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Accurate measurements of the oceanic whitecap coverage from whitecap images are required for better under-
standing the air-gas transfer and aerosol production processes. However, this is a challenging task because the
whitecap patches are formed immediately after the wave breaks and are spread over a wide area. The main chal-
lenges in designing a whitecap-imaging instrument are the small field of view of the camera lens, processing large
numbers of images, recording data over long time periods, and deployment difficulties in stormy conditions.
This paper describes the design of a novel high-resolution optical instrument for imaging oceanic whitecaps
and the automated algorithm processing the collected images. The instrument was successfully deployed in
2013 as part of the HIWINGS campaign in the North Atlantic Ocean. The instrument uses a fish-eye camera
lens to image the whitecaps in wide angle of view (180°).
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1. INTRODUCTION

Whitecaps formed on the ocean surface after the passage of
breaking waves play a significant role in many marine and
atmospheric processes, such as air-sea gas exchange [1-3],
marine aerosol production [4-6], and global radiation balance
[7]. To investigate these processes, precise quantification of the
oceanic whitecaps is required during the first instance after a
wave breaks with adequate temporal and spatial resolutions.
The most common way to quantify whitecaps is the whitecap
coverage (or foam fraction), which is the percentage area of
the ocean surface covered by the whitecaps [2,8]. This whitecap
coverage can be measured from the ocean surface images.

In general, there are two ways to image the oceanic white-
caps: satellite and marine imaging. The goal of satellite imaging
is to measure the emitted or reflected energy by the whitecaps
from space. The whitecaps cover more than 1% [9] of the ocean
surface, and the reflectance of the recently formed whitecaps in
the visible spectrum is approximately 10 times [9] larger than
the reflectance of the adjacent whitecap-free features at the sea
surface. Thus, the sensitivity of the satellite sensor to measure
the whitecap radiance is significantly improved [9]. Wentz [10]
used a microwave radiometer to measure the microwave
emission coming from the ocean surface. He found that the
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microwave emissivity of the ocean surface is proportional to the
whitecaps, and the retrieving of both wind speed and direction
depends on this emissivity. Anguelova and Webster [2] devel-
oped a method to measure the whitecap coverage on the global
scale from satellite measurements. The satellite imaging tech-
niques require sophisticated instruments and image-processing
tools to analyze the data. The main drawback of IR and optical
imaging is that they are very susceptible to the weather condi-
tions. For instance, clouds can occlude some of the solar
radiation. Microwave radiometry provides all-weather day-and-
night observations of sea state and whitecaps; only extreme
meteorological conditions limit the performance of microwave
radiometry at some frequencies. The main disadvantage of mi-
crowave imaging is that it has a large footprint (low resolution).

Marine imaging is based on using ships, research platforms,
or buoys to collect whitecap images. For instance, Frouin ez a/.
[11] measured the spectral reflectance of the sea whitecaps at
Scripps Institution of Oceanography Pier by using radiometers
that detect the visible and near-IR energy. Ships or buoys can
be used for direct measurements in the open sea. However, very
few measurements can be obtained from the ship in extremely
severe conditions. Therefore, an autonomous buoy with onboard
controls and data-logging systems is a viable way to conduct
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measurements in severe conditions [12]. Brooks ez 2/ [12] used
a still camera fixed to an autonomous free-floating spar buoy to
verify breaking waves on the wave wires. The quality of the cap-
tured images is high. However, the limit of the camera view angle
has important implications for the calculation of whitecap cover-
age. Many cameras with standard view angles are required to im-
age whitecap coverage on the wide range. However, this system
requires additional hardware resources that substantially increase
the economic and technical challenges. In addition, it would
be more difficult to analyze and combine the collected data. This
paper describes the design of a novel instrument for whitecap
imaging and the automated extraction algorithm to analyze the
collected images. The instrument is based on using a fish-eye
lens camera that has a large view angle (180°). This instrument
could be further developed in the future to measure the whitecap
coverage from all directions.

2. OPTICAL INSTRUMENT FOR IMAGING
WHITECAPS IN THE OCEAN

A. Overview

The optical instrument was fitted within a transparent water-
proof housing at the top of the spar buoy (dome) as shown
in Figs. 1 and 2. The instrument components were mounted
on a steel disk to fix them firmly inside the dome and isolate
them from other instruments. The camera was fixed using a
ball-head adapter and positioned to look down at the ocean sur-
face. The power to the individual components of the instrument
was supplied by a power management board. The power input
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Fig. 1. Hardware components of the whitecap instrument. (a) shows
the JAI camera and the single-board computer assembly inside the
buoy dome. The single-board assembly in (b) consists of the following
components: power management board, single-board computer, two

solid-state drives, and the LCD display module.
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Fig. 2. Spar buoy during deployment in the ocean. The length of
the spar buoy is 11 m. The whitecap-imaging instrument discussed
in this paper is fixed inside the spar buoy.

to this board was controlled by a programmable timer. Prior to
deployment, the timer was programmed to synchronize the
whitecap camera with a bubble camera that was mounted below
the ocean surface. The instrument operates during daylight to
conserve power and data storage.

The electronic components of both whitecap and bubble
imaging instruments were chosen to be identical to simplify
design and provide flexibility in deployment. The only differ-
ence between the instruments was in the camera lens and the
light source. A fish-eye camera lens was coupled to the camera
in the whitecap-imaging instrument to provide a large field of
view. The whitecap camera does not need a light source for
illumination, as it depends on the ambient light. A brief de-
scription of the electronic components is given in the next sec-
tion, but full details about the design and choice of components

can be found in Al-Lashi ez 2/ [13].

B. Hardware Architecture

The imaging hardware consists of three main components, as
shown in Fig. 3. These are the power management board to
supply the necessary power to other components, the machine
vision camera coupled with a fish-eye lens, and the single-board
computer that controls image streaming to the storage devices.
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Fig. 3. Block diagram of the whitecap-imaging instrument architec-
ture. The light lines correspond to the power transfer from the power
management board to the other electronic components, the thick
bold lines correspond to the data transfer from and to the single-board
computer, and the broken lines represent the single-board computer
control on other devices.
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The power requirement of each individual component of
the instrument is different. Therefore, a power management
board was designed to provide separate isolated supplies from
the sea battery power source (24 V, 40 A h). The board con-
sists of 24 V=12 V and 24 V-5 V DC-DC converters, light-
emitting diode (LED) driver to illuminate the backlight of the
LCD module, four connectors to supply 5 and 12 V, camera
connector, and a power metal-oxide-semiconductor field-effect
transistor switch circuit to conserve power by powering down
the camera when not in use. The supplied power to the camera
and single-board computer are 12 and 5 V, respectively.

A JAI (BM-500 GE) machine vision camera was used to
image the ocean surface. The camera has a 2/3" CCD sensor
with a 2048 x 2048 resolution and a 3.45 pm x 3.45 pm cell
size, and it operates in a progressive scan mode. The camera
frame rate is 15 frames/s, and its minimum exposure time is
64 ps. A high-resolution 5-megapixel fish-eye lens (Fujinon
FE185C057HA-1) is mounted on the camera sensor.

Crucial M500 solid-state drives with 960 GB capacity were
selected as data storage devices due to their robustness (vibra-
tion resistance), high read/write speed (3 Gb/s), small form
factor (2.5 in.), and wide operating temperature (0°C-70°C).
The storage capacity required for an hour of camera recording
at 15 frame/s with 2048 x 2048 image resolution is 226 GB.
Therefore, two 960 GB M500 solid-state drives were used to
extend the camera recording time to approximately 8.5 h.

A single-board computer [Kontron pITX-SP 2.5" SBC (plus)
with Intel Atom Z530 processor] was used to control the oper-
ation of the JAI camera and save the captured images on the
solid-state drives. It streams the images via a gigabit Ethernet
interface and transfers these images to the solid-state drives via
Serial AT Attachment interfaces. It is characterized by a small
form factor (104 mm x 78 mm), operating temperature in the
range from 0°C to 60°C, passive cooling option, and 1.6 GHz
CPU clock. A passive heat sink was mounted on the single-
board computer to significantly decrease the CPU temperature.
A Video Graphics Array LCD display module (HDA570V-G)
was used to display the diagnostic messages in the instrument
operation and fixed to be visible through the buoy dome.
It was interfaced with the single-board computer by an adapter

display board (KAB-ADAPT-LVDS to TTL).

3. DEPLOYMENT IN THE OCEAN

The whitecap-imaging instrument was mounted on a large free-
floating buoy and deployed seven times from the R/V Knorr in
the North Atlantic Ocean in 2013 as part of the HIWINGS
campaign to study air—sea interactions during high wind events.
The length of the deployments varied from a few hours to five
days. During these deployments, the wind speed ranged from
10 to 35 m/s, and the wave height varied from 1 to 10 m. The
design and performance of the spar buoy are explained in Pascal
et al. [14]. The whitecap camera was fitted inside a waterproof
sphere (dome) at the top of a free-drifting spar buoy. The dome
was approximately 2 m above the ocean surface when the spar
buoy was free floating upright. Figure 2 shows the whitecap-
imaging instrument fixed within the dome of the free-drifting
buoy during deployment in the sea.

Figure 4 shows a sample of the images collected by the white-
cap camera during deployment in the North Adantic Ocean. The
quality of images is high, but they contain raindrops and some
parts of the buoy’s frame and ropes. The images can be classified
into two main categories: whitecaps images and complex images.
Complex images form when a breaking wave covers the buoy’s
dome, as illustrated in Figs. 4(c) and 4(d). The features observed
in such complex images are not relevant to whitecap analysis.

4. AUTOMATED WHITECAP EXTRACTION
ALGORITHM

Developing a robust automated whitecap extraction algorithm
to analyze the images shown in Fig. 4 is a nontrivial task and
requires many careful considerations. The distortion caused by
the fish-eye lens needs to be removed. The images contain
many other features that are not related to the whitecap; there-
fore, they need to be accurately identified and masked out.

Several automated algorithms have been developed in the
past to analyze whitecap images. Callaghan and White [8] de-
scribed a thresholding technique that separates the whitecaps
from the rest of the sea surface by determining an appropriate
threshold for each image. This threshold is calculated from an
image structure that is a function of the features within this
image. Lafon er al. [15] used an image gradient for threshold
calculations and a numerical method for detecting the whitecap
contours. These algorithms are usually applied to analyze im-
ages that do not contain uneven illumination, raindrops, and
features from complex images.

This section provides details of a new automated extraction
algorithm that has been developed to analyze the images collected
by the whitecap-imaging instrument described in this paper.

A. Algorithm Details
1. Camera Calibration

The benefit of using a wide-angle fish-eye lens is to significantly
increase the observed area of the ocean. However, the fish-eye
lens creates a high level of nonlinear geometrical distortion,
such as radial and tangential distortion. The algorithm extrac-
tion accuracy will substantially decrease if this distortion is
ignored. Thus, it is essential to correct this distortion before
any further processing.

A camera calibration technique that is based on the algo-
rithm proposed by Zhang [16] has been used to obtain the
calibration parameters. The technique involves an analytical
closed-loop solution to calculate the intrinsic and extrinsic
parameters followed by a nonlinear refinement of these param-
eters based on a maximum-likelihood criteria. The five intrinsic
parameters are focal length of the two-image axis, principal
point coordinates, skew coefficients of the two-image axis, and
the distortion coefficients (radial and tangential coefficients).
The estimated extrinsic parameters are the rotation and trans-
lation that connect the world coordinate system with the
camera coordinate system.

Images of a calibration object under different orientations
are required to implement this technique. Therefore, 25 snap-
shots of a classical black-and-white chessboard have been taken
from several views and at different distances from the camera.
The intrinsic and extrinsic calibration parameters are obtained
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Fig. 4. Sample of the whitecap camera images, collected during deployment in the North Adantic Ocean in 2013. The images in (a) and
(b) contain whitecap patches. The images in (c) and (d) result from covering the buoy’s dome by the oceanic wave.

from the chessboard images. Figure 5 shows a corrected image
using these calibration parameters. After calibration, the image
quality is greatly improved by eliminating the geometrical
distortion effects.

2. Pre-Filtering

The pre-filtering operation aims to remove (filter out) the
buoy’s frame and rain or spray drops if present before further
image processing [Fig. 5(a)]. The removal of the buoy’s frame

[as in Fig. 5(b)] is accomplished before performing the camera
calibration. The location of the buoy’s frame is fixed in all im-
ages. Therefore, the coordinates of this feature are identified
and their intensity values are set to zero.

A median filter with 15 x 15 mask is used to filter out the
raindrops. The new intensity point in the filtered image is cal-
culated by taking the median of neighboring points in the mask
at the same place in the original image [17,18]. This operation
is achieved after performing image calibration.

Fig. 5. Image correction by the calibration parameters. (a) shows the original distorted image before the calibration. The geometrical distortion is

removed in (b) after performing the calibration.
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The buoy’s ropes, visible at the horizon, are removed in the
post-filtering image processing (Section 4.A.5). The contour
identification algorithm will not recognize the entire horizon
contour if the horizon buoy’s ropes filter out in the pre-filtering
stage. This is because this identification algorithm is based on
finding connected white points for a particular feature, as illus-

trated in Section 4.A.4 [see Figs. 6(a) and 6(b)].
3. Adaptive Thresholding

Thresholding is an image segmentation technique that is used
to extract objects (features) from their backgrounds. There are
two main types of thresholding: uniform and adaptive [17,18].
In uniform thresholding, pixel intensities above a certain
brightness level (threshold) are set to 1 (white), whereas those
below this specified level are set to 0 (black). This suggests that
the object brightness needs to be known. In contrast, adaptive
(optimal) thresholding is a more advanced technique that
employs an optimal threshold to separate an object from its
background.

The automated algorithm individually processes each image
to determine an optimal threshold to separate whitecaps from
the ocean background. Therefore, each image has a unique
threshold that reflects the change in the ambient illumination.
To find the appropriate threshold, the image is first split into
64 x 64 overlapping subimages. The optimal threshold of each
subimage is calculated by the Otsu method [19]. The binary

subimages emerging from thresholding are regarded as fore-
ground masks and subtracted from white masks to obtain the
corresponding background masks. The information in the fore-
ground masks may not belong to the whitecap. Thus, further
evaluation is required for these foreground masks. This can be
achieved by calculating the foreground and background histo-
grams of each subimage using the background and foreground
masks. The intensity value that corresponds to the maximum
number of pixels is selected in each individual histogram. As a
result, two values of foreground and background intensity are
obtained for each subimage. It has been found by the evalu-
ation on a number of images that the difference between the
foreground and background intensity should be larger than 40
to accept the subimage obtained from thresholding (foreground
mask). Otherwise the thresholding is rejected and the pixels in
the subimage are assigned to 0 (black). After completing the
thresholding process, the output subimages are combined to
form a single binary image. Figure 6(a) shows the binary image
obtained from applying the adaptive thresholding technique on
the image in Fig. 5(b).

4. Contour Identification

After image segmentation and removal of undesirable features,
the next step is to inspect the resulting aggregate of segmented
pixels to discriminate between the whitecap and false regions.

This can be accomplished by first identifying the regions’

Horizon

Horizon contour  bounding
rectangle

<~ Raindrop contour

\\

‘Whitecap contours

Fig. 6. Whitecap extraction algorithm steps: (a) pre-filtering and adaptive thresholding, (b) contours identification, (c) after third post-filtering
stage, and (d) after applying post-filtering operation. The red and green lines correspond to the identified contours and bounding rectangles,

respectively.
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contours (also called borders or perimeters) and then exam-
ining the internal properties of the regions that enclose these
contours to remove the false regions. The latter is illustrated
in Section 4.A.5.

A border-following algorithm developed by Suzuki and Abe
[20] has been used to extract the region borders. The algorithm
analyzes the topological structure of binary images and finds
a point on the contour between a connected component of 1
and 0 pixels. Then it progresses around this contour to find the
next point. Figure 6(b) shows the contours identified by the
border-following algorithm. The identified contours (red lines)
are enclosed by rotated rectangles (green lines). The bounding
rectangle finds a minimum area for specified contour points.

5. Post-Filtering

Four stages of post-iltering operation are applied to filter
out unwanted regions. The horizon contour is removed in
the first stage. This is achieved by sorting the identified con-
tours according to their areas and removing the contour that
has the biggest area (horizon contour). The horizon contour has
the biggest bounding rectangle, as shown in Fig. 6(c). Complex
images [Figs. 4(c) and 4(d)] are detected by evaluating the area
of the horizon-bounding rectangle. It is found by evaluation on
a number of images that this area is less than 250,000 pixels.
Contours that lie inside the horizon-bounding rectangle are
also removed in this stage. This is accomplished by comparing
the centroid location of each contour with the centroid of the
horizon contour. The area of the region contours is calculated
using Green’s theorem [21]. The small regions, such as remain-
ing raindrops, are removed in the second stage. It is found by
the evaluation on a number of images that the areas of small
regions are less than 2500 pixels. Figure 6(c) shows the remain-
ing contours after the second post-filtering stage. In the third
stage, the histogram peak intensity of each contour is compared
with the average histogram peak intensities of the entire re-
maining contours. The contours are removed if their peak
intensities are less than the total average intensity and the
threshold of the minimum histogram peak (40). The fourth
stage involves checking numbers of consecutive points that lie
on a straight line on the contour perimeter. The contour is dis-
carded if there are more than 15 consecutive points in the x
and y directions. After post-filtering, the remaining contours
should correspond to the whitecap regions in the image, as

shown in Fig. 6(d).

6. Contour Information

Contour information, such as centroid, area, coordinates, and
angle of rotation, is required to study the correlation between
the whitecap regions and the bubble plumes under the surface
of the ocean. The whitecaps are imaged by the whitecap-
imaging instrument described in this paper, whereas the bubble
plumes are imaged by another optical imaging instrument be-
low the ocean surface [13]. The centroid (central moment) and
area of each contour are calculated using Green’s formula [21].
The centroid is plotted as a small circle, as shown in Figs. 6(c)
and 6(d). Each contour is enclosed by a minimum-area-
bounding rectangle to determine the contour coordinates and
its angle of rotation with respect to the x axis. Therefore, details
of each bounding rectangle, such as height, width, corner

coordinates, and angle of rotation, are recorded. For instance,
the following information is obtained for the smaller extracted
contour in Fig. 6(d): size, 8526 pixels; rectangular dimensions,
62 x 267 pixels at 15.7 deg; corners, (1090, 821), (832, 748),
(849, 688), (1107, 761), and hull centroid, (977, 760).

This information, in combination with the effective pixel
area, can then be used to compute the total whitecap coverage
of a particular image.

B. Implementation

The algorithm rectifies the distortion in the images by using the
calibration parameters obtained before running the whitecap
extraction program. A camera calibration program is run only
once, and its outputs are saved in an XML file. This XML file is
loaded when running the extraction program. The algorithm
was programmed in C++ and uses the OpenCV library for
computational efficiency. The computation time to process
an image is less than 2 s.

The implementation of the proposed algorithm is as follows.

1. Load and read the source image.

2. Mask the buoy’s frame.

3. Remove the distortion from the image using the calibra-
tion file.

4. Apply the adaptive thresholding to extract the necessary
features. The output is a binary image.

5. Apply median filtering to blur raindrops.

6. Identify the contour of each region.

7. Apply the post-filtering operation.

8. Obtain the information from each contour.

Repeat steps 1-8 for the next image in the directory.

5. DISCUSSION AND SUMMARY

The focus of this paper is to develop an efficient and reliable
optical instrument that is capable of imaging and analyzing
oceanic whitecaps over a large area. The essential idea of this
work is to use a high-resolution wide-angle fish-eye lens camera
(180°) instead of a standard-lens camera with limited angle
of view. This fish-eye lens camera has been shown to be suc-
cessful in obtaining information on a wide area of the ocean
surface. Moreover, it reliably deploys and operates in stormy
conditions.

The quality of the collected images is high. However, there
are two sources of distortions in these images. First, there is an
obvious radial distortion in the images due to the fish-eye lens
effect. The radial distortion is corrected by performing a camera
calibration procedure, and this correction significantly increases
the accuracy of whitecap extraction, as shown in Fig. 5. Second,
the images contain some features that belong to the buoy
structures. This adds more complexity to process these images.
Thus, careful adjustments for positioning the whitecap camera
are required in future deployments to avoid imaging buoy
structures.

An automated image-processing algorithm has been devel-
oped to extract the whitecaps in the collected images. The
change in the ambient illumination has no impact on the
extraction accuracy. This is because each image has a unique
threshold determined by the adaptive thresholding approach.
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Complex images [such as those shown in Figs. 4(c) and
4(d)] were successfully distinguished from whitecap images
[Fig. 4(b)] by inspecting the size of the horizon-bounding
rectangle and discarded from further analysis with the auto-
mated algorithm.

Notwithstanding this success, further developments on the
hardware design and automated processing algorithm are re-
quired to build a rigorous instrument for analyzing oceanic
whitecap coverage. In the current instrument, the image acquis-
ition is separate from the automated whitecap extraction algo-
rithm. This is due to the limited computing power of the
single-board computer that cannot cope with the computa-
tional demands of the extraction algorithm. Therefore, it could
be advantageous to use a faster processor to allow immediate
analysis of the captured images on the instrument.

There are two main limitations that degrade the extraction
accuracy of the current image-processing algorithm. First, the
segmentation approach (adaptive thresholding) is sensitive to
spatial quantization errors. Thus, an enhanced image segmen-
tation algorithm is required to avoid these spatial quantization
effects. The second limitation is to use an absolute numbers of
pixels as thresholds to filter out the false regions in the image.
These thresholds have been selected by trial and error, and a
more advanced approach based on a combination of machine
learning and image processing would be advantageous to dis-
tinguish between the false and whitecap regions.

To fully compute the overall whitecap coverage, it is also
necessary to determine the effective pixel area, which will vary
in the image due to the imaging geometry; pixels nearer the
horizon will image a larger area. In particular, for a camera
deployed on a floating platform (and therefore in constant
motion due to the wave field), corrections are required for
the camera position and orientation relative to the water sur-
face at the time of each individual image. This is the focus of
further work.
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