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Abstract 

Background: The genetic basis of animal domestication remains poorly understood, and 

systems with substantial phenotypic differences between wild and domestic populations are 
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useful for elucidating the genetic basis of adaptation to new environments as well as the 

genetic basis of rapid phenotypic change. Here, we sequenced the whole genome of 78 

individual ducks, from two wild and seven domesticated populations, with an average 

sequencing depth of 6.42X per individual. 

Results: Our population and demographic analyses indicate a complex history of 

domestication, with early selection for separate meat and egg lineages. Genomic 

comparison of wild to domesticated populations suggest that genes affecting brain and 

neuronal development have undergone strong positive selection during domestication. Our 

FST analysis also indicates that the duck white plumage is the result of selection at the 

melanogenesis associated transcription factor locus. 

Conclusions: Our results advance the understanding of animal domestication and selection 

for complex phenotypic traits. 

Keywords: duck, domestication, intensive selection, neuronal development, energy 

metabolism, plumage colouration. 

 

Background 

Animal domestication was one of the major contributory factors to the agricultural 

revolution during the Neolithic period, which resulted in a shift in human lifestyle from 

hunting to farming [1]. Compared with their wild progenitors, domesticated animals showed 

notable changes in behavior, morphology, physiology, and reproduction [2]. Detecting 

domestication-mediated selective signatures is important for understanding the genetic 

basis of both adaptation to new environments and rapid phenotype change [3, 4]. In recent 

years, to characterize signatures of domestication, whole genome resequencing studies have 

been performed on a wide range of agricultural animals, including pig [5], sheep [6], rabbit 

[7] and chicken [8, 9]. 

Mallards (Anas platyrhynchos) are the world’s most widely distributed and 

agriculturally important waterfowl species, and are of particular economic importance in 

Asia [10]. Southeast Asia, particularly southern China, is the major center of duck 

domestication, with records indicating duck farming in the region dating at least 2,000 years 

[11, 12], particularly in wet environments [13] associated with rice crops [14]. In the absence 

of archaeological evidence, the exact timing of domestication and the time of meat and egg 

type ducks split remains unknown, with the first written records indicating domestic ducks in 

central China shortly after 500 BC [15]. 
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It is clear that the domesticated duck originated from mallards [16], and domestic 

ducks can be classified as those produced primarily for meat (similar to chicken broilers) or 

eggs (similar to chicken layer lines). Together with the timing of duck domestication, the 

relative separation of duck meat and egg lines is also unknown. It is unclear whether ducks 

were domesticated once, and subsequently selected for divergent meat and egg production 

traits, or whether meat and egg populations were derived independently in two 

domestication events from wild mallards. 

Moreover, domesticated mallards show many important behavioral [17] and 

morphological [18-20] differences from their wild ancestors, particularly related to plumage 

and neuroanatomy. However, the genetic basis of these phenotypic differences are still 

poorly understood. 

Data Description 

In order to determine the timing of duck domestication in China, as well as identify the 

genomic regions under selection during domestication, we performed whole genome 

resequencing from 78 individuals belonging to seven different duck breeds (three for meat 

breeds, three for egg breeds, and one dual-purpose breed) and two geographically distinct 

wild populations. Using the large number of single nucleotide polymorphisms (SNPs) as well 

as small insertions and deletions (INDELs), we tested for population structure between 

domesticated and wild populations, as well as assessed the genome for signatures of 

selection associated with domestication. We tested alternative  demographic scenarios 

with the pairwise sequential Markovian coalescent method combined with the diffusion 

approximation method. 

Analyses 

Genetic variation 

We individually sequenced 22 wild and 56 domestic ducks, from two wild populations 

and seven domestic breeds (three meat breeds, three egg breeds and one dual-purpose 

breed), from across China (Fig. 1A) to an average of 6.42X coverage per individual (a total of 

613.37 of Gb high quality paired end sequence data) after filtering and quality control, 

resulting in total 535 billion mappable reads across 78 ducks (Supplemental Table S1). 
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Figure. 1 Experimental design and variants statistics 

(A) Sampling sites in this study. A total of 78 ducks from two wild populations (Mallard Ningxia (MDN) 

n=8; Mallard Zhejiang (MDZ) n=14), three meat breeds (Pekin (PK) n=8; Cherry Valley (CV) n=8; Maple 

Leaf (ML) n=8), three egg breeds (Jin Ding (JD) n=8; Shan Ma (SM) n=8; Shao Xing (SX) n=8), and one 

dual purpose breed (Gao You (GY) n=8) were selected. 

(B) Genomic variation of nine populations. Mean number of SNPs, heterozygous and homozygous SNP 

ratio in the nine populations are shown at the bottom. Nucleotide diversity ratios of the nine 

populations are shown at the middle. The nucleotide diversity ratios in wild mallards are dramatically 

higher than ratios in domesticated ducks. Number of insertions and deletions in the nine populations 

are shown at the top. The number of deletions was higher than the number of insertions in all nine 

populations. 

 

Across samples, we identified a total of 39.2 million (M) variants, consisting of 36.1 M 

SNPs (average per sample = 4.5 M SNPs; range = 2.34 - 9.52 M SNPs) and 3.1 M INDELs 

(average per sample = 0.4 M INDELs; range = 0.21 - 0.89 M INDELs) (Fig. 1B, Supplemental 

Figs. S1 - S2, Supplemental Table S2). Single base-pair INDELs were the most common, 

accounting for 38.63% of all detected INDELs (Supplemental Table S3). Our dataset covers 

96.2% of the duck dbSNP database deposited in the Genome Variation Map (GVM) 

(http://bigd.big.ac.cn/gvm/). In general, domesticated populations showed lower number of 

SNPs (t test,             ) and nucleotide diversity (t test,             ) as 

compared to wild mallards (Fig. 1B). Moreover, homozygosity in domesticated ducks was 

significantly higher than ratios in wild mallards (t test,             ) consistent with 

the larger panmictic wild population or with the higher artificial selection and inbreeding 

within domesticated stocks. 
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Population structure and domestication 

Phylogenetic relationships, based on a neighbor-joining (NJ) of pairwise genetic 

distances of whole genome SNPs (Fig. 2A) and Principal Component Analysis (PCA, Fig. 2B) 

revealed strong clustering into three distinct genetic groups. In general, we observed 

separate clusters corresponding to wild ducks (MDN and MDZ), ducks domesticated for 

meat production (PK, CV, and ML), and ducks domesticated for egg production (JD, SM, and 

SX). The dual-purpose domesticate (GY) clustered with ducks domesticated for egg 

production (Fig. 2B-C). 

We further performed population structure analysis using FRAPPE [21], which 

estimates individual ancestry and admixture proportions assuming K ancestral populations 

(Fig. 2C). With K = 2, a clear division was found between wild type ducks (MDN and MDZ) 

and domesticated ducks (PK, CV, ML, JD, SM, SX, and GY). With K = 3, a clear division was 

found between meat type ducks (PK, CV, and ML) and egg type ducks mixed with 

dual-purpose type ducks (JD, SM, SX, and GY). 

 

Figure. 2 Population genetic structure and demographic history of nine duck populations 

(A) Neighbor-joining phylogenetic tree of nine duck populations. The scale bar is proportional to 

genetic differentiation (  dist ance). 
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(B) PCA plot of duck populations. Eigenvector 1 and 2 explained 38.8% and 32.5% of the 

observed variance, respectively. 

(C) Population genetic structure of 78 ducks. The length of each colored segment represents the 

proportion of the individual genome inferred from ancestral populations (K = 2-3). The population 

names and production type are at the bottom. DP type means dual-purpose type. 

(D) Demographic history of duck populations. Examples of PSMC estimate changes in the 

effective population size over time, representing variation in inferred Ne dynamics. The lines 

represent inferred population sizes and the gray shaded areas indicate the Pleistocene period, with 

Last Glacial Period (LGP) shown in darker gray, and Last Glacial Maximum (LGM) shown in light blue 

areas. 

Next, we explored the demographic history of our samples to differentiate whether 

domestication of meat and egg producing ducks was the result of one or multiple events. 

First, we estimated changes in effective population size (Ne) in our three genetic clusters in a 

pairwise sequentially Markovian coalescent (PSMC) framework [22]. The meat type ducks 

(PK, CV, and ML) showed concordant demographic trajectories with egg and mixture 

dual-purpose type populations (JD, SM, SX, and GY) with one apparent expansion around the 

Penultimate Glaciation Period (PGP, 0.30-0.13 Mya) [4, 23] and Last Glacial Period (LGP, 

110-12 kya) [24, 25], followed by a subsequent contraction (Fig. 2D). Next, we tested 

multiple demographic scenarios related to domestication using a diffusion approximation 

method for the allele frequency spectrum (∂a∂i) (Supplemental Fig. S3 and S4). Among the 

four isolation models tested (models 1 - 4), the model of a single domestication with 

subsequent divergence of the domesticated breeds (Model 2) was both consistent with our 

population structure results (Fig. 2) and had the lowest Akaike Information Criteria (AIC) 

value, indicating a better overall fit to the data (log-likelihood = -33,388.43; AIC = 66,788) 

(Supplemental Fig. S3). 

Demographic parameters estimated from the single domestication model (Model 2) 

indicated that domestication occurred 2,228, with 95% confidence intervals (CI) ± 441 years 

ago, followed by a rapid subsequent divergence of the meat breed from the egg/dual 

purpose breeds roughly 100 years after the initial domestication event (Table 1). Our results 

suggest that following an initial bottleneck associated with domestication, with an estimated 

Ne of 320 (95% CI ± 3) individuals for the ancestral domesticated population, the population 

has expanded to the current Ne of 5,597 (95% CI ± 1,195) and 12,988 (95% CI ± 2,877) in the 

meat type and egg/dual purpose breeds respectively. Ne estimates for domesticated breeds 
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are lower than Ne of 88,842 (95% CI ±18,065) in wild mallards, consistent with the large 

panmictic wild population. 

 

Table 1. Maximum likelihood population demographic parameters. Best fit parameter 

estimates for the model of a single domestication event followed by divergence of the 

domesticated breeds, including changes in population size. 95% confidence intervals were 

obtained from 100 bootstrap data sets. Time estimates are given in years and migration are 

in units of number of migrants per generation. 

 

Parameter ML estimate 95% CI 

Ne of ancestral population after size change 663,439 644,726 – 682,152 

Ne of the wild population 88,842 70,778 – 106,907 

Ne of the ancestral domesticated population 320 316 – 323 

Ne of the meat breed 5,597 4,402 – 6,792 

Ne of the egg/dual purpose 12,988 10,111 – 15,865 

Time of size change in the ancestral population 249,944 227,912 – 267,518 

Time of domestication 2,228 1,787 – 2,669 

Time of breed divergence 2,126 1,686 – 2,567 

Migration wild  meat 1.12 1.00 – 1.24 

Migration wild  egg/dp 3.92 3.11 – 4.73 

 

Gene flow estimates were relatively high, with 1 and 4 migrants per generation from 

the meat and egg/dual purpose breeds, respectively, into the wild population. Our results 

suggested duck domestication was a recent single domestication event followed by rapid 

subsequent selection for separate meat and egg/dual purpose breeds. 

Selection for plumage color 

Derived traits in domesticated animals tend to evolve in a predictable order, with color 

variation appearing in the earliest stages of domestication, followed by coat or plumage and 
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structural (skeletal and soft tissue) variation, and finally behavioral differences [26, 27]. One 

of the simplest and most visible derived traits of ducks is white plumage color. In order to 

detect the signature of selection associated with white feathers, we searched the duck 

genome for regions with high FST between the populations of white feather (PK, CV, and ML) 

and non-white feather (MDN, MDZ, JD, SX, and GY) birds based on sliding 10kb windows. We 

identified a region of high differentiation between white plumage and non-white plumage 

ducks overlapping the melanogenesis associated transcription factor (MITF; FST=0.69) (Fig. 

3A). In the intronic region of MITF, we identified 13 homozygous SNPs and 2 homozygous 

INDELs present in all white plumage breeds (n=24) and absent in all non-white plumage 

breeds (n=46) (Fig. 3B). These mutations were completely associated with the white 

plumage phenotype, suggesting a causative mutation at the MITF locus. Moreover, to 

validate the reliability of variants detected in MITF gene, we amplified the first three SNPs 

(SNP817793, SNP817818, and SNP818004) and all INDELs by diagnostic PCR combined with 

Sanger sequencing in the 78 white and non-white plumage ducks. The results show that the 

three SNPs and INDEL817958 completely match our NGS analysis (supplemental Fig. S5), For 

INDEL818495, we were unable to design a suitable PCR primer to amplify this region. 

 

Figure. 3 MITF shows different genetic signature between white plumage and non-white plumage 

ducks. 
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(A) FST plot around the MITF locus. The FST value of MITF is highest for scaffold KB742527.1, 

circled in red. Each plot represent a 10 kb windows. 

(B) 13 homozygous SNPs and 2 homozygous INDELs were identified in white plumage ducks 

and absent in non-white plumage ducks. SNPs and INDELs were named according to their 

position on scaffold. 

Selection for other domestication traits 

In order to detect the signature of selection for other traits associated with duck 

domestication, we scanned the duck genome for regions with a high coefficient of 

nucleotide differentiation (FST) among the populations of wild (MDN and MDZ) and 

domesticated  (PK, CV, ML, JD, SM, SX, and GY) ducks based on 10kb sliding windows, as 

well as global FST between each population (Supplemental Tables S4). Owing to the complex 

and partly unresolved demographic history of these populations, it is difficult to define a 

strict threshold that distinguishes true sweeps from regions of homozygosity caused by drift. 

We therefore also calculated the pairwise diversity ratio (  (wild/domesticated)). We 

identified 292 genes in the top 5% of both FST and    scores, putatively under positive 

selection during domestication (Fig. 4A, Supplemental Tables S5). 

 

Figure. 4 Genomic regions with strong selective sweep signals in wild population ducks and 

domesticated population ducks. 

Downloaded from https://academic.oup.com/gigascience/advance-article-abstract/doi/10.1093/gigascience/giy027/4965113
by Uppsala Universitetsbibliotek user
on 10 April 2018



 

 

 

(A) Distribution of    ratios                      ) and Z(FST) values, which are calculated 

by 10kb windows with 5kb steps. Only scaffolds > 10kb were used for our calculation, as FST result 

calculated on small scaffold are unlikely to be accurate. Red data points located to the top-right 

regions correspond to the 5% right tails of empirical                        ⁄   ratio distribution 

and the top 5% empirical Z(FST) distribution are genomic regions under selection during duck 

domestication. The two horizontal and vertical gray lines represented the top 5% value of Z(FST) 

(2.216) and                        ⁄   (2.375), respectively. 

(B)          ratios and FST values around the GRIK2 locus and allele frequencies of nine SNPs 

within the GRIK2 gene across nine duck populations. The black and red lines represent 

                       ⁄   ratios and FST values, respectively. The gray bar showed the region of 

under strong selection in GRIK2 gene. The nine red rectangular frame corresponding to the locus on 

gene of nine SNPs. The SNPs were named according to their position on scaffold. 

(C)The PDC gene showed different genetic signature in domesticated and wild duck.          

ratios and FST values around the PDC locus. The PDC gene region is shown in gray. Allele frequencies of 

seven SNPs within the PDC gene across nine duck populations. The SNPs are named according to their 

scaffold position. 

(D) The PDC gene expression level differs between domesticated and wild duck. PDC mRNA 

expression levels in brain of wild (MDN, n=3; MDZ, n=4) and domesticated (PK, n=1; CV, n=1; ML, n=1; 

JD, n=1; SM, n=1; SX, n=1; GY, n=1) ducks. ****P value from t-test (P<0.0001). 

All 292 genes located in the top 5% FST regions were used for the GO analysis, resulting 

in a total of 57 GO enrichment terms (supplementary table S6). Because domesticated ducks 

are known to differ from wild ducks in body size, body fat percentage, behavior, egg 

productivity, growth speed, and flight capability, we focused our analysis on GO annotations 

of neural related processes, lipid metabolism and energy metabolism, reproduction, and 

skeletal muscle contraction for our 292 putative positively selection genes. In this reduced 

data set, the neuro-synapse-axon and lipid-energy metabolism pathways were 

over-represented (Supplemental Table S7) in our list of genes under selection. 

From the highlighted GO terms, a total of 25 neuro-synapse-axon genes were identified 

as being under positive selection, with six (ADGRB3, EFNA5, GRIN3A, GRIK2, SYNGAP1, and 

HOMER1) in the top 1% of FST and    (Supplemental Tables S8). In particular, GRIK2 

(glutamate receptor, ionotropic kainate 2) and GRIN3A (glutamate receptor, subunit 3A) 

both showed high FST and    value compared to neighboring regions, suggesting functional 

importance (Fig. 3B, Supplemental Table S5, S8). 
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Beyond the neuronal-synapse-axon genes, 115 genes were identified in the four lipid 

and energy related pathways with high FST and    values, particularly related to fatty acid 

metabolism. Among these genes, 37 genes were found with both parameters yielding top 

1% ranked values (Supplemental Tables S8), such as phosphatidylinositol 3-kinase catalytic 

subunit type 3 (PIK3C3), and patatin like phospholipase domain containing 8 (PNPLA8). 

To infer whether selection extends beyond allelic variation and also affects gene 

expression, we compared individual gene expression in the brain, liver, and in breast muscle 

between seven wild mallards and seven domesticated ducks in natural states with RNA-seq 

(Supplemental Tables S9). We detected three genes (PDC, MLPH, and NID2) in the brain, two 

genes (MAPK12 and BST1) in the liver, and no genes in breast muscle with significantly 

different expression between wild and domesticated ducks. Of the five differentially 

expressed genes, PDC was the only gene which also showed evidence of a selective sweep at 

the genomic level (Supplemental Tables S5, Fig. 3C - D). The results suggest that the PDC 

gene is of substantial functional importance in phenotypic differentiation among wild and 

domestic ducks. 

Discussion 

Domesticated animals have contributed greatly to human society and human 

population growth by providing a stable source of animal protein, fat, and accessory 

products such as leather and feathers (including down).To illuminate the genetic trajectories 

of duck domestication, we performed whole-genome sequencing of 78 ducks including 

seven domesticate breeds and two wild populations. This is the first study to characterize 

the genetic architecture, phylogenetic relationships and domestication history of 

domesticated ducks and wild mallards. 

Using this powerful dataset and a suite of cutting-edge population genomic and 

functional genetic analyses, we observed higher mean variant numbers and nucleotide 

diversity for the wild mallard populations compared to the domestics, consistent with both a 

greater panmictic mallard population as well as recent sweeps associated with 

domestication. 

Population structure and domestication 

We observed a large expansion of the duck population at the interglacial period, which 

could be the result of beneficial climatic changes, including rising temperatures and sea 

levels. In contrast, the glacial maximum coincided with a reduction in population size, 

consistent with harsher conditions and limited access to arctic breeding grounds [4, 28-30]. 
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The demographic pattern we observe in wild ducks is similar to that observed in wild boars 

[5], wild yaks [31], and wild horses [32]. However, it is worth noting that although PSMC is a 

powerful method to infer changes in Ne over time, it is also sensitive to deviations from a 

neutral model. The effects of genetic drift and/or selection could lead to time-dependent 

estimates of mutation rate, and bias our estimates of population expansion [25]. 

We observed three genetic clusters, with wild mallard, meat breeds, and egg/dual 

purpose breeds each representing unique groups. These results suggest either a single 

domestication event followed by subsequent breed-specific selection, or two separate 

domestication events. In order to distinguish alternative models of domestication, we 

modeled population demographics and found strong support for a single domestication 

event roughly 2,200 years ago, with the rapid subsequent selection for separate meat and 

egg/dual purpose breeds roughly 100 generations later. Difficulty in differentiating between 

very recent divergence and high migration rates in the frequency spectrum prevented 

convergence between independent runs when trying to fit other migration parameters to 

our model. We note that the evolutionary history of wild mallards and domesticated duck 

breeds is likely to be more complex than the simple demographic scenarios modelled here, 

and further studies may be needed to fully capture the evolutionary dynamics of duck 

domestication. Given the recent origin of wild ducks, as well as the high levels of diversity 

we observe in the wild and domestic duck genomes, it is not possible to differentiate recent 

admixture from incomplete lineage sorting with our current data. This issue has important 

conservation implications, and represents an interesting area for future study. Nevertheless, 

the time estimates obtained with our model are compatible with previous written records 

from 500 BC [15]. 

Selection for white plumage 

Plumage color is an important domestication trait, and we compared breeds with 

white plumage to those with colored plumage. We identified high levels of divergence in the 

intronic region of the MITF gene, an important developmental locus with a complex 

regulation implicated in pigmentation and melanocyte development in several vertebrate 

species [33-35], including Japanese quail [36], dog [37], and duck [38, 39]. 

Selection for other domestication traits 

In order to identify those genomic regions which have been the target of selection 

during domestication, we used estimates of diversity between wild and domestic samples, 

retaining those 292 genes in the top 5% of both FST and    values for further analysis. 

These genes were over-represented for both neural developmental and lipid metabolism, 
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suggesting that these functionalities were under strong selection during domestication. Two 

loci, GRIK2 and GRIN3A, showed particularly strong signs of selective sweeps presumably 

associated with domestication. GRIK2 encodes a subunit of a glutamate receptor that has a 

role in synaptic plasticity and is important for learning and memory. GRIN3A encodes a 

subunit of the N-methyl-D-aspartate (NMDAR) receptors, which is expressed abundantly in 

the human cerebral cortex [40] and is involved in the development of synaptic elements 

We also identified five genes with significantly different expression in the brain and 

liver of domesticated ducks compared to their wild ancestor. One of these, PDC, also 

showed evidence of selective sweeps at the genomic level. PDC encodes phosducin, a 

photoreceptor-specific protein highly expressed in retina and pineal gland [41], as well as 

the brain [42]. 

Our results suggest that PDC, GRIK2 and GRIN3A may have played a crucial role in duck 

domestication by altering functional regulation of the developing brain and nervous system. 

This finding is consistent with theories that behavioral traits are the most critical in the initial 

steps of animal domestication, allowing animals to tolerate humans and captivity [43, 44]. 

Indeed, compared to wild mallards, domestic ducks are more docile, less vigilant, and show 

important differences in brain morphology [17, 18]. Interestingly, differences between wild 

and domesticated animals in brain and nervous system functions due to directional selection 

were also observed in domestication studies of rabbits [7], dogs [45], and chickens [8]. In 

particular, GRIK2 was also found to play a crucial role during rabbit domestication [7]. 

Besides brain and nervous system related genes, we also identified several genes that 

play an important function in lipid and energy metabolism. For example, PIK3C3 plays an 

important role in ATP binding but also regulates brain development and axons of cortical 

neurons [46-50]. PNPLA8 is involved in facilitating lipid storage in adipocyte tissue energy 

mobilization and maintains mitochondrial integrity [51, 52], as well as plays a role in lipid 

metabolism associated with neurodegenerative diseases [53-55]. PRKAR2B is associated 

with body weight regulation, hyperphagia, and other energy metabolism [56, 57]. 

Taken together, our results show that duck domestication was a relatively recent and 

complex process, and the genetic basis of domestication traits show many striking overlaps 

with other vertebrate domestication events. And, the whole genome resequencing data and 

SNP and INDEL variant datasets are valuable resources for researchers studying evolution, 

domestication or trait discovery, and for breeders of Anas platyrhynchos. Furthermore, the 

data represent a foundation for development of new, ultrahigh density variant screening 

arrays for duck population level trait analysis and genomic selection. 
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Methods 

Ethics statement 

The entire procedure was carried out in strict accordance with the protocol approved 

by the Animal Welfare Committee of China Agricultural University (Permit Number: XK622). 

Sample selection 

78 ducks were chosen for sequencing, seven different populations of domesticated 

ducks and two population of mallards from different geographic regions. The domesticated 

ducks include three meat type populations i.e., Pekin duck (PK; n=8); Cherry Valley duck (CV; 

n=8); Maple Leaf duck (ML; n=8), three egg type populations i.e., Jin Ding duck (JD; n=8); 

Shao Xing duck (SX; n=8); Shan Ma duck (SM; n=8), one egg and meat dual-purpose type (DP 

type) population i.e., Gao You duck (GY; n=8), and two wild populations come from two 

different provinces in China with separated by nearly 2,000 km distance i.e., Mallard from 

Ningxia province (MDN; n=8); Mallard form Zhejiang province (MDZ; n=14). The classification 

of production types follow the description of Animal Genetic Resources in China Poultry [58]. 

PK, CV, and ML ducks originated from Beijing; JD and SM ducks originated from Fujian 

province while SX and GY ducks originated from Jiangsu province. Whole blood samples 

were collected from brachial veins of ducks by standard venipuncture. 

In addition, 14 male ducks (MDNM, n=3; MDZM, n=4; PKM, n=1; CVM, n=1; MLM, n=1; 

JDM, n=1; SMM, n=1; SXM, n=1; GYM, n=1) were chosen for RNA-seq. 

Sequencing and mapping statistic of individual ducks in genome and transcriptome 

analysis were detailed in supplementary files (Supplemental Table S1, S7). 

Sequencing and library preparation 

Genomic DNA was extracted using standard phenol/chloroform extraction method. For 

each sample, two paired-end libraries (500 bp) were constructed according to manufacturer 

protocols (Illumina), and sequenced on the Illumina Hiseq 2500 sequencing platform. We 

sequenced each samples at 5X depth, in order to reduce the false negative rate of variants 

due to our strict filter criteria, we randomly selected one individual for 10X coverage, except 

for the MDN population, where we sequenced seven individuals at 5X coverage and random 

one at 20X coverage and the MDZ population, where we sequenced all individuals at 10X 

coverage. We generated a total of 628.37 Gb of paired-end reads of 100 bp (or 150 bp; MDZ) 

length (Supplemental Table S1). 

mRNA from brain, liver, and breast muscle of 14 individual ducks were extracted using 

standard trizol extraction methods. For each samples, two paired-end libraries (500 bp) were 
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constructed according to manufacturer instruction (Illumina). All samples were sequenced 

by Illumina Hiseq 4000 sequencing platform with the coverage of 6X. We generated total of 

278.62 Gb of paired-end reads of 150 bp length (Supplemental Table S9). 

 

Read alignment and variant calling 

To avoid low quality reads, mainly the result of base-calling duplicates and adapter 

contamination, we filtered out sequences according to the default parameters of NGS QC 

Toolkit (v2.3.3) [59]. Those paired reads which passed Illumina’s quality control filter were 

aligned using BWA-MEM (v0.7.12) to version 1.0 of the Anas platyrhynchos genome 

(BGI_duck_1.0) [10]. Duplicate reads were removed from individual samples alignments 

using Picard tools MarkDuplicates, and reads were merged using MergeSamFiles 

(http://broadinstitute.github.io/picard/). 

The Genome Analysis Toolkit v3.5 (GATK, RRID:SCR_001876) RealignerTargetCreator 

and IndelRealigner protocol were used for global realignment of reads around INDELs before 

variant calling [60, 61]. SNPs and small indels (1-50 bp) were called used the GATK 

UnifiedGenotyper set for diploids with the parameter of minimum quality score of 20 for 

both mapped reads and bases to call variants, similarly to previous studies [62-66]. We 

filtered variants both per population and per individual using GATK according to the 

stringent filtering criteria. For SNPs of population filter: a.) QUAL > 30.0; b.) QD > 5.0; c.) FS < 

60.0; d.) MQ > 40.0; e.) MQRankSum > -12.5; f.) ReadPosRankSum > -8.0; Additionally, if 

there were more than 3 SNPs clustered in a 10 bp window, all three SNPs were considered 

as false positives and removed [67]. 

We used the following population criteria to identify INDELs: QUAL > 30.0, QD > 5.0, FS 

< 200.0, ReadPosRankSum > -20.0. Of individual filter, we also removed all INDELs and SNPs 

where the depth of derived variants was less than half the depth of the sequence. All SNPs 

and INDELs were assigned to specific genomic regions and genes using SnpEff v4.0 (SnpEff, 

RRID:SCR_005191) [68] based on the Ensembl duck annotations. After filtering a total of 

36,107,949 SNPs and 3,082,731 INDELs were identified (Supplemental Table S2). 

SNP validation 

In order to evaluate the reliability of our data, we compared our SNPs to the duck 

dbSNP database deposited in the Genome Variation Map (GVM) at the Big Data Center in 

the Beijing Institute of Genomics, Chinese Academy of Science (http://bigd.big.ac.cn/gvm/). 

7,908,722 SNPs were validated in the duck dbSNP database, which covered 96.2% of the 

database (Supplemental Table S2). For the 28,199,227 SNPs not confirmed by dbSNPs, 390 
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randomly selected nucleotide sites were further validated diagnostic PCR combined with 

Sanger sequence method described in previous researchs [8, 69, 70]. The result showed 

100% accuracy, indicating the high reliability of the called SNP variation identified in this 

study. 

Population structure 

We removed all SNPs with a minor allele frequency (MAF) <= 0.1 and kept only SNPs 

that occurred in more than 90% of individuals. Vcf files were converted to hapmap format 

with custom perl scripts, and to PLINK format file by GLU v1.0b3 

(https://code.google.com/archive/p/glu-genetics/) and PLINK v1.90 (PLINK, 

RRID:SCR_001757) [71, 72] when appropriate. We used GCTA (v1.25) [73] for Principle 

Component Analysis (PCA), first by generating the genetic relationship matrix (GRM) from 

which the first 20 eigenvectors were extracted. 

To estimate individual admixture assuming different numbers of clusters, the 

population structure was investigated using FRAPPE v1.1 [21] base on all high quality SNPs 

information, with a maximum likelihood method. We increased the coancestry clusters 

spanning from 2 to 4 (Supplemental figure S6), because there are four duck types (wild type, 

meat type, egg type, and dual-purpose type) across the nine duck populations, with 10,000 

iterations per run. 

A distance matrix was generated by calculating the pairwise allele sharing distance for 

each pair of all high quality SNPs. Multiple alignment of the sequences was performed with 

MUSCLE v3.8 (MUSCLE, RRID:SCR_011812) [74]. A neighbor-joining maximum likelihood 

phylogenetic tree was constructed with the DNAML program in the PHYLIP package v3.69 

(PHYLIP, RRID:SCR_006244) [75] and MEGA7 [76, 77]. All implementation was performed 

according to the recommended manipulations of SNPhylo [78]. 

Demographic history reconstruction 

The demographic history of both wild and domesticated ducks was inferred using a 

hidden Markov model approach as implemented in Pairwise Sequentially Markovian 

Coalescence based on SNP distributions [22]. In order to determine which PSMC (v0.6.5) 

settings were most appropriate for each population, we reset the number of free atomic 

time intervals (-p option), upper limit of time to most recent common ancestor (TMRCA) (-t 

option), and initial value of       (-r option) according to previous research [25] and 

online suggestions by Li and Durbin (https://github.com/lh3/psmc). Based on estimated 

from the chicken genome, an average mutation rate ( ) of           per base per 

generation and a generation time (g) of 1 year were used for analysis [79]. 
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Three-population demographic inference was performed using a diffusion-based 

approach as implemented in the program ∂a∂i (v1.7) [80]. To minimize potential effects of 

selection that could interfere with demographic inference, these analyses were performed 

using the subset of noncoding regions across the whole genome and spanning 750,939,264 

bp in length. Noncoding SNPs were then thinned to 1% to alleviate potential linkage 

between the markers. The final dataset consisted of 95,181 SNPs with an average distance of 

7,112 bp (± 18,810 bp) between neighbouring SNPs. To account for missing data, the folded 

allele frequency spectrum for the three populations (wild, meat and egg/dual purpose 

breeds) was projected down in ∂a∂i to the projection that maximized the number of 

segregating SNPs, resulting in 92,966 SNPs. 

We tested four different scenarios to reconstruct the demographic history of the 

domesticated breeds of mallards: simultaneous domestication of the meat and egg and dual 

purpose breeds (Model 1); a single domestication event followed by divergence of the meat 

and egg and dual purpose breeds (Model 2); two independent domestication events, with 

the meat type breed being domesticated first (Model 3); and two independent 

domestication events, with the egg and dual purpose breed being domesticated first (Model 

4). Using the “backbone” of the best model, we then used a step-wise strategy to add 

parameters related with variation in population sizes and population growth, keeping a new 

parameter only if the Akaike information criterion (AIC) and log likelihood improved 

considerably over the previous model with less parameters. In cases where additional 

parameters resulted in negligibly improved AIC and likelihood, we retained the simpler, less 

parameterized model. Gene flow was modelled as continuous migration events after 

population divergence. Each model was run at least ten times from independent starting 

values to ensure convergence to the same parameter estimates. We rejected models where 

we failed to obtain convergence across the replicate runs. Scaled parameters for the 

best-supported model were transformed into real values using the same average mutation 

rate (μ) and (g) as described above for the PSMC analysis. Parameter uncertainty was 

obtained using the Godambe Information Matrix (GIM) [81] from 100 non-parametric 

bootstraps. 

Selective-sweep analysis 

In order to define candidate regions having undergone directional selection during 

duck domestication we calculated the coefficient of nucleotide differentiation (FST) between 

mallards and domesticated ducks described by Weir & Cockerham [82]. We calculated the 

average FST in 10kb windows with a 5 kb shift for all seven domesticated duck populations 

combined, and two mallard populations combined. Only scaffolds longer than 10 kb, 2368 of 
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78488 scaffolds, were chosen for the analysis. We transformed observed FST values to Z 

transformation (Z(FST)) with          and          according to previously 

described methods [83]. 

To estimate levels of nucleotide diversity ( ) across all sampled populations we used 

the VCFtools software (v0.1.13) [84] to calculate                       [85], computing 

the average difference per locus over each pair of accessions. As the measurement of FST, 

averaged   ratio (                     ) was calculated for each scaffold in 10kb sliding 

windows. 

Functional classification of GO categories was performed in Database for Annotation, 

Visualization and Integrated Discovery (DAVID, v6.8) [86]. Statistical significance was 

accessed by using a modified Fisher’s exact test and Benjamini correction for multiple 

testing. 

RNA-seq and data processing 

To infer whether novel allelic variants located in the top 5% FST regions of genome 

comparison between wild mallards and domesticated ducks could also affecting gene 

expression, we compared gene expression in brain, liver and in breast muscle between wild 

mallards and domesticated ducks. To make our result more universal, 7 male mallards and 7 

male domesticated ducks were choose for RNA-seq. All samples were individually sequenced 

by Illumina Highseq 4000 sequencing platfrom. 

For each sample, adapters and primers of paired end reads were removed by NGSQC 

Tool kit (v2.3.3) [59]. For each paired end read pair, if one of two reads had an average base 

quality less than 20 (PHRED quality score), then both reads were removed. If one end of 

paired end read had percentage of high quality base less than 70%, the two paired reads 

also removed. After that high-quality reads were mapped to reference genome using STAR 

(v.2.5.3a) [87]. The featureCounts function of the Rsubread (v.1.5.2) [88, 89] was used to 

output the counts of reads aligning to each gene. We detected the differential expression 

genes with edgeR (v3.6) [90-93] using a padj < 0.05 threshold. 

Availability of supporting data and materials 

The 78 ducks used in whloe genome resequencing analysis and the 14 ducks used in 

RNA-seq analysis are accessible at NCBI under BioProject accession numbers PRJNA419832 

and PRJNA419583, respectively. The unassessembled sequencing reads of 78 ducks and 

RNA-seq reads of 14 ducks have been deposited in NCBI Sequence Read Archive (SRA) under 

accession numbers SRP125660 and SRP125529, respectively. All VCF files of SNPs and INDELs 
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and other supporting data, such as scripts, alignments for phylogenetic trees and sweep 

regions, are available via the GigaScience database GigaDB[94]. 
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