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Abstract Do people routinely pre-activate the meaning and even the phonological form of

upcoming words? The most acclaimed evidence for phonological prediction comes from a 2005

Nature Neuroscience publication by DeLong, Urbach and Kutas, who observed a graded

modulation of electrical brain potentials (N400) to nouns and preceding articles by the probability

that people use a word to continue the sentence fragment (‘cloze’). In our direct replication study

spanning 9 laboratories (N=334), pre-registered replication-analyses and exploratory Bayes factor

analyses successfully replicated the noun-results but, crucially, not the article-results. Pre-registered

single-trial analyses also yielded a statistically significant effect for the nouns but not the articles.

Exploratory Bayesian single-trial analyses showed that the article-effect may be non-zero but is

likely far smaller than originally reported and too small to observe without very large sample sizes.

Our results do not support the view that readers routinely pre-activate the phonological form of

predictable words.

DOI: https://doi.org/10.7554/eLife.33468.001

Introduction
In the last decades, the idea that people routinely and implicitly predict upcoming words during lan-

guage comprehension turned from a highly controversial hypothesis to a widely accepted
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assumption. Initial objections to prediction in language were based on a lack of empirical support

(e.g. Zwitserlood, 1989), incompatibility with traditional bottom-up models and contemporary inter-

active models of language comprehension (e.g. Kintsch, 1988; Marslen-Wilson and Tyler, 1980),

and the purported futility of prediction in a generative system where sentences can continue in infi-

nitely many different ways (Jackendoff, 2002). Current theories of language comprehension, how-

ever, reject such objections and posit prediction as an integral and inevitable mechanism by which

comprehension proceeds quickly and incrementally (e.g. Altmann and Mirković, 2009; Dell and

Chang, 2014; Pickering and Garrod, 2013). Prediction, that is, context-based pre-activation of an

upcoming linguistic input, is thought to occur at all levels of linguistic representation (semantic, mor-

pho-syntactic and phonological/orthographic) and serves to facilitate the integration of newly avail-

able bottom-up information into the unfolding sentence- or discourse-representation. In this line of

thought, language is yet another domain in which the brain acts as a prediction machine

(Clark, 2013; Van Berkum, 2010; see also Friston, 2005, 2010; Summerfield and de Lange,

2014), hard-wired to continuously match sensory inputs with top-down, grammatical or probabilistic

expectations based on context and memory.

What promoted linguistic prediction from outlandish and deeply contentious to ubiquitous and

somewhat anodyne? One of the key and most acclaimed pieces of empirical evidence for linguistic

prediction to date comes from a landmark Nature Neuroscience publication by DeLong et al.

(2005), whose approach exploited a phonological rule of English whereby the indefinite article is

realized as a before consonant-initial words and as an before vowel-initial words. In their experiment,

participants read sentences of varying degree of contextual constraint that led to expectations for a

particular consonant- or vowel-initial noun. This expectation was operationalized as a word’s cloze

probability (cloze), calculated in a separate, non-speeded sentence completion task as the percent-

age of continuations of a sentence fragment with that word (Taylor, 1953). For example, the sen-

tence fragment "The day was breezy so the boy went outside to fly...” is continued with ‘a’ by 86%

of participants, and "The day was breezy so the boy went outside to fly a..." is continued with ‘kite’

by 89% of participants. In the main experiment, word-by-word sentence presentation enabled

DeLong and colleagues to examine electrical brain activity elicited by articles that were concordant

with the highly expected but yet unseen noun (‘a’, followed by ‘kite’), or by articles that were incom-

patible with the highly expected noun and heralded a less expected one (‘an’, followed by

‘airplane’). Of note, an unexpected like ‘a/an’ does not rule out that the expected noun appears,

just that it appears as the immediately following word (e.g., ‘an old kite’), we return to this issue in

the Discussion. The dependent measure was the amplitude of the N400 Event-related potential

(ERP), a negative ERP deflection that peaks approximately 400 ms after word onset and is maximal

at centroparietal electrodes (Kutas and Hillyard, 1980). The N400 is elicited by every word of an

unfolding sentence, and its amplitude is smaller (less negative) with increasing ease of semantic

processing (Kutas and Hillyard, 1984). In this article, we use ‘N400 amplitude’ as a shorthand

for ‘ERP amplitude in the time window associated with the N400’; this ERP amplitude is actually a

sum of the N400 ERP component and other ERP components (reflecting other aspects of cognition)

that overlap with it in time and space. DeLong et al. found that the N400 amplitude for a given

word decreased as a function of increasing cloze probability, both for nouns and, critically, for

articles. DeLong et al. presented the systematic and graded N400 modulation by article-cloze as

strong evidence that participants activated the nouns and articles in advance of their appearance,

and that the disconfirmation of this prediction by the less-expected articles resulted in processing

difficulty (higher N400 amplitude at the article).

The results obtained with this elegant design warranted a much stronger conclusion than related

results available at the time. Previous studies that employed a visual-world paradigm had revealed

listeners’ anticipatory eye-movements toward visual objects on the basis of probabilistic or grammat-

ical considerations (e.g. Altmann and Kamide, 1999). However, predictions in such studies are scaf-

folded onto already-available visual context, and therefore do not measure purely pre-activation, but

perhaps re-activation of word information previously activated by the visual object itself (Huet-

tig, 2015). DeLong and colleagues examined brain responses to information associated with con-

cepts that were not pre-specified and had to be retrieved from long-term memory ‘on-the-fly’.

Furthermore, DeLong and colleagues were the first to muster evidence for highly specific pre-activa-

tion of a word’s phonological form, rather than merely its semantic (e.g. Federmeier and Kutas,

1999) or morpho-syntactic features (e.g. Van Berkum et al., 2005; Wicha et al., 2004). Crucially, as
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their demonstration involved semantically identical articles (function words) rather than nouns or

adjectives (content words) that are rich in meaning, the observed N400 modulation by article-cloze

is unlikely to reflect difficulty interpreting the articles themselves. Most notably, DeLong and col-

leagues were the first to examine brain activity elicited by a range of more- or less-predictable

articles, not simply most- versus least-expected. Based on the observed correlation, they argued

that pre-activation is not all-or-none and limited to highly constraining contexts, but occurs in a

graded, probabilistic fashion, with the strength of a word pre-activation proportional to its cloze

probability. Moreover, they concluded that prediction is an integral part of real-time language proc-

essing and, most likely, a mechanism for propelling the comprehension system to keep up with the

rapid pace of natural language.

DeLong et al.’s study has had an immense impact on the field of psycholinguistics, neurolinguis-

tics and beyond. It is cited by authoritative reviews (e.g. Altmann and Mirković, 2009;

Hagoort, 2017; Lau et al., 2008; Pickering and Clark, 2014; Pickering and Garrod, 2007) as deliv-

ering decisive evidence for probabilistic prediction of words all the way up to their phonological

form. Moreover, as a demonstration of pre-activation of phonological form (sound) during reading,

it is sometimes cited as evidence for ‘prediction through production’ (e.g. Pickering and Garrod,

2013), the hypothesis that linguistic predictions are implicitly generated by the language production

system. To date, DeLong et al. has received a total of 766 citations (Google Scholar), averaging to

more than one citation per week over the past decade, with an increasing number of citations in

each subsequent year. The results also played an important role in settling an ongoing debate in the

neuroscience of language. It provided the clearest evidence that the N400 component, which some

researchers had long taken to directly index the high-level compositional processes by which people

integrate a word’s meaning with its context (Brown and Hagoort, 1993; Chwilla et al., 1995;

Connolly and Phillips, 1994; Friederici et al., 1999; van Berkum et al., 1999; Van Petten et al.,

1999), actually reflected non-compositional processes by which word information is accessed as a

function of context (e.g. Kutas and Hillyard, 1984).

But how robust are gradient effects of form prediction? In over a decade that has passed since

the publication by DeLong and colleagues, there is still no published study that directly replicates

their graded pattern of results (for an overview, see Ito et al., 2017b). DeLong and colleagues also

performed an alternative analysis of the same data, using cloze as a categorical variable instead of a

continuous variable. This analysis did not yield a statistically significant result (p.59 in DeLong, 2009)

and was not mentioned in the published report. In at least three other unpublished data sets

(DeLong, 2009; Miyamoto, 2016), DeLong and colleagues did not find a significant correlation

between article-N400 and cloze probability. Martin et al. (2013) claimed a successful conceptual

replication in native speakers of English but not in bilinguals. However, their study did not test for a

graded effect of cloze, and differed from the original in many crucial aspects of the experimental

design, data-preprocessing and statistical analysis, clouding both a qualitative and quantitative com-

parison to the original results. Moreover, two attempts to replicate the Martin et al. results in English

monolinguals failed to yield a reliable effect of cloze on article-ERPs (Ito et al., 2017b); for results

that combined data from monolinguals and bilinguals, see Ito et al., 2017a).

As the tremendous scientific impact of the DeLong et al. findings is at odds with the apparent

lack of replication attempts, we report here a direct replication study. Inspired by recent demonstra-

tions for the need for large subject-samples in psychology and neuroscience research (Button et al.,

2013; Open Science Collaboration, 2015), our replication spanned nine laboratories each with a

sample size equal to or greater than that of the original. In addition to duplicating the original analy-

sis, our replication attempt also seeks to improve upon DeLong et al.’s data analysis. DeLong et al.’s

original analysis reduced an initial pool of 2560 data points (32 subjects who each read 80 sentences)

to 10 grand-average values, by averaging N400 responses over trials within 10 cloze probability dec-

ile-bins (cloze 0–10, 11–20, etc.), per participant and then averaging over participants, even though

these bins held greatly different numbers of observations (for example, the 0–10 cloze bin contained

37.5% of all data, whereas the 90–100 cloze bin contained only about 4%, which means that the reli-

ability of the estimates per bin greatly differ, increasing the likelihood of obtaining spurious results;

for additional discussion see Ito et al., 2017b). These 10 values were correlated with the average

cloze value per bin, yielding numerically high correlation coefficients with large confidence intervals

(e.g., the Cz electrode showed a statistically significant r-value of 0.68 with a 95% confidence interval

ranging from 0.09 to 0.92). However, this analysis potentially compromises power by discretizing
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cloze probability into deciles and not distinguishing various sources of subject-, item-, bin-, and trial-

level variation. Furthermore, treating subjects as a fixed rather than random factor potentially inflates

false positive rates, since the overall cloze effect is confounded with by-subject variation in the effect

(Barr et al., 2013; Clark, 1973).

In our replication study, we followed two pre-registered analysis routes: a replication analysis that

duplicated the DeLong et al. analysis, and a single-trial analysis that modelled variance at the level

of item and subject (with a linear mixed-effects model), which offers better control over false-posi-

tives than the replication analysis when analyzing effects of the continuous predictor cloze probabil-

ity. The effect of cloze on noun-elicited N400s (DeLong et al., 2015; Kutas and Hillyard, 1984) is

necessary but not sufficient evidence for the claim on pre-activation in language processing (as it is

also compatible with the view that the noun’s cloze probability correlates with the ease of integra-

tion of that noun into the context). It serves as a manipulation check to ensure that the experiment is

able to successfully detect graded variation in N400 amplitude, but does not provide strong evi-

dence for the prediction of phonological form. That evidence would come from the ERPs elicited by

articles. Observing a reliable effect of cloze on article-elicited N400s in the replication analysis and,

in particular, in the single-trial analysis, would constitute powerful evidence for the pre-activation of

phonological form during reading.

Results
We first obtained offline cloze probabilities for all target articles and nouns from a group of native

English speakers. These values closely resembled those of the original study (see Methods for

details). In the subsequent ERP experiment, a different group of participants (N = 334) read the sen-

tences word-by-word from a computer display at a rate of 2 words per second, while we recorded

their electrical brain activity at the scalp. The replication analysis and single-trial analysis described

below were each pre-registered at https://osf.io/eyzaq/.

Replication analysis
We sorted the articles and nouns into 10 bins based on each word’s cloze probability (e.g. items

with 0–10% cloze were put in one bin, 10–20% in another, etc.). For each laboratory, we averaged

ERPs per bin first within, then across, participants. No baseline correction was used, following the

procedure described in the Methods section in DeLong et al. (2005). We then correlated the aver-

aged cloze values per bin with mean ERP amplitude in the N400 time window (200–500 ms) elicited

by the nouns (for the noun analysis) or articles (for the article analysis) from the corresponding bin,

yielding a Pearson correlation coefficient (r-value) per EEG channel. This analysis yielded a very dif-

ferent pattern than DeLong et al. observed (Figure 1). In no laboratory did article-N400 amplitude

at centro-parietal sites become significantly smaller (less negative) as article-cloze probability

increased (in fact, in most laboratories the pattern went into the opposite direction). Only in one lab-

oratory (Lab 2) did the correlation coefficient have a p-value below .05 in the predicted direction

(positive) at any electrode (uncorrected for multiple comparisons), but this effect was observed at a

few left-frontal electrodes, not at the central-parietal electrodes where DeLong et al. found their

N400 effects. Moreover, in two laboratories (Labs 3 and 5), a statistically significant effect was

observed in the opposite direction, larger (more negative) article-N400 amplitude for articles with

increasing cloze probability. For the nouns, the pattern was more similar to the DeLong et al. results.

In six laboratories (Lab 2, 3, 4, 6, 7, and 9), noun-N400 amplitude for nouns at central-parietal or

parietal-occipital electrodes became smaller with increasing noun-cloze, and in two other laborato-

ries (Lab 5 and 8) the effects clearly went in the expected direction without reaching statistical

significance.

DeLong et al. recently mentioned using a 500 ms baseline correction procedure that was not

mentioned in the published study (personal communication by DeLong, March 2017). In an explor-

atory analysis, we therefore recomputed the correlations based on data pooled from all laboratories

using this baseline correction procedure (Figure 2). This analysis also showed a lack of statistically

significant positive correlations for the articles, but statistically significant positive correlations for

the nouns. In exploratory Bayesian analyses reported below, we perform an analysis to establish

whether these results are consistent with the size and direction of the effects reported by DeLong

et al., regardless of statistical significance.
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Figure 1. Replication analysis. Correlations between N400 amplitude and article/noun cloze probability per laboratory. N400 amplitude is the mean

voltage in the 200–500 ms time window after word onset. A positive value corresponds to the canonical finding that N400 amplitude became smaller

(less negative—more positive) with increasing cloze probability. Here and in all further plots, negative voltages are plotted upwards. Upper graph:

Scatter plots showing the correlation between cloze and N400 activity at electrode Cz, for each lab. The position of Cz and the other electrodes is

Figure 1 continued on next page
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Single-trial analysis
We first performed baseline correction by subtracting the average amplitude in the 100 ms time win-

dow before word onset. Baseline-corrected ERPs for relatively expected and unexpected words and

difference waveforms are shown in Figure 3. Then, for the data pooled across all laboratories, we

used linear mixed effects models to regress the N400 amplitude (in a spatiotemporal region of

Figure 1 continued

displayed in the head plot in between the upper and lower graph. Lower graph: Scalp distribution of the r-values for each lab. Asterisks (*) indicate

electrodes that showed a statistically significant correlation (two-tailed p<0.05, not corrected for multiple comparisons). Exact r- and p-values for each

laboratory and EEG channel are available as source data (Figure 1—source datas 1–4) and on https://osf.io/eyzaq.

DOI: https://doi.org/10.7554/eLife.33468.002

The following source data is available for figure 1:

Source data 1. r-values for the articles for each laboratory and each channel

DOI: https://doi.org/10.7554/eLife.33468.003

Source data 2. p-values for the articles for each laboratory and each channel.

DOI: https://doi.org/10.7554/eLife.33468.004

Source data 3. r-values for the nouns for each laboratory and each channel.

DOI: https://doi.org/10.7554/eLife.33468.005

Source data 4. r-values for the nouns for each laboratory and each channel.

DOI: https://doi.org/10.7554/eLife.33468.006
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Figure 2. Replication analysis. Scalp distribution and r-values at each channel based on data pooled from all

laboratories, using a 500 ms baseline correction procedure as used by DeLong et al. (2005). Data were pooled

after computing bin-averages per laboratory as in the original study, treating the laboratories as multiple

observations of each bin-average. Asterisks (*) indicate electrodes that showed a statistically significant correlation

(two-tailed, not corrected for multiple comparisons). Exact r- and p-values for each EEG channel are available as

source data (Figure 2—source datas 1–4).

DOI: https://doi.org/10.7554/eLife.33468.007

The following source data is available for figure 2:

Source data 1. r-values for the articles for each channel, computed across laboratories.

DOI: https://doi.org/10.7554/eLife.33468.008

Source data 2. p-values for the articles for each channel, computed across laboratories.

DOI: https://doi.org/10.7554/eLife.33468.009

Source data 3. r-values for the nouns for each channel, computed across laboratories.

DOI: https://doi.org/10.7554/eLife.33468.010

Source data 4. p-values for the nouns for each channel, computed across laboratories.

DOI: https://doi.org/10.7554/eLife.33468.011
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Figure 3. Single-trial analysis. Grand-average ERPs elicited by relatively expected and unexpected words (cloze higher/lower than 50%) and the

associated difference waveforms (low minus high cloze) at electrode Cz. Dotted lines indicate one standard deviation above or below the grand

average.

DOI: https://doi.org/10.7554/eLife.33468.012
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interest selected a priori based on the DeLong et al. results) on cloze probability. For the articles,

the effect of cloze was not statistically significant at the a = 0.05 level, b = 0.29, CI [�0.08, .67], c2(1)

=2.31, p=0.13 (see Figure 4, left panel) , with b referring to the N400 difference in microvolts associ-

ated with stepping from 0% to 100% cloze. Unless otherwise indicated, p-values are two-tailed, and

CIs are two-tailed 95% confidence intervals. The effect of cloze on N400 amplitude at the article did

not significantly differ between laboratories, c
2(8)=7.90, p=0.44. For the nouns, however, higher

cloze values were strongly associated with smaller N400s, b = 2.22, CI [1.76, 2.69], c2(1)=56.50,

p<0.001 (see Figure 4, right panel). This pattern did not significantly differ between laboratories,

c
2(8)=11.59, p=0.17. The effect of cloze on noun-N400s was statistically different from its effect on

article-N400s, c2(1)=31.38, p<0.001.

Exploratory (i.e. not pre-registered) single-trial analyses
The effect of article-cloze did not significantly vary as a function of subject comprehension question

accuracy, c2(1)=0.45, p=0.50. In addition, the effect of article-cloze was also not statistically signifi-

cant when subject comprehension accuracy was included in the analysis (100 ms baseline: b = 0.24,

CI [�0.17, .64], c2(1)=1.27, p=0.26).

In our dataset, an analysis in the 500 to 100 ms time window before article-onset revealed a non-

significant effect of cloze that resembled the pattern observed after article-onset, b = 0.16, CI

[�0.07, .39], c2(1)=1.82, p=0.18 (Figure 5). Because the sentence context of each item was identical

for the expected and unexpected article, effects in the pre-article window cannot be meaningfully

related to the appearance of the article. Effects in this window must therefore be due to a spurious

mix of ‘residual EEG background noise’ (activity that differed between expected and unexpected

conditions but was unrelated to actual expectancy) with EEG activity associated with the specific

word appearing before the article (which varied between items in terms of lexical characteristics,

contextual constraint, and sentence position). The observed result in this time window therefore sug-

gests that a 500 ms baseline correction procedure, which was used but not reported in

DeLong et al. (2005), would better correct for pre-article voltage-levels. We repeated our analysis

with the 500 ms baseline correction procedure. Compared to the article-cloze effect observed in the

Figure 4. Single-trial analysis. Relationship between cloze and ERP amplitude for articles and nouns in the N400

spatiotemporal window, as illustrated by the mean ERP values per cloze value (number of observations reflected in

circle size), along with the regression line and 95% confidence interval. A change in article cloze from 0 to 100 is

associated with a change in amplitude of 0.296 mV (95% confidence interval: �0.08 to .67). A change in noun-cloze

from 0 to 100 is associated with a change in amplitude of 2.22 mV (95% confidence interval: 1.75 to 2.69). The data

for these analyses were pooled across all nine labs.
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pre-registered analysis, the observed effect with the new baseline procedure (Figure 5) was numeri-

cally smaller and yielded a higher p-value (b = 0.14, CI [�0.25, .53], c2(1)=0.46, p=0.50).

Upon request of reviewers for this journal, we also performed an additional exploratory analysis

with cloze as a dichotomous variable (based on a medium-split, thus disregarding the known variabil-

ity in cloze values). We note that this type of analysis was not reported in DeLong et al. (2005),

although it was reported in the corresponding thesis chapter (DeLong, 2009) and did not yield a

statistically significant effect of cloze on article-elicited ERPs. We performed this analysis for articles

(100 and 500 ms baseline correction) and nouns. The results did not change substantially, and, in

fact, each analysis yielded a lower c2 value (and higher p-value) for the cloze variable than the corre-

sponding analysis with cloze as a continuous predictor. The results can be reproduced from our

online dataset and code.

Exploratory Bayesian analyses
For the articles, our pre-registered replication analyses yielded non-significant p-values, indicating

failure to reject the null-hypothesis that cloze has no effect on N400 activity. To better adjudicate

between the null-hypothesis (H0) and an alternative hypothesis (Hr), we performed an exploratory

replication Bayes factor analysis for correlations (Wagenmakers et al., 2016). The obtained replica-

tion Bayes factor quantifies the evidence that there is an effect in the size and direction reported by

DeLong et al. (see Figure 6). For the articles, this yielded strong to extremely strong evidence for

the null hypothesis that the effect of cloze is zero, with BF0r values up to 154 (at the Cz electrode

depicted by DeLong et al., BF0r = 77), and strongest evidence at the posterior channels. For the

nouns, we obtained extremely strong evidence for the alternative hypothesis that the effect is consis-

tent with the original effect, particularly at posterior channels, with BF10 values up to 9,163,515 (at

Cz, BFr0 = 10,725). The pattern of results was similar when the 500 ms pre-stimulus baseline correc-

tion was applied.

500 ms baseline pre-article

Figure 5. Exploratory single-trial analyses. The relationship between cloze and ERP amplitude as illustrated by the mean ERP values per cloze value

(number of observations reflected in circle size), along with the regression line and 95% confidence interval, from two exploratory analyses. We

performed a test which used a longer baseline time window (500 ms, left panel) to better control for pre-article voltage levels. This test reduced the

initially observed effect of article-cloze, b = 0.14, CI [�0.25, .53], c2(1)=0.46, p=0.50). An analysis in the 500 to 100 ms time window before article-onset

(right panel) revealed a non-significant effect of cloze that resembled the pattern observed after article-onset, b = 0.16, CI [�0.07, .39], c2(1)=1.82,

p=0.18, shedding doubt on the conclusion that the observed results are due to the presentation of the articles.
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Next, we computed Bayesian mixed-effect

model estimates (b) and 95% credible intervals

(CrI) for our single-trial analyses, using priors

based on the results from DeLong et al. In both

of our article-analyses, credible intervals included

zero (100 ms baseline: b = 0.31, CrI [�0.06 .69];

500 ms baseline: b = 0.17, CrI [�0.22 .55]). For

the nouns, zero was not within the credible inter-

val: b = 2.24, CrI [1.77 2.70]. The analyses sug-

gest that the data (combined with prior

assumptions about the effect) are not very consis-

tent with the hypothesis that the article-effect is

zero (further information and posterior summaries

are available in Figure 7), but also are extremely

inconsistent with the hypothesis that the article-

effect is as big as that observed by DeLong et al.

(2005). The data are most consistent with an

effect that is more likely to be positive than zero

or negative but is very small (so small that it was

not detected at traditional significance levels in

this large-scale experiment with substantially

higher power than previous experiments).

Control experiment
Lack of a statistically significant, article-elicited

prediction effect could reflect a general insensi-

tivity of our participants to the phonologically

conditioned variation of the English indefinite

article, that is, a/an alternation. We ruled out this

alternative explanation in an additional experi-

ment that followed the replication experiment as

part of the same experimental session. Partici-

pants read 80 short sentences containing the

same nouns as the replication experiment, pre-

ceded by a phonologically licit or illicit article

(e.g. ‘David found a/an apple...”), presented in

the same manner as before. In each laboratory,

nouns following illicit articles elicited a late posi-

tive-going waveform compared to nouns follow-

ing licit articles (see Figure 8), starting at about

500 ms after word onset and strongest at parietal electrodes. This standard P600 effect

(Osterhout and Holcomb, 1992) was confirmed in a single-trial analysis, c2(1)=83.09, p<0.001, and

did not significantly differ between labs, c2(8)=8.98, p=0.35.

Discussion
In a landmark study, DeLong, Urbach and Kutas observed a statistically significant, graded modula-

tion of article- and noun-elicited electrical brain potentials (N400) by the pre-determined probability

that people continue a sentence fragment with that word (cloze). They concluded that people rou-

tinely and probabilistically pre-activate upcoming words to a high level of detail, including whether a

word starts with a consonant or vowel. Our direct replication study spanning nine laboratories found

a statistically significant effect of cloze on noun-elicited N400 activity but, critically, no significant

effect of cloze on article-elicited N400 activity. This pattern was observed in a pre-registered replica-

tion analysis that duplicated the original study’s analysis, and a pre-registered single-trial analysis

that modeled variance at the level of item and subject. Exploratory replication Bayes factor analyses

confirmed that we successfully replicated the direction and size of the correlations reported by
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Figure 6. Exploratory replication Bayes factor analysis.

This analysis quantifies the obtained evidence for the

null hypothesis (H0) that N400 is not impacted by cloze,

or for the alternative hypothesis (H1) that N400 is

impacted by cloze with the direction and size of effect

reported by DeLong et al. Scalp maps show the

common logarithm of the replication Bayes factor for

each electrode, capped at log(100) for presentation

purposes. Electrodes that yielded at least moderate

evidence for or against the null hypothesis (Bayes

factor of �3) are marked by an asterisk. At posterior

electrodes where DeLong et al. found their effects, our

article data yielded strong to extremely strong

evidence for the null hypothesis, whereas our noun

data yielded extremely strong evidence for the

alternative hypothesis (upper graphs). These results

were obtained with the procedure described in

DeLong et al. (no baseline correction), and with a 500

ms pre-word baseline correction (lower graphs), the

procedure later described by DeLong and colleagues.
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Figure 7. Exploratory Bayesian mixed-effects model analyses. Posterior density distributions for the effect of cloze on ERP amplitudes in the N400

window. The x-axis shows cloze effect sizes (i.e. changes in microvolts associated with an increase from 0% cloze probability to 100% cloze probability).

The black line indicates the posterior distribution of effects; higher values of the posterior density at a given effect size indicate higher probability that

this is the true effect size in the population. The peak of the posterior distribution roughly corresponds to the point estimate of the effect size (the

regression coefficient) fitted from the Bayesian mixed effect model, i.e., the most likely value of the true effect size. The middle 95% of the posterior

distribution, shaded in orange, corresponds to a two-tailed 95% credible interval for the effect size—i.e., an interval that we can be 95% confident

contains the true effect. The green dotted line indicates the prior distribution (i.e., our expectation about where the true effect would lie before the

data were collected). For the articles, this prior is centred on 1.25 mV, an approximation of the effect observed by DeLong et al. (2005), and for the

nouns it is centred on 3.5 mV. The black connected dots illustrate the ratio between the posterior and prior distribution (i.e. the Bayes factor) at the

effect size of 0 mV; for example, a Bayes factor of 4 suggests we can be four times more certain that the true effect is zero after having conducted this

experiment than before, or, in other words, that the data increased our confidence in the null effect of zero fourfold. We performed these analyses for

each of the linear mixed-effects model analyses we performed. We note that in all the article-analyses, the posterior probability of the estimated effect

being greater than zero is around 80 or 90%, although this is also true for the pre-stimulus variable, shedding doubt that the observed results are due

to presentation of the articles. In none of our article-analyses did zero lie outside the obtained credible interval, whereas for the nouns, zero lay outside

the credible interval. These results are consistent with a failure to replicate the size of the article-effect reported by DeLong et al. and a successful

replication of the noun-effect.
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Control experiment:
Ungrammatical - Grammatical  ‘P600 e�ect’ (Pz)

LAB 1 LAB 2 LAB 3

LAB 4 LAB 5 LAB 6

LAB 7 LAB 8 LAB 9

800 ms0 400
6 µV

-6 µV 

0

Figure 8. Control experiment. P600 effects at electrode Pz per lab associated with flouting of the English a/an

rule. Plotted ERPs show the grand-average difference waveform and standard deviation for ERPs elicited by

ungrammatical expressions (‘an kite’) minus those elicited by grammatical expressions (‘a kite’).
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Delong et al. for the nouns, but not for the articles. Exploratory Bayesian mixed-effects model analy-

ses suggested that, while there is some evidence that the true population-level effect may be in the

direction reported by DeLong and colleagues, the effect is likely far smaller than what they reported.

In fact, the effect is likely is too small to be meaningfully observed without very large sample sizes.

Finally, a control experiment confirmed that our participants did respect the phonological alternation

a/an of the article with nouns used in the replication experiment.

Our findings thus challenge one empirical cornerstone of the ‘strong prediction view’ held by cur-

rent theories of language comprehension (e.g. Altmann and Mirković, 2009; Pickering and Garrod,

2013). The strong prediction view entails two key claims. The first is that people pre-activate words

at all levels of representation in a routine and implicit (i.e. non-strategic) fashion. Pre-activation is not

limited to a word’s meaning, but includes its grammatical features and even its orthographic and/or

phonological form. This would put language on a par with other cognitive systems such as visual per-

ception, wherein higher level brain regions attempt to predict lower level inputs (Friston, 2005;

2010; Summerfield and de Lange, 2014). The second claim is that pre-activation occurs at all levels

of contextual support and gradually increases in strength with the level of contextual support. When

contextual support for a specific word is high, like at a 100% cloze value, the word’s form and mean-

ing is strongly pre-activated. When contextual support for a word is low, like when it is one amongst

20 words each with a 5% cloze value, pre-activation is distributed across multiple potential continua-

tions. However, even then, a word’s form and meaning are pre-activated, just weakly so. The

strength of pre-activation is probabilistic, that is, linked to estimated probability of occurrence.

DeLong and colleagues, and subsequently other scientists (e.g. Dell and Chang, 2014;

Pickering and Garrod, 2013), took their results as the evidence to support both these claims.

DeLong et al. (2005) was – and still is - the only study to date that measured pre-activation at the

prenominal articles a and an that do not differ in their semantic or grammatical content, and that

observed a graded relationship between cloze and N400 activity across a range of low- and high-

cloze words, rather than merely a difference between low- and high-cloze words. Given that the use

of these articles depends on whether the next word starts with a vowel or consonant, their results

were considered as powerful evidence that participants probabilistically pre-activated the initial

sound of upcoming nouns.

However, we show that there is no statistically significant effect of cloze on article-elicited N400

activity, using a sample size more than ten times that of the original, and a statistical analysis that

better accounts for sources of non-independence than the original averaging-based correlation

approach. If an effect of cloze on article-N400s exists at all, its true effect size is so small that it can-

not be reliably detected even in an expansive multi-laboratory approach, let alone in the typical sam-

ple size in psycholinguistic and neurolinguistic experiments (roughly, N = 30). This means that even if

article-cloze is associated with a graded modulation of N400 amplitudes, this effect seems to be so

small that it cannot be reliably measured with small samples, and thus the previous studies may not

have contributed much reliable information to our understanding of this effect. Moreover, it is also

possible that the effect is sensitive to specifics of the experimental procedure and context such that

it lacks generalizability. Current theoretical positions thus either require new strong evidence for

phonological pre-activation or require revision. In particular, one claim from the strong prediction

view, namely that pre-activation routinely occurs across all – including phonological – levels

(Pickering and Garrod, 2013), can no longer be viewed as having strong empirical support. Our

work impels the field to think differently about what constitutes strong evidence within a theory, but

also highlights the need for a theory of linguistic prediction to formulate quantitative predictions

about the effect-size of to-be-observed effects (for discussion, see also Vasishth et al., 2018).

By contrast, we observed a strong and statistically significant effect of cloze on noun-elicited

activity in the majority of our analyses. Although three of the nine laboratories did not show statisti-

cally significant correlations between noun-cloze and N400s, data pooled across all laboratories

showed a strong and statistically significant noun-cloze effect, and our replication Bayes factor analy-

sis overwhelmingly replicated the direction and size of the noun-cloze effect of DeLong et al. More-

over, our single-trial analysis revealed a significant noun-cloze effect in each of the laboratories,

further demonstrating that our single-trial analysis is a more powerful approach than the averaged-

based correlation approach of DeLong et al. These results are therefore consistent with the handful

of studies that reported a graded relationship between noun-cloze and noun-N400s (DeLong et al.,

2005; Kutas and Hillyard, 1984; Wlotko and Federmeier, 2012).
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Where do our results leave the strong prediction view? Following the experimental logic of

DeLong et al, we do not have sufficient evidence to conclude that people routinely pre-activate the

initial phoneme of an upcoming noun, or perhaps any other word form information. Without pre-

activation of the initial phoneme, the specific instantiation of the article does not cause people to

revise their prediction about the meaning of the upcoming noun, thus lacking any impact on proc-

essing. Crucially, this conclusion is incompatible with the strong prediction view, because it suggests

that pre-activation does not occur at the level of detail that is often assumed. Our results are also

incompatible with an alternative interpretation of the DeLong et al. findings that people predict the

article itself together with the noun (Ito et al., 2017a; Van Petten and Luka, 2012), and they pose a

serious challenge to the theory that comprehenders predict upcoming words, including their initial

phonemes, through implicit production (Pickering and Garrod, 2013). Crucially, the idea that pre-

diction is probabilistic, rather than all-or-none, is now questionable, given that there is no other pub-

lished report of a pre-activation gradient (also, see Van Petten and Luka, 2012, for a critique of the

DeLong et al. conclusions that graded effects evidence graded pre-activation). Although other stud-

ies have claimed prediction of form (Ito et al., 2016) or a prediction gradient (Smith and Levy,

2013), no study has indisputably demonstrated graded pre-activation, that is, graded effects occur-

ring before the noun. Effects that are observed upon, rather than before the noun, do not purely

index pre-activation but can index a mixture of memory retrieval and semantic integration processes

instigated by the noun itself (Baggio and Hagoort, 2011; Lau et al., 2016; Nieuwland et al., 2018;

Otten and Van Berkum, 2008; Steinhauer et al., 2017). Therefore, there is currently no clear evi-

dence to support routine probabilistic pre-activation of a noun’s phonological form during sentence

comprehension.

Our results, however, should not be taken as evidence against prediction in language processing

more generally, and we believe that prediction could play an important role in language comprehen-

sion. In addition, our results do not necessarily exclude phonological form pre-activation, and we

temper our conclusion with a caveat stemming from the a/an manipulation. For this manipulation to

‘work’, people must specifically predict the initial phoneme of the next word, and revise this predic-

tion when faced with an unexpected article. However, because articles are only diagnostic about the

next word within the noun phrase, rather than about the head noun itself, an unexpected article

does not refute the upcoming noun, it merely signals that another word would come first (e.g., ‘an

old kite’). This opens up explanations for why the a/an manipulation ‘fails’ (see also Ito et al., 2017a,

2017b). In addition, comprehenders may not predict the noun to follow immediately, but at a later

point; the unexpected article then does not evoke a change in prediction. Predictions about a spe-

cific position may be disconfirmed too often in natural language to be viable. This idea is supported

by corpus data (Corpus of Contemporary American English and British National Corpus), showing a

mere 33% probability that a/an is directly followed by a noun. Alternatively, people predict the noun

to come next, but only revise their prediction about its linear position while retaining the prediction

about its meaning. So perhaps a revision of the predicted meaning, not the position, is required to

trigger differential ERPs. In both of these hypothetical scenarios, people do not revise their predic-

tion about the upcoming noun’s meaning unless they must.

Our results can be straightforwardly reconciled with effects reported for other pre-nominal

manipulations, such as those of Dutch or Spanish article-gender (e.g. Van Berkum et al., 2005;

Otten and Van Berkum, 2008; Otten and Van Berkum, 2009; Wicha et al., 2004). Unlike a/an

articles, gender-marked articles can immediately disconfirm the noun, because article- and noun-

gender agrees regardless of intervening words (e.g. the Spanish article ‘el’ heralds a masculine

noun). Revising the prediction about the noun presumably results in a semantic processing cost,

thereby modulating N400 activity (e.g. Kochari and Flecken, 2017; Otten and Van Berkum, 2009).

Although gender-marked articles do not consistently incur the exact same type of effect (for a recent

review, see Kochari & Flecken, 2017) and have only been observed at very high-cloze values, previ-

ous studies suggest that a noun’s grammatical gender can be pre-activated along with its meaning.

Compared to this gender-manipulation, DeLong et al.’s study based on the English a/an manipula-

tion claimed a stronger version of the prediction view, namely that people predict which word comes

next up to its phonological form and, make backwards prediction as to the phonological form of the

preceding linguistic material even on the basis of probabilistic, graded information.

What do our results say about prediction during natural language processing? Like the conclu-

sions by DeLong et al., ours are limited by the generalization from comprehension of single
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sentences in a laboratory setting. On one hand, a rich conversational or story context may enhance

predictions of upcoming words, and listeners may be more likely to pre-activate the phonological

form of upcoming words than readers. On the other hand, our laboratory setting offered particularly

good conditions for prediction of the next word’s initial sound to occur. Each article was always

immediately followed by a noun, unlike in natural language. Moreover, our word presentation rate

was slow compared to natural reading rates, which may facilitate predictive processing (Ito et al.,

2016; Wlotko and Federmeier, 2015). In natural reading, articles are hardly fixated and often

skipped (e.g. O’Regan 1979). In short, arguments can be made both for and against phonological

form prediction in natural language settings, and novel avenues of experimentation are needed to

settle this issue.

DeLong and colleagues recently stated an omission in the description of their data analysis,

that is, a baseline procedure was applied to the data but inadvertently omitted from the description

(DeLong et al., 2005). We have shown that our conclusions hold regardless of the baseline proce-

dure. In a recent commentary, DeLong et al., 2017 also described filler-sentences in their experi-

ment, which were omitted from their original report, and were neither provided nor mentioned to us

by the authors upon our request for the stimuli. DeLong et al. used the existence of these filler-sen-

tences to dismiss an alternative explanation of their original findings, namely that an unusual experi-

mental context wherein every sentence contains an article-noun combination leads participants to

strategically predict upcoming nouns. Following this logic, our results were obtained despite an

experimental context that could inadvertently encourage strategic prediction (for demonstrations of

experimental context boosting predictive processing, see Brothers et al., 2017; Lau et al., 2013).

Therefore, the presence of fillers in their experiment versus absence in ours cannot straightforwardly

explain the different results, and may even strengthen our conclusions.

Since becoming publicly available as a pre-print (Nieuwland et al., 2017), our study has been

simultaneously criticized for being not a sufficiently direct replication (due to the differences in fillers

and baseline procedure; DeLong et al., 2017; Yan et al., 2017) and for being a too direct replica-

tion (because we base our analysis on the same theoretical assumptions as the original study, rather

than applying an ad-hoc transformation or different kind of analysis that might ’reveal’ the effect;

e.g. Yan et al., 2017). As an example of the latter, an unpublished commentary by Yan et al., 2017

raises an interesting point that cloze probability should be log-transformed to better approximate

their suggested index of probabilistic semantic prediction, the Bayesian surprise over the noun

semantics upon encountering the article. Yan et al. describe a number of exploratory reanalyses of

our single-trial data with the log-transform, and one of those exploratory analyses yields a small but

statistically significant effect of article-cloze (p=0.015). Ultimately, however, their conclusion is not

that different from ours, namely that there is some evidence in our data that the effect is non-zero.

More importantly, their commentary demonstrates that our dataset, like any complex EEG dataset,

can be analyzed in many different ways, which can lead to different outcomes. However, even if

alternative analyses are well-motivated after the fact, the problem remains that they are contingent

on the data, and the accompanying researcher degrees of freedom lead to a multiple comparison

problem (e.g. Gelman and Loken, 2013; Luck and Gaspelin, 2017). We pre-registered our main

analyses and none of these allowed us to conclude that the DeLong et al. study replicated. Yan et al.

present an alternative analysis that is exploratory and that itself requires further replication. More-

over, their analysis also raises a novel set of important concerns. For example, log-transformation of

cloze also boosts the effect in the pre-article time window (p=0.058), where there cannot be a mean-

ingful effect, possibly because it amplifies ‘noise’ (between-item differences at the low end of the

cloze-scale that have nothing to do with prediction of the article). Furthermore, log-transformation

does not yield a significant effect with the original baseline procedure of DeLong et al., and it

strongly boosts the impact of items with zero cloze, that is, the items that are problematic because

their predictability cannot be accurately estimated (of note, without zero-cloze values in their analy-

sis, higher cloze leads to more negative, not positive voltage). Yan et al. report that log-transforma-

tion yields somewhat higher t-values of cloze in this dataset and changes our non-significant effect

into a significant effect, but it remains unclear whether log-transformation is indeed ‘better’. Cru-

cially, the difference between significant and not-significant itself may not be significant

(Gelman and Stern, 2006), log-transformation does not yield higher t-values consistently across lab-

oratories, does not necessarily improve model fit, and does not yield higher t-values or improve

model fit in another large dataset (collapsed data from Ito et al., 2017a; Nieuwland, 2016;
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Nieuwland and Martin, 2012; total N = 124). Finally, it is unknown whether log-transformation

weakens rather than strengthens the effect of the original study. Details of these and further con-

cerns are available on https://osf.io/mb2ud. In sum, these concerns merely add to our main point,

namely that even if analysis decisions are justifiable in retrospect, a flexible analysis practice can lead

researchers to capitalize on noise (Gelman and Loken, 2013).

To conclude, we failed to replicate the main result of DeLong et al., a landmark study published

more than 10 years ago that has not been directly replicated since. Our results suggest that, if there

is an effect of article-cloze probability on the amplitude of the N400, it is too small and/or too sensi-

tive to unknown experimental design factors to have been meaningfully measured in previous small-

sample-size experiments. Our findings thus do not lend clear support to the ‘strong prediction view’

in which people routinely and probabilistically pre-activate information at all levels of linguistic repre-

sentation, including phonological form information such as the initial phoneme of an upcoming

noun. Consequently, there is currently no convincing evidence that people routinely pre-activate the

phonological form of an upcoming noun during written sentence comprehension. In addition, our

findings further highlight the importance of direct replication, large sample size studies, transparent

reporting and pre-registration to advance reproducibility and replicability in the neurosciences.

Materials and methods

Experimental design and materials
Nieuwland requested all original materials from DeLong et al., including the questions and norms,

with the stated purpose of direct replication (personal communication, November 4 and 19, 2015),

upon which DeLong et al. made available the 80 sentences described in the original study. These

sentences were then adapted from American to British spelling and underwent a few minor changes

to ensure their suitability for British participants. The complete set of materials and the list of

changes to the original materials are available online (Supplementary file 1). The materials were 80

sentence contexts with two possible continuations each: a more or less expected indefinite

article + noun combination. The noun was followed by at least one subsequent word. All

article + noun continuations were grammatically correct. Each article + noun combination served

once as the more expected continuation and the other time as the less expected continuation, in dif-

ferent contexts. We divided the 160 items in two lists of 80 sentences such that each list contained

each noun only once. Each participant was presented with only one list (thus, each context was seen

only once). One in four sentences was followed by a yes/no comprehension question, which yielded

a mean response accuracy of 95% (after taking into account ambiguity in three of the questions, see

Supplementary file 1). While this percentage is very similar to that reported by DeLong et al., we

note that this cannot be directly compared to the accuracy reported in DeLong et al., because we

had to create new comprehension questions in the absence of the original ones. Regardless,

because Delong et al. suggested that our results were due to poor language comprehension

(DeLong et al., 2017), we describe an exploratory analysis in which we attempt to account for varia-

tion in response accuracy in the statistical model.

We obtained article cloze and noun cloze ratings from a separate group of native speakers of

English who were students at the University of Edinburgh and did not participate in the ERP experi-

ment. They were instructed to complete the sentence fragment with the best continuation that

comes to mind (Taylor, 1953). We obtained article cloze ratings from 44 participants for 80 sentence

contexts truncated before the critical article. Noun cloze ratings were obtained by first truncating

the sentences after the critical articles, and presenting two different, counterbalanced lists of 80 sen-

tences to 30 participants each, such that a given participant only saw each sentence context with the

expected or the unexpected article. The obtained values closely resemble those of the original

study, with the same range (0–100% for articles and nouns), slightly lower median values (for articles

and nouns, 29% and 40%, compared to 31% and 46% in the original study), but slightly higher mean

values (for articles and nouns, 41% and 46%, compared to 36% and 44%). Because the sentence

materials we used describe common situations that can be understood by any English speaker, and

because students at the University of Edinburgh come from across the whole of the UK, we had no a

priori expectation that cloze ratings would differ substantially across laboratories, and thus we did

not obtain cloze norms from other sites. Consistent with this assumption, nothing in our results
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suggests stronger cloze effects in University of Edinburgh students compared to other students, sug-

gesting that our cloze norms are sufficiently representative for the other universities. The raw cloze

responses are available on our OSF page.

Participants
Participants were students from the University of Birmingham, Bristol, Edinburgh, Glasgow, Kent,

Oxford, Stirling, York, or volunteers from the participant pool of University College London or

Oxford University, who received cash or course credit for taking part in the ERP experiment. Partici-

pant information and EEG recording information per laboratory is available online

(Supplementary file 1). We pre-registered a target sample size of 40 participants per laboratory,

which was thought to give at least 32 participants (the sample size of DeLong et al.) per laboratory

after accounting for data loss, as was later confirmed. Due to logistic constraints, not all laboratories

reached an N of 40. Because in two labs corruption of data was incorrectly assumed before comput-

ing trial loss, these laboratories tested slightly more than 40 participants. All participants (N = 356;

222 women) were right-handed, native English speakers with normal or corrected-to-normal vision,

between 18 and 35 years (mean, 19.8 years), free from any known language or learning disorder.

Eighty-nine participants reported a left-handed parent or sibling.

Procedure
After giving written informed consent, participants were tested in a single session. Sentences were

presented visually in the center of a computer display, one word at a time (200 ms duration, fol-

lowed by a blank screen of 300 ms duration). Due to a programming error, in four labs (1, 3, 5 and

8, which used E-prime scripts) the critical articles and nouns, but not other words, were followed by

a 380 ms blank instead of the intended 300 ms. This delay is unlikely to have affected the results

because if it was noticed at all, which is unlikely, it could only be noticed 500 ms after the article,

that is, after the N400 window associated with the article. Of note, the pattern of the results from

the pre-registered single-trial analysis did not change when we removed these labs from the analy-

sis. Participants were instructed to read sentences for comprehension and answer yes/no compre-

hension questions by pressing hand-held buttons. The electroencephalogram (EEG) was recorded

from at least 32 electrodes.

The replication experiment was followed by a control experiment, which served to detect sensitiv-

ity to the correct use of the a/an rule in our participants. Participants read 80 relatively short senten-

ces (average length eight words, range 5–11) that contained the same critical words as the

replication experiment, preceded by a correct or incorrect article. As in the replication experiment,

each critical word was presented only once, and was followed by at least one more word. All words

were presented at the same rate as the replication experiment. There were no comprehension ques-

tions in this experiment. After the control experiment, participants performed a Verbal Fluency Test

and a Reading Span test; the results from these tests are not discussed here. All stimulus presenta-

tion scripts are publicly available in two different software packages (E-Prime and Presentation) on

https://osf.io/eyzaq.

Data processing
Data processing was performed in BrainVision Analyzer 2.1 (Brain Products, Germany). We per-

formed one pre-registered replication analysis that followed the DeLong et al. analysis as closely as

possible and one pre-registered single-trial analysis (Open Science Framework, https://osf.io/eyzaq).

All non-pre-registered analyses are considered as exploratory. First, we interpolated bad channels

from surrounding channels, and downsampled to a common set of 22 EEG channels per laboratory

which were similar in scalp location to those used by DeLong et al. One laboratory did not have 12

of the selected 22 channels in its EEG channel montage, and we matched the full 22-channel layout

used for other laboratories by creating 12 virtual channels from neighbouring channels using topo-

graphic interpolation by spherical splines. We then applied a 0.01–100 Hz digital band-pass filter

(including 50 Hz Notch filter), re-referenced all channels to the average of the left and right mastoid

channels (in a few participants with a noisy mastoid channel, only one mastoid channel was used),

and segmented the continuous data into epochs from 500 ms before to 1000 ms after word onset.

We then performed visual inspection of all data segments and rejected data with amplifier blocking,
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movement artifacts, or excessive muscle activity. Subsequently, we performed independent compo-

nent analysis (Jung et al., 2000) on a 1 Hz high-pass filtered version of the data, and applied the

obtained weightings to the original data to correct for blinks, eye movements or steady muscle arte-

facts. After this, we automatically rejected segments containing a voltage difference of over 120 mV

in a time window of 150 ms or containing a voltage step of over 50 mV/ms. Participants with fewer

than 60/80 article trials or 60/80 noun trials were removed from the analysis, leaving a total of 334

participants (range across laboratories 32–42, and therefore each lab had a sample size at least as

large as DeLong et al.). On average, participants had 77 article trials and 77 noun trials. All raw data

and pre-processed data are available on https://osf.io/eyzaq.

Pre-registered replication analysis
We applied a 4th-order Butterworth band-pass filter at 0.2–15 Hz to the segmented data, averaged

trials per participant within 10% cloze bins (0–10, 11–20, etc. until 91–100), and then averaged the

participant-wise averages separately for each laboratory. Because the bins did not contain equal

numbers of trials (the intermediate bins contained fewest trials), like in DeLong et al., not all partici-

pants contributed a value for each bin to the grand average per laboratory. For nouns and articles

separately, and for each EEG channel, we computed the correlation between ERP amplitude in the

200–500 ms time window per bin with the average cloze probability per bin.

Pre-registered single-trial analysis
In this analysis, we did not apply the 0.2–15 Hz band-pass filter, which carries the risk of inducing

data distortions (Luck, 2014; Tanner et al., 2015). However, we deemed it necessary to perform a

baseline correction of the data. This procedure corrects for spurious voltage differences before word

onset, increasing confidence that observed effects are elicited by the word rather than differences in

brain activity that already existed before the word and is a standard procedure in ERP research

(Luck, 2014). DeLong et al. (2005) did not report a baseline correction, nor did any of the related

work from DeLong and colleagues that was reported in DeLong, 2009. Yet baseline correction has

been used in many other publications from the Kutas Cognitive Electrophysiology Lab. We chose a

100 ms pre-stimulus baseline as the most frequently used one both in other studies from the Kutas

lab and in similar studies from other labs. For each trial, we performed baseline correction by sub-

tracting the mean voltage of the �100 to 0 ms time window from each data point in the epoch.

Instead of averaging N400 data across trials and participants for subsequent statistical analysis,

we performed linear mixed effects model analysis (Baayen et al., 2008) of the single-trial N400

data, using the ‘lme4’ package (Bates, Maechler, Bolker & Walker, 2014) in the R software (R Core-

Team, 2014). This approach simultaneously models variance associated with each subject and with

each item. Especially when analyzing effects of a continuous predictor variable such as cloze proba-

bility, linear mixed-effects regression offers better control over false-positive results than the aver-

aged-based correlation analysis of the original study. Using a spatiotemporal region-of-interest

approach based on the DeLong et al. results, our dependent measure (N400 amplitude) was the

average voltage across six centro-parietal channels (Cz/C3/C4/Pz/P3/P4) in the 200–500 ms window

for each trial. Analysis scripts and data to run these scripts are publicly available on https://osf.io/

eyzaq.

For articles and nouns separately, we used a maximal random effects structure as justified by the

design (Barr et al., 2013), which did not include random effects for ‘laboratory’ as there were only

nine laboratories. Z-scored cloze was entered in the model as a continuous variable, and laboratory

was entered as a deviation-coded nuisance predictor. We tested the effects of ‘laboratory’ and

‘cloze’ through model comparison with a c
2 log-likelihood test. We tested whether the inclusion of a

given fixed effect led to a significantly better model fit. The first model comparison examined labo-

ratory effects, namely whether the cloze effect varied across laboratories (cloze-by-laboratory inter-

action) or whether the N400 magnitudes varied over laboratory (laboratory main effect). Because

laboratory effects were not significant, we dropped them from the analysis because they were not of

theoretical interest. For the articles and nouns separately, we compared the subsequent models

below. Each model included the random effects associated with the fixed effect ‘cloze’ (see

Barr et al., 2013). All output b estimates and 95% confidence intervals (CI) were transformed from
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z-scores back to raw scores, and then back to the 0–100% cloze range, so that the voltage estimates

represent the change in voltage associated with a change in cloze probability from 0 to 100.

Model 1: N400 ~cloze * laboratory + (cloze | subject) + (cloze | item)

Model 2: N400 ~cloze + laboratory + (cloze | subject) + (cloze | item)

Model 3: N400 ~cloze + (cloze | subject) + (cloze | item)

Model 4: N400 ~ (cloze | subject) + (cloze | item)

In an analysis that itself was not pre-registered but that included the data from the pre-registered

analysis of both articles and nouns, we tested the differential effect of cloze on article ERPs and on

noun ERPs by comparing models with and without an interaction between cloze and the deviation-

coded factor ‘wordtype’ (article/noun). Random correlations were removed for the models to

converge.

Model 1: N400 ~cloze * wordtype + (cloze * wordtype || subject) + (cloze * wordtype || item)

Model 2: N400 ~cloze + wordtype + (cloze * wordtype || subject) + (cloze * wordtype || item)

Exploratory correlation analysis
Of note, DeLong et al. have recently described using a 500 ms baseline correction procedure that

they failed to mention in DeLong et al. (2005). Using this baseline correction procedure, we recom-

puted the correlations that we obtained in our Replication analysis (Figure 2). To compare our

results most directly with those reported in Figure 1C of DeLong et al. (2005), we pooled data

from all the laboratories to obtain a single r-value for each EEG-channel. Data were pooled after

computing bin-averages per laboratory as in the original study, treating the laboratories as multiple

observations of each bin-average.

Exploratory single-trial analyses
We performed an exploratory analysis in the 500 to 100 ms time window before the article, using

the originally (�100 to 0 ms) baselined data, using Models 3 and 4 from the article analysis. This win-

dow covers the first 400 ms of the word that preceded the article. Analysis in this window yielded a

similar pattern as in the pre-registered analysis, which indicates that a baseline correction procedure

covering the entire 500 ms pre-stimulus window would account better for pre-article voltage levels.

We performed this additional analysis, the results of which did not change our conclusions and are

shown in Figure 5.

We also performed an exploratory analysis in which we control for a potential influence of

response accuracy, taken as a proxy for the subject’s attention to the task, on predictive processing

of linguistic input. We entered the (z-transformed) average response accuracy of each subject in our

model, and compared the models below. Comparison of Models 1 and 2 tested whether the effect

of cloze on the article-N400s depended on subject accuracy. Comparison of Models 2 and 3 tested

whether there was a significant effect of cloze on article-N400s when subject accuracy was included

in the model.

Model 1: N400 ~accuracy * cloze + (cloze | subject) + (cloze | item)

Model 2: N400 ~accuracy + cloze + (cloze | subject) + (cloze | item)

Model 3: N400 ~accuracy + (cloze | subject) + (cloze | item)

Exploratory Bayesian analyses
Supplementing the Replication analysis, we performed a replication Bayes factor analysis for correla-

tions (Wagenmakers et al., 2016) using as prior the size and direction of the effect reported in the

original study. We performed this test for each electrode separately, after collapsing the data points

from the different laboratories. Because we had no articles in the 40–50% cloze bin, there was a total

of 9 and 10 data points per laboratory for the articles and nouns, respectively. Our analysis used pri-

ors estimated from the DeLong et al. results, matched as closely as possible to our electrode loca-

tions. A Bayes factor between 3 and 10 is considered moderate evidence, between 10 and 30 is

considered strong evidence, 30–100 is very strong evidence, and values over 100 are considered

extremely strong evidence (Jeffreys, 1961). In addition to using a 100 ms pre-stimulus baseline, we

also computed the replication Bayes factors using the 500 ms pre-stimulus time window for baseline

correction. Results are shown in Figure 6.
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Supplementing the pre-registered single-trial analyses, we performed an exploratory Bayesian

mixed-effects model analysis using the brms package for R (Buerkner, 2016), which fits Bayesian mul-

tilevel models using the Stan programming language (Stan Development Team, 2016). Nieuwland

requested to use the results of a mixed-effects model reanalysis of the DeLong et al. data as an

appropriate prior (personal communication from Nieuwland, November 14 and 22 2017); this

request was declined by DeLong and colleagues. We were therefore limited to using a prior cen-

tered on a point estimate based on the Delong et al. correlation analysis, namely our estimate of the

observed effect size at Cz for a difference between 0% cloze and 100% cloze (1.25 mV and 3.75 mV

for articles and nouns, respectively, based on visual inspection of the graphs) and a prior centered

on zero for the intercept. Both priors had a normal distribution and a standard deviation of 0.5

(given the a priori expectation that average ERP voltages in this window generally fluctuate on the

order of a few microvolts; note that these units are expressed in terms of the z-scored cloze values,

rather than the original cloze values, such that m for the cloze prior was 0.45, which corresponds to a

raw cloze effect of 1.25). We computed estimates and 95% credible intervals for each of the mixed-

effects models we tested, and transformed these back into raw cloze units. The credible interval is

the range of values such that one can be 95% certain that it contains the true effect, given the data,

priors and the model. The results from these analyses are shown in Figure 7; the analyses suggest

that, while there may be a small positive association between article cloze and ERP amplitude eli-

cited by the articles, the effect is substantially smaller than that estimated by DeLong et al. (2005)

and likely is too small to be observed without very large sample sizes.

Control experiment
Analysis of the control experiment involved a comparison between a model with the categorical fac-

tor ‘grammaticality’ (grammatical/ungrammatical) and a model without. Our dependent measure

(P600 amplitude; Osterhout and Holcomb, 1992; Wicha et al., 2004) was the average voltage

across six centro-parietal channels (Cz/C3/C4/Pz/P3/P4) in the 500–800 ms window for each trial.

Results are shown in Figure 8.

Model 1: P600 ~grammaticality + (grammaticality | subject) + (grammaticality | item)

Model 2: P600 ~ (grammaticality | subject) + (grammaticality | item)
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