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Left ventricular hypertrophy (LVH) is common and contributes significantly to cardiovascular 

risk (1). Its aetiology may be difficult to determine and non-invasive imaging forms an 

increasingly important part of investigations. LVH can be a physiological adaptation to 

afterload (eg aortic stenosis (AS), hypertension, athleticism), or may develop as a 

consequence of an underlying cardiomyopathy (hypertrophic cardiomyopathy, HCM), or 

infiltration (eg amyloidosis or Fabry disease, FD).  

A potential imaging biomarker is the left ventricular papillary muscles (LVPM). These 

contribute up to 8% of total left ventricular mass (LVM) in the normal heart depending upon 

analysis technique (2-4). The relationship between LVPM and compacted myocardial 

hypertrophy appears to be non-linear. In FD, a rare X-linked lysosomal storage disorder 

resulting in sphingolipid deposition, where there is established LVH, they appear 

disproportionately hypertrophied, (up to 20% of total LVM) (5, 6). LVPM contribution to 

total LVM is unknown in other heart conditions and early FD. A wider understanding of the 

relationship between LVPM hypertrophy and wall hypertrophy is lacking.  

Cardiovascular magnetic resonance (CMR) is the ‘gold standard’ non-invasive method for 

measuring LVM (5). It is increasingly utilised to differentiate the underlying cause of LVH 

using myocardial tissue characterisation such as late gadolinium enhancement (LGE) and 

parametric mapping (T1, T2, T2*). Native T1 mapping aids in the detection of heart muscle 

pathology by directly measuring a fundamental relaxation property, the longitudinal 

relaxation time or “T1”. This may alter with changes in tissue structural or chemical 

composition. In general, high septal T1 values can occur with inflammation, oedema, fibrosis 

and amyloid deposition, and low T1 values can occur with iron deposition and in FD. A low 

T1 value in FD likely represents sphingolipid accumulation (7). Indeed 85%+ of FD patients 

with LVH have a low T1, and low T1 values may also precede hypertrophy (8), suggesting 

storage can be early.  

We hypothesised that the LVPM contribution to LVM would be significantly different 
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between various cohorts of hypertrophied hearts – thereby providing a CMR imaging 

biomarker to help differentiate between causes of LVH.   

Firstly, we aimed to quantify LVPM hypertrophy across a range of heart diseases a) with 

hypertrophy (LVH+ve) – including afterload (hypertension, AS), cardiomyopathy (HCM) and 

infiltrations (amyloid and FD), compared to healthy controls, and also b) the same conditions 

without hypertrophy (LVH-ve) but with proven early or preclinical disease. Secondarily, we 

sought insights into the biology of LVPM hypertrophy in FD using native T1 mapping. 

 

Methods 

Subject populations 

Subjects were collected from a single UK centre from six different research CMR cohorts. If 

previously published or part published, the cohorts have their reference cited. Existing ethics 

approval was present for all, and all subjects had given written informed consent for their 

imaging data to be used for research. Both subjects with and without LVH were used in each 

group (except healthy volunteers).  LVH was defined as increased indexed LVM on CMR 

according to age and gender matched normal reference ranges (9). LVH-ve cases were those 

with early disease or preclinical disease (eg. gene positive but classic phenotype negative). 

Inclusion criteria for each cohort were as follows: 

1. FD – n=125 comprised of 63 subjects from two previously published cohorts (7, 8) 

plus 62 prospectively recruited patients as part of an ongoing study; all gene-positive; 

both males and females; 64 LVH+ve, 61 LVH-ve. 

2. HCM – n=85 randomly selected gene-positive patients with LVH, (subjects with 

isolated apical hypertrophy excluded); 50 LVH+ve plus 35 LVH-ve gene-positive 

cases from a previously published cohort (10). 

3. Cardiac Amyloidosis – n=67 comprised of 50 randomly selected LVH+ve clinical 

cases (AL and ATTR); 17 LVH-ve LGE positive cases (all AL) from a previously 
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published cohort (11). 

4. AS – n=82 with symptomatic severe AS prior to aortic valve replacement (72 

LVH+ve, 10 LVH-ve) as part of an ongoing study. 

5. Hypertension – n=40 from a previously published cohort of individuals with 

documented hypertension recruited from a specialist tertiary centre (14 LVH+ve, 26 

LVH-ve) (12). 

6. Healthy controls – n=79 all volunteers, all had no history of cardiovascular disease 

(normal health questionnaire, normal electrocardiogram, no cardioactive medication 

except for primary prevention). All CMR scans were normal without evidence of 

LVH. 

 

CMR imaging and analysis 

CMRs were acquired using a 1.5 Tesla Avanto (Siemens Healthcare, Erlangen, Germany). 

Cardiac chamber volumes, LVM and LVPM mass were quantified on all subjects from a pre-

contrast breath-held short axis (SAX) stack of balanced steady-state free precession cine 

images, using CVI42 (Circle Cardiovascular Imaging Inc., Calgary, Canada) and previously 

described manual contouring methodologies (5) (Example methodology – Figure 1).  

T1 mapping data was only analysed for the FD cases and healthy controls. T1 mapping was 

performed pre-contrast administration on a basal and mid left ventricular SAX slice in 

diastole using a shortened modified Look-Locker inversion recovery (ShMOLLI) sequence 

(13). The resulting pixel by-pixel T1 color maps were displayed using a customized 12-bit 

lookup table, where normal myocardium was green (T1~960ms), increasing T1 was red 

(T1>1020ms), and decreasing T1 was blue (T1<900ms). For the septal T1 measurement, a 

region of interest (ROI) in the mid septum was manually drawn, taking care to clearly avoid 

the blood-myocardial boundary with a 20% offset. LVPM T1 was measured by manually 

drawing a ROI in the larger of the 2 papillary muscles in the mid-ventricular short axis slice, 
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again with an offset from the blood-myocardial boundary. Thus, the shape and size of the 

ROIs in the LVPMs were all different due to the varying size and morphology of the LVPMs. 

To minimize potential partial volume contamination from the blood pool, only papillary 

muscles greater than 6mm in diameter were analyzed. This size was chosen to enable a large 

enough ROI (>0.2cm2) for pixel analysis. Since T1 is known to vary between field strength, 

acquisition technique and site, and gender (females typically have higher T1 than males) (14), 

the normal ranges of T1 values in this study were defined as mean ± 2 standard deviations of 

the healthy control group in males and females (“low” < 2 SD below the mean; “high” > 2 SD 

above the mean).  

To verify the reproducibility and reliability of measuring papillary muscle T1, the intra- and 

inter-observer repeatability were assessed in half of the FD subjects. For intra-observer 

variability, the measurements were performed twice by the same observer (RK) with at least 1 

month between measurements. For inter-observer variability, the first observer (RK) 

measurement was compared to a second independent observer (SN), blinded to initial results. 

Late gadolinium enhancement (LGE) imaging was only analysed on the FD cases. These were 

acquired in a SAX stack and standard long-axis views, plus cross-cuts if LGE+ve, using a 

FLASH (fast low angle shot) sequence with PSIR, a minimum of 5 minutes after contrast 

administration (0.1 mmol/kg body weight, Gadoterate meglumine, Dotarem, Guerbet S.A., 

France). 

 

Statistical analysis 

Statistical analyses were carried out using SPSS V22.0 (IBM, Armonk, NY). All continuous 

variables are expressed as mean  standard deviation. Categorical variables are expressed as 

percentages. Subgroup results were compared by either a 2-tailed t-test or 1-way analysis of 

variance (ANOVA) with post hoc analysis using the Games-Howell procedure (differing 

variances) or Bonferroni correction if not. A p-value of <0.05 was considered significant. The 
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Bland Altman test assessed intra- and inter-observer variability of LVPM T1, with the results 

presented graphically including mean differences, 95% limits of agreement, and the 

coefficient of repeatability. 

 

Results 

There were 478 cases in total: 125 FD (64 LVH+ve, 61 LVH-ve), 85 HCM (50 LVH+ve, 35 

LVH-ve), 82 AS (72 LVH+ve, 10 LVH-ve), 67 amyloid (50 LVH+ve – 25 AL, 25 ATTR; 17 

LVH-ve, all AL), 40 hypertension (14 LVH+ve, 26 LVH-ve), and 79 healthy controls (all no 

LVH), Table 1.   

 

LVPM contribution to myocardial mass  

LVH+ve cases (n=250): The LVPM contribution to total LVM was not the same in all 

diseases. FD (13%±3) was significantly more than all other diseases (average 7%; p<0.001 

for each comparison). HCM (10%±3) was higher than all other diseases except FD (p<0.001 

for each comparison). All other diseases and controls were similar with LVPMs comprising 

7-8% of total LVM, Table 1 (top) and Figure 2. 

 

LVH-ve cases (n=149):  The LVPM contribution to total LVM was the same in all conditions 

and controls (mean 7%) except FD, which was higher than all other diseases and controls 

(11%±3; p<0.001 for each comparison), Table 1 (bottom) and Figure 3. 

 

T1 measurements of papillary muscles 

The T1 of LVPMs was measured in FD and controls. Septal T1 was measured in all, but 

LVPM T1 could only be measured in LVPMs >6mm, so 111 (89%) FD and 73 controls 

(92%) were analysed (Table 2, Figure 4). 
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Controls (n=73): The mean septal T1 was 958±28 ms (902ms lower limit, LL), with males 

947±23ms (LL 901ms) and females 972±28ms (LL 916ms). The mean LVPM T1 was 

970±37ms, with the LL in males 915ms and females 926ms. The LVPM contribution to LVM 

was the same in males and females (7±1%). 

 

LVH+ve FD cases (n=59):  92% had low septal T1 (8% normal). LVPM T1 was substantially 

concordant with septal T1: When the septal T1 was low, the LVPM T1 was low in 90% 

(49/54), and when the septal T1 was normal, the LVPM T1 was normal in 40% (2/5). 

Between the low and normal septal T1 groups, the LVPM contribution to LVM was similar 

(12±3% vs 14±2%, p=0.4).  

Gadolinium was administered to 78% (n=87) of the FD group, with 55% of these 

demonstrating LGE – 24 males (all LVH+ve) and 23 females (15 LVH+ve). Of the LVH+ve 

group, 48 received gadolinium – 35/44 were LGE+ve with low septal T1, and 4/4 were 

LGE+ve with normal septal T1. All LVH+ve FD cases with normal septal T1 had LGE in 

their LV myocardium (Table 2, last panel).  

 

LVH-ve FD cases (n=52): 54% had low septal T1 (46% normal). There was less concordance 

than in the LVH+ve group: When the septal T1 was normal, the LVPM T1 was normal in 

70% (17/24), and when the septal T1 was low, 75% (21/28) had a concordant low LVPM T1. 

Despite these findings, LVPM contribution to LVM was similar between the low septal T1 

and normal septal T1 groups (11±3% vs 10±3%, p=0.08). Of this LVH-ve group, 39 received 

gadolinium – 5/18 were LGE+ve with low septal T1, and 3/21 were LGE+ve with normal 

septal T1. 

 

The same pattern of results was seen when dividing these FD subgroups into males and 

females (Supplementary Table 1). All FD subjects had good LV systolic function (LVEF 
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75±7%), and 64% (n=71) were treated with enzyme replacement therapy (ERT). There was 

no statistical difference in LVPM contribution to LVM in those FD patients treated with ERT 

compared to those FD patients not receiving ERT (12±4% vs 11±3%, p=0.2). In addition, T1 

values were non-significantly lower in FD patients on ERT compared to FD patients not on 

ERT: septal T1 872±58ms vs 898±48ms, p=0.08, and LVPM T1 890±63ms vs 907±51ms, 

p=0.3.  

 

Intra- and inter-observer variability 

Assessment of the intra- and inter-observer variability by Bland Altman plots and coefficients 

of repeatability showed acceptable levels of agreement for measurements of LVPM T1 

(Figure 5).  

 

 

Discussion  

 

Subjects with FD had disproportionately high LVPM hypertrophy compared to all the 

LVH+ve cohorts and healthy controls. HCM also had significantly increased LVPM 

contribution to total LVM compared to all other LVH+ve groups except for FD. Interestingly, 

it was only FD that displayed LVPM hypertrophy in FD in the absence of LVH, contributing 

over 1.5 times as much of the proportion of total mean LVM compared to controls. These 

findings support the hypothesis that the LVPMs are an imaging biomarker helpful in 

differentiating the aetiology of LVH, and may even be useful in LVH-ve hearts. It is 

acknowledged that the LVPMs are small structures and the absolute observed differences in 

LVPM quantification are small, despite being statistically significant.  This disputes the 

robustness for clinical application. Furthermore, the level of image resolution and contrast 

required to precisely measure LVPM mass can only be achieved with CMR, which already 

allows further differentiation of aetiologies with tissue characterisation.  

The T1 mapping findings offer further insight into the biology of cardiac involvement in FD. 
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This was especially interesting in the LVH-ve FD cases with concordant normal septal and 

LVPM T1 values (indicating no detectable storage) but disproportionate LVPM hypertrophy. 

This phenomenon of hypertrophy in the absence of detectable storage implies there may be 

another mechanism for the LVPM hypertrophy other than or in addition to sphingolipid 

deposition (eg. toxic metabolites, oedema, inflammation). However, this is difficult to 

ascertain because of the limitations of using this technique on such small structures. One such 

potential limitation of using LVPM T1 as a surrogate marker of sphingolipid accumulation in 

FD is that pixels of interest in the LVPMs may be subject to partial volume effects from the 

adjacent blood pool, given they are small structures within the ventricular cavity. This partial 

volume effect might result in LVPM ‘pseudonormalisation’ whereby the true native LVPM 

T1 may be lower than reported. Future research will enable investigation into whether LVPM 

T1 is lower than the septum, or reduced prior to septal T1 lowering, indicating preferential 

sphingolipid deposition in the LVPMs – a potential pathophysiological explanation of their 

exaggerated hypertrophy. Alternatively, a normal LVPM T1 may be pseudonormalisation 

from concurrent scar, or as a consequence of ERT. Histological confirmation would be 

helpful in dissecting this issue, but unfortunately was not available.  

Another limitation is of the reliability of T1 mapping in detecting storage. Future research 

into the native multi parametric signal of myocardium might reveal whether a ‘normal’ T1 

value truly represents no sphingolipid storage.  There may be a detection threshold – a certain 

storage burden may need to be reached to permit a measurable drop in T1. We acknowledge 

that histological validation is essential in exploring this issue, but myocardial tissue is 

difficult to obtain in this disease so was not pursued. Also, correlation of LVPM CMR 

findings to patient outcomes or symptomatology was beyond the scope of this work. 

This study also highlights that the paradigm of disease progression in FD is not well 

understood, and that the relationship between myocardial hypertrophy, scar and storage in the 

heart is yet to be unravelled. A large ongoing multicentre study in FD using CMR is currently 
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being undertaken to further investigate the biology of cardiac involvement in FD. 

 

In summary, the papillary muscles may be useful in differentiating the underlying cause of 

LVH, although clinical overlap does exist. They are also useful in LVH-ve hearts, where 

disproportionate LVPM hypertrophy is seen in FD. Low T1 is not associated with additional 

LVPM hypertrophy implicating other pathological mechanisms involved in LVPM 

hypertrophy in FD. 
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Table 1. Characteristics of the LVH+ve and LVH-ve cohorts plus controls  

  Age  Males LVEDV LVEF  LVM  LVPM  

  (yrs) (%) (ml) (%) (g) (%) 

LVH+ve cases 

     

  

Fabry (n=64) 52 ± 11 64 136 ± 34 76 ± 7 219 ± 75 13 ± 3* 

HCM (n=50) 51 ± 15 56 129 ± 26 78 ± 7 187 ± 72 10 ± 3* 

Amyloid (n=50) 68 ± 11 78 126 ± 30 59 ± 15 209 ± 71 8 ± 2 

AS (n=72) 70 ± 11 79 132 ± 26 69 ± 12 194 ± 33 7 ± 3 

Hypertension (n=14) 49 ± 16 64 151 ± 45 68 ± 11 190 ± 59 7 ± 2 

  

     

  

Controls (n=79) 49 ± 14 56 132 ± 27 71 ± 6 105 ± 26 7 ± 1  

  

     

  

LVH-ve cases 

     

  

Fabry (n=61) 39 ± 14 18 126 ± 23 74 ± 7 109 ± 23 11 ± 3* 

HCM (n=35) 31 ± 14 31 124 ± 25 73 ± 6 98 ± 23 7 ± 2 

Amyloid (n=17) 58 ± 14 29 117 ± 22 67 ± 11 124 ± 29 7  ± 2 

AS (n=10) 70 ± 9 10 103 ± 21 79 ± 7 96 ± 15 7 ± 1 

Hypertension (n=26) 61 ± 12 42 124 ± 23 71 ± 8 111 ± 22 7 ± 1 

* = p<0.001 compared to controls,  = p<0.001 compared to HCM 

LVH= left ventricular hypertrophy; HCM= hypertrophic cardiomyopathy; AS= aortic stenosis 
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Table 2. LVPM contribution to total LVM and T1 values in the FD cohort stratified by LVH, 

plus healthy controls. Also shows cases with LGE in LV myocardium.  

  LVPM (%) LVPM T1 (ms) Septal T1 (ms) LGE+ve 

Fabry LVH+ve (n=59) 
   

  

Low septal T1 (n=54) 12 ± 3 856 ± 49 846 ± 41 35/44 

Normal septal T1 (n=5) 14 ± 2 921 ± 43 930 ± 18 4/4 

  
   

  

Fabry LVH-ve (n=52) 
   

  

Low septal T1 (n=28) 11 ± 3 898 ± 36 877 ± 29 5/18 

Normal septal T1 (n=24) 10 ± 3 939 ± 45 947 ± 28 3/21 

  
   

  

Controls (n=73) 7 ± 1 970 ± 37 958 ± 28 - 

 

  

Note: only FD patients with both septal and LVPM T1 values were included in these analyses 

(n=111), and LGE imaging in n=87. 

LVPM= left ventricular papillary muscles; LVM= left ventricular mass; FD= Fabry disease; 

LVH= left ventricular hypertrophy 
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Supplementary Table 1. LVPM contribution to total LVM and T1 values in male and female 

FD cohorts plus male and female controls 

 

Males Only LVPM (%) LVPM T1 (ms) Septal T1 (ms) 

Fabry LVH+ve (n=37) 
  

  

Low septal T1 (n=37) 12 ± 3 839 ± 39 831 ± 37 

Normal septal T1 (n=0) - - - 

  
  

  

Fabry LVH-ve (n=9) 
  

  

Low septal T1 (n=5) 12 ± 3 869 ± 43 851 ± 25 

Normal septal T1 (n=4) 9 ± 3 932 ± 48 933 ± 22 

    

Male controls (n=44) 7 ± 1 961 ± 30 947 ± 23 

Females Only 
   

Fabry LVH+ve (n=22) 
  

  

Low septal T1 (n=17) 13 ± 3 893 ± 42 879 ± 27 

Normal septal T1 (n=5) 14 ± 2 921 ± 43 930 ± 18 

  
  

  

Fabry LVH-ve (n=43) 
  

  

Low septal T1 (n=23) 11 ± 3 904 ± 30 882 ± 27 

Normal septal T1 (n=20) 10 ± 3 941 ± 45 950 ± 28 

    

Female controls (n=29) 7 ± 1 982 ± 42 972 ± 28 

 

Note: only FD patients with both septal and LVPM T1 values were included in these analyses 

(total n=111) 

LVPM= left ventricular papillary muscles; LVM= left ventricular mass; FD= Fabry disease; 

LVH= left ventricular hypertrophy 
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Figure 1. Representative contour tracings in mid-ventricular short-axis cine slices depicting 

end-diastolic epicardial (green), endocardial (red) and LVPM (pink) borders in LVH+ve (A) 

FD, (B) HCM, (C) amyloid, (D) AS, (E) hypertension, and (F) healthy control (no LVH) 

 

 

LVH= left ventricular hypertrophy; FD= Fabry disease, HCM= hypertrophic cardiomyopathy; 

AS= aortic stenosis 
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Figure 2. Box plots showing LVPM contribution to total LVM in LVH+ve cohorts 

 

Box plot: box length represents the interquartile range; horizontal box line represents the 

median; whiskers represent the maximum and minimum values; * denotes p<0.001 compared 

to controls. 

LVPM= left ventricular papillary muscles; LVM= left ventricular mass; AS= aortic stenosis; 

HCM= hypertrophic cardiomyopathy; FD= Fabry disease; LVH+ve= left ventricular 

hypertrophy positive. 
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Figure 3. Box plots showing LVPM contribution to total LVM in LVH-ve cohorts 

 

Box plot characteristics as in Figure 2. 

LVPM= left ventricular papillary muscles; LVM= left ventricular mass; AS= aortic stenosis; 

HCM= hypertrophic cardiomyopathy; FD= Fabry disease; LVH-ve= left ventricular 

hypertrophy negative. 
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Figure 4. (A) ShMOLLI generated T1 colour map of a representative FD case showing a 

mid-ventricular short-axis slice with manual contouring and ROIs in the septum and LVPM 

(green represents normal T1, blue represents low T1). (B) Scatter plot showing the 

distribution of septal and LVPM T1 values in LVH+ve and LVH-ve FD cases. 

 

 

ShMOLLI= shortened modified Look-Locker inversion recovery sequence; FD= Fabry 

disease; ROI= region of interest; LVPM= left ventricular papillary muscle; LVH= left 

ventricular hypertrophy 
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Figure 5. Bland Altman graphs of LVPM analyses of (A) intra-observer variability, and (B) 

inter-observer variability. The mean difference of each plot is shown as a solid line and the 

upper and lower limits of agreement as dashed lines. The coefficient of repeatability for each 

analysis is displayed inset each graph. 

 


