior value

Salomon and colleagues, 201236

For Transmission components, values in parentheses are 95% ranges from log-normal or logit-normal distributions or lower and upper bound from uniform distribution for prior values, and 95% CrIs for posterior 
values. All costs are in US dollars. MDR=multidrug-resistant. LED=light-emitting diode. ZN=Ziehl-Neelsen. NTLP=National TB and Leprosy Programme.  *Value depends on the size and HIV prevalence of the district (see 
appendix). †Values are prior values; posterior values. §Source for prior value.

Table 2: Key input variables to the integrated model

Diagnosis and treatment initiation compared 
with base case (A1)

Diagnosis and treatment success

Reduction in 
visits to the 
diagnostic 
centre (mean, 
SD)  

Reduction in 
time to start 
treatment 
(mean days, 
SD) 

Reduction in 
diagnostic 
LTFU rate (%)

Tuberculosis 
cases diagnosed 
without a 
positive sputum 
test (%)

Likelihood of a true 
tuberculosis patient 
completing 
diagnosis and 
treatment (%)

A1 ZN microscopy base case ·· ·· ·· 46% 62%

A2 LED fl uorescence microscopy 0·0 (0·1) 1·1* (0·4) 0% 40%* 64%

A3 same-day LED fl uorescence microscopy 0·9* (0·1) 1·6* (0·6) 6%* 42%* 68%*

B1 full Xpert rollout 1·2* (0·1) 6·6* (0·7) 7%* 14%* 80%*

B2 Xpert for known HIV-positive cases 0·2* (0·1) 1·8* (0·9) 0% 36%* 67%

B3 Xpert for HIV-positive cases with additional HIV testing 0·5* (0·1) 3·5* (0·8) 2%* 28%* 72%*

C1 Xpert for smear-negative or known HIV-positive cases 0·1 (0·1) 1·7* (0·6) 0% 36%* 66%

C2 Xpert for smear-negative or HIV-positive cases with additional 
HIV testing

0·1 (0·1) 2·8* (0·9) 0% 28%* 69%*

ZN=Ziehl-Neelsen. LED=light-emitting diode. LTFU=lost to follow-up. *Signifi cant diff erence from base case at 95% level. 

Table 3: Patient-level eff ects of new diagnostic algorithms 



Articles

e586 www.thelancet.com/lancetgh   Vol 2   October 2014

Laboratory outcomes Patients starting 
tuberculosis 
treatment per year 
(n)

Complete cures 
per year

Sputum 
samples 
tested for 
tuber culosis 
per year (000s)

Xpert Total Staff  
used on 
tuberculosis 
diagnosis* 
(%)

Standard 
regimen

MDR 
tuber-
culosis 
regimen 

Including 
false 
positive

Excluding 
false 
positive

A1 ZN microscopy base case 730 0 730 100% 49 787 113 44 476 31 801

A2 LED fl uorescence microscopy 725 0 725 100% 48 366 110 43 208 32 742

A3 same-day LED fl uorescence microscopy 752 0 752† 108% 51 113 116 45 807 33 679†

B1 full Xpert rollout 132 309 441† 45%† 48 441 1285† 42 838 37 639†

B2 Xpert for known HIV-positive cases 681 25 707† 98% 48 605 356† 43 446 33 475†

B3 Xpert for HIV-positive cases with additional HIV testing 580 78 658† 95% 48 700 537† 43 399 34 982†

C1 Xpert for smear-negative and known HIV-positive cases 722 22 744 100% 48 357 337† 43 245 33 283†

C2 Xpert for smear-negative and HIV-positive cases with 
additional HIV testing 

719 66 785† 101% 47 832 447† 42 608 34 344†

Laboratory outcomes include both diagnostic and treament follow-up testing. MDR=multidrug-resistant. ZN=Ziehl-Neelsen. LED=light-emitting diode. *Assuming 
laboratory staff  is 100% utilised. †Signifi cant diff erence to base case at 95% level. ‡Patients that start MDR tuberculosis treatment might later transfer to drug-sensitive 
treatment after contradictory results from drug susceptibility testing from the central reference laboratory.

Table 4: Health-system-level eff ects of new diagnostic algorithms: mean per year in fi rst 10 years
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tests (clinical judgment, including chest radiograph) in 
the base-case algorithm (A1). After false-positive cases are 
excluded, Xpert is projected to increase the number of 
true tuberculosis cures by 5838 per year (or 37 639 
[95% CrI 35 992–39 286] compared with 31 801 [95% CrI 
30 311–33 394] per year) (table 4). The use of Xpert would 
identify 1285 (95% CrI 1119–1437) rifampicin-resistant 
cases during the diagnostic process (compared with only 
113 [95% CrI 97–129] MDR tuberculosis cases identifi ed 
during treatment), although the positive predictive value 
for MDR tuber culosis in new tuberculosis cases is only 
35% (see appendix for calculation). This low predictive 
value for rifampicin resistance in the Tanzanian context 
implies that most identifi ed rifampicin-resistant cases 
(65%) will not need a full course of second-line treatment 
after confi rmatory drug sensitivity testing.

Similarly, full rollout of Xpert (B1) would have the 
greatest eff ect at the population level. The epidemiological 
eff ect is projected to be the greatest on tuberculosis 
prevalence, followed by tuberculosis mortality, and 
tuberculosis incidence (fi gure 3). Com pared with the 
baseline algorithm (A1), full imple mentation of Xpert (B1) 
would prevent 17 000 (95% CrI 8800–26 600) cases of 
incident tuberculosis and 39 700 (95% CrI 27 600–53 000) 
tuberculosis deaths over 10 years (table 5). In addition to 
the eff ect on tuberculosis epidemiology, new diagnostics 
would increase the number of people on ART because of 
improved survival of patients co-infected with tuber culosis 
and HIV. Assuming that the coverage of ART would 
gradually reach 80% in 10 years,10 diff erent diagnostic 
options would result in 3900 (95% CrI 600–8900) (A2) to 
19 600 (95% CrI 3300–34 600) (B1) additional person-years 

on ART. Compared with the baseline algorithm, full 
imple mentation of Xpert (B1) would prevent the largest 
number of DALYs (346 000, 95% CrI 247 000–475 000) over 
10 years (table 5). Other diagnostic algorithms would have 
less eff ect on DALYs, with the benefi ts ranging from 
57 900 (A2) to 162 800 (B3) DALYs averted.

In the cost-eff ectiveness analysis, the ACER of 
alternative diagnostic options ranged from $29 to 
$240 per disability-adjusted life-year (DALY) averted 
compared with ZN microscopy (A1), with the incremental 
cost varying between $1·7 million and $36·9 million 
(table 5, fi gure 4). In the analysis of ICER, options of 
targeted use of Xpert (B2, B3, C1, C2) are dominated by 

Number of 
tuberculosis 
events averted 
(000s)

Additional 
ART 
person-
years
(000s)

DALYs averted (000s) Additional health system 
costs over 10 years 
(US$ million)

Cost-eff ectiveness ratio† (US$ per DALY averted)

Incident 
cases

Death YLL YLD DALY DALYp‡ TB ART Total ACER ICER ICERp‡

A2 LED fl uorescence microscopy 1·3 7·3 3·9 57·5 0·4 57·9 5·7 0·0 1·7 1·7 29 (6–59) 29 (6–59) 37 (10–71)

A3 same-day LED fl uorescence 
microscopy

10·3 16·6 8·0 148·6 3·1 151·7 14·6 2·2 3·5 5·7 38 (20–62) 45 (25–74) 299 (170–602)

B1 Full Xpert rollout 17·0 39·7 19·6 340·8 5·2 346·0 33·6 28·3 8·6 36·9 109 (72–144) 169 (104–265) 1491 (973–2523)

B2 Xpert for known HIV-positive 
cases

2·5 11·7 6·5 84·0 0·8 84·8 8·7 10·2 2·9 13·1 163 (98–246) Dominated Dominated

B3 Xpert for HIV-positive cases 
with additional HIV testing 

6·5 24·0 13·8 160·8 2·1 162·8 17·3 16·1 6·0 22·1 140 (92–192) Dominated Dominated

C1 Xpert for smear-negative and 
known HIV-positive cases

1·4 9·6 5·4 68·3 0·5 68·8 7·1 10·2 2·4 12·6 203 (110–366) Dominated Dominated

C2 Xpert for smear-negative and 
HIV-positive cases with 
additional HIV testing 

1·5 15·2 9·3 94·1 0·6 94·7 10·3 15·5 4·1 19·6 240 (127–501) Dominated Dominated

Estimates are based on the incidence approach unless otherwise specifi ed. YLL=years of life lost. YLD=years lost due to disability. DALY=disability-adjusted life-year. ART=antiretroviral therapy. ACER=average 
cost-eff ectiveness ratio. ICER=incremental cost-eff ectiveness ratio. LED=light-emitting diode. *Compared with the base case scenario of ZN microscopy (A1). †Numbers in parentheses are 95% credible intervals. 
‡DALYp and ICERp are DALY estimates using the prevalence approach.

Table 5: Incremental population-level eff ect and cost-eff ectiveness analysis of new diagnostic algorithms*
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Figure 4: Sustainability versus cost-eff ectiveness (average cost-eff ectiveness ratio, ACER) versus disability-adjusted 
life-years (DALYs) averted
The size of the circles shows the scale of benefi ts from each intervention measured in DALYs averted over 10 years 
relative to the base case of Ziehl-Neelsen microscopy. LED=light-emitting diode.
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same-day LED fl uorescence microscopy (A3) and Xpert 
full rollout (B1) because they produce DALY gains at a 
higher incremental cost (appendix). The ICER of Xpert 
full rollout is $169 per DALY averted (95% CrI 104–265), 
followed by same-day LED fl uorescence microscopy 
($45, 95% CrI 25–74) and LED fl uorescence micro scopy 
($29, 95% CrI 6–59) (table 5). The ICERs for all three 
alternative algorithms are below the willingness-to-pay 
threshold for Tanzania ($599).

In one-way sensitivity analyses, the variables having 
most eff ect on ICER were the natural history variables of 
tuberculosis and HIV (eg, reactivation rate, natural cure 
rate, duration of infectiousness, and the transmission 
variable) whose prior and posterior ranges of uncertainty 
were wide, showing insuffi  cient understanding of these 
variables (appendix). Overall, the estimated ICERs were 
robust to uncertainty of most input variables. We also 
changed the assumption on ART so that the coverage 
increased to 80% in 5 years, and the results were similar 
(appendix). We further set the variables with greatest 
eff ect in the sensitivity analysis to the extreme values 
(2·5 and 97·5 percentile of the posterior distribution), 
and found that the ranking of diagnostic options 
remained unchanged (appendix).

Discussion
We have assessed the eff ect of several promising 
tuberculosis diagnostic options that are being considered 
by many national tuberculosis programmes, and have 
identifi ed three cost-eff ective strategies in the context of 
Tanzania: full rollout of Xpert MTB/RIF (B1) at $169 per 
DALY averted, followed by same-day LED fl uorescence 
microscopy (A3) at $45, and LED fl uorescence microscopy 
(A2) at $29 per DALY averted.  

According to the updated recommendations from 
WHO, Xpert should be used as the initial diagnostic test 
in individuals suspected of having HIV-associated 
tuberculosis (strong recommendation).2 In settings such 
as Tanzania where the prevalence of HIV infection is 
high, all presumptive tuberculosis cases can be considered 
as presumptive cases of HIV-associated tuberculosis, 
justifying the full rollout of Xpert as the initial diagnostic 
test. However, many HIV-endemic countries (eg, 
Tanzania) might see the previous recommendation as 
suggesting Xpert should be used only on presumptive 
tuberculosis cases with known HIV infection. In 
Tanzania, because of the high cost of the test, Xpert was 
seen as a follow-on test to microscopy rather than a 
replacement test. Our analysis showed that, in settings 
similar to that in Tanzania, targeted use of Xpert in HIV-
positive presumptive tuberculosis cases (B2 and B3) and 
in HIV-positive and smear-negative cases (C1 and C2) is 
not cost-eff ective compared with full rollout of Xpert or 
same-day LED fl uorescence microscopy.

The reason for the inferior cost-eff ectiveness per-
formance of targeted implementation is that the 
projected gains in DALYs in most cases are lower than 

those projected from implementing same-day LED 
fl uorescence microscopy, and the projected cost is 
substantially higher. The targeted approaches considered 
in our analysis focused on HIV-positive presumptive 
tuberculosis cases. Because the life expectancy of HIV-
positive individuals is shorter than that of HIV-negative 
individuals, the potential gain in life-years (and DALYs) 
of preventing a death from tuberculosis in a HIV-positive 
patient would be smaller than that of preventing a death 
from tuberculosis in a HIV-negative patient. Much of the 
ART cost would be preserved in the targeted approach, 
resulting in inferior cost-eff ectiveness of the targeted 
approach, showing that if the benefi t of new diagnostic 
algorithms is measured by the overall improved years of 
healthy life (ie, DALYs averted), the eff ect (or lack of 
eff ect) on the HIV-negative population is an essential 
element of any assessment. Nonetheless, our results did 
not suggest that access to improved diagnosis (Xpert) 
should be denied to the HIV-infected population. In fact, 
full rollout of Xpert is the only way to ensure all HIV-
positive patients receive Xpert diagnosis in the context of 
Tanzania, because most HIV-positive individuals do not 
know their HIV status at the point of tuberculosis 
diagnostic testing.

Among the cost-eff ective diagnostic options, the 
decision on which one to use will depend on the cost-
eff ectiveness ratio of other health interventions being 
considered in Tanzania. If the health-related budget in 
Tanzania can aff ord a health intervention with a cost-
eff ectiveness ratio of $599 (GDP per head in Tanzania, 
2012) per DALY, the government should consider full 
scale-up of Xpert (B1), which has an average ICER of 
$169 (95% CrI 104–265) per DALY. We note that cost-
eff ectiveness does not necessarily imply that the 
interventions are aff ordable or sustainable. The ICER of 
each intervention needs to be weighed against the 
associated incremental costs. The projected 10-year 
incremental cost to the tuberculosis programme of Xpert 
scale-up ($28·3 million) represents an increase of about 
25% in funds to the present tuberculosis programme. 
Additionally, an incremental cost of $8·6 million to the 
HIV programme will be needed as a result of the 
additional cost of ART (see appendix for a breakdown). 
Without a major ongoing injection of funds into the 
Tanzanian NTLP, the full scale-up of Xpert appears to be 
unsustainable at present. Appropriate funding will need 
to be mobilised to translate this into clinical practice. 

By contrast with the fi ndings from the present study, 
Theron and colleagues44 reported that the use of Xpert 
was not associated with lower tuberculosis-related 
morbidity in a multicentre randomised trial from four 
African countries. A substantial percentage of treatment 
episodes in this fi eld trial were based on clinical diagnosis 
in the absence of microbiological identifi cation of 
Mycobacterium tuberculosis (66% of those treated for 
tuberculosis in the smear microscopy group and 43% of 
those treated in the Xpert group). In settings where the 
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rate of empirical treatment is high, most individuals with 
tuberculosis coming for diagnosis will receive treatment, 
whichever diagnostic method is used. Therefore, the 
ability of any new diagnostic methods and algorithms to 
identify additional tuberculosis cases will be limited.20,45 
Because empirical treatment decisions are not routinely 
taken in Tanzania, the diff erence in eff ect of Xpert 
between our study and the Theron study might be 
explained by diff erent rates of empirical treatment. 
Additionally, the cost-eff ectiveness of an intervention will 
depend on the accuracy (sensitivity and specifi city) of 
empirical diagnosis in smear-negative cases. If the 
specifi city were lower than assumed in our study (<95%), 
the benefi ts of Xpert (B1) would be increased and the 
ICER reduced because of a larger reduction in false-
positive diagnosis of tuberculosis.   

Compared with ZN microscopy, we estimated that the 
ACER for full rollout of Xpert (B1) would be $109 (95% CrI 
72–144) per DALY averted. Vassall and colleagues46 
estimated the ACER of Xpert to be $52–138 per DALY in 
1 year using decision analytical models of tuberculosis in 
India, South Africa, and Uganda.46 In another calibrated, 
dynamic mathematical model of fi ve southern African 
countries (Botswana, Lesotho, Namibia, South Africa, 
and Swaziland), Menzies and colleagues47 reported the 
ACER of Xpert to be $959 (95% CrI 633–1485) per DALY 
over a 10-year period (panel). In addition to the expected 
diff erence in ACER due to diff erent epidemiology of 
tuberculosis and HIV, we note that these ACER estimates 
cannot be directly compared for a number of reasons. 
First, our study and the Menzies study applied epidemic 
models that incorporated the eff ect on tuberculosis 
transmission, whereas the Vassall study used static 
models that did not account for transmission eff ects (and 
therefore might underestimate the overall eff ect). Second, 
when measuring DALYs averted by new diagnostics, our 
study and the Vassall study included the eff ect on future 
disease burden (eg, a tuberculosis death averted in a 
patient with a life expectancy of 20 years would contribute 
20 years of DALY), whereas the Menzies study accounted 
for the eff ect on prevalent disease burden over the study 
period (in the previous example, the DALY contribution 
would be 10 years if the study period is 10 years). We 
repeated our ICER analysis using a similar prevalence 
approach as Menzies and colleagues47 and found that the 
estimated ICER increased from $169 (95% CrI 104–265) 
to $1491 (95% CrI 973–2523) (table 5). Third, our study 
and the Menzies study included the cost of ART in the 
analysis, whereas the Vassall study did not.

Although we focused only on Tanzania in the present 
analysis, our key fi ndings on the rank of alternative 
diagnostic options should be generalisable to countries 
of similar operational and epidemiological situations (eg, 
countries with high HIV and low MDR tuberculosis, and 
similar health system infrastructures). In other settings, 
the approach in our study, which includes important 
details related to both infrastructure and epidemiology, 

allows countries to make the best use of modelling to 
inform local decision making. As this type of approach is 
applied in additional settings we might learn more 
generalisable lessons about which alternatives do best in 
diff erent settings. 

The operational component of this study has enabled 
the detailed interactions and bottlenecks of the health 
system to be modelled, which helps to understand the 
eff ect of each option on staff  use, the number of Xpert 
machines and microscopes, the level of diagnostic lost to 
follow-up, and the time to start treatment. This detailed 
approach will be of particular value for the prioritisation 
and rollout of new diagnostics to individual districts in 
Tanzania. Additionally, when combined with data 
collection from patients, the operational component 
would help to assess how the observed reductions in 
patient visits aff ect patient costs (how this analysis could 
be done is shown in the appendix).  

The robustness of conclusions from this study is 
aff ected by the uncertainty of variables and assumptions 
on model structure. Data availability and accuracy can be 
a constraint with modelling. In this study some country-
level input data and natural history variables had a high 
degree of uncertainty. We did a sensitivity analysis to 
explore the eff ect of this uncertainty on the estimated 
ICERs. Results of the sensitivity analysis suggest that the 
ranking of diagnostic options is robust to uncertainty in 
the input variables. We also note that a full health system 

Panel: Research in context

Systematic review
A systematic review of tuberculosis diagnostic modelling was 
done in April, 2013, by the TB Modelling and Analysis 
Consortium (TB MAC).48 The review focused on modelling 
studies of new diagnostics for active tuberculosis disease. 
31 studies were identifi ed, including 16 cost-eff ectiveness 
analyses using decision analytical modelling or epidemic 
modelling methods. Seven studies assessed the eff ect of 
Xpert MTB/RIF when it is used in people with HIV initiating 
antiretroviral therapy or people with presumptive 
tuberculosis. Most of these modelling studies focused on the 
population-level eff ect of new diagnostics, and none 
examined the eff ect at the patient level or the health system 
level. No modelling studies compared alternative algorithms 
of Xpert use suggested by WHO.

Interpretation
Our study is the fi rst modelling study to investigate the 
potential eff ects on the patient, the health system, and the 
population for a range of tuberculosis diagnostic methods 
and algorithms. Our results provide a wish list for policy 
makers when deciding to deploy new diagnostics in a 
country. The engagement with partners from the Tanzania 
National TB and Leprosy Programme throughout the 
modelling study enabled the results to be communicated to 
and considered by the policy makers.
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costing model was not constructed in this study; instead 
unit cost estimates were largely provided by experts from 
the national tuberculosis programme. A more detailed 
health system costing model could provide better 
information to estimate the ICERs and sustainability of 
diff erent diagnostic options. One limitation of the study 
is that MDR tuberculosis was not explicitly considered in 
the transmission component in view of the low prevalence 
of MDR tuberculosis in patients with tuberculosis. 
Therefore, we assumed that the proportion of MDR 
tuberculosis in incident tuberculosis cases remained 
unchanged over the projection period. Our analysis might 
have underestimated the cost-eff ectiveness of Xpert 
because the use of Xpert could reduce the transmission of 
MDR tuberculosis. National policy makers should take 
account of other local infrastructural factors, such as 
availability of robust power supplies, when considering 
alternative diagnostic algorithms, because a modelling 
analysis cannot account for all the practical challenges 
that might arise from implementation of a new method 
such as Xpert. Additionally, to gain the benefi ts outlined 
in this study, strong project management, good supply 
chains, commitment from all staff , and adherence to 
revised diagnostic processes are all necessary. Lastly, 
there are technical limitations in doing real-time linkage 
of two models. In particular, linkage across both 
components has not been possible in the uncertainty 
analysis. Further research is necessary to fully integrate 
the two components on one single modelling platform. 

We have investigated the eff ects of alternative diagnostic 
approaches on the patient, the health system, and the 
wider community. This study is the fi rst of its kind to 
bring such comprehensive information to national policy 
makers and other interested stakeholders. An important 
next step is to undertake a policy transfer analysis to 
prospectively understand whether and how this new 
knowledge will be used to inform the actual decision-
making process at the programme level. Meanwhile, as a 
way of validating the approach, the programme must 
monitor the key operational (level of empirical treatment, 
diagnostic lost to follow-up rate, and time from diagnosis 
to treatment) and epi demiological (incidence, prevalence, 
and mortality) indicators after the implementation of the 
selected diagnostic option.
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