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We consider between-subject variance in brain function as data rather than
noise. We describe variability as a natural output of a noisy plastic system (the
brain) where each subject embodies a particular parameterisation of that
system. In this context, variability becomes an opportunity to: (i) better char-
acterise typical versus atypical brain functions; (ii) reveal the different cognitive
strategies and processing networks that can sustain similar tasks; and (iii)
predict recovery capacity after brain damage by taking into account both
damaged and spared processing pathways. This has many ramifications for
understanding individual learning preferences and explaining the wide differ-
ences in human abilities and disabilities. Understanding variability boosts the
translational potential of neuroimaging findings, in particular in clinical and
educational neuroscience.

Celebrating Variability
Notwo humanbrains are identical, with variability inbrainanatomy andfunctionemerging fromhow
each individual brain is genetically built and shaped by its intimate interaction with the environment.
Most functional imaging studies discount this variability to establish how subjects typically execute
a given task, with the assumption that brain activations are spatially and temporally similar across
subjects.Methods formeasuring intersubjectvariabilityhave mainly focusedondevelopingmodels
of normal brain function (i.e., norms) that allow abnormality to be quantified in patient populations.
Thisquantificationofnorms relies ona reductionist framework that aims tocollapse the dataacross
the subject dimension and focus on the significant common (i.e., overlapping) or mean effects (Box
1). Such over-reliance on aggregate statistics (see Glossary) in the pursuit of the norm can
invalidate some of the conclusions drawn from group level analyses.

The search for the mean group effect (i.e., central tendency), typically defined as the ultimate
representative subject, implicitly treats variability that cannot be explained by any experimental
manipulation as a nuisance, noise, or measurement error. This ignores many relevant
sources of intersubject variability, including the use of different cognitive strategies for the
same task [1–3] (Box 2), differences in learning or subjective judgment [4,5], and the inherent
normal variance in ability and capacity [6]. More critically, when meaningful information about
the individual is treated as measurement error, the estimates from the group mean might not
actually describe anyone well [7–13]. This is why there have been many appeals, for instance, in
the field of psychology, to treat between-subject variance as data rather than noise [14–19].
However, the importance of treating variance as data rather than noise has not yet been widely
embraced by the neuroimaging community and most of the widely used analysis software
packages only provide estimates of group effects. This is in part because the characterisation of
intersubject variability requires a large number of observations from a large number of individu-
als, but also because of the challenge of developing methodologies for analysing, interpreting,
and using between-subject variance [12,20].

Highlights
A wealth of scientifically and clinically
relevant information is hidden, and
potentially invalidated, when data are
averaged across subjects.

There is growing interest in using neu-
roimaging to explain differences in
human abilities and disabilities. Pro-
gress in this endeavour requires us
to treat intersubject variability as data
rather than noise.

Our plastic and noisy brains intrinsically
change the parameterisation of each
individual’s brain, providing a rich
opportunity to understand differences
in brain function.

Normal variability can be used to
decode different neural pathways that
can sustain the same task
(degeneracy).

This is of paramount importance for
understanding why patients have vari-
able outcomes after damage to see-
mingly similar brain regions.
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In this review, we (i) describe how the brain, as a noisy plastic biological system, generates
individual differences; (ii) review evidence of the intimate relationship between variability in brain
structure and functional activation; (iii) propose that a dominant source of intersubject variability
arises from degeneracy when the same task can be performed in multiple different ways; (iv)
highlight the importance of generating explanatory models of intersubject variability when
characterising and interpreting atypical activation in clinical cohorts; and (v) consider the type
of methodology that is needed to investigate intersubject variability in brain activation. In brief,
we treat intersubject variability as an opportunity rather than a handicap, with the ultimate aim of
supporting personalised investigations of brain function.

The Brain as a Noisy Plastic System
The human brain is governed by the same fundamental physical rules that posit noise in any
system at non-zero temperature. Noise can convey information about microscopic processes

Glossary
Aggregate statistics: statistics that
summarise a group of measurements
or observations.
Brain connectivity: afferent and
efferent connections that mediate
interactions between brain regions.
Connectivity can be anatomical
(white matter tracts), functional
(statistical associations), or effective
(causal interactions).
Brain rhythms: oscillations in
electrical, magnetic, hemodynamic,
or other measurements that are
generated by activity in neurons or
the interaction between neurons.
Rhythms can be characterised by
their frequency, amplitude and
phase.
Central tendency: tendency of
random variables to cluster round the
centre or average. The most
common central tendency measure
is the arithmetic mean.
Cognitive strategy: sequence of
mental processes for accomplishing
a given task.
Cognitive style: personal bias to a
particular cognitive strategy, due to
genetics or prior experience.
Covariance: measure of how two
variables change together,
irrespective of their means. It is
calculated by taking the product of
the deviations of two variables from
their respective means.
Degeneracy (in neurobiology):
ability of elements that are
structurally different to perform the
same function or yield the same
output.
Dynamical system: system that
changes from one state to another
over the course of time. It depicts a
system in which motion or transitions
occur.
Functional anatomy: relationship
between brain anatomy and function.
It defines brain regions using
functional landmarks instead of
purely structural landmarks.
Lateralisation: relative difference
between the left and right
hemisphere that results from the
asymmetric processing of sensory
and cognitive information.
Measurement error: random errors
or existing bias that diminish the
accuracy of the measurement. The
presence of measurement error
indicates that the results of sampling

Box 1. Variability along the Sixth Dimension

A typical functional neuroimaging experiment (e.g., fMRI) requires the analysis of multidimensional data. Each experi-
ment can be defined as a 6D dataset (Figure I): (i–iii) the three space dimensions, (iv) time, (v) an experimentally
manipulated ‘task’, and (vi) ‘subject’, where the same experiment is repeated in multiple subjects. Other extra
dimensions may include (vii) ‘session’ for longitudinal or repeated studies, and (viii) ‘group’ when subjects are drawn
from different healthy or clinical populations. The focus here is about the sixth dimension ‘subject’.

In group studies, the information along the sixth dimension is typically treated as a ‘nuisance’ and is deliberately
‘compressed’ or ‘reduced’ to make group inferences. This approach hides other sources of variability. Different facets of
variability can manifest in different dimensions, including (i) intertrial variability between events and items within the same
run that might be linked to changes in strategy or learning [105]; (ii) inter-regional variability (or spatial variability) in the
neurovascular coupling or BOLD sensitivity [106]; (iii) intrasubject (or intersession) variability related to the reliability and
reproducibility of fMRI findings, in longitudinal or test–retest studies [91]; (iv) interindividual variability, also known as
intersubject, between-subject, or across-subject variability (focus of the current review); (v) intersite variability between
different scanning environments, which is sometimes a concern for large databases that include scans from different
laboratories [107]; and (vi) variability in methodology: related to contextual or situational factors, for instance, differences
in experimental design, acquisition sequences, and analysis methods [108].

We argue here that functional variability between subjects reflects the behaviour of the brain under parameterisation that is
specific to the individual. Accordingly, the more two subjects differ in their parameterisation, the more their brain function will
differ. The main structural and physiological parameters (measurable at the mesoscopic or macroscopic level) that govern
such individual-specific parameterisation are: grey matter density [43]; cortical thickness [53]; morphological anatomy
[109,110];cortical layers [111];whitemattercircuitry (tractsandpathways) [1,47]; myelination [44]; callosal topography [112]
that influences the degree of functional lateralisation across subjects; functional connectivity [113] and its association with
variability in task-related brain activity [114–116] and its divergence from structural connectivity [45]; brain oscillations and
rhythms [13,117,118], metabolism [119] and vasculature [120]; and neurotransmitters and hormones [121,122].

Space
(x y z)

Time
 (t, sess)

Task
(condi�on)

Subjects
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Figure I. The 6D Output of a Typical Multisubject Experiment.
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might not be duplicated across
repetitions.
Mesoscopic level: intermediate
level of representation between
microscopic and macroscopic
scales.
Network: set of interconnected brain
regions that interact among
themselves during the processing of
a given task. Regions and
connections are referred to as nodes
and edges respectively.
Noise (in statistics): amount of
unexplained variance in a sample. It
is typically modelled as random data.
Nuisance parameter: any
parameter of no interest that can
influence the estimation of other
parameters of interest and should
therefore be accounted for in data
analysis.
Plasticity: changes in brain anatomy
or function that result from learning
or environmental changes.
Processing pathway: set of brain
connections and regions that can
sustain processing of sensory,
motor, or cognitive functions.
Recovery: improvement in the
severity of a deficit over time, until
the patient returns to the normal
range.
Reorganization: ability of the brain
to adapt and reorganise its
structure–function relationships after
insult.
Task manipulation: methodical way
to implement stimulus or task
changes in neuroimaging
experiments.

Box 2. Intersubject Variability in Cognitive Strategy

In typical multisubject neuroimaging studies, tasks are assumed to be performed in the same way or using a single
strategy [123]. However, many tasks are unconstrained, allowing subjects to adopt their own strategy. Figure I intuitively
visualises the problem of averaging individual activation maps that differ in their features [124], when subjects adopt
different strategies. The resulting average in this toy example depicts a hybrid image that differs to that encoded in each
of the original images. This average image contains many false negatives (where features vary between images) and
false positives (where feature combinations create new features).

A hypothetical example is a task that requires subjects to hold and manipulate many numbers when performing a serial
addition of successive integers. Practically, inside the scanner, the subject is shown an Arabic digit (e.g., 8) and his/her
task is to verbally say the exact sum of all numbers from 1 up to the presented digit (sum of 1 to 8). If researchers have a
limited knowledge of the many ways (or strategies) by which the task can be executed, they will assume that all subjects
will do the task in exactly in the same way. However, there are at least three known cognitive strategies to execute this
task as illustrated in Figure II.

Obviously, each strategy involves specific cognitive processes, with distinct activation patterns. This yields high
between-subject variability and weak effects when the analysis sums over strategy. In contrast, paying attention to
the individual pattern may help to (i) understand that different strategies do exist, and (ii) potentially predict the strategy
that the individual was using. For tasks in which the strategies are known a priori (e.g., reading), researchers can use
clever experimental manipulations to push the participant (implicitly or explicitly) towards a particular strategy. For other
tasks, strategies can be inferred by looking at structure or patterns in the across-subject dimension of the group data.

Perhaps more importantly, the different types of variability in brain parameters and cognitive strategies are intimately
connected. For example, slow changes in structural parameters such as grey matter (density and volume), white matter
connectivity, and vasculature underpin the faster, more dynamic changes in endogenous functional connectivity and brain
rhythms, which in turn influence task-related brain activity and behaviour [114–116,125–127]. Conversely, individual
differences incognitivestrategies,cognitivestyles,expectation,anddecisionsmodulate theunderlyingbrainstructure [27,48].

Image 1 Image 2

+ =

Average

Figure I. Averaging Images with Variable Features.
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Figure II. Cumulative Sums of Integers via Three Possible Strategies.
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that determine the macroscopic behaviour of the system. Indeed, many studies have described
the behaviour of the human brain as a noisy dynamical system that generates variable
responses, even in primary sensory regions [21–24]. The brain is also a plastic system that is
subjected to continuous changes in its structure and function from the molecular to network
levels [25–28]. This noisy plastic system is incessantly influenced by subject-specific endoge-
nous (i.e., self-generated) and external (sensory) inputs, and it produces outputs at different
space–time scales even during rest or sleep. Each individual brain is therefore intrinsically
parameterised at microscopic, mesoscopic, and macroscopic levels [29–31]. By studying
subject-specific functional imaging responses, we can investigate how the brain operates and
behaves under parameterisation that is specific to the individual (Figure 1, Key Figure), and we
can ultimately extract meaningful information about that individual [32–34].

Meaningful intersubject variability in brain activation can be described as intrinsic, strategic, or
contextual. Intrinsic variability arises from inherent factors rather than learned preference [35]
and is therefore time invariant in the normal brain. For example, although language processing
is typically a left hemisphere function, it is lateralised to the right hemisphere in �7% of
individuals [36], and this variability has primarily been attributed to intrinsic (genetic) factors
[37] that are unlikely to change over time. One way to minimise the expression of intrinsic
variability is to match subjects for known demographic variables (e.g., age, gender, and
handedness). In contrast to intrinsic variability, strategic (or learned) variability is constrained
and shaped by prior learning. For instance, if subjects learned to execute a given task in one of
many possible ways then they may adopt this initial learning strategy each time they repeat the
task (Box 2). Decoding variability that is consistent within an individual, can therefore give clues
to differences in cognitive style and preferred cognitive strategy. The third type of variability
is contextual, which is driven, for example, by familiarity with the scanning environment and
mood states that affect cooperation, motivation, habituation, awareness, and stress. This
tends to change more rapidly than either intrinsic or strategic variability. Its contribution can be
minimised by treating each subject with identical scanning environment and task
manipulations.

As mentioned above, strategic variability emerges when each individual can adopt a
different strategy that best matches his/her expectations and prior knowledge. The exact
sources of such individual differences in strategies are not fully understood, but may
include complex interactions between genetic and environmental factors. From what
we currently know, there is no single gene or environmental factor that taken alone would
predict exactly which strategy an individual would adopt or how an individual would learn to
perform a given task. It is more likely that the interaction of genetic and environmental
factors leaves its signature on the individual’s brain, continually modifying and shaping its
parameterisation (Boxes 1 and 2) [38–40]. These plastic changes, within a participant,
contribute to more stable cross-sectional differences in brain structure that can be
quantified and investigated, and may provide clues as to how genetic and environmental
factors influence behaviour.

Variability in Brain Structure and Function
There has been an abundance of studies showing how interindividual variability in brain
structure is intimately related to interindividual variability in brain activation [41,42]. For instance,
the degree to which grey matter density is lateralised across individuals is proportional to the
degree to which language activation is left or right lateralised [43], and between-subject
differences in white matter integrity are proportional to task-related brain activity [1], functional
dynamics [13,44], intrinsic functional connectivity [45], and behavioural responses [46–48]. It is
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therefore not surprising that generative models (simulations) of brain function are improved
when structural variation is accounted for [49,50].

Variability in structure–function relationships is governed by the large number of parameters
that operate in the noisy plastic brain. However, not all parameters are independent [45,51,52].

Key Figure

Individual-Specific Brain Parameterization and Variability in Brain
Function

{Current state, inputs, θ }

θ = {Structural parameters}

Inputs: Outputs:
Extrinsic
Endogenous

Task related
Spontaneous

Individual map = system responses under a par cular parameterisa on θ.

Decoding interindividual variability = inferring some parameters θ.

θ  is subject specific
     it impacts upon cogni ve and mood states.

θ1  θ2 θ3 θn-1 θn

Figure 1. The brain is a dynamical system that is plastic and noisy. The changes in brain status over time are a function of
its current state, the current environment or inputs, and the particular parameterisation (i.e., illustrated by the vector of
parameters ‘u’). The perpetual action of many variables generates noise that fluctuates in time [138]. For example, noise
can lead to transitions between coexisting deterministic stable states or attractors [139], and, perhaps more interestingly,
noise can induce new stable states that have no deterministic counterparts [138]. Each observed individual functional map
is in essence the system output under a particular parameterisation for that individual. This parameterisation impacts upon
cognitive states (cognitive strategies, learning styles, and expectations) and mood states (familiarity, cooperation,
motivation, and stress). Because not all parameters are independent, we can reasonably assume that the number of
true free parameters (i.e., degrees of freedom) is smaller. Decoding variability between subjects allows the range of some
parameters ‘u’ to be estimated. The exact modelling (e.g. generative/forward models) of this multi-input/multi-output
system at the neuronal and physiological level is proving to be increasingly plausible [31,140].
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For instance, several previous studies, reviewed in [51], have shown correlations between
different structural parameters [53]. Specifically, cortical thickness and surface area in one
brain region influence the cortical thickness and surface area of other structurally connected
regions [54]. Structural parameters (e.g., grey matter density and white matter connectivity)
also show a dependency with genetics and age, with the effect of age being consistent with
what we know about developmental trajectories of structural changes [55]. Understanding
these relationships [56] will ultimately help to reduce dimensionality in an informed way, with
major implications for studies interested in the dynamics of the brain [57,58], and how
alterations in these relationships can cause abnormal behaviour in neurological and psychi-
atric conditions [59–62].

Degeneracy
An important source of normal variability in brain structure and function arises when the same
task can be performed in multiple different ways. This is a type of degeneracy that is defined as
‘the ability of elements that are structurally different (e.g. brain regions, body parts, genetic
codes etc.) to perform the same function or yield the same output,’ [63]. In cognitive science, a
well-known example is the task of reading aloud familiar words that involves linking visual
processing of text to motor processing of speech articulators, using either sublexical spelling to
sound rules or whole-word recognition [64]. The degree to which each strategy and its
corresponding neural system are used will depend on how an individual is taught (‘look
and say’ or ‘sound it out’), their potential for learning each strategy, the degree to which they
have practiced, and the proficiency they have attained [65].

At the neural level, differences in cognitive strategy will be reflected in differences in task-related
brain activity because different processing types will engage different brain regions and change
the way the same set of regions interact with one another. Numerous neuroimaging studies
have shown significant differences in brain activation between subjects who relied upon
different cognitive strategies during the execution of the same task despite similar behavioural
performances [1,4,8,66–70]. These findings have implications for how multisubject activation is
interpreted (Box 2).

If the structure–function relationship were the same for each individual, the set of brain regions
activated could be used to predict (i.e., decode) which cognitive strategy an individual is using
[19], their behavioural performance [71,72], or their practice-induced learning [9,73]. Having
learnt these associations, we could reverse the inference to predict which brain regions will be
engaged when we know which strategy an individual uses. However, functional anatomy is
not consistent across all individuals because, as discussed above, there are known sources of
intrinsic intersubject variability in functional anatomy, particularly in individuals that have atypical
hemispheric lateralisation (e.g., for language or spatial processing). These variables are only
thought to account for <30% of between-subject variance [1,68] but need to be taken into
account when predicting structure from function or function from structure.

Clinical Implications for Patients
By investigating the most common types of intersubject variability in the neural systems that
support a range of functions, we can better understand and explain why outcomes or
symptoms can vary from patient to patient, even when they have seemingly similar lesion
sites. To illustrate, let us assume a particular cognitive task is normally performed by either a set
of regions [X] or a different set of regions [Y]. If [X] is damaged, the task can still be supported by
[Y], and conversely if [Y] is damaged, the task can still be supported by [X]. However, if both [X]
and [Y] are damaged, a deficit ensues because there are no available ways to perform the task.
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Data supporting this rationale have been demonstrated with fMRI and connectivity analyses
that dissociated different neural processing pathways for reading highly familiar object names
[74] and lesion analyses that showed that damage to two pathways had a greater impact on
reading than damage to one pathway had [75]. These findings support the fact that the effect of
brain damage is best understood in terms of the combination of brain areas that have been
damaged rather than the lesion volume or the presence or absence of damage to one particular
area; for a detailed discussion see [76].

Furthermore, the distinction between intrinsic and strategic variability that we made above can
help to explain interpatient differences in the speed of recovery and in functional reorgan-
isation after brain damage [77,78]. For example, if we know that healthy subjects can
effortlessly switch back and forth between different neural systems/strategies when performing
the same task (i.e., strategic variability), we can predict that patients should be able to
compensate rapidly and efficiently for loss of one system by switching to another prelearnt
system. Alternatively, if healthy subjects show a strong preference for one neural system but
can, with practice, learn to use another strategy/neural system, we would expect that the speed
of recovery, following loss of the preferred system, would depend on the time taken for the
patient to learn to use a nonpreferred system. Intervention in this case could focus on therapies
that help the patient to use the available system. If, however, there is no evidence that healthy
subjects or patients can use more than one system for a given task, then between-subject
variance might be intrinsic rather than strategic, and full recovery will be slower than when
multiple systems are available within subjects. This kind of information can be helpful when it
comes to integrating brain plasticity and learning systems into the context of diagnosis [79],
rehabilitation [80], and single-patient predictions [81].

In summary, intersubject differences in normal function provide a robust system for explaining
how the brain supports recovery after focal brain damage. In this context, it is reasonable to
derive the likelihood of recovery on the basis of how much variability the typical normal
population shows in functional activation. Critically, however, intersubject variability needs
to be assessed in a wide range of neurologically healthy and brain damaged individuals before it
can be used to predict outcomes in new patients.

Methods for Investigating and Interpreting Intersubject Variability
Although carefully designed paradigms can be used to guide task execution with instruc-
tions to use specific strategies, the type of strategy each subject is using can only be
inferred from behavioural data such as accuracy, response times, error types, learning
rates, or from postscan debriefing questionnaires. When different strategies result in similar
behavioural responses, statistical structure in between-subject variance in brain activation
can be investigated [67], with the goal of dissociating neural systems that may each
support a different (equally efficient) strategy for the same task (see hypothetical example
in Box 3). If these dissociations are meaningful, they may show a relationship with
independently observed variability in demographic information (age, gender, handedness,
and education), out of scanner behaviour (e.g., accuracy and response times on a range of
tasks that are independent of the scanner assessments), brain structure (grey matter
density, regional cortical volume, and white matter tracts), or prior knowledge of the
strategies used by subjects when performing the task. Such relationships between var-
iables would typically be masked by standard averaging approaches in group analyses.
The characterisation of intersubject variability can therefore complement standard group
analyses and enrich the conclusions that can be drawn beyond simple mean (central)
effects (see discussion in [82]).
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Several approaches have been used to model or find structure in between-subject variability
[11,68,83–85]. The approach illustrated in Figure 2 defines each subject’s activation map as a
sum of two but unknown quantities: the mean population effect plus a subject-specific effect
defined as a deviation from the mean at each brain voxel. The deviations can then be
characterised according to their size or covariance across subjects that can be used to
segregate functional networks. Moreover, the interpretation of intersubject variability
[2,13,62,63,67,68,82,86–90] has been facilitated by the fact that intrasubject (i.e., intersession)
variability is smaller than intersubject variability [91], making subject-specific activation maps
relatively stable [8] over many repetitions. For instance, it has been shown that fMRI signal
variation at different parts of the brain can be predicted by individual differences in visual short-
term memory capacity [92], motivational state [93], performance changes after practice [9],
learning aptitude [94], attention shifting efficiency [95], cognitive flexibility [96], and inhibitory
efficiency during executive functions [97]. These results clearly demonstrate that meaningful
signal exists in the between-subject variance [90,98] and highlights the possibility that there
might be multiple alternative neural systems that can each support the task (i.e., degeneracy).

One way to dissociate alternative neural systems for a given task is to model between subject
variance in activation (across a set of voxels) as a mixture of different subgroups, with the goal of
maximising similarity within groups at the same time as maximising differences between
groups. This rationale has previously been adopted when studying intersubject variability in
healthy subjects [68,85] and patients [99]. For instance, using a probabilistic classification
method on fMRI activation maps from neurologically normal individuals, it was possible to
segregate four subgroups of subjects who used different neural systems to read aloud the
same set of regularly spelled English words [68]. Post hoc comparison of demographics and
behavioural data showed that the four different groups differed in subject age and reading
strategy, suggesting that intersubject variability may have been driven by these variables.

Box 3. Sampling and Making the Most of Intersubject Variability

A general statistical framework for decoding unknown biological variability involves repeated sampling. In the hypothe-
tical example illustrated here, a naïve observer wants to characterise human dexterity with no prior knowledge. He/she
does this by recruiting as many humans as possible and asking them to move a ping-pong ball over a table. After
observing many subjects, he/she concludes that subjects (i) always use one of their hands but (ii) differ in which hand
they use (right or left). By observing many subjects successfully executing the same task, our naïve observer discovers
the different ways that human dexterity is typically supported, with no prior anatomical models about the function of
each body part. However, our observer cannot rule out other strategies for this task unless atypical subjects who lost
both their hands are recruited. If the task can only be performed by the hands, those without hands will not be able to
perform the task. If other strategies are possible, the observer will identify what these are (e.g., using the elbows or feet).
The results can then be used to predict how a new individual will perform the task, with or without hands.

Modelling normal and atypical intersubject variability can help researchers to make the most of intersubject variability in
brain function. This has potentially many implications in different fields including: (i) neurological and psychiatric studies
to help explain variance in lesion–symptoms associations [75,76], improve predictions about the likelihood of recovery at
the individual patient level [81,128], and enhance diagnostic power in identifying subjects at risk [129]; (ii) educational
neuroscience to understand typical and atypical developmental processes [78], and to develop teaching methods from
knowledge of intersubject variability in brain function, particularly in learning capacity, memory, motivation, and attention
[130]; (iii) brain (mind) reading [131] and in decoding cognitive states [132]; (iv) genetic studies of normal behaviour and
disease risk [133]; for instance, by correlating molecular genetic variations with interindividual differences in brain
functions [134]; (v) databasing and data mining of heterogeneous populations [128,133]; and (vi) neuroergonomics that
uses knowledge of brain function and human performance to design technologies and work environments for more
efficient operation [135].

Modelling variability can benefit from the development of new methods [11,83,136], including the possibility of using
multimodal imaging to map the biological pathways that mediate individual differences in behaviour [129,137].
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Group analysis = averaging

S1

Si = S group + (  Δi + ε )
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Δi : subject-specific effects
      (deviation from the group)

Δ =  {Δ1, Δ2, . . , Δi, . . , Δn} : meaninful individual differences. 

Dissocia ng neural systems 

Example: covariance analysis on Δ
(during a seman c matching task)

looking for ‘structure’ in Δ 

Anchor

Ship Truck

Figure 2.

(Figure legend continued on the bottom of the next page.)

Segregation of Networks with Across-Subject Covariance Analyses. The figure illustrates the use of
covariance analysis to segregate different networks associated with different strategies. Basically, if different personal
biases for particular cognitive strategies exist, they can be distinguished from random errors by looking at similarity across
brain regions in the between-subject variance. Top: different neuronal systems that can sustain the same task are
dissociated using (clustering) algorithms that cluster together voxels if their associated deviations covary across subjects.
D is the set of individual deviations from the population average. Si is an activation summary of subject i, like an effect size,
after collapsing the data across time or scans, and Di codes potential biases including the personal bias of subject i to a
particular cognitive strategy. Each Di is a whole-brain map (for subject i), and e codes inconsistent (measurement) noise.
For example, D (in its simplest form) can represent a set of residuals from a group (mean) analysis, or a set of eigenimages
after running a principal components analysis. Bottom: some of the networks that were segregated for a semantic
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Insight into between-subject variability in functional activation, when the task is held constant,
can also be gained by analysing how activation in different regions covary with one another [2].
This draws a parallel with the field of correlational psychology that looks at associations
between behavioural variables [14]: if two tasks A and B are determined by the same construct,
then a subject’s performance of task A should predict his/her performance of task B; if no
correlation exists, a potential dissociation is suggested [17]. When looking at brain imaging
data, we can reverse the inference by holding the task constant and looking at (de)associations
between regional brain activations in the across-subject dimension. In this context, covariance
is used to decode meaningful variability in the patterns of activation between subjects based on
the assumption that regions belonging to the same network will have comparable variations
from subject to subject [56,67]. The underlying assumption is that subjects engage many
functional networks when performing the task, but, because the networks are functionally
segregated (and spatially distinct), the level of activation in one network is not necessarily
correlated, across subjects, with the level of activation in the other networks. The different
processing networks can then be segregated by classifying brain voxels or regions according
to their similarity in activation across subjects. For instance, using an unsupervised data-driven
clustering algorithm across 39 healthy subjects, it was possible to segregate different networks
involved in semantic categorisation (Figure 2), including other hidden networks that were not
identified by standard cognitive subtraction approaches [67].

Covariance analyses can also be conducted in a hypothesis-driven way to segregate networks
of regions associated with different strategies. This is particularly useful when a given brain
region is known to be associated with a particular cognitive strategy. That region can then serve
as a seed region in a search over the whole brain for regions where activation covaries similarly
across subjects with that in the seed region [2,100]. Regions that strongly correlate across
subjects with the seed region can then be hypothesised to be part of the same subsystem and
thus associated with the same cognitive strategy as the seed region [2,101]. For instance,
hypothesis-driven covariance analysis shows how brain activation [2] as well as lateralisation
[102] in different subregions of the occipito-temporal cortex covary with different frontal regions
during word processing in skilled adult readers.

In summary, examining structure in the across-subject covariance can be used to group
subjects together according to similarity in their activation patterns (within group) and dissimi-
larity (between groups). It can also be used to group regions of the same network together in
order to identify how brain activation covaries during the recruitment of different strategies.
Covariance can therefore be used to characterise normal and abnormal variability, which has
important applications for studying neurological or psychiatric conditions [103,104].

Concluding Remarks
Variability in brain function is more than noise (Box 3). The time has come for new developments
in algorithmic and data processing that can answer questions beyond central tendency
measures. These new methods should be an important complement to standard group
inferences. Understanding between-subject variance holds the key to a better understanding

Outstanding Questions
What are the factors that impact upon
the strategy selected by subjects to
perform a given task?

How is switching between different
cognitive strategies governed by top-
down and bottom-up processing?

How does the size of between-subject
variability in clinical populations com-
pare to that in typical populations?

How can this knowledge be used to
optimise the definition of cut-off scores
for diagnostic use of neuroimaging
data?

How does functional and structural
variability between humans compare
to that seen in animals?

What are the links between variability in
functional connectivity and behaviour?

How can variability be modelled in a
way that could increase the reliability of
group inferences?

What will high spatial resolution data
(e.g., layer-specific fMRI) tell us about
intersubject variability?

How can information about intersub-
ject variability in brain function be used
to benefit the analysis of data from
other modalities (e.g., the inverse
problem in electroencephalography)?

matching task using an unsupervised fuzzy clustering algorithm (illustrated as red-to-yellow clusters projected on
anatomical axial slices). In this example, subjects were asked to indicate with a button press if visually presented words
were semantically related or not. Voxels were clustered together if their associated deviations covaried across subjects.
This clustering revealed many networks, including motor, visual, semantic, default mode and oculomotor networks. More
details about this example can be found elsewhere [67].
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of function–structure–behaviour associations (see Outstanding Questions). It will help to
dissociate alternative (degenerate) available pathways that can sustain a given cognitive skill.
We have highlighted the potential implications of this endeavour for clinical applications,
particularly for prognoses purposes. Namely, by segregating the different processing neural
systems, for a given skill, it may lead to accurate predictions about recovery after brain damage
depending on whether all or a subset of systems were damaged or spared. Last but not least,
as hundreds of functional neuroimaging studies are conducted every year, collaborative
databasing initiatives are needed, with a particular emphasis on data mining in the across-
subject dimension.
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