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Public confidence in the police is crucial to effective policing. Improving understanding

of public confidence at the local level will better enable the police to conduct proactive

confidence interventions to meet the concerns of local communities. Conventional

approaches do not consider that public confidence varies across geographic space as

well as in time. Neighborhood level approaches to modeling public confidence in the

police are hampered by the small number problem and the resulting instability in the esti-

mates and uncertainty in the results. This research illustrates a spatiotemporal Bayesian

approach for estimating and forecasting public confidence at the neighborhood level and

we use it to examine trends in public confidence in the police in London, UK, for Q2 2006

to Q3 2013. Our approach overcomes the limitations of the small number problem and

specifically, we investigate the effect of the spatiotemporal representation structure cho-

sen on the estimates of public confidence produced. We then investigate the use of the

model for forecasting by producing one-step ahead forecasts of the final third of the time

series. The results are compared with the forecasts from traditional time-series forecast-

ing methods like na€ıve, exponential smoothing, ARIMA, STARIMA, and others. A model

with spatially structured and unstructured random effects as well as a normally distrib-

uted spatiotemporal interaction term was the most parsimonious and produced the most

realistic estimates. It also provided the best forecasts at the London-wide, Borough, and

neighborhood level.

Introduction

Public confidence in the police is a state in which the public regard the police as competent and

capable of fulfilling their roles (Hohl, Stanko, and Newburn 2012). This includes engagement

with the community, fair treatment, and effectiveness in dealing with crime and antisocial
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behavior (Hohl, Stanko, and Newburn 2012). Higher public confidence in policing fosters a

better relationship between the police and the public, improving the likelihood of members of

the public coming forward with tips, obeying the law, or joining the force as volunteers (Tyler

and Fagan 2008; Stanko and Bradford 2009; Association of Chief Police Officers 2012). The

British model of policing is underpinned by a philosophy of “policing by consent.” In this

approach, the police are empowered by the common consent of the public (Home Office

2012). The cooperation of the public in observing the law results from their approval, respect,

and affection for the police rather than compliance motivated by fear (Home Office 2012).

Within this context, public confidence is a vital component of effective policing (Jackson

et al. 2013).

Improving public confidence in policing is one of the main concerns of the London metro-

politan police service (MPS) and the body which oversees them, the Mayor’s office for policing

and crime (MOPAC). MOPAC surveys attitudes toward the police in a large scale, rolling sur-

vey; the public attitudes survey (PAS). The survey is designed to be representative of the resi-

dents of London annually at the borough level (BMG Research 2012) and is too small to allow

reliable direct estimation at the neighborhood level. However, neighborhood policing initiatives

are central to the strategy for improving public confidence so, in the absence of more data, it is a

pressing concern to make the data useable at the small area level (Greenhalgh et al. 2015).

Literature on public confidence in the police is rich. In the UK context, the importance of

the role public confidence in the police plays in effective policing is well supported. An

evidence-based criminological theory of public confidence was developed using MOPAC PAS

survey data (Stanko et al. 2012). This confidence model has been adopted by MOPAC/MPS

and informs how confidence is analyzed and reported today. Recently, the focus has shifted

toward the effect of the neighborhood context on public confidence in the police. Jackson et al.

(2013) investigated the impact of the social neighborhood characteristics (e.g., collective effi-

cacy and fear of crime) and structural neighborhood characteristics (e.g., deprivation and ethnic

composition) on public confidence and police legitimacy.

The literature and corresponding theory on predictive policing is recent and growing. Work

in this area has largely surrounded predictive hotspot mapping, where maps of areas likely to

contain high crime densities are produced (Bowers, Johnson, and Pease 2004; Kulldorff et al.

2005; Chainey, Tompson, and Uhlig 2008; Mohler et al. 2011). Bayesian methods are more

frequently applied to estimation of crime patterns rather than forecasting. Space-time Bayesian

methods have been applied to estimation of property crime at the local level (Law, Quick, and

Chan 2013), burglary risk (Li et al. 2014), and violent crime (Law, Quick, and Chan 2015).

However, Aldor-Noiman et al. (2016) successfully used a Bayesian nonparametric approach to

forecasting low counts of violent crime in Washington. Comparatively, little work has been

done so far in predictive public confidence modeling. This is likely due to the lack of data and

less perceived importance to “softer” aspects of policing. In the UK context, (Sindall, Sturgis,

and Jennings 2012) have examined the temporal aspect by using the auto-regressive integrated

moving average (ARIMA) model put forward by (Box and Jenkins 1976) to analyze public con-

fidence at the country-wide level. However, their approach does not take into account that public

confidence varies across space as well as in time as shown in (Williams, Haworth, and Cheng

2015). To the best of our knowledge, there has been no study to date that attempts to model the

spatio-temporal variation in public confidence at the small area level.

This article seeks to address three main research questions through its illustration of a

Bayesian spatiotemporal approach to investigating trends in public confidence in the police.
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First, can the spatial and temporal trends in public confidence in the police be uncovered at the

city-wide and neighborhood levels? Second, how does choice of spatiotemporal representation

structure affect the trends uncovered? Third, how does the predictive ability of the spatiotem-

poral Bayesian hierarchical approach compare with traditional time-series forecasting

methods?

Spatiotemporal estimation and forecasting for public opinion

Statistical modeling makes inferences about a population from a subsample (Iversen 1984).

This study is concerned with the spatiotemporal modeling of discrete survey data that was sub-

sampled in repeated cross-sections, that is, several independent subsamples were taken at dif-

ferent points in time. Since only a small percentage of the population was sampled, this data

can be considered sparse, particularly in contrast to the big data generated today. This problem

is most acute at the small area level. However, while sample survey data cannot match the sam-

ple sizes, collection frequency, and level of detail provided by big data (Whitaker 2014), they

are more robust and suitable for use in rigorous statistical analyses (Groves 2015). Further-

more, sample surveys provide rich categorical data and discrete count data that can be used to

contextualize public opinion or behavior. Despite this, the development of spatiotemporal mod-

els for this non-normally distributed data lags behind that of normally distributed data (Wikle

2015).

Hierarchical modeling

The hierarchical modeling framework has been identified as the ideal vehicle for transferring

spatiotemporal statistical methodologies into the realm of social science survey analysis

(Wikle, Holan, and Cressie 2013). A Bayesian hierarchical approach is particularly suited to

this study as it allows information to be shared across areal units, compensating for unstable/

missing data (Gelman and Price 1999). When modeling the risk of occurrence of a phenome-

non, prior to data analysis modelers may have probabilities of occurrence based on past occur-

rences or expert knowledge. These probabilities can be described by a prior distribution.

Observation of the current data will lead to likelihoods of occurrence. This prior distribution

and likelihood function can be combined into the posterior distribution, proportional to the

product of the prior distribution and the likelihood function. In this way, the Bayesian approach

to inference is characterized by conditioning upon what is known to make probabilistic state-

ments on the unknown interest and is underpinned by two principles: explicit formulation and

relevant conditioning (Geweke and Whiteman 2006). The data measurement scale precludes

the use of certain likelihood functions. For instance, discrete count data is best described using

a Poisson likelihood function. Occam’s razor also applies whereby the simplest possible likeli-

hood function should be chosen. Through the use of a prior distribution, the Bayesian inference

paradigm provides a formal framework to enable information from various sources to be coher-

ently combined and can be described as formalized subjective judgement (Pole, West, and

Harrison 1994). In the absence of prior information on the matter under study, vague priors

(characterized by a large variability) are typically used, which result in the posterior distribu-

tion being heavily driven by the data.

A generalized linear modeling approach will be adopted to allow the modeling of non-

normally distributed data (counts). Ghosh et al. (1998) provide a comprehensive discussion of

the use of generalized linear modeling in Bayesian hierarchical small area estimation. Notable
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examples of a space-time Bayesian hierarchical approach for modeling count data include

modeling disease risk (Knorr-Held 2000), election polls (Shor et al. 2007), burglary (Li et al.

2014), cycle accidents (DiMaggio 2015), and road traffic accidents (Boulieri et al. 2016).

Space-time hierarchical modeling

For the modeling of phenomena which vary in space-time, methods are required which can

account for the underlying spatiotemporal autocorrelation in the data. Nonparametric, addi-

tive models of spatial, temporal, and spatiotemporal random errors are the most appropriate

for this. Bernardinelli et al. (1995), Waller et al.(1997), Besag, York, and Molli�e (1991),

Knorr-Held and Besag (1998), and Knorr-Held (2000) have utilized this approach with pro-

gressively sophisticated ways of representing space and time. Bernardinelli et al. (1995) pre-

sented a parametric space-time model with random effects used to model an area-specific

intercept and temporal trend. Waller et al. (1997) extended an existing hierarchical spatial

model to allow time varying trends and spatiotemporal interactions. Besag, York, and

Molli�e’s (1991) nonparametric, additive model of structured and unstructured spatial random

effects was extended to include a random temporal effect (Knorr-Held and Besag 1998).

This was further developed by the inclusion of a spatiotemporal interaction term with a

typology of four spatiotemporal interaction structures by Knorr-Held (2000). Boulieri et al.

(2016) incorporated these ideas into a multivariate analytical framework. A recent approach

by Bauer et al. (2015) replaces spatial, temporal, and spatiotemporal random errors with

penalized spline functions.

Forecasting with Bayesian models

Bayesian forecasting is an intuitive extension of the Bayesian approach to inference. A subset

of the unknown values to be estimated are taken to be future values of the quantity of interest

(Geweke and Whiteman 2006) and obtained from the predictive distribution (de Alba and Men-

doza 2007). The latter found a Bayesian approach well suited to overcoming difficulties fore-

casting short, seasonal time series, that is, 1–2 years of monthly or quarterly data. Using a

partial accumulation approach, whereby past proportions of events are used for forecasting,

they found a Bayesian approach superior to the standard ARIMA model for forecasting short,

seasonal time series, but the ARIMA was found to be superior for forecasting longer seasonal

time series (de Alba and Mendoza 2007). Linzer (2013) created a dynamic Bayesian/frequentist

forecasting approach to forecasting election results. Baio and Cerina (2015) improved on this

approach with a fully Bayesian approach to forecasting election results. Zaman, Fox, and

Bradlow (2014) used a Bayesian approach to predict the evolution of retweets of a tweet on the

micro-blogging website Twitter. The most frequently used Bayesian time-series forecasting

model is the Bayesian vector autoregressive (BVAR) model. The BVAR has been used to fore-

cast city arrivals from Google analytics data (Gunter and €Onder 2016). A recent innovation

saw the BVAR combined with a principal components analysis-based approach to resulting in

the Bayesian factor-augmented vector autoregression (BFAVAR) (Gunter and €Onder 2016).

Based on the literature, the spatiotemporal Bayesian hierarchical approach was taken. This

approach provides a flexible framework which allows the spatiotemporal variation of the pat-

terns to be fully explored, as well as estimates and forecasts to be produced at the neighborhood

level despite the small number problem.
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Data and study region

This study considers a real-world application, forecasting quarterly rates of public confidence

in the police in London, United Kingdom. London is the capital city of the United Kingdom,

located to the south-east of England. The MPS are responsible for policing approximately 8.9

million inhabitants of diverse heritage and cultures (Greater London Authority 2017). For

administration, the city is divided into 32 boroughs and 628 census area wards. MOPAC and

the MPS have combined the wards into 107 larger units of operational significance called bor-

ough neighborhoods that consist of two or three wards (Mayor’s Office for Policing and Crime

2016). For simplicity, the term neighborhood will refer to this level of aggregation throughout

this article. With respect to temporal aggregation, MOPAC ties the analysis of public confi-

dence in the police to the financial year, with performance figures collated four times a year.

The study uses data collected over 36 financial quarters, spanning nine years between April

2006 (Q5) and March 2015 (Q40).

MOPAC and the MPS have used surveys for public consultation since the 1980s (Harrison,

Dawson, and Walker 2009). The PAS is a large scale, rolling, population representative survey

which collects opinions on policing, has been its current form since 2002 (Harrison, Dawson,

and Walker 2009; Mayor’s Office for Policing and Crime 2017). It is conducted face-to-face

and is designed to be representative of the residents of London annually at the borough level

(BMG Research 2012). MOPAC and the MPS use the question “Taking everything into

account, how good a job do you think police IN THIS AREA are doing?” as a public confi-

dence indicator. A respondent is confident if they state that the police did an “excellent” or

“good” job. Fig. 1 is a plot of the temporal trend of public confidence over the survey period at

the London-wide level. While public confidence is on the decline from historically high per-

centages of 70% in March 2014, it has been greatly improved from April 2006 to present. A

spatiotemporal semivariogram (see Appendix) was used to examine the underlying spatiotem-

poral dependence structure. A Moran’s I test further confirmed the presence of spatial autocor-

relation with an average value of 0.3 (P-value 0.05) over the study period.

Figure 1. Time-series plot of London-wide rates of public confidence in the police April

2006 to March 2015.
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Methodology

To model the PAS data, an extension of the spatial approach for mapping disease risk proposed

by Besag, York, and Molli�e (1991) is used. In the first level of the model, the binomial likeli-

hood of the data is used to describe the within area variability of the counts conditional on the

unknown risk parameters. The second level of the model specifies the space-time structure and

parameterizes the unknown risk parameters with a prior distribution. Explanatory variables

(covariates) may be added to the model as fixed effects. As the purpose of this study is to dem-

onstrate a novel approach to modeling public confidence in the police rather than to investigate

associations with other factors, a purely autoregressive approach was taken. In this case, we

specify seven structures with increasingly complex representations of space and time. The third

level of the model specifies prior distributions on the hyperparameters, which are the unknown

parameters from level 2.

For each neighborhood, the number of confident persons can be modeled using a Binomial

distribution as follows

Yit � Binomial nit ; pitð Þ (1)

where i is the neighborhood, t represents the period, n, is the population of interest (population

at risk), and pit is the probability that the neighborhood i is considered confident at time t. The

binomial model is particularly suited to modeling short-time series such as this one (de Alba

and Mendoza 2007). On the second level of the model, the logit transformation pit is taken and

expressed it as an additive combination of the overall probability a, overall spatial random

effects li1 kið ), overall temporal random effects, gt1ntð Þ, and space-time interactions dit as

follows:

Model 1 purely spatialð Þ logit pitð Þ5a1ðli1 kiÞ (2)

Model 2 purely temporalð Þ logit pitð Þ5a 1ðgt1ntÞ (3)

Model 3 spatiotemporalð Þ logit pitð Þ5a1 ðli1kiÞ1ðgt1ntÞ (4)

Model 4 – 7 spatiotemporal with interactionsð Þ logit pitð Þ5a1ðli1 kiÞ1ðgt1ntÞ1dit

(5)

where ki represents the unstructured spatial random effects, li represents the structured spatial

random effects in an area i, gt represents the structured temporal random effects, and nt repre-

sents the unstructured temporal random effects at period t. In the Bayesian context, prior distri-

butions are needed on each parameter. Following the Besag, York, Mollie specification (Besag,

York, and Molli�e 1991) an Intrinsic Conditional Autoregressive model (Besag and Kooperberg

1995) was chosen for li, so that

lj l2i � Normal
1

Ni

X
j2 d

lj;
r2

l

Ni

 !
(6)

where Ni is the number of neighboring areas of i (i.e., sharing boundaries). In practice, the

parameter li is normally distributed with a mean equal to the mean of the l parameters for the

set of areas sharing boundaries with i (identified by d in equation 5). For the area i the variance

of li is a global variance r2
l divided by the number of neighbors, to follow the assumption that

an area with many neighbors will have a more precise estimate of li than an area rather
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isolated. On ki and nt; a normal distribution is specified centered on 0 with variance r2
k and r2

g;

respectively; on gt a random walk (RW) is used to represent temporal dependence (Blangiardo

and Cameletti 2015) which assumes that the parameter for each time point depends on the pre-

vious one as follows:

gtjgt21 � Normalðgt21;r
2
gÞ (7)

and is characterized by a variance (r2
g). The form of the spatiotemporal interaction term varies

with differing assumptions per the Knorr-Held framework to give models 4–7 outlined in the

Table 1 below.

To complete the model specification, distributions need to be specified on the intercept a
and on all the variances. An improper uniform prior on the whole real line was used for the

intercept að Þ. A minimally informative Gamma a; bð Þ distribution was used as the hyperprior

distribution for 1
r2

k
, 1

r2
l
, 1

r2
g
; 1

r2
n
; and 1

r2
d

where a and b equal 1.

Random draws from the product of the likelihood ratio and the prior distribution are sum-

marized to give a posterior distribution (Gelman and Hill 2006). Most commonly, this is done

using a Markov Chain Monte Carlo approach using Gibbs sampling (Hahn, 2014). A recent

alternative approach called integrated nested Laplace approximation (INLA) was used instead.

In this deterministic approach, the posterior distribution is analytically approximated using the

Laplace method. An implementation of INLA developed by Rue, Martino, and Chopin (2009)

for the R statistical programing environment was used.

Effect of the spatiotemporal representation structures

Fig. 2 presents time-series plots of pit, the probability that a neighborhood, i, is confident at

time t. The empirical values and estimates produced by the seven models are presented together

for 12 neighborhoods across London. Neighborhoods within a Borough are symbolized in

shades of the same color. This allows the spatial variation in confidence to be seen, with neigh-

borhoods in different Boroughs having markedly different temporal profiles.

The assumed spatiotemporal representation structures result in varying amounts of

smoothing in the estimates. For the spatial benchmark, model 1, a single value is estimated for

each neighborhood for the entire test period. For the temporal benchmark, model 2, estimated

values are allowed to vary over the test period but not across neighborhoods, resulting in a sin-

gle profile for all the neighborhoods. Model 3, an additive combination of models 1 and 2,

allows each neighborhood to have a different value while retaining a single temporal profile.

These representation structures are quite restrictive resulting in over smoothed estimates which

do not represent the data well. The inclusion of the spatiotemporal interaction term in models

4–7 allows more flexibility as the temporal trend can deviate across the different neighbor-

hoods. This allows the temporal trend of the empirical data to be more accurately represented,

at the same time providing some smoothing in areas of extremely high or low confidence.

Models 4 and 6 appear most similar to the empirical data with models 5 and 7 appearing

slightly more smoothed.

Model selection and forecast accuracy evaluation

Model fit was investigated using the posterior predictive check proposed by Gelman, Meng,

and Stern (1996). This self-consistency check evaluates whether the observed data can reason-

ably be expected from the posterior predictive distribution. Replicated data simulated from the
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joint posterior predictive distribution is compared with the observed data using the posterior

predictive P value defined as follows:

PBi
5P yrep

i � yijy
� �

where y is the entire data set, yrep is the replicated value and yi is the empirical value. Posterior

predictive P values near to 0 or 1 indicate an ill-fitting model. The deviance information crite-

rion (DIC), a likelihood based measure of model complexity and fit (Spiegelhalter et al. 2014),

was also used to evaluate the parsimony of the model.

The best fitting model was then used to produce one-step ahead, quarterly forecasts of

public confidence. We have chosen to evaluate the model forecast for one-step ahead as one

financial quarter is a meaningful forecast unit for the end user with public confidence plan-

ning and evaluation meetings taking place quarterly. The performance of the ST-BHM

approach to forecasting was assessed by comparing its accuracy to eight more commonly

used time-series forecasting methods: historical mean, na€ıve method, seasonal na€ıve

method, na€ıve model with drift, simple exponential smoothing (Gardner 1985), Holt-

Winters seasonal exponential smoothing (Holt 2004), ARIMA (Box and Jenkins 1976),

STARIMA (Pfeifer and Deutsch 1980; Pfeifer and Deutsch 1981), and the hierarchical time-

series approach with optimal combination. These are the most widely applied time-series

forecasting methods and are useful from a benchmarking perspective. The performance

rankings of forecast models used can vary with the evaluation statistics used (Makridakis

and Hibon 2000). For this reason, a variety of statistical metrics were employed. Three fre-

quently used forecast accuracy evaluation metrics were used: the mean absolute error

Figure 2. Time series plots displaying the values of pit estimated by the seven models for

12 neighborhoods across London.
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(MAE), the relative mean absolute error (RelMAE), and the mean absolute scaled error

(MASE). The MAE is

MAE51=n
Xn

t51

et

where the forecast error at time t, et5yi2yi1h and yi1h is a forecast of yi, h steps ahead. The

MAE, is given in measurement units making it scale dependent (Hyndman and Koehler 2006).

Scale dependent measures are suitable for comparing performances of forecasts with identical

measurement units made at the same scale. The use of a relative error measure is particularly

appropriate for evaluating forecast performance on the same series where scale issues are not a

factor. The RelMAE is given by

RelMAE5MAE=MAEbenchmark

As is customary, we have chosen the na€ıve method, that is, the random walk without drift as

our benchmark model. As such, the RelMAE is equivalent to Thiel’s coefficient of inequality

(Theil 1966; Bliemel 1973) as our forecasts are one step ahead. Finally, the MASE was applied

as it has been described as the “best available measure of forecast accuracy” provides better,

more robust accuracy estimates less sensitive to scale errors (Hyndman and Koehler 2006).

The MASE is the best metric to compare forecast performances across various levels in this

case, the neighborhood level, the Borough level, and the London wide level.

MASE51=n
Xn

t51

et

1
n21

Pn
i52

jYi 2Yi21j

0
BB@

1
CCA

which is the mean of the forecast error, et, divided by the average forecast error of the na€ıve

method. A value less than 1 signifies a better performance than the na€ıve model and a value

greater than 1 signifies the opposite. As originally proposed by Hyndman and Koehler (2006),

the MASE is an internal measure as the comparison is made with performance of the na€ıve

benchmark during the fit period (Clements and Hendry 2005). However, some authors,

Huddleston, Porter, and Brown (2015) for example, have adapted it to an external measure by

choosing to scale by the performance of the na€ıve benchmark during the forecast period instead

of during the training period.

Results and discussion

The data was separated by a 2:1 ratio into two subsets: the training set (April 2006 to March

2012; 24 quarters) for model calibration and the testing set (April 2012 to March 2015; 12

quarters) for out of sample forecast evaluation.

Model selection

Analyzing histograms of the posterior predictive P values in Fig. 3 allows us to assess the suit-

ability of the models given the data. A bell-shaped histogram indicates superior model fit. Mod-

els 1–3 were poorly fitted with pronounced u-shaped histograms. Comparing models 1–3 with

models 4–7, the fit was greatly improved with the inclusion of the spacetime interaction term.

Geographical Analysis
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This result means that the inclusion of the normally distributed spatiotemporal interaction term

is very useful to the model, describing some of the variability of public confidence in the police

in London. Model 4, with a normally distributed spatiotemporal interaction structure, and

model 6, with a spatially structured interaction term, had the best fit overall. Upon closer

inspection of the histogram (Fig. 3, below), model 4 (in pink) had a slightly better fit with lower

Figure 3. Histograms of the posterior predictive P values for all models (above) and models

4 and 6 (below).
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values at the tails of the distribution and higher values at the center. Furthermore, model 4 had

the lowest DIC value, indicating the best fit and parsimony. Thus model 4 was chosen for

forecasting.

Spatiotemporal trends in public confidence

Examination of the estimates of spatial and temporal random effects provides useful informa-

tion for practitioners (see Fig. 4). On the left, the map of the spatial random effects captures the

persistent spatial trend in public confidence, revealing the areas that are most likely to be confi-

dent in the police over the entire test period. Historically, there has been a gap in prospects

between east and west Londoners, with the west generally being more prosperous and the east

exhibiting more urban deprivation (MacRury 2016). In particular, neighborhoods within the

south-west are the least deprived. Previous research has found that persons experiencing higher

levels of deprivation are less likely to be confident in the police (Reisig 2007). Policy makers

have explored the effect of this “east/west” deprivation divide on public confidence in the

police in London confirming that this relationship generally holds true (Mayor’s Office for

Policing and Crime 2014). Our findings support this, with neighborhoods in the south-west

being the most likely to be confident in the police.

On the right, the empirical temporal trend (see Fig. 1) is well captured by the temporal ran-

dom effects. Examining the structured temporal component at the neighborhood level also pro-

vides insights. Stanko and Bradford (2009) used confirmatory factor analysis to establish a link

between effective policing of major effects in London and confidence in the policing in local

areas. The London 2012 Summer Olympics games, held in the third quarter of 2012 (Q30), are

the biggest major event in recent history, with an estimated 90% of the British population tun-

ing into the coverage on the BBC (Plunkett, 2012). Our examination of the empirical temporal

trend suggests a lagged increased in confidence after the successful policing of the 2012

London Olympics. Fig. 5 shows the empirical values and the estimates of spatial, structured

temporal and spatiotemporal interaction for Waltham Forest—South, one of the host neighbor-

hoods of the Olympics. The increase over the fourth quarter of 2012 (Q31) and the first quarter

of 2013 (Q32) can be clearly seen. Examining the temporal trend we may also extend the

Figure 4. Estimated structured spatial (left) and temporal (right) random effects.
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findings of a net-neutral effect of the 2011 London riots (Q26) on policing, due to the split in

public opinion, (Hohl, Stanko, and Newburn 2012) to the neighborhood level.

Examining the spatiotemporal interaction term can provide further insight into the dynam-

ics of confidence at the neighborhood level. This is particularly relevant in the case of public

confidence modeling as patterns are very likely to be impacted by factors beyond the control of

the police such as social cohesion, and the physical condition of the neighborhood (Mayor’s

Office for Policing and Crime 2014). The flexibility of the exchangeable prior used allows the

underlying spatiotemporal dynamics of these background features which cannot be explicitly

modeled to be incorporated in a way that is useful for analysis, rather than being included in a

noise term. This approach allows us to look under the hood of the neighborhood variability,

particularly when explanatory covariates are included, to examine whether the disparities in

confidence are driven in large part by factors under the control of the police or other ancillary

considerations. A further exploration of these spatiotemporal patterns including explanatory

covariates will be the subject of future work.

Forecasting public confidence

Out of sample forecast, accuracy was measured on a rolling quarterly basis, with all previously

observed data used to forecast one quarter into the future for the period April 2012 to March

2015. This allowed methods requiring longer initialization periods, such as ARIMA and

STARIMA to be evaluated equally. Previous study was conducted by Williams, Haworth, and

Cheng (2015) into the spatiotemporal structure of public confidence in the police, confirming a

heterogeneous and nonstationary nature. This violates the assumptions of spatial homogeneity

and stationarity required by traditional time-series forecasting methods (ARIMA, STARIMA,

etc.). In this case, the data was transformed by differencing prior to modeling.

Visual comparison of the observed and forecast series is an intuitive first step in forecast

performance evaluation. Fig. 6 shows the forecasted rates of public confidence on a rolling

quarterly basis for the test period at the London wide level (1) and the local level (2). At first

Figure 5. Time-series plot of selected model components for the Waltham Forest South

neighborhood.
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glance, it is apparent that the performance of the models varies considerably at the London-

wide level, with the average/historical mean and seasonal na€ıve methods performing the worst

overall. The forecasts for the na€ıve, simple exponential smoothing, ARIMA, and ST-BHM

appear to follow the trajectory of the empirical data reasonably well. However, the ST-BHM

appears the most responsive and best at capturing both the trajectory and overall level of the

rates.

Table 2 presents the average errors for the forecast models at the London-wide level for

the entire forecast window as defined previously. Per the most robust statistic, the MASE, all

Figure 6. Trend line of the rate of confidence values per rolling quarter for the neighbor-

hoods in the Borough of Barking and Dagenham from October 2006 to March 2015 with

forecasted values from April 2012.

Geographical Analysis

14



the forecast models performed better than the na€ıve method during the training window with

MASE values less than 1. All three statistics used confirmed that the ST-BHM was the best

performing model. Using the external measures (MAE, RelMAE) which compared the perfor-

mance of the na€ıve benchmark and the ST-BHM within the forecast window, the ST-BHM

approach was twice as accurate. Using an internal measure of forecast accuracy (MASE) which

compared the performance of the na€ıve benchmark and the ST-BHM to the performance of the

na€ıve benchmark within the training window, the ST-BHM approach was 1.5 times as accurate

the benchmark. It confirms that the average/historical mean and the seasonal na€ıve models

were the worst performing, being at least twice as bad as the benchmark per the internal and

external metrics. A spatiotemporal variogram of the forecast errors, et, (see Appendix) further

confirmed the performance of the ST-BHM model.

Maps of the forecast errors, et, of model 4, the spatiotemporal Bayesian hierarchical model

with type I interactions, were produced for each quarter in the forecast period, April 2012

(Q29) to March 2015 (Q40), Fig. 7. Areas that were over forecast are symbolized in blue, while

under forecasted areas are symbolized in red. While some clustering was found, particularly in

Q33, generally the residuals had no obvious spatial patterns or strong forecast bias with an

average Moran’s Index score of 0.12 (P-value 0.04).

Conclusions and further work

Public confidence in the police is a key component of effective policing that varies across

geographical space and over time. This study illustrates a Bayesian spatiotemporal

approach to investigating and predicting trends in public confidence in the police. The

effect of spatiotemporal representation structures on the estimates produced was investi-

gated. A model with spatial and temporal random effects as well as a normally distrib-

uted spatiotemporal interaction term was the best fitting and produced the most realistic

estimates and forecasts.

Stable spatial and temporal trends in public confidence in the police were uncovered at the

city-wide and neighborhood levels. Our examination of the spatial trends further supports the

finding that confidence in the local police is related to neighborhood deprivation levels. Our

examination of temporal trends suggests a possible lagged “Olympic effect” to be seen,

whereby Londoners were more confident in the police after the successful policing of the 2012

Table 2. Forecast Accuracy Statistics

Method MAE RelMAE MASE

Average/historical mean 0.08 2 0.45

Na€ıve (Random walk without drift) 0.04 1 0.2

Seasonal na€ıve 0.08 2 0.4

Simple exponential smoothing 0.04 1 0.21

Holt-Winters seasonal exponential smoothing 0.04 1 0.2

ARIMA 0.06 1.5 0.32

STARIMA (1,0,0) 0.06 1.5 0.33

Optimal combination 0.06 1.5 0.29

ST Bayesian hierarchical modeling 0.02 0.5 0.13
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London Olympic games Hohl, Stanko, and Newburn (2012). This aligns with the findings of

Stanko and further supports the MET confidence model. Additionally, we have extended the

findings of a net neutral effect of the 2011 London riots on confidence in policing, due to the

split in public opinion, (Hohl, Stanko, and Newburn 2012) to the neighborhood level. The

inclusion of a spatiotemporal interaction term improved the fit of the model and allowed us to

further examine the neighborhood variability. The predictive ability of the spatiotemporal

Bayesian hierarchical approach was validated by comparison with traditional time-series fore-

casting methods.

The modeling was motivated by a desire to understand the variations in public confidence

in space-time rather than investigate relationships between associated factors. For this reason, a

purely autoregressive approach was taken investigating the effect of seven different underlying

spatio-temporal dependence structures without the use of explanatory covariates. In future,

covariates such as geodemographic classifier, land use, and neighborhood cohesion could be

incorporated as fixed effects. This would make the output more useful to the policy maker. Fur-

thermore, a mixture modeling approach could be used to classify the spatiotemporal interac-

tions (Abellan, Richardson, and Best 2008). This will allow the full spatiotemporal profile of

public confidence at the neighborhood level to be examined and unusual patterns of public con-

fidence to be better identified. Additionally, research into the impact of high profile policing

incidents on public confidence particularly for Black and Minority Ethnic Londoners has also

been identified as future research after (Desmond, Papachristos, and Kirk 2016).

It should be noted that forecast performance varies with the forecast horizon (Makridakis

and Hibon 2000). We have chosen to evaluate the model forecast for one-step ahead as one

financial quarter is a meaningful forecast unit for the end user MOPAC/MET, with Borough

level public confidence planning and evaluation meetings taking place quarterly. Future work,

will see forecasts evaluated for longer horizons. Additionally, the accuracy of forecasts pro-

duced from a combination of models has been shown to be better than the forecasts of the

Figure 7. Maps of the ST-BHM forecast errors for the test period.
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individual models on their own (Makridakis and Hibon 2000). This has also been earmarked

for future work.
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Appendix

Table A1. Deviance Information Criterion Statistics for Models

Model Effective No. of Parameters Mean Deviance DIC

Model 1: BYM 102.1834 34,015.67 34,117.85

Model 2: RW 134.9651 31,757.98 31,892.95

Model 3: BYM 1 RW 134.9651 31,757.98 31,892.95

Model 4: Type I 2,872.997 18,118.93 20,991.93

Model 5: Type II 2,148.502 19,868.31 22,016.82

Model 6: Type III 2,747.565 18,262.22 21,009.79

Model 7: Type IV 1,967.077 20,139.36 22,106.43

Figure A1. Level plot (left) and 3D (right) representations of the spatiotemporal variogram

of public confidence in the police April 2006 to March 2015.
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Figure A2. Spatiotemporal variogram of the forecast errors for the four most accurate mod-

els (above) and a box and whisker plot of the spatiotemporal variogram values.
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