
Who’s this? Developer identification using IDE event data
John Wilkie, Ziad Al Halabi, Alperen Karaoglu, Jiafeng Liao, George Ndungu,

Chaiyong Ragkhitwetsagul, Matheus Paixao, Jens Krinke
CREST, University College London

London, UK

ABSTRACT
This paper presents a technique to identify a developer based on
their IDE event data.We exploited the KaVE data set which recorded
IDE activities from 85 developers with 11M events. We found that
using an SVMwith a linear kernel on raw event count outperformed
k-NN in identifying developers with an accuracy of 0.52. Moreover,
after setting the optimal number of events and sessions to train the
classifier, we achieved a higher accuracy of 0.69 and 0.71 respec-
tively. The findings shows that we can identify developers based
on their IDE event data. The technique can be expanded further to
group similar developers for IDE feature recommendations.

CCS CONCEPTS
• Software and its engineering → Software notations and tools;
Development frameworks and environments;

KEYWORDS
Machine Learning, Integrated Development Environment, Recom-
mendation Systems
ACM Reference Format:
JohnWilkie, Ziad Al Halabi, Alperen Karaoglu, Jiafeng Liao, George Ndungu,
Chaiyong Ragkhitwetsagul, Matheus Paixao, Jens Krinke. 2018. Who’s this?
Developer identification using IDE event data. InMSR ’18: 15th International
Conference on Mining Software Repositories, May 28–29, 2018, Gothenburg,
Sweden. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3196398.
3196461

1 INTRODUCTION
Developers’ activities are recorded in their integrated development
environment (IDE) sessions. This rich information, which captures
the developers’ behaviour in real time, can be used to identify
a developer or group similar developers together. The identifica-
tion and clustering of developers have two benefits. First, the IDE
vendors can use this knowledge for feature recommendation in
their IDEs. Visual Studio 2017 has redefined its setup process by
allowing the user to choose which features are to be added after
installing the core components [5]. This modularisation resulted in
lower resources required by the IDE and faster start time, which
enhanced the developers’ productivity. Nevertheless, developers
have to decide which features to install by themselves based on re-
quired tasks at hand or personal development styles. A feature can
be recommended to a user if it is commonly installed among other

MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in MSR ’18: 15th
International Conference on Mining Software Repositories, May 28–29, 2018, Gothenburg,
Sweden, https://doi.org/10.1145/3196398.3196461.

users who share similar IDE usage patterns. Second, the developer
classification enables IDE vendors to gain insights on which group
of developers are using which IDE features and precisely target
customers for beta testing of a new feature.

Our work is inspired by the work of Rosemblum et al. [7], which
presented techniques to identify the author of program binaries and
cluster programmers according to their style. Instead of analysing
stylistic features extracted from program binaries like in their tech-
niques, we exploited a rich information encoded in IDE event data
and trained classifiers to match a programming session to a spe-
cific developer based on actions they perform in an IDE. We anal-
ysed the Enriched Event Streams (EES) [6], which are streams of
recorded event data around a developer’s actions within Visual
Studio. We considered two types of classifiers: Support Vector Ma-
chines (SVM) [3] and k-Nearest Neighbours (k-NN) [10], and evalu-
ated preprocessing steps to improve the accuracy of the classifiers
by incorporating term frequency and inverse document frequency
(tf–idf) to the input data.

The experiment shows that the SVM classifier gives a higher
accuracy than k-NN when identifying developers based on their
IDE event data. By adjusting the minimum number of events in a
session and the minimum sessions per developers, we can achieve
an accuracy of 0.71. This result shows that our technique can be
used to identify developers based on their IDE event data, and may
be further used to recommend similar IDE features to developers.

2 RELATEDWORK
There are a number of existing studies on identifying and classify-
ing developers and techniques to improve the classification perfor-
mance. The majority of the approaches focus on analysing software
artefacts rather than developers’ behaviour. Caliskan-Islam et al. [1]
aimed at de-anonymising source code authors by analysing coding
styles based on lexical, layout, and syntactic features. The source
code was presented as abstract syntax trees, and a tf–idf score was
calculated for every node. This allowed fragments of code to be
expressed as numerical vectors. A random forest ensemble classifier
was applied with an accuracy of 0.94 when classifying 1,600 authors.
Rosenblum et al. [7] used an SVM for author classification and a
large margin nearest neighbors algorithm for clustering based on
stylistic featured derived from program binaries. They achieved an
accuracy of 0.77 when applied on a set of 20 authors, and ranked
the correct author among the top five 94% of the time. Similar to
our study, Dyke [4] utilised a data set of automatically captured
developers’ behaviour in an IDE to classify them. The technique
identified novice developers, who required additional help, using
data captured from 124 students. The author found that frequencies
of editing, saving, code generation and testing of a program in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/154748765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3196398.3196461
https://doi.org/10.1145/3196398.3196461
https://doi.org/10.1145/3196398.3196461


MSR ’18, May 28–29, 2018, Gothenburg, Sweden Wilkie et al.

non-debugging mode are good indicators of a student’s success in
an assignment.

Classification algorithms, which predict a class that an element
belongs to, are commonly used tools for data mining. k-Nearest
Neighbours (k-NN) and Support Vector Machine (SVM) are two
widely used classifying algorithms. In order to classify an element,
the k-NN algorithm calculates the distance between a test element
and all the elements in its training set and finds a group of k ele-
ments that are closest to it. The test element is then classified based
on the majority class of its k nearest neighbours. k-NN is well suited
for cases where elements can have multiple class labels [10]. A more
sophisticated classification scheme is SVM, which finds the best
classification function to differentiate between the different classes
of elements of the training set. The SVM algorithm identifies the
optimal hyper-plane that will segregate the training set classes.
SVM are considered one of the most robust and accurate classifying
algorithms available. A major advantage of using SVM algorithms
is that they are insensitive to the number of dimensions [10].

Term frequency and inverse document frequency (tf–idf) [8] is a
vector-based weighting scheme often used in information retrieval.
Words that frequently occur in a specific document but rarely in
other documents in the corpus have a higher tf–idf score compared
to frequent words that occur in most of the documents. The aim
of applying tf–idf is to identify important words in a document
as not all words are equally important in characterising a docu-
ment. Applying tf–idf as a data pre-processing step preceding a
classification process has been successfully used in previous studies.
For document categorisation, Trstenjak et al. [9] used tf–idf with a
k-NN classifier to classify documents into 4 classes (sport, politics,
finance and daily news). They classified 500 documents of varying
lengths and obtained an accuracy from 0.65 to 0.92. Chen et al. [2]
compared the use of tf–idf and a simple frequency based scheme as
pre-processing steps to training an SVM, and an Artificial Neural
Network (ANN) model to detect potential systems intrusions. They
found that an SVM with tf-idf achieved the best performance.

3 RESEARCH METHODOLOGY
In this section, we briefly discuss the data set, the data preparation
process and the classification methods used in our study.

3.1 The KaVE Data Set
The KaVE data set [6] was created using the FeedBaG++ tool to
capture developers’ behaviour within an IDE and transform them
into Enriched Event Streams. The data set contained events from
85 developers from a variety of backgrounds (industry, research,
students and hobbyists) and in total contains 11M events. A session
contains multiple events from a specific developer that occurred in a
single day. An event is added to an event stream when a developer
interacts with an IDE, for example by clicking the build button.
Only developers with more than a single session were selected.
This gave a total of 3,459 sessions and 82 developers. The analysis
of the number of sessions per developer and events per session is
depicted in Figure 1. The mean, and median sessions per developer
was 42.2 and 27.5 respectively. The lowest number of sessions for a
developer was 2 and the highest was 207. The total number of events
across all sessions was 11,027,743. The mean number of events in a

Figure 1: Boxplots showing the distribution of sessions per
developer and events per session

1SPHSBNNFS�J�FWFOU�TUSFBN

J 4FTTJPO�� J 4FTTJPO�� J 4FTTJPO�/����

Figure 2: Initial stage in splitting developer event stream

session was 3,188 and the median was 277, which indicates a large
range in the number of events in sessions. The lowest number of
events in a session was 1 and the highest was 353,585.

3.2 Data Preparation
In order to apply an SVM and a k-NN classifier to the KaVE data
set, we performed a data pre-processing step to create an input data
set that is suitable for the classifiers. The initial stage, as depicted
in Figure 2, consisted of splitting each developer’s event streams
into a set of event streams per session and labelling each session’s
event streams with a unique developer ID to identify the developer
whom the session belonged to. For each session, a count was carried
out to sum the number of occurrences of each event type within that
session. We created three levels of Event Granularity (EG). These
three levels of EG were used for representing the types of events
being counted. The coarse-grained EG (CEG) consists of 15 event
types (activity, command, completion, build, debugger, document,
edit, find, IDE state, solution, window, version control, navigation,
system, and test run) used in the EES as shown in Figure 3 (error,
info and user profile events were not included because the error
and info events do not occur in the data set and the user profile
event was not considered an IDE event). The medium-grained EG
(MEG) further divided the CEGs into smaller sub groups of events.
For example, a build event was split into: build, build all, rebuild
all and unknown. This resulted in 49 different MEG types. Lastly,
the fine-grained level EG (FEG) made use of the 49 MEG types and
also subdivided the command event into another 42 new types of
events, giving 91 FEG types in total. Each session was represented
by a concatenation of the three vectors, one for each of the three
levels of granularity, as shown in Table 11.

Besides the three granularity levels, we evaluated two types
of input vector values to the classifiers in this study: raw event
counts and tf–idf. For each session, we first created three session
vectors (CEG, MEG, and FEG) with raw event counts and derived
1A complete information of our event categorisation can be found from the study
website: https://ziad-alhalabi.github.io/msr-paper-2018/



Who’s this? Developer identification using IDE event data MSR ’18, May 28–29, 2018, Gothenburg, Sweden

4FTTJPO

������

���������

���

#VJME$PNNBOE %PDVNFOU

$PNNBOE ������

���UZQFT

$&(

.&(

'&(

Figure 3: Event granularities

Table 1: A CEG vector with raw counts of 15 event types

CEG
Completion Build Edit ... Debugger

12 6 21 ... 56

J 4FTTJPO��
$&( J 4FTTJPO��

.&( J 4FTTJPO��
'&(

J 4FTTJPO��
$&( J 4FTTJPO��

.&( J 4FTTJPO��
'&(

J
4FTTJPO��
$&(5

J 4FTTJPO��
.&(5

J 4FTTJPO��
'&(5

Figure 4: The six vectors representing a session

three vectors of tf–idf from them. This resulted in 6 vectors for
each session CEG, CEG with tf–idf (CEGT), MEG, MEG with tf–idf
(MEGT), FEG and FEG with tf–idf (FEGT) as shown in Figure 4.

Each session vector was then grouped together with all other
session vectors of the same EG, and grouped based on whether
tf–idf had been applied. For example, all session vectors which had
been generated using CEGT were grouped together into one set.
These session groups were used as the training data for classifiers.

3.3 Programmer Classification: k-NN and SVM
The classification uses the preprocessed vector data. For each devel-
oper, we randomly selected a fixed number of sessions from all their
sessions. Then, the selected sessions were split into training and
testing sets. The training set utilised 80% of the original data, while
the remaining 20% was assigned as the testing set. The training set
was used with k-fold cross validation to tune the parameters for
the two classifiers. In the case of k-NN, we tuned the threshold for
distance measure and the number n for neighbours. In the case of
an SVM, the training data is used for selecting the kernel and tuning
the penalty of the error term, which resulted in a linear kernel to be
selected. With the parameter selection and tuning, we trained the
classifiers using the training data set, then the trained classifiers
were used to predict the most likely developer for each session in
the testing data set. These predictions were then compared to the
true developer of the session and the accuracy was calculated as
follows:

accuracy = no. of correctly classified sessions
no. of all sessions in test data

M

Figure 5: Classification performance on six input data types

3.4 Research Questions
We performed an experiment to answer the following research
questions.
RQ1: A Comparison of SVN to k-NNWhich classifier offers the
best performance on identifying developers based on their IDE events?
RQ2: Minimum events per session How many events per session
give the highest classification accuracy?
RQ3: Minimum sessions per developer How many sessions per
developer give the highest classification accuracy?

4 RESULTS
RQ1: A Comparison of SVN to k-NN. This RQ compares the SVM

classification performance compared to k-NN for six different event
granularities and vector values: CEG, CEGT, MEG, MEGT, FEG,
FEGT data sets. We filtered the 6 data sets to only include rich
sessions with at least 500 events (42% of all the sessions) with
the aim of removing sessions that contained too few events to
characterise a developer. This assumption was then explored in
RQ2. From this data, developers with at least 10 sessions were
selected (40 out of 82 developers), and then for each developer
10 sessions were randomly selected so that each developer has
the same number of sessions in order to avoid an evaluation bias.
This resulted in 40 developers with a total of 400 sessions. Each
classifier was trained using 80% of the sessions, and the accuracy
was measured by classifying the remaining 20% of sessions. The
results are shown in Figure 5. The highest accuracy of 0.52 was
achieved using the SVM classifier on FEG. The lowest accuracy
(close to zero) occurred using the SVM on all data sets with tf–idf.
In contrast, the k-NN classifier performed more accurately on the
data sets with tf–idf, i.e. CEGT, MEGT, FEGT. The highest accuracy
achieved using the k-NN classifier was 0.475 on FEGT data set.
Both classifiers performed best, with or without tf–idf, on the FEGs,
followed by MEGs, and CEGs respectively.

To answer RQ1, the findings indicate that an SVM with a linear
kernel is a more appropriate classifier for IDE event data than k-
NN, since SVM classifiers often result in a higher accuracy when
used on high dimensional but sparse data [10]. It was found to
be detrimental to apply tf–idf to session vectors before training
the SVM. This result is contrary to the findings of Chen et al. [2].
However their application was detecting intrusions to a system
and not classifying sessions to developers. We leave a detailed
investigation of this issue as future work.



MSR ’18, May 28–29, 2018, Gothenburg, Sweden Wilkie et al.

1 500 1000 1500 2000
0.32 0.62 0.61 0.69 0.63

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 500 1000 1500 2000

Ac
cu

ra
cy

Minimum number of events in a session

Figure 6: Minimum number of events vs. accuracy

RQ2: Minimum events per session. Five thresholds were consid-
ered starting with zero events (all sessions included) with an in-
creasing step of 500 up to a threshold of 2,000 events. This was done
using the best performing data granularity and classifier in RQ1.
FEG data was selected to train an SVM classifier on 10 sessions for
each developer. Similar to RQ1, 10 sessions for each developer were
randomly selected from all of the developer’s sessions. To control
the number of developers across the five threshold values, we se-
lected the 23 developers that had at least 10 sessions with at least
2,000 events. The results of the changing thresholds on the accuracy
of the classifier can be seen in Figure 6. The highest accuracy of
0.69 was achieved when the threshold was set to 1,500 followed by
0.63 using a threshold of 2,000 and 0.62 using a threshold of 500.
The increased accuracy for the threshold of 500 in comparison to
the findings of RQ1 is due to having fewer developers to classify a
session to and thus making the classification task simpler.

RQ3: Minimum sessions per developer. The chosen values for the
number of sessions included 5, 10, 15, 20 and 25. Again, we tested
using an SVM classifier with FEG data, with sessions of at least
500 events. We obtained 20 developers that had at least 25 sessions
to control the number of developers. The classification accuracy
can be seen in Figure 7. The highest accuracy of 0.71 was achieved
when the threshold was set to 20 sessions per developer, followed
by 25 and 15 sessions.

5 10 15 20 25
Set number of sessions 0.57 0.6 0.66 0.7125 0.68

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5 10 15 20 25

Ac
cu

ra
cy

Number of sessions per programmer

Figure 7: Number of sessions vs. accuracy

5 DISCUSSION AND THREATS TO VALIDITY
The results indicate that during pre-processing of the input data,
setting a minimum number of sessions per developer and a min-
imum number of events per session is beneficial. The findings of
this paper suggest that using 20 sessions per developer and remov-
ing sessions with less than 1,500 events offer the most accurate
classification.

The investigation outlined in this paper used a small data set for
the type of techniques being applied. The results are considered as
a foundation for a more comprehensive data set, which we leave for
future work. A larger set of event stream data would be beneficial
to increase the validity of the findings in this paper and potentially
improving the classification accuracy.

The work done in this paper only considers the occurrence of
each event, and ignores other features which may help to classify
a session to an individual developer. Example features that may
increase accuracy could be the rate at which the developer types,
patterns in their variable names or indentation rules they follow.
Additionally, only single events were considered when building the
session vectors. The accuracy may be improved if we consider a
sequence of multiple events. The possibility of combining classifiers
for the three different event granularities into a single classifier
could also be evaluated. One very important concern is that ethical
considerations would be required if this type of classification were
possible. Moreover, The results in the paper may be affected by the
problems in the KaVE event stream data that duplicated events were
generated for some event streams, which were recently discovered2.

6 CONCLUSIONS
This paper presents a classification of programming sessions to a
developer using events that occurred in an IDE event stream. The
highest accuracy was achieved using an SVM classifier with a linear
kernel on raw event count data. Applying tf–idf to raw event counts
was found to be detrimental to the accuracy of the SVM classifier,
but beneficial to k-NN. The threshold analysis shows that the SVM
classifier can be tuned to gain the optimal performance using a
minimum of 1,500 events per session and 20 sessions per developer.
The findings show that one can identify developers based on their
IDE event data. Moreover, the results can be used as a foundation
for recommending IDE features based on developers with similar
behaviour.

REFERENCES
[1] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare

Voss, Fabian Yamaguchi, and Rachel Greenstadt. 2015. De-anonymizing Program-
mers via Code Stylometry. In USENIX Security ’15.

[2] Wun-Hwa Chen, Sheng-Hsun Hsu, and Hwang-Pin Shen. 2005. Application of
SVM and ANN for Intrusion Detection. Comput. Oper. Res. 32, 10 (Oct 2005).

[3] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
Learning 20, 3 (Sep 1995).

[4] Gregory Dyke. 2011. Which Aspects of Novice Programmers’ Usage of an IDE
Predict Learning Outcomes. In SIGCSE ’11.

[5] Microsoft. 2017. What’s New in Visual Studio 2017. (2017). https://docs.microsoft.
com/en-us/visualstudio/ide/whats-new-in-visual-studio

[6] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched Event Streams: A
General Dataset for Empirical Studies on In-IDEActivities of Software Developers.
In MSR ’2018 Mining Challenge Proposal.

[7] Nathan Rosenblum, Xiaojin Zhu, and Barton P Miller. 2011. Who wrote this
code? identifying the authors of program binaries. In ESORICS ’11. Springer.

[8] Gerard Salton and Michael J. McGill. 1986. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA.

[9] Bruno Trstenjak, Sasa Mikac, and Dzenana Donko. 2014. KNN with TF-IDF based
Framework for Text Categorization. Procedia Engineering 69 (2014).

[10] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi
Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou,
Michael Steinbach, David J. Hand, and Dan Steinberg. 2008. Top 10 algorithms
in data mining. Knowledge and Information Systems 14, 1 (Jan 2008).

2https://groups.google.com/forum/#!topic/kave-users/LUM3-vkdDlE

https://docs.microsoft.com/en-us/visualstudio/ide/whats-new-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/whats-new-in-visual-studio

