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Abstract. Randomized controlled trials with a time-to-event outcome are usually
designed and analyzed assuming proportional hazards (PH) of the treatment effect.
The sample-size calculation is based on a log-rank test or the nearly identical Cox
test, henceforth called the Cox/log-rank test. Nonproportional hazards (non-PH)
has become more common in trials and is recognized as a potential threat to
interpreting the trial treatment effect and the power of the log-rank test—hence
to the success of the trial. To address the issue, in 2016, Royston and Parmar
(BMC Medical Research Methodology 16: 16) proposed a “combined test” of the
global null hypothesis of identical survival curves in each trial arm. The Cox/log-
rank test is combined with a new test derived from the maximal standardized
difference in restricted mean survival time (RMST) between the trial arms. The test
statistic is based on evaluations of the between-arm difference in RMST over several
preselected time points. The combined test involves the minimum p-value across
the Cox/log-rank and RMST-based tests, appropriately standardized to have the
correct distribution under the global null hypothesis. In this article, I introduce a
new command, power ct, that uses simulation to implement power and sample-size
calculations for the combined test. power ct supports designs with PH or non-PH
of the treatment effect. I provide examples in which the power of the combined test
is compared with that of the Cox/log-rank test under PH and non-PH scenarios.
I conclude by offering guidance for sample-size calculations in time-to-event trials
to allow for possible non-PH.

Keywords: st0510, power ct, randomized controlled trial, time-to-event outcome,
restricted mean survival time, log-rank test, Cox test, combined test, treatment
effect, hypothesis testing, flexible parametric model

1 Introduction

In randomized controlled trials with a time-to-event outcome, nonproportional hazards
(non-PH) is increasingly recognized as a potentially important issue. In one investi-
gation, statistically significant non-PH was found in about a quarter of cancer trials
(Trinquart et al. 2016). Nonstatistically significant non-PH, still of potential practical
importance, is likely to occur in a greater proportion of trials, particularly as trial sample
sizes get larger.

c© 2018 StataCorp LLC st0510



4 Power analysis for a generalized treatment effect

Concerns about using the hazard ratio (HR) as a summary measure and as the basis
of the Cox/log-rank test of the treatment effect in such trials include poor interpretabil-
ity and possible loss of power. The difference (or ratio) in restricted mean survival
time (RMST) between treatment groups is gaining popularity as a summary measure
and as the basis of a possible test of a treatment effect (for example, Dehbi, Royston,
and Hackshaw [2017]). RMST at some time point (t∗ > 0) is the integral of the survival
function at t∗, that is, the “area under the survival curve” from 0 to t∗. It is inter-
preted as the mean of the survival-time distribution truncated at t∗. The difference,
∆RMST, defined as RMST in a research arm minus RMST in the control arm, is the
integrated difference between the survival functions, equal to the (signed) area between
the survival curves up to t∗. Details and an implementation of RMST and ∆RMST in
the community-contributed commands strmst and strmst2 may be found in Royston
(2015) and Cronin, Tian, and Uno (2016), respectively.

Briefly, in a two-arm trial, consider testing the “global” null hypothesis H0 : S0 (t) =
S1 (t) for any t > 0, where Sj (t) is the survival function in the jth group (j = 0, 1)
and j = 0 denotes the control group. Royston and Parmar (2016) proposed a test of
H0 based on the separation of the integrated survival curves. It involves evaluating
the maximal chi-squared statistic Cmax = max

(
Z2
)
over several time points, where

Z = ∆RMST/SE(∆RMST) is the standardized difference in RMST at a given time point.
Arguing pragmatically, Royston and Parmar (2016) determined Cmax over 10 equally
spaced values of time t∗ between the 30th and 100th centiles of the failure times in the
dataset. Starting with Cmax, they developed an approach to testing H0 that they called
the “combined test”. The p-value for the combined test is the smaller of the p-value
for the Cox/log-rank test and the multiplicity-corrected p-value for Cmax. In simulation
studies, the combined test was shown to be more powerful than the Cox/log-rank test
when an “early” effect of treatment was present and only slightly less powerful under PH.
The combined test, as implemented in the community-contributed command stctest,
is described in Royston (2017b).

To my knowledge, power and sample size for the combined test are not computable
in closed form. The purpose of this article is to present a command, power ct, for ex-
ploring the power and sample size for the combined test. The command power ct uses
simulation of possibly censored survival times to estimate power or sample size based on
a given trial design. A related helper command, stcapture (Royston 2017a), available
on Statistical Software Components, outputs survival functions and time-dependent
HRs estimated from a dataset in memory. Results from stcapture may be fed directly
to power ct in the form of stored macros. This facilitates exploration of the operat-
ing characteristics of the combined and Cox/log-rank tests under realistic patterns of
survival and HR functions.

This article proceeds as follows: In section 2, I describe estimation of RMST and my
simulation-based approach to estimate power and sample size for the combined test.
In section 3, I introduce the new command power ct, which implements the power
and sample-size computations for trial designs with staggered patient entry and defined
timelines for patient accrual and follow-up. In section 4, I provide examples under
different scenarios of PH and non-PH of the treatment effect. In section 5, I offer broad
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suggestions on how to approach sample-size calculations in such trials. In section 6, I
conclude with a brief discussion.

2 Methods

2.1 Estimation of RMST

Estimation of RMST for a sample of time-to-event data at a point t∗ > 0 in analy-
sis time requires determining the area under the survival curve from 0 to t∗. Two
methods are available in Stata: Method 1 involves jackknife estimation of pseudovalues
(Andersen, Hansen, and Klein 2004), which is equivalent to integrating the Kaplan–
Meier curve. Method 2 involves integrating smooth survival curves predicted from flexi-
ble parametric survival models (Royston and Parmar 2002; Lambert and Royston 2009;
Royston and Lambert 2011), also known as Royston–Parmar models. These methods
are described briefly by Royston (2017b) and are implemented in commands stctest
ps and stctest rp, respectively.

2.2 Simulation to estimate power of the combined test

A challenging preliminary task is to devise an approach to simulation that allows a range
of survival and time-dependent HR functions to be studied. For convenience and gener-
ality, I adopt a somewhat simplified version of the ART system of trial design (Barthel,
Royston, and Babiker 2005; Barthel et al. 2006). The ART system computes power or
sample size for the Cox/log-rank test by exact calculation not requiring simulation.

Trial calendar time is divided into M contiguous periods of equal length. A period
is a convenient duration such as a year, quarter, or month, depending on the context.
Staggered entry of patients into the trial is assumed to occur at a steady (uniform)
rate within each period, while potentially varying between periods. Typically, in real
trials, patient recruitment starts slowly and speeds up over calendar time. The survival
distribution in the control arm, S0 (t), is defined by its values at the end of each period
of analysis time. The instantaneous event rate (hazard) is assumed constant throughout
each period. This defines a piecewise exponential distribution with piecewise constant
hazards.

Patient accrual and follow-up are assumed to take place over K1 and K2 calendar
periods, respectively, with K1+K2 =M . For example, for a trial with M = 10 periods
each of length 1 year and with accrual for K1 = 6 years, follow-up of all patients
recruited by staggered entry over 6 years would continue for a further K2 = 4 years,
after which one would analyze the trial outcome data.

The survival distribution in the research arm, S1 (t), is specified with HRs for periods
1, 2, . . . of analysis time applied to S0 (t) via the cumulative hazard function. Propor-
tional hazards would require the HRs to be equal across periods.
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The power of the combined test is estimated by simulation within the above frame-
work. A suitably large number of datasets with the predefined piecewise exponential dis-
tributions in the control and research arms are simulated using the command power ct,
which is described in detail in section 3. The number of simulations in which the com-
bined test is significant at a given level α is counted. The power of the test [with a
binomial-based confidence interval (CI)] is the corresponding proportion.

The software also presents the power of the Cox/log-rank test as calculated by ART.
The simulation-based power of the Cox/log-rank test is provided in addition as a “reality
check”.

2.3 A note on Monte Carlo error

With any simulation scheme, estimated quantities are not exact but come with a degree
of “Monte Carlo error”, reflecting uncertainty due to randomness. In power ct, Monte
Carlo error attaches to the estimated power or sample size. For power, the binomial
method computes the reported CIs. For sample size, I use the delta method to create a
normal-based CI, as described in section 2.4.

The simulate() and ciwidth() options govern the number of simulation replicates
used by power ct. If ciwidth() is specified, then after some simple algebra, the cor-
responding required value of simulate(), rounded to the nearest integer, is found to
be

simulate() = round

{
power()× (1− power())×

(
zz

ciwidth()

)2
}

where power() is the target power, zz = −2 ∗Φ−1{(100− level())/200}, where Φ−1()
is the inverse standard normal distribution function, and level() is the desired confi-
dence level (by default, 95%). For example, if power() = 0.9, ciwidth() = 0.02, and
level() = 95, then zz = 3.9199 and simulate() = 3457. If power() = 0.8 and the
other parameters are unchanged, then simulate() = 6146.

2.4 Sample-size calculation for the combined test

power ct provides a simulation-based method of estimating the sample size for the
combined test to achieve a given power at a given significance level. The user must
suggest at least three plausible values for the sample size in option n(). Write ω ∈ (0, 1)
for power and n for the total sample size. Using simulation, the program estimates the
power of the combined test at the supplied sample sizes. The several powers and sample
sizes are assumed to follow the relation

Φ−1 (ω) = b0 + b1
√
n (1)

Functional form (1) is suggested by (1) of Royston et al. (2011). Parameters b0 and b1
may be estimated by ordinary least squares. The required sample size, say, nest, for the
target power ω0 is determined by inversion and back-transformation of (1), giving nest =
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{[
Φ−1(ω0)− b0

]
/b1
}2

. A delta-method, normal-based CI for nest may be found by using
nlcom, for example, nlcom ((invnormal(‘omega0’) - b[ cons])/ b[sqrtn])^2.

Finally, power ct checks the power for nest for agreement with ω0 by performing an
additional round of simulation with sample size nest.

To demonstrate the linearity between Φ−1 (ω) and
√
n in an example, I applied

power ct to estimate power in sets of 2,000 simulated trials for a design with non-
PH across a range of sample sizes between 500 and 1,500. The HRs over the 8 equal
time-periods of the design were 0.6, 0.6, 1.0, 1.0, 1.2, 1.5, 1.5, and 1.5. The survival
probabilities were 0.90, 0.71, 0.60, 0.52, 0.44, 0.38, 0.33, and 0.28. The results are
shown in figure 1.
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Figure 1. Relationship between normal equivalent deviate of power, Φ−1 (ω), and square
root of sample size in sets of 2,000 simulations of a trial design with non-PH

As can be seen, the relationship between the transformed power and transformed
sample size is closely linear across a wide range of powers between about 0.56 and 0.98.

The parameters b0 and b1 are estimated as 0.115 and −2.345, respectively. For
power ω0 = 0.9, the required n0 is 1,000 with 95% CI [989, 1012], rounded to the nearest
integer. For comparison, using the same parameters, the Cox/log-rank test requires
4,789 patients to achieve power 0.9.
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3 The power ct command

The syntax of power ct is as follows:

power ct
[
, alpha(#) aratio(#) at(numlist) ciwidth(#) graphopts(string)

hr(numlist | #i ) level(#) median(#) n(#) n(numlist) nperiod(#)

onesided(direction) p0(#) plot
[
(fn)

]
power(#) recruit(#)

recwt(numlist) saving(fn2
[
, replace

]
) simulate(#)

survival(numlist | #i ) timer tscale(#)
]

To enable all the features of power ct, you must install packages containing up-to-
date versions of the community-contributed commands artsurv (Royston and Barthel
2010), stpm2 (Andersson and Lambert 2012), stpmean (Overgaard, Andersen, and
Parner 2015), and stctest (Royston 2017b). The do-file power ct install.do is pro-
vided for convenience as part of the installation of power ct. It contains the following
commands:

. ssc install art, replace

. ssc install stpm2, replace

. quietly net sj 15-3 st0202_1

. net install st0202_1, replace

. quietly net sj 17-2 st0479

. net install st0479, replace

The replace option ensures that out-of-date installed versions of these programs (if
any) are smoothly replaced with the most recent versions.

3.1 Description

power ct has two roles for testing for a generalized treatment effect in a two-arm,
parallel group clinical trial with a time-to-event outcome.

• Role 1: To explore the power or sample size for the Cox/log-rank test under
proportional hazards (PH) or non-PH. This role uses features of the ART package
(Barthel, Royston, and Babiker 2005; Barthel et al. 2006).

• Role 2: To use simulation to evaluate the power or sample size for the combined
test of Royston and Parmar (2016) under PH or non-PH.

The combined test combines an unweighted Cox/log-rank test, implemented through
stcox, with a statistic derived from the maximal squared standardized between-arm
difference in time-dependent RMST. See Royston and Parmar (2016) for methodological
details and Royston (2017b) for a description of stctest, an implementation of the
combined test.

Note that power ct is an immediate command. It does not use a dataset in memory
or disturb data in memory.
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3.2 Options

alpha(#) defines the significance level for testing for a difference between treatments.
The default is alpha(0.05) and tests are two sided. See also onesided().

aratio(#) defines the allocation ratio, whereas # equals the number of patients al-
located to the research arm for each patient allocated to the control arm. For
example, aratio(0.5) means one research arm patient for every two control-arm
patients. The default is aratio(1), meaning equal allocation.

at(numlist) defines time points such that numlist lists the periods corresponding to the
values of the control-arm survival function in survival(). By default, the periods
are assumed to be 1, 2, . . . up to the number of elements in survival().

ciwidth(#) defines the desired width of the CI on power when working with simulated
data using simulate().

graphopts(string) are options of graph, twoway that may be applied to enhance the
appearance of the plot produced by the plot option.

hr(numlist |#i) defines HRs. Conventionally, it is assumed that HRs < 1 indicate treat-
ment benefit compared with control, and vice versa for HRs > 1. There are two
possible syntaxes:

Syntax 1 is hr(numlist), where numlist defines the HRs to be applied to the control-
arm survival function during each period. If only the first k (k < nperiod()) HRs
are supplied, the remaining HRs up to nperiod() are set equal to the last-mentioned
value. For example, specifying hr(0.7 0.8) and nperiod(4) would be equivalent to
hr(0.7 0.8 0.8 0.8). If hr(numlist) contained just one number, that is, hr(#),
PH with HR equal to # would be assumed. The default is hr(0.75).

Syntax 2 is hr(#i) and uses built-in HR pattern number i, where # denotes the “hash”
character and i is a positive integer. The program supplies the HRs in each of 10
periods. When the plot() option is used to plot survival curves, an impression is
given of the relationship between a non-PH HR pattern and the resulting population
survival curves in the control and research arms. The 5 10-period HR patterns
currently implemented may be described as follows:

#1: early positive effect reversing direction in the long term

#2: large late effect

#3: large early effect reversing direction, then disappearing

#4: fairly small early effect slowly reversing direction

#5: early effect with crossing survival curves

The five HR patterns currently implemented are as follows:

#1: 0.522 0.642 0.722 0.892 1.193 1.571 1.967 2.288 2.478 2.627

#2: 1.0 1.0 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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#3: 0.3 0.5 1.0 1.4 1.6 1.7 1.0 1.0 1.0 1.0

#4: 0.894 0.701 0.768 0.875 1.013 1.185 1.385 1.594 1.775 1.894

#5: 0.5 0.5 0.5 0.7 1.0 1.6 2.0 2.0 2.0 2.0

By default, hr(#i) (syntax 2) assumes built-in survival-function number i. However,
if you provide values in survival() or you specify survival(#j) where j 6= i,
survival(#j) values are used instead.

The values of hr() and survival() that are actually used can be inspected after
running power ct by typing return list and looking at stored quantities (r()
macros) r(hr), r(survival0), and r(survival1).

level(#) sets the confidence level for CIs to #. The default # is c(level), initially
95%. See also help set level.

median(#) specifies the median survival time in the control arm. The survival probabil-
ity in the control arm at period 1, s0, is calculated as e− ln(2)/#. Options survival()
and at() are posted internally as survival(s0) and at(1), respectively, and may
not be used.

n(#) specifies the sample size at which the power of the Cox/log-rank and combined
tests is to be determined. By default, sample size for power given in power(#) is
determined according to the control-arm survival probabilities in survival(), HRs
in hr(), number of periods in nperiod(), and accrual time in recruit(). See also
hr() and n(numlist).

n(numlist) estimates the sample sizes for the combined test to achieve power given by
power(). power ct first uses simulation (see simulate()) to estimate the power of
the combined test for each sample size in numlist, of which there must be at least
three. The values in numlist are user-supplied “educated guesses” at the required
sample size. power ct then regresses the normal equivalent deviates of the estimated
power values on the square roots of the corresponding sample sizes, enabling back-
calculation of the sample size for the combined test corresponding to the required
power. A normal-based CI for the sample size, computed by the delta method, is
presented. Finally, the power with the estimated sample size is determined by a
further round of simulation. The CI on the reported power should usually enclose
the target power specified in power(). More precise estimates of the sample size
may be obtained by increasing simulation(), reducing ciwidth(), or increasing
the length of numlist.

nperiod(#) specifies the number of “periods” at the end points of which survival
probabilities and HRs apply. Periods are integer numbers of time intervals whose
lengths are determined by the reciprocal of # in the tscale() option. Note that
the number of periods of follow-up time for each patient is calculated as nperiod()
minus recruit(). Hence, recruit() cannot exceed nperiod(). The default is
nperiod(10).
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onesided(direction) makes all significance tests one sided. If direction = +, the di-
rection is toward RMST in the research arm exceeding that in the control arm, and
HR < 1. If direction = -, the direction is toward RMST in the research arm being
lower than that in the control arm, and HR > 1. The default is direction unspecified,
meaning two-sided tests.

p0(#) defines the fraction of patients recruited at time 0. Such patients are followed
up from the start of period 1 and through all subsequent periods. The default is
p0(0).

plot and plot(fn) plot the estimated population survival functions against analysis
time using the time-scale factor tscale(). If plot(fn) is specified, the plotted
values are stored to a file called fn.dta; otherwise, no data are stored.

power(#), when n() is omitted, defines the power at which to determine sample size
for the Cox/log-rank test. When n(numlist) is specified, power ct estimates the
sample size for the combined test to have power #. Note that power() and n()

cannot be specified together.

recruit(#) defines the number of periods of calendar time over which patients accrue
to the trial. By default, accrual is assumed to occur at a uniform rate; see recwt()
for how to specify varying recruitment rates. The default is recruit(5).

recwt(numlist) defines accrual weights in each period of patient recruitment. The
weights must be a constant multiple of the proportions of patients recruited in each
period up to recruit(). Values in numlist must be positive real numbers. The
number of values in numlist must equal the number defined by recruit(). The
default is recwt(1), meaning a constant accrual rate across periods.

saving(fn2
[
, replace

]
) saves simulation estimates at each replicate to a file named

fn2.dta.

simulate(#) controls the number of simulations to be performed. The default is
simulate(0), meaning no simulations are done.

survival(numlist | #i) defines survival probabilities in the control arm. Unless hr(#i) is
specified (see hr()), survival() is required. In syntax 1, survival(numlist) defines
the survival probability at the end of each period. In syntax 2, survival(#i), where
# denotes the “hash” character and i is a positive integer, the program assumes
nperiod(10) and supplies the control-arm survival probability in each of 10 periods
according to built-in function i. The six built-in survival functions are as follows:

#1: 0.765 0.516 0.340 0.221 0.161 0.130 0.112 0.100 0.090 0.082

#2: 0.765 0.516 0.340 0.221 0.161 0.130 0.112 0.100 0.090 0.082

#3: 0.765 0.516 0.340 0.221 0.161 0.130 0.112 0.100 0.090 0.082

#4: 0.500 0.265 0.114 0.065 0.046 0.037 0.032 0.029 0.027 0.025



12 Power analysis for a generalized treatment effect

#5: 0.984 0.923 0.773 0.644 0.549 0.471 0.424 0.396 0.377 0.363

#6: 0.538 0.333 0.248 0.204 0.178 0.160 0.146 0.136 0.127 0.119

Currently, functions 1, 2, and 3 are identical.

timer activates a minute timer for simulation runs. Simulations can become lengthy.
Elapsed times from timer with a smaller number of simulations in simulate() can
be scaled up to indicate how long a production run will need. (Technical note: timer
uses timers 99 and 100.)

tscale(#) defines the scale factor between analysis-time units and “periods”, where
one unit of analysis time equals # periods in length. Note that # may be 1, < 1,
or > 1, but it is often 1 or > 1 to “magnify” analysis time and give greater detail of
the survival function and HRs. The default is tscale(1).

Example 1: if analysis time is in years and tscale(2) is specified, each period is
one half a unit of analysis time (that is, six months) in length.

Example 2: if analysis time is in years and nperiod(12) tscale(4) is specified,
each period is 3 months; survival probabilities are estimated at 1/4, 2/4, . . . , 12/4 = 3
years.

4 Examples
4.1 Overview

In the examples given below, I consider computing the sample size for the combined test
under three generic scenarios: a) PH, b) early treatment effect, and c) late treatment
effect. The last terms are explained in context in the following sections. I estimated
the baseline survival function, S0 (t), in the GOG111 trial in advanced ovarian cancer
(McGuire et al. 1996). Table 1 shows S0 (t) and S1 (t), the survival function in the
research arm, computed with three time-related patterns of HR.

Table 1. Survival functions for three patterns of a time-dependent HR. See also figure 2.

Period S0 (t) PH Non-PH early Non-PH late
(yr) HR S1 (t) HR S1 (t) HR S1 (t)

1 0.765 0.750 0.818 0.522 0.870 1.000 0.765
2 0.516 0.750 0.609 0.642 0.675 1.000 0.516
3 0.340 0.750 0.445 0.722 0.500 0.700 0.385
4 0.221 0.750 0.322 0.892 0.340 0.500 0.311
5 0.161 0.750 0.254 1.193 0.233 0.500 0.265
6 0.130 0.750 0.217 1.571 0.167 0.500 0.238
7 0.112 0.750 0.194 1.967 0.124 0.500 0.221
8 0.100 0.750 0.178 2.288 0.096 0.500 0.209
9 0.090 0.750 0.164 2.478 0.074 0.500 0.198
10 0.082 0.750 0.153 2.627 0.058 0.500 0.189
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The three population survival functions corresponding to the HR functions in table 1
are shown graphically in figure 2.
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Figure 2. Population survival curves corresponding to PH with HR = 0.75 and non-PH
with two different specifications of the time-dependent HR (see table 1). The control-
arm survival curve S0 (t) (solid line), also given in table 1, is identical in each panel.
The research-arm survival curves are shown by dashed lines.

4.2 Example 1. Sample size under PH

The first port of call for a sample-size calculation with time-to-event data in Stata is usu-
ally to assume PH of the treatment effect and work with the Cox/log-rank test. A flexible
system to facilitate such exploration is the ART package (Barthel, Royston, and Babiker
2005). The main options of ART (specifically, options of the community-contributed pro-
gram artsurv) are available in simplified form in power ct. If the simulate() option
of power ct is not specified, power ct calls artsurv to calculate the sample size or
power according to the Cox/log-rank test but not the combined test.

Previous work suggests that under PH and other things being equal, the combined
test requires some 5 to 10% more patients than the Cox/log-rank test to provide a given
power (Royston and Parmar 2016). I exemplify the use of power ct in this context.

Suppose the sample size is required to achieve power of 0.9 at a two-sided significance
level of 0.05 to detect HR = 0.75 under PH. For illustration, I use the first built-in baseline
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survival function in power ct as provided by the option survival(#1). The leftmost
four columns of table 1 show the corresponding population survival functions, S0 (t) and
S1 (t), at the end of each one-year period up to a maximum of M = 10 years.

Suppose that patient accrual takes place at a uniform rate over 5 of the 10 periods.
The sample size for the Cox/log-rank test is calculated without requiring simulation:

. power_ct, alpha(.05) power(0.9) hr(0.75) survival(#1) nperiod(10) recruit(5)

ART sample size calculation for Cox/logrank test
HR: PH with HR = .75
Alpha: .05
Power: 0.9000
Events: 509
Sample size: 599

A sample of n = 599 patients experiencing 509 events is required for the Cox/log-
rank test to have power 0.9. I now check the power of the combined test under the
same scenario with 599 patients, using simulation of 5,000 trial datasets. I first set
the random-number seed arbitrarily to 115 to ensure reproducibility of the simulation
results later if needed:

. set seed 115

. power_ct, alpha(.05) n(599) hr(0.75) survival(#1) nperiod(10) recruit(5)
> simulate(5000)

ART power calculation for Cox/logrank test
HR: PH with HR = .75
Alpha: .05
Sample size: 599
Events: 509
Power: 0.9002

Estimating power of combined test with sample size 599
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Simul. n Power_CT [95% Conf. Int.] Power_Cox [95% Conf. Int.] Mean HR

5000 599 0.8776 0.8682, 0.8866 0.8972 0.8884, 0.9055 0.7490

The power of the combined test is estimated to be 0.878 [95% CI 0.868 to 0.887],
about 0.022 lower than for the Cox/log-rank test. What sample size is needed for the
combined test to achieve power 0.9? To determine this, the n() option must specify at
least three sample sizes with ranges intended to include the correct value. Because the
Cox/log-rank test is optimally powerful under PH, more than 599 patients are needed
for the combined test to obtain sufficient power. I take 600, 650, and 700 as a reasonable
candidate range. If this set does not cover the required power, I can adjust the sample
sizes and repeat the procedure. power ct performs the simulations and interpolates
(transformed) sample size and (transformed) power values, as described in section 2.4,
to obtain a sample size estimate for power 0.9. It also provides a 95% CI for the
estimated power. Finally, power ct again uses simulation to evaluate the power with
the final sample size:
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. set seed 117

. power_ct, alpha(.05) power(.9) n(600 650 700) hr(0.75) survival(#1)
> nperiod(10) recruit(5) simulate(5000)

Estimating power of combined test in 3 sets of 5000 replicates ...

n power SE(power)

600 0.8814 0.0046
650 0.9024 0.0042
700 0.9220 0.0038

Sample size for power .9 = 643, 95% CI (640,646)

ART power calculation for Cox/logrank test
HR: PH with HR = .75
Alpha: .05
Sample size: 643
Events: 547
Power: 0.9192

Estimating power of combined test with sample size 643
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Simul. n Power_CT [95% Conf. Int.] Power_Cox [95% Conf. Int.] Mean HR

5000 643 0.8956 0.8868, 0.9039 0.9154 0.9073, 0.9230 0.7506

The sample size for the combined test is 643, some 7.3% higher than the 599 required
by the Cox/log-rank test. Although the power of 0.896 for the combined test does not
exactly equal the requested 0.9, the value of 0.9 lies within the 95% CI for 0.896 of
[0.887, 0.904].

4.3 Example 2. Sample size under non-PH: Early effect

I now describe an investigation of sample size for the combined test under a speci-
fied time-dependent pattern of non-PH. The HR values are given in the fifth column
of table 1. The pattern represents an “early” effect of treatment featuring crossing
hazard functions, with HR < 1 for the first four periods and HR > 1 subsequently.
Royston and Parmar (2016) demonstrated that the Cox/log-rank test may have severely
reduced power in this situation.

I specify power 0.9 at significance level 0.05. I cannot rely on the ART calculation
to inform the sample size needed for the combined test. Instead, I instruct power ct to
cover a wide range of sample sizes. As a “sighting shot”, I choose n = 200, 500, and
1,000. Initially, to save computer time, I use a relatively small number of simulations
(500):
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. set seed 119

. power_ct, alpha(.05) power(.9) n(200 500 1000) hr(#1) survival(#1)
> nperiod(10) recruit(5) simulate(500)

Estimating power of combined test in 3 sets of 500 replicates ...

n power SE(power)

200 0.6240 0.0217
500 0.9500 0.0097

1000 1.0000 0.0000

Sample size for power .9 = 405, 95% CI (405,405)

ART power calculation for Cox/logrank test
HR: .522 .642 .722 .892 1.193 1.571 1.967 2.288 2.478 2.627
Alpha: .05
Sample size: 405
Events: 359
Power: 0.6878

Estimating power of combined test with sample size 405
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Simul. n Power_CT [95% Conf. Int.] Power_Cox [95% Conf. Int.] Mean HR

500 405 0.8880 0.8570, 0.9143 0.6320 0.5880, 0.6744 0.7803

It appears that n = 405 is likely to be close to the right answer, enabling the range
to be narrowed. I now choose n = 350, 400, and 450 and rerun power ct with a larger
number of simulations (5,000):

. set seed 121

. power_ct, alpha(.05) power(.9) n(350 400 450) hr(#1) survival(#1)
> nperiod(10) recruit(5) simulate(5000)

Estimating power of combined test in 3 sets of 5000 replicates ...

n power SE(power)

350 0.8706 0.0047
400 0.9140 0.0040
450 0.9426 0.0033

Sample size for power .9 = 383, 95% CI (381,384)

ART power calculation for Cox/logrank test
HR: .522 .642 .722 .892 1.193 1.571 1.967 2.288 2.478 2.627
Alpha: .05
Sample size: 383
Events: 339
Power: 0.6636

Estimating power of combined test with sample size 383
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Simul. n Power_CT [95% Conf. Int.] Power_Cox [95% Conf. Int.] Mean HR

5000 383 0.9022 0.8936, 0.9103 0.6708 0.6576, 0.6838 0.7682
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The revised sample size conferring power 0.902 [95% CI 0.894 to 0.910] is 383. No-
tably, the power of the Cox/log-rank test in this setting is 0.671, which is much smaller
than that of the combined test.

As a sensitivity analysis, suppose the same sample size of 383 and the same HRs that
define the early effect for the first 4 years are kept, but the subsequent HRs are reduced
to 1.0. This is still an early effect lasting four years, but now the treatment effect does
not actually “go into reverse” (that is, exhibit crossing hazards) after four years, as it
does with hr(#1). What is the power of the Cox/log-rank and combined tests now?

. local hr1 0.522 0.642 0.722 0.892 1 1 1 1 1 1

. set seed 123

. power_ct, alpha(.05) n(383) hr(`hr1´) survival(#1) nperiod(10) recruit(5)
> simulate(5000)

ART power calculation for Cox/logrank test
HR: .522 .642 .722 .892 1 1 1 1 1 1
Alpha: .05
Sample size: 383
Events: 330
Power: 0.8619

Estimating power of combined test with sample size 383
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Simul. n Power_CT [95% Conf. Int.] Power_Cox [95% Conf. Int.] Mean HR

5000 383 0.9246 0.9169, 0.9318 0.8600 0.8501, 0.8695 0.7142

The power of the Cox/log-rank test has increased markedly from 0.671 to 0.860.
However, it is still somewhat lower than the power of the combined test, which has
increased from 0.902 to 0.925.

The example suggests that when an early treatment effect is present, the power of
the combined test is superior and quite robust to variations in the HR in the later part of
follow-up. The power of the Cox/log-rank test is sensitive to such variations. Typically,
relatively few patients who are still event-free contribute data in the late phase.

4.4 Example 3. Sample size under non-PH: Late effect

A second type of non-PH pattern that may be seen, for example, in screening or pre-
vention trials, is the late treatment effect. Here the HR may be close to 1 in the early
follow-up phase and decrease later, signifying a late-onset treatment effect. The corre-
sponding survival curves coincide in the early period and separate later. In many trials,
most of the events occur in the early follow-up phase. Obtaining sufficient power in
such trials can be a challenge.

Earlier simulation work (Royston and Parmar 2016) suggested that with a late effect,
the power of the combined test is not far short of that of the Cox/log-rank test. To
obtain a sample-size estimate for the combined test, I take an approach similar to the
PH case. I obtain a rough indication of the required sample size from the Cox/log-rank
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test, then refine it for the combined test using the n(numlist) option of power ct. As
an example, I use hypothetical time-dependent HR pattern #2 as provided in power ct

through the option hr(#2) (see table 1), together with survival(#1) as before:

. power_ct, alpha(.05) power(.9) hr(#2) survival(#1) nperiod(10) recruit(5)

ART sample size calculation for Cox/logrank test
HR: 1 1 .7 .5 .5 .5 .5 .5 .5 .5
Alpha: .05
Power: 0.9000
Events: 811
Sample size: 971

. local n = r(N)

I need n = 971 patients. Note that power ct stores the required sample size (971)
in r(N), which I have stored in local macro `n´ for further use below. Based on this, I
guess a (generous) range of, say, minus 10% to plus 15% of 971, that is, 874 and 1,117,
intended to cover power 0.9 for the combined test.

. local n1 = round(`n´ - .10*`n´)

. local n2 = round(`n´ + .15*`n´)

. set seed 125

. power_ct, alpha(.05) power(.9) n(`n1´ `n´ `n2´) hr(#2) survival(#1)
> nperiod(10) recruit(5) simulate(5000)

Estimating power of combined test in 3 sets of 5000 replicates ...

n power SE(power)

874 0.8446 0.0051
971 0.8718 0.0047

1117 0.9192 0.0039

Sample size for power .9 = 1048, 95% CI (1021,1074)

ART power calculation for Cox/logrank test
HR: 1 1 .7 .5 .5 .5 .5 .5 .5 .5
Alpha: .05
Sample size: 1048
Events: 876
Power: 0.9206

Estimating power of combined test with sample size 1048
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Simul. n Power_CT [95% Conf. Int.] Power_Cox [95% Conf. Int.] Mean HR

5000 1048 0.8990 0.8903, 0.9072 0.9208 0.9130, 0.9281 0.7965

Sample size n = 1048 is indicated for the combined test. The corresponding power
is 0.899 [95% CI 0.890 to 0.907]. The sample size is 7.9% larger than the 971 needed for
the Cox/log-rank test.
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5 Sample-size calculation: General recommendations

Based on examples and on previous experience with the combined test (Royston and
Parmar 2016), I give tentative recommendations for trial sample-size calculation below.
I describe the approach for the most popular power values of 0.9 and 0.8. In principle,
any desired power may be targeted.

1. As described in section 4.2, power the trial for the combined test under PH. Power
and sample-size assessments under non-PH for various patterns of time-dependent
HR may be viewed as sensitivity analyses. They may be informed by subject-
matter considerations, for example, hypotheses about the likely modes of action
of the treatment regimens under comparison.

2. To achieve power 0.9 for the combined test under PH, initially use the ART method-
ology implemented in power ct to compute the sample size for the Cox/log-rank
test with power 0.92. Simulation is unnecessary. If the target power is 0.8, do the
same calculation for Cox/log-rank power 0.83. Call the resulting sample size nPH.

3. To obtain nest, the estimated sample size, run power ct for power 0.9 or 0.8 with
three sample sizes covering a sensible range, for example, nPH, 0.9nPH, 1.1nPH.
The choice of number of simulations may be guided by specifying ciwidth() in-
stead of simulate(). For example, ciwidth(0.02) would give a CI width of about
±0.01 for the estimated power conditional on nest. The value of nest proposed for
the combined test should be close to nPH.

6 Discussion

It is apparent that the power of the Cox/log-rank test is vulnerable to scenarios where
a treatment effect in the early follow-up phase disappears or reverses later on. This is
the phenomenon of crossing hazard functions. An extreme case of crossing hazards is
when the survival curves also cross (see, for example, figure 2A of Mok et al. [2009]).
Because of its sensitivity to “gaps” between Kaplan–Meier curves, that is, local features
rather than the particular pattern of consistent separation implied by PH, the combined
test may be able to detect a statistically and clinically significant early treatment effect
when the Cox/log-rank test fails to. Therefore, using the combined test in such cases
can enhance power.

Because the Cox/log-rank test is optimally powerful under PH, a requirement for the
combined test to provide a given power under PH inevitably causes an increase in sample
size. The increase is akin to an “insurance premium” to cope with possible failures of
the PH assumption (Royston and Parmar 2016). In practice, the premium is modest,
less than a 10% increase in sample size in all the instances I have investigated. The
benefit of the combined test is one that is more robust to failure of the PH assumption
than the Cox/log-rank test in some situations.

Note that the sample-size calculation for the combined test under PH is sufficiently
well defined to be fully specifiable in the trial protocol. The combined test may be
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applied to the final trial dataset without the need for any data-driven modifications to
the analysis strategy. Such prespecification is a key requirement of good clinical practice
when designing and running a trial.
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