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Abstract

Objectives: Grey matter network disruptions in Alzheimer’s disease (AD) are associated with

worse cognitive impairment cross-sectionally. Our aim was to investigate whether indications of a

more random network organization are associated with longitudinal decline in specific cognitive

functions in individuals with subjective cognitive decline (SCD).

Experimental design: We included 231 individuals with SCD who had annually repeated neuro-

psychological assessment (361 years; n5646 neuropsychological investigations) available from

the Amsterdam Dementia Cohort (54% male, age: 6369, MMSE: 2862). Single-subject grey mat-

ter networks were extracted from baseline 3D-T1 MRI scans and we computed basic network

(size, degree, connectivity density) and higher-order (path length, clustering, betweenness central-

ity, normalized path length [lambda] and normalized clustering [gamma]) parameters at whole brain

and/or regional levels. We tested associations of network parameters with baseline and annual

cognition (memory, attention, executive functioning, language composite scores, and global cogni-

tion [all domains with MMSE]) using linear mixed models, adjusted for age, sex, education, scanner

and total gray matter volume.

Principal observations: Lower network size was associated with steeper decline in language

(b6 SE50.1260.05, p<0.05FDR). Higher-order network parameters showed no cross-sectional

associations. Lower gamma and lambda values were associated with steeper decline in global cog-

nition (gamma: b6 SE50.0660.02); lambda: b6 SE50.0660.02), language (gamma:

b6 SE50.1160.04; lambda: b6SE50.1260.05; all p<0.05FDR). Lower path length values in

precuneus and fronto-temporo-occipital cortices were associated with a steeper decline in global

cognition.

Conclusions: A more randomly organized grey matter network was associated with a steeper

decline of cognitive functioning, possibly indicating the start of cognitive impairment.
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1 | INTRODUCTION

The pathogenesis of Alzheimer’s Disease (AD) takes years, eventually

causing progressive neurodegeneration and cognitive decline (Jack

et al., 2013; Scheltens et al., 2016). Self-reported subjective cognitive

decline (SCD) in cognitively intact individuals might be one of the first

symptoms of AD (Jessen et al., 2014, 2010; Schmand, Jonker, Hooijer,

& Lindeboom, 1996). About 25–50% of people older than 60 years

perceive cognitive decline (Jonker, Geerlings, & Schmand, 2000), but

longitudinal studies show that only a minority (11–16%) of SCD sub-

jects shows clinical progression over time (Jessen et al., 2010; Van

Harten et al., 2013). At this point it remains difficult to understand

which individuals with SCD will show future cognitive decline.

Possibly, structural magnetic resonance imaging (MRI) might help

identifying those at risk of decline (Dickerson et al., 2009; Tijms et al.,

2016; Verfaillie et al., 2016). Evidence is accumulating that brain

changes leading to cognitive decline and dementia are not restricted to

specific regions such as the medial temporal lobe, but rather include

widespread changes in structure, function and organization of the brain

(Benzinger et al., 2013; Dickerson et al., 2009; Pegueroles et al., 2017).

Patterns of grey matter morphology can be described as a network

consisting of multiple small regions of grey matter (i.e., nodes) that are

connected to each other when they show structural similarity within a

cortex across subjects. The advantage of a network representation of

grey matter morphology is that it provides an opportunity to precisely

quantify individual brains with tools from graph theory. For example,

the small world coefficient indicates whether the organization of con-

nections within a network is different compared to those of a randomly

organized network. Although, the biological meaning of structural simi-

larities is not yet fully understood, grey matter similarity has been dem-

onstrated to be associated with synchronized maturation between

brain regions (Alexander-Bloch and Bullmore, 2013; Alexander-Bloch,

Raznahan, Bullmore, & Giedd, 2013b; Andrews, Halpern, & Purves,

1997), which might be reflected by a higher degree of clustering. Previ-

ous cross-sectional studies have demonstrated that alterations of grey

matter network parameters are associated with disease severity

(Pereira et al., 2016; Tijms et al., 2013a; Yao et al., 2010; Zhou and Lui,

2013) and with the degree of cognitive impairment in AD (Tijms et al.,

2014). A group-based network study suggested that grey matter net-

works that more resemble randomly organized networks are associated

with future progression to dementia in individuals with mild cognitive

impairment (Pereira et al., 2016). Grey matter networks may start to

become more randomly organized in early, preclinical stages of the dis-

ease (Tijms et al., 2016), and in particular lower values of the clustering

coefficient seem to be associated with faster clinical progression in AD

(Tijms et al., 2017). Possibly, lower clustering coefficient values may

reflect that AD pathological hallmarks, amyloid and tau aggregation,

starts in specific brain areas, which could lead to an asynchronous loss

of grey matter network organization during the development of AD. As

such, it can be hypothesized that lower clustering coefficients values in

grey matter networks might provide a biological explanation for cogni-

tive decline.

The aim of the present study was to investigate whether grey mat-

ter networks parameters in individuals with SCD are related to decline

in global cognition, memory, attention, language and executive func-

tioning over time. We expected that a more random network organiza-

tion as reflected by lower network values such as normalized clustering

(i.e., gamma), would be related to faster cognitive decline.

2 | METHODS

2.1 | Study population

Two hundred thirty-one individuals with SCD were included with avail-

able MRI and follow-up neuropsychological assessment from the

Amsterdam Dementia Cohort (Van Der Flier et al., 2014). Patients vis-

ited our memory clinic between 2000 and 2012 and were described in

earlier studies (Benedictus et al., 2015; Verfaillie et al., 2017, 2016). At

baseline, all patients underwent standardized dementia screening,

including medical history, extensive neuropsychological assessment,

physical examination, blood tests, and 3D-T1-weighted structural MRI

(brain). Clinical diagnosis was established by multidisciplinary consen-

sus. Subjects were labeled as having SCD (Jessen et al., 2014) when

they presented with cognitive complaints, and results of clinical and

neuropsychological assessments were within normal range, and criteria

for mild cognitive impairment (MCI), dementia, or other disorders

known to cause cognitive complaints were not met (i.e., cognitively

intact). In addition, we offered patients a choice to undergo a lumbar

puncture for research purposes. Cerebrospinal fluid (CSF) b-amyloid1–

42 (cutoff: <640 ng/L) and total tau (cutoff: >375 ng L21) was deter-

mined using sandwich enzyme-linked immunoassays (Innogenetics, Bel-

gium) (Mulder et al., 2010; Zwan et al., 2016). Follow-up visits took

place annually (approximately) during which medical examination and

neuropsychological assessment were repeated. The medical ethics

committee of the VU University Medical Center approved the study.

All patients provided written informed consent for their clinical data to

be used for research purposes.

2.2 | Neuropsychological assessment

Our neuropsychological test battery included tests that measure cogni-

tive functioning in the domains of memory, attention, executive func-

tioning, and language (Van Der Flier et al., 2014). For the attention

domain, we used the digit span forward, Trail making Test (TMT)-A,

and Stroop1&2. For the memory domain, we used the Dutch version

of the Rey auditory verbal learning test (RAVLT) direct and delayed

recall, and visual association task (VAT)-A. For the language domain,

the following tests were used: Category fluency animals and VAT nam-

ing. For the executive function domain, we used: TMT-B, digit span

backwards, and Stroop color-word test. To assess global cognitive func-

tioning all previously mentioned tests were combined with the mini-

mental state examination (MMSE). All neuropsychological test scores

were Z-transformed using the corresponding baseline distribution as a

reference. TMT-A, TMT-B and Stroop were inverted such that lower

scores reflect worse performance. Missing data per test ranged from 1
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to 10% in the longitudinal data set, missing data of each individual neu-

ropsychological test can be found in Table 1. To avoid bias, we esti-

mated missing values using multivariate imputation, including age, sex,

education, time and all available neuropsychological test results in the

model (Buuren and Groothuis-Oudshoorn, 2011; Donders, van der

Heijden, Stijnen, & Moons, 2006). Because multiple imputation relies

on stochastic processes, we repeated this process fifteen times to

ensure stability of the results. Subsequently, for each imputed dataset,

we created composite domain scores by taking the average Z score of

each test per domain.

2.3 | MRI acquisition and preprocessing procedures

T1-weighted structural MRI scans were acquired at baseline using

Magnetom Impact 1.0T (n5121) (Siemens, Erlangen, Germany) and

SignaHDxt 3.0T (n5106) (General Electric, Milwaukee, WI) scanners

using the following sequences: inversion-recovery prepared fast spoiled

gradient recalled sequence (IR-FSPGR) at 3.0T (176 slices, matrix5 256

3 256, 1 3 0.9 3 0.9 mm3, TE53 ms, TR57.8 ms, TI5450 ms, flip

angle 128) and magnetization prepared rapid acquisition gradient-echo

TABLE 1 Baseline demographical, clinical, neuropsychological, and
imaging data

Demographics
Total group
(n5231)

Male/female (n) 126/105

Age (years) 62.95 (9.22)

Education (range: 1–7) 5.31 (1.36)

Scanner type (1T/3T) 124/107

Clinical

Baseline self-reported
cognitive complaints (years)

3.10 (3.62)

MMSE (n[%] missing: 7[1%]) 28.35 (1.56)

Follow-up time 2.80 (1.01)

b-amyloid 1–421 834.61 (265.80)

n<640 pg mL21 (%) n540 (25%)

Tau (total)1 294.27 (179.57)

n>375 pg mL21 (%) n530 (19%)

Final follow-up diagnosis

SCD n (%) 195 (84%)

MCI n (%) 28 (12%)

AD dementia n (%) 4 (2%)

FTD n (%) 2 (1%)

VaD n (%) 2 (1%)

Neuropsychological Assessment
(in total n 5 646 available)

Attention

Digit span forward (n[% of total]miss-
ing: 5[1%])

12.58 (3.17)

Trailmaking test A (n[%] missing: 13
[2%])

39.81 (15.66)

Stroop word (n[%] missing: 66[10%]) 46.31 (9.29)

Stroop color (n[%] missing: 66[10%]) 62.53 (11.97)

Executive function 9.25 (2.76)

Digit span backward (n[%] missing: 5
[1%])

95.63 (44.32)

Trailmaking test B (n[%] missing: 20
[3%])

107.40 (28.14)

Stroop Color-word (n[%] missing: 66
[10%])

11.56 (1.02)

Memory 39.59 (8.81)

Visual association test A (n[%] missing:
24[4%])

7.92 (3.04)

RAVLT (5 trials summed) (n[%] missing:
37[6%])

22.23 (5.84)

RAVLT delayed recall (n[%] missing: 39
[6%])

11.94 (0.34)

Language

Fluency animals (n[%] missing: 26[4%])

(Continues)

TABLE 1 (Continued)

Demographics
Total group
(n5 231)

Visual association test naming (n[%]
missing: 24[4%])

Structural MRI measures 609.50 (85.01)

Grey matter volume (mL) 1 (0–3)

Fazekas score (median, range) 7.14 (0.94)

Hippocampus (mL)

Basic network parameters

Network size 7006.75 (666.91)

Degree 1164.20 (124.17)

Connectivity density 16.63 (1.08)

Higher-order network parameters

Clustering 0.47 (0.02)

Path length 2.02 (0.02)

Betweenness centrality 7120.14 (701.21)

Gamma 1.69 (0.08)

Lambda 1.10 (0.01)

Small world 1.54 (0.06)

Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; gamma,
normalized clustering; FTD, frontotemporal dementia; lambda, normalized
path length; MCI, mild cognitive impairment; MMSE, mini-mental state
examination; SCD, subjective cognitive decline; VaD, vascular dementia.
Number of each neuropsychological tests relative to the entire dataset
(n5 646) are expressed in n[%]. 1, 29% missing CSF data (n5162 avail-
able). Number of subjects (n) abnormal b-amyloid1–42, Tau (total), were
based on 640 and 375 ng L21 cutoffs, respectively (Mulder et al., 2010;
Zwan et al., 2016).
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(MPRAGE) at 1.0T (168 slices, matrix5 256 3 256, voxel size51 3 1

3 1.5 mm3, echo time (TE)57 ms, repetition time (TR)515 ms, inver-

sion time (TI)5300 ms, flip angle, 158). A standard circular head coil

was used and head motion was restricted using expandable foam cush-

ions. Statistical parametric mapping version 12 (SPM12), operating in

MATLAB (r2012) was used to segment images (resliced: 2 3 2 3

2 mm3) into grey matter, white matter and cerebrospinal fluid, and to

estimate total grey matter volumes in native space. All segmentations

were visually checked for segmentations errors and none had to be

excluded.

2.4 | Network parameters

Single-subject grey matter networks were extracted from grey matter

segmentations (in native space) using a fully automated method imple-

mented in MATLAB (https://github.com/bettytijms/Single_Subject_

Grey_Matter_Networks) (see Figure 1 for a schematic overview of

methodological steps) (Tijms, Series, Willshaw, & Lawrie, 2012). Briefly,

nodes are defined as 3 3 3 3 3 voxels regions in grey matter using an

atlas free approach. These nodes keep intact spatial information pres-

ent in the data, as well as the grey matter density values. Connectivity

was then defined by statistical similarity in grey matter structure using

Pearson’s correlations across the grey matter intensity values of corre-

sponding voxels between any two nodes. All similarity values were col-

lected in a matrix. Nodes were connected using a threshold that

ensured that all subjects had a similar chance to include at most 5%

spurious connections using a random permutation method (Noble,

2009). Please note that these connections can exist in the absence of

an anatomically defined connection. Next, we computed network

parameters for each node (local) and/or averaged across nodes (i.e.,

global). To reduce the number of local tests, we averaged nodal net-

work properties for nodes within each of 90 regions of interest as

defined by the automated anatomical labeling (AAL) brain atlas

(Tzourio-Mazoyer et al., 2002) (listed in Supporting Information Table

S1). We categorized network measures as being “basic” or “higher-

order” parameters. Basic parameters included the size of a network

(i.e., the number of small cortical regions), local and global degree (i.e.,

the number of edges of a node, which were averaged across nodes of

the network to obtain a global estimate), connectivity density (i.e., num-

ber of edges relative to network size). Higher-order network parame-

ters were clustering coefficient (the level of interconnectedness

between the neighbors of a node, see Figure 1A for an example), char-

acteristic path length (i.e., the minimum number of edges between a

pair of nodes, see Figure 1B for an example) and betweenness central-

ity (i.e., the proportion of characteristic paths that run through a node,

but not start or end at that node). To estimate normalized path length

(i.e., lambda) and normalized clustering coefficient (i.e., gamma), we

averaged the characteristic path length coefficient and clustering coef-

ficient across the nodes for each network and then divided these prop-

erties by those that were averaged across 20 randomized reference

networks that had an identical size and degree distribution (Humphries

and Gurney, 2008; Maslov and Sneppen, 2002; Watts and Strogatz,

1998). Based on comparisons between AD patients and controls, grey

matter networks were considered to be more randomly organized

when showing lower gamma and lambda values (Tijms et al., 2013a,b;

2014). We additionally calculated the small-world property by dividing

gamma with lambda coefficients, and a value >1 indicates that a net-

work’s topology is different from that of a random graph. Network

properties were computed with modified scripts from the Brain Con-

nectivity Toolbox that we (www.brain-connectivity-toolbox.net) (Rubi-

nov and Sporns, 2010).

2.5 | Statistical analyses

Statistical analyses were performed with RStudio (version3.2.5) and

Statistical Package for the Social Sciences (SPSS, IBM v22). We used

linear mixed models to estimate effects of network measures (predic-

tors) on baseline and longitudinal cognitive performance per cognitive

domain (outcome variable). Linear mixed models estimate a coefficient

for the longitudinal change based on all data points per cognitive

domain available per subject, and handles missing data through maxi-

mum likelihood estimation. In the case that effects of basic network

parameters (network size, degree, and/or connectivity density) were

significant, we added these parameters as additional covariate for mod-

els with higher-order network parameters as predictors, since basic

measures can influence higher-order parameters. Models were run sep-

arately for each cognitive domain and each network measure (predic-

tor), including time in years as fixed effect, an interaction term of

network measure*time, and subject as random effect. All analyses were

adjusted for age, gender, education, total grey matter volume and scan-

ner. Estimates (unstandardized Beta’s with standard errors [SE]) were

pooled over fifteen imputed data. The false discovery rate (FDR) proce-

dure was used to correct for multiple testing (Benjamini and Yekutieli,

2001). Local network associations were assessed by repeating our anal-

yses for 90 AAL brain regions, additionally adjusted for local grey mat-

ter volume, and reported if p<0.05FDR.

3 | RESULTS

Two hundred thirty-one individuals with SCD (54% male, age: 6369,

MMSE: 2862) were followed for an average of 3 (SD51) years (Table

1). Of 162 subjects with CSF data available at baseline, 40 (25%) had

abnormal b-amyloid 1–42, and 30 (19%) had abnormal tau levels. Dur-

ing the time of study, the majority of subjects (195, 84%) remained clin-

ically stable, whereas 28(12%) developed MCI, 4(2%) developed AD

dementia, 2 (1%) frontotemporal dementia and 2 (1%) vascular demen-

tia. During this time period, subjects showed deterioration in language

functioning (b520.14, SE50.05, p<0.05FDR). No changes over time

were observed in memory (b50.00, SE50.02), attention (b520.01,

SE50.02) executive functioning (b520.03, SE50.02) or global cog-

nition (b520.42, SE50.23) (all p>0.05FDR).

There were no associations between basic network parameters

and concurrent cognitive performance (all p>0.05FDR; Table 2). Linear

mixed models showed that smaller network size was associated with

worse language over time (p<0.05FDR). There were no other
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FIGURE 1 (a) example of single-subject grey matter network extraction. (Step 1) Grey matter segmentations are divided in regions of inter-
est (ROI) of 3 3 3 3 3 voxels. (Step 2) Connectivity is defined statistical similarity between two ROIs as computed with the Pearson’s corre-
lation of grey matter intensity values across corresponding voxels in the ROIs. (Step 3) All similarity values are collected in a similarity
matrix. (Step 4) ROIs are connected when their similarity value exceeds a statistical threshold determined with a random permutation
method. Here a toy model is shown with an example connectivity density of 23% (i.e., 7 out of 30 possible connections present). (b) Sche-
matic representation of network parameters. A node represents a ROI, and an edge the connection between nodes. The degree is the num-
ber of edges of a node, in this example the degree of the green node is 5. Path length is the minimum number of edges between a pair of
nodes, in this the path length between the green and orange nodes is 3. Clustering coefficient quantifies to what extent neighbors of a
given node are connected, which is 1/3 for the green node as 1 from the 3 possible connections exists. Betweenness centrality is the pro-
portion of paths that run through a node, which is maximal for the green node, and zero for all other nodes. (c) Example of a network with
a small-world organization (left) and with a random organization (right) [Color figure can be viewed at wileyonlinelibrary.com]
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associations between basic network parameters and longitudinal cogni-

tive performance (p>0.05FDR).

There were no associations between higher-order parameters and

baseline cognitive functioning (Table 2). Several associations between

higher-order parameters and cognitive decline were found (Figure 2):

Lower baseline values of gamma were associated with a steeper annual

decline in language (b50.11, SE50.04, p<0.05FDR) and global cogni-

tion (b50.06, SE50.02, p<0.05FDR). Lower lambda values were

associated with a steeper decline in global cognition (b50.06,

SE50.02, p<0.05FDR) and language (b50.15, SE50.05,

p<0.05FDR). Lower baseline values of betweenness centrality and path

length were associated with a steeper decline in language functioning

(respectively b50.14, SE50.05; b50.11, SE50.05; Figure 1E; all

p<0.05FDR). Lower small world network values were associated with a

steeper decline in language (b50.11, SE50.05, p<0.05FDR) and

global cognition (b50.05, SE50.02, p<0.05FDR). Repeating analyses

when additionally adjusting for hippocampal volumes did not essen-

tially change these results, suggesting that network parameters have

additive explanatory values over simpler volumetric measures (Support-

ing Information Table S2).

We further investigated whether language and global cognitive

decline were associated with network alterations in specific anatomical

areas. Lower path length values in the left superior frontal, right middle

frontal, left inferior frontal, left cuneus, right superior occipital, left mid-

dle occipital, left precuneus, right transverse temporal gyri (all

p<0.05FDR) were associated with faster decline in global cognition

(Figure 2E). Local associations between other higher-order network

parameters and language decline did not survive correction for multiple

comparisons.

4 | DISCUSSION

SCD subjects who had a more randomly organized grey matter net-

work at baseline showed steeper decline in language and global cogni-

tion over time. These associations were independent of hippocampal

volumes, suggesting that grey matter network properties can explain

variance in cognitive functioning in addition to medial temporal atro-

phy. Our findings suggest that at very early, preclinical stages, a more

randomly organized grey matter network may reflect one of the earliest

brain changes associated with subsequent cognitive decline.

In the dementia stages of AD grey matter networks seem to show

a more random topology, as indicated by a reduced normalized cluster-

ing (i.e., gamma) and/or normalized path length (i.e., lambda) (He, Chen,

& Evans, 2008; Pereira et al., 2016; Tijms et al., 2013a; Yao et al.,

2010). In the present study we investigated whether a more random

grey matter network organization is associated with early cognitive

changes in individuals with SCD. Self-perceived cognitive decline in

cognitively normal individuals is associated with a three to six fold

increased risk of AD, and could be an early sign of underlying neurode-

generative disease (Geerlings, Jonker, Bouter, Adèr, & Schmand, 1999;

Jessen et al., 2010; Schmand et al., 1996). To our knowledge, grey mat-

ter networks in relation with subsequent cognitive decline has onlyT
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been investigated in MCI (Pereira et al., 2016; Yao et al., 2010), and

those studies reported higher as well as lower values for gamma in

MCI compared to controls. We recently reported, in a partly overlap-

ping sample, that a more randomly organized single-subject grey matter

networks, in particular lower values for clustering and gamma, were

associated with increased risk of clinical progression in nondemented

amyloid positive individuals (Tijms et al., 2017). In the present study we

furthermore showed that lower gamma and lambda values were associ-

ated with longitudinal decline in language, which is often impaired in

AD dementia (Smits et al., 2015). These findings are in line with a for-

mer study showing associations of lower lambda and gamma values

with worse memory and language impairment in AD dementia (Tijms

et al., 2014). However, not all higher-order network characteristics in

the present study seem to point to AD pathophysiology. For example,

we observed associations between betweenness centrality and subse-

quent decline in cognitive functioning, while in a former study we did

not observe any differences in betweenness centrality values between

AD patients and controls (Tijms et al., 2013), nor did we observe asso-

ciations of this network parameter with amyloid pathology in cogni-

tively normal individuals (Tijms et al., 2016, 2013a). Possibly, our

present associations between betweenness centrality and language

decline might be part of normal aging, or can be due to pathological

processes unrelated to AD. In recent studies in cognitively normal indi-

viduals, we have demonstrated associations between amyloid abnor-

malities and path length in fronto-temporo-parietal regions (Tijms et al.,

2016), and thinner temporal cortex to be related to memory decline

and disease progression (Pegueroles et al., 2017; Verfaillie et al., 2017,

2016). We now show that lower path length values in fronto-temporo-

occipital cortices and precuneus were associated with global cognitive

decline. It could be speculated that the earliest path length changes

might originate in the precuneus, one of the brain areas involved in the

early amyloid deposition (Villeneuve et al., 2015), from which later net-

work alterations may spread to the fronto-temporo-occipital cortices.

The biological meaning of higher-order network values is not yet

entirely clear, but lower clustering coefficient values might indicate an

a-synchronized deterioration of brain morphology. At the same time,

such a-synchronized patterns of atrophy could potentially lead to more

“spurious” correlations between brain areas that previously did not

show similarity before, and this might be reflected by lower lambda val-

ues. More longitudinal research is required to further investigate poten-

tial pathophysiological mechanisms that are associated with these

early, preclinical, grey matter network changes.

Among the strengths of our study is the availability of repeated

neuropsychological assessment in a unique and relatively large sample

of subjects with SCD. Nevertheless, several potential limitations need

to be considered. SCD subjects received follow-up of variable duration

that was based on clinical indications. For this reason, it is unclear to

which extent our results can be generalized to community-dwelling

individuals with SCD. Second, subjects were scanned at two different

scanner systems. Although we corrected our analyses for scanner sys-

tem, the possibility that this has influenced the results cannot be

excluded. Third, since about 30% of our subjects had no CSF available,

we cannot exclude the possibility that other pathophysiological events

may have influenced these associations. Lastly, in the current study

there was no information available about visuo-spatial functioning,

while these are frequently impaired in AD, and found to be related to

grey matter networks (Tijms et al., 2014). Future studies are necessary

to further elucidate potential associations between grey matter net-

works and visuo-spatial functions in cognitively unimpaired individuals.

In sum, we observed that individuals with SCD who had a more

randomly organized grey matter network showed faster decline in

global cognition and language. These findings suggest that grey matter

networks could reflect very subtle structural brain changes that may

foreshadow objective cognitive decline.
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