
PHYSICAL REVIEW E 95, 062310 (2017)

Spectral partitioning in equitable graphs

Paolo Barucca
Department of Banking and Finance, University of Zurich, Zurich, Switzerland

and London Institute for Mathematical Sciences, London W1K 2XF, United Kingdom
(Received 24 October 2016; revised manuscript received 24 May 2017; published 30 June 2017)

Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but
can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e.,
random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular,
the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay’s
law for random regular graphs is found analytically to apply also for modular and bipartite structures when
blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed
and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in
equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution
of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds
and resolution limits in stochastic block models.
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I. INTRODUCTION

The recent developments of network theory driven by
the increasing number of applications in biology, ecology,
social systems, economics, and finance [1,2] have stimulated
theoretical research in graph theory. In particular, the need
to establish the statistical significance of various network
metrics and properties in real systems has ignited new results
in statistical inference [3], spectral theory of random graphs
[4–9], and ensembles of exponential random graphs [10].

In most networks, elements are divided into separate
groups, and their behavior will often depend on this division.
Finding an optimal partition then allows us to better understand
the mesoscopic dynamics of the system and to obtain a
more efficient reduced representation in terms of interacting
groups. As a consequence, community detection has become
a pivotal topic in network science. Stochastic block models
(SBM) [11,12] have been introduced to understand, model,
and analyze communities and have allowed theoretical insight
into the performance and limitations of graph partitioning
algorithms. Recently, it has been shown that recovery of
communities in SBM displays a detectability transition in the
sparse regime; i.e., when the edges are few, communities can
be too weak to be identifiable [3,13]. Equitable graphs, the
family of graph ensembles analyzed in this work, represent
block-regular counterparts of the long-studied SBM: In SBM,
edges are drawn independently with a probability depending
on the assignment of the two terminal nodes, which results in
a Poisson distribution of the number of edges between a pair
of groups; in equitable graphs, the number of intrablock and
interblock edges are fixed for each node and the graph is the
result of a random matching between such edges. This class of
random graph models has been analyzed in Ref. [14] in a dense
approximation, in Ref. [15] under the name equitable graphs,
and under the name microcanonical stochastic block model
in Ref. [16]. In Ref. [17], it has been shown that equitable
graphs with two equally sized communities have a unique
partition almost surely in the large size limit, that an efficient
algorithm can be derived in a large region of the ensemble’s
parameters, and that full recovery of communities can be

obtained starting from a group assignment with an extensive
overlap with the original partition. In this paper, spectral theory
of random graphs is used to disentangle noise and signal in
equitable graphs, and an efficient algorithm for full recovery of
communities is proposed. Following the derivation in Ref. [4],
a finite set of nonlinear equations for the spectral density is
obtained, analogously to Ref. [15]. The solution is found to
obey the expected Kesten-McKay’s law for regular graphs,
allowing us to analytically predict the failure of naive spectral
partitioning based on the second eigenvector of the adjacency
matrix.

The paper is organized as follows: In Sec. II, equitable
graphs are defined and the inference problem is introduced.
In Sec. III, a brief introduction of the cavity approach to
the spectral density is provided and the general expression
for the cavity variances of equitable graphs is derived. In
Sec. IV, the expression is solved for modular and bipartite
two-community structures and its consequences on spectral
clustering are outlined. A general methodology for the block
structure inference in equitable graphs based on eigenvectors’s
extendedness is introduced to overcome the limitation of
naive spectral partitioning. Numerical evidence of all results
is presented.

Finally, in Sec. V, the relevance of the results with respect
to open questions in theory of random graphs is discussed,
and possible directions of research both for analytical results
in spectral theory and for spectral methodologies for graph
partitioning are outlined.

II. EQUITABLE RANDOM GRAPHS

An ensemble of equitable graphs is defined by a set
of vertices V , a partition B = {Ba}ma=1 dividing V in m

nonoverlapping sets of vertices, also called blocks, and a
connectivity matrix c, a m × m matrix of non-negative integer
numbers [16]. For the sake of simplicity in the following, I
will refer to block Ba with its corresponding integer index a.
For later use, I also introduce for all nodes the assignments gi ,
such that for each node i holds i ∈ Bgi

.
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Each graph G = (V,E) of a random regular block model
must satisfy the constraints

∀Ba,Bb ∈ B ∀i ∈ Ba |{(i,j ) ∈ E | j ∈ Bb}| = cab; (1)

i.e., the total number of edges of node i in block Ba with a
vertex in Bb equals cab, for every vertex i and every pair of
blocks Ba and Bb. Equation (1) means that all nodes in a given
block share the same connection pattern, i.e., number of links
with each other block. This condition is stronger than a simple
regularity within blocks, i.e., where all nodes in a block only
share the same total number of links. In the case of blocks
of different sizes, |Ba| = Na such that

∑m
a=1 Na = |V |, then,

for the system to have solution, the connectivity matrix c and
block sizes must obey the relations

∀Ba,Bb ∈ B Nacab = Nbcba; (2)

i.e., the total number of edges between blocks a and b must be
uniquely defined.

All graphs satisfying (1) have equal probability in the
ensemble.

If I introduce the block degrees ki→a = |{(i,j ) ∈ E|j ∈
Ba}|, (1) can be reformulated as follows: The vector of block
degrees of each node in a given block equals the row of the
connectivity matrix corresponding to the block index, i.e., ∀i ∈
Ba ki→Bb

= cab.
Both stochastic block models and equitable graphs are

based on an analogous set of parameters, i.e., block assign-
ments and connectivity matrix; nevertheless, there is no trivial
mapping between stochastic block models, which are defined
via link probabilities and their regular counterpart, which are
defined via Eq. (2). A useful analogy to make sense of their
relationship is the following: Stochastic block models [11]
correspond to random regular block models as the Erdos-Renyi
random graphs correspond to the k-regular random graphs, in
the sense that in both cases the randomness which is eliminated
from the ensemble is the one given by the (block) degree
distribution.

A different ensemble of random graphs with a block
structure is the regular stochastic block models, studied in
Refs. [3,18], where the probability measure is the same as in
stochastic block models but a regularity constraint is imposed
to all nodes.

Moreover, the form of the constraints in (2) allow edges
to be drawn independently for each pair of blocks, and,
for the case of blocks of the same size, it is possible to
sample equitable graphs simply by assembling regular graphs:
Between each pair of blocks the edges are drawn according to a
k-regular graph, where the value of k equals the corresponding
element of the connectivity matrix, and then the total set of
edges is given by the union of the sets of edges for each of the
m regular graphs and m(m − 1) biregular graphs.

In the latter, the focus will be entirely on the representation
of G in terms of its adjacency matrix A = (aij )Ni,j=1, where

aij =
{

1, if (i,j ) ∈ E

0, otherwise ,

which allows computation of graph properties in algebraic
form and can also be used to visualize the inference prob-
lem associated with the graph [Figs. 1(a) and 1(b)]: When

FIG. 1. (a) Adjacency matrix of a random regular block model
graph with a community structure where no block structure seems
to be present even though the connectivity matrix reads, c =
[16, 4; 4, 16]. (b) Same graph but rows and columns of the adjacency
matrix are sorted according to the block structure, which becomes
evident.

parameters are unknown, there is no a priori criterion to sort
indices and the nonzero elements of the adjacency matrix do
not display any specific block structure. Once the parameters
are known, rows and columns can be sorted according to the
block indices and the structure arises in a clear manner.

A. The inference problem

Given an equitable graph G, the inference problem consists
in reconstructing the parameters, i.e., the partition B and the
connectivity matrix c, that generated the graph.

I study inference on this ensemble of random graphs
because it allows analysis of the performance of different
algorithms in the absence of the noise coming from degree
heterogeneity. In SBM, there exists a sharp transition in
the assortivity parameter, first conjectured in Ref. [13] and
later proved rigorously in a series of works that demonstrate
both that asymptotically (i) below such threshold, recovery
is information theoretically impossible [19] while (ii) above,
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an efficient algorithm finds a partition with positive overlap
with the original one [20,21]. In this work, it is shown that the
regularity condition, as also found in Ref. [17], substantially
changes the detectability properties of the ensemble.

III. SPECTRAL THEORY

In this section, the spectral properties of random regular
block model graphs with blocks of same size are investigated.
Analytical results are presented, both for the discrete and the
continuous part of the spectrum.

A. Discrete part: The signal

Here it is shown how isolated eigenvectors of the adjacency
matrix entail exact information on the block structure of
equitable graphs. Starting from the secular equation

N∑
j=1

aijuj = λui, (3)

an ansatz of block symmetry can be made such that nodes in
the same block share the same eigencomponent, i.e., for all i

is hypothesized that ui = ugi
. Since the number of neighbors

between different groups is fixed, it follows that

m∑
b=1

cabub = λua, (4)

which yields the useful conclusion, also pointed out in
Refs. [15,17] that each block-symmetric eigenvector of the
adjacency matrix corresponds to an eigenvector of the connec-
tivity matrix c, and vice versa. These eigenvectors correspond
to a finite set of nondensely distributed, at most finitely
degenerate eigenvalues. Generally, they can be positioned
everywhere in the spectrum and when the block structure is
particularly weak they will lie within the bulk of the spectrum.
I will refer to them as the community eigenvectors.

B. Continuous part: The noise

In this paragraph, statistical physics techniques are used to
compute the bulk of the spectrum of the adjacency matrices of
equitable graphs. The derivation is entirely equivalent to the
one already found in Ref. [15]; here I simply report it in terms
of cavity variances [4], for the reader’s convenience. Given an
ensemble of N × N symmetric matrices, the set of eigenvalues
of a given adjacency matrix A is denoted by {λA

i }Ni=1. The
corresponding empirical spectral density is defined as

ρ(λ; A) = 1

N

N∑
i=1

δ
(
λ − λA

i

)
, (5)

which satisfies the identity [22]

ρ(λ; A) = 2

π
lim

ε→0+

1

N
Im

[
∂

∂z
lnZ(z; A)

]
z=λ−iε

, (6)

where Im[z] denotes the imaginary part of z and where
lnZ(z; A) is obtained via Gaussian integrals as in Ref. [22],

i.e.,

Z(z; A) =
∫ [

�N
i=1

dxi√
(2π )

e−H (x;z,A)

]
(7)

with H (x; z,A) = z
2

∑N
i x2

i − 1
2

∑N
i,j Aij xixj . Such formula-

tion yields an expression for the spectral density of any graph
of the ensemble in terms of the variances of the Gaussian
variables introduced in (7),

ρ(λ; A) = 1

π
lim

ε→0+

1

N
Im

[
N∑
i

〈
x2

i

〉
z

]
z=λ−iε

. (8)

In principle, computing variances in (8) is not easier than
diagonalizing the adjacency matrix but for sparse graphs an
approximation method has been proposed that holds exactly
in the large N limit, the cavity method [8,23].

In the cavity method, conditional probability distributions
are introduced for each node and are parametrized by specific
variables, i.e., the cavity variances 	

(j )
i , each representing the

variance of xi if its neighbor j is not taken into account.
With such approximation, the following set of self-consistent
equations can be derived [4]:

	
(j )
i (z) = 1

z − ∑N
l∈∂i\j A2

il	
(i)
l (z)

, (9)

where ∂i is the set of neighbor of node i, i.e., ∂i = {e ∈
E|i ∈ e}. From cavity variances it is possible to compute node
variances via the equations

	i(z) = 1

z − ∑N
l∈∂i A

2
il	

(i)
l (z)

, (10)

which lead to compute the spectral density ρ(λ; A).
In the case of equitable graphs, the ansatz of block symmetry

can be made for the cavity variances:

	
(j )
i (z) = 	

(gj )
gi

(z). (11)

This ansatz, also made in Ref. [15], allows us to perform
the summation in the denominator, that consistently turns out
to be independent from the individual node, but only from its
block, thus reducing the set of equations for cavity variances
from a size of order N (in the sparse case) to the following set
of m2 equations:

	(b)
a (z) = 1

z − ∑m
c (cac − δbc)+	

(a)
c (z)

, (12)

where (x)+ = max(x,0). Block variances can then be com-
puted,

	a(z) = 1

z − ∑m
c cac	

(a)
c (z)

, (13)

and finally the spectral density,

ρ(λ) = 1

πm

m∑
a=1

Im[	a(z)]z=λ−iε . (14)

IV. RESULTS

In this section, I derive the threshold at which naive spectral
partitioning fails and introduce a general algorithm based on
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the inverse participation ratio (IPR) to solve the inference
problem in equitable graphs with two communities.

A. Modular structures

Graph partitioning, and in particular spectral bisection, is
a long-standing problem in graph theory [24–27]. Here for
the modular case, two homogenous blocks are analyzed. The
blocks share the same size and the connectivity matrix reads

c =
(

cin cout

cout cin

)
, (15)

where cin and cout are non-negative integers such that cin > cout.
In this case, all nodes in this ensemble of equitable graphs

share the same total degree, c = cin + cout, so that the ensemble
is a subset of c-regular graphs, also called the regular stochastic
block model [17]. For later use, I also define r = cin/cout, and
ε = 1/r is a quantity that has been used to characterize the
strength of the assortative structure [13].

Assortative structures have been widely investigated with
various approaches: spectral methods [28], modularity maxi-
mization [29], belief propagation [13], Markov-chain Monte
Carlo methods [30], and other heuristic algorithms [31].
Stochastic block models have been shown to display a
detectability transition [13,20].

In this homogenous case, cavity equations can be further
simplified: Cavity variances associated to the two blocks can
be assumed to be equal, 	

(b)
1 = 	

(b)
2 for b = 1, 2, and given

the form of the equations, by inspection, it is also possible to
look for fully symmetric solutions such that 	(b)

a = 	(cav) for
all (a,b). This ansatz yields

	(cav)(z) = 1

z − (cout + coutr − 1)	(cav)
. (16)

Now the equation is identical to the one derived in Ref. [4],
and analogously carrying out the algebra, the spectral density
found is Kesten-McKay’s law [32], as found in Ref. [15]:

ρ(λ) = c
√

4(c − 1) − λ2

2π (c2 − λ2)
, (17)

where c = cout(1 + r) (Fig. 2).
Equation (17) yields the maximal eigenvalue in the bulk,

λ+
b = 2

√
cin + cout − 1. Community eigenvalues can be easily

computed via the characteristic polynomial:

(rcout − λ)2 − c2
out = 0. (18)

The first eigenvalue λmax equals the total connectivity c and
its corresponding eigenvector is constant and uninformative.
On the other hand, the second community eigenvalue, λcom =
cin − cout, is informative and its relationship with λ+

b is crucial
for the inference problem: When λcom > λ+

b it is simply the
second largest eigenvalue and its corresponding eigenvector
can be easily and fast computed, but when λcom < λ+

b then it
is no longer the second eigenvalue and its ranking becomes
unknown. This is exactly what is found in the numerical
simulation in Ref. [14], which are based on the modularity
matrix, Q.

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λ

ρ(
λ)

FIG. 2. (Modular case). Spectral density for c = 3 and r = 2
corresponds to Kesten-McKay’s law for a k-regular graph with k = 3.
Squares come from numerical diagonalization of a sample of 100
equitable graphs of size N = 1000.

Such transition occurs when λcom = λ+
b , which corresponds

to the critical line in the plane c − r (Fig. 3):

rc = c + 2
√

c − 1

c − 2
√

c − 1
. (19)

Below the critical line, the community eigenvector gets
lost in the bulk and a criterion is needed to identify the right
eigenvector.

The solution to this detectability problem in equitable
graphs can be found by exploiting the information about the
eigenvectors. In fact, the distribution of the eigencomponents
of the community eigenvector and of bulk’s eigenvectors turn
out to be significantly different: From the block-symmetry
ansatz, the eigenvector corresponding to λcom is more extended
than the typical eigenvector of the bulk.

2 4 6 8 10
2

4

6

8

10

12

14

16

c

r

FIG. 3. Critical lines in the plane (c, r) for equitable graphs (solid
line), two-block random regular graphs (dashed line), and SBM
(squared line). Above the solid line, standard spectral bisection works
for equitable graphs. Below the solid line, naive spectral bisection fails
but the IPR-based algorithm succeeds in full recovery.
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By looking at a measure of extendedness, such as the inverse
participation ratio (IPR) [18,33], it is possible to recognize
the informative community eigenvector, ucom

i , associated to
λcom. In fact, the normalized community eigenvector is block
symmetric and all its elements scale like 1/

√
N , i.e., ucom

i =
(δgi1 − δgi2)/

√
N . Consequently,

I4 =
N∑
i

(
ucom

i

)4 = N

2

2∑
a

(ua)4 = 1

N
, (20)

independently from r . The inverse participation ratio of
the community eigenvector is then 1/N while the random
eigenvectors in the bulk have an expected IPR of 3/N [34]
and a standard deviation of order N−3/2, so that the signal-to-
noise ratio grows with N1/2. Therefore, for large graphs, the
informative eigenvector remains distinguishable from a typical
eigenvector from the bulk.

Then, the inference problem should be solvable for all
values of r > 1, i.e., as long as the signal is actually present, by
searching for the most extended eigenvector of the adjacency
matrix A (Fig. 4), excluding the one associated with the
uninformative maximum eigenvalue. An analogous approach
was followed in Ref. [33] to solve the planted coloring model,
where color-symmetric eigenvectors were used to study the
convergence of belief propagation in a special class of nontree
graphs, obeying a specific regularity condition.

This eigenvector-based solution for the inference problem
would also solve the conundrum that arises in Ref. [14]: The
detectability threshold for the regular block model is found to
be twice as large (see Fig. 3) as the one for the stochastic
block model, even though the community structure in the
former is partially deterministic (1) while in the latter it is
entirely probabilistic. The detectability threshold in Ref. [14]
corresponding to (19) only holds for spectral partitioning
based on the second eigenvector of the adjacency matrix or,
equivalently, on the first eigenvector of the modularity one.

−5 0 5
0

1

2

3

4

5

6x 10
−3

λ

IP
R

FIG. 4. (Modular case). Inverse participation ratio for each eigen-
vector in the plane λ-IPR. The eigenvectors of the bulk all share an IPR
fluctuating around 3/N while the community eigenvector (square) has
an IPR equal to 1/N , which allows us to solve the inference problem
also when naive spectral partitioning fails. Parameters are c = 3
and r = 2.
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FIG. 5. (Modular case). Relative IPR divergence 	, for graphs
of increasing size, ranging from 64 to 8196, each averaged over 10
samples. The most extended random eigenvector in the bulk always
remains separate from the significant extended eigenvector associated
to the community structure. Parameters are c = 9 and r = 2.

This result is consistent with the one in Ref. [17], stating that
there exists a constant d > 0 such that, for cin > cout > d, the
corresponding graph G almost surely has a unique equitable
partition asymptotically. Together, these two results constitute
a solid basis for the general conjecture that equitable graphs
with two equally sized communities will always admit a full
and efficient recovery of the original partition simply as soon
as cin > cout > 0, whereas so far it has been rigorously proven
only for a limited region of parameters [17].

To validate numerically the performance of the IPR-based
algorithm on two-community equitable graphs, extensive
simulations were performed varying the connectivity, the
assortivity, and the size of the graph. In all cases considered,
the algorithm yields an exact recovery, as long as cin > cout.
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4

5

6x 10
−3

λ

IP
R

FIG. 6. (Bipartite case) Inverse participation ratio for each eigen-
vector in the plane λ-IPR. The eigenvectors of the bulk all share
an IPR fluctuating around 3/N while the community eigenvector
(square) has an IPR equal to 1/N . Parameters are c = 3 and r = 2.
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FIG. 7. (Bipartite case) Spectral density for cin = 1 and cout = 2,
corresponding to Kesten-McKay’s law for a k-regular graph with
k = 3. Squares come from numerical diagonalization of a sample of
100 equitable graphs of size N = 1000.

To quantify the robustness of the result, a measure of the
distance between eigenvectors’s statistics is introduced. IPRs
of all eigenvectors (excluding the trivial constant eigenvector
associated to the largest eigenvalues, λ1 = c) are ordered in
increasing order, e.g., I2

4 = 1/N � I3
4 � · · · . Then, the relative

IPR divergence, 	, is computed as the relative difference
between the second smallest IPR in the sequence, constituting
the most extended random eigenvector of the bulk and the
minimum IPR, associated to the eigenvector that gathers the
information on communities, i.e., 	 = (I3

4 − I2
4)/I2

4. Figure 5
shows how 	 grows with N , as fluctuations decrease, and then
remains finite for large N . Since the Gaussian eigenvectors of
the bulk have an average IPR of 3/N and the minimum possible
IPR is 1/N , the relative IPR divergence is upper bounded by
2 in the asymptotic limit.

B. Bipartite structures

In this paragraph, I focus on disassortative equitable graphs,
where edges within a block can be present but are always less
than edges towards the other block, i.e., cin < cout.

The connectivity matrix cab considered is the following:

c =
(

cin cout

cout cin

)
, (21)

where cin and cout are non-negative integers such that cout > cin.
The analysis is entirely analogous to the one put forward

for the assortative case (Fig. 6), once the appropriate parallels
are drawn: For large cout/cin the informative community eigen-
vector corresponds to the lowest eigenvalue, λcom = cin − cout,
and the critical line is defined by the condition λcom = λ−

b .
Also in this case the cavity equations admit a fully symmetric
solution for the variances that leads to Kesten-McKay’s law
for the spectral density (Fig. 7).

V. CONCLUSIONS

In this paper, equitable graphs [15] have been analyzed via
spectral graph theory and graph partitioning theory.

In particular, in the framework of equitable graphs, the pic-
ture of the detectability threshold for naive spectral clustering,
i.e., only using the eigenvector associated to the second largest
eigenvalue of the adjacency matrix, emerges distinctly, as well
as the crucial role of the statistics of eigenvectors. Strong
analytical and numerical evidence has been provided in support
of a new conjecture on the absence of an information-theoretic
detectability transition in two-community equitable graphs.
Insights from equitable graphs could be used to develop new
spectral methods based on both eigenvalues and eigenvectors
properties in other graph ensembles.

Future work will deal with the interpolation between
standard stochastic block models, regular stochastic block
models, and equitable graphs. Further studies will be dedicated
to the analysis of heterogeneous and multimodular equitable
graph, such as the equitable counterpart of planted partition
model, in relation to the problem of resolution limit [35] in
modularity maximization and to the generalization of the IPR
based algorithm.
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