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Abstract 15 

 16 

Hearing loss is a widespread condition that is linked to declines in quality of life and mental health. 17 

Hearing aids remain the treatment of choice, but, unfortunately, even state-of-the-art devices 18 

provide only limited benefit for the perception of speech in noisy environments. While traditionally 19 

viewed primarily a loss of sensitivity, it is now clear that hearing loss has additional effects that cause 20 

complex distortions of sound-evoked neural activity that cannot be corrected by amplification alone. 21 

Here we describe the effects of hearing loss on neural activity in order to illustrate the reasons why 22 

current hearing aids are insufficient and to motivate the use of new technologies to explore 23 

directions for improving the next generation of devices. 24 
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Hearing loss is a serious problem without an adequate solution 26 

 27 

Current estimates suggest that approximately 500 million people worldwide suffer from hearing loss 28 

[1]. This impairment is not simply an inconvenience: hearing loss impedes communication, leads to 29 

social isolation, and has been linked to increased risk of cognitive decline and mortality. In fact, a 30 

recent commission identified hearing loss as the most important modifiable risk factor for dementia, 31 

accounting for nearly 10% of overall risk [2].  32 

 33 

Despite the severe consequences of hearing loss, only 10-20% of older people with significant 34 

impairment use a hearing aid [3]. Several factors contribute to this poor uptake (psychological, social, 35 

etc.), but one of the most important is the lack of benefit provided by current devices in noisy 36 

environments [4]. The common complaint of those with hearing loss, “I can hear you, but I can’t 37 

understand you”, is echoed by hearing aid users and non-users alike. Inasmuch as the purpose of a 38 

hearing aid is to facilitate communication and reduce social isolation, devices that do not enable the 39 

perception of speech in typical social settings are inadequate.   40 

 41 

What does the ear do? The simple answer: amplification, compression, and frequency analysis 42 

 43 

The cochlea transforms the mechanical signal that enters the ear into an electrical signal that is sent 44 

to the brain via the auditory nerve (AN; Figure 1A). Incoming sound causes vibrations of the basilar 45 

membrane (BM) that runs along the length of the cochlea. As the BM moves, the inner hair cells 46 

(IHCs) that are attached to it release neurotransmitter onto nearby AN fibers to elicit electrical 47 

activity (Figure 1B). 48 

 49 

Weak sounds do not drive BM movement strongly enough to elicit AN activity and, thus, require 50 

active amplification by outer hair cells (OHCs), which provide feedback to reinforce the passive 51 

movement of the BM (Figure 1B). The amplification provided by OHCs decreases as sounds become 52 

stronger, resulting in a compression of incoming sound. This compression enables sound levels 53 

spanning more than 6 orders of magnitude to be encoded within the limited dynamic range of AN 54 

activity (Figure 1C, black lines).  55 

 56 

The mechanical properties of the BM change gradually along its length, creating tonotopy -- a 57 

systematic variation in the sound frequency to which each point in the cochlea is preferentially 58 

sensitive. Because of tonotopy, the amplitude of BM movement and subsequent AN activity at 59 

different points along the cochlea reflect the power at which different frequencies are present in the 60 

incoming sound. In the parts of the cochlea that are preferentially sensitive to low frequencies, the 61 

frequency content of incoming sound is also reflected in phase-locked BM movement and AN activity 62 

that tracks the sound on a cycle-by-cycle basis. Thus, the signal sent to the brain by the ear is, to a 63 

first approximation, a frequency analysis (Figure 1D). 64 
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What is hearing loss? The simple answer: decreased sensitivity 66 

 67 

Hearing loss has many causes including genetic mutations, ototoxic drugs, noise exposure, and aging 68 

[1]. The most common forms of hearing loss are typically associated with a loss of sensitivity in which 69 

weak sounds no longer elicit any AN activity, while strong sounds elicit less AN activity than they 70 

would in a healthy ear (Figure 1C, gray lines). This loss of sensitivity most often results from the 71 

dysfunction of OHCs, which can suffer direct damage (sensory hearing loss) or be impaired indirectly 72 

due to degeneration of the stria vascularis, the heavily vascularized wall of the cochlea that provides 73 

the energy to support active amplification (metabolic hearing loss).  74 

 75 

The effects of hearing loss are typically most pronounced in cochlear regions that are sensitive to 76 

high frequencies where OHCs normally provide the greatest amount of amplification. While a number 77 

of attempts have been made to identify distinct phenotypes of hearing loss, a recent systematic 78 

analysis of a large cohort revealed a continuum of patterns from flat loss that impacted all 79 

frequencies equally to sloping loss that increased from low to high frequencies [5].  80 

 81 

Hearing aids restore sensitivity, but fail to restore normal perception 82 

 83 

Most current hearing aids serve primarily to artificially replace the amplification and compression 84 

that are no longer provided by OHCs through multi-channel wide dynamic range compression 85 

(WDRC; see glossary). This approach enhances the perception of weak sounds, but, unfortunately, is 86 

not sufficient to restore the perception of speech in noisy environments [6,7]. Many current hearing 87 

aids also include additional features -- speech processors, directional microphones, frequency 88 

transforms, etc. -- that can be useful in certain situations but provide only modest additional benefits 89 

overall [8–12]. 90 

 91 

The assumption that is implicit in the design of current hearing aids is that hearing loss is primarily a 92 

loss of sensitivity that can be solved by simply restoring neural activity to its original level. However, 93 

this is a dramatic oversimplification: hearing loss does not simply weaken neural activity, it 94 

profoundly distorts it. Speech perception is dependent not only on the overall level of neural activity, 95 

but also on the specific patterns of activity across neurons over time [13]. Current hearing aids fail to 96 

restore normal perception because they fail to restore a number of important aspects of these 97 

patterns [14–17] (Figure 2, Key Figure). 98 

 99 

What does the ear do? The real answer: nonlinear signal processing 100 

 101 

The idea that the ear performs a frequency analysis of incoming sound is insufficient because the 102 

cochlea is highly nonlinear. The amplification and compression provided by OHCs is a form of 103 

nonlinearity, but it is relatively simple and, at least in theory, can be restored by current hearing aids. 104 

However, each OHC is capable of modulating BM movement not only in the region of the cochlea to 105 

which it is attached, but also at other locations. Consequently, sound coming into a healthy ear is 106 
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subject to complex nonlinear processing that creates cross-frequency interactions. Because of these 107 

interactions, the degree to which any particular frequency in an incoming sound is amplified depends 108 

not only on the power at that frequency, but also on the power at other frequencies.  109 

 110 

Because of cross-frequency interactions, the pattern of AN activity elicited by an incoming sound 111 

deviates substantially from that which would correspond to simple frequency analysis in a number 112 

of ways (Figure 3A, black line). One is the creation of distortion products: interactions between two 113 

frequencies that are present in an incoming sound can create additional BM movement and AN 114 

activity at a point in the cochlea that is normally sensitive to a third frequency that is not actually 115 

present in the sound. Another is suppression: the ability of OHCs at one location to reduce BM 116 

movement at nearby locations. This suppression sharpens frequency tuning and results in a local 117 

winner-take-all interaction on the BM that selectively amplifies the dominant frequencies in incoming 118 

sound. This selectivity is critical in noisy environments where the important frequencies in speech 119 

might otherwise be obscured [18–20]. 120 

    121 

What is hearing loss? The real answer: a profound distortion of neural activity patterns 122 

 123 

Loss of cross-frequency interactions 124 

 125 

Because cross-frequency interactions are dependent on OHCs, they are also eliminated by the same 126 

OHC dysfunction that decreases sensitivity. As a result, the AN activity patterns that are sent to the 127 

brain from a damaged ear are qualitatively different from the patterns that the brain has learned to 128 

expect from a healthy ear (Figure 3A, gray line). Unfortunately, these distorted patterns do not 129 

provide a sufficient basis for perception in noisy environments: without the nonlinear processing 130 

provided by cross-frequency interactions, the patterns elicited by different sounds are less unique 131 

and less robust to background noise [21]. 132 

 133 

OHC amplification and suppression sharpen the frequency tuning of the BM such that AN fibers 134 

become highly selective for their preferred frequency (Figure 3B, black line). This sharp tuning 135 

enables the entire dynamic range of each fiber to be utilized on a narrow range of frequencies such 136 

that different frequencies are easily distinguished based on the activity that they elicit. However, 137 

when OHC function is impaired, the BM loses its sharp tuning and AN fibers use less of their dynamic 138 

range on a wider range of frequencies (Figure 3B, gray line). For complex sounds such as speech, this 139 

results in a smearing of the activity pattern across AN fibers, making it difficult for the brain to 140 

differentiate between the patterns elicited by similar sounds, especially in noisy environments 141 

[21,22] (Figure 3C).  142 

 143 

OHC impairment also causes a shift in the preferred frequency of each fiber toward the lower 144 

preferred frequency of the passive BM movement (Figure 3B, arrows). Because OHC impairment is 145 

typically more pronounced in regions of the cochlea that are sensitive to higher frequencies, this 146 

results in distorted tonotopy in which much of the cochlea is sensitive to only low frequencies [23] 147 
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(Figure 3D). This distortion greatly reduces the information that the brain receives about high 148 

frequencies, which are critical for the perception of speech in noisy environments [24].  149 

 150 

Hidden hearing loss 151 

 152 

In addition to their effects on OHCs, many forms of hearing loss impact the AN itself [25]. In particular, 153 

recent studies have drawn attention to a previously unrecognized form of AN degeneration: damage 154 

to the peripheral axon or the IHC synaptic terminal (Figure 4A), which results in a loss of function. 155 

This synaptopathy can occur long before loss of the AN cell body itself [26,27] and has been termed 156 

“hidden hearing loss” [28] because its effects are not evident in standard clinical audiometric tests. 157 

These tests measure only sensitivity to weak sounds, while hidden hearing loss appears to be 158 

selective for those AN fibers with a high activation threshold that are sensitive only to strong 159 

sounds[29]. 160 

 161 

Even in a healthy ear, OHC amplification is not sufficient to compress incoming sound into the 162 

dynamic range of an individual AN fiber. Thus, differential sensitivity across a wide range of sound 163 

levels is achieved only through dynamic range fractionation -- parallel processing in different 164 

populations of fibers, each of which has a different activation threshold and provides sensitivity over 165 

a relatively small range (Figure 4C). Because high-threshold fibers provide differential sensitivity to 166 

strong sounds, their loss has important implications for the perception of speech in noisy 167 

environments [30]. Strong sounds saturate low-threshold fibers such that they become maximally 168 

active and are no longer sensitive to small changes in sound amplitude (Figure 4D; note that 169 

information about sound frequency may still be transmitted by these fibers through their temporal 170 

patterns). Thus, when high-threshold fibers are compromised, changes in the amplitude of strong 171 

sounds are poorly reflected in the signal that the ear sends to the brain. Direct evidence linking 172 

hidden hearing loss to perceptual deficits in humans is still lacking; however, the indirect evidence 173 

that is available from humans is largely consistent with the direct evidence from animals [31,32] and 174 

the renewed interest in this area will likely lead to further advances in the near future. 175 

 176 

Brain plasticity 177 

 178 

The effects of hearing loss also extend beyond the ear into the brain itself [33]. One widely-observed 179 

effect of hearing loss is a decrease in inhibitory tone, mediated by changes in GABAergic and 180 

glycinergic neurotransmission throughout the brain. Hearing loss weakens the signal from the ear to 181 

the brain, and the subsequent downregulation of inhibitory neurotransmission is thought to be a 182 

form of homeostatic plasticity that effectively amplifies the input from the ear to restore brain 183 

activity to its original level [34]. This decrease in inhibition can improve some aspects of perception 184 

(e.g. the detection of weak sounds), but it may also have unfortunate consequences. 185 

 186 

One effect that is of particular relevance to hearing aids is loudness recruitment, an abnormally rapid 187 

growth in brain activity (and, thus, perceived loudness) with increasing sound level [35]. This loudness 188 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 
 

recruitment distorts fluctuations in sound level that are critical for speech perception [36] and, when 189 

combined with hearing loss, leaves only a small range of levels in which sounds are both audible and 190 

comfortable. The plasticity that follows hearing loss may also impair the perception of speech in other 191 

ways [37]; for example, if the degree of hearing loss varies with frequency, as is often the case, 192 

plasticity can also result in a reorganization of the tonotopic maps within the brain, further distorting 193 

the representation of the frequencies for which the loss of sensitivity is largest [38].  194 

 195 

Central processing deficits 196 

 197 

The most commonly observed auditory deficit with a distinct central component is impaired temporal 198 

processing, e.g. failure to detect a short pause within an ongoing sound [39], which is highly 199 

dependent on the balance between excitation and inhibition within the brain [40]. Impaired temporal 200 

processing decreases sensitivity to interaural time differences (ITDs) [41,42] and prevents the use of 201 

spatial cues to solve the so-called “cocktail party problem” of separating out one talker from a group 202 

[43]. Hearing aids do little to improve sound localization and, indeed, often make matters worse by 203 

distorting spatial cues [41,44]. 204 

 205 

Temporal processing is also critical for speech perception independent of localization. Much of 206 

speech perception in noisy environments appears to be mediated by listening in the ‘dips’ -- short 207 

periods during which the noise is weak. Temporal processing also allows multiple talkers to be 208 

separated by voice pitch, which is essential for solving the cocktail party problem. Hearing loss 209 

impairs the ability to perceive small differences in pitch and, importantly, to separate two talkers 210 

based on voice pitch [45–47]. Impaired pitch-processing arises partly from the cochlear dysfunction 211 

discussed above [47,48], but changes in central brain areas also appear to play a role [49,50]. 212 

 213 

Beyond auditory processing deficits: the role of cognitive factors 214 

 215 

The combined peripheral and central effects of hearing loss described above result in a distorted 216 

neural representation of speech. However, the perceptual problems suffered by many listeners, 217 

particularly those who are older, often go far beyond those that would be predicted based on hearing 218 

loss alone, even when impairments in the processing of both weak and strong sounds are considered 219 

[49]. In recent years, it has become clear that the ultimate impact of a distorted neural representation 220 

on speech perception, as well as the efficacy of attempts to correct it, are strongly dependent on 221 

cognitive factors [51]. 222 

 223 

The past decade has seen the development of a conceptual model for understanding the interaction 224 

between auditory and cognitive processes during speech perception [52,53]. During active listening, 225 

neural activity patterns from the central auditory system are sent to language centers where they 226 

are matched to stored representations of different speech elements. When listening to speech in 227 

quiet through a healthy auditory system, the match between the incoming neural activity patterns 228 

and the appropriate stored representations occurs automatically on a syllable-by-syllable basis, and 229 
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requires little or no contribution from cognitive processes. However, when listening to speech in a 230 

noisy background through an impaired auditory system, the incoming neural activity patterns will be 231 

distorted and the match to stored representations may no longer be clear. This problem may be 232 

compounded during long-term hearing loss as stored representations become less robust [54]. 233 

 234 

When the match between incoming neural activity patterns and stored representations is not clear, 235 

cognitive processes are engaged: executive function focuses selective attention toward the speaker 236 

of interest and away from other sounds to reduce interference from background noise; working 237 

memory stores neural activity patterns for several seconds so that information can be integrated 238 

across multiple syllables; linguistic circuits take advantage of contextual cues to narrow the set of 239 

possible matches and infer missing words. This model explains why much of the variance in speech 240 

perception performance in older listeners is explained by differences in cognitive function [49,55]: 241 

high cognitive function can compensate for distortions in incoming neural activity patterns, while low 242 

cognitive function can compound them. 243 

 244 

Importantly, the effects of cognitive function on speech perception persist even with hearing aids. 245 

Many of the advanced processing strategies that are used by modern hearing aids can distort 246 

incoming speech. While listeners with high cognitive function may be able to ignore these distortions 247 

and take advantage of the improvements in sound quality, those with low cognitive function may 248 

find the distortions distracting [56,57]. Our understanding of the impact of cognitive factors on the 249 

efficacy of hearing aids has advanced dramatically in recent years; while many questions remain 250 

unresolved, there are already a number of issues that should be considered when designing new 251 

devices (Box 1). 252 

 253 

Concluding remarks and future perspectives 254 

 255 

To restore normal auditory perception, hearing aids must not only provide amplification, but also 256 

transform incoming sound to correct the distortions in neural activity that result from the loss of 257 

cross-frequency interactions in the cochlea, hidden hearing loss, brain plasticity, and central 258 

processing deficits. This is, of course, much easier said than done. First of all, with extensive cochlear 259 

damage -- e.g. dead regions where IHCs are lost [58] -- full restoration of perception may not be 260 

possible (see Outstanding Questions). Even in people with only mild or moderate impairment, 261 

identifying the transformation required to create the desired neural activity is extremely difficult. 262 

 263 

Fortunately, there are several recent advances that may facilitate progress. Our understanding of the 264 

distortions caused by hearing loss is rapidly advancing [59], and as the nature of these distortions 265 

becomes clearer it will be easier to identify transformations to compensate for them. It should also 266 

be possible to take advantage of new techniques for machine learning that are already transforming 267 

other areas of medicine [60]. Deep neural networks that can learn complex nonlinear relationships 268 

directly from data may be able to identify transformations that have eluded human engineers. The 269 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 
 

data requirements for these approaches exceed current experimental capabilities, but new 270 

technology for large-scale recording of neural activity may be able satisfy them [61].  271 

 272 

Large-scale recordings of neural activity can also be used to tackle another major challenge: the 273 

idiosyncratic nature of hearing loss. Every individual will suffer from a different pattern of cochlear 274 

damage, resulting in a unique distortion of neural activity. However, because studies of neural activity 275 

are typically based on averaging small-scale recordings across individuals, we do not yet have the 276 

knowledge required to treat each individual optimally in a personalized manner. Large-scale 277 

recordings may help to overcome this problem by allowing for a complete characterization of activity 278 

in each individual. This information should also improve our ability to infer the pattern of underlying 279 

cochlear damage from non-invasive or minimally invasive clinical tests [62]. 280 

 281 

Since hearing aids are likely to continue to be the primary treatment for hearing loss for years to 282 

come, it is critical that we continue to work toward developing devices that can restore normal 283 

auditory perception. Achieving this goal will be challenging, and hearing aids may never may be 284 

sufficient for those with severe cochlear damage. But if the next generation of devices is designed to 285 

treat hearing loss as a distortion of activity patterns in the brain, rather than a loss of sensitivity in 286 

the ear, dramatic improvements for those with mild or moderate impairment are possible. Together 287 

with higher uptake due to increasing social acceptance of wearable devices, improved access through 288 

decreased regulation [63], and the development of over-the-counter personal sound amplification 289 

products (PSAPs) [64], we have an opportunity to improve the health and wellbeing of a huge number 290 

of people in the near future. 291 

  292 
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Glossary 293 

 294 

Multi-channel wide dynamic range compression (WDRC):  295 

The processing scheme used in most current hearing aids. In this scheme, the amount of amplification 296 

and compression provided by the hearing aid depends on the frequency of the incoming sound. In a 297 

typical hearing aid fitting procedure, the loss of sensitivity is measured at several different 298 

frequencies, and the amount of amplification and compression provided by the hearing aid for each 299 

frequency is adjusted according to a prescribed formula to improve audibility without causing 300 

discomfort. 301 

 302 

Voice pitch: 303 

The primary frequency of vocal cord vibration. Typical values for men, women, and children are 125 304 

Hz, 200 Hz, and 275 Hz, respectively. However, voice pitch varies widely across individuals and, thus, 305 

is an important cue for solving the “cocktail party problem” of separating the voices of multiple 306 

talkers. The processing of pitch relies on mechanisms in the cochlea and central auditory areas that 307 

are compromised by hearing loss. 308 

 309 

Interaural time difference (ITD): 310 

The primary cue for the localization of low-frequency sounds such as speech. When a sound reaches 311 

one ear before the other, the ITD indicates the location in space from which the sound originated. 312 

However, even when sounds are located to the side of the head, ITDs are extremely small (< 1ms); 313 

thus, sensitivity to ITDs relies on highly precise temporal processing in central auditory areas that is 314 

compromised by hearing loss. 315 

 316 

Personal sound amplification product (PSAP): 317 

A hearing device that is available over-the-counter and is not specifically labeled as a treatment for 318 

hearing loss. PSAPs are generally less expensive than hearing aids, but use many of the same 319 

technologies and can achieve comparable performance. 320 

 321 
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Outstanding questions 1 

 2 

 How good can a hearing aid possibly be, i.e. what is the maximum perceptual improvement 3 

that an ideal hearing aid can achieve for a given level or form of hearing loss? 4 

 5 

 What features of neural activity patterns are critical for the perception of speech in noisy 6 

environments and how are they distorted by hearing loss? 7 

 8 

 Do different forms of hearing loss, e.g. noise induced or age-related, result in different 9 

distortions in neural activity patterns?  10 

 11 

 Can specific patterns of distortion in neural activity be inferred from non-invasive or minimally 12 

invasive clinical tests? How can hearing aids be personalized to correct specific distortions? 13 

 14 

 How should an ideal hearing aid transform incoming sound to elicit neural activity patterns 15 

that restore normal perception? 16 

 17 

 Can the performance of a hearing aid be improved through training or rehabilitation programs 18 

that facilitate beneficial plasticity in central auditory areas? Can the early adoption of hearing 19 

aids before significant hearing loss prevent the occurrence of detrimental plasticity in central 20 

auditory areas? 21 

 22 

Outstanding Questions



1 
 

Trends Box 1 

 2 

 Hearing loss is now widely recognized as a major cause of disability and a primary risk factor 3 

for dementia, but most cases still go untreated. Uptake of hearing aids is poor, partly because 4 

they provide little benefit in typical social settings.  5 

 6 

 The effects of hearing loss on neural activity in the ear and brain are complex and profound. 7 

Current hearing aids can restore overall activity levels to normal, but are ultimately 8 

insufficient because they fail to compensate for distortions in the specific patterns of neural 9 

activity that encode information about speech. 10 

 11 

 Recent advances in electrophysiology and machine learning, together with a changing 12 

regulatory landscape and increasing social acceptance of wearable devices, should improve 13 

the performance and uptake of hearing aids in the near future. 14 

 15 
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Figure 1: The view of cochlear function and dysfunction that is implicit in the design of current
hearing aids

(A) A schematic diagram illustrating the decomposition of incoming sound into its constituent frequencies on the cochlea.
The frequency tuning of the cochlea (which is spiral shaped, but unrolled here for illustration) changes gradually along its
length such that BM movement and AN activity are driven by high frequencies at the basal end, near the interface with
the middle ear, and low frequencies at the apical end.

(B) A schematic diagram showing a cross-section of the cochlea, with key components labelled (adapted, with permission,
from Ashmore, Physiol Rev, 88: 173–210, 2008)

(C) A schematic diagram illustrating the active amplification and compression provided by OHCs. OHCs amplify the BM
movement elicited by weak sounds to compress the range of BM movement across all sound levels (left panel, black line)
and make use of the full dynamic range of the AN (right panel, black line). Without the amplification provided by OHCs,
sensitivity to weak sounds is lost completely, and the AN activity elicited by strong sounds is decreased.

(D) A schematic diagram illustrating frequency analysis in the cochlea. The top panel shows the frequency content of
incoming sound consisting of 4 distinct frequencies. The bottom panel shows the AN activity elicited by the sound along
the length of the cochlea (black). The colored lines indicate the preferred frequency of the AN fibers at each cochlear
position. The positions are specified relative to the basal end of a typical human cochlea.
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Figure 2: Hearing aids must transform incoming sound to correct the distortions in neural activity 
patterns caused by hearing loss

(A) A schematic diagram illustrating the distortion of the signal that is elicited in the brain by a damaged ear. In a healthy
auditory system (top row), the word ‘Hello’ spoken at a moderate intensity elicits a specific pattern of activity across
neurons over time and results in an accurate perception of the word ‘Hello’. In a damaged ear, the same word elicits
activity that is both weaker overall and has a different pattern, resulting in impaired perception.

(B) A schematic diagram illustrating the correction of distorted neural activity by a hearing aid. With a hearing aid that
provides only amplification (top row), the word ‘Hello’ spoken at a moderate intensity is amplified to a high intensity. This
results in a restoration of the overall level of neural activity, but does not correct for the distortion in the pattern of
activity across neurons over time and, thus, does not restore normal perception. An ideal hearing aid (bottom row) would
transform the word ‘Hello’ into a different sound in order to restore not only the overall level of neural activity, but also
the pattern of activity across neurons over time.

Figure 2, Key Figure Click here to download Key Figure fig2_TINS.pptx 
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Figure 3: The loss of cochlear nonlinearities distorts the signal that the ear sends to the brain

(A) A schematic diagram illustrating several important cochlear nonlinearities controlled by OHCs. The top panel shows
the frequency content of an incoming sound consisting of 2 distinct frequencies, one of which is slightly stronger than the
other. The bottom panel shows the AN activity elicited by the sound along the length of the cochlea (black). OHCs amplify
the stronger frequency, suppress the weaker frequency, and create a distortion at a third frequency. Without OHCs
(gray), these nonlinearities are eliminated and the signal that is sent to the brain from the ear is reduced to a simple, and
only weakly selective, frequency analysis.

(B) A schematic diagram illustrating the effects of OHC dysfunction on the frequency selectivity of a single AN fiber. The
top panel shows the frequency content of incoming sound consisting of one of 3 distinct frequencies. The bottom panels
show the activity elicited in a single AN fiber by incoming sound as a function of frequency with (black) and without (gray)
OHCs. OHCs amplify a particular preferred frequency (arrow) while suppressing nearby frequencies to provide sharp
frequency tuning and high differential sensitivity, illustrated by large differences in the activity elicited by each of the
three different frequencies. Without OHCs, frequency tuning is broad, the preferred frequency shifts toward the lower
preferred frequency of the passive BM movement (arrow), and differential sensitivity is lost.

(C) A schematic diagram illustrating the effects of OHC dysfunction on the AN activity elicited by speech. The top panel
shows the frequency content of two vowels, /ø/ and /ɛ/, which differ only in the position of their low-frequency peak
(first formant). Note that the frequency axis in this panel is linear rather than logarithmic. The bottom panels show the
AN activity elicited by the two vowels (solid, dashed) along the length of the cochlea with (black) and without (gray)
OHCs. OHCs amplify the dominant frequencies in the vowels while suppressing other frequencies to selectively amplify
the frequency peaks. Without OHCs, this selective amplification is lost and the difference in the AN activity elicited by the
two vowels is greatly diminished.
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… continued

(D) Schematic diagrams illustrating the effects of OHC dysfunction on tonotopy. As illustrated in the left panel, in a
healthy ear (black) there is a gradual and consistent change in preferred frequency along the length of the cochlea.
Without OHCs, the preferred frequency of each fiber shifts toward lower frequencies. Because OHC dysfunction is
typically more pronounced in the regions of the cochlea that are sensitive to higher frequencies, this results in a distorted
tonotopy in which low frequencies are overrepresented and AN fibers that were previously sensitive to high frequencies
respond only to low frequencies. The consequences of this distorted tonotopy on the AN activity elicited by speech are
illustrated in the center and right panels. In a healthy ear (black), the AN activity at each part of the cochlea is dominated
by the nearest peak in the frequency spectrum of the incoming sound. If two vowels (solid and dashed) differ in their
high-frequency peak (second formant), that difference will be reflected in the activity of AN fibers in the part of the
cochlea that is preferentially sensitive to high frequencies. Without OHCs (gray), however, most of the cochlea becomes
preferentially sensitive to low frequencies and information about the high-frequency peak is lost entirely.

Figure 3



Figure 4

Figure 4: Hidden hearing loss distorts the neural activity elicited by strong sounds, particularly in 
noisy environments

(A) A schematic diagram showing the anatomy of the AN. The AN is composed of bipolar spiral ganglion neurons (SGNs).
Each SGN sends its peripheral axon to synapse with an IHC and its central axon to synapse with neurons in the cochlear
nucleus of the brainstem. In hidden hearing loss (bottom row), there is a degeneration of the IHC synapses and peripheral
axons, but the SGN cell bodies and central axons remain largely in tact. This degeneration is selective for high-threshold
fibers (colors indicate fiber threshold as in C). The box indicates the region shown in B.

(B) An image showing a degeneration of AN fiber terminals in the cochlea of a 67-year-old female (adapted, with
permission, from Viana et al., Hearing Res, 327: 78-88, 2015). The top panel in each row shows the maximum projection
of a confocal z-stack immunostained for neurofilament (green). The bottom panel in each column shows a cross-section
through the image stack at the location denoted by the dashed line. The left and right columns show images from the
region of the cochlea that were preferentially sensitive to 1 KHz and 8 kHz, respectively. The number of fiber terminals in
both regions is significantly below that which would be expected based on SGN cell body counts, but while the excess
terminal loss in the left column is relatively mild, the excess terminal loss in the right column is severe. The scale bar
indicates 50 μm.

(C) A schematic diagram showing AN activity as a function of sound level for fibers with different thresholds (colors) and
for the entire fiber population (black, gray). In a heathy ear (left panel), fibers with different thresholds provide
differential sensitivity across all sounds levels. In an ear with hidden hearing loss (right panel), selective degeneration of
high-threshold fibers results in a loss of differential sensitivity to changes in amplitude at high sound levels.

(D) A schematic diagram showing the effects of hidden hearing loss on the signal that the ear sends to the brain. The left
panels show the level of incoming sound as a function of time. The middle panels show the AN activity as a function of
sound level for fibers with three different thresholds and the entire fiber population (colors as in B). The right panels
show the AN activity over time for each fiber and the entire fiber population with and without hidden hearing loss (colors
as in B). Without high-threshold fibers, the brain receives little information about amplitude modulations in strong
sounds in a quiet environment (top row), or about amplitude modulations in any sound in a noisy environment (bottom
row).
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Box 1: Cognitive factors and hearing aid efficacy 1 

 2 

Recent advances in our understanding of the interactions between auditory and cognitive processes 3 

during speech perception present a number of opportunities for improving hearing aid efficacy. 4 

 5 

Improving the efficacy of current hearing aids: 6 

Aggressive signal processing strategies that distort the acoustic features of incoming speech seem to 7 

largely benefit listeners with high cognitive function. Can cognitive measures be included in hearing 8 

aid fitting to determine the optimal form of signal processing for a given listener? What are the 9 

appropriate clinical tests of cognitive function for this purpose? 10 

 11 

Improving the efficacy of future hearing aids: 12 

The design of new signal processing strategies should be informed by our new understanding of 13 

cognitive factors. Are distortions of some acoustic features more distracting than distortions of 14 

others? Are certain combinations of distortions particularly distracting? Furthermore, the benefit of 15 

any signal processing strategy for a given listener may vary with the degree to which cognitive 16 

processes are engaged. Can new hearing aids be designed to control signal processing dynamically 17 

based on cognitive load? Can cognitive load be estimated accurately through analysis of incoming 18 

sound, or through simultaneous measurements of physiological signals? 19 

 20 

Improving rehabilitation and training programs: 21 

If cognitive function is a major determinant of hearing aid efficacy, then cognitive training may have 22 

the potential to improve speech perception. Do the benefits of cognitive training transfer to 23 

improved speech perception for hearing aid users? Can cognitive training help listeners to make use 24 

of signal processing strategies that they would otherwise find distracting? It is also possible that 25 

cognitive training in the earliest stages of hearing loss may be beneficial. Can cognitive training before 26 

hearing aid use improve initial and/or ultimate efficacy? 27 

Text Box 1


