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Abstract 

 
In this work we report a significant advance for the preparation of monodispersed 

microbubbles, which are increasingly used and have become a key constituent in many 

advanced technologies. A new device comprising of two T-junctions containing coarse 

capillaries and operating in series was assembled. Microbubble generation was facilitated by 

using bovine serum albumin solution and nitrogen as the liquid and the gas phase, 

respectively. The effect of operating parameters such as gas pressure and liquid flow rate on 

the size of the microbubbles generated were investigated for the two T-junction systems and 

the results were compared with a single T-junction process. The experimental results showed 

that microbubbles produced via the double T-junction setup were smaller at any given gas 

pressure for both liquid flow rates of 100 and 200 µm studied in this work. A predictive 

model is developed from the experimental data, and the number of T-junctions was 

incorporated into this scaling model. It was demonstrated that the diameter of the 

monodisperse microbubbles generated can be tailored using multiple T-junctions while the 

operating parameters such as gas pressure and liquid flow rates were kept constant. The 

stability of the microbubbles produced was also examined and indicated that microbubbles 

produced through the double T-junction were more stable. 
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Introduction 
 

Microbubbles, widely defined as bubbles with diameters in the range 1-1000µm, have 

numerous applications in scientific fields, such as in food and chemical industries1, oil and 

energy generation2, cosmetic and agricultural technologies3, 4. In addition, microbubbles are 

in great demand in the biomedical field for use as contrast agents and thrombus destruction 5, 

drug carriers and gene delivery6, and for bacterial scavenging and biosensing7. Different 

applications can have various requirements on microbubble size and size distribution, 

therefore the precise control of these is an essential factor, for example key biomedical uses 

of microbubbles such as ultrasound imaging and drug delivery demand the generation of 

near-monodisperse microbubbles in the 2-8µm diameter range which are stable over a longer 

duration. Several methods have been utilised to produce microbubbles, including sonication8, 

ink-jet printing9, coaxial electrohydrodynamic atomization10 and gyration7 . However, a 

major problem with all of these methods is the lack of total monodispersity of microbubbles 

produced11.   

In contrast to other microbubble making methods, microfluidic technology is one of the most 

promising tools to generate microbubbles due to its capability of consistently generating 

monodisperse microbubbles. However, the microbubble size formed is critically dependent 

on the size of capillaries used and therefore, for solutions with high viscosity, the production 

of fine microbubbles becomes difficult with this technique12. New attempts have been made 

to ease microbubble production in microfluidics, for instance, with multi-array microchips13 

and the use of sudden deepened configuration in the micro-channel14. Depending on the flow 

pattern and the output product characteristics, microfluidics are categorised into three main 

geometries: co-flowing15, flow focusing16 and cross-flowing17. T-junction cross-flowing 

devices are one of the simplest and most reliable geometries for production of monodispersed 

microbubbles18. A remarkable advantage of the T-junction device in addition to reusability 

and cost efficiency is the control over the flow rate and hence reproducibility of microbubble 

formation satisfying similar criteria.  

Albumin is extensively used as a stabilizing shell for microbubbles.19 It is often heated to 

denature and cross-link in order to form a stable shell for microbubbles. Microbubbles 

produced with non-cross-linked albumin have a higher liquid-vapour pressure and as a result 

they are less stable than the cross-linked albumin-shell microbubbles. Achieving cross-linked 

albumin-shell microbubbles through microfluidics devices is difficult, resulting in very few 
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dedicated investigations into production of stabilized albumin microbubbles20, thus extending 

the stability of these in other ways are in demand at present. The production of bovine serum 

albumin (BSA) microbubbles, as biocompatible and non-toxic templates for scaffolds, has 

been previously investigated21, 22. The pore size of the scaffold plays an important role in cell 

binding, migration and ingrowth23, and microfluidic techniques can facilitate the formation of 

uniform microbubble templates for scaffolds having ordered and homogenous porous 

textures.  

In this paper, a new microfluidic system is proposed as a possible route to produce 

monodispersed microbubbles where coarse (200 µm diameter) capillaries were used and two 

T-junctions were combined in series to investigate the effect of operating parameters on 

microbubble size.  In order to demonstrate this advance, two capillary embedded T-junction 

devices were aligned in series with a simple geometry that provides two inlets for liquid flow 

as opposed to a single T-junction setup. For the purpose of hydrodynamic analysis and to 

investigate how the addition of the second T-junction affects the size, structure and stability 

of microbubbles, both liquid inlet channels were fed with the same BSA solution. Thus a 

comparative study on microbubble formation with the single T-junction setup was conducted 

and a scaling model that can predict the microbubble diameter was generated by 

incorporating the number of T-junctions in the model as one of the variables.  Reduction of 

the microbubble size to < 10 μm diameter and modifying the microbubble chemistry (by 

using different materials and surfactants) were not specific aims of this work, however it was 

demonstrated that by using a predictive model on how the proposed apparatus can be used to 

form microbubbles of < 10 μm by combining several junctions.  

Experimental 
 

Materials 
 

BSA (≥98% lyophilized powder, Sigma Aldrich, U.K), with a relative molar mass of 66 kDa 

was used to prepare the solution (continuous phase) that enables formation of the shell 

material of the microbubbles. Distilled water was used to prepare 15% w/w BSA solution, by 

dissolving BSA with magnetic stirrers in volumetric flasks until a homogeneous solution was 

formed. Nitrogen was chosen as the dispersed phase (gas) for all the experiments.  
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Solution Characterisation  
 

The solution was characterized to determine the density, surface tension and viscosity. 

Density was measured using a standard density bottle DIN ISO 3507-Gay-Lussac.  A Kruss 

tensiometer (Model DSA100, Kruss GmbH, Hamburg, Germany) was used to measure the 

surface tension using the Wilhelmy’s plate method.  A Brookfield DV-11 Ultra 

programmable Rheometer (Brookfield Engineering Laboratory Inc., USA) was utilized to 

measure the solution viscosity. All the measurements, presented in Table 1, were conducted 

at ambient temperature (21°C) and relative humidity of 45% after calibrating the equipment 

with distilled water.  

Microbubble generation 
 

A schematic of the double T-junction device used in this work is shown in Figure 1. The 

initial T-junction was created by inserting two Teflon FEP (Fluorinated Ethylene 

Polypropylene) capillary tubing with inner diameter of 200 μm perpendicularly to each other 

in to a polydimethylsiloxane (PDMS) block as inlet channels for the gas and liquid flows. A 

third capillary of 200 µm diameter was inserted into the exit channel of the block and was 

aligned with the gas supply channel to create a 200 μm gap that resulted in a confluence 

junction of two phases.  A second PDMS block was used to insert the exit channel of the first 

T-junction perpendicular to the second liquid inlet flow with the same diameter (200 μm) 

FEP capillary tubing. The exit channel was aligned with the exit capillary tube of the initial 

T-junction that was inserted as one of the inlets of the second T-junction. The gap between 

the two aligned capillaries were kept constant at 200 μm. The gas was supplied via a tube to 

one of the first T-junction’s inlets. A regulator and a digital manometer were also connected 

to the tube and used for pressure control and measurement, respectively. The liquid was 

supplied at a same rate to both T-junction inlets via syringe pumps (Harvard Apparatus Ltd., 

Edenbridge UK). The capillaries were fixed and secured to the channels using connectors to 

avoid leakage of gas and liquid. Microbubbles were collected using glass slides from the 

outlet capillary of the second T-junction. 

For a solution with given viscosity and flow rate, monodisperse microbubble generation only 

takes place in a certain range of supplied gas pressures with the largest microbubble 

generated at the highest gas pressure and smallest microbubble at the lowest gas pressure3. At 

gas pressures below this range, liquid pushes the gas upwards and liquid dripping occurs, 
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while jetting occurs when the gas pressure is increased above this range and microbubbles 

with a large size distribution are produced. In this work, a range of gas pressures that 

produced monodisperse microbubbles for each flow rate and geometry were investigated.  

 

In order to investigate the effect of inserting the second T-junction on microbubble formation, 

comparative experiments were conducted. Initially, monodispersed microbubbles were 

obtained from the single T-junction, and collected on microscope slides to measure the 

diameter. Later, a second T-junction was connected to the outlet channel of the first single T-

junction and the same solution was used as the liquid phase for both liquid inlet channels. 

Microbubbles were collected at the exit channel of the second T-junction.  

 

For both single and double T-junction geometries, microbubbles were obtained at two flow 

rates, 100 μl/min and 200 μl/min. For the single T-junction geometry, the microbubbles were 

collected at every 5 kPa from 15 to 70 kPa and from 15 to 80 kPa at flow rate of 100 and 200 

μl/min, respectively. For the double T-junction geometry at flow rates of 100 and 200 μl/min, 

the microbubbles were collected at every 5 kPa from 20 to 75 kPa and from 35 to 80 kPa, 

respectively. In order to determine the microbubble stability at different flow rates, gas 

pressures and geometries, the size of microbubbles collected at 20 to 65 kPa at flow rate of 

100 μl/min; 35 to 80 kPa at flow rate of 200 μl/min, for both geometries, were monitored 

every 5 minutes until all the microbubbles disappeared or dried. All experiments were 

conducted at ambient temperature (21 ° C) and relative humidity of 45%. 

 

Microbubble characterization 

 

Microbubbles collected from the outlet of the device on microscope slides were immediately 

observed under an optical microscope (Nikon Eclipse ME 600) fitted with a camera (JVC 

KY-F55B). Microbubbles were studied at 5x, 10x and 20x magnifications. For each sample, 

100 microbubbles were chosen to measure the diameter and stability over a fixed collection 

area of 1.5 mm2. A Phantom 7.3 high speed camera with a maximum resolution of 800 x 600 

pixels at up to 4,800 fps giving 1.2 seconds of recording time (Vision Research Ltd., UK) 

was also used to obtain real time video images of the microbubble formation process (see 

example in supplementary information). The coefficient of variation (CV), defined as 

CV=ơ/𝑑𝑎𝑣 x 100%, where ơ is the standard deviation, and 𝑑𝑎𝑣 is for the mean diameter of 
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microbubbles, was calculated by measuring the diameter of 100 microbubbles for each 

sample tested. 

Results and discussion 

 

Effect of the addition of the second T-junction on the formation of microbubbles 

In this part of the work, high speed video images (see supplementary information) were used 

to analyse how the addition of the second T-junction affects the flow and shape of 

microbubbles within the microchannels. At a constant liquid flow rate of 100 μl/min for both 

liquid inlet channels, gas pressure was increased from 130 to 190 kPa. As shown in the 

micrographs in Figure 2 ai-ci, by increasing the gas pressure, microbubble size increased in 

the same manner as a single T-junction from 220 to 340 μm. The shape of microbubbles 

within the channels changed from nearly spherical to plug-like by increasing the gas pressure, 

which lead to a larger microbubble diameter after collection. Another factor that was 

observed through the high speed camera images is that by introducing the second T-junction, 

the distance between generated microbubbles was increased in all the cases after they passed 

through the second T-junction. For instance, the initial distance between two microbubbles 

prior to passing the second T-junction was L1=600 μm at gas pressure of 130 kPa, which 

increased to L2=810 μm. The same trend was detected for higher gas pressures (Figure 2aii, 

bii and cii). The introduction of an additional liquid flow via the second T-junction increases 

the velocity of bubbly flow in the exit channel of the second T-junction and hence the liquid 

phase pushes the adjacent microbubbles away from each other, that leads to increased 

distances between the microbubbles. This phenomenon can later assist with reduction in 

bubble coalescence within the microchannels prior to collection. 

Effect of pressure, flow rate and geometry on microbubble diameter 

 

Flow rates of 100 and 200 μl/min were selected and applied to both the single and double T-

junctions. Once the microbubbles were formed at the minimum gas pressure for a given flow 

rate, the gas pressure was systematically increased. The flow rate ratios as well as the 

microfluidic geometry determine the minimum gas pressure that enables microbubble 

production. In order to determine this minimum value, gas pressure was increased slowly 

until microbubbling was achieved. The minimum gas pressures that produced the smallest 

microbubbles using the single T-junction at flow rate of 100 and 200 μl/min were 15 and 20 

kPa, respectively. The value of the minimum gas pressure was increased to 20 and 30 kPa 
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with flow rates of 100 and 200 μl/min, respectively using the double T-junction. Microbubble  

formation in a microfluidic device is governed by the pressure balance between continuous 

and disperse phase at the junction24. For the case of liquid and gas, as the pressure becomes 

equal at the junction, the liquid column starts forcing the gas backwards. To generate 

microbubbles the gas pressure has to be increased so that it penetrates the liquid column and 

microbubble formation begins25 . Consequently, at low liquid flow rates using the single T-

junction, microbubbling occurs at relatively low gas pressures. On the contrary, at high liquid 

flow rates, high gas pressure is required to enable microbubble formation. However, the 

minimum gas pressure that enables microbubble production is always higher using the double 

T-junction than that of single T-junction even at the same liquid flow rate. This is most likely 

due to the fact that the additional liquid flow into the second junction causes the total flow 

rate of the liquid to increase; therefore the ratio of liquid to air flow is increased. 

Subsequently, in order to start microbubbling, higher gas pressure is required for the double 

T-junction.  

As shown in Figure 3, the largest microbubble was obtained from the single T-junction at the 

lower flow rate 100 µl/min and highest gas pressure, whilst the smallest microbubble was 

obtained using the double T-junction with higher flow rate (200µl/min) and lowest gas 

pressure. At a lower flow rate of 100 μl/min, the microbubbles generated using double T-

junction had smaller dimensions than that formed by a single T-junction. Similarly, at the 

higher flow rate of 200 μl/min (Figure 3), the size of microbubbles obtained was smaller in 

the double T-junction. For a fixed flow rate and gas pressure, double T-junction geometry 

provides microbubbles with smaller diameters. According to the scaling law from Garstecki 

et al. 26, the length of the immiscible slug, L, is proportional to the flow rate ratio in a T-

junction:
𝐿

𝑑
= 1 + 𝛼

𝑄𝑔

𝑄𝑙
  where d is the width of the channel, Ql and Qg are the liquid and gas 

flow rates, respectively, and 𝛼 is a constant. By calculating the capillary numbers Ca=0.002 

and 0.003 (Ca<0.01) of the liquid phase at both flow rates of 100 and 200 μl/min, 

respectively, the breakup mechanism of microbubble formation in this work is found to be in 

the squeezing regime. Therefore, microbubble diameter is dominated by the flow rate ratio 
𝑄𝑔

 𝑄𝑙
 

27. The microbubble diameter is increased as the flow rate ratio increased. Therefore, the 

additional liquid phase in to the second T-junction resulted in a smaller flow rate ratio of gas 

to liquid. This process generated uniformly size microbubbles which are smaller than that 

generated from the single T-junction. As indicated in Figure 3, microbubbles that were 
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generated with higher flow rate were smaller than those with lower flow rate using the double 

T-junction device, which suggests that the size of these bubbles can be controlled by varying 

the rate of flow of the liquid and gas pressure at both T-junctions of the double T-junction 

setup.  

In order to provide a predictive model to better understand the effect of addition of second T-

junction, the microbubble diameter scaled according to the channel diameter is plotted 

against 
𝑄𝑔

 𝑄𝑙
 (Figure 4a). For the range of gas/ liquid flow ratios studied in this work (i.e. the 

gas pressure range that microbubble formation is possible), a scaling model derived from the 

curve fit of plots presented in Figure 4a can be represented as: 

𝐷𝑏

 𝐷𝑐ℎ
= (0.01 𝑛 + 0.53)

𝑄𝑔

 𝑄𝑙
+ (−0.4𝑛 + 1.99)   Eq (1)  

 

Where n (≥1) is the number of T-junctions, Db and Dch are, microbubble and channel 

diameter, respectively. The predictive data was plotted against the experimental results as 

demonstrated in Figure 4b. The proximity of experimental points to the parity line shows that 

both the experimental and predictive data are in good agreement. For the given flow ratios 

(0.4≤
𝑄𝑔

 𝑄𝑙
 ≤2.4) used in this study at a channel diameter of 200 μm, the number of T-junctions 

required in order to achieve different microbubble size can be predicted from the model.  

 

The predictive scaling model was further used in order to demonstrate the number of T-

junctions required for producing microbubbles of desired diameter. For this purpose, the 

range of gas/liquid flow ratios tested in this work as well as capillary diameter of 200 µm was 

incorporated in the model. The predicted microbubble diameters with the number of T-

junctions were then plotted for 0.4≤
𝑄𝑔

 𝑄𝑙
 ≤2.4. Figure 5 illustrates these predictions and shows 

that with the 200 µm diameter coarse capillary used, at a given flow rate it is possible to 

generate monodisperse microbubbles with diameter approaching 10 µm, for example at 

𝑄𝑔

 𝑄𝑙
=0.8 this can be achieved with six T-junction used in series. The capillary channel 

diameter (Dch) has a significant influence on the predicted microbubble diameter, and at 

higher capillary diameters similar to the one used in this work (200 µm) more T-junctions 
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may be required to be aligned to reduce microbubble diameter at a given flow rate. 

Conversely, using fine channel diameters <200 µm aids to reduce the number of T-junctions 

required, however, as discussed earlier, this makes microbubble forming with viscous 

solutions more difficult and inconsistent.   

Microbubble residence time within the channels and production rate 

In this part of study, the microbubble residence time within the exit channel from formation 

to collection was measured using three different configurations shown in Figure 1c. In order 

to verify the findings, microbubbles with different size and formation time were investigated 

by increasing the supplied gas pressure from 50 to 70 kPa at a constant flow rate of 100 

μl/min. Microbubbles are formed at the orifice of the exit channel of the single T-junction 

and the first T-junction in case of double T-junction. Two different lengths were chosen for 

the single T-junction of 110 and 200 mm. From the measured data taken from high-speed 

camera images, plots of residence time are shown in Figure 6. The residence time for shorter 

channel length was smaller (130 to 160 ms). The graph of residence time for the single T-

junction with 200 mm exit channel length has shown the highest values of 270 to 310 ms. 

Microbubbles produced in the double T-junction had a smaller residence time than for the 

single T-junction with 200mm exit channel length. However, the residence time for 

microbubbles within the double T-junction device was longer in comparison with the single 

T-junction of shorter exit channel (110 mm). While increasing the microbubble residence 

time within single T-junction channels can lead to lower production rates, the addition of 

second T-junction (i.e. increasing the exit channel length by introducing a second source of 

liquid flow) resulted in the reduction of microbubble size. 

The microbubble production rates of the systems used in this study are given in Table 2. This 

data shows that for a fixed 
𝑄𝑔

 𝑄𝑙
 value, the addition of a second T-junction was very effective in 

increasing production rates. Usually, microfluidic devices give lower microbubble production 

rates compared with jetting techniques such as co-axial electrohydrodynamic atomisation28, 

29. However, in the electrohydrodynamic jetting method the size distribution of the 

microbubbles generated is much wider and it is experimentally impossible to produce 

monodisperse microbubbles similar to the present work. Multi-array lithographic microfluidic 

devices can be effective in increasing microbubble production rates and the size of 

microbubbles generated 13. On the other hand, lithographic technology is expensive compared 

to the proposed device combing T-junction in series that also offers both increased 
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production rates and reduction of microbubble size. The production rates reported in this 

work are lower than the values for T-junction microbubble production rates given in the 

review literature29, however these also depend on capillary diameter and microbubble size 

and flow rate.   

Stability study of microbubbles generated with different geometries 

The mean diameter of microbubbles generated at different gas pressures for a given flow rate 

and geometry was measured as a function of time. For each sample, 100 microbubbles were 

randomly selected and measured every 3 to 5 min until all the microbubbles disappeared or 

their BSA shell dried. As demonstrated in the micrographs in Figure 7, the least stable 

microbubbles were produced from the single T-junction with flow rate of 100 μl/min at 65 

kPa and with flow rate of 200 μl/min at 80 kPa with mean diameter of 484 ±8.9 μm and 447 

±6.5 μm, respectively. On the other hand, microbubbles produced with liquid flow rate of 200 

μl/min for both liquid phases at 35 kPa using double T-junction were found to be the most 

stable, with an average diameter of 272 ±5.2 μm, being stable up to 40 minutes after 

collection. 

Microbubbles shrink with time due to gas dissolution to the surroundings, and those produced 

with smaller size were found to be more stable. This behaviour could be explained by the fact 

that microbubbles made of a solution with given viscosity have a constant surface tension 

which is responsible for cohesive forces among liquid molecules. For microbubbles with 

larger size, their gas-liquid interface is loosely packed and therefore gas dissolution is more 

likely to take place 20. Consequently, smaller microbubble whose gas-liquid interface is more 

densely packed were stable for a longer period. 

The effect of liquid flow rate on microbubble stability was studied by comparative 

experiments. As shown in Figure 8, microbubbles that were generated at higher liquid flow 

rates were found to be more stable than those generated at lower flow rates in both 

geometries. This is most likely to be due to the fact that microbubbles produced with higher 

liquid flow rate at the same gas pressure are smaller. According to Epstien and Plesset30, the 

rate of dissolution of gas and as a result the rate of change of microbubble size depends on 

factors such as surface tension, and rate of gas diffusion into the liquid shell. Laplace 

pressure is inversely proportional to microbubble diameter, however, BSA microubbles act 

differently to surfactant coated microbubbles, as well as the packing and order of the bubbles 

vary and as a result Ostwald ripening seems to occur more in the larger microbubble diameter 
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samples. Since the stability of microbubbles exposed to atmospheric conditions is dominated 

by their radius, smaller microbubbles have lower gas exchange rate with surroundings, hence 

they are more stable. On the other hand, the stability of the same size microbubbles generated 

at different flow rates and consequently different gas pressures were also studied. 

Microbubbles which were obtained from single T-junction with flow rate of 100 μl/min at gas 

pressure of 20 and 50 kPa have mean diameter of 315 ±3.9 and 405 ±5.5 μm, respectively. 

Microbubbles with mean diameter of 321 ±4.0 and 407 ±6.3 μm were obtained with higher 

liquid flow rate of 200 μl/min at higher gas pressures of 35 and 65 kPa, respectively. It was 

observed that both these microbubbles with similar diameter of 315 and 321μm (1.9% 

variation) lasted for 20 minutes after collection, and microbubbles with diameter of 405 and 

407 μm (0.49% variation) were stable for 15 minutes. This behaviour of microbubble 

stability is consistent with previous findings31. Thus, we can assume that, the stability of 

microbubbles with same diameter generated via single T-junction is not significantly 

influenced by either flow rate or gas pressure. 

More importantly, the influence of the microfluidic production geometry on microbubble 

stability was significant.  As illustrated in Figures 7 and 8, for a given flow rate and gas 

pressure, microbubbles generated from double T-junction were relatively more stable than 

that generated from the single T-junction. For instance, microbubbles generated from single 

T-junction lasted for 10 minutes, however, the microbubbles obtained from the double T-

junction at 200 μl/min and 80 kPa lasted for 20 min. Also, microbubbles produced from the 

double T-junction have a steadier size decrease rate, whereas this is more rapid for 

microbubbles collected from the single T-junction. This could be attributed to size difference 

between microbubbles made form single and double T-junctions. As mentioned before, the 

addition of the second T-junction reduced the microbubble diameter, hence delivering 

improvement in the stability. Interestingly, for the same size microbubbles which were made 

from both single and double T-junctions at the same liquid flow rate, it was experimentally 

observed that the stability of the microbubbles generated from the double T-junction is 

higher. For instance, at liquid flow rate of 100 μl/min, microbubbles generated using the 

single T-junction at 20 kPa and double T-junction at 20 kPa have approximately similar size 

of 315 ±3.9 and 308 ±6.6 μm, respectively, and lasted for 20 and 25 min accordingly. 

Similarly, at higher flow rate, microbubbles (305 ±6.2 μm) obtained from the double T-

junction lasted up to 30 minutes after collection, while microbubbles (300 ±3.8 μm) produced 

with the single T-junction were stable for only 20 minutes. This could be attributed to 
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stabilization by the additional liquid phase provided at the second T-junction of double T-

junction. In order to conclude from observations of stability of microbubbles, those 

microbubbles with approximately similar diameter were more stable owing to the additional 

BSA coating through the liquid phase on the second T-junction.  From the findings in this 

study, it can be envisaged that it is advantageous to use multiple coating materials for the 

shell of microbubbles via multiple junctions to produce even more stable microbubbles. This 

is the focus of our present work. 

Conclusions 

In this work, a new double T-junction device was tested to investigate the potential for 

producing microbubbles. It was shown that the size and production of microbubbles could be 

manipulated by introduction of a second junction into the commonly used single T-junction 

device. A comparison study was conducted to produce BSA microbubbles both with a single 

T-junction and then a double T-junction. The microbubbles produced via the double T-

junction were different in size and stability for a given flow rate and gas pressure. It was 

shown that for the highest liquid flow rate (200 μl/min) at the lowest gas pressure (35kPa), 

microbubbles generated were smaller (272 ±5.2 μm) in the double T-junction. This can be 

described by the diffusion of gas into the liquid phase due to a longer residence time inside 

the microchannels, compared to a single T-junction system. While the diffusion of gas takes 

place, the velocity of the mixed flow is increased by the additional liquid flow rate through 

the second T-junction and therefore the production rate is not compromised by keeping the 

microbubbles in microchannels by increasing the length of the single T-junction exit channel 

length. From the experimental data, for the range of the ratio of the gas/liquid flows studied, a 

scaling predictive model was obtained where the normalized microbubble diameter can be 

estimated for a given number of T-junctions connected. The experimental results and the 

predictive data were plotted and the proximity of the experimental data to the parity line 

proved that the predictive model is in agreement with the experimental data. A key feature 

from this predictive model is to investigate whether it is possible to reduce the microbubble 

size progressively by connecting more T-junctions to the current setup to enable production 

of microbubbles with diameters <10 μm (such as would be required for intravenous 

administration in biomedical applications).  It is shown from the predictive model that 

achieving this with the same coarse channel diameter of 200 μm is viable by increasing the 

number of T-junctions. Furthermore, it is shown that the stability of microbubbles was 

improved by inserting the second T-junction. 
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Table 1: Properties of BSA solution used in this work. 

 

Qg/Ql 
 

Single T-junction 
Production rate 

(microbubble/min) 

Double T-junction 
production 

rate(microbubble/min) 

% 
Increase 

1.4 1.697x104 2.787x104 64 

1.6 1.971x104 2.790x104 42 

1.7 2.039x104 2.923x104 43 

1.9 2.112x104 3.001x104 43 

2.0 2.242x104 3.75x104 40 

 

Table 2: The effect of gas-liquid flow rate ratio and number of T-junctions used on measured 

microbubble production rate at a constant liquid flow rate of 100 µl/min. The percentage 

increase in microbubble production due to second T-junction is also given. 
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List of Figures: 

Figure 1: Schematic of the (a) Single and (b) double T-junction cross-flow microfluidic 

device setup and c) single and double T-junction with different exit channel lengths of 110 

and 200mm. 

 

Figure 2: Micrographs and high speed camera images of microbubbles produced in the 

double T-junction geometry at a constant flow rate of 100μl/min and gas pressures of a) 130, 

b) 160 and c) 190 kPa. Microbubble diameter, L1 and L2 for each case (in μm) is a) 220, 600, 

110, b) 280, 715, 995 and c) 340, 945, 1080. 

 

Figure 3: Graphs demonstrating the range of microbubble diameters obtained at various gas 

pressures for liquid flow rates of 100 and 200 μl/min for both single and double T-junction 

geometries. (Db and Pg are the diameter of microbubble and gas pressure, respectively) 

 

Figure 4: a) Plots of dimensionless micromicro size at various gas to liquid flow ratios, b) 

Predicted scaling line fitted for experimental data (R2=0.95). 

 

Figure 5: Relationship between diameter of monodisperse microbubbles generated and 

number of T-junctions used as a function of 
𝑄𝑔

 𝑄𝑙
, channel diameter (Dch) in equation (1) was 

taken at 200 µm as used in our experiment. 

 

Figure 6: Graphs representing residence time of microbubbles from formation to collection 

within the microchannels at different lengths of 110 and 200mm for constant liquid flow rate 

of 100 μl/min. 

 

Figure 7: Micrographs showing the lifetime of microbubbles for both single and double T-

junctions at both flow rates studied (100 and 200 μl/min) and various gas pressures. 

 

Figure 8: Graphs showing the reduction of microbubble diameter with time (after collection) 

for microbubbles produced in a*) single T-junction, a**) double T-junction at 100 μl/min and 

b*) single T-junction, b**) double T-junction at 200 μl/min. 
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