
MOBS: Multi-Operator Observation-Based Slicing using Lexical
Approximation of Program Dependence

Seongmin Lee
KAIST

Daejeon, Republic of Korea
bohrok@kaist.ac.kr

David Binkley
Loyola University Maryland
Baltimore, United States
binkley@cs.loyola.edu

Nicolas Gold
University College London
London, United Kingdom

n.gold@ucl.ac.uk

Syed Islam
University of East London
London, United Kingdom
syed.islam@uel.ac.uk

Jens Krinke
University College London
London, United Kingdom

j.krinke@ucl.ac.uk

Shin Yoo
KAIST

Daejeon, Republic of Korea
shin.yoo@kaist.ac.kr

ABSTRACT
Observation-Based Slicing (ORBS) is a recently-introduced pro-
gram slicing technique based on direct observation of program
semantics. Previous ORBS implementations slice a the program by
iteratively deleting adjacent lines of code. This paper introduces
two new deletion operators based on lexical similarity. Furthermore,
it presents a generalization of ORBS that can exploit multiple dele-
tion operators: Multi-operator Observation-Based Slicing (MOBS).
Empirical evaluation of MOBS using three real world Java projects
finds that the use of lexical information, improves the efficiency
of ORBS: MOBS can delete up to 87% of lines while taking only
about 33% of the execution time with respect to the original ORBS
implementation.

1 OBSERVATION-BASED SLICING
ORBS [1] slices a program by iteratively attempting a deletion
operator on its source code. Given source line l , a deletion operator
checks whether a set of lines, related to l , can be safely deleted with
respect to the given slicing criterion. If the source code after deletion
either fails to compile or changes the value trajectory of the slicing
criterion when executed using the given test suite, the deletion is
rejected. Otherwise, ORBS accepts the deletion and moves on.

The originalORBS implementation [1](W-ORBS), uses awindow-
deletion operators, Dw, which handles consecutive source lines
that can only be deleted together.ORBS’s weakness is its scalability;
to delete k lines, ORBS needs at least k deletion attempts.

2 ORBSWITH LEXICAL SIMILARITY
Our new deletion operators are based on the intuition that if a
source line can be deleted with respect to a given slicing criterion,
then there are likely other lexically similar lines that can also be
deleted. We introduce the two lexical deletion operators: Dvsm
and Dlda, based on two models which both can represent text
documents as numerical vectors: Vector Space Model (VSM) and
Latent Dirichlet Allocation (LDA). Each deletion operator chooses
a set of lines to be deleted that are beyond the threshold of certain
similarity calculated by the model.

To evaluate their effectiveness, we present variations of ORBS
that use the newly-designed operators :VSM-ORBS and LDA-ORBS.
VSM-ORBS and LDA-ORBS share distinguishing features that may
yield advantages over the existingW-ORBS in terms of efficiency.

(1) There is no limit to the number of lines that can be deleted
in a single deletion attempt.

(2) They can delete non-consecutive lines.
(3) During a single iteration, only one deletion is attempted

at each slicing point, unlike W-ORBS which may attempt
multiple deletions depending on its window size parameter.

3 MOBS: MULTI-OPERATOR
OBSERVATIONAL SLICING

ORBS now has multiple deletion operators at its disposal. Each
attempts to delete different parts of the code based on different
criteria, and thus brings different results. A method for selecting
an appropriate operator is therefore required. We hereby introduce
MOBS: Multi-operator Observational Slicing, which selectively
applies multiple deletion operators while slicing.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (v, l, I),

Set of deletion operators D = {D1, ..., Dn }, Slicing
Strategy S , Static Proportion R , Proportion Updater U

output :A slice of P for (v, l, I)
1 O ← Setup(P, v, l ) ▷ Insert a slicing criterion

2 V ← Execute(Build(O ), I) ▷ Obtain the oracle

3 D ← InitOperator (D, S, R) ▷ Set the selection prob.

4 repeat
5 deleted ← False
6 for i ← Length (O ) to 1 do
7 D← SelectOperator(D)
8 O ′, l ine_cnt, status ← D(O, V , i, I) ▷ Delete

9 D ← U (D, D, status, l ine_cnt ) ▷ Update the prob.

10 if status = success then
11 O, deleted ← O ′, True ▷ Accept the deletion

12 end
13 end
14 until ¬deleted
15 return O

Algorithm 1 presents MOBS. The function InitOperator ini-
tializes the deletion operator probabilities. The function Select-
Operator chooses a deletion operator to apply at each line using
roulette-wheel selection [2] based on operator proportions. Once

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/154747904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


chosen, the speculative deletion is the same as that done by ORBS
except that MOBS updates the operator proportions using updater,
U , which is specific to each operator selection strategy.

There are two kinds of operator selection strategies: Fixed Oper-
ator Selection (FOS) and Rolling Operator Selection (ROS). FOS uses
pre-defined operator proportions for an entire slice. The propor-
tions are initialized in one of three ways: uniform value, using the
number of successful deletions (applicability), using the number of
lines deleted (affect). In contrast, ROS updates the proportion after
each deletion attempt. The proportion updater U for ROS changes
operator proportions, which have been initialized with a uniform
value, based on the result of deletion.

4 EXPERIMENTAL SETUP
Our empirical studies are designed to answer the following research
questions:
RQ1. Lexical Deletion Operators: How efficient/effective is VSM-
ORBS, LDA-ORBS compare toW-ORBS?
RQ2. MOBS: How efficient/effective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical studies:
commons-cli and commons-csv from Apache Commons Project,
and Guava which is a core Java library developed by Google. We
choose three slicing criteria for each Apache projects three slicing
criteria from each sub-package from Guavawe study: common.escape
and common.net.

NCLOC # of Test cases # of Slicing Criteria

commons-cli 2,081 26 3
commons-csv 1,504 13 3
guava-escape 590 6 3
guava-net 1,569 8 3

Table 1: Subject Programs and Slicing Criteria

The library of deletion operators used by ORBS variants are
• W-ORBS: Dwk for deletion window size k = 1, 2, 3, and 4
• VSM-ORBS: Dvsmγ for threshold γ = 0.6, 0.7, 0.8, and 0.9
• LDA-ORBS: Dldaγ for threshold γ = 0.6, 0.7, 0.8, and 0.9

MOBS uses all of the aforementioned operators. Due to the
stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 2 shows the result of the operator efficiency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. The results shows
the average of 3 slicing criteria for each subject. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of
lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 3 shows the average result of the efficiency/effectiveness
comparisons between W-ORBS, and MOBS with the four different
operator selection strategies. For all results,MOBS is terminated
after the same number of iterationsW-ORBS required to terminate.

While all the MOBS variants slices the program more efficiently
than W-ORBS, ROS-MOBS performs slightly better than others.

Table 2: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (γ = 0.9) LDA-ORBS (γ = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

Table 3: Statistics on Number of Deleted Lines (µdel ), Execution
Time (µt ime ), Seconds per Deletion (µspd ), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-aff-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-aff-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-aff-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-aff-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

Overall, MOBS deletes about 79% of the lines W-ORBS deletes,
using about one third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the efficiency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
existing operators and the newly-introduced lexical deletion opera-
tors.

The results of our empirical evaluation of MOBS using three
real world Java programs suggest that MOBS can significantly
improve the efficiency of W-ORBS: it can delete about 79% of the
lines deleted by W-ORBS, while taking only about a third of the
execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

2


	Abstract
	1 Observation-Based Slicing
	2 ORBS with Lexical Similarity
	3 MOBS: Multi-operator Observational Slicing
	4 Experimental Setup
	5 Results
	6 Conclusion
	References

