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Abstract

Lagging public-sector investment in infrastructure and the deregulation of many
industries mean that the private sector has to make decisions under multiple sources
of uncertainty. We analyse such investment decisions by accounting for both multiple
sources of uncertainty and the time-to-build aspect. The latter feature arises in the
energy and transportation sectors because investors can decide the rate at which the
project is completed. Furthermore, two explicit sources of uncertainty represent the dis-
counted cash inflows and outflows of the completed project. We use a finite-difference
scheme to solve numerically the option value and the optimal investment threshold.
Somewhat counterintuitively, with a relatively long time to build, a reduction in the
growth rate of the discounted operating cost may actually lower the investment thresh-
old. This is contrary to the outcome when the stepwise aspect is ignored in a model
with uncertain price and cost. Hence, research and development (R&D) efforts to en-
hance emerging technologies may be more relevant for infrastructure projects with long
lead times.

Managerial Relevance Statement

The deregulation of energy and transportation sectors over the past three decades was in-
tended to foster technology adoption. Indeed, most industrialised countries experienced a
lag in public-sector investment at precisely the same time that infrastructure upgrades were
required. In this context, the private sector could have a role in catalysing both research and
development (R&D) as well as adoption of new technologies, e.g., electric vehicles. However,
launching new technologies is confounded by multiple sources of uncertainty, e.g., both in
revenues and costs, along with a non-negligible time to build associated with the underlying
infrastructure. We take the perspective of a plug-in electric vehicle aggregator construct-
ing charging infrastructure to focus on how these two features interact in determining the
optimal investment timing for the new technology. In particular, when the discounted op-
erating cost decreases, the investment threshold for launching the new technology actually
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decreases under a relatively long time to build. This is in contrast to the outcome under
both (i) a negligible time to build and (ii) a high growth rate for discounted revenues in a
time-to-build model without discounted operating costs. Hence, our enhancement to the real
options framework supports policymakers and practitioners in assessing their R&D strategies
for emerging infrastructure-based technologies.
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1 Introduction

Public investment in infrastructure, such as power grids, telecommunications, and transport,

in OECD countries has languished since the 1990s [1], dropping from a mean of over 4% of

GDP in 1990 to 3% in 2007. In conjunction with a transition towards service-based economies

in many OECD countries, the resulting “infrastructure gap” could have serious consequences

for their competitiveness. While newly industrialising countries have the comparative luxury

of developing their infrastructure now, infrastructure in OECD countries is decades old in

many sectors and faces a lack of public funding. For example, spending on roads, rail,

and inland waterways in the G7 had averaged less than 1% of GDP in each year over

the past decade [2]. In effect, the trend towards deregulation has in the past thirty years

put more emphasis on private provision of infrastructure investment, which is confounded

by the exposure to uncertain revenues and costs in decision making. While public-private

partnerships in emerging economies may be brokered to incentivise investment without direct

exposure to market risk, investors, nevertheless, face other uncertainties, viz., political risk

and exchange rate fluctuations. The former, in particular, could deter private investors if

it can lead to re-possession of divested assets or re-negotiation of contracts due to evolving

political considerations. For example, five utilities in Tanzania were opened up to private

vendors in 2003 but were affected by re-possession by the government during 2010-2011 [3].

Due to the private sector’s greater role in handling infrastructure investments, concerns

about managing uncertainty in the context of maximising profit have become more impor-

tant. For example, John Laing PLC, a British private equity firm that develops and operates

public infrastructure, has recently announced its intention to raise capital through a flotation

on the London Stock Exchange to finance a fund for environmental infrastructure and is aim-

ing to provide annual returns of 8% [4]. Thus, the introduction of private incentives into the

public sphere necessitates the development and application of appropriate decision-making

methods, which consider uncertainty in cash flows, managerial flexibility, and salient features

of infrastructure projects. The analyses may also provide insights to regulators in designing

mechanisms that elicit desired outcomes, e.g., environmental or social, from a private sector
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that has profit maximisation as its principal motivation.

In this paper, we use the real options approach [5] to examine an infrastructure project

that is to be carried out by a private firm. Similar to [6], we assume that the firm has the

discretion not only to decide when to launch the project but also to determine the rate at

which its construction proceeds. Indeed, large infrastructure projects can take years or even

decades to build, and once construction is initiated, the cash flows may fluctuate to the

point where it is optimal at times for the firm to suspend construction temporarily. Thus,

an optimal decision rule is characterised by a threshold that indicates the minimum revenues

from the completed project for every possible realisation of discounted operating costs and

remaining investment. If the discounted revenue level is above this threshold, then the next

tranche of investment is undertaken; otherwise, it is optimal to suspend investment.

Motivated by the fact that next-generation infrastructure projects, e.g., for smart grids or

plug-in electric vehicles (PEVs), may have both uncertain and non-cointegrated discounted

revenues and operating costs in both industrialised and emerging economies, we extend [6] to

the case of two sources of uncertainty. We find that this feature has a non-monotonic effect on

the optimal investment threshold for investment when the discounted operating cost is high

and its growth rate decreases. Intuitively, with almost no time to build, a reduction in this

growth rate increases the investment threshold monotonically because the marginal benefit of

waiting (related to a higher expected net present value) increases by more than its marginal

cost (stemming from the value of forgone cash flows in the interim period). However, with a

relatively long time to build, a reduction in the growth rate of the discounted operating cost

may actually lower the investment threshold as the marginal benefit from a higher expected

net present value (NPV) is discounted more heavily and the marginal cost of waiting is the

option value to continue with a staged project. This effect–which is especially pronounced

when the discounted operating cost is high–is contrary to the finding in [6] that a higher

growth rate for the discounted revenues increases the investment threshold.
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2 Literature Review

In contrast to the now-or-never NPV approach, the real options framework reflects the value

of managerial flexibility in response to unfolding uncertainties. For example, [7] examine the

value of the deferral option in which a firm waits for the optimal time to invest when both

revenues and investment costs are uncertain. Embedded options, such as the discretion to

suspend and resume operations [8], expand or modify the project after initial investment [9],

and determine the capacity of the project [10, 11, 12, 13], may also be handled. The frame-

work can also be extended to tackle technological uncertainty [14] as well as the management

of portfolios of R&D projects [15]. Such flexibility is often present in real projects and can

affect the initial investment decision regarding selection of efficient vehicles [16]. Unlike the

now-or-never NPV approach, the real options framework helps assess effects of these features

on the value of the investment opportunity and optimal adoption thresholds [5].

A simplifying assumption in most of the real options literature is that the project is

constructed immediately after the investment decision has been taken. In other words,

the rate of investment is infinite, which is defensible only if lead times are low relative to

the lifetime of the project. However, this assumption does not hold in most infrastructure

projects: for instance, transmission lines for electricity may take several years to construct

with several stages encompassing the securing of planning permission to assembling the

towers to restoring the land [17].

Relaxing the assumption of an infinite investment rate, [6] consider a firm that faces

an uncertain value of a completed project and has discretion over not only initiation of

the investment cycle but also suspension and resumption of the investment process as each

stage is completed. Thus, the optimal decision rule involves a trigger value for each stage

that depends on the remaining investment until project completion. In effect, they have

embedded options to manage the time to build and show that this additional flexibility

reinforces the standard real options result that higher volatility and the effective growth rate

of the revenues delay action. More concretely, the state variable in [6], Vt, is defined as the

market value at time t of a completed factory that evolves exogenously and stochastically
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throughout the building phase. Consequently, even though the factory may still be under

construction, the investor can observe the market value of a typical finished factory and

decides at each point in time whether to continue with construction or to suspend it. Once

construction is complete, the investor receives a finished factory at its market value. [6] define

Kt as the investment amount (in $, for example) remaining at time t, where Kt decreases at

rate It, which is controlled by the investor. Now, if it is optimal for investment to proceed

to the next stage, then the investor will simply proceed at the maximum rate k, i.e., It = k.

The decision to continue or to suspend the construction given the current level of remaining

investment outlay, K, depends on a threshold V ∗(K): at each point in time, the investor

checks the market value of a finished factory to see if it is above this threshold. Once Kt = 0

at, say, t = T , the building phase is completed, and the investor receives an active factory

worth VT .

By contrast, [18] present a model with investment lags and an embedded option to

abandon the project costlessly after its completion. Because the marginal costs of waiting,

i.e., the forgone revenues from not investing, are higher due to the lag until cash flows are

received and the abandonment option that puts a lower bound on the value of those cash

flows, the standard real options result is weakened or even reversed: higher uncertainty

may reduce the investment trigger. [19] extends the issue of investment lags to include

competition.

[20] develop quasi-analytical solutions to problems when both revenues and operating

costs are uncertain. In contrast to [7], they relax the assumption that the project’s payoff is

homogenous in the revenues and costs because it is operating costs rather than the invest-

ment cost that may be more prone to uncertainty. Consequently, the dimension-reducing

step from [7] of turning the partial differential equation (PDE) into an ordinary differential

equation (ODE) no longer holds, and the optimal investment trigger is not a linear rela-

tionship between revenues and costs. [20] motivate their work in the context of renewal

assets, while [21] apply a similar model to the case of commodity switching in a production

plant. An important consideration of this strand of the literature is that often revenues and
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operating costs cannot be modelled together as a single stochastic process that describes the

profit flow because the two processes are not cointegrated. Indeed, for infrastructure projects

concerning new technologies, e.g., smart grids or PEVs, there is not even a time series of

the relevant revenues and operating costs from which to detect the presence of cointegration.

Taking this point of view, our work also makes a methodological enhancement to real options

by tackling the time-to-build attribute together with multiple uncertain factors.

3 Analytical Model

3.1 Assumptions

We extend [6] by considering two stochastic variables that determine the value of the project.

Likewise, our work could also be thought of as adding investment lags to the two-factor

model of [20]. As a specific example, we may consider the problem of a PEV aggregator

that controls charging decisions via direct load control (DLC). In [22], such an entity must

make trading decisions in various electricity markets, ranging from forward contracts to

day-ahead to balancing. Although the bulk of electricity trading occurs day-ahead, the

balancing market is becoming increasingly important due to the penetration of intermittent

variable renewable energy sources. Thus, by using PEVs as mobile storage devices, the PEV

aggregator is able to profit from arbitrage between trading platforms. However, it must first

plan to build the charging infrastructure for PEVs, which takes time to build and over which

the PEV aggregator has discretion regarding investment progress. Hence, we characterise its

discounted revenues as arbitrage profits and discounted operating costs as expenses related

to maintaining the infrastructure and the ICT services necessary to manage the PEV fleet.

The dynamics in our model are similar to those of [6] except that instead of a single

variable like Vt (which cannot become negative due to the geometric Brownian motion (GBM)

assumption) that reflects the market value of the finished project, we have both (i) the

market value of the discounted revenue from the finished project, Vt (arbitrage profit from

PEV aggregation), and (ii) the market value of the discounted operating costs of the finished
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project, Ct (expenditure of managing the charging infrastructure and providing ICT services

to implement the trading strategy with the PEVs). Consequently, in our model, the market

value of the completed project is Vt − Ct, which may, indeed, be negative. As in [6], our

PEV aggregator continuously monitors the market values of the discounted revenues and

costs associated with the completed infrastructure to decide whether or not to proceed to

the next phase of construction.1 However, unlike [6], our PEV aggregator’s optimal decision

rule given the current discounted operating cost, C, and the current remaining investment

required, K, is a free boundary, V ∗(C,K), rather than a single threshold, V ∗(K). More

important, although Vt − Ct may become negative at any point, our PEV aggregator could

still decide to proceed with construction provided that Vt exceeds V ∗(C,K). This is a key

difference from [6] in terms of optimal decision making.

We assume that the option to invest in the project is perpetual, i.e., without any expira-

tion date.2 We also assume that Vt and Ct follow the GBMs

dVt = αV Vtdt+ σV Vtdzt (1a)

dCt = αCCtdt+ σCCtdwt (1b)

where αV and αC are drift rates, σV ≥ 0 and σC ≥ 0 are volatilities, and dzt and dwt

are increments of uncorrelated Wiener processes. We take the increments of the GBMs

to be uncorrelated as they are assumed to arise from non-cointegrated time series. How-

ever, instantaneous correlation between the two increments could arise, e.g., due to higher

ICT/infrastructure maintenance costs resulting from more frequent charging/discharging

patterns by PEVs triggered by more volatile electricity prices. Such correlation would be

straightforward to implement.

1Admittedly, Vt and Ct will have to be estimated using proxies: in our example with the PEV aggre-
gator, the discounted revenues and operating costs can be adequately approximated by arbitrage profits in
electricity markets and ICT/infrastructure maintenance costs. However, if the project involves launching a
fundamentally different product, e.g., smartphones in the year 2007, where market value cannot be readily
approximated because of the lack of close substitutes, then another layer of uncertainty is involved because
the value of the underlying asset cannot be observed.

2The benefit of assuming a perpetual option is that it relieves us from making the option value an explicit
function of time.
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The assumption of constant drift and volatility parameters of GBMs in (1a) and (1b)

implies that the investor cannot affect the evolution of Vt and Ct. In the case of Vt, this

is essentially a perfect market assumption, i.e., the investor takes the market value of the

output of the project as given. In the case of Ct, the interpretation depends on the situation.

If αC = 0, then the interpretation is simply that the evolution of the discounted operating

cost variable is stochastic yet without a trend. When αC > 0, the interpretation is that the

discounted operating costs are expected to increase in the long run. For example, if the main

cost determinant of the finished project is a diminishing natural resource, then the costs of

production may rise because the price of this resource will increase in the future.

By contrast, if αC < 0, then we can consider the case of new technology adoption, e.g.,

PEVs and a charging infrastructure. If the adoption of PEVs is in line with the goals of pol-

icymakers, then they might support the R&D required to initiate private-sector investment

and further accelerate the adoption process. In this case, it is also feasible for policymakers

to make their information and progress available to the public so that the private sector can

capitalise on the evolving technology, thereby fulfilling the goals behind the public invest-

ments.3 This implies that the private investor, in our case, experiences an exogenous learning

curve effect that decreases the discounted operating costs of the finished project over time.

Hence, by considering the case αC < 0, we can examine how an exogenous learning curve

effect described above affects the actions of rational investors.

Following [6], we model the investment process so that the capital investment left at time

t is Kt, the investment rate is It, and the maximum investment rate is k ≥ 0. Thus, the

dynamics of Kt are as follows:

dKt

dt
= −It, 0 ≤ It ≤ k (2)

We assume that the PEV aggregator can continuously adapt the rate at which she invests

3According to the Joint Research Centre of the European Commission [23], about 65% of the outstanding
total European PEV RD&D budget of e1.9 billion is from public funding. The report also finds that an
increased exchange of information between the projects would result in a better societal return for the
investments due to the exogenous learning effects described above.
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as new information about the expected profitability of the finished project arrives. This

implies that our framework is most relevant in modelling situations in which the investment

is made in multiple stages and the investor can suspend the investment between the stages.4

If the investor has an opportunity to suspend the process during the stages, then our model

is even more relevant. In fact, the more irreversible the investment process becomes, the

less appropriate our model is in describing the optimal investment behaviour. With such

irreversibility, the model of [18] should be employed, which will lead to different results.

Irreversibility in our context means that any sunk investment costs, i.e., in terms of decreasing

K, cannot be recovered. However, there is some flexibility for the PEV aggregator since it

can suspend construction indefinitely between stages. In effect, once construction is started,

it is not necessarily seen through to completion at the highest possible rate, e.g., as in [18].

Thus, our model provides the decision maker with more discretion.

Since we use the dynamic programming approach to value the investment option, we

denote the firm’s required rate of return with ρ ≥ 0. As is typical with dynamic programming,

ρ is interpreted as an exogenous parameter that represents the cost of maintaining the

investment opportunity. We assume ρ > αV in order to rule out the case that it would be

never optimal to exercise the option to invest.

3.2 Problem Formulation

Given initial values V ≡ V0, C ≡ C0, and K ≡ K0, we denote the value of the option to

invest as F (V,C,K).5 The option value in (V,C,K) ∈ X ≡ (0,∞)× (0,∞)× (0,∞) given

the investment policy I∗(V,C,K) ≡ I can be obtained from the following Bellman equation:

ρF = max
I∈[0,k]

(
E[dF ]

dt
− I
)

(3)

4The state variables’ time indices are omitted since we consider the return equilibrium at the current
time, i.e., V = V0, C = C0, and K = K0. Likewise, the time index for It is omitted without loss of generality
since [6] point out that it will be either 0 or k, which is the maximum rate at which investment can proceed:
if we did not have the time-to-build issue, then k would simply be infinity, which is the case in most real
options papers.

5The option valuation can be implemented for any starting point and not only t = 0. Without loss of
generality, we start the valuation at time zero.
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Note that dF is a function of I, and dt in the denominator means that the expression in the

nominator is divided by the increment of time and not differentiated with respect to time.

Intuitively, Eq. (3) states that the instantaneous return on the investment opportunity is

equal to its net appreciation if it were managed optimally. By expanding dF using Itô’s

lemma and taking the expected value, we obtain:

ρF = max
I∈[0,k]

(
1

2
σ2
V V

2FV V +
1

2
σ2
CC

2FCC + αV V FV + αCCFC − IFK − I
)

(4)

Since the expression to be maximised with respect to I is linear in I, if it is optimal to

invest at all, then it is also optimal to invest at the maximum rate k. Therefore, the optimal

investment policy is “bang-bang” control as in [6].

Following [20], we use backward induction to obtain first the value of the option to invest

when it is optimal to continue the investment program. This is separated from the option

value in the waiting region by a continuous surface V ∗(C,K) in X so that it is optimal to

invest if V ≥ V ∗(C,K) and to wait otherwise. This assumption is based on the intuition

that the option value is increasing in V . Thus, we denote the option value in the investment

region R ≡ X ∩ {V ≥ V ∗(C,K)} with F and in the waiting region W ≡ X \ R with f .

Under this assumption, the option value functions in the two regions are given by PDEs

obtained by re-arranging Eq. (4):

1
2
σ2
V V

2FV V + 1
2
σ2
CC

2FCC + αV V FV + αCCFC − kFK − ρF − k = 0 in R (5a)

1
2
σ2
V V

2fV V + 1
2
σ2
CC

2fCC + αV V fV + αCCfC − ρf = 0 in W (5b)

Note that only Eq. (5a) contains partial derivatives with respect to K as no investment

occurs in W .
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The appropriate boundary conditions for the problem are:

F (V,C, 0) = max{V − C, 0} (6a)

limV→0 f(V,C,K) = 0 (6b)

limC→∞ f(V,C,K) = 0 (6c)

F (V ∗(C,K), C,K) = f(V ∗(C,K), C,K) (6d)

FV (V ∗(C,K), C,K) = fV (V ∗(C,K), C,K) (6e)

FC(V ∗(C,K), C,K) = fC(V ∗(C,K), C,K) (6f)

Eq. (6a) is simply the payoff of the option when there is no investment requirement remain-

ing,6 which holds at the point in time, say t = T , when the building phase is complete, i.e.,

KT = 0, and the PEV aggregator receives the completed infrastructure: if it turns out that

VT −CT < 0, then the infrastructure will not be taken into use. Eq. (6b) states that when V

reaches zero, the option becomes worthless because zero is an absorbing barrier to the GBM

given by Eq. (1a). Eq. (6c) means that the option value converges to zero as the discounted

operating costs of the finished project grow arbitrarily large. Eq. (6d) is the value-matching

condition stitching together the two option values along the free boundary, V ∗(C,K). Eqs.

(6e) and (6f) are the smooth-pasting conditions, which are first-order conditions for making

optimal transitions across the free boundary. Note that now there are two smooth-pasting

conditions as there are two stochastic variables.7

6By considering max{V − C, 0}, we also take care of the boundary conditions limV→∞ FV (V,C,K) =

e−(ρ−αV )K
k and limC→0 FC(V,C,K) = −e−(ρ−αC)K

k because the NPV rule is to invest only if

e−ρ
K
k

(
V eαV

K
k − CeαC

K
k

)
− k

ρ

(
1− e−ρ

K
k

)
≥ 0.

7[24] comment that accounting for smooth pasting with respect to K omitted by [6] will result in a lower
free boundary. Although they demonstrate that the discrepancy is larger for higher volatility and growth
rate, the qualitative findings about the impact of the time to build on option value from [6] are unchanged.
In order to have directly comparable results, we build on the results of [6].
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3.3 Quasi-Analytical Solution

A general solution to Eq. (5b) is of the form

f(V,C,K) = A(K)V β(K)Cη(K) (7)

where A(K) is an endogenous constant to be determined and coefficients β(K) and η(K)

must satisfy the condition

1

2
σ2
V β(β − 1) +

1

2
σ2
Cη(η − 1) + αV β + αCη − ρ = 0 (8)

for each value of K. We use short-hand notation for β(K) and η(K) here. By “general

solution,” we mean that any linear combination of functions of the form given by Eq. (7)

satisfies the PDE given by Eq. (5b). Eq. (8) has solutions in all four quadrants of the (β, η)-

plane [20]. However, we can rule out three of the four quadrants by using the boundary

conditions given by Eqs. (6b) and (6c). Doing so, we obtain that β(K) > 0 and η(K) < 0,

i.e., the option value increases (decreases) with discounted revenues (operating costs) in line

with economic intuition. From now on, we will assume that the solution to PDE (5b) is

f(V,C,K) = A(K)V β(K)Cη(K), where (β(K), η(K)) ∈ (0,∞) × (−∞, 0) ∀ K ∈ (0,∞) so

that Eq. (8) holds. A(K) must be solved for by using the other boundary conditions and

the option value in R.

Since the PDE in the investment region has no analytical solutions, we use a numerical

approach based on an explicit finite-difference method to solve the rest of the investor’s

problem. However, now that we know the form of the analytical solution in the waiting

region, we can write boundary conditions (6d)-(6f) in a more convenient form. By inserting

the quasi-analytical solution given by Eq. (7) into the conditions mentioned above, we find
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that the following conditions must be met at the free boundary:

F (V ∗(C,K), C,K)

FV (V ∗(C,K), C,K)
=
V ∗(C,K)

β(K)
(9a)

F (V ∗(C,K), C,K)

FC(V ∗(C,K), C,K)
=

C

η(K)
(9b)

where β(K) and η(K) satisfy Eq. (8). We will utilise conditions (9a) and (9b) to determine

the free boundary numerically. Once the free boundary is obtained, we can solve for the

values of A(K), β(K), and η(K) for each discrete value of K. The numerical solution

method is in further detail in Appendix A.

4 Numerical Examples

We present the results of the model in two parts. First, we consider a base case and provide

a discussion of the results in general. Next, we present the most interesting results by

performing comparative statics to isolate the effects of individual parameters on the investor’s

optimal investment policy.

4.1 Base Case

For the base case, we assume that the total investment required to finish the investment

program is K = 6 (Me) and the maximum investment rate is k = 1 (Me/year). This

implies that the minimum time to complete the investment program is six years and that

the unit of time is years. We set αV = 0.04 and σV = 0.14 in this section and consider

a case in which the drift and volatility of Ct are the same as those of Vt (αC = 0.04 and

σC = 0.14),8 where V and C represent the current discounted revenues and operating costs

of the completed project. Finally, we assume that the discount rate is ρ = 0.08.

8If we were considering an all-equity firm that consisted only of the investment opportunity studied here,
then the base case values would imply that the volatility of the firm’s stock is approximately

√
0.142 + 0.142 =

19.8%. Considering that the implied volatility of the S&P 500 index options sold on the Chicago Board
Options Exchange is usually around 20%, the assumptions made on the volatilities of the processes are fairly
realistic.
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Figure 1: Option value, free boundary, and NPV threshold when K = 6

Figure 1 shows the level sets of the option value (contour curves with numbers indicating

the option value for every combination of V and C when K = 6) and the free boundary (solid

black line) in the base case when K = 6. The option value is increasing in V and decreasing

in C as intuition suggests, which is the case for other values of K as well. The black line

indicating the position of the free boundary, V ∗(C,K = 6), tells the PEV aggregator when to

proceed with construction if K = 6, e.g., the minimum V required to continue construction

when C = 15 is approximately 40.9 At (V,C) = (40, 15), the option value is approximately

20 as indicated by the contour curve passing through that point. As expected, the investment

threshold increases in C. Note also that the free boundary is not a level set of the option

value. Therefore, we cannot, in general, draw a straight connection between the option value

and the location of the investment threshold.

The red dashed line in Figure 1 shows the NPV investment threshold assuming that the

entire investment is finished at the full rate if it is optimal to invest, i.e., the PEV aggregator

9The free boundary does not appear smooth because of the numerical finite-difference method used to
solve the problem.
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Figure 2: Option value surface, now-or-never NPV, and free boundary when K = 6 (z-axis
measures option value and now-or-never NPV)

ignores the discretion to suspend construction. Since the NPV rule, by definition, is obtained

by calculating the expected cash flows of the completed project net of the initial investment

costs, its use leads to investment in cases when it is optimal to wait according to the real

options rule. For example, considering again the case when C = 15, the NPV rule tells the

PEV aggregator to proceed with construction when V is at least 20. Therefore, there must

be other reasons than the initial investment cost for the free boundary, V ∗(C,K = 6), to be

above the NPV threshold. First, since both Vt and Ct evolve stochastically in time, there is a

chance that the investment opportunity might increase in value over time. This implies that

there are benefits to waiting that are not present in the NPV analysis. Second, as there is

uncertainty in the value of the finished project due to the time-to-build aspect, it is optimal

to wait longer than the NPV rule suggests in order to cover this uncertainty by waiting for

the expected value of the finished project to rise well above the NPV rule.

Figure 2 shows the option value surface (measured on the z-axis), the now-or-never NPV,

and the projection of the free boundary onto the option value surface when K = 6. The
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Figure 3: Free boundaries in the base case for different values of K

value-matching and smooth-pasting conditions are satisfied by the numerical solution as

the option values in the investing and waiting regions meet smoothly at the free boundary.

Also, the option value is non-negative for all values of (V,C). A comparison of the option

value and the NPV indicates that the option value is greater than the NPV for all values

of (V,C), thereby reflecting the fact that real options analysis considers also the value of

waiting and the possibility to vary the investment rate. By contrast, the now-or-never NPV

approach ignores this managerial flexibility. As in Figure 1, we can examine in Figure 2

how much the option value and now-or-never NPV are worth for a given combination, e.g.,

(V,C) = (40, 15), along with the respective investment thresholds. We also notice that the

difference between the option value and the NPV converges to zero as V increases and C

decreases. This happens because then the investment program will be completed almost

certainly at full pace yielding, on average, a total payoff that equals the NPV.

Figure 3 shows the investment thresholds for various values of K in the base case. The

threshold curves are increasing in C for each value of K because the value of the finished

project is decreasing in C. Also, in the base case, the investment thresholds increase in
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K. This is due to two reasons. First, the remaining initial investment cost increases in

K. Second, the uncertainty over the value of the payoff when the investment program is

completed is increasing in K because a large value of K indicates that the minimum time-

to-build is large as well. We discuss this feature further in Section 4.2.2. In summary,

Figure 3 can be used as a decision rule for the PEV aggregator: since we have implicitly

assumed that the investor can observe V , C, and K at each point in time, she may use the

investment thresholds at different values of K as a guide on how to proceed optimally with

the construction of the charging infrastructure.

4.2 Comparative Statics

4.2.1 Sensitivity with Respect to the Growth Rate

As our main motivation is to gain insight into how the inclusion of uncertain discounted

operating costs of the completed project affects the investor’s choices, we first discuss the

mechanics behind the effects of αC on the investor’s optimal behaviour in detail. Figure 4

illustrates the investment thresholds at different values of K for various values of αC while

holding the other parameters the same as in the base case. For the smaller values of K, i.e.,

when the remaining time to build is negligible, the effect of αC on the results is monotonic: a

decrease in αC shifts the investment threshold up and, thus, increases the incentive to wait.

Intuitively, lowering αC increases the value of the option to wait as the expected discounted

operating cost upon completion of the project will be lower. This is precisely the finding of

[7], i.e., a model without time to build and an NPV that depends homogeneously on two

stochastic processes.10

When K � 0, the time-to-build aspect is non-negligible and may have a subtle effect

on how the growth rate affects the optimal investment threshold. In particular, Figure

4 illustrates that when αC decreases from 0.08 to -0.10, V ∗(C,K = 6) increases, but as

αC decreases further, V ∗(C,K = 6) actually decreases. This non-monotonic impact of αC

on V ∗(C,K = 6) is more pronounced when the discounted operating costs are higher. In

10It can be shown numerically that V ∗(C,K) converges to the analytical results of [7] when K → 0.
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Figure 4: Sensitivity of the free boundary with respect to αC

order to explain this seemingly counterintuitive result, we first examine the cases with low

discounted operating costs: in Figure 4, as αC is decreased, V ∗(C,K = 6) increases for low

values of C. This effectively recovers the result of [6] in which an increase in αV (equivalent

to a decrease in αC here) increases V ∗(C,K). Indeed, an increase in the growth rate of the

discounted revenues increases the incentive to wait both due to (i) a higher expected NPV

of a completed project and (ii) a lower value of flexibility related to managing the rate of

construction during the time to build. Likewise, in our model, for low values of C, a decrease

in αC will increase V ∗(C,K) due to the same two dynamics.

However, for high values of C, the value of flexibility over the construction rate increases
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with decreases in αC . Thus, if αC is low enough, then the increase in the value of flexibility

during the time to build will more than offset the increased incentive to wait for a higher

expected NPV, thereby reversing the results of [6]. This is seen in the bottom two panels of

Figure 4 as V ∗(C,K = 6) becomes lower when αC decreases for high C.

The results in Figure 4 can also be viewed in terms of the impact of K on the investment

threshold. First, for low C, the threshold increases with K regardless of the value of αC .

Intuitively, a higher K increases the incentive to wait because it increases the required net

discounted revenues to cover the investment cost. Moreover, since low C results in a negligible

value of flexibility over managing the investment program optimally, it is unaffected by an

increase in K. Therefore, an increase in K increases the investment threshold for low C for

any given αC .

When C is relatively high, the impact of K on the investment threshold depends on the

growth rate of the discounted operating costs: for a high (low) αC , the threshold increases

(decreases) with K. As with low C, a higher K leads to an increase in the threshold for high

αC as there is an incentive to wait longer to cover the higher investment costs without a

substantial increase in the value of flexibility over managing the rate of construction. Indeed,

when αC is high, the expected payoff from exercising the option to obtain the project at time

t+ s given information at time t, Ft, is E[(V −C)t+s|Ft] = Vte
αV s−CteαCs, which is “out of

the money” for high αC . By contrast, this option becomes “in the money” for low αC when

C is high. Thus, an increase in K increases the duration during which the PEV aggregator

has flexibility over managing the rate of construction.

The effect of αV on the results is similar to that of αC . An increase in αV increases the

benefits of waiting and shifts the investment threshold V ∗(C,K = 0.01) upwards. Again,

the investment thresholds at larger values of K are located in a way that once the first

initial investment is made, the investor will, on average, be able to invest continuously at

the maximum rate up to the end of the investment program. We should also note that

the investment thresholds grow without boundaries as αV → ρ (assuming that αV > αC)

since then the long-term capital rate of return of the payoff converges to ρ and the cost of
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waiting diminishes. Finally, as ρ represents the cost of waiting in our model, the effect of an

increase in ρ is to shift the investment threshold down for all values of K and, thus, hasten

investment.

4.2.2 Sensitivity with Respect to the Time to Build

As our explanation for the results above relies on the logic that the investor holding the

option considers both the expected evolution of V − C during the investment period and

the optimal investment policy at smaller values of K when making decisions on whether to

invest or wait, we would assume that the results of the comparative statics above would be

amplified for smaller values of k since this would imply a longer time to build. Consider,

for example, the case where αC < 0 and C is expected to decrease while V is expected to

increase. Now, if we decrease the maximum investment rate, then we expect that it is optimal

to start investing at even higher values of C given a value of V since the minimum time to

build is longer, thereby implying that the expected decrease of C during the investment

period is larger as well. By generalising the logic above, we would assume that a decrease

in k would amplify the results of the comparative statics above. Motivated by this, we will

next analyse the results of the same comparative statics as above using a smaller maximum

investment rate, k = 0.5. This doubles the minimum time-to-build for every value of K in

comparison to the value k = 1 used above.

Figure 5 shows the results of the comparative statics with respect to αC when k = 0.5

and the other parameters are the same as in the base case. We note that our intuition is

correct as the smaller value of k amplifies the effects of αC on the investment thresholds.

Note that the investment thresholds are not affected by the change in the value of k when

K = 0.01 since then the payoff can be received almost instantly. The reason why the other

thresholds react more dramatically to changes in αC than in the case above is that now the

investor needs to look further ahead in time when making decisions for larger values of K

because the minimum time-to-build is longer.

An interesting result occurs in the lower right case of Figure 5 where αC = −0.20. For
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Figure 5: Sensitivity of the investment threshold with respect to αC when k = 0.5

large values of C and K, it is optimal to invest even if V − C < 0. However, this is

well explained by the expected increase of V − C during the investment program. This

does not contradict the boundary condition (6a) because that refers to whether or not the

infrastructure is accepted upon completion of construction. The result in Figure 5 pertains to

proceeding or not with construction at some intermediate phase. Indeed, it may be profitable

to do so when (i) sufficient time remains to build and (ii) discounted operating costs are

expected to decrease. Also, for each value of C, the NPV rule in this extreme situation is to

invest at a smaller value of V than the real options rule suggests. The observation applies

generally: the real options investment threshold is always larger than the now-or-never NPV

threshold. This strengthens our explanation for why it might be optimal to invest even if the
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current value of the payoff is negative since the fact that the real options threshold is larger

than the NPV threshold in all situations ensures that the average value of the investment

program executed by the real options rule is positive in all cases.

4.2.3 Sensitivity with Respect to the Volatility
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Figure 6: Sensitivity of the investment threshold with respect to σV and σC when αV =
αC = 0.04, k = 1.00, and ρ = 0.08

Figure 6 indicates the sensitivity of the investment threshold with respect to the volatili-

ties when the other parameters are as in the base case.11 The upper graph shows how much

the threshold changes given a value of (C,K) as σV changes from 0.04 to 0.20 and σC = 0.14,

and the lower graph shows how much the threshold changes as σC changes from 0.04 to 0.20

and σV = 0.14. Both graphs reveal that the change in the threshold, i.e., ∆V ∗(C,K), is

positive for all values of (C,K). In fact, the observation holds for all tested parameter val-

ues: V ∗(C,K) is increasing in both σV and σC in all situations. This reflects the well-known

11The lines in the graphs of this subsection are linearised to smooth out noise due to the numerical method
used.

23



property of options with convex payoffs: since the payoff max{V − C, 0} is bounded from

below, an increase in the volatility of V − C increases the benefits of waiting and, thus,

increases the investment threshold [6, 7].

A second observation common to both of the graphs in Figure 6 is that ∆V ∗(C,K) is

increasing in C for all values of K. Our interpretation is that this is due to the assumption

that V and C follow GBMs. This assumption implies that the standard deviations of dV

and dC are increasing in σV and σC by Eqs. (1a)-(1b). Therefore, the spread of the future

values of the payoff max{V − C, 0} is more sensitive to the volatilities of V and C when

the values of V and C are large. Thus, the sensitivity of the threshold with respect to the

volatilities is increasing in C given a value of K since for a large value of C the value of V

needs to be large as well in order to investment to occur as V ∗(C,K) is always increasing in

C.

In the upper graph of Figure 6, ∆V ∗(C,K) is increasing in K given a value of C, while

in the lower graph, ∆V ∗(C,K) is slightly decreasing with respect to K given any positive

value of C. The evolution of ∆V ∗(C,K) as a function of K given a value of C depends on

other parameters than the volatilities as well. For example, Figure 7 displays ∆V ∗(C,K)

when αV = 0.04 and αC = −0.20. In this case, ∆V ∗(C,K) is decreasing in K for all values

of C when σC increases. Also, when σV increases, ∆V ∗(C,K) is decreasing in K for large

values of C.

Next, we consider how the distribution of the total volatility of V − C among the

two variables affects the investment threshold. By total volatility, we mean the value of

σtotal =
√
σ2
V + σ2

C . Although σtotal is not an accurate measure of the standard deviation of

d(V − C) = dV − dC as this depends on the value of (V,C), we will use σtotal as a useful

approximation of the volatility of V − C. Then, the question is that how does the invest-

ment threshold change as the value of (σV , σC) is varied so that σtotal remains constant.

Figure 8 depicts such a sensitivity analysis when (σV , σC) evolves according to the chain

(0.20, 0.00) → (0.14, 0.14) → (0.00, 0.20), during which σtotal = 0.20, and αV = αV = 0.04,

k = 1.00, and ρ = 0.08. The figure shows that for large values of K, V ∗(C,K) shifts down
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Figure 7: Sensitivity of the investment threshold with respect to σV and σC when αV = 0.04,
αC = −0.20, k = 1.00, and ρ = 0.08

as σV decreases and σC increases. However, when K = 0.01, the investment threshold does

not change visibly as (σV , σC) is varied so that σtotal remains constant, which is consistent

with the result of [7]. The behaviour of V ∗(C,K) with respect to the distribution of the

volatilities described above is common to all tested parameter values. Hence, we conclude

that when K >> 0, a situation in which most of the uncertainty is due to σV leads to higher

investment thresholds than a situation in which most of the uncertainty stems from σC .

Still, the threshold V ∗(C,K → 0), which governs the completion of the investment program,

depends only on σtotal.

5 Conclusions

Given the trend towards deregulation of many infrastructure industries in OECD countries

as well as the involvement of the private sector in infrastructure investment in emerging

economies, policymakers and the private sector need appropriate valuation methods to sup-
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Figure 8: Sensitivity of the investment threshold with respect to the distribution of σtotal
when αV = 0.04, αC = 0.04, k = 1.00, and ρ = 0.08

port decision making. In particular, investors in infrastructure projects with long lead times

often face multiple sources of uncertainty and have the flexibility to control the rate of their

investment program. In this paper, we propose a method to compute the option value and

the investment thresholds for an investor who sequentially invests in project opportunity

whose payoff is a function of two stochastic variables. The sequential nature of the invest-

ment process is modelled by allowing the investor to choose the rate at which to invest

continuously in time. As the investment rate is assumed to be bounded between zero and a

positive constant, the investor cannot obtain the payoff instantly but has to wait for at least

a minimum time to build.

By enhancing the time-to-build model of [6], we develop an approach to handle infras-

tructure investment in a deregulated paradigm using the example of a PEV aggregator

building charging infrastructure. In addition to the methodological innovation of accounting

for multiple sources of uncertainty, we also demonstrate how conventional results from the

real options literature are partially reversed:
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1. A lower growth rate for the discounted value of the completed project’s operating costs

reduces the investment threshold in contrast to the analogous result from [6].

2. The investment threshold may decrease with the remaining required investment when

the discounted value of the completed project’s operating costs are high.

3. It may be optimal to proceed with investment even when the net discounted cash flows

of the completed project are negative.

We choose Vt and Ct to represent the discounted cash in- and outflows of the completed

project, respectively. We also assume that the value of the completed project at time t is

max{Vt−Ct, 0}. However, the stochastic variables could have other interpretations depending

on which particular investment situation is of interest. Also, the payoff could be generally

any function of Vt and Ct in our framework.12 In this sense, our model is general and can be

used to analyse multiple investment situations that meet the assumptions about the nature

of the investment process and the stochastic variables.

One of the assumptions of the model is that the investor can decide continuously on

whether to invest or wait in time. As discussed above, this assumption might be an ap-

propriate approximation in some situations. However, if the initial investment decision is

completely irreversible, then our model does not apply. Therefore, the exercise of building

and solving a two-factor model in which the investment decision is modelled following the

lead of [18] could be interesting. In this case, the effect of the volatilities of the processes

that Vt and Ct follow on the results could be in contrast to that in our model. In addition,

it would be interesting to see whether the effect of the drift rates would be similar to that

in our model: for even if the initial investment decision is made completely irreversible, the

investment lag implies that a rational investor considers how the payoff is expected to evolve

during the lag when making investment decisions. Finally, our model could be extended to

incorporate other types of managerial flexibilities, e.g., options to size the capacity of the

completed project or to abandon it during the construction phase, and regime-switching or

12We do not take a stance on which conditions the payoff function should meet in order for the problem
to have a solution.
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stochastic-volatility processes instead of GBMs to reflect the fact that discounted revenues

and operating costs of the completed project may not be adequately approximated by the

market values of any existing assets.
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Appendix A Numerical Solution Method

We first apply the transformation F (V,C,K) = e−ρ
K
k G(X, Y,K), where X = lnV and

Y = lnC, to the PDE given by Eq. (5a) in order to modify the PDE to a simpler form and

to ensure numerical stability. After the transformation, the PDE in R is:

1

2
σ2
VGXX +

1

2
σ2
CGY Y +

(
αV −

1

2
σ2
V

)
GX +

(
αC −

1

2
σ2
C

)
GY − kGK − keρ

K
k = 0 (10)

Note that the coefficients of the PDE are now constant. After the transformation, the

boundary conditions that the solution for Eq. (10) must satisfy are:

G(X, Y, 0) = eXY , (11a)

G(X∗(Y,K), Y,K)

GX(X∗(Y,K), Y,K)
= 1

β(K)
(11b)

G(X∗(Y,K), Y,K)

GY (X∗(Y,K), Y,K)
= 1

η(K)
(11c)

where β(K) and η(K) solve Eq. (8) for each value of K.

Since we will solve the PDE numerically in a cubic grid, we need some additional bound-

ary conditions that apply at the boundaries of the grid. For this purpose, we assume the

following second-order boundary conditions:

lim
X→∞

GXX = 0 (12a)

lim
X→−∞

GXX = 0 (12b)

lim
Y→∞

GY Y = 0 (12c)

lim
Y→−∞

GY Y = 0 (12d)

These boundary conditions are chosen since they are known to work well with many financial

options [25] as well as for our model. We will from now require that these conditions are

approximately met at the boundaries of the lattice.

Let us denote G(i∆X, j∆Y, `∆K) = G`
i,j, where i ∈ {imin, imin + 1, ..., imax}, j ∈
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{jmin, jmin + 1, ..., jmax}, and ` ∈ {`min, `min + 1, ..., `max}. ∆X, ∆Y , ∆K, and the min-

imum and maximum indices are predetermined constants that govern the dimensions of the

lattice.13 We use the following finite-difference approximations for the partial derivatives of

G:

GX(i∆X, j∆Y, `∆K) =
G`

i+1,j−G`
i−1,j

2∆X
(13a)

GY (i∆X, j∆Y, `∆K) =
G`

i,j+1−G`
i,j−1

2∆Y
(13b)

GXX(i∆X, j∆Y, `∆K) =
G`

i+1,j−2G`
i,j+G`

i−1,j

(∆X)2 (13c)

GY Y (i∆X, j∆Y, `∆K) =
G`

i,j+1−2G`
i,j+G`

i,j−1

(∆Y )2 (13d)

GK(i∆X, j∆Y, `∆K) =
G`+1

i,j −G
`
i,j

∆K
(13e)

By inserting the approximations above in the transformed PDE given by Eq. (10), we obtain

the following difference equation:

G`+1
i,j = a+G

`
i+1,j + a−G

`
i−1,j + b+G

`
i,j+1 + b−G

`
i,j−1 + cG`

i,j − n` (14)

where

a+ = ∆K
2k∆X

(
σ2
V

∆X
+ αV −

σ2
V

2

)
(15a)

a− = ∆K
2k∆X

(
σ2
V

∆X
− αV +

σ2
V

2

)
(15b)

b+ = ∆K
2k∆Y

(
σ2
C

∆Y
+ αC −

σ2
C

2

)
(15c)

b− = ∆K
2k∆Y

(
σ2
C

∆Y
− αC +

σ2
C

2

)
(15d)

c = 1− σ2
V ∆K

k(∆X)2 −
σ2
C∆K

k(∆Y )2 (15e)

n` = ∆Keρ
`∆K
k (15f)

If the lattice point considered is on the lattice boundary, then we discretise the boundary

conditions given by Eqs. (13a)–(13e). Subsequently, the discretised boundary conditions can

13imin and jmin will be negative in order to obtain option values near the zero border in the (V,C)-world.
The value of `min will be zero.
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be inserted into Eq. (14) to compute the option value at the lattice point.

In terms of the computational method, first we calculate the values of G when ` = 0

using Eq. (11a). Next, we calculate the values of option when ` = 1 using Eq. (14) and the

discretised versions of boundary conditions (13a)–(13e). Now that we know the preliminary

option values at ` = 1, the next task is to find the investment threshold. For this, we use

boundary conditions (11b), (11c), and (8). By combining these conditions, the following

equation must be met on the investment threshold:

1

2
σ2
V

GX

G

(
GX

G
− 1

)
+

1

2
σ2
C

GY

G

(
GY

G
− 1

)
+ αV

GX

G
+ αC

GY

G
− ρ = 0 (16)

Our strategy is then to evaluate the left-hand side of this equation at every lattice point for

` = 1 by using the finite-difference approximations in Eqs. (13a) and (13b).14 The location

of the investment threshold given a value of j is then the pair (i, j), for which the absolute

value of the left-hand side of Eq. (16) is the smallest in i ∈ {imin + 1, imin + 1, ..., imax− 1}.15

After we have numerically solved for the free boundary for ` = 1, we can obtain the values

of constants A(∆K), β(∆K), and η(∆K) using Eqs. (11b) and (11c), the value-matching

condition in Eq. (6d), the functional transformation, and the form of the analytical solution

in the waiting region given by Eq. (7). We solve for the values of these constants at each

investment threshold for ` = 1 and take the averages of these values to determine the final

values.

After having calculated the initial option values, the placement of the investment thresh-

old, and the constants of the analytical solution in the lower region, we should fill the waiting

region for ` = 1 with the values given by the analytical solution before repeating the pro-

cedure above for ` = 2. However, as this proves to cause numerical instability, we update

the option values after the initial option values and the investment thresholds have been

determined for all values of `. Once the iteration above has been completed for all values of

` and the option values in the waiting region are updated, the final solution for the investor’s

14The locations of the investment threshold at ` = `min and ` = `max are extrapolated.
15Here, we implicitly assume that the investment threshold is not at imin or imax for any value of Y or

K. This assumption is met if the lattice dimensions are chosen properly.
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problem is obtained by using the functional and variable transformations in the opposite

direction than what was initially done.
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