
CROP: Linking Code Reviews to Source Code Changes
Matheus Paixao

University College London
London, United Kingdom

matheus.paixao.14@ucl.ac.uk

Jens Krinke
University College London
London, United Kingdom
jens.krinke@ucl.ac.uk

Donggyun Han
University College London
London, United Kingdom

d.han.14@ucl.ac.uk

Mark Harman
Facebook and University College London

London, United Kingdom
mark.harman@ucl.ac.uk

ABSTRACT
Code review has been widely adopted by both industrial and open
source software development communities. Research in code re-
view is highly dependant on real-world data, and although existing
researchers have attempted to provide code review datasets, there
is still no dataset that links code reviews with complete versions of
the system’s code base mainly because reviewed versions are not
kept in the system’s version control repository. Thus, we present
CROP, the Code Review Open Platform, the first curated code
review repository that links review data with isolated complete
versions (snapshots) of the source code at the time of review. CROP
currently provides data for 8 software systems, 48,975 reviews and
112,617 patches, including versions of the systems that are inac-
cessible in the systems’ original repositories. Moreover, CROP is
extensible, and it will be continuously curated and extended.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories;

KEYWORDS
Code Review, Repository, Platform, Software Change Analysis
ACM Reference Format:
Matheus Paixao, Jens Krinke, Donggyun Han, and Mark Harman. 2018.
CROP: Linking Code Reviews to Source Code Changes. In MSR ’18: 15th
International Conference on Mining Software Repositories, May 28–29, 2018,
Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3196398.3196466

1 INTRODUCTION
In software development, code review is an asynchronous process
in which changes proposed by developers are peer reviewed by
other developers before being incorporated into the system [1].
The modern code review process has been empirically observed to
successfully assist developers in finding defects [3, 10], transferring
knowledge [1, 16] and improving the general quality of a software
system. Given its benefits, code review has been widely adopted by

MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in MSR ’18: 15th
International Conference on Mining Software Repositories, May 28–29, 2018, Gothenburg,
Sweden, https://doi.org/10.1145/3196398.3196466.

both industrial and open source software development communities.
For example, large organisations such as Google and Facebook use
code review systems on a daily basis [5, 9].

In addition to its increasing popularity among practitioners,
code review has also drawn the attention of software engineering
researchers. There have been empirical studies on the effect of code
review onmany aspects of software engineering, including software
quality [11, 12], review automation [2], and automated reviewer
recommendation [20]. Recently, other research areas in software
engineering have leveraged the data generated during code review
to expand previously limited datasets and to perform empirical
studies. As an example, in a recent study we used code review data
to analyse whether developers are aware of the architectural impact
of their changes [14].

Code review research relies heavily on data mining. In this con-
text, some researchers have attempted to mine code review data and
have made their datasets available for the community [6, 7, 13, 19].
However, code review data is not straightforward to mine (see Sec-
tion 2.2), mostly due to difficulties in linking the reviews to their
respective source code changes in the repository. This limits the
potential research that can be carried out using existing code review
datasets. In fact, to the best of our knowledge, there is no curated
code review dataset that identifies and provides the complete state
of the system’s source code associated with a set of code reviews.

Based on this observation, we introduce CROP, theCodeReview
Open Platform: a curated open source repository of code review
data1 that provides, not only the review’s metadata like existing
datasets, but also links, to each code review, a complete state of the
system’s source code at the time of review. For each code review in
CROP, one will be able to access the source code that represents the
complete state of the systemwhen the review was carried out. Thus,
researchers will now have the opportunity to analyse code review
data in combination with, for example, source code analysis per-
formed by static and dynamic techniques such as profiling, testing
and building. The combination of code review data and source code
analysis will facilitate research in areas that previously required a
significant amount of human participation, as outlined in Section 4.

Gerrit [15] is a popular open source code review tool that has
been widely used in research [4, 11, 14, 19]. In addition, notable
open source organisations adopted Gerrit as their code review tool,
including Eclipse, OpenStack and Couchbase. Thus, since CROP
focuses on curating code review data from open source software

1https://crop-repo.github.io/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/154748763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3196398.3196466
https://doi.org/10.1145/3196398.3196466
https://doi.org/10.1145/3196398.3196466

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Matheus Paixao, Jens Krinke, Donggyun Han, and Mark Harman

revision

repository

original
code base

author
makes

changes

review
cycle reviewer

comments

revision
comments

approved
revision

Figure 1: Code review process in Gerrit.
systems, we chose to mine data from projects that adopted Gerrit
as their code review tool.

At the time or writing, we havemined the Gerrit code review data
for 8 software systems, accounting for a total of 48,975 reviews and
112,617 patches (see Gerrit’s structure in Section 2.1). In addition,
we have mined and linked 225,234 complete source code versions
to each of the 112,617 patches.

2 HARVESTING THE CROP
In this section we first describe the code review process employed
by Gerrit followed by a discussion of the challenges of mining this
data. Finally, we detail the approach we used to first mine the code
review data and later link it to the system’s source code.

2.1 Code Review in Gerrit
The Gerrit system is built on top of git, and its code review process
is outlined in Figure 1. A developer starts a review by modifying the
original code base in the repository and submitting a new revision
in the form of a commit, where the commit message is used as the
revision’s description. For each new review, Gerrit creates a Change-
Id to be used as an identifier for that review during its reviewing
cycle. Other developers of the system will serve as reviewers by
inspecting the submitted source code and providing feedback in the
form of comments. Patches that improve upon the current revision
according to the received feedback are submitted as new revisions
of the same commit. Finally, the latest revision is either merged or
abandoned, where the first indicates the review was incorporated
to the system and the latter indicates the commit was rejected.

2.2 Challenges in Mining Gerrit Review Data
Gerrit provides RESTful APIs that one can use to access the review’s
metadata for a project, such as author, description, comments etc.
However, linking the reviews to changes in the system’s source
code is far from straightforward.

As previously mentioned, Gerrit is built on top of git. Thus, the
git repository of the system would be the obvious first choice to
access the versions of the source code that correspond to the code
reviews. However, the system’s git repository is an unreliable record
because Gerrit constantly rewrites and deletes history information.

When a new review is submitted by a developer, Gerrit creates a
temporary branch in the git repository to be used for review. Every

improved revision submitted by a developer is committed to this
branch and replaces the previous revision through a commit amend
operation. Therefore, given a merged review, the review’s revision
history is lost and only the source code of the latest accepted revi-
sion can be accessed. Moreover, when developers opt to abandon a
review, the current revision is simply deleted from the repository.

In addition to the issues of lost history described above, the
system’s git repository might also contain inconsistencies if we fail
to fully account for the overall review process: code review is a
laborious task, and it is common for some reviews to take a few
days to complete one iteration of the core cycle [8, 17, 18]. Between
the time a comment is initially submitted and the time the revision
is finally merged to the system’s repository, other developers might
have merged and/or committed other changes to the repository.
In this case, each new revision submitted during the review needs
to be rebased to be up-to-date. Thus, when one reverts the system
back to the merged review, the source code will reflect not only the
changes due to one but also all the other changes that were merged
to the repository while the revision was open. These difficulties in
isolating the source code changes associated with a specific review
pose serious threats to the validity of empirical studies that use
code review data.

2.3 Mining Code Review Data From Gerrit
We performed a preliminary analysis of the different open source
communities that adopted Gerrit and selected the data source we
would use for CROP’s development. As a result, we identified the
Eclipse and Couchbase communities as those that provided all
the data we needed to build CROP. The data mining process we
employed is outlined in Figure 2.

As one can see from the figure, our mining framework consists
of 4 sequential phases. The framework is written in Python, and
we made it available online2. Given a certain Eclipse or Couch-
base project, the review harvester explores Gerrit’s RESTful API
to download the code reviews’ metadata for the project. The API
returns the data in JSON files that are kept to be used later.

In Phase 2, the snapshot harvester downloads the complete
source code of the project for each code review. Both the Eclipse and
Couchbase communities have a server that is separated from their
git repositories and the Gerrit system where they keep complete
snapshots of their projects for every commit ever performed in the
project. These snapshots include the complete code base, i.e., source
code, testing code, build files and so on. Thus, for each review, we
iterate over all revisions and download the project’s snapshots that
correspond to the code base both before and after each revision.

As a result of this process, we were able access versions of the
project’s code base that would otherwise have been lost in the
official git repository, such as reviews that were abandoned and
intermediate revisions that were submitted during the review pro-
cess. Moreover, by downloading the before and after versions of the
code base for each revision, we check guarantee that the observed
changes in the code were specifically attributable to the revision.

After downloading all the code reviews’metadata and the project’s
snapshots (Phases 1 and 2), Phases 3 and 4 handle the data. The dis-
cussion grinder processes the code review data stored in the JSON

2https://github.com/crop-repo/crop

CROP: Linking Code Reviews to Source Code Changes MSR ’18, May 28–29, 2018, Gothenburg, Sweden

review
harvester

Phase 1

reviews
revisions

comments
Gerrit
server

snapshots
server

download

discussion
files

git
repository

extract

download

snapshots

process

Phase 3

discussion
grinder

snapshot
harvester

Phase 2 Phase 4

repository
grinder

Figure 2: The framework employed to mine code review data from Gerrit and link it to complete versions of the code base.
files and creates discussion files for each revision. Discussion files
are text files that present, among other information, the review’s
author, description and comments in a format that is easy to read
and analyse (see Section 3 for more details).

In Phase 4, all downloaded snapshots are extracted to a new git
repository in order to reduce the disk space occupied by CROP. The
repository grinder creates a new git repository and then iterates
over each snapshot, automatically extracting and committing the
snapshot to the new repository. At the end, every snapshot will
be accessible through the new git repository. If CROP would have
included the snapshots’ raw data from the 8 projects we have mined,
the repository would have a size of 4.2TB. Instead, this approach
reduced the size of CROP to 7.8GB, which accounts for a 99.8%
reduction rate.

3 STORING THE CROP
The CROP repository is organised as three major directories. A
CROP user starts at the metadata directory, where he or she will
find a CSV file for each project in CROP. The CSV files contain
metadata information about the project’s code review and the neces-
sary information to access the project’s code base. Since we mined
the projects’ snapshots revision by revision, each line in the CSV
corresponds to a project’s revision.

For each revision, we create an id to serve as a unique identifier
to the revision. The review_number column indicates the review
to which the revision belongs. The revision_number denotes the
number of the revision within the review. Author and Status indi-
cate the revision’s author and status, respectively. The change-id
is the unique identifier that Gerrit creates, as explained previously.
We provide a URL that can be used to access the revision’s data
in the Gerrit’s web view. In the previous section, we showed how
we created a new git repository to store the project’s code base for
each revision. Accordingly, the before_commit_id indicates the
commit id in the new git repository that should be used to access
the project’s code base as it was before the revision was submitted.
Similarly, one should refer to after_commit_id in order to access
the code base as it was after the revision was submitted.

The git repositories we created to re-build the projects’ review-
ing history are contained in the git_repos directory. Each repository
has a single master branch, where the before and after versions
of the source code for each revision were committed sequentially,

Table 1: Statistics about each project currently in CROP

Systems Time Span #Reviews #Revisions kLOC Language

jgit Oct-09 to Nov-17 5382 14027 200 Java
egit Sep-09 to Nov-17 5336 13211 157 Java
linuxtools Jun-12 to Nov-17 5105 15336 270 Java
platform-ui Feb-13 to Nov-17 4756 14115 637 Java
ns_server Apr-10 to Nov-17 11346 34317 253 JavaScript
testrunner Oct-10 to Apr-16 7335 17330 117 Python
ep-engine Feb-11 to Nov-17 6475 22885 68 C++
indexing Mar-14 to Nov-17 3240 8316 107 Go

based on the review and revision numbers. Such versions are ac-
cessible through the commit ids provided in the projects’ CSV file,
as discussed above.

We store the discussion files for each revision in the discussion
directory. This directory follows a tree structure, organised by
review number, in which the discussion files for each revision are
contained in the directory of its respective review. A discussion file
presents reviewing data in the following order: first, the description
of the revision is presented, which denotes the commit message of
the revision. Such a message includes the revision’s change-id and
Author. The comments that were made during review by other
developers are presented next. In the discussion file we include the
author of the comment and the respective message.

4 GRINDING THE CROP
For the first iteration of CROP, wemined data from the four projects
with most reviews at the time of mining 3 in the Eclipse and Couch-
base communities. Table 1 reports statistics concerning the data
collected for each of these 8 systems, where the Eclipse projects
are presented in the upper section of the table and the Couchbase
projects in the lower section. As one can see from the table, all
projects have more than 3.5 years of reviewing history, where the
data for egit spans more than 8 years. In addition, each project has
more than 3,000 reviews and more than 8,000 revisions. In total,
CROP provides comprehensive code review data linked to versions
of the code base for 48,975 reviews and 112,617 revisions. Finally,
these 8 projects are developed in a wide range of programming
languages that include Java, C++, JavaScript, Python, Go and others.

3At the time of writing, papyrus is the project with most code reviews in Eclipse.
However, it was not the case when we started mining.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Matheus Paixao, Jens Krinke, Donggyun Han, and Mark Harman

4.1 Research Directions
As previously mentioned, there has been a good number of empiri-
cal studies that explored Gerrit data for different purposes [4, 7, 11–
14, 19]. Hence, the data provided by CROP can now be used for
extension, replication and validation of existing studies in code re-
view, such as the ones mentioned above, as well as the formulation
of new studies.

We envision the data provided by CROP being leveraged in a
series of studies that span, not only code review, but also other
areas of software engineering research. By linking code reviews
to complete versions of the code base, we can now fully assess
the impact of code review in the context of the code about which
the reviews are written. Researchers may want to evaluate how
code review influences building and testing, for example. Since
CROP provides data for all revisions within a review, one might
evaluate how the quality of a patch evolves from when it is first
submitted to when it has finally been merged. We also provide
source code for abandoned reviews, which enables the evaluation
of, for example, whether the rejection of code reviews is somehow
correlated to quality indicators in the submitted source code. By
profiling developers’ patterns and behaviour for a certain system,
researchers may assess the effect of code reviews on the knowledge
transferred between developers as the system evolves.

During code review, developers are constantly providing reason-
ing and rationale for the changes they make in the system, both
when they submit code for review and when they inspect code from
their peers. Thus, we see code review data as a scientifically valu-
able source of knowledge regarding motivation for and explanation
of software changes. This knowledge can be leveraged to answer
questions that previously required interactions with developers,
such as interviews and surveys. One might use code review data to
assess how developers react to the introduction and removal of code
smells, for example. Similarly, one may investigate how developers
deal with code duplication. By analysing different systems, one may
be able to study how different teams reason about and discuss their
maintenance activities, such as refactoring and bug fixing.

CROP is an ongoing research project, where we will periodically
update the code review data to reflect the evolution of the systems in
the dataset. In addition, we will be constantly mining and including
reviewing data for other open source systems. Finally, CROP’s code
base is open4 for contributions.

5 CONCLUSION
Code review has been widely adopted in the industrial and open
source communities due to a number of benefits, such as knowl-
edge transfer, defect detection, and code improvement. Although
research in code review is highly dependent on datasets, there is
currently no curated dataset that provides code review data that is
linked to complete versions of the code at the time of reviewing. To
address this limitation, we introduced CROP in this paper: theCode
Review Open Platform, an open source repository of code review
data that provides links between code reviews and changes in the
system’s code base. We mined data of 8 software systems, account-
ing for 48,975 reviews and 112,617 revisions, where we provide
not only code review information, but also links to versions of the
4https://github.com/crop-repo/crop

source code that we archived and which would otherwise no longer
be available in the systems’ original repositories. By exploring the
data provided in CROP, researchers can now study the effects of
code review on the code base. Moreover, code review generates
valuable and detailed information about software changes that can
be leveraged in the development of other research areas in software
engineering, such as code smells, code cloning and refactoring.

REFERENCES
[1] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-

lenges of modern code review. In 35th International Conference on Software Engi-
neering (ICSE).

[2] Vipin Balachandran. 2013. Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation. In
35th International Conference on Software Engineering (ICSE).

[3] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-
ern code reviews in open-source projects: which problems do they fix?. InWorking
Conference on Mining Software Repositories (MSR).

[4] Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek
Janni. 2014. Identifying the Characteristics of Vulnerable Code Changes: An Em-
pirical Study. In International Symposium on Foundations of Software Engineering.

[5] Joe Brockmeier. 2011. A Look at Phabricator: Facebook’s Web-Based Open
Source Code Collaboration Tool. (2011). http://readwrite.com/2011/09/28/
a-look-at-phabricator-facebook/ Accessed in February, 2018.

[6] Georgios Gousios and Andy Zaidman. 2014. A Dataset for Pull-based Develop-
ment Research. In Working Conference on Mining Software Repositories (MSR).

[7] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro Yoshida, A. E. Camargo Cruz,
Kenji Fujiwara, and Hajimu Iida. 2013. Who Does What During a Code Review?
Datasets of OSS Peer Review Repositories. In Working Conference on Mining
Software Repositories (MSR).

[8] Yujuan Jiang, Bram Adams, and Daniel M. German. 2013. Will my patch make it?
and how fast? Case study on the Linux kernel. In Working Conference on Mining
Software Repositories (MSR).

[9] Niall Kennedy. 2006. Google Mondrian: web-based code review and storage.
(2006). https://www.niallkennedy.com/blog/2006/11/google-mondrian.html Ac-
cessed in February, 2018.

[10] M.V.Mantyla and C Lassenius. 2009. What Types of Defects Are Really Discovered
in Code Reviews? IEEE Transactions on Software Engineering 35, 3 (May 2009).

[11] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2014.
The impact of code review coverage and code review participation on software
quality: a case study of the qt, VTK, and ITK projects. In Working Conference on
Mining Software Repositories (MSR).

[12] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. 2015. Do Code Review
Practices Impact Design Quality? A Case Study of the Qt, VTK, and ITK Projects.
In International Conference on Software Analysis, Evolution, and Reengineering.

[13] Murtuza Mukadam, Christian Bird, and Peter C. Rigby. 2013. Gerrit software code
review data fromAndroid. InWorking Conference onMining Software Repositories.

[14] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and
Mark Harman. 2017. Are Developers Aware of the Architectural Impact of Their
Changes?. In International Conference on Automated Software Engineering (ASE).

[15] Shawn Pearce. 2006. Gerrit Code Review for Git. (2006). https://www.
gerritcodereview.com Accessed in: April 2017.

[16] Peter C. Rigby and Christian Bird. 2013. Convergent contemporary software
peer review practices. In Foundations of Software Engineering (ESEC/FSE).

[17] Peter Weißgerber, Daniel Neu, and Stephan Diehl. 2008. Small patches get in!. In
International Workshop on Mining Software Repositories (MSR).

[18] X. Xia, D. Lo, X.Wang, and X. Yang. 2015. Who should review this change? Putting
text and file location analyses together for more accurate recommendations. In
International Conference on Software Maintenance and Evolution (ICSME).

[19] X. Yang, R. G. Kula, N. Yoshida, and H. Iida. 2016. Mining theModern Code Review
Repositories: A Dataset of People, Process and Product. InWorking Conference
on Mining Software Repositories (MSR).

[20] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2016. Automati-
cally Recommending Peer Reviewers in Modern Code Review. IEEE Transactions
on Software Engineering 42, 6 (June 2016).

http://readwrite.com/2011/09/28/a-look-at-phabricator-facebook/
http://readwrite.com/2011/09/28/a-look-at-phabricator-facebook/
https://www.niallkennedy.com/blog/2006/11/google-mondrian.html
https://www.gerritcodereview.com
https://www.gerritcodereview.com

	Abstract
	1 Introduction
	2 Harvesting the CROP
	2.1 Code Review in Gerrit
	2.2 Challenges in Mining Gerrit Review Data
	2.3 Mining Code Review Data From Gerrit

	3 Storing the CROP
	4 Grinding the CROP
	4.1 Research Directions

	5 Conclusion
	References

