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A granular layer can form regular patterns, such as squares, stripes, and hexagons,
when it is fluidized with a pulsating gas flow. These structures are reminiscent of the
well-known patterns found in granular layers excited through vibration, but, contrarily to
them, they have been hardly explored since they were first discovered. In this work, we
investigate experimentally the conditions leading to pattern formation in pulsed fluidized
beds and the dimensionless numbers governing the phenomenon. We show that the onset
to the instability is universal for Geldart B (sandlike) particles and governed by the
hydrodynamical parameters � = ua/(utφ̄) and f/fn, where ua and f are the amplitude
and frequency of the gas velocity, respectively, ut is the terminal velocity of the particles,
φ̄ is the average solids fraction, and fn is the natural frequency of the bed. These findings
suggest that patterns emerge as a result of a parametric resonance between the kinematic
waves originating from the oscillating gas flow and the bulk dynamics. Particle friction
plays virtually no role in the onset to pattern formation, but it is fundamental for pattern
selection and stabilization.

DOI: 10.1103/PhysRevFluids.3.034303

I. INTRODUCTION

Granular flows are well known for exhibiting rich and complex mesoscale dynamics due to the
self-organization of the composing grains. Examples include the ripples and dunes that spread over
deserts and beaches, avalanches, viscous fingering, or patterns in rotating drums [1]. A phenomenon
that has attracted great attention during the last two decades is the formation of standing wave
patterns on the surface of vertically vibrated thin granular layers [2–4]. These patterns can be obtained
in vacuo to avoid heaping and typically manifest themselves as stripes, squares, or hexagons, strongly
resembling the structures formed in vertically vibrated fluids, also known as Faraday waves. Perhaps
due to this analogy, vibrated granular patterns are often examined using the same control parameters as
in the study of Faraday waves, i.e., the frequency f and dimensionless acceleration � = 4π2f 2D/g

of the vibrating plate, where D is its displacement and g is the gravitational acceleration. For viscous
fluids, these driving parameters represent a balance between the energy injected and energy dissipated
in the layer [5], and they can be derived from the Navier-Stokes equations governing the liquid flow.
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FIG. 1. Example of regular patterns in pulsed beds of Glass 240 particles: (a) square pattern in shallow
3D geometry, h = 3 mm, u = 6.15 + 3.3[1 + sin(2π17t)] cm/s, and (b) triangular bubble tessellation in deep
quasi-2D geometry [16], h = 15 cm, bed thickness = 1 cm, u = 1.4 + 8.3[1 + sin(2π5t)] cm/s.

However, continuum models that can adequately describe dense granular flows are lacking, so the
physical interpretation of � for granular patterns is less evident. Other control parameters, including
the flying time of the layer and contact time with the vibrating plate, have been proposed in theoretical
studies [6,7]; however, most experimental works define the parameter space using f and � due to their
simplicity and straightforward calculation. The onset to the patterns exhibits a weak dependence on f

and occurs in the range � ∼ 2–3 and f ∼ 7–100 Hz, with a small decrease in � for large frequencies
[4,8] and hysteresis at low frequencies, depending on whether the initial state is flat or patterned [9].
An additional control parameter is the ratio h/d, where h is the layer height and d is the particle
diameter. Ratios h/d ∼ 3–30 have been employed, with most results reported in the range 5–10.

Vibration is not the only periodic excitation that triggers the formation of standing wave patterns
in granular layers. In 1999, Coppens and coworkers [10–12] showed experimentally that a granular
bed fluidized with an oscillating gas flow can also form periodic patterns under certain conditions. In
three-dimensional (3D) geometries, squares [Fig. 1(a)], stripes, and hexagons decorate the surface of
the bed. For very shallow beds—a few mm deep—the dense phase remains bubbleless and particles
oscillate coherently [13]. The patterns are subharmonic, meaning that the pattern is shifted by half a
wavelength every pulse and the exact configuration is repeated after two pulses. If the thickness of the
layer is increased, bubbles gradually form in alternating positions that match the pattern’s antinodes,
resulting in triangular bubble tessellations in the vertical plane for deep, quasi-two-dimensional (2D)
geometries [Fig. 1(b)]. Although pure vibration can induce bubbling fluidization in deep beds (h ∼
4 cm) [14], such structured bubble arrays have not been reported in vibrated granular layers. It
is unclear if this is due to physical reasons or experimental limitations. No discontinuities in the
pattern parameters, such as the type of pattern and wavelength, are observed when transiting from
the nonbubbling to the bubbling regime, indicating that regular patterns in shallow fluidized beds
are the first manifestation of the same instability that develops into bubbles in deeper beds. In fact,
bubbles in fluidized beds form in three stages [15]: (1) a one-dimensional (1D) traveling planar wave
evolves from an unstable uniform stage, (2) this wave develops into a 2D transverse structure, and
(3) particles are expelled through nonlinear mechanisms from a region with smaller-than-average
particle concentration, forming a bubble. Regular patterns in shallow pulsed beds are the outcome of
the secondary instability of the 1D planar voidage waves generated by the oscillating flow, and they
can be used as a powerful tool to study this instability close to the onset, before it develops into bubbles.

Curiously, this phenomenon has been hardly explored since it was first observed, despite its
potential to understand, control, and scale up fluidized beds [12]. In 2003, Li et al. [17] showed
that the wavelength of fluidized patterns decreases with the flow frequency and follows a dispersion
relation similar to the patterns formed in vibrated granular layers and liquids. At a computational
level, Kawaguchi et al. [18] used Discrete Element Methods (DEM) in 2001 to study the behavior
of pulsed fluidized beds. They reported that the use of pulsation frequencies of 4–5 Hz could induce
some periodicity in the bubble dynamics for Geldart B particles. The computed pattern consisted of
two large bubbles aligned horizontally and always nucleating at the same fixed positions. Another
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attempt to reproduce these patterns with DEM was made by Wang and Rhodes [19] in 2005. Some
dynamical ordering was observed, but the clear regular structures formed in the experiments were
missing. No further work was conducted until we recently revisited the topic. We showed that the
classical implementation of two-fluid models fails to reproduce the experimental bubble patterns
[20], as opposed to pattern formation in vertically vibrated granular layers in vacuo, which has been
successfully described by continuous approaches [21]. This highlights the difficulty of modeling
two-phase granular flow as compared to dry granular systems. It is important to comment here
that two-fluid models can reproduce regular bubble patterns in pulsed fluidized beds after a careful
choice of the parameters, but the bubbles always form in fixed positions. It is the subharmonic,
alternating behavior of the experimental bubble patterns that has been impossible to reproduce so
far with continuum descriptions. This is not a trivial detail, but one of the main manifestations of
the underlying physics behind this phenomenon. Recently, we have reported the first successful
simulation of pattern formation in pulsed beds by using DEM [16]. Our simulations show that
patterns do not form in deep beds in the absence of particle friction, and that the subharmonic
behavior is related to the compressive stress generated in the wake of bubbles in the plastic regime.
This compressive stress is not correctly captured by the frictional closures used in two-fluid models,
suggesting this reason for the failure of continuum simulations.

Despite the recent computational insights, the conditions under which patterns form, the
dimensionless numbers governing the phenomenon, and the mechanisms that trigger the instability
are still unknown. This work aims to shed light on these questions and discuss the differences between
patterns in vibrated and pulsed layers in view of the results. In particular, we focus on fluidized beds
that are a few mm deep. This is the simplest dynamic scenario because, under this condition, bubbles
cannot evolve further from a wave state, so the nonlinear mechanisms that expel the particles from the
more dilute regions, forming the bubble [15], are not expected to be dominant. Working close to the
instability’s onset facilitates the analytical study of the continuum equations behind this phenomenon,
for example, by means of a linear stability analysis.

We show that the threshold for pattern formation in shallow pulsed beds is universal for Geldart
B (sandlike) particles [22] and determined by the hydrodynamical parameters � = ua/(utφ̄) and
f/fn, where ua and f are the amplitude and frequency of the gas velocity, respectively, ut is the
terminal velocity of the particles, φ̄ is the average solids fraction, and fn is the natural frequency
of the bed. Extensive experimentation supported by computational simulations shows that particle
friction plays virtually no role in the onset to pattern formation, but it is fundamental for pattern
selection and stabilization.

II. EXPERIMENTAL

Experiments were conducted in a cylindrical column 14 cm i.d. made of Perspex. The distributor
is a 3-mm-thick porous plate Grade 07 from Sintertech (BK 10.30.07). More regular patterns
are obtained with a distributor BK 10.30.10, but the amplitude of the sinusoidal gas velocity
is strongly attenuated due to the higher pressure drop, complicating the operation at low values
of the minimum gas flow. A granular layer of thickness h is deposited inside the column
and excited with a quasisinusoidal air flow fed through the distributor with superficial velocity
u = umin + ua[1 + sin(2πf t)]. This flow is realized by sending a sinusoidal voltage to a 154A
high-flow-control solenoid valve from MKS. It is noteworthy that there is no control loop, so the
flow created by the valve is not perfectly sinusoidal. An empirical mode decomposition [23] reveals
that the instantaneous frequency of the gas velocity fluctuates in time, instead of being constant as
in a sinusoid. This fluctuation is approximately ±1 Hz and increases when working at low values of
umin up to ±2 Hz. This is the reason why the setup is not operated at very low values of umin. The
maximum flow rate for the solenoid valve is 200 standard liters per minute, which sets the maximum
velocity amplitude ua at 10–11 cm/s. The gas velocity is measured and recorded with a fast response
flow-meter Omega FMA-1611 and evaluated based on the pressure drop across the distributor, after
previous calibrations with constant gas flow. Both methods give comparable results.

034303-3



DE MARTÍN, OTTEVANGER, VAN OMMEN, AND COPPENS

TABLE I. Geldart B particles used in the experiments. umf and ut stand for minimum fluidization and
terminal velocity, respectively.

Name dp (μm) ρp (kg/m3) umf (m/s) ut (m/s)

Glass 130 130 ± 20 2500 0.012 0.80
Glass 240 240 ± 10 2500 0.041 1.74
Zinc 130 130 ± 20 7140 0.038 1.79
Steel 130 130 ± 20 7900 0.042 1.93
Polystyrene 600 600 ± 100 1040 0.115 2.49

Experiments have been conducted with five different kinds of carefully selected Geldart B
particles [22] (Table I). Some of these particles are made of the same material and, therefore, share
frictional parameters. Other ones have similar minimum fluidization and terminal velocity, presenting
equivalent fluid-particle interactions. This strategy allows us to study the influence of particle friction
and fluid-particle interactions independently.

By keeping umin and f constant, the amplitude of the gas velocity is slowly increased until the
first undulations on the bed surface are observed at ua,c. For each new value of the amplitude, the
layer is excited for a few minutes to ensure that a lack of patterns is not due to transients. Similar
to vibrated layers, the threshold for pattern formation is lower if the amplitude is decreased instead
of increased, due to hysteresis. However, our goal is to study the onset to the instability from a
flat, nonpatterned state and shed light onto the stabilizing and destabilizing mechanisms, so the
instability chart corresponds to increasing flow amplitude. A discussion of the pattern wavelength
and complete phase diagram is beyond the scope of this paper, but such a study of pattern formation
has been conducted by Li et al. [17] for two types of particles.

III. RESULTS AND DISCUSSION

An example of the minimum gas velocity amplitude necessary to induce patterns, ua,c, as a
function of flow frequency f and layer height h is shown in Fig. 2. The instability threshold strongly
depends on the flow frequency, decreasing with the frequency until reaching a plateau. An increase
in h displaces ua,c towards lower frequencies by an amount ∝ √

h, suggesting scaling with the
natural frequency of the bed fn [24]. In this work, fn is estimated with the model of Baskakov

FIG. 2. Influence of the layer height h on the threshold for pattern formation for Glass 240 particles at
umin = 4 cm/s. � h = 7 mm, � h = 5 mm, © h = 4 mm, � h = 3 mm. (Inset) The curves collapse when f is

normalized by the natural frequency, fn = 1
π

√
g

h
, of the layer.
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FIG. 3. Threshold for pattern formation for Glass 130 (red), Glass 240 (white), Zinc 130 (blue), Steel 130
(black), and Polystyrene 600 (asterisks). umin = 4 cm/s for all cases and h = 2–8 mm.

et al. [25] fn = 1
π

√
g

h
, which assumes that the bed oscillates like a liquid in a U tube. This equation

gives comparable results to the model of Verloop and Heertjes [24,26], which was derived under
assumptions that are closely related to our system, such as coherent particle motion and low bed
height. This behavior is opposite to pattern formation in vibrated granular layers in vacuo, whose
threshold shows a very low dependence on the vibration frequency and layer height. The role of
the natural frequency here highlights one of the main differences between pulsed and vibrated beds:
patterns in gas-fluidized beds can sustain an oscillation—as liquids do—whereas patterns in vibrated
systems cannot. If the amplitude of the flow is suddenly stopped in a fluidized bed while keeping the
average flow constant and above umf , the subharmonic patterns persist with decaying amplitude. In
contrast, if the excitation is stopped in a vibrated granular layer, patterns stop forming immediately.
This corresponds to the liquidlike nature of fluidization. Indeed, if f is normalized by fn, all curves
collapse to a master curve centered around fn (inset of Fig. 2).

Close inspection of the stability curves shown in Fig. 3 and the particle properties shown in Table I
reveals that solids with similar ut and umf , that is, with similar fluid-particle interactions, share a
stability curve, independently of the frictional properties of the particles. The amplitude of the gas
flow that induces instability increases with the terminal velocity ut or minimum fluidization velocity
umf of the particles, indicating that umf or ut have a stabilizing effect. Surprisingly, particle diameter
and density do not have an isolated effect on the instability.

Driving parameters and stability curve

In contrast to vibration, which can be fully characterized in terms of frequency and amplitude,
an oscillating gas flow has the minimum gas velocity umin, or equivalently, the average gas velocity
ū = umin + ua, as an additional degree of freedom. Li et al. [17] suggest that ū could be considered a
control parameter similar to gravity in the expression � = 4π2f 2A/g used for vibrated patterns. Our
experiments show that an increase in umin gradually decreases the threshold for pattern formation
at high frequencies (Fig. 4). This change is very pronounced for Glass 240, Zinc 130, and Steel
130 when increasing umin from 3 to 6 cm/s. In contrast, Glass 130 shows a small decrease for
the same variation of umin. It is worth mentioning that Zinc 130, Steel 130, and Glass 240 have
umf ∼ 4 cm/s, so a change from umin = 3 cm/s to 6 cm/s can have a large effect in the bed dynamics
because for umin = 3 cm/s, the system is defluidized at the minima of the gas flow, whereas for
umin = 6 cm/s the system is fully fluidized during the entire pulse cycle. On the other hand, Glass
130 has umf ∼ 1.2 cm/s, so the bed is well fluidized during the entire pulse for both values of umin.

The effect of umin can be corrected by taking into account how the average gas velocity ū affects
the average solids volume fraction φ̄. Actually, the stability curves can be collapsed onto a master
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FIG. 4. Influence of umin on the threshold for pattern formation for Glass 240 (stars) and Glass 130 (circles).
Black, gray, and white symbols represent umin = 3, 4, and 6 cm/s, respectively.

curve when using the driving parameters � = ua/(utφ̄) and f/fn (Fig. 5), where φ̄ is the solids
volume fraction at ū, estimated from the Richardson-Zaki (RZ) equation ū/ut = (1 − φ̄)n with
(4.7 − n)/(n − 2.35) = 0.175Ret

0.75 [27] and Ret = dpρgut/μg.
The average solids volume fraction is determined with the RZ equation, instead of the experimental

bed expansion, because the flanges that connect the windbox and freeboard in a typical fluidization
setup impede any side visualization of the bed close to the distributor level. The expansion of a deeper
bed cannot be used as a representative value either, because in a patterned shallow bed bubbles cannot
evolve beyond the wave state. The bed is bubbleless, so all the gas flows through the dense phase,
contributing to the expansion. If the bed height is increased, particles are expelled from the antinodes
of the waves forming the bubbles, and a fraction of the gas will bypass the dense phase. In summary,
for the same gas velocity, the solids volume fraction in a shallow patterned bed will be considerably
smaller than in the dense phase of a deep, bubbling, bed of the same material. Therefore, we rely on
the RZ equation to capture the power law dependence of the bed expansion with the gas velocity.
Note that the RZ equation was derived for beds that expand homogeneously, an assumption that is
satisfied for very shallow beds.
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FIG. 5. Universal stability curve for pattern formation in pulsed fluidized beds of Geldart B particles. Plots
include Glass 130 at umin = 3 or 4 cm/s and h = 2–7 mm (white symbols), Glass 240 at umin = 3 or 6 cm/s
and h = 3–7 mm (red symbols), and Polysterene 600 at umin = 11.5 cm/s and h = 10 mm (stars). For the sake
of clarity, curves for Zinc 130 and Steel 130 are not plotted because they overlap with Glass 240 (see Fig. 3).
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FIG. 6. Stability curves when the driving parameter is defined as (a) � = 2πf ua/g and (b) � = ua/umf .
Symbols correspond to Fig. 5.

Although patterns can form for arbitrarily small umin, the solids volume fraction φ̄ estimated from
the RZ equation represents only the average value when the bed is kept fluidized during the entire
pulse cycle, that is, when umin > umf . In case the RZ equation predicts unrealistic values for φ̄ when
working close to umf , we impose that φ̄ cannot be larger than 0.58, which is the experimental value
determined for a randomly poured bed.

The driving parameter � = 2πf ua/g, which represents dimensionless acceleration and is
analogous to � = 4π2f 2d/g used in vibrated granular layers and liquids, and vibrated-fluidized
granular layers [28], leads to inconsistent results when applied to pulsed fluidized beds [Fig. 6(a)]. The
driving parameter � = ua/umf used by Li et al. [17] to characterize patterns in pulsed fluidized beds
leads to more coherent results [Fig. 6(b)]. These authors did not justify the choice of this parameter,
but it contains the basic stabilizing and destabilizing mechanisms included in our driving parameter
� = ua/(utφ̄). In fact, both umf and ut emerge from a balance between drag and gravity, so it is
expected that they generate similar curves. However, � = ua/umf produces significant discrepancies
between different types of particles because it does not take into account the average solids volume
fraction. Furthermore, umf represents the velocity at which the drag force exerted by the gas equals
the bed weight; it is a parameter describing a static state with no apparent connection to the bed
dynamics.

In contrast, both ut and φ included in our definition of � contribute to the formation of kinematic
waves in fluidized beds, which are known to be instability drivers [29]. In particular, the role of
these variables in the instability for pattern formation can be understood within the theoretical
framework proposed by Batchelor [15]. Batchelor postulated that variations of disturbances in the
vertical direction can be evened out by particle convection with velocity V = |φ du/dφ|φ0

, where
u(φ) = ut(1 − φ)n is the mean fall velocity of particles and φ0 is the solids volume fraction in
the uniform bed. That is, the rate at which particles fill a transverse disturbance in φ must be
large compared to the growth rate of the disturbance and must increase with the magnitude of the
disturbance. Taking as a reference the bed at ū, somehow, � = ua/(utφ̄) compares the maximum
rate at which particles fill the growing transverse disturbance ∝ utφ̄ and the maximum growth rate
of the disturbance ∝ ua. Note that the hypothesis that the kinematic wave plays a role in pattern
formation in fluidized beds does not contradict the fact that its velocity uk = nutφ(1 − φ)(n−1) [29]
does not appear explicitly in the definition of �. In the field of pattern formation, the driving parameter
compares the magnitude of two mechanisms, a destabilizing and a stabilizing one. For example, in
vibrated layers, � = 4π2f 2D/g compares the maximum force exerted by the plate upwards and the
maximum force bringing the layer downwards, which is gravity in the absence of interstitial fluid.
In fluidized beds, ua and ut can be related to the maximum upwards and downwards drag force. It is

034303-7



DE MARTÍN, OTTEVANGER, VAN OMMEN, AND COPPENS

possible that the parameter � leading to perfect collapse of the threshold curves is a more elaborate
version of � = ua/(utφ̄), which is not taking into account the variation of the drag coefficient with the
Reynolds number, at least explicitly. However, the fact that � = ua/(utφ̄) provides that good overlap
for such different solids indicates that this parameter captures the main features of the phenomenon,
and it can be used as a basis to further study these patterns.

Patterns form for flow frequencies in the vicinity of the natural frequency of the bed, regardless of
particle properties. The threshold dramatically increases when approaching f/fn ∼ 0.5, setting the
lower frequency boundary for pattern formation. This ratio corresponds to the principal subharmonic
component of parametric resonance in some systems [30], so it is possible that a singularity appears
around this value. The connection between this divergence and the physics of pulsed granular matter
is something that deserves further attention. The threshold decreases with the frequency of the gas
velocity and reaches a plateau at fn, suggesting parametric resonance between the kinematic waves
originating from the oscillating flow, characterized by ut and φ and the bulk dynamics, characterized
by fn. Researchers investigating pulsation in nonpatterned fluidized beds as a means to intensify
fluidization also find that the largest effects are observed in the range 2–10 Hz, matching the natural
frequency of typical laboratory-scale fluidized beds [31]. If patterned and nonpatterned pulsed beds
share dynamical features, the study of general, pulsed fluidization could greatly benefit from the
study of these patterns. For example, one of the main conclusions about nonpatterned pulsed beds
exposed in a recent review [31] is that no one has been able to highlight the relationship between
pulsed flow and particle characteristics. The parameters � = ua/(utφ̄) and f/fn, and the results
shown in Fig. 5 might be a first fundamental step towards this.

The natural frequency of the bed is of fundamental importance if one is to structure deep fluidized
bed reactors by using regular patterns [12]. The deeper the bed, the lower the frequency of the flow
must be to trigger the patterns. However, the lower the frequency, the larger the wavelength of the
patterns becomes [11,17]. This means that patterns in deep beds form only if one of the horizontal
dimensions of the bed is large enough to fit the pattern, that is, equal to the pattern wavelength at the
very least. Actually, to study these patterns from a fundamental point of view in the absence of wall
effects, this ratio should be much larger [32].

The normalized curves show little dependence on the particle surface (Fig. 5), suggesting that
friction plays a minor or no role triggering the patterns. This is also the case for patterns formed in
vibrated granular layers, in which the instability is usually explained in terms of flying time of the
granular layer, layer dilation, and layer acceleration at the moment of collision with the plate. Moon
et al. [33] used molecular dynamics to show that frictionless particles can also form patterns, and that
the threshold for pattern formation is only 30% lower than the threshold for particles with friction.
However, only striped patterns were stable for frictionless particles due to a larger grain mobility
and lower overall collision rate. The role of friction in pattern formation in pulsed fluidized beds and
its implications in continuum modeling of fluidization is an interesting topic that will be studied in
more detail in upcoming publications.

IV. CONCLUSIONS

The mechanism behind the instability leading to pattern formation in pulsed gas-fluidized and
vertically vibrated granular layers is completely different as a result of the forces induced by the
percolating gas phase. We show that the onset to pattern formation in shallow, bubbleless, pulsed
fluidized beds of Geldart B particles is universal and governed by the parameters � = ua/(utφ̄) and
f/fn, being virtually independent of friction. Patterns form in the vicinity of the natural frequency of
the bed, possibly as a result of a parametric resonance between the kinematic waves originated by the
oscillating gas and the bulk dynamics. Although the physics behind this complex phenomenon are
still unclear, the definition of these control parameters represents a first step towards a fundamental
understanding of fluidization and can be used as a basis to unravel the relationship between particle
and flow properties in conventional pulsed beds.
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Industrial fluidized beds are deeper than the beds investigated in this work. However, the shallow
bed limit represents the simplest dynamic scenario, because the instability that forms the bubbles is
close to the onset. No bubbles are formed, only waves, so the nonlinear mechanisms responsible for
bubble formation are not expected to be dominant. Although the stability curve for pattern formation
in deep beds might be different from that for shallow beds, the results and insights derived from our
work could be used as a basis to understand more complex scenarios.

ACKNOWLEDGMENTS

The authors gratefully acknowledge K. Wu and M. Talebi for their contributions to the
experiments. The research leading to these results has received funding from an EPSRC Frontier
Engineering Award (EP/K038656/1).

[1] I. S. Aranson and L. S. Tsimring, Patterns and collective behavior in granular media: Theoretical concepts,
Rev. Mod. Phys. 78, 641 (2006).

[2] S. Fauve, S. Douady, and C. Laroche, Collective behaviors of granular masses under vertical vibration,
J. Phys. Colloques 50, C3-187 (1989).

[3] F. Melo, P. B. Umbanhowar, and H. L. Swinney, Transition to Parametric Wave Patterns in a Vertically
Oscillated Granular Layer, Phys. Rev. Lett. 72, 172 (1994).

[4] F. Melo, P. B. Umbanhowar, and H. L. Swinney, Hexagons, Kinks, and Disorder in Oscillated Granular
Layers, Phys. Rev. Lett. 75, 3838 (1995).

[5] E. A. Cerda and E. L. Tirapegui, Faraday’s instability in viscous fluid, J. Fluid Mech. 368, 195 (1998).
[6] E. Cerda, F. Melo, and S. Rica, Model for Subharmonic Waves in Granular Materials, Phys. Rev. Lett. 79,

4570 (1997).
[7] C. Bizon, M. D. Shattuck, and J. B. Swift, Linear stability analysis of a vertically oscillated granular layer,

Phys. Rev. E 60, 7210 (1999).
[8] T. H. Metcalf, J. B. Knight, and H. M. Jaeger, Standing wave patterns in shallow beds of vibrated granular

material, Physica A 236, 202 (1997).
[9] P. B. Umbanhowar, F. Melo, and H. L. Swinney, Periodic, aperiodic, and transient patterns in vibrated

granular layers, Physica A 249, 1 (1998).
[10] Y. Cheng, S. Kaart, C. M. van den Bleek, and M.-O. Coppens, Control of chaotic dynamics in a 2D fluidized

bed by periodic gas injection, in Proc. AIChE Annual Meeting, Vol. 31, edited by L Glicksman (AIChE,
Dallas, Texas, USA, 1999), pp. 312–319.

[11] M.-O. Coppens, M. A. Regelink, and C. M. van den Bleek, Pulsation induced transition from chaos to
periodically ordered patterns in fluidised beds, in Proc. 4th World Conf. on Particle Technology (WCPT-
2002) (IEAust, Sydney, Australia, 2002), paper 355, pp. 1–8.

[12] M.-O. Coppens and J. R. van Ommen, Structuring chaotic fluidized beds, Chem. Eng. J. 96, 117 (2003).
[13] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.3.034303 for a

slow motion video of a 3D square pattern.
[14] H. K. Pak and P. R. Behringer, Bubbling in vertically vibrated granular materials, Nature (London) 371,

231 (1994).
[15] G. K. Batchelor, Secondary instability of a gas-fluidized bed, J. Fluid. Mech. 257, 359 (1993).
[16] K. Wu, L. de Martín, and M.-O. Coppens, Pattern formation in pulsed gas-solid fluidized beds – The role

of granular solid mechanics, Chem. Eng. J. 329, 4 (2017).
[17] J. Li, I. S. Aranson, W.-K. Kwok, and L. S. Tsimring, Periodic and Disordered Structures in a Modulated

Gas-Driven Granular Layer, Phys. Rev. Lett. 90, 134301 (2003).
[18] T. Kawaguchi, A. Miyoshi, T. Tanaka, and Y. Tsuji, Discrete particle analysis of 2D pulsating fluidized

bed, in Proc. 4th Intl. Conf. on Multiphase Flow (ICMF-2001), New Orleans, USA (2001), paper 838.

034303-9

https://doi.org/10.1103/RevModPhys.78.641
https://doi.org/10.1103/RevModPhys.78.641
https://doi.org/10.1103/RevModPhys.78.641
https://doi.org/10.1103/RevModPhys.78.641
https://doi.org/10.1051/jphyscol:1989328
https://doi.org/10.1051/jphyscol:1989328
https://doi.org/10.1051/jphyscol:1989328
https://doi.org/10.1051/jphyscol:1989328
https://doi.org/10.1103/PhysRevLett.72.172
https://doi.org/10.1103/PhysRevLett.72.172
https://doi.org/10.1103/PhysRevLett.72.172
https://doi.org/10.1103/PhysRevLett.72.172
https://doi.org/10.1103/PhysRevLett.75.3838
https://doi.org/10.1103/PhysRevLett.75.3838
https://doi.org/10.1103/PhysRevLett.75.3838
https://doi.org/10.1103/PhysRevLett.75.3838
https://doi.org/10.1017/S0022112098001578
https://doi.org/10.1017/S0022112098001578
https://doi.org/10.1017/S0022112098001578
https://doi.org/10.1017/S0022112098001578
https://doi.org/10.1103/PhysRevLett.79.4570
https://doi.org/10.1103/PhysRevLett.79.4570
https://doi.org/10.1103/PhysRevLett.79.4570
https://doi.org/10.1103/PhysRevLett.79.4570
https://doi.org/10.1103/PhysRevE.60.7210
https://doi.org/10.1103/PhysRevE.60.7210
https://doi.org/10.1103/PhysRevE.60.7210
https://doi.org/10.1103/PhysRevE.60.7210
https://doi.org/10.1016/S0378-4371(96)00370-6
https://doi.org/10.1016/S0378-4371(96)00370-6
https://doi.org/10.1016/S0378-4371(96)00370-6
https://doi.org/10.1016/S0378-4371(96)00370-6
https://doi.org/10.1016/S0378-4371(97)00425-1
https://doi.org/10.1016/S0378-4371(97)00425-1
https://doi.org/10.1016/S0378-4371(97)00425-1
https://doi.org/10.1016/S0378-4371(97)00425-1
https://doi.org/10.1016/j.cej.2003.08.007
https://doi.org/10.1016/j.cej.2003.08.007
https://doi.org/10.1016/j.cej.2003.08.007
https://doi.org/10.1016/j.cej.2003.08.007
http://link.aps.org/supplemental/10.1103/PhysRevFluids.3.034303
https://doi.org/10.1038/371231a0
https://doi.org/10.1038/371231a0
https://doi.org/10.1038/371231a0
https://doi.org/10.1038/371231a0
https://doi.org/10.1017/S0022112093003118
https://doi.org/10.1017/S0022112093003118
https://doi.org/10.1017/S0022112093003118
https://doi.org/10.1017/S0022112093003118
https://doi.org/10.1016/j.cej.2017.05.152
https://doi.org/10.1016/j.cej.2017.05.152
https://doi.org/10.1016/j.cej.2017.05.152
https://doi.org/10.1016/j.cej.2017.05.152
https://doi.org/10.1103/PhysRevLett.90.134301
https://doi.org/10.1103/PhysRevLett.90.134301
https://doi.org/10.1103/PhysRevLett.90.134301
https://doi.org/10.1103/PhysRevLett.90.134301


DE MARTÍN, OTTEVANGER, VAN OMMEN, AND COPPENS

[19] X. S. Wang and M. J. Rhodes, Pulsed fluidization—A DEM study of a fascinating phenomenon, Powder
Technol. 159, 142 (2005).

[20] K. Wu, L. de Martín, L. Mazzei, and M.-O. Coppens, Pattern formation in fluidized beds as a tool for
model validation: A two-fluid model based study, Powder Technol. 295, 35 (2016).

[21] J. Bougie and K. Duckert, Continuum simulations of shocks and patterns in vertically oscillated granular
layers, Phys. Rev. E 83, 011303 (2011).

[22] D. Geldart, Types of gas fluidization, Powder Technol. 7, 285 (1973).
[23] N. E. Huang, Z. Wu, S. R. Long, K. C. Arnold, X. Chen, and K. Blank, On instantanous frequency, Adv.

Adapt. Data Anal. 01, 177 (2009).
[24] H. T. Bi, A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds,

Chem. Eng. Sci. 62, 3473 (2007).
[25] A. P. Baskakov, V. G. Tuponogov, and N. F. Filippovsky, A study of pressure fluctuations in a bubbling

fluidized bed, Powder Technol. 45, 113 (1986).
[26] J. Verloop and P. M. Heertjes, Periodic pressure fluctuations in fluidized beds, Chem. Eng. Sci. 29, 1035

(1974).
[27] P. N. Rowe, A convenient empirical equation for estimation of the Richardson-Zaki exponent, Chem. Eng.

Sci. 42, 2795 (1987).
[28] E. Cano-Pleite, F. Hernández-Jiménez, and A. Acosta-Iborra, Bulk oscillation and velocity wave

propagation in a vibrated fluidized bed at minimum fluidization conditions, Powder Technol. 308, 346
(2017).

[29] L. Gibilaro, Fluidization-Dynamics (Butterworth-Heinemann, Oxford, 2001).
[30] A. Champneys, in Mathematics of Complexity and Dynamical Systems, edited by R. A. Meyers (Springer,

New York, 2011), p. 183.
[31] E. Ireland, K. Pitt, and R. Smith, A review of pulsed flor fluidization; the effects of intermittent gas flow

on fluidised gas-flow bed behaviour, Powder Technol. 292, 108 (2016).
[32] M. Cross and H. Greenside, in Pattern Formation and Dynamics in Nonequilibrium Systems, edited by

M. Cross and H. Greenside (Cambridge University Press, Cambridge, 2009).
[33] S. J. Moon, J. B. Swift, and H. L. Swinney, Role of friction in pattern formation in oscillated granular

layers, Phys. Rev. E 69, 031301 (2004).

034303-10

https://doi.org/10.1016/j.powtec.2005.08.007
https://doi.org/10.1016/j.powtec.2005.08.007
https://doi.org/10.1016/j.powtec.2005.08.007
https://doi.org/10.1016/j.powtec.2005.08.007
https://doi.org/10.1016/j.powtec.2016.03.011
https://doi.org/10.1016/j.powtec.2016.03.011
https://doi.org/10.1016/j.powtec.2016.03.011
https://doi.org/10.1016/j.powtec.2016.03.011
https://doi.org/10.1103/PhysRevE.83.011303
https://doi.org/10.1103/PhysRevE.83.011303
https://doi.org/10.1103/PhysRevE.83.011303
https://doi.org/10.1103/PhysRevE.83.011303
https://doi.org/10.1016/0032-5910(73)80037-3
https://doi.org/10.1016/0032-5910(73)80037-3
https://doi.org/10.1016/0032-5910(73)80037-3
https://doi.org/10.1016/0032-5910(73)80037-3
https://doi.org/10.1142/S1793536909000096
https://doi.org/10.1142/S1793536909000096
https://doi.org/10.1142/S1793536909000096
https://doi.org/10.1142/S1793536909000096
https://doi.org/10.1016/j.ces.2006.12.092
https://doi.org/10.1016/j.ces.2006.12.092
https://doi.org/10.1016/j.ces.2006.12.092
https://doi.org/10.1016/j.ces.2006.12.092
https://doi.org/10.1016/0032-5910(66)80003-7
https://doi.org/10.1016/0032-5910(66)80003-7
https://doi.org/10.1016/0032-5910(66)80003-7
https://doi.org/10.1016/0032-5910(66)80003-7
https://doi.org/10.1016/0009-2509(74)80096-5
https://doi.org/10.1016/0009-2509(74)80096-5
https://doi.org/10.1016/0009-2509(74)80096-5
https://doi.org/10.1016/0009-2509(74)80096-5
https://doi.org/10.1016/0009-2509(87)87035-5
https://doi.org/10.1016/0009-2509(87)87035-5
https://doi.org/10.1016/0009-2509(87)87035-5
https://doi.org/10.1016/0009-2509(87)87035-5
https://doi.org/10.1016/j.powtec.2016.12.031
https://doi.org/10.1016/j.powtec.2016.12.031
https://doi.org/10.1016/j.powtec.2016.12.031
https://doi.org/10.1016/j.powtec.2016.12.031
https://doi.org/10.1016/j.powtec.2016.01.018
https://doi.org/10.1016/j.powtec.2016.01.018
https://doi.org/10.1016/j.powtec.2016.01.018
https://doi.org/10.1016/j.powtec.2016.01.018
https://doi.org/10.1103/PhysRevE.69.031301
https://doi.org/10.1103/PhysRevE.69.031301
https://doi.org/10.1103/PhysRevE.69.031301
https://doi.org/10.1103/PhysRevE.69.031301



