
ar
X

iv
:1

50
7.

00
49

0v
2

 [
as

tr
o-

ph
.C

O
]

 2
0

Ju
n

20
16

ANNz2 - photometric redshift and probability

distribution function estimation using machine learning

I. Sadeh,∗† F. B. Abdalla∗‡ and O. Lahav∗

∗ Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
† DESY-Zeuthen, D-15738 Zeuthen, Germany

‡ Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa

ABSTRACT

We present ANNz2, a new implementation of the public software for photometric redshift (photo-z)
estimation of Collister and Lahav (2004), which now includes generation of full probability distribution
functions (PDFs). ANNz2 utilizes multiple machine learning methods, such as artificial neural networks
and boosted decision/regression trees. The objective of the algorithm is to optimize the performance of
the photo-z estimation, to properly derive the associated uncertainties, and to produce both single-value
solutions and PDFs. In addition, estimators are made available, which mitigate possible problems of non-
representative or incomplete spectroscopic training samples. ANNz2 has already been used as part of the
first weak lensing analysis of the Dark Energy Survey, and is included in the experiment’s first public data
release. Here we illustrate the functionality of the code using data from the tenth data release of the Sloan
Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. The code is available for download
at https://github.com/IftachSadeh/ANNZ .

Subject headings: Photometric redshifts; machine learning.

1. Introduction

1.1. Photometric redshifts

Redshifts, usually denoted by z, effectively provide a
third, radial dimension to Cosmological analyses. They
allow the study of phenomena as a function of distance
and time, as well as enable the identification of large
structures, such as galaxy clusters. The current and
next generations of dark energy experiments, such as
the Dark Energy Survey (DES),1 the Large Synoptic
Survey Telescope (LSST),2 and the Euclid experiment3

will collectively observe a few billion galaxies. Ide-
ally, redshifts may be measured with great precision
using spectroscopy. However, it is infeasible to obtain
spectra for such large galaxy samples. The success of
these imaging surveys is therefore critically dependent
on the measurement of high-quality photometric red-

1 See http://www.darkenergysurvey.org .
2 See http://www.lsst.org .
3 See http://sci.esa.int/euclid/ .

shifts (photo-zs). For instance, a benchmark of LSST
is to measure the dark energy equation of state pa-
rameter, w, with per-cent level uncertainty. This is
expected to be achievable with weak lensing tomogra-
phy (Hu 1999; Zhan and Knox 2006). However, it will
require a precision of ∼ 0.002 · (1 + z) in determination
of the systematic bias in the redshift.

This paper presents ANNz2. The latter is a new
implementation of the code of Collister and Lahav
(2004), denoted hereafter as ANNz1, which used artifi-
cial neural networks to estimate photometric redshifts.
ANNz2 is free and publicly available.4 The code has al-
ready been incorporated as part of the analysis chain of
DES (Sánchez et al. 2014). It has been shown to pro-
vide reliable photo-z estimates and to reduce system-
atic uncertainties and outlier contamination (Leistedt
et al. 2015). ANNz2 photo-zs were part of the first DES
weak lensing analysis (DES Collaboration 2015; Bon-
nett et al. 2015), are included in the first public data

4 See https://github.com/IftachSadeh/ANNZ .

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/154748283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1507.00490v2
https://github.com/IftachSadeh/ANNZ
http://www.darkenergysurvey.org
http://www.lsst.org
http://sci.esa.int/euclid/
https://github.com/IftachSadeh/ANNZ

release of the project,5 and are being used for upcoming
analyses.

The extensive work in the community on photo-zs
usually falls into two categories, papers on particular
methods (see below) and studies comparing existing
methods (Abdalla et al. 2011; Sánchez et al. 2014).
The new ingredient of the present paper is a new ap-
proach to contrast and combine different machine learn-
ing techniques, and to yield self-consistently a photo-z
probability distribution function (PDF). The introduc-
tion of PDFs has been shown to improve the accuracy of
Cosmological measurements (Mandelbaum et al. 2008;
Myers et al. 2009), and is an important new feature
compared to the previous version of the code. In addi-
tion to photo-z inference, it is also possible to run ANNz2
in classification mode. The latter is useful for analy-
ses such as star/galaxy separation and morphological
classification of galaxies. An example is provided as
part of the software package, but is not discussed in
the following.

In the next section we present a short overview of
the current methodology for deriving photometric red-
shifts, focusing on machine learning, and on the tech-
niques available through ANNz2. We then describe the
main methods implemented in the code for estimating
photo-zs and PDFs, and illustrate the performance us-
ing a toy analysis. A short quick-start guide for using
the code is presented in the appendix.

1.2. Methodology for photo-z estimation

The different approaches to calculate photo-zs can
generally be divided into two categories, template fit-
ting methods and training based machine learning.
Both types depend heavily on photometric informa-
tion, such as the integrated flux of photons in medium-
or broad-band filters, which are usually converted into
magnitudes or colours. The magnitudes serve as a
rough measurement of the underlying spectral energy
distribution (SED) of a target object, from which the
redshift may be inferred. A review of current photo-z
methods can be found in Abdalla et al. (2011); Hilde-
brandt et al. (2010). All methods require a spectro-
scopic dataset for training and/or calibration, the re-
quirements for which are discussed by Newman et al.
(2015).

Template fitting methods involve fitting empirical
or synthetic galaxy spectra with the photometric ob-

5 See http://des.ncsa.illinois.edu/releases/sva1 .

servables of an imaging survey, accounting for the re-
sponse of the telescope and the properties of the fil-
ters (Beńıtez et al. 2009; Mobasher et al. 2007). The
template spectra are generally derived from a small set
of SEDs, representing different classes of galaxies at
zero redshift. They also incorporate astrophysical ef-
fects, such as dust extinction in the Milky Way or in
the observed galaxy. Common template libraries are
the Coleman et al. (1980) SEDs (derived observation-
ally), or those of Bruzual A. and Charlot (1993) (based
on synthetic models).

Template methods rely on the assumption that the
SED templates are a true representation of the ob-
served SEDs. They depend e.g., on proper calibration
of the rest-frame spectra of galaxies, commonly per-
formed using spectroscopic data. In addition, the com-
position of the template library should correspond to
the population of galaxies which are fitted (for instance,
in terms of galaxy types and luminosities). Photo-
zs may be estimated by choosing the best-fitted SED
from the template library, usually derived using χ2 -
minimization (Bolzonella et al. 2000), where more ad-
vanced Bayesian priors can also be incorporated (Ben-
itez 2000).

On the other hand, empirical methods do not di-
rectly use physically motivated models. Instead, they
involve deriving the relationship between the photo-
metric observables and the redshift using a so-called
training dataset, which includes both the observables
and precise redshift information. The mapping between
observables and the output redshift can be as simple
as a polynomial fit (Connolly et al. 1995). However,
supervised machine learning methods (defined below)6

have been shown to produce much more accurate and
robust results, taking into account complicated corre-
lations between the input parameters and the output
value.

Machine learning methods have several advantages
over template fitters. For instance, it is trivial to incor-
porate additional observables into the inference, a com-
mon example being the surface brightness of galaxies,
which has a (1 + z)

−4
redshift dependence (Firth et al.

2003). In addition, the use of a training sample allevi-
ates systematic side-effects associated with the photom-
etry, such as errors in the zero-point corrections of the

6 Un-supervised learning techniques have been used to derive pho-
tometric redshifts as well (see e.g., Geach (2012); Way and Klose
(2012); Carrasco Kind and Brunner (2014)), but are not dis-
cussed here.

2

http://des.ncsa.illinois.edu/releases/sva1

magnitudes. On the other hand, the size and compo-
sition of the training sample become important factors
in the performance. The phase space of input parame-
ters and the spectral types of galaxies must correspond
to the respective parameters of the survey. If this is
not the case, the photo-zs of certain galaxy popula-
tions may become biased (Hoyle et al. 2015a). Another
important point, is that the true redshift distribution
in the spectroscopic training set must also be represen-
tative of the survey. In particular, machine learning
methods are only reliable within the redshift range of
the galaxies used for the training. Consequently, they
should not be used to infer the photo-zs of very high-
redshift sources, for which there are no spectroscopic
training data. In order to resolve these problems, it is
possible to generate synthetic training galaxies within
the required parameter space, using template-SED li-
braries. However, this introduces some of the system-
atic biases associated with template fitting methods.

An important element of any photo-z algorithm is
calculation of the associated uncertainty. Accurate
photo-z uncertainties help to identify catastrophic out-
liers, the removal of which may improve the quality
of Cosmological analyses (Abdalla et al. 2008; Banerji
et al. 2008). For the previous version of the code,
ANNz1, uncertainties were derived using a chain rule,
propagating the uncertainties on the algorithm-inputs
(e.g., magnitudes) to an uncertainty on the final value
of the photo-z. Other methods exist (Oyaizu et al.
2008), which use the training data and the photo-zs
themselves for uncertainty estimation. In these cases,
the uncertainty is parametrized as a function of the in-
puts to the algorithm, requiring no measurement of the
uncertainties on the individual inputs. We use such a
scheme in ANNz2 (see Sect. 4.2).

The common method for deriving the uncertainties
for template fitting methods is by combining the like-
lihoods estimated for the various templates. The ben-
efit of performing the combination is that it naturally
leads to the definition of a photo-z PDF, as, for in-
stance, is the case in Le PHARE (Arnouts et al. 1999;
Ilbert et al. 2006), BPZ (Benitez 2000) and ZEBRA (Feld-
mann et al. 2006). As for machine learning methods,
there is a variety of codes on the market. These use dif-
ferent methods besides artificial neural networks, such
as boosted decision trees. While most algorithms pro-
duce only single-value photo-zs, several also generate
photo-z PDFs, such as ArborZ (Gerdes et al. 2010),
TPZ (Carrasco Kind and Brunner 2013), SkyNet (Bon-
nett 2015) and the algorithm of Rau et al. (2015). In

ANNz2, two primary types of PDF are derived, one of
which represents a new technique, while the other is
similar in nature to the PDFs generated by ArborZ,
TPZ and SkyNet.

In the following, we describe in more detail the gen-
eral workings of machine learning, focusing on the pri-
mary algorithms used in ANNz2.

1.3. Machine learning methods

1.3.1. Basics of machine learning

Machine learning methods (MLMs) use supervised
learning, a machine learning task of inferring a func-
tion from a set of training examples. Each example
consists of an input object, described by a collection
of input parameters, as well as a desired output value

for the MLM. The training examples are used to de-
termine the mapping for either classification or regres-
sion problems. The former describes a decision bound-
ary between signal and background entries; the latter
refers to an approximation of the underlying functional
behaviour defining the output.

For the purpose of creating an MLM estimator for
either classification or regression, one generally splits
the available dataset of examples into three parts, des-
ignated as the training, validation and testing samples.
The training dataset is used for deriving the desired
mapping between the input and the output. During
each step of the training, the validation sample is used
to estimate the convergence of the solution, by com-
paring the result of the estimator with the value of
the output. The testing dataset is not used during the
training process; rather, it is utilized as an independent
test of the performance of the trained MLM.

The MLMs utilized in ANNz2 are implemented in the
TMVA package7 (Hoecker et al. 2007), which is part of
the ROOT C++ software framework8 (Brun and Rade-
makers 1997). TMVA includes multiple MLM meth-
ods, all of which are available through ANNz2, using a
common Python interface with simple control-options
(see Appendix A). The two TMVA MLMs which we
found to be most appropriate for the problem of photo-
z estimation, are artificial neural networks and boosted
decision/regression trees. For completeness, these are
outlined concisely in the following. Detailed descrip-
tions of the implementation may be found in the TMVA

manual. For a comprehensive theoretical overview,

7 See http://tmva.sourceforge.net .
8 See http://root.cern.ch .

3

http://tmva.sourceforge.net
http://root.cern.ch

see MacKay (2003); Hastie et al. (2001).

1.3.2. Available methods in TMVA

- Artificial neural networks (ANNs). One may
consider an ANN as a mapping between a set of in-
put variables, such as magnitudes or colours, and one
or more output variables. For regression problems, the
output is e.g., the numerical value of a photometric red-
shift. For classification, the output is a variable (usu-
ally between 0 and 1), which may be used to discrim-
inate between signal and background examples. The
mapping is performed by computing the weighted sum
of a collection of response functions. The input vari-
ables, response functions and output variables are col-
lectively called neurons. The response may be repre-
sented by various activation functions, such as sigmoid
or tanh functions.

In ANNz2, the TMVA method for ANNs called a multi-

layer perceptron is implemented. In this case, ANN
neurons are organized into at least three layers, the in-
put layer ; a hidden layer ; and the output layer, where
more complicated structures may include multiple hid-
den layers. A schematic illustration is shown in Fig. 1.

In the perceptron, the response of a neuron is fed
into the next layer (up to the output), using a series
of relative weights. Learning occurs by changing the
inter-neuron weights after each element of the dataset
is processed, using the so-called back propagation algo-
rithm. This is carried out through a generalization of
the least mean squares algorithm, using the ANN er-

ror function. The latter characterizes the amount of
error in the output compared to the predicted result
in the validation dataset. In practice, the weights are
varied using the gradient of the error function, though
optionally, the second derivatives of the error may also
be used.

Using ANNs, it is important to avoid over-training.
The latter occurs when an ANN becomes sensitive to
the fluctuations in a dataset, instead of to the coherent
features of the observables which should be mapped to
the output. Over-training leads to a seeming increase
in the performance, if measured on the training sample.
Conversely, it also results in an effective performance
decrease, when measured from the independent valida-
tion sample. Over-training may therefore be detected
by comparing the value of the error estimator between
the training and the validation sample. In addition to
testing for over-training, convergence tests may also be

um

gm

rm

im

zm

photz

Fig. 1.— Schematic representation of an artificial neu-
ral network, with individual neurons marked by cir-
cles, squares and a triangle. The input variables to the
ANN are five magnitudes, mu, mg, mr, mi and mz (red
circles). These are fed into the first hidden layer (blue
squares), and further propagated into a second hidden
layer (yellow squares). Finally, the sum of the second
hidden layer is combined into the output of the ANN,
the photo-z, zphot (red triangle). In each stage, the re-
sponse of the various neurons is summed using relative
weights, which are represented by the thickness of the
interconnecting lines. The result of training an ANN is
an optimized set of weights; for these, the response of
the ANN recovers the desired mapping between the in-
put variables and the target value or type, respectively
for regression or classification.

performed. The latter refer to checking whether the
estimator has ceased to improve over the course of sev-
eral training cycles; they are used in order to determine
when to stop training

An additional feature available in TMVA is Bayesian

regularization. Regularization adds a term to the error
function of the ANN, which is equivalent to the neg-
ative value of the log-likelihood of the training data,
given the network model. Regularization reduces the
risk of over-training, by penalizing ANNs with over-
complicated architectures (too many degrees of free-
dom).

- Boosted decision trees (BDTs). A decision or
regression tree9 is a binary tree, in which decisions are

9 We use here the terms decision- and regression-trees interchange-

4

1 > cgm

2 < cim 2 > cim

4 > czm 4 < czm0 ~ zphotz

3 ~ zphotz 4 ~ zphotz

1 < cgm

3 < cum 3 > cum

1 ~ zphotz 2 ~ zphotz

Entire dataset

Fig. 2.— Schematic representation of a decision tree,
with the initial root node marked by a star, inter-
nal nodes marked by empty circles, and output nodes
(leafs) marked by full circles. A sequence of binary
splits using magnitudes, mu, mg, mi and mz, as input
variables, is applied to each element of the training
dataset. Each split uses the variable that, at that par-
ticular node, results in the best discrimination when
being cut on. The leafs represent a division of the
dataset into sub-samples in the target variable. In the
case of regression, as in this example, these are associ-
ated with different values of the photo-z, zphot, denoted
here by c1,2,3,4. For classification, each leaf represents a
sub-set of signal- or of background-enriched examples.

taken on one single variable at a time, until a stop crite-
rion is fulfilled. The decision tree splits the parameter
space into a large number of hypercubes. Each of these
is attributed a constant target value for regression, or
identified as either “signal-like” or “background-like”
for classification. The various output nodes are referred
to as leafs. The path down the tree to each leaf rep-
resents an individual cut sequence that narrows down
the value of the regression target, or the identification
as signal or as background. A schematic representation
of a decision tree is shown in Fig. 2.

The training, or growing, of a decision tree is the pro-
cess that defines the splitting criteria for each node, the
purpose of which is to achieve the best estimation of the
regression target, or the best separation between signal

ably.

and background objects. The training starts with the
root node, which is split into two subsets of training
objects. In each subsequent step, further splitting oc-
curs. At each node, the split is determined by finding
the variable and corresponding cut value that provide
the best discriminatory power. Training stops when the
minimum number of training examples in a single leaf
is reached, according to a predefined threshold value.
For regression, each leaf corresponds to the value of the
regression target of the associated training examples.
For classification, a leaf is interpreted as signal or as
background, based on the type of the majority of cor-
responding examples. Different splitting criteria can be
selected by the user in ANNz2, among other algorithm
parameters.

Decision trees are sensitive to statistical fluctuations
in the training sample. This comes about, as a small
change in a single node may affect all subsequent nodes,
and the entire structure of the tree thereafter. It is
therefore beneficial to use not a single tree classifier,
but a forest of trees, by using a boosting algorithm.
The process of boosting involves training multiple clas-
sifiers using the same data sample, where the data are
reweighted differently for each tree. The combined esti-
mator is then derived from the weighted majority vote
of trees in the forest. Alternatively, it is also possi-
ble to use bagging instead of boosting. In the bagging
approach, a re-sampling technique is used; a classifier
is repeatedly trained using re-sampled training objects
such that the combined classifier represents an aver-
age of the individual classifiers. Several boosting/bag-
ging algorithms are implemented in TMVA, all available
through ANNz2.

- Other methods. The TMVA package includes sev-
eral other machine learning methods which are not dis-
cussed here, such as k-nearest neighbours, support vec-
tor machines, multidimensional likelihood estimators
and function discriminant analysis. All of these are in-
terchangeable in ANNz2; the user may choose any type
or combination of types of MLM, in order to derive
single-value solutions and PDFs.

1.3.3. Method selection and parameter tuning

Different MLMs have their own strengths and weak-
nesses. For instance, the training of a BTD is generally
much faster than e.g., that of an ANN; conversely, the
evaluation time of ANNs is generally shorter than that
for large random forests. In order to select the best
estimator for a given problem, it is recommended to

5

derive solutions using multiple methods, using various
choices of algorithm parameters. This is done in an
automated fashion in ANNz2.

2. Example analysis

The ANNz2 package is provided with a small dataset,
used as a toy analysis. The data consist of obser-
vations of galaxies and stars, included in the tenth
data release (DR10) of the Sloan Digital Sky Sur-
vey (SDSS) (Ahn et al. 2014), including measurements
taken with the Baryon Oscillation Spectroscopic Sur-
vey (BOSS) (Dawson et al. 2013).

The galaxy sample used for the photo-z analysis is
derived from a publicly available catalogue.10 The in-
puts for the photo-z inference are Pogson galaxy mag-
nitudes in five bands (ugriz). The magnitudes, m, were
calculated from the provided flux measurements, f, us-
ing the relation, m = 22.5− 2.5 log10(f) . The general
properties of the dataset, comprised of roughly 180k ob-
jects, are shown in Fig. 3.

3. Definition of metrics and notation

In order to quantify the performance of the different
configurations of ANNz2, several metrics are used. The
metrics serve both as part of the dynamic optimiza-
tion procedure of ANNz2, and as a means of assessing
the quality of the results. All calculations take into
account per-object weights. Weights may be defined
by the user, or derived on the fly based on the type of
analysis. For instance, the user may choose to down-
weight certain galaxies based on an associated degree of
confidence. Such a sub-sample would then have lower
relative significance during training and optimization.
Weights are also used in order to account for unrepre-
sentative training samples, as described in Sect. 4.4.

The following metrics are used. The photometric

bias of a single galaxy is defined as δgal = zphot − zspec,
where zphot and zspec are respectively the photometric
and spectroscopic redshifts of the galaxy. The photo-

metric scatter represents the standard deviation of δgal
for a collection of galaxies. Similarly, σ68 denotes the
half-width of the area enclosing the peak 68th percentile
of the distribution of δgal. Another useful qualifier is
the outlier fraction of the bias distribution, f(ασ), de-
fined as the percentage of objects which have a bias
larger than some factor, α, of either σ or σ68. In addi-

10 See http://www.sdss3.org/dr10/spectro .

tion, we also define the combined outlier fraction for 2
and 3σ68, f(2, 3σ68) =

1
2
(f(2σ68) + f(3σ68)) .

The various metrics are calculated for galaxies in
bins of either zphot or zspec, and are denoted in the
following by a subscript, b, as δb, σb, σ68,b and fb(ασ).
The average values of the metrics over all redshift bins
are denoted by < δ >, < σ >, < σ68 > and < f(ασ) >,
and serve as single-value qualifiers of the entire sample
of galaxies.

The purpose of the bias, scatter and outlier fractions
is to qualify the galaxy-by-galaxy photo-z estimation.
Additionally, the overall fit of the photometric redshift
distribution, N(zphot), to the true redshift distribution,
N(zspec), is assessed using two metrics. The first is de-
noted by Npois, and stands for the sum of the bin-wise
difference between the two distributions, normalized by
the Poissonian fluctuations. The second measure is the
value of the Kolmogorov-Smirnov (KS) test of N(zphot)
and N(zspec), which stands for the maximal distance
between the cumulative distribution functions of the
two distributions. The KS-test has the advantage that,
unlike Npois, it does not depend on the choice of bin-
ning of the redshift distributions. The absolute value
of the Npois and KS-test statistics is not necessarily
significant. Rather, these serve to compare the com-
patibility of the zphot and zspec distributions, between
different photo-z estimators.

4. The ANNz2 algorithm

4.1. Photo-z PDF derivation

The primary configurations of ANNz2 are referred to
as single regression and randomized regression. These
are respectively used to derive single-value solutions
and PDFs. The PDFs provided by ANNz2 are intended
to provide a description of our knowledge of the photo-
z solution. Assuming one could reconstruct a perfect
photometric redshift, the corresponding PDF would be
given by a delta function. However, the redshift infer-
ence has intrinsic uncertainties. A photo-z PDF can
thus be thought of as a way to parametrize the uncer-
tainty on the solution.

The main contributing factors to the uncertainty on
photo-zs are the following:

1. (U1) Uncertainty on inputs to training:
magnitudes are not sufficient to derive the red-
shift, as they only provide a rough sampling of
the underlying SED. Furthermore, one also needs
to consider the uncertainties on the values of

6

http://www.sdss3.org/dr10/spectro/spectro_access.php

specz
0 0.2 0.4 0.6 0.8

sp
ec

1/
N

 d
N

/d
z

1

2

3

4

5

6

7

(a)
u/g/r/i/zm

18 20 22 24 26

u/
g/

r/
i/z

1/
N

 d
N

/d
m

0.2

0.4

0.6

0.8

1
um

gm

rm

im

zm

(b)

r - mgm
0.5− 0 0.5 1 1.5 2 2.5 3

g
 -

 m
u

m

2−

0

2

4

6

(c) i - mrm
0.5− 0 0.5 1 1.5 2

r
 -

 m
g

m

0.5−

0

0.5

1

1.5

2

2.5

3

(d) z - mim
0.5− 0 0.5 1

i
 -

 m
r

m

0.5−

0

0.5

1

1.5

2

(e)

Fig. 3.— Properties of galaxies in the dataset used for the toy photo-z analysis. (a) : Differential distribution of the
spectroscopic redshift, zspec. (b) : Differential distributions of the magnitudes in five bands, mu, mg, mr, mi and mz, as
indicated. (c)-(e) : Correlation between different colour combinations, as indicated, where the size of a box represents
the relative number-density of entries within the respective histogram bin, compared to the entire distribution.

7

the magnitudes. The latter are usually derived
from the Poissonian noise on the corresponding
photon-count, and so are under-estimated. These
uncertainties are therefore difficult to take into
account in the photo-z derivation in a direct way.

2. (U2) Uncertainty on MLMs: there is an inher-
ent uncertainty on the solution of a given MLM.
For example, different initial random seeds for
training, or the choice of different MLM algo-
rithms, may result in variation in the perfor-
mance.

3. (U3) Unrepresentative training datasets:
the training data may not be representative of
the evaluated photometric sample. In this case,
the results are influenced by the composition of
the training dataset (the relative proportion of
training galaxies with different combinations of
magnitudes).

4. (U4) Incomplete training datasets: the train-
ing data may not be complete. This may occur
if some regions of magnitude-space, which exist
in the evaluated sample, have no corresponding
galaxies for training. The photo-z predictions for
such evaluated galaxies are unreliable.

Of these sources of uncertainty, the first three may
be incorporated into a meaningful PDF. The domi-
nant effect of the latter is the degenerate mapping be-
tween magnitudes and redshift (U1). As an example,
one may consider the small gap between the response
curves of the SDSS g- and r-band filters. The latter
results in an ambiguity in the location of the 4000 Å
Balmer break between the two bands, for galaxies with
z ∼ 0.35 (Schmidt 2007). The degeneracy manifests
itself as large photo-z uncertainties for this redshift re-
gion, as e.g., evident from Fig. 4(a) below.

Glossing for the moment over the the technical de-
tails, the procedure for deriving our PDF is as follows.
We start by producing a single-value photo-z solution.
We then combine this solution with the corresponding
photo-z uncertainty due to the training inputs (U1),
which is derived as explained in Sect. 4.2. The pro-
cedure is repeated for an ensemble of MLM estima-
tors. The MLMs differ from each other in the choice
of algorithm and of algorithm settings, e.g., numbers
of neurons in an ANN, number of trees in a BDT and
so forth (U2). The various estimators and their corre-
sponding uncertainties are then combined into a PDF,
as detailed in Sect. 4.3.

In general, the variance between different estimators
is sub-dominant compared to the photo-z uncertainty
on a single MLM. However, the combination of different
estimators allows for the reconstruction of multi-peak
PDFs, exposing degeneracies. This comes about, as
each MLM is sensitive to different statistical fluctua-
tions. Subsequently, each MLM has a slightly different
response in cases where the photo-z/redshift relation is
ambiguous. Using multiple MLMs also has the advan-
tage of exposing configurations which perform badly
due to a poor choice of algorithm parameters, or to a
statistical fluctuation in the training. Conversely, con-
sider an example where e.g., a pair of ANNs with differ-
ent numbers of neurons exhibit slightly different perfor-
mance. Combining several solutions takes away some
of the arbitrariness of selecting one specific model.

The uncertainties on the make-up of the training
dataset (U3, U4) can only partially be addressed. To
deal with unrepresentative training samples, we em-
ploy training weights. The latter are used to match
the distribution of the inputs (e.g., magnitudes) from
the training sample, to those from the evaluated
data (Lima et al. 2008). The calculation of the weights
is performed as part of the internal pipeline of the
code. The issue of incomplete training samples can not
be taken into account without the use of additional
data (such as those derived from simulations or from
template libraries). ANNz2 therefore provides a quality
flag, which indicates when unrepresented data are be-
ing evaluated. A short discussion is given in Sect. 4.4.

An alternative type of PDF is also generated by
ANNz2, using the binned classification configuration.
This approach has been used in the past, following the
methodology of Gerdes et al. (2010). In binned clas-
sification, we build up a PDF by estimating the local
photo-z probability in narrow redshift regions, imple-
menting classification MLMs instead of regression. We
have found that this method tends to under-perform
compared to randomized regression. Binned classifica-
tion is therefore not discussed here further, though an
example analysis is provided with the software package.

In the next sections, we describe in detail the ANNz2
algorithm. All figures in the following are based on
testing data (galaxies which were not used as part of
the training/validation phase).

8

4.2. Single regression and uncertainty estima-
tion

In the simplest configuration of ANNz2, a single re-
gression is performed. This is similar to the nominal
product of the original version of the code, ANNz1.

We compare the output of ANNz2 with that of ANNz1
in Fig. 4. In both cases, a single ANN with architecture
{N,N + 1, N + 9, N + 4, 1} was used; this corresponds
to N = 5 input parameters (five magnitudes) in the
first layer, three hidden layers with various numbers of
neurons, and one output neuron in the final layer.11 A
sample of 30k objects was used for the training. Com-
parable results were also achieved, using as many as
200k, and as few as 5k objects.

The redshift distributions derived by the two ver-
sions of the code are similar, with somewhat bet-
ter performance of ANNz2 over the original version.
One may notice the large uncertainty on the photo-
zs around z = 0.35 for both estimators, as mentioned
above. Such discrepancies between the derived photo-
zs and the true redshift are difficult to reconcile using
a single-value MLM. However, a PDF solution helps to
alleviate the problem (see Fig. 9 below). In order to
understand how to derive a PDF, we must first qualify
the performance of a single MLM.

The relation between the spectroscopic redshift and
the photo-z estimator of ANNz2 is shown in Fig. 5(a).
We observe a strong correlation between zspec and
zphot. Figures 5(b) - (d), show the photo-z bias, scat-
ter and outlier fractions as a function of the true and
of the derived redshift values of ANNz2. All metrics
exhibit worse performance at the edges of the redshift
range, due in part to the relatively small number of
respective training objects.

An additional important quantity which character-
izes the performance of the code is the associated
photo-z uncertainty. For ANNz1, uncertainties were de-
rived using a chain rule, propagating the uncertainties
on the algorithm-inputs, to an uncertainty on the value
of the final photo-z. The disadvantage of such a scheme
is that the uncertainty on photometric inputs, such as
magnitudes, is not always precise in itself. This is due
to the fact that in most cases, the available uncertainty
estimation only represents the Poissonian noise on the
corresponding photon-count. It therefore does not take

11 This network architecture was found to produce optimal perfor-
mance for our particular dataset, and is denoted below as zbest.
However, for a different analysis, another architecture might be
preferred.

into account other systematic uncertainties or correla-
tions between observables.

In order to compute the uncertainty associated with
our photo-z estimator, denoted hereafter as σgal, a
data-driven method is employed. This is done by as-
suming that objects with similar combinations of pho-
tometric properties should also have similar photo-z
uncertainties. We derive the uncertainty using the K-

nearest neighbours (KNN) method. We would empha-
sise that the latter should not be confused with K-
nearest neighbours machine learning. For the calcu-
lation of σgal, no additional training of an MLM is re-
quired. Rather, a simple search in parameter-space is
performed.

For example, let us assume that magnitudes are used
as inputs for training. In this case, the distance in
parameter-space between a pair of galaxies, x and y,
can be defined as

RNN(x, y) =

√

∑

j

(

mx
j −m

y
j

)2
, (1)

where the m
x,y
j symbols stand for the five magnitudes,

mu, mg, mr, mi and mz, for the two galaxies. The first step
in the calculation is to find the nNN nearest neighbours
to our target object, defined as those with the smallest
value of RNN from the entire training sample. For each
of the neighbours, we calculate the photo-z bias. For
neighbour i, the latter is defined as δiNN = ziphot − zispec,

where ziphot is the estimated photo-z of the objects,

and zispec is the respective spectroscopic redshift. The

68th percentile width of the distribution of δiNN values
is then taken as the uncertainty on the photo-z of the
target object, σgal.

12

This technique has been shown to produce realis-
tic photometric uncertainties, as e.g., in Oyaizu et al.
(2008), so long as the training dataset is representative
of the evaluated photometric sample. Additionally, the
authors there discussed the optimal value for nNN. It
was explained that on the one hand, nNN should be
large enough that the uncertainty estimation is not lim-
ited by shot noise; on the other hand, nNN should not
be set too high, so that the estimate remains relatively
local in the input parameter space. For the current
study, a nominal value, nNN = 100, was selected.

We would like to assert that the uncertainty estima-
tor represents the correct underlying photo-z scatter in

12 In practice, we calculate the photo-z uncertainty separately for
shifts to lower or to higher values of redshift. However, for the
sake of brevity, we refer to σgal as symmetric in the following.

9

spec/photz
0 0.2 0.4 0.6 0.8

sp
ec

/p
ho

t
1/

N
 d

N
/d

z

0

0.5

1

1.5

2

2.5

3

3.5 specz

ANNz1

ANNz2

(a)
ANNz1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
N

N
z2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

Fig. 4.— Comparison between the photo-z solutions of ANNz2 and the original version of the code, derived using a
single ANN, as described in the text. (a) : Differential distributions of the spectroscopic and the photometric redshift,
respectively zspec and zphot, of ANNz1 and ANNz2, as indicated. (b) : Correlation between the photo-z solutions of
ANNz1 and ANNz2. Around z = 0.35, We observe a mismatch between the two estimators and zspec, as well as an
increase in the scatter between the two. This indicates that the uncertainty on the photo-zs in this region is large.
The latter is difficult to reconcile using single-value estimators, but is alleviated using a PDF, as discussed in the text
(also see Fig. 9).

our analysis. For this purpose, we define the metric

ρNN =
δgal

σgal

, (2)

the ratio between the photo-z bias and the associated
uncertainty. The distribution of the values of ρNN for
the entire sample is expected to be centred close to
zero, and to have a width close to unity.

The distributions of ρNN for our ANNz1 and ANNz2

solutions are shown in Fig. 6. We proceed by fitting a
Gaussian function to each dataset. We find that both
distributions have a mean value which is consistent
with zero to a precision better than 3%. In addition,
the distribution of ρNN for ANNz1 has a width of 0.27,
while the corresponding value for ANNz2 is 1.04. This
indicates that the uncertainty estimation for the ANNz2
photo-zs is significantly more reliable in comparison.

4.3. Randomized regression PDF

As mentioned above, we construct our PDF by
combining multiple MLM estimators, each folded with

their respective single-value uncertainty estimator. The
steps of the algorithm may be summarized as follows:

1. A collection of MLMs is trained.

2. The ensemble of estimators goes through pre-
selection, which includes ranking the solutions
by their performance. The MLM which performs
best is chosen as the single-value estimator.

3. The MLMs are folded with their corresponding
intrinsic uncertainty, σgal. They are then com-
bined in different ways into a set of candidate-
PDFs. The MLM combinations are chosen ran-
domly, taking into account the ranking in perfor-
mance.

4. The performance of the candidates is compared,
using the parameter C, defined below. The solu-
tion which best describes the true redshift distri-
bution is selected as the final PDF.

The first step in the calculation is the training of a
set of randomized MLMs. These differ from each other

10

specz
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ph
ot

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)
spec/photz

0.1 0.2 0.3 0.4 0.5 0.6 0.7
bδ

0.1−

0.05−

0

0.05

 binsspecz

 binsphotz

(b)

spec/photz
0.1 0.2 0.3 0.4 0.5 0.6 0.7

b/
68

,b
σ

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
bσ bins, specz

68,bσ bins, specz

bσ bins, photz

68,bσ bins, photz

(c)
spec/photz

0.1 0.2 0.3 0.4 0.5 0.6 0.7

)
68σα(bf

0.05

0.1

0.15

0.2)68σ(2
b

 bins, fspecz)68σ(3
b

 bins, fspecz

)68σ(2
b

 bins, fphotz)68σ(3
b

 bins, fphotz

(d)

Fig. 5.— Properties of the photo-z solution of ANNz2, derived using a single ANN, as described in the text. (a) : Cor-
relation between the spectroscopic and the photometric redshift, respectively zspec and zphot. (b) : The photo-z bias,
δb, calculated in bins of either zspec or zphot, as indicated. (c) : The photo-z scatter, calculated as either the standard
deviation or as the 68th percentile of the distribution of the bias, respectively σb and σ68,b, calculated in bins of either
zspec or zphot, as indicated. (d) : The photo-z outlier fraction, fb(ασ68), using α = 2 or 3, calculated in bins of either
zspec or zphot, as indicated. The lines in (b) - (d) are meant to guide the eye.

11

NN
ρ

3− 2− 1− 0 1 2 3

N
N

ρ
1/

N
 d

N
/d

0

0.2

0.4

0.6

0.8

1

1.2

1.4
ANNz1

ANNz2

Fig. 6.— Differential distributions of ρNN, the ratio be-
tween the photo-z bias and the associated uncertainty
(see Eq. 2), for the photo-z solutions derived using ei-
ther ANNz1 or ANNz2, as indicated. The markers repre-
sent the data and the lines represent fits to Gaussian
functions. The fitted Gaussian width parameters are,
respectively, 0.27 and 1.04 for ANNz1 and ANNz2, where
for well-representative uncertainty estimates, the ex-
pected value for the width is 1.

in several ways. The latter includes setting unique ran-
dom seed initializations, as well as changing the con-
figuration parameters of a given algorithm.13 For in-
stance, this may refer to using various types and num-
bers of neurons in an ANN, or to arranging neurons in
different layouts of hidden layers; for BDTs, the num-
ber of trees and the type of boosting/bagging algorithm
may be changed, etc.

In general, the choice of input parameters also has
an effect on the performance (Hoyle et al. 2015b). A
randomized MLM therefore has the option to only use
a subset of the given input parameters, or to train
with predefined functional combinations of parameters.
These combinations may also incorporate complicated
scenarios. For instance, missing inputs for a specific
object may be mapped to predefined numerical values,
such as the magnitude limits of the survey.

Additionally, TMVA provides the option to perform
transformations on the input parameters, including

13 See Sect. 5.1 and Appendices A for details.

normalization and principal component decomposition.
The transformations are done prior to training, as part
of the internal pipeline of the code. Applying trans-
formations on inputs has the potential to improve the
performance of machine learning. For instance, Sou-
magnac et al. (2015) used principal component analy-
sis to augment their algorithm, by reducing the dimen-
sionality of a classification task. For photo-z inference,
transformation are most useful when combining input
observables of different types, such as magnitudes and
surface brightness.

Finally, the user may define training weights using
functional expressions of both input parameters and
observer parameters (parameters not used directly for
the training). The weights are applied during the train-
ing; they may e.g., be used to reduce the impact of noisy
data on the result. These may come in addition to the
weights meant to account for unrepresentative training
datasets, which are discussed in the next section.

Once a set of randomized MLMs is initialized, the
various methods are each trained. Subsequently, a dis-
tribution of photo-z solutions for each galaxy is gener-
ated. A selection procedure is applied to the ensemble
of answers, discarding outlier solutions which have very
large values of < δ >, < σ68 > and < f(2, 3σ68) >,
compared to the entire ensemble. The selected MLMs
are then used to identify a single photo-z estimator,
based on the method with the best performance. The
latter is denoted in the following as zbest.

In the next step, the various MLMs are folded with
their respective single-value uncertainty. They are then
used in concert in order to derive a complete probability
distribution function. The most trivial combination, is
one in which we accept all MLMs with equal weights.
This, however, does not necessarily result in the best
outcome, as the inclusion of estimators with e.g., large
scatter, degrades the performance. We therefore de-
rive a dynamic weighting scheme for the combination
of MLMs. The weights are determined, using the cumu-
lative distribution function (CDF) of a candidate-PDF,

C(zspec) =

zspec
∫

z0=0

preg(z) dz . (3)

The latter is defined as the integrated PDF for redshifts
smaller than some reference value, taken here as the
true redshift, zspec. Here the differential PDF for a
given redshift is denoted by preg(z), and z0 corresponds
to the lower bound of the PDF.

12

Let us consider a photo-z PDF which correctly de-
scribes the underlying redshift distribution. In this
case, one may think of zspec as a random variable which
is distributed according to the PDF. It then follows
that C would be a flat distribution. As further illus-
tration, one may imagine the inverse problem. Suppos-
ing we generate a collection of random numbers, uni-
formly distributed between 0 and 1. We then use these
to calculate C−1, the inverse of the CDF (the quantile
function). In this case, the distribution of C−1 values
would correspond to redshifts; it should then recover
our PDF, assuming the PDF correctly represents the
underlying uncertainty on our photo-z inference.

The CDF of redshifts has previously been used to
constrain photo-z PDFs, as e.g., in Bordoloi et al.
(2010). There it was the basis for modifying PDFs
which were constructed from likelihood functions, as
part of a template fitting algorithm. In ANNz2, C is used
for the initial derivation procedure of the PDF. This
is done by selecting from the collection of candidate-
PDFs, the solution for which C is as close as possible
to a uniform distribution.

4.4. Representativeness and completeness of
the training sample

Up to this point, we have discussed how the uncer-
tainty on input parameters and the differences between
specific MLMs are treated in ANNz2. However, machine
learning methods based on training are susceptible to
additional systematic effects. Two possible sources of
major bias come about for training datasets which are
not representative or are not complete.

One possible source of bias is the exact composition
of the training dataset. Let us consider an evaluated
object from a photometric dataset, for which we have
comparable training objects. It is then important that
the relative fraction of these training objects within
the training sample be the same as in the photometric
dataset. If this is not the case, the training sample is
usually referred to as unrepresentative.

In order to illustrate the point, a simple example is
shown in Fig. 7. The figure includes the distributions
of the r-band magnitude, mr, of objects in hypothetical
training and reference samples. The latter represents
a complete and unbiased representation of the mr of
galaxies for some survey. In this case, the distribution
of mr in the training dataset is quite different from that
in the reference sample. An MLM trained using this
training dataset will e.g., give too high significance to

rm
16 18 20 22 24 26

r
1/

N
 d

N
/d

m

0

0.1

0.2

0.3

0.4

0.5

0.6
Reference

Original

Weighted

Fig. 7.— Differential distributions of the r-band mag-
nitude, mr, of objects in three samples, as indicated;
the reference sample, which corresponds to a hypothet-
ical survey; the original training sample, which is some
spectroscopic dataset which is available for training an
MLM; the weighted training sample, which corresponds
to the original training sample, after weights have been
applied, as described in the text.

training examples with mr values close to 19.

The problem may be alleviated by reweighting the
training sample. The purpose of the weights is to as-
sign a correction factor to galaxies as a function of the
input parameters. The weighted distribution of galax-
ies should be such, that the relative fraction of objects
in each region in the parameter space is the same as in
the reference sample. These weights are then used as
part of the training; they are also further propagated
to the metric calculations, to be used during the PDF
optimization phase. The reweighting procedure is im-
plemented as part of the internal pipeline of ANNz2,
requiring only the definition of the reference dataset by
the user of the code.

The weights are derived by matching the density of
objects in the input parameter space to that in the ref-
erence sample (Lima et al. 2008). This way, all inputs
are reweighted simultaneously, accounting for any in-
trinsic correlations. We derive the weights using a kd-
tree, calculating the number of neighbours of an object
in the training sample within some distance (see Eq. 1).
We then find the number of neighbours of the same

13

object within the same distance, but in the reference
sample. The weight is finally taken as the ratio of these
two numbers.

One may notice in Fig. 7 that for mr . 18.5, the
weighted training dataset does not match the reference
sample. The reason for this, is that the original train-
ing sample does not have any corresponding objects. In
this case, we usually refer to the training dataset as in-
complete. In general, an MLM should only be used on
objects which have features that are represented in the
training dataset. In cases where no training examples
exist, both the photo-z and the corresponding photo-z
uncertainty are equally unreliable.

ANNz2 has a validation mechanism to check whether
an evaluated object falls under an incomplete region of
the training sample. Unfortunately, there is no system-
atic way to correct the photo-z of objects which do not
have comparable training examples. These can instead
be flagged as unreliable.

The algorithm uses a kd-tree to derive the density
of objects from the training sample, which have similar
properties as the evaluated object. We begin by com-

puting R
y/x
NN , the distance in parameter-space between

the evaluated object, x, and the closest corresponding
object from the training sample, y (see Eq. 1). We then

derive R
y/n
NN , the distance from y, within which nmin

NN ob-
jects from the training sample are found. Finally, we
define our quality criteria as

QNN = max

{

0 ,
R

y/n
NN −R

y/x
NN

R
y/n
NN

}

. (4)

The parameter QNN represents a typical distance-
ratio between the evaluated object, and similar train-
ing objects. For dense regions of the training sample,

R
y/x
NN ≪ R

y/n
NN , which corresponds to QNN ∼ 1. Con-

versely, for sparse regions, one would have to search far
away in order to find object-y, resulting in low values
of QNN. The steepness of the distribution of QNN de-
pends on the choice of nmin

NN , and on the properties of
the dataset. We nominally use nmin

NN = 100, though this
parameter may be changed by the user of the code.

The parameterQNN can be used to reject low-fidelity
photo-zs. The exact cut on QNN should be determined
on a case-by-case basis. It should take into account
the fraction of excluded objects, and the relative im-
provement in performance. To illustrate the properties
of QNN, we use the hypothetical training and reference
samples defined for Fig. 7. For the purpose of the ex-

NNQ
0 0.2 0.4 0.6 0.8 1

N
N

1/
N

 d
N

/d
Q

3−10

2−10

1−10

1

10

(a)

0.2 0.4 0.6 0.8 1

bδ

0

0.05

0.1

NNQ
0.2 0.4 0.6 0.8 1

68
,b

σ

0.04

0.06

0.08

0.1

(b)

Fig. 8.— Properties of the quality criteria, QNN (see
Eq. 4), for the hypothetical training and reference sam-
ples used for Fig. 7, where the reference sample is taken
as the evaluated dataset. (a) : Differential distribution
of QNN. (b) : Dependence of the photo-z bias, δb, and
of the 68th percentile scatter, σ68,b, on QNN.

14

spec/photz
0 0.2 0.4 0.6 0.8

sp
ec

/p
ho

t
1/

N
 d

N
/d

z

0

0.5

1

1.5

2

2.5

3

3.5 specz

bestz

< PDF >

PDF

Fig. 9.— Differential distributions of the spectroscopic
redshift, zspec, and of the respective photometric red-
shift, zphot, where zbest is the single-value MLM so-
lution with the best performance, < PDF > is the
single-value average of the PDF solution, and PDF is
the full stacked PDF, as indicated. The overall fit of the
stacked PDF to the true redshift distribution is better
than that of the single-value solutions.

ample, we take the reference sample as the evaluated
dataset. The corresponding distribution of QNN values
is presented in Fig. 8(a). We quantify our results in
Fig. 8(b). Here, we present the dependence on QNN

of the photo-z bias, δb, and of the 68th percentile scat-
ter, σ68,b. As desired, the performance improves as the
value of QNN increases. For this example, a conserva-
tive cut would be to reject galaxies with QNN < 0.8.

5. Performance of the estimators of ANNz2

5.1. Toy analysis

Figure 9 shows the distribution of the nominal
photo-z estimators of ANNz2 for our SDSS dataset.
These include the single-value photo-z estimator, zbest,
the single-value average of the randomized regression
PDF, < PDF >, and the full PDF solution, PDF.
The corresponding performance metrics are presented
in Fig. 10; the bias, < δ >; the 68th percentile scat-
ter, < σ68 >; and the outlier fractions, < f(2σ68) >

and < f(3σ68) >. In addition, we include the metric
σ(ρNN), defined as the 68th percentile width of the dis-

tribution of ρNN (see Eq. 2). Finally, the Npois and
KS-test statistics of the various N(zphot) distributions
are shown as well.

The zbest solution is the same one shown in Fig. 5,
and corresponds to an ANN with architecture {N,N +
1, N + 9, N + 4, 1}, where N corresponds to the num-
ber of input parameters (in this case, five magnitudes).
The ensemble of MLMs used for the PDF is composed
of 50 ANNs and 50 BDTs, with specific MLM options
chosen at random as described next. In addition, for
both the ANNs and the BDTs, the input parameters for
the training were chosen as either the five magnitudes,
combinations of magnitude and colours, or subsets of
the latter. Furthermore, variable transformations on
the input parameters (normalization, principal compo-
nent analysis, decorrelation) were switched on or off at
random.

The ANNs were configured with variations of the fol-
lowing parameters:14 the numbers of hidden layers was
varied between 2 and 4; the number of neurons in a hid-
den layer was varied between N and (N + 10); the neu-
ron activation function was chosen as either a sigmoid

or a tanh function; use of a regulator was switched on
or off; the number of steps between convergence tests
was randomized between 100 and 500 steps; the MLMs
were trained using back-propagation, with or without
the use of second derivatives of the ANN error function.

The BDTs were defined using the following settings:
the number of trees was randomized between 300 and
1200; the boosting algorithm was changed between the
available options in TMVA; the threshold criteria for
splitting nodes was varied between 0.1% and 1% of the
number of training objects per node; the separation cri-
teria for testing node-splitting was chosen at random.

We observe that the three photo-z estimators, zbest,
< PDF > and PDF, all have an average bias which
is consistent with zero. Comparing the scatter, the full
PDF has a larger scatter relative to the single-value es-
timators. This is expected, as the calculation for PDFs
is performed bin-by-bin, taking into account the tails
of the PDF. For approximately symmetric PDFs, the
tails cancel out. They therefore do not affect the bias or
scatter of the average of the PDF. However, for the full
solution, the negative and positive contributions from
the tails increase < σ68 >. The scatter for the full
PDF is therefore larger by construction. The increased
value of the PDF scatter is not a disadvantage. Rather,
it represents a more realistic estimation of the under-

14 See Appendix A for details on the configuration options.

15

lying uncertainty on the photo-zs. This is reflected by
the value of σ(ρNN), which is much better (closer to 1)
for the PDF estimator, than for its average.

Finally, the shape of the full PDF provides a better
description of the underlying redshift distribution, as
expressed by the low values of the Npois and KS-test
statistics. The difference in the performance may even
be appreciated by eye from Fig. 9. Specifically, the
stacked PDF provides a better estimation of the true
redshift for zspec ∼ 0.35 and for zspec > 0.7, where the
single-value solutions are less precise.

5.2. Other applications of ANNz2

We have only commented here on performance met-
rics for ANNz2, such as photo-z bias, and compatibil-
ity with the underlying redshift distribution. How-
ever, to fully qualify the algorithm, one would need to
perform a Cosmological analysis involving photometric
redshifts (Rau et al. 2015). Such a study is beyond the
scope of the current work. However, ANNz2 has already
been used for several DES analyses, and is included in
the first public data release of the experiment.

In Bonnett et al. (2015), the performance of ANNz2
was compared with that of three other codes, SkyNet,
TPZ and BPZ. The first two are machine-learning codes
which employ a similar algorithm using different MLM
types, while BPZ is a template-fitting code. The com-
parison was done in the context of the first DES Cos-
mology results (DES Collaboration 2015), where the
difference between the photo-zs were propagated to
the systematic uncertainty on a weak lensing analy-
sis. One should notice that Bonnett et al. (2015) per-
formed the comparison between the different estimators
by first assigning galaxies to one set of redshift bins.
The latter were determined by the nominal code in the
study, SkyNet. The photo-zs of the various codes for
a given galaxy sub-sample (SkyNet photo-z bin) were
then compared. This may produce a selection bias; ef-
fectively, the PDF for each code is constrained by the
results of SkyNet. However, even given this possible
bias, ANNz2 was found to be compatible with the other
codes.

In another study (Leistedt et al. 2015), a systematic
test of variations in the observing conditions in DES
was performed, comparing ANNz2, TPZ and BPZ. In this
case, it was shown that ANNz2 minimizes the variations
in the photo-z distribution due to degraded input data,
and that it reduces the amount of outliers.

6. Summary

ANNz2 is a new major version of the public photomet-
ric redshift estimation software, first developed by Col-
lister and Lahav (2004). It has already been used as
part of the first weak lensing analysis of the Dark En-
ergy Survey, and is included in the first data release
of the experiment. The code is also planned to be in-
corporated in the software pipelines of future projects.
In this paper we have introduced the algorithm avail-
able in the new implementation, and have illustrated
the performance of the code using spectroscopic data.

ANNz2 incorporates several machine learning meth-
ods, such as artificial neural networks and boosted deci-
sion/regression trees. The different algorithms are used
in concert in order to optimize the photo-z reconstruc-
tion, and to estimate the associated uncertainties. This
is done by generating a wide selection of machine learn-
ing methods, utilizing e.g., different ANN architectures
and BDT algorithms. The final product of ANNz2 is ei-
ther a single-value photo-z estimator, or a full photo-z
probability distribution function. PDF derivation is an
important new feature of ANNz2, not available in the
previous version of the code.

PDFs are calculated by ANNz2 using two different
approaches. The nominal approach is a new technique,
called randomized regression. In this mode, optimiza-
tion is performed by ranking the different solutions ac-
cording to their performance, which is determined by
the respective photo-z bias, scatter and outlier fraction
parameters. The single solution with the best perfor-
mance is chosen as the nominal photo-z estimator of
ANNz2. In addition, the entire collection of solutions
is used in order to derive a photo-z PDF. The PDF is
constructed in two phases. In the first phase, each solu-
tion is folded with a distribution of uncertainty values,
which is derived using the KNN uncertainty estimation
method. In the second phase, the ensemble of solu-
tions is combined. This is done using dynamically de-
termined weighting schemes, intended to optimize the
final PDF. Additionally, we have implemented in ANNz2

a second approach for PDF-derivation, called binned
classification. The latter has been used in the past,
and is not discussed in the current paper.

ANNz2 also includes an implementation of a method
to correct for training samples which are not repre-
sentative of the features of the evaluated dataset. In
addition, we introduce a new method to account for
samples which are not complete. The former is per-
formed by applying weights to training objects during

16

bestz
< PDF > PDF

)
N

N
ρ

 (σ

0.6
0.7
0.8
0.9

1
1.1
1.2

 >δ
<

0.5−

0

0.5

1
3−10×

bestz
< PDF > PDF

po
is

N
2

4

6

8

 >
68σ

<

30

40

50

60
3−10×

bestz
< PDF > PDF

K
S

 te
st

10

20

30

40

3−10×

)
>

68σ α
<

 f(

0.02

0.04

0.06

0.08

0.1

0.12

) >68σ< f(2
) >68σ< f(3

Fig. 10.— Photo-z metrics, averaged over the entire redshift range, for the nominal solutions of ANNz2, where zbest is
the single-value MLM solution with the best performance, < PDF > is the single-value average of the PDF solution,
and PDF is the full stacked PDF, as indicated. The metrics are the bias, < δ >; the 68th percentile scatter, < σ68 >;
the outlier fractions, f(ασ68), for α = 2 or 3; the Npois and KS-test statistics; and σ(ρNN), the 68th percentile width
of the distribution of ρNN (see Eq. 2). The lines are meant to guide the eye. All three solutions have comparable
values of photo-z bias. The stacked PDF solution exhibits a relatively larger scatter, due to the inclusion of the tails
the distribution in the calculation. However, the overall fit of the full PDF to the true redshift distribution, indicated
by Npois and the KS-test, is better in comparison.

training and during photo-z optimization, in order to
match the properties of the evaluated dataset. For the
latter, a quality flag is generated for each evaluated
object. The flag indicates whether the derived photo-z
solution is reliable, based on the completeness of the
sample.

Acknowledgements

We would like to thank Manda Banerji, Christopher
Bonnett, Antonella Palmese and Maayane Soumagnac
for the useful discussions regarding the nature of photo-
metric redshifts and machine learning. We would also
like to thank the photo-z working groups of DES and of
the Euclid experiment for giving feedback on the code.

OL acknowledges an European Research Council
Advanced Grant FP7/291329, which also supported IS.
FBA acknowledges the Royal Society for a Royal Soci-
ety University Research Fellowship.

This work uses publicly available data from the
SDSS. Funding for SDSS-III has been provided by the
Alfred P. Sloan Foundation, the Participating Institu-
tions, the National Science Foundation, and the U.S.
Department of Energy Office of Science. The SDSS-III
website is http://www.sdss3.org/.

REFERENCES

Abdalla, F. B., Amara, A., Capak, P., et al.: 2008,
MNRAS 387, 969

Abdalla, F. B., Banerji, M., Lahav, O., and Rashkov,
V.: 2011, MNRAS 417, 1891

Ahn, C. P., Alexandroff, R., Allende Prieto, C., et al.:
2014, ApJS 211, 17

Arnouts, S., Cristiani, S., Moscardini, L., et al.: 1999,
MNRAS 310, 540

Banerji, M., Abdalla, F. B., Lahav, O., and Lin, H.:
2008, MNRAS 386, 1219

Benitez, N.: 2000, ApJ 536, 571

Beńıtez, N., Moles, M., Aguerri, J. A. L., et al.: 2009,
ApJ 692, L5

Bolzonella, M., Miralles, J.-M., and Pelló, R.: 2000,
A&A 363, 476

Bonnett, C.: 2015, MNRAS 449(1), 1043

Bonnett, C., Troxel, M. A., Hartley, W., et al.: 2015,
ArXiv e-prints

17

http://www.sdss3.org/

Bordoloi, R., Lilly, S. J., and Amara, A.: 2010, MN-

RAS 406(2), 881

Brun, R. and Rademakers, F.: 1997,
Nucl.Instrum.Meth. A389, 81

Bruzual A., G. and Charlot, S.: 1993, ApJ 405, 538

Carrasco Kind, M. and Brunner, R. J.: 2013, MNRAS

432, 1483

Carrasco Kind, M. and Brunner, R. J.: 2014, MNRAS

438, 3409

Coleman, G. D., Wu, C.-C., and Weedman, D. W.:
1980, ApJS 43, 393

Collister, A. A. and Lahav, O.: 2004, PASP 116, 345

Connolly, A. J., Csabai, I., Szalay, A. S., et al.: 1995,
AJ 110, 2655

Dawson, K. S., Schlegel, D. J., Ahn, C. P., et al.: 2013,
AJ 145, 10

DES Collaboration: 2015, ArXiv:1507.05552

Feldmann, R., Carollo, C. M., Porciani, C., et al.: 2006,
MNRAS 372, 565

Firth, A. E., Lahav, O., and Somerville, R. S.: 2003,
MNRAS 339, 1195

Geach, J. E.: 2012, MNRAS 419, 2633

Gerdes, D. W., Sypniewski, A. J., McKay, T. A., et al.:
2010, ApJ 715, 823

Hastie, T., Tibshirani, R., and Friedman, J.: 2001, The
Elements of Statistical Learning, Springer Series in
Statistics, Springer New York Inc., New York, NY,
USA

Hildebrandt, H., Arnouts, S., Capak, P., et al.: 2010,
A&A 523, A31

Hoecker, A., Speckmayer, P., Stelzer, J., et al.: 2007,
PoS ACAT, 040

Hoyle, B., Rau, M. M., Bonnett, C., Seitz, S., and
Weller, J.: 2015a, MNRAS 450, 305

Hoyle, B., Rau, M. M., Zitlau, R., Seitz, S., and Weller,
J.: 2015b, MNRAS 449, 1275

Hu, W.: 1999, ApJ 522, L21

Ilbert, O., Arnouts, S., McCracken, H. J., et al.: 2006,
A&A 457, 841

Leistedt, B., Peiris, H. V., Elsner, F., et al.: 2015,
ArXiv e-prints

Lima, M., Cunha, C. E., Oyaizu, H., et al.: 2008, MN-

RAS 390, 118

MacKay, D. J.: 2003, Information theory, inference

and learning algorithms, Cambridge university press

Mandelbaum, R., Seljak, U., Hirata, C. M., et al.: 2008,
MNRAS 386, 781

Mobasher, B., Capak, P., Scoville, N. Z., et al.: 2007,
Astrophys. J. Suppl. 172, 117

Myers, A. D., White, M., and Ball, N. M.: 2009, MN-

RAS 399, 2279

Newman, J. A., Abate, A., Abdalla, F. B., et al.:
2015, Astropart. Phys. 63, 81, [Erratum: Astropart.
Phys.65,112(2015)]

Oyaizu, H., Lima, M., Cunha, C. E., Lin, H., and Frie-
man, J.: 2008, ApJ 689, 709

Rau, M. M., Seitz, S., Brimioulle, F., et al.: 2015, MN-

RAS 452(4), 3710

Sánchez, C., Carrasco Kind, M., Lin, H., et al.: 2014,
MNRAS 445, 1482

Schmidt, S.: 2007, Galaxy Evolution: The DRaGONS

Survey and Luminosity Functions with Photometric

Redshifts, University of Pittsburgh

Soumagnac, M. T., Abdalla, F. B., Lahav, O., et al.:
2015, MNRAS 450(1), 666

Way, M. J. and Klose, C. D.: 2012, PASP 124, 274

Zhan, H. and Knox, L.: 2006, ArXiv Astrophysics e-

prints

This 2-column preprint was prepared with the AAS LaTeX
macros v5.2.

18

Appendix

A. Quick-start guide

To illustrate the use of ANNz2, we provide a short guide for running the code. The following is limited to describing
the randomized regression mode, corresponding to version 2.1.2 of the code. Please see the on-line documentation15

for further details, as well as up to date instructions.

A.1. Work-flow

Randomized regression is run using the following consecutive shell commands. In this example, the commands
employ the Python control script, annz rndReg quick.py, which is provided with the code:

python s c r i p t s / annz rndReg quick . py −−randomRegression −−genInputTrees
python s c r i p t s / annz rndReg quick . py −−randomRegression −−t r a i n
python s c r i p t s / annz rndReg quick . py −−randomRegression −−optimize
python s c r i p t s / annz rndReg quick . py −−randomRegression −−eva luate

These correspond to the four stages of the pipeline: data processing, training, optimization, and evaluation.

In the following, we describe each of these stages. We use Python pseudo-code to represent the content of the
example script. The dictionary syntax, ANNz[”XXX”], stands for a job-option parameter labelled XXX, which is exposed
to ANNz2. All other variables are internal to the control script.

A.2. Data processing

In the initial stage, the training and validation samples defined by the user are ingested. If the user does not
explicitly define separate input files for training and for validation, the complete sample is randomly split.

The user also has the option to define a reference sample, which represents the dataset which is eventually evaluated.
If this reference is provided, training weights are calculated, as described in Sect. 4.4.

For example, the user may define,

ANNz[” i nA s c i i F i l e s ”] = ” tra in ingTes t ingSample . csv ”
ANNz[” inAsc i iVar s ”] = ”F :m u ; F : e u ; F : m g ; F : e g ; D: z spe c ; C: survey”

ANNz[”useWgtKNN”] = True
ANNz[” inAsci iFi les wgtKNN”] = ” re f e r enceSample . csv ”
ANNz[” inAsciiVars wgtKNN”] = ”F :m u ; F : e u ; F : m g ; F : e g ”
ANNz[”weightVarNames wgtKNN”] = ”m u ; m g ; e u ; e g ; (m u−m g) ”

Here inAsciiFiles defines the input file containing the dataset for training and validation. The corresponding list
of variables in this file is defined in inAsciiVars. For brevity, we define only a few inputs here; these are formatted
as a semicolon-separated list of variable type and name. The former are e.g., F, standing for floating precision, D,
standing for double precision, and C, standing for a string variable. The variable names, m u, e u, m g and e g stand in
this example for a pair of magnitudes and their corresponding errors; the variable z spec stands for the spectroscopic
redshift; the variable survey stands for the name of the spectroscopic survey. We note that our use of magnitudes,
while useful for photo-z estimation, has no particular significance. The user may assign any type of input (with any
assigned name) as part of the input dataset.

Setting the variable useWgtKNN to True activates the calculation of training weights. The associated parameters are
inAsciiFiles wgtKNN and inAsciiVars wgtKNN, respectively used to define the file-name of the reference sample, and the
corresponding list of variables it contains. The parameter, weightVarNames wgtKNN defines the variables which are used
for the KNN search. In this example, distance between neighbours is defined in magnitude (m u, m g), in magnitude-
error (e u, e g) and in colour (m u−m g). Any functional combination of input parameters may be used for the KNN
search, for any variable which is defined in both inAsciiVars and inAsciiVars wgtKNN.

15 See https://github.com/IftachSadeh/ANNZ .

19

https://github.com/IftachSadeh/ANNZ

Once training weights are calculated, they are propagated automatically to all calculations in the following stages.
This includes the training of MLMs, the optimization process and the performance plots generated as part of the
output of the code. The training weights themselves are also included as part of the output of ANNz2, for every object
from the training and validation samples. ANNz2 may thus also be used to calculate representativeness weights for use
by other codes.

A.3. Training

In the second stage of the pipeline, a collection of MLMs is trained. The MLMs may be trained consecutively, or
in parallel (e.g., using a batch-system).

For example, the user may set the following options:

ANNz[”zTrg”] = ” z spec ”
ANNz[”minValZ”] = 0 .0
ANNz[”maxValZ”] = 0 .8
ANNz[”nMLMs”] = 20

for i d in range (ANNz[”nMLMs”]) :
i f (i d % 3) == 0 : vars = ”m u ; m g”
e l i f (i d % 3) == 1 : vars = ”m u ; m g ; (m u−m g) ; e u ; e g ”
else : vars = ” (m u∗(m u < 25) + 25∗(m u >= 25))

; (m g∗(m g < 23 . 5) + 23 .5∗ (m g >= 23 . 5)) ”
ANNz[” inputVar i ab l e s ”] = vars

i f i d == 0 : opt = ”ANNZMLM=ANN : HiddenLayers=N,N+5 : NeuronType=sigmoid
: UseRegulator=True : TrainingMethod=BFGS : NCycles=500”

e l i f i d == 1 : opt = ”ANNZMLM=BDT : NTrees=600 : MinNodeSize=2%
: BoostType=AdaBoost : VarTransform=N,D,P”

e l i f i d == 2 : opt = ”ANNZMLM=KNN : nkNN=90”
else : opt = ””
ANNz[”userMLMopts”] = opt

ANNz[” u s e rCut s t r a i n ”] = ” (e u < 5) && (survey == \”SDSS\”) ”
ANNz[” u s e rCut s va l i d ”] = ” e u < 10”
ANNz[” userWeights t r a in ”] = ”1/((1+ e u)∗(1+ e g)) ”
ANNz[” userWeights va l i d ”] = ””

The target of the regression (the spectroscopic redshift) is defined in zTrg, with the allowed limits for the latter
set in minValZ and maxValZ. In this case, 20 randomized MLMs will be trained (specified by nMLMs). The variables
used as input for the training are defined in inputVariables. One can select any functional combination of the available
parameters which have previously been defined in inAsciiVars, including logical expressions. An example for the latter
is the choice made for the third option. Here magnitudes are mapped to some effective magnitude-limit, which may
prevent training with noisy data.

The type of MLM for each of the randomized ensemble is defined in the userMLMopts parameter. The current
example shows configurations of an ANN, a BDT and a KNN. Here, the ANN is defined as having two hidden layers,
the first with N and the second with N+5 neurons, where N is the number of input parameters; the selected type
of neuron is a sigmoid function; a regulator is used for the training; the training method is chosen as BFGS (using
second derivatives of the error function); a maximum of 500 training cycles are allowed. The BDT is defined as being
composed of 600 trees (NTrees); a minimum of 2% of training objects is included in each tree-node (MinNodeSize);
training employs the AdaBoost boosting algorithm (BoostType). The KNN in this example is defined simply as using
90 near neighbours.

Of the key-words defined for userMLMopts, the only pattern unique to ANNz2 is (ANNZ MLM = XXX), here with XXX

being ANN, BDT or KNN. This tag defines for ANNz2 which MLM type to use. All other job-options are native
to TMVA. For instance, an ANN may be trained with TrainingMethod = BP, GA, or BFGS; a BDT may use boosting
(BoostType = AdaBoost, RealAdaBoost, AdaBoostR2, or Grad), or it may use bagging (ABaggingNN), etc. The various

20

possible settings are defined in the TMVA manual,16 along with overviews of the corresponding algorithms. All machine
learning methods available through TMVA may be used in ANNz2. However, in our experience, ANNs and BDTs perform
best for the task of photo-z inference.

In the current example, the user has also requested that the variables used for training the BDT will have gone
through transformations prior to training. The latter are defined using the VarTransform parameter, with N representing
normalization, D, decorrelation, and P standing for principle-component decomposition. The VarTransform flag may
be added to any userMLMopts option string, for any type of MLM. The transformations are performed as part of the
internal pipeline of the code, and are automatically applied to evaluated objects.

The empty selection for userMLMopts indicates for ANNz2 that MLM configuration parameters should be chosen on
the fly. This is done as part of the internal pipeline of the code, and results in randomized configurations of ANNs
and BDTs.

In the example, we also show how the user may define cuts for the training and validation samples (userCuts train,
userCuts valid). For instance, assuming we have spectroscopic data from several surveys, the user has chosen to only
train with galaxies from the ”SDSS” survey. In addition, a cut is set to only use objects with e u below certain limits.
Such choices are useful for comparing the performance for different training sub-samples. Additionally, weights may
be defined for the training and validation samples using userWeights train and userWeights valid. These take effect in
addition to the representativeness weights, provided the latter were calculated in the previous stage. We note that the
various cut and weight expressions can be set to different values for each of the randomized MLMs. For instance, the
user may choose to impose a cut on magnitude errors for half of the randomized MLMs, to asses if such a constraint
improves the performance or not.

A.4. Optimization

In the optimization stage, the performance of the ensemble of trained MLMs is derived. The optimal solution is
chosen as zbest, and a PDF is derived.

There are several control options which the user may set,

pdfBinsType = 0
i f pdfBinsType == 0 : ANNz[” userPdfBins”] = ” 0 .0 ; 0 . 2 ; 0 . 3 ; 0 . 4 ; 0 . 5 ; 0 . 6 ; 0 . 8 ”
e l i f pdfBinsType == 1 : ANNz[”nPDFbins”] = 90
e l i f pdfBinsType == 2 : ANNz[”pdfBinWidth”] = 0 .01

ANNz[”max bias PDF”] = 0.01
ANNz[”max sigma68 PDF”] = 0.044
ANNz[”max frac68 PDF”] = 0.10
ANNz[”MLMsToStore”] = ”LIST ; 0 ; 1 ; 3”

The first block shows how the user may define the binning-scheme for the PDFs. One may set one of the following:
userPdfBins can be used to define a specific set of bins; nPDFbins can be used to divide the allowed range of the regression
target into (in this case) 90 bins of equal width; pdfBinWidth can be used to divide the allowed range into a dynamically
determined number of bins, which all have a width of (in this case) 0.01.

In general, all derived MLMs are combined to form the PDF. However, it is possible to set exclusion criteria, and
reject those which perform badly. The parameters max bias PDF, max sigma68 PDF and max frac68 PDF represent these
criteria; these respectively define upper limits on the values of the bias, the 68th percentile scatter, and corresponding
combined outlier fraction. Individual MLMs with metric values higher than the upper limits, are not incorporated
into the PDF.

By default, only zbest and the PDF are included in the output of ANNz2. However, it is possible for the user to define
additional MLM estimators to be written out. This is done using the MLMsToStore parameter, which may include any
MLM-id in the range, 0 ≤ id < nMLMs.

16 See http://tmva.sourceforge.net/optionRef.html .

21

http://tmva.sourceforge.net/optionRef.html

A.5. Evaluation

In the final stage of the pipeline, the user defines a dataset, for which the photo-z estimators are calculated.
Additionally, the quality parameter for incomplete training, QNN, can be calculated on request.

For example, it is possible to choose the following configuration:

ANNz[” i nA s c i i F i l e s ”] = ” evaluatedSample . csv ”
ANNz[” inAsc i iVar s ”] = ”F:m g ; F : e u ; F :m u ; F : e g ”

ANNz[” addInTrainFlag ”] = True
ANNz[”weightVarNames inTrain ”] = ”m u ; m g ; (m u−m g)”
ANNz[”minNobjInVol inTrain ”] = 150

where the inAsciiFiles and inAsciiVars variables are set as for the initial data processing stage. We note that inAsciiVars

does not need to exactly correspond to the same structure as for the previous stages. However, it must include all
variables which were used for training MLMs (see inputVariables).

If the addInTrainFlag parameter is set to True, the QNN estimator is added to the output. For the calculation of QNN,
the user needs to define weightVarNames inTrain, the list of variables to be used for the KNN search. The user also has
the option to set the value of nmin

NN (see Sect. 4.4), using the parameter, minNobjInVol inTrain.

22

	1 Introduction
	1.1 Photometric redshifts
	1.2 Methodology for photo-z estimation
	1.3 Machine learning methods
	1.3.1 Basics of machine learning
	1.3.2 Available methods in TMVA
	1.3.3 Method selection and parameter tuning

	2 Example analysis
	3 Definition of metrics and notation
	4 The ANNz2 algorithm
	4.1 Photo-z PDF derivation
	4.2 Single regression and uncertainty estimation
	4.3 Randomized regression PDF
	4.4 Representativeness and completeness of the training sample

	5 Performance of the estimators of ANNz2
	5.1 Toy analysis
	5.2 Other applications of ANNz2

	6 Summary
	A Quick-start guide
	A.1 Work-flow
	A.2 Data processing
	A.3 Training
	A.4 Optimization
	A.5 Evaluation

