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Computational theories of brain function have become very influential in neuroscience.
They have facilitated the growth of formal approaches to disease, particularly in
psychiatric research. In this paper, we provide a narrative review of the body of
computational research addressing neuropsychological syndromes, and focus on
those that employ Bayesian frameworks. Bayesian approaches to understanding brain
function formulate perception and action as inferential processes. These inferences
combine ‘prior’ beliefs with a generative (predictive) model to explain the causes of
sensations. Under this view, neuropsychological deficits can be thought of as false
inferences that arise due to aberrant prior beliefs (that are poor fits to the real world).
This draws upon the notion of a Bayes optimal pathology – optimal inference with
suboptimal priors – and provides a means for computational phenotyping. In principle,
any given neuropsychological disorder could be characterized by the set of prior beliefs
that would make a patient’s behavior appear Bayes optimal. We start with an overview
of some key theoretical constructs and use these to motivate a form of computational
neuropsychology that relates anatomical structures in the brain to the computations they
perform. Throughout, we draw upon computational accounts of neuropsychological
syndromes. These are selected to emphasize the key features of a Bayesian approach,
and the possible types of pathological prior that may be present. They range from
visual neglect through hallucinations to autism. Through these illustrative examples, we
review the use of Bayesian approaches to understand the link between biology and
computation that is at the heart of neuropsychology.

Keywords: neuropsychology, active inference, predictive coding, computational phenotyping, precision

INTRODUCTION

The process of relating brain dysfunction to cognitive and behavioral deficits is complex.
Traditional lesion-deficit mapping has been vital in the development of modern neuropsychology
but is confounded by several problems (Bates et al., 2003). The first is that there are statistical
dependencies between lesions in different regions (Mah et al., 2014). These arise from, for example,
the vascular anatomy of the brain. Such dependencies mean that regions commonly involved in
stroke may be spuriously associated with a behavioral deficit (Husain and Nachev, 2007). The
problem is further complicated by the distributed nature of brain networks (Valdez et al., 2015).
Damage to one part of the brain may give rise to abnormal cognition indirectly – through its
influence over a distant region (Price et al., 2001; Carrera and Tononi, 2014). An understanding of
the contribution of a brain region to the network it participates in is crucial in forming an account
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of functional diaschisis of this form (Boes et al., 2015; Fornito
et al., 2015). Solutions that have been proposed to the above
problems include the use of multivariate methods (Karnath and
Smith, 2014; Nachev, 2015) to account for dependencies, and the
use of models of effective connectivity to assess network-level
changes (Rocca et al., 2007; Grefkes et al., 2008; Abutalebi et al.,
2009; Mintzopoulos et al., 2009) in response to lesions.

In this paper, we consider a complementary approach that
has started to gain traction in psychiatric research (Adams
et al., 2013b, 2015; Corlett and Fletcher, 2014; Huys et al., 2016;
Schwartenbeck and Friston, 2016; Friston et al., 2017c). This
is the use of models that relate the computations performed
by the brain to measurable behaviors (Krakauer and Shadmehr,
2007; Mirza et al., 2016; Testolin and Zorzi, 2016; Iglesias et al.,
2017). Such models can be associated with process theories
(Friston et al., 2017a) that map to neuroanatomy and physiology.
This complements the approaches outlined above, as it allows
focal neuroanatomical lesions to be interpreted in terms of
their contribution to a network. Crucially, this approach ensures
that the relationship between brain structure and function is
addressed within a conceptually rigorous framework – this is
essential for the construction of well-formed hypotheses for
neuropsychological research (Nachev and Hacker, 2014). We
focus here upon models that employ a conceptual framework
based on Bayesian inference.

Bayesian inference is the process of forming beliefs about the
causes of sensory data. It relies upon the combination of prior
beliefs about these causes, and beliefs about how these causes give
rise to sensations. Using these two probabilities it is possible to
calculate the probability, given a sensation, of its cause. This is
known as a ‘posterior’ probability. This means that prior beliefs
are updated by a sensory experience to become posterior beliefs.
These posteriors can then be used as the prior for the next
sensory experience. In short, Bayesian theories of brain function
propose the brain encodes beliefs about the causes of sensory
data, and that these beliefs are updated in response to new sensory
evidence.

Our motivation for pursuing a Bayesian framework is that it
captures many different types of behavior, including apparently
suboptimal behaviors. According to an important result known
as the complete class theorem (Wald, 1947; Daunizeau et al., 2010),
there is always a set of a prior belief that renders an observed
behavior Bayes optimal. This is fundamental for computational
neuropsychology as it means we can cast even pathological
behaviors as the result of processes that implement Bayesian
inference (Schwartenbeck et al., 2015). In other words, we can
assume that the brain makes use of a probabilistic model of its
environment to make inferences about the causes of sensory data
(Knill and Pouget, 2004; Doya, 2007), and to act upon them
(Friston et al., 2012b). Another consequence of the theorem is
that computational models that are not (explicitly) motivated by
Bayesian inference (Frank et al., 2004; O’Reilly, 2006) may be
written down in terms of Bayesian decision processes. Working
within this framework facilitates communication between these
models, and ensures they could all be used to phenotype patients
using a common currency (i.e., their prior beliefs). It follows that
the key challenges for computational neuropsychology can be

phrased in terms of two questions: ‘what are the prior beliefs that
would have to be held to make this behavior optimal?’ and ‘what
are the biological substrates of these priors?’

The notion of optimal pathology may seem counter-intuitive,
but we can draw upon another theorem, the good regulator
theorem (Conant and Ashby, 1970), to highlight the difference
between healthy and pathological behavior. This states that a
brain (or any other system) is only able to effectively regulate its
environment if it is a good model of that environment. A brain
that embodies a model with priors that diverge substantially
from the world (i.e., body, ecological niche, culture, etc.) it is
trying to regulate will fail at this task (Schwartenbeck et al.,
2015). If pathological priors relate to the properties of the
musculoskeletal system, we might expect motor disorders such
as tremors or paralysis (Friston et al., 2010; Adams et al., 2013a).
If abnormal priors relate to perceptual systems, the results may
include sensory hallucinations (Fletcher and Frith, 2009; Adams
et al., 2013b) or anesthesia. In the following, we review some
important concepts in Bayesian accounts of brain function.
These include the notion of a generative model, the hierarchical
structure of such models, the representation of uncertainty in
the brain, and the active nature of sensory perception. In doing
so we will develop a taxonomy of pathological priors. While
this taxonomy concerns types of inferential deficit (and is not
a comprehensive review of neuropsychological syndromes), we
draw upon examples of syndromes to illustrate these pathologies.
We relate these to failures of neuromodulation and to the notion
of a ‘disconnection’ syndrome (Geschwind, 1965a; Catani and
Ffytche, 2005).

THE GENERATIVE MODEL

Bayesian Inference
Much work in theoretical neurobiology rests on the notion that
the brain performs Bayesian inference (Knill and Pouget, 2004;
Doya, 2007; Friston, 2010; O’Reilly et al., 2012). In other words,
the brain makes inferences about the (hidden or latent) causes
of sensory data. ‘Hidden’ variables are those that are not directly
observable and must be inferred. For example, the position
(hidden variable) of a lamp causes a pattern of photoreceptor
activation (sensory data) in the retina. Bayesian inference can be
used to infer the probable position of the lamp from the retinal
data. To do this, two probability distributions must be defined
(these are illustrated graphically in Figure 1A). These are the
prior probability of the causes, and a likelihood distribution that
determines how the causes give rise to sensory data. Together,
these are referred to as a ‘generative model,’ as they describe the
processes by which data is (believed to be) generated. Bayesian
inference uses a generative model to compute the probable causes
of sensory data (Beal, 2003; Doya, 2007; Ghahramani, 2015).
Many of the inferences that must be made by the brain relate to
causes that evolve through time. This means that the prior over
the trajectory of causes through time can be decomposed into a
prior for the initial state, and a series of transition probabilities
that account for sequences or dynamics (Figure 1B). These
dynamics can be subdivided into those that a subject has control
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FIGURE 1 | Generative models. These schematics graphically illustrate the structure of generative models. (A) The simplest model that permits Bayesian inference
involves a hidden state, s, that is equipped with a prior P(s). This hidden state generates observable data, o, through a process defined by the likelihood P(o|s)
(vertical arrow). (B) It is possible to equip such a model with dynamically changing hidden states. To do so, we must specify the probabilities of transitioning between
states P

(
sτ+1|sτ

)
(horizontal arrows). (C) Transitions between states may be influenced by the course of action, π, that is pursued. (D) Hierarchical levels can be

added to the generative model (Friston et al., 2017d). This means that the processes that generate the hidden states can themselves be accommodated in the
inferences performed using the model.

over (Figure 1C), such as muscle length, and environmental
causes that they cannot directly influence.

Predictive Coding
Predictive coding is a prominent theory describing how the
brain could perform Bayesian inference (Rao and Ballard, 1999;
Friston and Kiebel, 2009; Bastos et al., 2012). This relies upon the
idea that the brain uses its generative model to form perceptual
hypotheses (Gregory, 1980) and make predictions about sensory
data. The difference between this prediction and the incoming
data is computed, and the ensuing prediction error is used
to refine hypotheses about the cause of the data. Under this
theory, the messages passed through neuronal signaling are
either predictions, or prediction errors. There are other local
message passing schemes that can implement Bayesian inference
(Winn and Bishop, 2005; Yedidia et al., 2005; Dauwels, 2007;
Friston et al., 2017b), particularly for categorical (as opposed
to continuous) inferences. Although we use the language of
predictive coding in the following, we note that our discussion
generalizes to other Bayesian belief propagation schemes.

The notion that hypotheses are corrected by prediction errors
makes sense of the kinds of neuropsychological pathologies that
result from the loss of sensory signals. For example, patients with
eye disease can experience complex visual hallucinations (Ffytche

and Howard, 1999). This phenomenon, known as Charles Bonnet
syndrome (Teunisse et al., 1996; Menon et al., 2003), can be
interpreted as a failure to constrain perceptual hypotheses with
sensations (Reichert et al., 2013). In other words, there are
no prediction errors to correct predictions. A similar line of
argument can be applied to phantom limbs (Frith et al., 2000;
De Ridder et al., 2014). Following amputation, patients may
continue to experience ‘phantom’ sensory percepts from their
missing limb. The absence of corrective signals from amputated
body parts means that any hypothesis held about the limb is
unfalsifiable. In the next sections, we consider some of the
important features of generative models, and their relationship
to brain function.

HIERARCHICAL MODELS

Cortical Architecture
An important feature of many generative models is hierarchy.
Hierarchical models assume that the hidden causes that generate
sensory data are themselves generated from hidden causes at
a higher level in the hierarchy (Figure 1D). As the hierarchy
is ascended, causes tend to become more abstract, and have
dynamics that play out over a longer time course (Kiebel et al.,
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2008, 2009). An intuitive example is the kind of generative
model required for reading (Friston et al., 2017d). While lower
levels may represent letters, higher levels represent words, then
sentences, then paragraphs.

There are several converging lines of evidence pointing to the
importance of hierarchy as a feature of brain organization. One
of these is the patterns of receptive fields in the cortex (Gallant
et al., 1993). In primary sensory cortices, cells tend to respond
to simple features such as oriented lines (Hubel and Wiesel,
1959). As we move further from sensory cortices, the complexity
of the stimulus required to elicit a response increases. Higher
areas become selective for contours (Desimone et al., 1985; von
der Heydt and Peterhans, 1989), shapes, and eventually objects
(Valdez et al., 2015). The sizes of receptive fields also increase
(Gross et al., 1972; Smith et al., 2001).

A second line of evidence is the change in temporal response
properties. Higher areas appear to respond to stimuli that
change over longer time courses than lower areas (Hasson et al.,
2008, 2015; Kiebel et al., 2008; Murray et al., 2014). This is
consistent with the structure of deep temporal generative models
(Friston et al., 2017d) (a sentence takes longer to read than
a word). A third line of evidence is the laminar specificity of
inter-areal connections that corroborates the pattern implied by
electrophysiological responses (Felleman and Van Essen, 1991;
Shipp, 2007; Markov et al., 2013). As illustrated in Figure 2,
cortical regions lower in the hierarchy project to layer IV of
the cortex in higher areas. These ‘ascending’ connections arise
from layer III of the lower hierarchical region. ‘Descending’
connections typically arise from deep layers of the cortex, and
target both deep and superficial layers of the cortical area lower
in the hierarchy.

Ascending and Descending Messages
The parallel between the hierarchical structure of generative
models and that of cortical organization has an interesting
consequence. It suggests that connections between cortical
regions at different hierarchical levels are the neurobiological
substrate of the likelihoods that map hidden causes to the sensory
data, or lower level causes, that they generate (Kiebel et al., 2008;
Friston et al., 2017d). This is very important in understanding the
computational nature of a ‘disconnection’ syndrome. It implies
that the disruption of a white matter pathway corresponds
to an abnormal prior belief about the form of the likelihood
distribution. This immediately allows us to think of neurological
disconnection syndromes – such as visual agnosia, pure alexia,
apraxia, and conduction aphasia (Catani and Ffytche, 2005) – in
probabilistic terms. We will address specific examples of these in
the next section, and a summary is presented in Table 1. Under
predictive coding, the signals carried by inter-areal connections
have a clear interpretation (Shipp et al., 2013; Shipp, 2016).
Descending connections carry the predictions derived from the
generative model about the causes or data at the lower level.
Ascending connections carry prediction error signals.

It has been argued that deficits in semantic knowledge can
only be interpreted with reference to a hierarchically organized
set of representations in the brain. This argument rests on
observations that patients with agnosia, a failure to recognize

FIGURE 2 | Hierarchy in the cortex. This schematic illustrates two key
features of cortical organization. The first is hierarchy, as defined by laminar
specific projections. Projections from primary sensory areas, such as area VI,
to higher cortical areas typically arise from layer III of a cortical column, and
target layer IV. These ascending connections are shown in red. In contrast,
descending connections (in blue) originate in deep layers of the cortex and
project to both superficial and deep laminae. The second feature illustrated
here is the separation of visual processing into two, dorsal and ventral,
streams. In terms of the functional anatomy implied by generative models in
the brain, this segregation implies a factorization of beliefs about the location
and identity of a visual object (i.e., knowing what an object is does not tell you
where it is – and vice versa).

objects, can present with semantic deficits at different levels of
abstraction. For example, some neurological patients are able
to distinguish between broad categories (fruits or vegetables)
but are unable to identify particular objects within a category
(Warrington, 1975). The preservation of the more abstract
knowledge, with impairment of within-category semantics, is
taken as evidence for distinct hierarchical levels that can be
differentially impaired. This is endorsed by findings that some
patients have a category-specific agnosia (for example, a failure
to identify living but not inanimate stimuli) (Warrington and
Shallice, 1984). A model that simulates these deficits relies
upon a hierarchical structure that allows for specific categorical
processing at higher levels to be lesioned while maintaining lower
level processes (Humphreys and Forde, 2001). Notably, lesions
to this model were performed by modulating the connections
between hierarchical levels. This resonates well with the type of
computational ‘disconnection’ that predictive coding implicates
in some psychiatric disorders (Friston et al., 2016a). We now turn
to the probabilistic interpretation of such disconnections.

SENSORY STREAMS AND
DISCONNECTION SYNDROMES

What and where?
Figure 2 illustrates an additional feature common to cortical
architectures and inference methods. This is the factorization
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TABLE 1 | Bayesian computational neuropsychology.

Syndrome Abnormal prior Neurobiology Reference

Anosognosia Low exteroceptive or interoceptive
sensory precision
Failure of active inference

Insula lesions

Hemiplegia

Karnath et al., 2005; Fotopoulou
et al., 2010; Fotopoulou, 2012

Apraxia Disrupted likelihood (action to vision or
command to action consequences)

Callosal disconnection Left
frontoparietal disconnection

Geschwind, 1965b

Autism High sensory precision
Secondary to high volatility

↑Cholinergic transmission?
↑Noradrenergic transmission

Dayan and Yu, 2006; Lawson et al.,
2014; Marshall et al., 2016;
Lawson et al., 2017

Complex visual hallucinations
(Lewy body dementia, Charles
Bonnet syndrome)

Low sensory precision
Disrupted likelihood mapping

↓Cholinergic transmission
Retino-geniculate disconnection

Collerton et al., 2005; Reichert
et al., 2013; O’Callaghan et al.,
2017

Conduction aphasia Disrupted likelihood mapping (speech
to proprioceptive consequences)

Arcuate fasciculus disconnection Wernicke, 1969

Parkinson’s disease Low prior precision over policies ↓Dopaminergic transmission Friston et al., 2013

Visual agnosia Disrupted likelihood (‘what’ to
sensory data)

Ventral visual stream disconnection Geschwind, 1965b

Visual neglect Disrupted likelihood (fixation to ‘what’)
mapping
Biased outcome prior
Biased policy prior

SLF II disconnection

Pulvinar lesion
Putamen lesion

Karnath et al., 2002; Thiebaut de
Schotten et al., 2005; Bartolomeo
et al., 2007

of beliefs about hidden causes into multiple streams. Bayesian
inference often employs this device, known as a ‘mean-field’
assumption, which ‘carves’ posterior beliefs into the product
of statistically independent factors (Beal, 2003; Friston and
Buzsáki, 2016). The factorization of visual hierarchies into
ventral and dorsal ‘what’ and ‘where’ streams (Ungerleider and
Mishkin, 1982; Ungerleider and Haxby, 1994) appears to be
an example of this. A closely related factorization separates the
dorsal and ventral attention networks (Corbetta and Shulman,
2002). This factorization has important consequences for the
representation of objects in space. Location is represented
bilaterally in the brain, with each side of space represented in
the contralateral hemisphere. As it is not necessary to know
the location of an object to know its identity, it is possible
to represent this information independently, and therefore
unilaterally (Parr and Friston, 2017a). It is notable that object
recognition deficits tend to occur when patients experience
damage to areas in the right hemisphere (Warrington and
James, 1967, 1988; Warrington and Taylor, 1973). Lesions
to contralateral (left hemispheric) homologs are more likely
to give rise to difficulties in naming objects (Kirshner,
2003).

The bilateral representation of space has an important
consequence when we frame neuronal processing as probabilistic
inference. Following an inference that a stimulus is likely to
be on one side of space, it must be the case that it is less
likely to be on the contralateral side. If neuronal activities
in each hemisphere represent these probabilities, this induces
a form of interhemispheric competition (Vuilleumier et al.,
1996; Rushmore et al., 2006; Dietz et al., 2014). An important
role of commissural fiber pathways may be to enforce the
normalization of probabilities across space [although some
of these axons must represent likelihood mappings instead
(Glickstein and Berlucchi, 2008)]. This neatly unifies theories

that relate disorders of spatial processing to interhemispheric
(Kinsbourne, 1970) or intrahemispheric disruptions (Bartolomeo
et al., 2007; Bartolomeo, 2014). Any intrahemispheric lesion
that induces a bias toward one side of space necessarily alters
the interhemispheric balance of activity (Parr and Friston,
2017b).

Disconnections and Likelihoods
The factorization of beliefs into distinct processing streams is not
limited to the visual system. Notably, theories of the neurobiology
of speech propose a similar division into dorsal and ventral
streams (Hickok and Poeppel, 2007; Saur et al., 2008). The former
is thought to support articulatory components of speech, while
the latter is involved in language comprehension. This mean-
field factorization accommodates the classical subdivision of
aphasias into fluent (e.g., Wernicke’s aphasia) and non-fluent
(e.g., Broca’s aphasia) categories. The anatomy of these networks
has been interpreted in terms of predictive coding (Hickok,
2012a,b), and this interpretation allows us to illustrate the point
that disconnection syndromes are generally due to disruption
of the likelihood mapping between two regions. We draw
upon examples of aphasic and apraxic syndromes to make this
point.

Conduction aphasia is the prototypical disconnection
syndrome (Wernicke, 1969), disconnecting Wernicke’s
area from Broca’s area. The former is found near the
temporoparietal junction, and is thought to contribute to
language comprehension. The latter is in the inferior frontal lobe,
and is a key part of the dorsal language stream. Disconnection of
the two areas results in an inability to repeat spoken language.
This connection between these two areas, the arcuate fasciculus
(Catani and Mesulam, 2008), could represent the likelihood
mapping from speech representations in Wernicke’s area to
the articulatory proprioceptive data processed in Broca’s area
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FIGURE 3 | Dorsal and ventral streams. Here we depict a plausible mapping
of simple generative models to the dual streams of the language (Left) and
attention (Right) networks. We highlight the likelihood mappings that
correspond to white matter tracts implicated in disconnection syndromes. The
number 1 in the blue circle on the left highlights the mapping from the left
temporoparietal region, which responds to spoken words (Howard et al.,
1992), to the inferior frontal gyrus, involved in the dorsal articulatory stream
(Hickok, 2012b). This region is well placed to deal with proprioceptive data
from the laryngeal and pharyngeal muscles (Simonyan and Horwitz, 2011).
The connection corresponds to the arcuate fasciculus and lesions give rise to
conduction aphasia. The number 2 indicates the mapping from dorsal frontal
regions that represent eye fixation locations to ventral regions associated with
target detection and identity. This corresponds to the second branch of the
superior longitudinal fasciculus. Lesions to this structure are implicated in
visual neglect (Doricchi and Tomaiuolo, 2003; Thiebaut de Schotten et al.,
2005).

as in Figure 3 (left). While auditory data from the ventral
pathway may inform inferences about language, the failure to
translate these into proprioceptive predictions means that such
predictions cannot be fulfilled by the brainstem motor system
(Adams et al., 2013a).

The idea that a common generative model could generate both
auditory and proprioceptive predictions, associated with speech,
harmonizes well with theories of about the ‘mirror-neuron’
system (Di Pellegrino et al., 1992; Rizzolatti et al., 2001). These
neurons respond both to the performance of an action by
an individual, and when that individual observes the same
action being performed by another. Similarly, Wernicke’s area
appears to be necessary for both language comprehension and
generation (Dronkers and Baldo, 2009) (but see Binder, 2015).
Anatomically, there is consistency between the mirror neuron
system and the connectivity between the frontal and temporal
regions involved in speech. The former is often considered to
include Broca’s area and the superior temporal sulcus – adjacent
to Wernicke’s area (Frith and Frith, 1999; Keysers and Perrett,
2004).

A common generative model for action observation and
generation (Kilner et al., 2007) generalizes to include the notion
of ‘conduction apraxia’ (Ochipa et al., 1994). As with conduction
aphasia, this disorder involves a failure to repeat what another is
doing. Instead of repeating spoken language, conduction apraxia
represents a deficit in mimicking motor behaviors. This implies
a disconnection between visual and motor regions (Goldenberg,
2003; Catani and Ffytche, 2005). This must spare the route
from language areas to motor areas. Other forms of apraxia
have been considered to be disconnection syndromes in which
language areas are disconnected from motor regions, preventing
patients from obeying a verbal motor command (Geschwind,

1965b). Under this theory, deficits in imitation that accompany
this are due to disruption of axons that connect visual and
motor areas. These also travel in tracts from posterior to frontal
cortices.

Other disconnection syndromes include (Geschwind, 1965a;
Catani and Ffytche, 2005) visual agnosia, caused by disruption
of connections in the ventral visual stream, and visual neglect
(Doricchi and Tomaiuolo, 2003; Bartolomeo et al., 2007; He
et al., 2007; Ciaraffa et al., 2013). Neglect can be a consequence
of frontoparietal disconnections (Figure 3, right), leading to an
impaired awareness of stimuli on the left despite intact early
visual processing (Rees et al., 2000). We consider the behavioral
manifestations of visual neglect in a later section. Before we do so,
we turn from disconnections to a subtler form of computational
pathology.

UNCERTAINTY, PRECISION, AND
AUTISM

Types of Uncertainty
In predictive coding, the significance ascribed to a given
prediction error is determined by the precision of the mapping
from hidden causes to the data. If this mapping is very noisy,
the gain of the prediction error signal is turned down. A very
precise relationship between causes and data leads to an increase
in this gain – it is this phenomenon that has been associated
with attention (Feldman and Friston, 2010). In other words,
attention is the process of affording a greater weight to reliable
information.

The generative models depicted in Figure 1 indicate that there
are multiple probability distributions that may be excessively
precise or imprecise (Parr and Friston, 2017c). One of these is
the sensory precision that relates to the likelihood. It is this that
weights sensory prediction errors in predictive coding (Friston
and Kiebel, 2009; Feldman and Friston, 2010). Another source
of uncertainty relates to the dynamics of hidden causes. It
may be that the mapping from the current hidden state to the
next is very noisy, or volatile. Alternatively, these transitions
may be very deterministic. A third source of uncertainty
relates to those states that a person has control over. It is
possible for a person to hold beliefs about the course of
action, or policy, that they will pursue with differing levels of
confidence.

Beliefs about the degree of uncertainty in each of these
three distributions have been related to the transmission of
acetylcholine (Dayan and Yu, 2001; Yu and Dayan, 2002;
Moran et al., 2013), noradrenaline (Dayan and Yu, 2006), and
dopamine (Friston et al., 2014) respectively (Marshall et al.,
2016). The ascending neuromodulatory systems associated with
these transmitters are depicted in Figure 4. The relationship
between dopamine and the precision of prior beliefs about
policies suggests that the difficulty initiating movements in
Parkinson’s disease may be due to a high estimated uncertainty
about the course of action to pursue (Friston et al., 2013).
A complementary perspective suggests that the role of dopamine
is to optimize sequences of actions into the future (O’Reilly
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FIGURE 4 | The anatomy of precision. The ascending neuromodulatory
systems carrying dopaminergic, cholinergic, and noradrenergic signals are
shown (in a simplified form). Dopaminergic neurons have their cell-bodies in
the ventral tegmental area (VTA) and the substantia nigra pars compacta
(SNc) – two nuclei in the midbrain. The medial forebrain bundle contains the
axons of these cells, and allows them to target neurons in the prefrontal
cortex and the medium spiny neurons of the striatum. The nucleus basalis of
Meynert is found in the basal forebrain. This is the source of cholinergic
projections to the cortex (Eckenstein et al., 1988). Axons originating here join
the cingulum. Neurons in the locus coeruleus project from the brainstem,
through the dorsal noradrenergic bundle, and also join the cingulum to supply
the cortex with noradrenaline (Berridge and Waterhouse, 2003).

and Frank, 2006). Deficient cholinergic signaling has been
implicated in the complex visual hallucinations associated
with some neurodegenerative conditions (Collerton et al.,
2005).

Precision and Autism
One condition that has received considerable attention using
Bayesian formulations is autism (Pellicano and Burr, 2012;
Lawson et al., 2014). This condition usefully illustrates how
aberrant prior beliefs about uncertainty can produce abnormal
percepts. An influential treatment of the inferential deficits
in autism argues that the condition can be understood in
terms of weak prior beliefs (Pellicano and Burr, 2012). The
consequence of this is that autistic individuals rely to a greater
extent upon current sensory data to make inferences about
hidden causes. This hypothesis is motivated by several empirical
observations, including the resistance of people with autism
to sensory illusions (Happé, 1996; Simmons et al., 2009), and
their superior performance on tasks requiring the location
of low-level features in a complex image (Shah and Frith,
1983). The susceptibility of the general population to sensory
illusions is thought to be due to the exploitation of artificial
scenarios that violate prior beliefs (Geisler and Kersten, 2002;
Brown and Friston, 2012). For example, the perception of the
concave surface of a mask as a convex face is due to the,
normally accurate, prior (or ‘top-down’) belief that faces are
convex (Gregory, 1970). Under this prior, the Bayes optimal
inference is a false inference (Weiss et al., 2002). If this prior
belief is weakened, the optimal inference becomes the true
inference.

The excessive dependence on sensory evidence has been
described in terms of an aberrant belief about the precision of
the likelihood distribution (Lawson et al., 2014). This account
additionally considers the source of this belief (Lawson et al.,
2017). It suggests that this may be understood in terms of an
aberrant prior belief about the volatility of the environment.
Volatility here means the ‘noisiness’ (or stochasticity) of the
transition probabilities that describe the dynamics of hidden
causes in the world. Highly volatile transitions prevent the
precise estimation of current states from the past, and result
in imprecise beliefs about hidden causes. In other words,
past beliefs become less informative when making inferences
about the present. Sensory prediction errors then elicit a
greater change in beliefs than they would do if a strong
prior were in play. This theory of autism has been tested
empirically (Lawson et al., 2017), providing a convincing
demonstration of computational neuropsychology in practice.
Using a Bayesian observer model (Mathys, 2012), it was shown
that participants with autism overestimate the volatility of
their environment. Complementing this computational finding,
pupillary responses, associated with central noradrenergic
activity (Koss, 1986), were found to be of a smaller magnitude
when participants encountered surprising stimuli compared to
neurotypical individuals.

A failure to properly balance the precision of sensory evidence,
in relation to prior beliefs, may be a ubiquitous theme in many
neuropsychiatric disorders. A potentially important aspect of this
imbalance is a failure to attenuate sensory precision during self-
made acts. The attenuation of sensory precision is an important
aspect of movement and active sensing, because it allows us to
temporarily suspend attention to sensory evidence that we are
not moving (e.g., in the bradykinesia of Parkinson’s disease).
In brief, a failure of sensory attenuation would have profound
consequences for self-generated movement, a sense of agency
and selfhood. We now consider the implications of Bayesian
pathologies for the active interrogation of the sensorium and its
neuropsychology.

ACTIVE INFERENCE AND VISUAL
NEGLECT

Active Sensing
In the above, we have considered how hypotheses are evaluated
as if sensory data is passively presented to the brain. In reality,
perception is a much more active process of hypothesis testing
(Krause, 2008; Yang et al., 2016a,b). Not only are hypotheses
formed and refined, but experiments can be performed to
confirm or refute them. Saccadic eye movements offer a good
example of this, as they turn vision from a passive to an active
process (Gibson, 1966; Ognibene and Baldassare, 2015; Parr
and Friston, 2017a). Each saccade can be thought of as an
experiment to adjudicate between plausible hypotheses about
the hidden causes that give rise to visual data (Friston et al.,
2012a; Mirza et al., 2016). As in science, the best experiments
are those that will bring about the greatest change in beliefs
(Lindley, 1956; Friston et al., 2016b; Clark, 2017). A mathematical
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formulation of this imperative (Friston et al., 2015) suggests
that the form of the neuronal message passing required to
evaluate different (saccadic) policies maps well to the anatomy
of cortico-subcortical loops involving the basal ganglia (Friston
et al., 2017d). This is consistent with the known role of
this set of subcortical structures in action selection (Gurney
et al., 2001; Jahanshahi et al., 2015), and their anatomical
projections to oculomotor areas in the midbrain (Hikosaka
et al., 2000). To illustrate the importance of these points, we
consider visual neglect, a disorder in which active vision is
impaired.

Visual Neglect
A common neuropsychological syndrome, resulting from
damage to the right cerebral hemisphere, is visual neglect
(Halligan and Marshall, 1998). This is characterized by a failure
to attend to the left side of space. This rightward lateralization
may be a consequence of the mean-field factorization discussed
earlier. Although space is represented bilaterally in the brain,
there is no need for representations of identity to be bilateral.
This means that the relationships between location and identity
should be asymmetrical, complementing the observation that
visual neglect is very rarely the consequence of a left hemispheric
lesion.

A behavioral manifestation of this disorder is a bias in
saccadic sampling (Husain et al., 2001; Fruhmann Berger et al.,
2008; Karnath and Rorden, 2012). Patients with neglect tend
to perform saccades to locations on the right more frequently
than to those on the left. There are several different sets
of prior beliefs that would make this behavior optimal. We
will discuss three possibilities (Parr and Friston, 2017b), and
consider their biological bases (Figure 5). One is a prior
belief that proprioceptive data will be consistent with fixations
on the right of space. The dorsal parietal lobe is known
to contain the ‘parietal eye fields’ (Shipp, 2004), and it is
plausible that an input to this region may specify such prior
beliefs. A candidate structure is the dorsal pulvinar (Shipp,
2003). This is a thalamic nucleus implicated in attentional
processing (Ungerleider and Christensen, 1979; Robinson and
Petersen, 1992; Kanai et al., 2015). Crucially, lesions to this
structure have been implicated in neglect (Karnath et al.,
2002).

A second possibility relates more directly to the question
of good experimental design. If a saccade is unlikely to
induce a change in current beliefs, then there is little value
in performing it. One form that current beliefs take is the
likelihood distribution mapping ‘where I am looking’ to ‘what
I see’ (Mirza et al., 2016). As illustrated in Figure 3 (right)
this likelihood distribution takes the form of a connection
between dorsal frontal and ventral parietal regions (Parr
and Friston, 2017a). To adjust beliefs about this mapping,
observations could induce a plastic change in synaptic strength
following each saccade (Friston et al., 2016b). If the white
matter tract connecting these areas is lesioned, it becomes
impossible to update these beliefs. As such, if we were to
cut the second branch of the superior longitudinal fasciculus
(SLF II) on the right, disconnecting dorsal frontal from

FIGURE 5 | The anatomy of visual neglect. Three lesions implicated in visual
neglect are highlighted here. 1 – Disconnection of the second branch of the
right superior longitudinal fasciculus (a white matter tract that connects dorsal
frontal with ventral parietal regions); 2 – Unilateral lesion to the right putamen;
3 – Unilateral lesion to the right pulvinar (a thalamic nucleus). Note that lesion
1 here is the same as lesion 2 in Figure 3.

ventral parietal regions, we would expect there to be no
change in beliefs following a saccade to the left. These
would make for very poor ‘visual experiments’ (Lindley, 1956).
A very similar argument has been put forward for neglect
of personal space that emphasizes proprioceptive (rather than
visual) consequences of action (Committeri et al., 2007). In
these circumstances, optimal behavior would require a greater
frequency of rightward saccades. Lesions to SLF II (Doricchi
and Tomaiuolo, 2003; Thiebaut de Schotten et al., 2005; Lunven
et al., 2015), and the regions it connects (Corbetta et al.,
2000; Corbetta and Shulman, 2002, 2011) are associated with
neglect.

A third possibility is that the process of policy selection may be
inherently biased. Above, we suggested that these computations
may involve subcortical structures. The striatum, an input
nucleus to the basal ganglia, is well known to be involved in
habit formation (Yin and Knowlton, 2006; Graybiel and Grafton,
2015). Habits may be formalized as a bias in prior beliefs about
policy selection (FitzGerald et al., 2014). It is plausible that a
lesion in the striatum might induce a similar behavioral bias
toward saccades to rightward targets. One of the subcortical
structures most frequently implicated in visual neglect is the
putamen (Karnath et al., 2002), one of the constituent nuclei of
the striatum. Such lesions may be interpretable as disrupting the
prior belief about policies.

Anosognosia
The ideas outlined above, that movements can be thought of
as sensory experiments, are not limited to eye movements and
visual data. Plausibly, limb movements could be used to test
hypotheses about proprioceptive (and visual) sensations. This
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has interesting consequences for a neuropsychological deficit
known as anosognosia (Fotopoulou, 2012). This syndrome can
accompany hemiplegia, which prevents the performance of
perceptual experiments using the paralyzed limb (Fotopoulou,
2014). In addition to the failure to perform such an experiment,
patients must be able to ignore any discrepancy between
predicted movements and the contradictory sensory data
suggesting the absence of a movement (Frith et al., 2000).
As this failure of monitoring movement trajectories can be
induced in healthy subjects (Fourneret and Jeannerod, 1998),
it seems plausible that this could be exaggerated in the context
of hemiplegia, through a dampening of exteroceptive sensory
precision.

This explanation is not sufficient on its own, as anosognosia
does not occur in all cases of hemiplegia. Lesion mapping
has implicated the insula in the deficits observed in these
patients (Karnath et al., 2005; Fotopoulou et al., 2010).
This is a region often associated with interoceptive inference
(Barrett and Simmons, 2015) that has substantial efferent
connectivity to somatosensory cortex (Showers and Lauer,
1961; Mesulam and Mufson, 1982). Damage to the insula
and surrounding regions might reflect a disconnection of the
mapping from motor hypotheses to the interoceptive data
that accounts for what it ‘feels like’ to move a limb. This is
consistent with evidence that the insula mediates inferences
about these kinds of sensations (Allen et al., 2016). A plausible
hypothesis for the computational pathology in anosognosia
is then that a failure of active inference is combined with
a disconnection of the likelihood mapping between motor
control and its interoceptive (and exteroceptive) consequences
(Fotopoulou et al., 2008).

A (PROVISIONAL) TAXONOMY OF
COMPUTATIONAL PATHOLOGY

In the above, we have described the components of a
generative model required to perform Bayesian inference. We
have reviewed some of the syndromes that may illustrate
deficits of one or more of these components. Broadly, the
generative model constitutes beliefs about the hidden states,
their dynamics, and the mechanisms by which sensory data
is generated from hidden states. Each of these beliefs can
be disrupted through an increase or decrease in precision,
or through disconnections. Modulation of precision implicates
the ascending neuromodulatory systems. This modulation may
be important for a range of neuropsychiatric and functional
neurological disorders (Edwards et al., 2012).

In addition to modulation of connectivity, disconnections
can completely disrupt beliefs about the conditional probability
of one variable given another. The hierarchical architecture
of the cortex suggests that inter-areal white matter tracts,
the most vulnerable to vascular or inflammatory lesions,
represent likelihood distributions (i.e., the probability of
data, or a low-level cause, given a high-level cause). Drawing
upon the notion of a mean-field factorization, we noted
that such disconnections are likely to have a hemispheric

asymmetry in the behaviors they elicit. It is also plausible that
functional disconnections might occur within a cortical
region. This would allow for disruption of transition
probabilities. While not as vulnerable to vascular insult, other
pathologies can cause changes in intrinsic cortical connectivity
(Cooray et al., 2015).

Epistemic, foraging, behavior is vital for the evaluation of
beliefs about the world. Unusual patterns of sensorimotor
sampling can be induced by abnormal beliefs about the
motor experiments that best disambiguate between perceptual
hypotheses. These computations implicate subcortical structures,
such as the basal ganglia. There are two ways that disruption
of these computations may result in abnormal behavior. The
first is that prior beliefs about policies may be biased. This can
be an indirect effect, through other beliefs, or a direct effect
due to dysfunction in basal ganglia networks. The second is
that an impairment in performing these experiments, due to
paralysis, might impair the refutation of incorrect perceptual
hypotheses. This may be compounded by a disconnection
or a neuromodulatory failure, as has been proposed in
anosognosia.

One further source of an aberrant priors, not discussed in
the above, is neuronal loss. In neurodegenerative disorders,
there may be a reduction in the number of neurons in a
given brain area. This results in a smaller number of possible
activity patterns across these neurons and limits the number
of hypotheses they can represent. This means that disorders
in which neurons are lost may cause a shrinkage of the
brain’s hypothesis space. In other words, the failure to form
accurate perceptual hypotheses in such conditions may be
due to an attrition of the number of hypotheses that can
be entertained by the brain. An important future step in
Bayesian neuropsychology will be linking tissue pathology with
computation more directly. This may be one route toward
achieving this.

CONCLUSION

While Bayesian approaches are not in conflict with other
methods in computational neuroscience, they do offer a different
(complementary) perspective that is often very useful. For
example, many traditional modeling approaches would not
predict that disconnections in early sensory streams, such as
the retino-geniculate system, could result in complex sensory
hallucinations. Calling upon a hierarchical generative model
that makes ‘top-down’ predictions about sensory data, clarifies
and provides insight into such issues. In the above we have
discussed the features of the generative models that underwrite
perception and behavior. We have illustrated the importance
of these features through examples of their failures. These
computational pathologies can be described in terms of abnormal
prior beliefs, or in terms of their biological substrates. We
noted that aberrant priors about the structure of a likelihood
mapping relate to disconnection syndromes, ubiquitous in
neurology. Pathological beliefs about uncertainty may manifest
as neuromodulatory disorders. The process of identifying the
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pathological priors that give rise to Bayes optimal behavior
in patients is promising both scientifically and clinically. If
individual patients can be uniquely characterized by subject-
specific priors, this facilitates a precision medicine approach
grounded in computational phenotyping (Adams et al., 2016;
Schwartenbeck and Friston, 2016; Mirza et al., 2018). This also
allows for empirical evaluation of hypotheses about abnormal
priors, by comparing quantitative, computational phenotypes
between clinical and healthy populations. Relating these priors
to their biological substrates offers the further possibility of
treatments that target aberrant neurobiology in a patient specific
manner.
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