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Research in context  

 

Evidence before this study 

Using PubMed and Google Scholar the authors reviewed prior work on longitudinal 

neuroimaging markers of Alzheimer pathology with a focus on autosomal dominant 

Alzheimer disease (ADAD). We searched for all articles prior to October 31
st
, 2017 with 

no language restrictions for the keywords Alzheimer’s, Alzheimer, longitudinal, positron 

emission tomography, PET, MRI, atrophy, FDG, hypometabolism, familial, and 

autosomal. Theories proposed initially in 2010 by Jack and colleagues and revised in 

2013 posited temporal trajectories of Alzheimer biomarkers relative to each other and 

clinical decline. Work by Bateman and colleagues in 2012, Benzinger and colleagues in 

2013, and Fleisher and colleagues in 2015 depict such temporal ordering of biomarkers in 

ADAD populations derived from cross-sectional analyses. There was also a small subset 

of longitudinal ADAD studies, but these had one or more limitation such as small 

populations (n<50), examination of only one biomarker, not accounting for regional 

differences or correlations in the brain, or had a short duration of longitudinal followup. 

 

Added value of this study 

Our study presents the first known work examining both the longitudinal temporal 

trajectories and spatial patterns of Alzheimer pathology in ADAD cohorts using 

neuroimaging. This work also presents the largest known cohort to date of ADAD 

individuals studied longitudinally with multiple neuroimaging biomarkers. Longitudinal 

analyses can provide a more accurate and powerful way to model the temporal 

emergence of pathology in ADAD. We find that mutation carriers first display Aβ 

accumulation, followed by hypometabolism, and finally structural atrophy; this is 

consistent with theoretical models and cross-sectional estimates from ADAD. Most 

importantly we consider such temporal relationships not in one singular summary 

measure, but characterize these trajectories throughout the brain. We found that the 

accrual of pathology varied throughout the brain and by modality in terms of the time of 

initial emergence and the rates of longitudinal change. These findings suggest region 

specific vulnerabilities to β-amyloidosis, metabolic decline, and atrophy that change over 

the course of the disease.   

 

Implications of all the available evidence 

Our results build upon existing evidence characterizing biomarkers in clinical and 

preclinical Alzheimer disease. Our findings suggest that imaging biomarkers follow a 

sequential pattern, with β-amyloidosis, hypometabolism, and structural atrophy emerging 

more than twenty, fifteen, and ten years respectively before the expected onset of 

dementia. Although there is a general hierarchical pattern, there was considerable 

regional heterogeneity. Most commonly, regions demonstrated an increase in β-

amyloidosis and structural atrophy, but there was not evidence of metabolic declines. 

Further, rather than being homogenous, the same biomarker often demonstrates different 

longitudinal trajectories across brain regions. Characterizing the temporal and regional 

dynamics provides insight into disease pathophysiology. This information is critical to 

decide how to best use neuroimaging biomarkers in clinical trials for subject selection as 

well as outcomes measures.  



 

Abstract  

Background 

Models of Alzheimer disease propose a sequence of amyloid-β (Aβ) accumulation, 

hypometabolism, and structural declines that precede the onset of clinical dementia. 

These pathological features evolve both temporally and spatially in the brain. This study 

aimed to characterize where in the brain and when in the course of the disease 

neuroimaging biomarkers become abnormal.  

 

Methods 

We analyzed data from mutation non-carriers, asymptomatic carriers, and symptomatic 

carriers collected between January 1
st
 2009 and December 31

st
 2015 from families 

carrying PSEN1, PSEN2, or APP mutations enrolled in the Dominantly Inherited 

Alzheimer’s Network. We analyzed [
11

C]Pittsburgh Compound B positron emission 

tomography (PiB PET), [
18

F]Fluorodeoxyglucose (FDG PET), and structural magnetic 

resonance imaging (MRI) data using regions of interest to assess change throughout the 

brain. We estimated rates of biomarker change as a function of estimated years from 

symptom onset at baseline using linear mixed-effects models and determined the earliest 

point at which biomarker trajectories differed between mutation carriers and non-carriers.  

 

Findings 

PiB PET was available for 346 individuals, with 162 having longitudinal imaging; FDG 

PET was available for 352 (175 longitudinal); and MRI data was available for 377 (201 

longitudinal). We found a sequence to pathological changes, with rates of Aβ deposition 

in mutation carriers being significantly different from non-carriers first (on average 

across significant regions at -18·9 (sd 3·3) years before expected onset), followed by 

hypometabolism (-14·1 years, sd 5·1) and lastly structural declines (-4·7 years, sd 4·2). 

This biomarker ordering was preserved in most, but not all, regions. The temporal 

emergence within a biomarker varied across the brain, with the precuneus being the first 

cortical region in each modality to show divergence between groups.  

 

Interpretation 

Mutation carriers had elevations in Aβ deposition, reduced glucose metabolism, and 

cortical thinning which preceded the expected onset of dementia. We found that the 

accrual of these pathologies varied throughout the brain, suggesting differential regional 

and temporal vulnerabilities to Aβ, metabolic decline, and structural atrophy. This 

provides insight into the temporal and spatial development of pathological change in 

Alzheimer disease. Understanding where and when pathology accrues in the brain is key 

for using biomarkers in a clinical setting as well as designing and evaluating clinical 

trials. 

 

Funding 

National Institutes of Health UFAG032438, UL1TR000448, P30NS098577, 

R01EB009352, and NS080675, the German Center for Neurodegenerative Diseases, and 

the Medical Research Council Dementias Platform UK (MR/L023784/1 and 

MR/009076/1). ClinicalTrials.gov number, NCT00869817  
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Introduction  

Alzheimer disease (AD) presents as a progressive loss of cognitive function, leading to 

severe impairment and loss of independence. AD’s long preclinical phase has bolstered 

efforts to identify in vivo biomarkers to aid disease diagnosis and prognosis
1
. Models of 

AD pathophysiology theorize a temporal sequence where disruptions in amyloid-β (Aβ) 

production and/or clearance initiate a biological cascade that leads to Aβ plaque 

formation that spreads throughout the cortex followed by tauopathy, neuronal 

dysfunction and death, and ultimately dementia
2,3

.  

 

Positron emission tomography (PET) and magnetic resonance imaging (MRI) can assess 

both the amount and location of Aβ plaques, tauopathy (neurofibrillary tangles, neuritic 

plaques, and neuropil), altered glucose metabolism, and structural decline. The temporal 

sequence of these biomarkers provides information about the pathogenesis of AD. 

Determining the ordering of changes in sporadic AD is problematic, as it is difficult to 

predict an individual’s relative position in the disease. Autosomal dominant AD (ADAD) 

is well suited to study biomarker trajectories due to the virtually complete penetrance of 

the mutations and consistency of symptom onset within families
4,5

. The conserved onset 

age within families and mutation types allows individuals to be staged relative to their 

expected onset of symptoms.  

 

ADAD work has revealed a temporal ordering of biomarkers consistent with theoretical 

models,
6–8

 and indications that pathology progressively appears in new regions of the 

brain as the disease worsens
7
. This has primarily relied on cross-sectional analyses, with 

limited analyses of modest longitudinal cohorts
7,9–16

. Longitudinal analyses can provide a 

better estimate of the true pathological trajectories.
17,18

 This is critical as interventional 

trials such as the Dominantly Inherited Alzheimer Network (DIAN) trials unit,
19

, the 

Alzheimer’s Prevention Initiative (API),
20

 and the Anti-Amyloid Treatment in 

Asymptomatic Alzheimer’s Study (A4)
21

 will all evaluate alterations in longitudinal 

biomarker trajectories.  

 

The DIAN observational study (DIAN)
4
 has established a large cohort of ADAD families 
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with longitudinal Aβ, metabolic, and structural neuroimaging assessments. Our current 

work compares rates of biomarker change in a large population of mutation carriers (MC) 

and non-carriers (NC) throughout the entire brain. In this way we can visualize when 

pathology biomarkers first emerge and how they spread throughout the course of the 

disease.  

 

Methods 

Participants  

Individuals from families known to have mutations in the presenilin 1 (PSEN1), 

presenilin 2 (PSEN2), and amyloid precursor protein (APP) genes were recruited from 14 

performance sites participating in the DIAN observational study (http://www.dian-

info.org). Participants were recruited from DIAN sites in the United States, Great Britain, 

Germany, and Australia between January 1
st
 2009 and December 31

st
 2015. All 

participants with genetic, clinical, and neuroimaging data that passed quality control from 

the tenth semiannual data freeze were included in the analyses. The institutional review 

board at Washington University in St. Louis provided supervisory review and human 

studies approval. Participants or their caregivers provided written informed consent in 

accordance with their local institutional review board. Clinical and imaging visits in 

DIAN are performed every three years for asymptomatic individuals until they are within 

three years of their parental age of dementia onset. Assessments become annual once an 

individual is within three years of parental age at onset or if an individual becomes 

symptomatic. Analyses excluded families with the Dutch and Flemish Mutation, as these 

APP mutations often present with predominant cerebral amyloid angiopathy and diffuse 

Aβ plaques (see supplemental material). The analyses included 346 individuals with Aβ 

PET data, 352 with PET metabolism data, and 377 with MRI.  

 

Clinical Assessment.  

Dementia status was assessed using the Clinical Dementia Rating (CDR)
22

. For each visit 

a participant’s estimated years from expected symptom onset (EYO) was calculated 

based upon the participant’s current age relative to either the family mutation specific 

expected age at dementia onset
5
or parental age at first progressive cognitive decline if 
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mutation age at onset was unknown. A “mutation specific” expected age of dementia 

onset is calculated by averaging the age of onset reported in the literature across 

individuals with the same specific mutation
5
. EYO is established identically for both 

carriers and non-carriers. The presence or absence of an ADAD mutation was determined 

using PCR-based amplification of the appropriate exon followed by Sanger sequencing
6
. 

Clinical evaluators were blind to participant mutation status.  

 

MRI.  

MRI was performed using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

protocol
23

. Sites used a 3T scanner and were required to pass regular quality control 

assessments. T1-weighted images (1·1 x 1·1 x 1·2-mm voxels) were acquired for all 

subjects. The ADNI Imaging Core screened images for protocol compliance and artifacts. 

Volumetric segmentation and cortical surface reconstruction was performed using 

FreeSurfer 5·3
24,25

 which automatically defines subcortical and cortical regions of interest 

(ROIs). Segmentations were inspected by members of the DIAN Imaging Core and 

edited as needed. Subcortical volumes were corrected for intracranial volume using a 

regression approach. Cortical thickness and volume measures were averaged across 

hemispheres. The cortical and subcortical labels identified on the MRI were utilized for 

the regional processing of all PET data. For all analyses we examined 34 cortical ROIs 

and 7 subcortical ROIs. A full list of regions is available in supplemental material.   

 

PET.  

Aβ imaging was performed using a bolus injection of [
11

C]Pittsburgh Compound B (PiB). 

Acquisition consisted of a 70-minute scan starting at injection or a 30-minute scan 

beginning 40 minutes post-injection. Data in the common 40–70 minute time frame was 

converted to regional standardized uptake value ratios (SUVRs) relative to the cerebellar 

grey matter using FreeSurfer derived regions of interest
26

 (PET Unified Pipeline, 

https://github.com/ysu001/PUP). Metabolic imaging was performed with 

[
18

F]Fluorodeoxyglucose (FDG) with a 30-minute dynamic acquisition beginning 30 

minutes after injection. Data from the last 20 minutes of each FDG scan were converted 

to SUVRs relative to cerebellar grey. Both types of PET data were partial volume 
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corrected using a regional spread function technique
27,28

.  

 

As there were no a priori laterality predictions, data were averaged across hemispheres 

before being entered into statistical analyses. Differences in spatial resolution across PET 

scanners were accounted for by applying scanner specific spatial filters to achieve a 

common resolution (8 mm)
29

. The ADNI PET Core verified that PET images were 

acquired using the established protocol and substantially free of artifacts.  

 

Statistical Analyses 

We used multivariate linear mixed effects (LME) models to describe the evolution of 

Alzheimer disease biomarkers. LME models have many benefits including providing a 

flexible approach to deal with an unequal number of measurement points or intervals. 

While neuroimaging analyses traditionally use univariate models, the field has begun 

using multivariate models which account for correlations between regional or voxelwise 

measurements
30–32

. Multivariate LME models can increased statistical power and 

reliability compared to univariate methods
30,31

. We implemented a Bayesian multivariate 

LME model to directly compare longitudinal biomarker changes across brain regions. 

Cortical and subcortical measurements were analyzed separately for each modality (PiB, 

FDG, and volumetric), resulting in total of six independent models. 

 

The full Bayesian LME model is described in the supplemental material. Each region 

included fixed effects for mutation status, time from baseline, baseline EYO, and all 

possible two and three-way interactions. EYO was modeled as a restricted cubic spline 

with knots at the 0·10, 0·50, and 0·90 quantiles. We chose restricted cubic splines to 

model EYO as they represent a flexible approach for accounting for nonlinearities in the 

data without forcing any particular curve shape. Splines have also been used extensively 

in the literature to model longitudinal changes in Alzheimer disease biomarkers
33,34

. For 

every region we included random intercepts and slopes at the subject-level, as well as 

random intercepts for family affiliation. At the subject-level, covariance matrices were 

constructed so that intercepts and the slopes were allowed to correlate across all regions 

in a model. 
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To fit each model we used Stan (http://mc-stan.org/)
35,36

, an open source package for 

Hamilton Markov chain Monte Carlo analyses. A parameter, or combination of 

parameters, was considered statistically significant if the 99% equal-tailed credible 

intervals of the posterior distribution did not overlap zero. Analyses were run separately 

for each modality (MRI, PiB, and FDG). Within each modality one model simultaneously 

fit 34 cortical ROIs and a second model simultaneously fit 7 subcortical ROIs derived 

from FreeSurfer. Each regional comparison within a model is simply a different slice of 

the same multidimensional posterior distribution. The current analyses focus on the 

interaction between mutation status and the longitudinal rate of change. Including 

multiple regions within one model also allows for the direct comparison of rates of 

changes between regions (supplemental material). 

 

Role of the funding source  

The study sponsors had no role in the study design, data collection, data analysis, data 

interpretation, writing of the report, or the decision to submit the manuscript for 

publication. All coauthors had full access to the data in the study and the corresponding 

author had final responsibility for the decision to submit for publication. 

 

Results 

Population demographics are in Table 1. Subjects with longitudinal data had an average 

of 2·4 visits (sd 0·8) and 2·7 (sd 1·1) years of data. Figure 1 shows example LME model 

fits for one region. For the both the middle and right-hand panels the shaded areas 

represent 99% credible intervals around the model estimates. The credible intervals are 

drawn from the actual distributions of model fits derived by the Hamilton Markov Chain 

Monte Carlos analyses. Any point in the difference curves (right-hand panels) where the 

shaded area is not touching the zero axis is a point in the disease progression (as 

measured by EYO) where the biomarker rate of change is different between groups. The 

first EYO point that was significantly different between groups was considered the initial 

diverge between groups. Figures depicting the model results for every ROI are available 

in supplemental materials. To avoid inadvertently revealing participants’ mutation status 
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at the edges of our sample where there are only a few individuals, figures are displayed 

with baseline EYO -29 to +10. 

 

The rate of Aβ accumulation is statistically higher in MC relative to NC participants 

starting more than two decades (EYO -22·2) before the expected age of dementia onset 

(Figure 1). As glucose utilization represents a natural biological property it contains both 

maturational and disease-related trajectories. In both groups, the precuneus FDG 

trajectories were initially positive, became neutral, and then negative. This negative 

directional acceleration begins earlier and was larger in MCs, with the rate of change 

becoming significantly less than NC at EYO -18·8. Finally, precuneus cortical thinning 

significantly differs in MC relative to NC at EYO -13·0. Supplemental material contains 

results for every ROI. Overall, in regions with a significant effect relative to NC, rates of 

Aβ deposition were significantly higher in MC at an average EYO of -18·9 (sd 3·3), 

metabolism began declining at an average EYO of -14·1 (sd 5·1), and MRI structural 

measures declined at an average EYO -4·7 (sd 4·2).  

 

Figure 2 depicts EYOs when and whether the longitudinal rate of change first differs 

between MC and NC for each biomarker. The differences across regions and modalities 

reflect the temporal and spatial evolution of pathology over the course of the disease. 

Rates of biomarkers change in regions that are grey are never significantly different 

between groups. This information is presented in numeric form in Supplemental Tables 1 

and 2. While many regions follow trajectories similar to the precuneus, the emergence of 

pathology varied throughout the brain. Further, there were regional differences by 

modality, for example, relative to NC the superior temporal lobe did not demonstrate a 

metabolic loss, but had atrophy changes at -5·6 EYO. Figure 3 depicts rates of change in 

MC for three cortical and three subcortical regions that exemplify common patterns.  

 

For PiB PET, 32/34 cortical regions showed significantly greater longitudinal rates of 

accumulation in MC relative to NC. The first point of divergence between groups varied 

across regions (EYO -22·2 to -2·5), with the precuneus, posterior cingulate gyrus, and 

medial orbital frontal cortex regions showing the earliest changes (~EYO -21). Of the 32 



 

 7 

regions with significant differences, all but the cuneus (-2·5) occurred prior to an EYO of 

-15. In the seven subcortical regions the accumbens (-22·2), putamen (-17·0), and 

caudate (-16·4) demonstrated greater PiB accumulation rates in MC while the amygdala, 

hippocampus, palladium, and thalamus did not differ. Significant differences in 

progressive hypometabolism in MC relative to NC were less pronounced, with 8/34 

cortical regions demonstrating significant interactions. The effects ranged from EYO -

18·8 to -2·8, with the earliest effects detected in the precuneus, banks of the superior 

temporal sulcus, and caudal middle frontal cortex (EYO ~-18). No subcortical regions 

showed significant differences in the rate of FDG change. For MRI 24/34 cortical and 4/7 

subcortical areas demonstrated increased rates of atrophy in MC relative to NC with 

effects appearing from EYO -13·0 to 2·3. The precuneus (-13·0), banks of the superior 

temporal sulcus (-11·5), and inferior parietal cortex (-10·6) demonstrated the earliest 

changes.  

 

We also observed regional differences in the rates of biomarker change within the MC 

group. In the precuneus there was a rapid increase in Aβ deposition; this rate peaked but 

remained positive even after the predicted onset of dementia (Figure 3 and Figure 4). 

This was the most common pattern across areas. In other regions (e.g. insula) initial 

accelerations in Aβ deposition were followed by decelerations, leading to a plateau of 

total Aβ levels. In a subset of regions (e.g. inferior temporal cortex) the estimated rate of 

Aβ accumulation accelerates throughout the disease. Once declining, glucose metabolism 

in the precuneus showed prominent, worsening rates of hypometabolism before the rates 

stabilized (~ EYO -5), while in inferior temporal cortex the rate of metabolic loss 

modestly increased initially before quickly plateauing (Figure 3B). Many regions had 

relatively small rates of metabolic decline in MC, even at later EYOs. In regions with 

structural decline the trajectories were fairly consistent, with the rate of atrophy 

accelerating as the disease progressed. However, the absolute rate of decline was often 

different between regions. Matrices directly comparing the regional rates of change for 

each biomarker at different EYOs (-25, -15, -5, and 5) can be found in supplemental 

material. Voxel-wise movies depict the rate of change and total biomarker levels in MC 

at every EYO and the creation of these movies is detailed in supplemental material. 
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Discussion 

AD is not static but possesses dynamism in terms of what pathological processes first 

appear, and how such pathology propagates throughout the brain. As dementia onset is 

predictable in ADAD, it provides an elegant model with which to examine pathological 

staging. Characterizing the spatial and temporal spread of pathology provides insight to 

the pathophysiology of the disease, informs how neuroimaging could aid optimal subject 

recruitment in clinical trials, and is critical to measure the efficacy of interventions on 

longitudinal biomarker measurements.  

 

The primary goal of the current analysis was to find the first biomarker time point in the 

course of the disease where carriers of ADAD mutations demonstrated different rates of 

pathological progression relative-to non-carrier family members. This time point can be 

interpreted as the moment where longitudinal change in that brain area due to AD can 

first be detected with in vivo neuroimaging. The primary questions using this approach 

focused on regional differences across the brain within a marker (e.g. precuneus vs. 

parietal Aβ PET) as well as comparing spatial differences between biomarkers (e.g. Aβ 

PET vs. FDG PET).  

 

Consistent with prior work we found that Aβ deposition was the first biomarker to 

demonstrate differences between mutation groups. MC had greater Aβ deposition more 

than 20 years before the expected age of symptom onset. Aβ increases were near 

ubiquitous, with most regions changing more than 14 years before the expected year of 

dementia. Measures of metabolism in ADAD represent overlapping maturational and 

disease changes. Both NC and MC cohorts had inverted U-shaped trajectories (Figure 1D 

& 1E), with the absolute levels of glucose metabolism initially modestly increasing with 

EYO, followed by a prolonged decrease. The key difference is that MC showed 

metabolic reductions earlier and to a greater degree than NC. While cross-sectional 

values still overlapped between groups early in the disease, longitudinal trajectories 

reveal divergence (supplementary material). The precuneus demonstrates the earliest 

metabolic decrease an EYO of -18·8, with significant regions on average becoming 
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abnormal at EYO -14·1. Reductions in grey matter were the last neuroimaging biomarker 

to manifest and occured over the majority of the brain. Again the precuneus is one of the 

earliest regions to change, with declines emerging a decade before estimated dementia 

onset, while overall declines were most prolific in the five years preceding expected 

dementia onset. The direct comparison of the rates of biomarker change between regions 

is presented in supplementary material.   

 

The relationships between the three biomarkers are complex. While all regions with 

metabolic decreases have abnormal Aβ accumulation, many regions with abnormal Aβ 

accumulation rates did not demonstrate elevated metabolic decline. Although FDG 

hypometabolism and structural decline are markers of degeneration, our results indicate 

they can be incongruent. In regions where they both occur, declines in glucose 

metabolism precede atrophy by ~5 to 10 years. However, there are regions that 

demonstrated β-amyloidosis and structural atrophy where significant metabolic decline 

was not detected (e.g. occipital and temporal regions). Portions of the medial temporal 

lobe (e.g. the hippocampus) did not manifest pathological change in Aβ or FDG, but had 

structural declines. Although there is generally a tripartite hierarchy such that β-

amyloidosis precedes metabolic decline that in turn precede atrophy, these relationships 

are highly heterogeneous across the cortex.  

 

Discordance between imaging biomarkers has been noted in sporadic AD 
37–44

. Due to the 

cross-sectional nature of the majority of the work, such spatial incongruences could be 

due to temporal lags in the emergence of pathologies.
42,44

 EYO, as a marker of disease 

time, is perfectly suited to detect such temporal evolutions. The current work does indeed 

clearly demonstrate that a temporal progression is present in some regions (e.g. PiB, 

FDG, and cortical thinning in the precuneus). However, despite the long disease window 

covered by the current study population, some region still only demonstrate a subset of 

pathologies. This suggests the incongruences are not simply a product of temporal lag, 

but can represent true heterogeneity. Other, unobserved, biomarkers such as those that 

measure tau pathology and inflammation, may help explain this heterogeneous 

relationship.  
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The current work presents the largest and most comprehensive analysis of neuroimaging 

data in ADAD to date. Still, the majority of longitudinal subjects had only a limited 

follow-up (average 2·4 visits); results at the edges of the EYO range where outliers have 

disproportional influence must be interpreted with care. There are also only modest 

numbers of subjects with PSEN2 and APP mutations. As the DIAN study gains more 

time points longitudinal estimates will be improved further and it may be possible to 

compare the three types of mutations. A greater number of individuals and time points 

will also increase the feasibility of modeling multiple modalities simultaneously across 

all brain regions as previously done using summary measures of pathology.
45

  

 

The temporal and spatial ordering of biomarkers must also be interpreted with caveats. 

No one individual has data across the entire disease window, and our results represent 

population rather than individual subject effects. Further, as seen in regional fits (Figure 1 

and supplemental material) some individuals differ from population trajectories. Thus, 

imaging data alone may not be sufficient to make individual-level disease stage 

predictions. Such predictions would require further work that accounts for individual 

differences due to factors such as genetic variability and lifestyle. The current work also 

utilizes partial volume corrected PET data,
27,28

 analyses without this step could have 

slightly different trajectories late in the disease. 

 

The temporal ordering of biomarker change must also be viewed as relative rather than 

absolute. Our models are fit using a particular definition of EYO. Supplemental models 

using a modified definition of EYO indicate a preserved relative ordering (e.g. precuneus 

Aβ > hypometabolism > structural decline) but slight differences in absolute timing (e.g. 

shifts from EYO -22·2 to -19·8). Further, our results reflect the first detectable changes 

with PET and MRI, which are constrained by the inherent sensitivities and signal to noise 

properties of the imaging techniques. The current analyses utilize the cerebellum as a 

reference region for PET. Results using the brainstem instead were essentially unchanged 

(Supplementary Tables 3 and 4). Finally, although ADAD can serve as a model for 

sporadic AD, direct comparisons must explore potential differences. 
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Our results reveal complex patterns of biomarker accumulation across the brain. 

Elevations in β-amyloidosis occur more than two decades before and continue to accrue 

even after the expected year of symptom onset. Neurodegeneration measured with both 

FDG and structural MRI begins while Aβ is still increasing and occurs closer in time, but 

still well before the onset of dementia. While global measures likely capture a large 

degree of intraindividual variability, our results indicate not just when, but where 

pathology emerges in the brain. Understanding such longitudinal change provides insight 

into the pathophysiological progression of AD and has implications for clinical trials.  
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Figure 1: Modeling longitudinal change in the precuneus for PiB (top), FDG (middle), 

and cortical thickness (bottom). The left-hand panels (A, D, & G) depict the model 

estimates of longitudinal biomarkers. The middle panels (B, E, & H) depict the estimated 

rate of change across the course of the disease for mutation carriers and non-carriers. 

Individual random effect slope estimates are plotted as colored dots. The right hand 

panels (C, F, and I) depict the difference in rate of biomarker change between mutation 

carriers and non-carriers across the course of the disease. For both the middle and right-

hand panels the shaded areas represent 99% credible intervals around the model 

estimates. Any point in this difference curves where the shaded area is not touching the 

zero axis is a point in the disease progression (as measured by EYO) where the biomarker 

accumulation rate is different between groups. Figures depicting the model results for 

every ROI are available in supplemental materials. To avoid inadvertently revealing 

mutation status figures are displayed with baseline EYO -29 to +10. 

 

Figure 2: Emergence of neuroimaging biomarkers. The color scale represents the first 

point in the disease relative to estimated age at onset (EYO) where rates of biomarker 

change in that cortical region are significantly different between mutation carriers and 

non-carriers (akin to the first point where credible interval are different from zero in 

Figure 1 right panels). There is a temporal evolution where increased Aβ deposition 

precedes hypometabolism that in turn is followed by cortical thinning. Information for all 

modalities and regions is presented in numeric form in Supplemental Tables 1 and 2. 

 

Figure 3: Trajectories of biomarker accumulation in mutation carriers for three cortical 

(top) and three subcortical regions (bottom) for PiB (left), FDG (middle), and structural 

MRI (right) that highlight different patterns of change seen in different brain regions. 

 

Figure 4: Depictions of model estimates of rate of change in PiB (top), FDG (middle), 

and cortical thickness (bottom) in mutation carriers at an EYO of -25, -15, -5, and +5.  
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Table 1: Study demographics at baseline.  

 

Demographics at Baseline    

 Non-Carriers Asymptomatic Carriers Symptomatic Carriers 

Number 148 141 88 

Females (%) 85 (57%) 78 (55%) 49 (56%) 

Age (years/sd) 39·5 (11·4) 34·6 (9·2) 45·7 (9·9) 

MMSE (mean/sd) 29·0 (2·7) 28·8 (2·7) 23·9 (10·2) 

CDR-SOB (mean/SD) 0·0 (0·2) 0·0 (0·1) 3·6 (3·5) 

EYO (years/sd) -8·9 (11·4) -13·7 (9·2) 0·5 (7·1) 

PSEN1/PSEN2/APP 122/17/9 

(82/11/6%) 

117/16/8 

(83/11/6%) 

76/6/6 

(86/7/7%) 

N with Follow up (%) 70 (47%) 73 (52%) 58 (66%) 

N of visits*(sd) 2·3 (0·8) 2·3 (0·8) 2·8 (1·2) 

Follow up in years* (sd) 3·0 (1·7) 3·0 (1·6) 2·0 (1·3) 

    

Summary of Imaging Data    

Data By Modality PIB FDG MRI 

1 visit 184 177 176 

2 visits 124 131 145 

3 visits 23 27 35 

4 visits 10 11 11 

5 visits 4 5 8 

6 visits 1 1 2 

Total Subjects 346 352 377 

    

*Summary values are only for those individuals with longitudinal data 

EYO - estimated years to dementia onset 

MMSE –Mini Mental State Examination 

CDR-SOB – Clinical Dementia Rating Sum of Boxes  
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Research in context  

 

Evidence before this study 

Using PubMed and Google Scholar the authors reviewed prior work on longitudinal 

neuroimaging markers of Alzheimer pathology with a focus on autosomal dominant 

Alzheimer disease (ADAD). We searched for all articles prior to October 31
st
, 2017 with 

no language restrictions for the keywords Alzheimer’s, Alzheimer, longitudinal, positron 

emission tomography, PET, MRI, atrophy, FDG, hypometabolism, familial, and 

autosomal. Theories proposed initially in 2010 by Jack and colleagues and revised in 

2013 posited temporal trajectories of Alzheimer biomarkers relative to each other and 

clinical decline. Work by Bateman and colleagues in 2012, Benzinger and colleagues in 

2013, and Fleisher and colleagues in 2015 depict such temporal ordering of biomarkers in 

ADAD populations derived from cross-sectional analyses. There was also a small subset 

of longitudinal ADAD studies, but these had one or more limitation such as small 

populations (n<50), examination of only one biomarker, not accounting for regional 

differences or correlations in the brain, or had a short duration of longitudinal followup. 

 

Added value of this study 

Our study presents the first known work examining both the longitudinal temporal 

trajectories and spatial patterns of Alzheimer pathology in ADAD cohorts using 

neuroimaging. This work also presents the largest known cohort to date of ADAD 

individuals studied longitudinally with multiple neuroimaging biomarkers. Longitudinal 

analyses can provide a more accurate and powerful way to model the temporal 

emergence of pathology in ADAD. We find that mutation carriers first display Aβ 

accumulation, followed by hypometabolism, and finally structural atrophy; this is 

consistent with theoretical models and cross-sectional estimates from ADAD. Most 

importantly we consider such temporal relationships not in one singular summary 

measure, but characterize these trajectories throughout the brain. We found that the 

accrual of pathology varied throughout the brain and by modality in terms of the time of 

initial emergence and the rates of longitudinal change. These findings suggest region 

specific vulnerabilities to β-amyloidosis, metabolic decline, and atrophy that change over 

the course of the disease.   

 

Implications of all the available evidence 

Our results build upon existing evidence characterizing biomarkers in clinical and 

preclinical Alzheimer disease. Our findings suggest that imaging biomarkers follows a 

sequential pattern, with β-amyloidosis, hypometabolism, and structural atrophy emerging 

more than twenty, fifteen, and ten years respectively before the expected onset of 

dementia. Although there is a general hierarchical pattern, there was considerable 

regional heterogeneity. Most commonly, regions demonstrated an increase in β-

amyloidosis and structural atrophy, but there was not evidence of metabolic declines. 

Further, rather than being homogenous, the same biomarker often demonstrates different 

longitudinal trajectories across brain regions. Characterizing the temporal and regional 

dynamics provides insight into disease pathophysiology. This information is critical to 

decide how to best use neuroimaging biomarkers in clinical trials for subject selection as 

well as outcomes measures.  



 

Abstract  

Background 

Models of Alzheimer disease propose a sequence of amyloid-β (Aβ) accumulation, 

hypometabolism, and structural declines that precede the onset of clinical dementia. 

These pathological features evolve both temporally and spatially in the brain. This study 

aimed to characterize where in the brain and when in the course of the disease 

neuroimaging biomarkers become abnormal.  

 

Methods 

We analyzed data collected from mutation non-carriers, asymptomatic carriers, and 

symptomatic carriers collected between January 1
st
 2009 and December 31

st
 2015 from 

families carrying PSEN1, PSEN2, or APP mutations enrolled in the Dominantly Inherited 

Alzheimer’s Network. We analyzed [
11

C]Pittsburgh Compound B positron emission 

tomography (PiB PET), [
18

F]Fluorodeoxyglucose (FDG PET), and structural magnetic 

resonance imaging (MRI) data using regions of interest to assess change throughout the 

brain. We estimated rates of biomarker change as a function of estimated years from 

symptom onset at baseline using linear mixed-effects models and determined the earliest 

point at which biomarker trajectories differed between mutation carriers and non-carriers.  

 

Findings 

PiB PET was available for 346 individuals, with 162 having longitudinal imaging; FDG 

PET was available for 352 (175 longitudinal); and MRI data was available for 377 (201 

longitudinal). We found a sequence to pathological changes, with rates of Aβ deposition 

in mutation carriers being significantly different from non-carriers occurring first (on 

average across significant regions at -18·9 (sd 3·3) years before expected onset), 

followed by hypometabolism (-14·1 years, sd 5·1) and lastly structural declines (-4·7 

years, sd 4·2). This biomarker ordering was preserved in most, but not all, regions. The 

temporal emergence within a biomarker varied across the brain, with the precuneus being 

the first cortical region in each modality to show divergence between groups.  

, although the ordering across biomarkers was preserved in most, but not all, regions.  

 

Interpretation 

Mutation carriers had elevations in Aβ deposition, reduced glucose metabolism, and 

cortical thinning which preceded the expected onset of dementia. We found that the 

accrual of these pathologies varied throughout the brain, suggesting differential regional 

and temporal vulnerabilities to Aβ, metabolic decline, and structural atrophy. This 

provides insight into the temporal and spatial development of pathological change in 

Alzheimer disease. Understanding where and when pathology accrues in the brain is key 

for using biomarkers in a clinical setting as well as designing and evaluating clinical 

trials. 
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MR/009076/1). ClinicalTrials.gov number, NCT00869817  
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Introduction  

Alzheimer disease (AD) presents as a progressive loss of cognitive function, leading to 

severe impairment and loss of independence. AD’s long preclinical phase has bolstered 

efforts to identify in vivo biomarkers to aid disease diagnosis and prognosis
1
. Models of 

AD pathophysiology theorize a temporal sequence where disruptions in amyloid-β (Aβ) 

production and/or clearance initiate a biological cascade that leads to Aβ plaque 

formation that spreads throughout the cortex followed by tauopathy, neuronal 

dysfunction and death, and ultimately dementia
2,3

.  

 

Positron emission tomography (PET) and magnetic resonance imaging (MRI) can assess 

both the amount and location of Aβ plaques, tauopathy (neurofibrillary tangles, neuritic 

plaques, and neuropil), altered glucose metabolism, and structural decline. The temporal 

sequence of these biomarkers provides information about the pathogenesis of AD. 

Determining the ordering of changes in sporadic AD is problematic, as it is difficult to 

predict an individual’s relative position in the disease. Autosomal dominant AD (ADAD) 

is well suited to study biomarker trajectories due to the virtually complete penetrance of 

the mutations and consistency of symptom onset within families
4,5

. The conserved onset 

age within families and mutation types allows individuals to be staged relative to their 

expected onset of symptoms.  

 

Cross-sectional ADAD work on ADAD has revealed a temporal ordering of biomarkers 

that is consistent with theoretical models,
6–8

 and indications that pathology progressively 

appears in new regions of the brain as the disease worsens
7
. This has primarily relied on 

cross-sectional analyses, with limited analyses of modest longitudinal cohorts
7,9–16

. 

Longitudinal analyses can provide a better estimate of the true pathological 

trajectoriesLongitudinal analyses can better estimate temporal dynamics and typically 

have more power to detect significant differences than cross-sectional analyses.
17,18

, as 

within subject measures reduce between-subject variability caused by unmodeled 

individual differences. Longitudinal analyses can provide a better estimate of the true 

pathological trajectories occurring in the disease. This is critically important as 

interventional clinical trials in such as the Dominantly Inherited Alzheimer Network 
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(DIAN) trials unit,
19

, the Alzheimer’s Prevention Initiative (API),
20

 and the Anti-

Amyloid Treatment in Asymptomatic Alzheimer’s Study (A4)
21

 will all evaluate 

alterations in longitudinal biomarker trajectories over time. Further, it is critical to 

understand how such temporal trajectories varies across the brain, as some regions may 

be more suitable for studying the efficacy of treatment than others.   

 

The DIAN observational study (DIAN)
4
 has established a large cohort of ADAD 

individuals from families with ADAD who obtainwith longitudinal Aβ, metabolic, and 

structural neuroimaging assessments. Our current work compares rates of biomarker 

change in a large population of mutation carriers (MC) and non-carriers (NC) throughout 

the entire brain. Although these modalities are often represented with aggregate summary 

measures, there are distinct spatial appearances and regional evolutions of each 

pathology
7,22,23

. Studying spatial patterns of longitudinal change provides information 

about local vulnerabilities to pathology that are lost when using summary measures.  

 

Our current work compares rates of biomarker change in a large population of mutation 

carriers (MC) and non-carriers (NC). Using linear mixed effects models, we compare 

biomarker change not using one summary measure, but throughout the brain. In this way 

we can visualize when pathology biomarkers first emerge and how they spread 

throughout the course of the disease. Clarifying changes in spatial patterns of biomarker 

accumulation over time will advance our understanding of disease pathobiology and 

provide critical information for the design and interpretation of disease-modifying 

clinical trials using biomarkers to enrich enrollment or as endpoints.  

 

Methods 

Participants  

Individuals from families known to have mutations in the presenilin 1 (PSEN1), 

presenilin 2 (PSEN2), and amyloid precursor protein (APP) genes were recruited from 14 

performance sites participating in the DIAN observational study (http://www.dian-

info.org). Participants were recruited from DIAN sites in the United States, Great Britain, 

Germany, and Australia between January 1
st
 2009 and December 31

st
 2015. All 
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participants with genetic, clinical, and neuroimaging data that passed quality control from 

the tenth semiannual data freeze were included in the analyses. The institutional review 

board at Washington University in St. Louis provided supervisory review and human 

studies approval. Participants or their caregivers provided written informed consent in 

accordance with their local institutional review board. Clinical and imaging visits in 

DIAN were are performed every three years for asymptomatic individuals until they are 

within three years of their parental age of dementia onset. Assessments become annual 

once an individual is within three years of parental age at onset or if an individual 

becomes symptomatic. Analyses excluded families with the Dutch and Flemish Mutation, 

as these APP mutations often present with predominant cerebral amyloid angiopathy and 

diffuse Aβ plaques (see supplemental material). The analyses included 346 individuals 

with Aβ PET data, 352 with PET metabolism data, and 377 with MRI;. See Table 1 for 

baseline demographics. 

 

Clinical Assessment.  

Dementia status was assessed using the Clinical Dementia Rating (CDR)
22

. For each visit 

a participant’s estimated years from expected symptom onset (EYO) was calculated 

based upon the participant’s current age relative to either the family mutation specific 

expected age at dementia onset
5
, or parental age at first progressive cognitive decline if 

mutation age at onset was unknown. A “mutation specific” expected age of dementia 

onset is calculated by averaging the age of onset reported in the literature across 

individuals with the same specific mutation
5
. EYO is established identically for both 

carriers and non-carriers. The presence or absence of an ADAD mutation was determined 

using PCR-based amplification of the appropriate exon followed by Sanger sequencing
6
. 

Clinical evaluators were blind to participant mutation status.  

 

MRI.  

MRI was performed using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

protocol
23

. Sites used a 3T scanner and were required to pass regular quality control 

assessments. T1-weighted images (1·1 x 1·1 x 1·2-mm voxels) were acquired for all 

subjects. The ADNI Imaging Core screened images for protocol compliance and artifacts. 
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Volumetric segmentation and cortical surface reconstruction was performed using 

FreeSurfer 5·3
24,25

 which automatically defines subcortical and cortical regions of interest 

(ROIs). Segmentations were inspected by members of the DIAN Imaging Core and 

edited as needed. Subcortical volumes were corrected for intracranial volume using a 

regression approach. Cortical thickness and volume measures were averaged across 

hemispheres. The cortical and subcortical labels identified on the MRI were utilized for 

the regional processing of all PET data. For all analyses we examined 34 cortical ROIs 

and 7 subcortical ROIs. A full list of regions is available in supplemental material.   

 

PET.  

Aβ imaging was performed using a bolus injection of [
11

C]Pittsburgh Compound B (PiB). 

Acquisition consisted of a 70-minute scan starting at injection or a 30-minute scan 

beginning 40 minutes post-injection. Data in the common 40–70 minute time frame was 

converted to regional standardized uptake value ratios (SUVRs) relative to the cerebellar 

grey matter using FreeSurfer derived regions of interest
26

 (PET Unified Pipeline, 

https://github.com/ysu001/PUP). Metabolic imaging was performed with 

[
18

F]Fluorodeoxyglucose (FDG) with a 30-minute dynamic acquisition beginning 30 

minutes after injection. Data from the last 20 minutes of each FDG scan were converted 

to SUVRs relative to cerebellar grey. Both types of PET data were partial volume 

corrected using a regional spread function technique
27,28

.  

 

As there were no a priori laterality predictions, data were averaged across hemispheres 

before being entered into statistical analyses. Differences in spatial resolution across PET 

scanners were accounted for by applying scanner specific spatial filters to achieve a 

common resolution (8 mm)
29

. The ADNI PET Core verified that PET images were 

acquired using the established protocol and substantially free of artifacts.  

 

Statistical Analyses 

We used multivariate linear mixed effects (LME) models in order to describe the 

evolution of Alzheimer disease biomarkers. LME models have many benefits in 

longitudinal settings, including providing a flexible approach to deal with an unequal 
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number of measurement points or intervals. While neuroimaging analyses traditionally 

use univariate models, the field has begun using multivariate models which account for 

correlations between regional or voxelwise measurements
30–32

. Multivariate LME models 

can increased statistical power and reliability compared to univariate methods
30,31

. We 

implemented a Bayesian multivariate LME model to directly compare longitudinal 

biomarker changes across brain regions. Cortical and subcortical measurements were 

analyzed separately for each modality (PiB, FDG, and volumetric), resulting in total of 

six independent models. 

 

The full Bayesian LME model is described in detail in the supplemental material. Each 

region included fixed effects for mutation status, time from baseline, baseline EYO, and 

all possible two and three-way interactions. EYO was modeled as a restricted cubic spline 

with knots at the 0·10, 0·50, and 0·90 quantiles. We chose restricted cubic splines to 

model EYO as they represent a flexible approach for accounting for nonlinearities in the 

data without forcing any particular curve shape. Splines have also been used extensively 

in the literature to model longitudinal changes in Alzheimer disease biomarkers
33,34

. For 

every region we included random intercepts and slopes at the subject-level, as well as 

random intercepts for family affiliation. At the subject-level, covariance matrices were 

constructed so that intercepts and the slopes were allowed to correlate across all regions 

in a model. 

 

To fit each model we used Stan (http://mc-stan.org/)
35,36

, an open source package for 

Hamilton Markov chain Monte Carlo analyses. A parameter, or combination of 

parameters, was considered statistically significant if the 99% equal-tailed credible 

intervals of the posterior distribution did not overlap zero. Analyses were run separately 

for each modality (MRI, PiB, and FDG). Within each modality one model simultaneously 

fit 34 cortical ROIs and a second model simultaneously fit 7 subcortical ROIs derived 

from FreeSurfer. Each regional comparison within a model is simply a different slice of 

the same multidimensional posterior distribution. The current analyses focus on the 

interaction between mutation status and the longitudinal rate of change. Including 

multiple regions within one model also allows for the direct comparison of rates of 
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changes between regions (supplemental material). 

 

Role of the funding source  

The study sponsors had no role in the study design, data collection, data analysis, data 

interpretation, writing of the report, or the decision to submit the manuscript for 

publication. All coauthors had full access to the data in the study and the corresponding 

author had final responsibility for the decision to submit for publication. 

An example of one region is shown in Figure 1. For the both the middle and right-hand 

panels the shaded areas represent 99% credible intervals around the model estimates. The 

credible intervals are drawn from the actual distributions of model fits derived by the 

Hamilton Markov Chain Monte Carlos analyses. Any point in the difference curves 

(right-hand panels) where the shaded area is not touching the zero axis is a point in the 

disease progression (as measured by EYO) where the biomarker rate of change is 

different between groups. The first EYO point that was significantly different between 

groups was considered the initial diverge between groups. Figures depicting the model 

results for every ROI are available in supplemental materials. To avoid inadvertently 

revealing mutation status figures are displayed with baseline EYO -29 to +10. 

 

 

Results 

Population demographics are in Table 1. Subjects with longitudinal data had an average 

of 2·4 visits (sd 0·8) and 2·7 (sd 1·1) years of data. Figure 1 shows example LME model 

fits for one region. An example of one region is shown in Figure 1. For the both the 

middle and right-hand panels the shaded areas represent 99% credible intervals around 

the model estimates. The credible intervals are drawn from the actual distributions of 

model fits derived by the Hamilton Markov Chain Monte Carlos analyses. Any point in 

the difference curves (right-hand panels) where the shaded area is not touching the zero 

axis is a point in the disease progression (as measured by EYO) where the biomarker rate 

of change is different between groups. The first EYO point that was significantly 

different between groups was considered the initial diverge between groups. Figures 

depicting the model results for every ROI are available in supplemental materials. To 

Formatted: Font: Bold
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avoid inadvertently revealing mutationparticipants’ mutation status figuresat the edges of 

our sample where there are only a few individuals, figures are displayed with baseline 

EYO -29 to +10. 

 

As an example of one region Figure 1 shows the model fits for the precuneus stratified by 

mutation status. The rate of Aβ accumulation is statistically higher in MC relative to NC 

participants starting more than two decades (EYO -22·2) before the expected age of 

dementia onset (Figure 1). As glucose utilization represents a natural biological property 

it contains both maturational and disease-related trajectories. In both groups, the 

precuneus FDG trajectories were initially positive, became neutral, and then negative. 

This negative directional acceleration begins earlier and was larger in MCs, with the rate 

of change becoming significantly less than NC at EYO -18·8. Finally, precuneus cortical 

thinning  significantly differs in MC relative to NC at EYO -13·0. Supplemental material 

contains results for every ROI. Overall, in regions with a significant effect relative to NC, 

rates of Aβ deposition were significantly higher in MC at an average EYO of -18·9 (sd 

3·3), metabolism began declining at an average EYO of -14·1 (sd 5·1), and MRI 

structural measures declined at an average EYO -4·7 (sd 4·2).  

 

Figure 2 depicts EYOs when and whether the longitudinal rate of change first differs 

between MC and NC for each biomarker. The differences across regions and modalities 

reflect the temporal and spatial evolution of pathology over the course of the disease. 

Rates of biomarkers change in regions that are grey are never significantly different 

between groups. This information is presented in numeric form in Supplemental Tables 1 

and 2. While many regions follow trajectories similar to the precuneus, the emergence of 

pathology varied throughout the brain. Further, there were regional differences by 

modality, for example, relative to NC the superior temporal lobe did not demonstrate a 

metabolic loss, but had atrophy changes at -5·6 EYO. Figure 3 depicts rates of change in 

MC for three cortical and three subcortical regions that exemplify common patterns seen 

across regions.  
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For PiB PET, 32/34 cortical regions showed significantly greater longitudinal rates of 

accumulation in MC relative to NC. The first point of divergence between groups varied 

across regions (EYO -22·2 to -2·5), with the precuneus, posterior cingulate gyrus, and 

medial orbital frontal cortex regions showing the earliest changes (~EYO -21). Of the 32 

regions with significant differences, all but the cuneus (-2·5) occurred prior to an EYO of 

-15. In the seven subcortical regions the accumbens (-22·2), putamen (-17·0), and 

caudate (-16·4) demonstrated greater PiB accumulation rates in MC while the amygdala, 

hippocampus, palladium, and thalamus did not differ. Significant differences in 

progressive hypometabolism in MC relative to NC were less pronounced, with 8/34 

cortical regions demonstrating significant interactions. The effects ranged from EYO -

18·8 to -2·8, with the earliest effects detected in the precuneus, banks of the superior 

temporal sulcus, and caudal middle frontal cortex (EYO ~-18). No subcortical regions 

showed significant differences in the rate of FDG change. For MRI 24/34 cortical and 4/7 

subcortical areas demonstrated increased rates of atrophy in MC relative to NC with 

effects appearing from EYO -13·0 to 2·3. The precuneus (-13·0), banks of the superior 

temporal sulcus (-11·5), and inferior parietal cortex (-10·6) demonstrated the earliest 

changes.  

 

We also observed regional differences in the rates of biomarker change within the MC 

group. In the precuneus there was a rapid increase in Aβ deposition; this rate peaked but 

remained positive even after the predicted onset of dementia (Figure 3 and Figure 4). 

This was the most common pattern across areas. In other regions (e.g. insula) initial 

accelerations in Aβ deposition were followed by decelerations, leading to a plateau of 

total Aβ levels. In a subset of regions (e.g. inferior temporal cortex) the estimated rate of 

Aβ accumulation accelerates throughout the disease. Once it began to declinedeclining, 

glucose metabolism in the precuneus showed prominent, worsening rates of 

hypometabolism before the ratesa  constant rate of declinestabilized (~ EYO -5), while in 

inferior temporal cortex the rate of metabolic loss modestly increased initially before 

quickly plateauing later on in the disease (Figure 3B). Many regions had relatively small 

rates of metabolic decline in MC, even at later EYOs. In regions with structural decline 

the trajectories were fairly consistent, with the rate of atrophy accelerating as the disease 
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progressed. However, the absolute rate of decline was often different between regions. 

Matrices directly comparing the regional rates of change for each biomarker at different 

EYOs (-25, -15, -5, and 5) can be found in supplemental material. Voxel-wise movies 

depicting the rate of change and total biomarker levels in MC at every EYO and the 

creation of these movies are is detailed in supplemental material. 

 

Discussion 

AD is not a static disease but possesses dynamism in terms of what pathological 

processes first appear, and how such pathology propagates throughout the brain. As 

dementia onset is predictable in ADAD, it provides an elegant model with which to 

examine pathological staging. Characterizing the spatial and temporal spread of 

pathology provides insight to the pathophysiology of the disease, informs how 

neuroimaging could aid optimal subject recruitment in clinical trials, and is critical to 

measure the efficacy of interventions on longitudinal biomarker measurements.  

 

The primary goal of the current analysis was to find the first biomarker time point in the 

course of the disease where carriers of ADAD mutations demonstrated different rates of 

pathological progression relative-to non-carrier family members. This time point can be 

interpreted as the moment where the longitudinal change in that brain area due to AD can 

first be detected with in vivo neuroimaging. The primary questions using this approach 

focused on regional differences across the brain within a marker (e.g. precuneus vs. 

parietal Aβ PET) as well as comparing spatial differences between biomarkers (e.g. Aβ 

PET vs. FDG PET).  

 

Consistent with prior work in the field we found that Aβ deposition was the first 

biomarker to demonstrate differences between mutation groups. MC had greater Aβ 

deposition more than 20 years before the expected age of symptom onset. Aβ increases 

were near ubiquitous, with most regions changing more than 14 years before the expected 

year of dementia. Measures of metabolism in ADAD represent overlapping maturational 

and disease changes. Both NC and MC cohorts had inverted U-shaped trajectories 

(Figure 1D & 1E), with the absolute levels of glucose metabolism initially modestly 
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increasing with EYO, followed by a prolonged decrease. The key difference is that MC 

showed metabolic reductions earlier and to a greater degree than NC. While cross-

sectional values still overlapped between groups early in the disease, longitudinal 

trajectories reveal divergence (supplementary material). The precuneus demonstrates the 

earliest metabolic decrease in the brain at an EYO of -18·8, with significant regions on 

average becoming abnormal at EYO -14·1. Reductions in grey matter integrity were the 

last neuroimaging biomarker to manifest and occured over the majority of the brain. 

Again the precuneus is one of the earliest regions to change, with declines emerging a 

decade before estimated dementia onset, while overall declines were most prolific in the 

five years preceding the expected dementia onset. The direct comparison of the rates of 

biomarker change between regions is presented in supplementary material.   

 

The relationships between the three biomarkers are complex. While all regions that 

showedwith metabolic decreases have abnormal rates of Aβ accumulation, many regions 

with abnormal Aβ accumulation rates did not demonstrate elevated metabolic decline. 

Although FDG hypometabolism and structural decline are markers of degeneration, our 

results indicate they can be incongruent. In regions where they both occur, declines in 

glucose metabolism can precede atrophy by ~5 to 10 years. However, there are regions 

that demonstrated β-amyloidosis and structural atrophy where significant metabolic 

decline was not detected (e.g. occipital and temporal regions). Portions of the medial 

temporal lobe (e.g. the hippocampus) did not manifest pathological change in Aβ or 

FDG, but had structural declines. Although there is generally a tripartite hierarchy such 

that β-amyloidosis precedes metabolic decline that in turn precede atrophy, these 

relationships are highly heterogeneous across the cortex.  

 

Discordance between imaging biomarkers has been noted in studies of sporadic AD 
37–44

. 

Due to the cross-sectional nature of the majority of the work in the field, such spatial 

incongruences could be due to temporal lags in the emergence of pathologies. Work 

looking at cross-model relationships between baseline and longitudinal follow-up has 

shown such phenomena.
42,44

 EYO, as a marker of disease time, is perfectly suited to 

detect such temporal evolutions. The current work does indeed clearly demonstrate that a 
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temporal progression is present in some regions (e.g. PiB, FDG, and cortical thinning in 

the precuneus). However, despite the long disease window covered by the current study 

population, some region still only demonstrate a subset of pathologies. This suggests the 

incongruences are not simply a product of temporal lag, but can represent true 

pathological heterogeneity. Other, unobserved, biomarkers such as those that measure tau 

pathology and inflammation, may help explain this heterogeneous relationship.  

 

The current work presents the largest and most comprehensive analysis of neuroimaging 

data in ADAD to date. Still, the majority of longitudinal subjects had only a limited 

follow-up (average 2·4 visits); results at the edges of the EYO range where outliers have 

disproportional influence must be interpreted with care. and tThere are also only modest 

numbers of subjects with PSEN2 and APP mutations.  As the DIAN study gains more 

time points longitudinal estimates will be improved further and it may also be possible to 

examine patterns of change betweencompare the three types of mutations. A greater 

number of individuals and time points will also increase the feasibility of modeling 

multiple modalities simultaneously across all brain regions as previously done using 

summary measures of pathology.
45

  

 

The temporal and spatial ordering of biomarkers must also be interpreted with caveats. 

No one individual has data across the entire disease window, and our results represent 

population rather than individual subject effects. Further, as seen in regional fits (Figure 1 

and supplemental material) some individuals differ from population trajectories. Thus, 

imaging data alone may not be sufficient to make individual-level disease stage 

predictions. Such predictions would require further work that accounts for individual 

differences due to factors such as genetic variability and lifestyle. The current work also 

utilizes partial volume corrected PET data,
27,28

 analyses without this step could have 

slightly different trajectories late in the disease. 

 

The temporal ordering of biomarker change must also be viewed as relative rather than 

absolute. Our models are fit using a particular definition of EYO. Supplemental models 

using a slightly modified definition of EYO indicate a preserved relative ordering (e.g. 
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precuneus Aβ > hypometabolism > structural decline) but slight differences in absolute 

timing (e.g. precuneus PiB divergence shifts from EYO -22·2 to -19·8). Further, our 

results reflect the first detectable changes with PET and MRI, which are constrained by 

the inherent sensitivities and signal to noise properties of the imaging techniques. The 

current analyses utilize the cerebellum as a reference region for PET. Results using the 

brainstem instead were essentially unchanged (Supplementary Tables 3 and 4). Finally, 

although ADAD can serve as a model for sporadic AD, direct comparisons must explore 

potential differences. 

  

Our results reveal complex patterns of biomarker accumulation across the brain. 

Elevations in β-amyloidosis occur more than two decades before and continue to accrue 

even after the expected year of symptom onset. Neurodegeneration measured with both 

FDG and structural MRI begins while Aβ is still increasing and occurs closer in time, but 

still well before the onset of dementia. While global measures likely capture a large 

degree of intraindividual variability, our results indicate not just when, but where 

pathology emerges in the brain. Understanding such longitudinal change provides insight 

into the pathophysiological progression of AD and has important implications for clinical 

trials utilizing neuroimaging.  
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Figure 1: Modeling longitudinal change in the precuneus for PiB (top), FDG (middle), 

and cortical thickness (bottom). The left-hand panels (A, D, & G) depict the model 

estimates of longitudinal biomarkers. The middle panels (B, E, & H) depict the estimated 

rate of change across the course of the disease for mutation carriers and non-carriers. 

Individual random effect slope estimates are plotted as colored dots. The right hand 

panels (C, F, and I) depict the difference in rate of biomarker change between mutation 

carriers and non-carriers across the course of the disease. For both the middle and right-

hand panels the shaded areas represent 99% credible intervals around the model 

estimates. Any point in this difference curves where the shaded area is not touching the 

zero axis is a point in the disease progression (as measured by EYO) where the biomarker 

accumulation rate is different between groups. Figures depicting the model results for 

every ROI are available in supplemental materials. To avoid inadvertently revealing 

mutation status figures are displayed with baseline EYO -29 to +10. 

 

Figure 2: Emergence of neuroimaging biomarkers. The color scale represents the first 

point in the disease relative to estimated age at onset (EYO) where rates of biomarker 

change in that cortical region are significantly different between mutation carriers and 

non-carriers (akin to the first point where credible interval are different from zero in 

Figure 1 right panels). There is a temporal evolution where increased Aβ deposition 

precedes hypometabolism that in turn is followed by cortical thinning. Information for all 

modalities and regions is presented in numeric form in Supplemental Tables 1 and 2. 

 

Figure 3: Trajectories of biomarker accumulation in mutation carriers for three cortical 

(top) and three subcortical regions (bottom) for PiB (left), FDG (middle), and structural 

MRI (right) that highlight different patterns of change seen in different brain regions. 

 

Figure 4: Depictions of model estimates of rate of change in PiB (top), FDG (middle), 

and cortical thickness (bottom) in mutation carriers at an EYO of -25, -15, -5, and +5.  

 

Movie 1: Voxel-wise change for beta-amyloid deposition by PiB PET in mutation 

carriers. The top panel of the figure shows the rate of change at each EYO. The bottom 

panel depicts the total biomarker levels at each EYO for mutation carriers derived by 
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integrating the rate of change and adding it to the baseline value of a mutation carrier at 

an EYO of -25 and time zero.  

 
Movie 2: Voxel-wise change in FDG PET uptake in mutation carriers. The top panel of 

the figure shows the rate of change at each EYO. The bottom panel depicts the total 

biomarker levels at each EYO for mutation carriers derived by integrating the rate of 

change and adding it to the baseline value of a mutation carrier at an EYO of -25 and 

time zero. 

 

Movie 3: Voxel-wise change in cortical thickness by MRI in mutation carriers. The top 

panel of the figure shows the rate of change at each EYO. The bottom panel depicts the 

total biomarker levels at each EYO for mutation carriers derived by integrating the rate of 

change and adding it to the baseline value of a mutation carrier at an EYO of -25 and 

time zero. 
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Table 1: Study demographics at baseline.  

 

Demographics at Baseline    

 Non-Carriers Asymptomatic Carriers Symptomatic Carriers 

Number 148 141 88 

Females (%) 85 (57%) 78 (55%) 49 (56%) 

Age (years/sd) 39·5 (11·4) 34·6 (9·2) 45·7 (9·9) 

MMSE (mean/sd) 29·0 (2·7) 28·8 (2·7) 23·9 (10·2) 

CDR-SOB (mean/SD) 0·0 (0·2) 0·0 (0·1) 3·6 (3·5) 

EYO (years/sd) -8·9 (11·4) -13·7 (9·2) 0·5 (7·1) 

PSEN1/PSEN2/APP 122/17/9 

(82/11/6%) 

117/16/8 

(83/11/6%) 

76/6/6 

(86/7/7%) 

N with Follow up (%) 70 (47%) 73 (52%) 58 (66%) 

N of visits*(sd) 2·3 (0·8) 2·3 (0·8) 2·8 (1·2) 

Duration Follow up in years* 

(sd) 3·0 (1·7) 3·0 (1·6) 2·0 (1·3) 

    

Summary of Imaging Data    

Data By Modality PIB FDG MRI 

1 visit 184 177 176 

2 visits 124 131 145 

3 visits 23 27 35 

4 visits 10 11 11 

5 visits 4 5 8 

6 visits 1 1 2 

Total Subjects 346 352 377 

    

*Summary values are only for those individuals with longitudinal data 

EYO - estimated years to dementia onset 

MMSE –Mini Mental State Examination 

CDR-SOB – Clinical Dementia Rating Sum of Boxes  

Formatted: Right

Formatted: Right

Formatted: Right
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Supplemental Text 
 

Statistical Methods 

Longitudinal neuroimaging data is often modeled using repeated measures analysis of variance or cross-

sectional analyses of a summary measurement representing longitudinal trajectories such as annualized 

percent change. Such approaches do not appropriately account for the covariance structure introduced by 

serial measurements and cannot adequately cope with imperfect timing or unbalanced number of data 

points
1
 as is present in the current dataset. Linear mixed-effects (LME) models are a powerful and versatile 

approach to longitudinal analyses of neuroimaging data
2
. The central idea in LME models is to allow a 

subset of regression parameters to vary randomly across subjects. The longitudinal trajectory is modeled as 

a combination of population-level “fixed” effects and subject-specific “random” effects allowing for the 

analysis of between-subject and within-subject sources of variability, which allows subjects to have an 

unequal number of visits or variable intervals between observations. Such models also allow individuals 

with only one time point to contribute to the estimation of all parameters that do not contain longitudinal 

components (e.g. the main effect of baseline EYO). This maximizes the statistical power by utilizing the 

entire available sample. Extensions of the LME framework to neuroimaging data include models that 

account for the spatiotemporal dependencies among neighboring locations
3
. 

 
The general form of our Bayesian multivariate LME model is given by: 

 

                                         

 

where      is a row vector of R regional responses for subject i at time point j within family k.      is a row 

vector of P fixed effects regressors and   is a P by R matrix of fixed effects coefficients. Prior to model 

fitting all data and regressors were standardized to have a mean of 0 and a standard deviation of 1. The 1 by 

R vectors     and    are random intercepts for subject and family respectively. These random intercepts 

accounted for baseline differences in each regional measurement between subjects and families. In order to 

account for intra-individual change, a random slope for time from baseline was included for each subject. 

    is the row vector of R of random slopes for subject i, and      is the time from baseline value for 

subject i at time point j within family k. Finally,   is a R by R covariance matrix. 

 

As with all Bayesian analyses, our model requires the user specify prior distributions for each model 

parameter. We experimented with several different prior distributions, and found our results were 

consistent over a range of priors. Each fixed effect   was assumed to be independently and identically 

distributed with a weak normal prior
4
: 

 

                        
 

The covariance matrix,  , was constructed so that                where    is a vector of R error 

standard deviations with a cauchy prior
4,5

: 

  

                         
 

It is important to understand that while this set of priors assumes that the regional measurement errors are 

independent, our model does not assume that the regional measurements themselves are independent. 

Rather, we use a simplification common to multivariate LME models
6
 and assume that the regional data is 

independent conditional on the subject-level random effects: 

  

                     and                    ) (4) 

 

where    and    are each R by R covariance matrices. Note that while these priors allow for regional 

correlations within intercepts and slopes, they do not allow for correlations between slopes and intercepts. 

While this is unlikely to be true for all biomarker measures, modeling the correlations between all the 

regional slopes and intercepts would require estimating a Rx2 by Rx2 covariance matrix. Without further 

Supplemental Material
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constraints, this would result in a large increase in the number of model parameters. This is something we 

choose to avoid given the relatively small number of time points available for each subject. 

 

The variance and correlation components of    and    were given separate priors in order to eliminate any 

prior relationship between the two components
7,8

. The variance components used Cauchy priors: 

 

                     and                          

 

where   and    are R length vectors of standard deviations for the subject intercept and slope parameters. 

The correlation components used LKJ Cholesky correlation priors
9,4

 

 

                            and                                 

 

where    and    are the Cholesky factorizations of the correlation matrices for the intercepts and slopes 

respectively. A value of 1.0 in the LKJ correlation prior implies a uniform prior over all correlation 

matrices
4,10

. Finally, the family level regional intercepts were assumed to be independent, so that:  

 

                            (7) 

 

where    is a vector of R standard deviations: 

 

                     (8) 

 

We tested models where the family intercepts were correlated, but found little evidence for regional 

correlations at this level. 

 

All model fitting was performed using Hamilton Markov chain Monte Carlo implemented in version 2.9.0 

of the probabilistic programming environment Stan
11

. Our Stan model code is included below. Each model 

was run using eight independent chains consisting of 10,000 iterations after 10,000 warm-up samples. In 

order to account for autocorrelation within a chain, we limited analysis to every 10
th

 sample. As a result, all 

inference was performed on 8,000 final samples. Convergence was assessed using the Gelman-Rubin    

statistic
12,13

.    is a ratio of the within chain variance to the pooled between chain variance. At convergence 

this ratio should equal 1.0. In all of our models    was found to be acceptably close to 1.0 for every model 

parameter (Supplemental Figure 1).  

 

 Stan Model, adapted loosely from
14

: 

 
  data { 

    int<lower=1> N;   //Number of data points 
    int<lower=1> nY;               //Number of responses 

    int<lower=1> nB;               //Number of fixed effects 

    vector[nY] y[N];              //Matrix of responses      
    vector[nB] X[N];              //Fixed effects design matrix 

    int<lower=1> nS;               //Number of subjects 

    int<lower=1,upper=nS> subj[N];  //Subject indicator 

    vector[N] Z;              //Subject time from baseline variable 

    int<lower=1> nF;       //Number of families 

    int<lower=1,upper=nF> fam[N]; //Family indicator 
  } 

 

  parameters {  
    matrix[nY,nB] beta;                //Fixed effects coefficients 

    matrix[nY,nS] gammaZ;  //Random normals needed to generate random intercepts for subject 

    matrix[nY,nS] deltaZ;  //Random normals needed to generate random slopes for subject 
    matrix[nY,nF] thetaZ;  //Random normals needed to generate random intercepts for family 

    cholesky_factor_corr[nY] gL;  //Cholesky factorization of the correlation matrix for subject intercepts  

    cholesky_factor_corr[nY] dL;  //Cholesky factorization of the correlation matrix for subject slopes 
    vector<lower=0>[nY] eSigma;  //Error standard deviations 

    vector<lower=0>[nY] gSigma;  //Standard deviations for random subject intercepts 

    vector<lower=0>[nY] dSigma;  //Standard deviations for random subject slopes 
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    vector<lower=0>[nY] tSigma;  //Standard deviations for family intercepts 

  } 
 

  transformed parameters { 

    matrix[nY,nS] gamma;              //Coefficients for random subject intercepts 
    matrix[nY,nS] delta;          //Coefficients for random subject slopes 

    matrix[nY,nF] theta;          //Coefficients for random family intercepts 

    gamma = diag_pre_multiply(gSigma,gL) * gammaZ;  //Implies gamma ~ Normal(0,Dg) 
    delta = diag_pre_multiply(dSigma,dL) * deltaZ;  //Implies delta ~ Normal(0,Dd) 

    theta = diag_matrix(tSigma) * thetaZ;   //Implies theta ~ Normal(0,Dt) 

  } 
 

  model { 

    vector[nY] mu[N]; 
 

    //Priors 

    gL ~ lkj_corr_cholesky(1.0); 
    dL ~ lkj_corr_cholesky(1.0); 

    to_vector(beta) ~ normal(0,5); 

    to_vector(gammaZ) ~ normal(0,1); 
    to_vector(deltaZ) ~ normal(0,1); 

    to_vector(thetaZ) ~ normal(0,1); 

    eSigma ~ cauchy(0,2.5); 
    gSigma ~ cauchy(0,2.5); 

    dSigma ~ cauchy(0,2.5); 

    tSigma ~ cauchy(0,2.5); 
   

    //Model predictions 
    for (i in 1:N) 

      mu[i] = beta*X[i] + gamma[,subj[i]] + delta[,subj[i]]*Z[i] + theta[,fam[i]]; 

       
    //Likelihood 

    y ~ multi_normal(mu,diag_matrix(eSigma .* eSigma)); 

  } 

 

 
Supplemental Figure 1: Model Convergence measured with    
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Supplemental Figure 1. The Gelman-Rubin    statistic
12,13

 is a marker that at convergence should equal 1.0. 

In all of our models    was found to be acceptably close to 1.0 for every model parameter.  

Online Interactive Models 

An interactive tool created with the R package Shiny
15

  is hosted online at 

https://dianspatial.shinyapps.io/dian_longitudinal_neuroimaging/. This application provides a more in-

depth depiction of the statistical models and results than is possible in the main manuscript. The online 

application has five distinct tabs: Baseline Trends, Longitudinal Trends (default starting tab), Spatial Maps, 

Regional Comparisons, and Posterior Distributions. For optimal performance, please use a modern version 

of Chrome or Safari. 

 

The Baseline Trends tab takes you to the regional cross-sectional estimates derived as part of the 

longitudinal model. It is possible to view cross-sectional estimates for all three modalities and all brain 

regions. This tab also allows the user to display posterior predictive intervals for a new participant at 

baseline within a new family. The Longitudinal Trends tab depicts the longitudinal model results for all 

modalities and regions in a similar manner to the data presented in Figure 1 of the main manuscript. The 

solid lines in the panel labeled “Fit” are model estimates for each subject. An option is present to display 

the actual data alongside the model fits.  The panel labeled “Estimated Rates” depicts the annualized rate of 

change, with each dot representing an individual’s estimate. The two lines in this panel are group estimates 

of rate of change from the overall model for this selected region. The panel labeled “Estimated Rate 

Differences” depicts differences in the rate of biomarker change between mutation carriers and non-

carriers. For both Baseline Trends and Longitudinal Trends data figures are displayed with baseline EYO -

29 to +10 to avoid inadvertently revealing mutation status at points on the extreme ends of the range where 

sampling is lower. 

 

The Spatial Maps tab provides the ability to display regional model estimates on a rendered brain using the 

rgl package in R
16

. The interactive toolbox allows the user to specify a number of parameters including the 

modality, model parameter of interest, statistic (mean, median, or standard deviation), and color scale. The 

Regional Comparisons tab presents a grid that directly compares the rate of biomarker change between 

anatomical regions (e.g. comparing the rate of PiB accumulation at an EYO of -10 in precuneus and the 

inferior parietal cortex). The values in the matrix always represent a difference between the region listed in 

the row minus the region represented by the column. The Posterior Distributions tab depicts the posterior 

distributions of the model estimates. This distribution provides us with the summary value for a parameter 

as well as the ability to test significance. If the 99% equal-tailed credible intervals do not overlap 0, then we 

consider the model parameter to be significant. 
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Supplementary Table 1: Cortical Regional Timing of Biomarker Abnormality 

Region PiB EYO FDG EYO MRI EYO PiB EYOAdj* FDG EYOAdj* MRI EYOAdj* 

Caudal Anterior 
Cingulate -20·0   -17·2   

Caudal Middle Frontal -19·3 -17·4 -2·8 -16·5 -14·6 0·3 

Cuneus -2·5  -4·7 -0·1  -0·7 

Entorhinal Cortex   -1·8   0·9 

Frontal Pole -18·3   -14·9   

Fusiform Gyrus -17·1  -5·1 -9·8  -1·5 

Inferior Parietal -20·1 -12·4 -10·6 -17·8 -9·2 -7·2 

Inferior Temporal -19·7  -3·5 -16·8  -0·3 

Insula -18·6  -3·1 -15·3  -0·3 

Isthmus Cingulate -20·2  -3·0 -17·8  -0·4 

Lateral Occipital -20·1  -7·2 -17·8  -4·7 

Lateral Orbital Frontal -19·6   -17·0   

Lingual Gyrus -17·9  -8·8 -2·4  -5·6 

Medial Orbital Frontal -21·2  2·3 -19·6  5·1 

Middle Temporal Gyrus -20·5  -5·2 -18·1  -2·7 

Paracentral Gyrus -19·9   -17·5   

Parahippocampus   -9·8   -6·7 

Pars Opercularis -20·7 -13·6 -5·1 -18·3 -8·8 -2·8 

Pars Orbitalis -17·1   -14·8   

Pars Triangularis -19·9  0·0 -17·4  3·0 

Pericalcarine -20·0   -17·6   

Posterior Cingulate -21·0   -18·6   

Postcentral Gyrus -20·6  -2·3 -18·3  1·1 

Precentral Gyrus -18·0  0·0 -14·5  3·1 

Precuneus -22·2 -18·8 -13 -19·8 -16·5 -10·0 

Rostral Anterior 
Cingulate -20·4   -17·6   

Rostral Middle Frontal -20·3   -18·1   

Banks Superior 
Temporal Sulcus -18·7 -18·0 -11·5 -15·8 -15·6 -6·8 

Superior Frontal -19·0 -15·1 0·8 -16·6  3·0 

Superior Parietal -20·2 -14·9 -9·1 -17·8  -5·7 

Superior Temporal -20·1  -5·6 -17·9  -2·6 

Supramarginal Gyrus -20·1 -2·8 -6·9 -17·7 0·7 -3·6 

Temporal Pole -15·1   -1·5   

Transverse Temporal -17·0  -3·0 -13·3  0·2 
* See Adjusting EYO by Known Dementia Onsets section below for explanation of EYOAdj 

 

Supplementary Table 2: Subcortical Regional Timing of Biomarker Abnormality 

Region PiB EYO FDG EYO MRI EYO PiB EYOAdj* FDG EYOAdj* MRI EYOAdj* 

Nucleus Accumbens -22·2  -8·0 -20·8  -3·0 

Amygdala   -0·5   2·8 

Caudate -16·4  3·6 -0·7  5·9 

Hippocampus   -7·1   -3·7 

Pallidum       

Putamen -17·0   -9·4   

Thalamus       
* See Adjusting EYO by Known Dementia Onsets section below for explanation of EYOAdj 
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Regional Comparisons of Biomarker Accumulation  
 

 

 
Supplemental Figure 2: Panel 2A presents regional pair-wise comparisons in rates of beta-amyloid 

deposition at EYOs of -25, -15, -5 and +5. The color-coding on the figures represents the estimated 

differences between regional rates. Only comparisons whose 99% credible intervals do not overlap 0 are 

shown. The comparison is always the region listed in the row minus the region listed in the column. 

Supplemental Figure 2B compares similarly compares subcortical accumulation of beta-amyloid. 

 

 

 
Supplemental Figure 3: Differences in longitudinal rates of FDG changes in A) cortical and B) subcortical 

regions respectively.  
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Supplemental Figure 4: Differences in longitudinal rates of change in A) cortical thickness and B) 

subcortical volume respectively.  
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Movies Illustrating Rates of Change 

To further illustrate patterns of regional change we examined our data at the voxel-wise level. PET data 

were partial volume corrected using a region-bases voxel-wise (RBV)
17

 approach which is a voxel-wise 

extension of the regional spread function technique implemented on our ROI analyses. Data were smoothed 

on the cortical surface using a 10 mm kernel. Our linear mixed-effects models were then fit at a voxel-wise 

level using the R statistical software package lme4
18

 (https://github.com/lme4/lme4). The model estimates 

were then used to compose the movies included with the main body of the manuscript. The upper portion of 

the movie depicts the rate of change of the biomarker (PiB, FDG, MRI) across EYO (from -25 to +10) in 

mutation carriers.  The bottom portion of the movie figure depicts the total biomarker levels at each EYO 

for mutation carriers. This is derived from integrating the rate of change and adding it to the estimated 

value of a mutation carrier at an EYO of -25 and time zero.  

 

Movie 1: Voxel-wise change for beta-amyloid deposition by PiB PET in mutation carriers. The top panel of 

the figure shows the rate of change at each EYO. The bottom panel depicts the total biomarker levels at 

each EYO for mutation carriers derived by integrating the rate of change and adding it to the baseline value 

of a mutation carrier at an EYO of -25 and time zero.  

 
Movie 2: Voxel-wise change in FDG PET uptake in mutation carriers. The top panel of the figure shows the 

rate of change at each EYO. The bottom panel depicts the total biomarker levels at each EYO for mutation 

carriers derived by integrating the rate of change and adding it to the baseline value of a mutation carrier at 

an EYO of -25 and time zero. 

 

Movie 3: Voxel-wise change in cortical thickness by MRI in mutation carriers The top panel of the figure 

shows the rate of change at each EYO. The bottom panel depicts the total biomarker levels at each EYO for 

mutation carriers derived by integrating the rate of change and adding it to the baseline value of a mutation 

carrier at an EYO of -25 and time zero. 

 

Adjusting EYO by Known Dementia Onsets 

Prior analyses examining ADAD have used self-report of parental age of onset
19

 or mutation specific
20

 

estimates of disease onset. To be consistent with prior work in the field, the current analyses utilize these 

two measures to define an individual’s estimated years to symptom onset (EYO). However, the 

longitudinal clinical assessments given as part of DIAN provide the ability to relate expected times of 

dementia onset to the point where clinicians note the first departure from clinical normality. To do this we 

examined those mutation carriers who went from cognitive normality at baseline, denoted by a CDR
21

=0, to 

CDR>0. The first point where an individual reached a CDR>0 was considered their decline age (DA). The 

relationship between the individuals’ DA and parental estimated age of onset (EAO) was calculated using a 

bivariate linear errors-in-variables modeling using the R package “levi”
22

.   

 

As seen in the Supplemental Figure 5, individuals regularly show a clinical decline (CDR >0) before their 

expected parental EAO. The most likely explanation is that when individuals are reporting the dementia 

onset of a family member they are reporting a cognitive impairment that is more sever than a CDR 0·5. The 

model fit provides a way to adjust calculate a DA in both carriers and non-carriers to capture this early 

clinical decline. This calculated DA can be used to compute an adjusted EYO (EYOadj). All analytical 

models were re-run using this EYOadj. The significant findings using EYOadj are highly similar to EYO 

calculated using the standard mutation or parental EAO. Not surprising given the model fit, the emergence 

of biomarker changes (Supplemental Table 1) happens in closer approximation to an EYOadj of 0 (e.g. 

Precuneus PiB emergence shifting from an EYO -22·2 to EYOadj of -19·8). The spatial patterns and relative 

temporal ordering between modalities are preserved (Supplemental Figure 6).  
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Supplemental Figure 5: Relating EYO to Decline Age

 
 

Supplemental Figure 5. The relational between estimated age of onset and actual decline age (first visit 

CDR >0) calculated using a bivariate linear errors-in-variables modeling using the R package “levi”
22

.  The 

blue line represents the model fit while the black dashed line is the identity line.  

 

 

 

Supplemental Figure 6.  
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Supplemental Figure 6: Emergence of neuroimaging biomarkers. The color scale represents the first point 

in the disease using the adjusted EYO (EYOadj) where rates of biomarker change in that cortical region are 

significantly different between mutation carriers and non-carriers. As with the results presented in Figure 2 

in the main text, there is a temporal evolution where increased amyloid deposition precedes 

hypometabolism that in turn is followed by cortical thinning. 

 

 

Dutch and Flemish Mutation Carriers 

Autosomal dominant mutation carriers of the APP Dutch (Glu693Gln) and Flemish (Ala692Gly) mutations 

often present with predominant vascular Aβ deposition, with diffuse plaques in the parenchymal tissue, 

cerebral hemorrhage, and cerebral amyloid angiopathy (CAA).
23

 This Aβ can be problematic for PET 

imaging and these phenotypes may also have additional vascular contributions to the progression of their 

disease.
24

 For these reasons the main analyses excluded all individuals from families of either mutation. We 

additionally ran all models including these two individuals with families with Flemish mutations twenty-

one individuals with the Dutch mutation. Results were highly consistent with those presented in the main 

text.  

  

Dutch Glu693Gln mutation 

http://www.molgen.vib-

ua.be/ADMutations/Default.cfm?MT=1&ML=0&Page=PublicationsByMut&ID=153 

 

Flemish Ala692Gly mutation 

 http://www.molgen.vib-

ua.be/ADMutations/Default.cfm?MT=1&ML=0&Page=PublicationsByMut&ID=56 

  
Obtaining DIAN Data 

Data from the DIAN project can be requested freely by researchers at the following website 

https://dian.wustl.edu/our-research/observational-study/dian-observational-study-investigator-resources/ 

 

 

Movie Legends 

Movie 1: Voxel-wise change for beta-amyloid deposition by PiB PET in mutation carriers. The top panel 

of the figure shows the rate of change at each EYO. The bottom panel depicts the total biomarker levels at 

each EYO for mutation carriers derived by integrating the rate of change and adding it to the baseline value 

of a mutation carrier at an EYO of -25 and time zero.  

 
Movie 2: Voxel-wise change in FDG PET uptake in mutation carriers. The top panel of the figure shows 

the rate of change at each EYO. The bottom panel depicts the total biomarker levels at each EYO for 

mutation carriers derived by integrating the rate of change and adding it to the baseline value of a mutation 

carrier at an EYO of -25 and time zero. 

 

Movie 3: Voxel-wise change in cortical thickness by MRI in mutation carriers. The top panel of the figure 

shows the rate of change at each EYO. The bottom panel depicts the total biomarker levels at each EYO for 

mutation carriers derived by integrating the rate of change and adding it to the baseline value of a mutation 

carrier at an EYO of -25 and time zero. 
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Figure1 Spaghetti Plot For Print
Click here to download Figure: Figure1_spagetti_censor_noDutch_c_for_print.pdf



Figure 2 EYO
Click here to download Figure: Figure2_eyo_noDutch_c_revision.pdf
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Figure3 Regional Trajectories
Click here to download Figure: Figure3_trajPlot_noDutch_c_new.pdf



Figure 4 Rates at different EYOs
Click here to download Figure: Figure_4_rateImgRdBu_noDutch_c_revision.pdf



  

Video 1 PIB
Click here to download Video: Movie1_pibRateRdBuMovieRBVDutch.mp4



  

Video 2 FDG
Click here to download Video: Movie2_fdgRateRdBuMovieRBVDutch.mp4



  

Video 3 MRI
Click here to download Video: Movie3_thicknessRateRdBuMovieDutch.mp4



Cortical PiB: MC Regional Rate Comparisons
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Subcortical PiB: MC Regional Rate Comparisons
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Cortical FDG: MC Regional Rate Comparisons
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Subcortical FDG: MC Regional Rate Comparisons
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Cortical Thickness: MC Regional Rate Comparisons
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Subcortical Volume: MC Regional Rate Comparisons
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Cross-sectional study—If applicable, describe analytical methods taking account of sampling 

strategy 

Supplemental In the supplemental material we 

discuss how our statistics are robust 

to different numbers of time points 

and unequal sampling.  

(e) Describe any sensitivity analyses Supplemental 

Material 

 

Results 

Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined 

for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed 

2 
All participants with genetic, clinical, and 
neuroimaging data that passed quality 

control from the tenth semiannual data 

freeze were included in the analyses. 
Analyses excluded families with the Dutch 

and Flemish Mutation as these APP 

mutations often present with predominant 
cerebral amyloid angiopathy and diffuse Aβ 

plaques. 

(b) Give reasons for non-participation at each stage 2 We only excluded due to these two 

mutations.  

(c) Consider use of a flow diagram   

Descriptive data 14* (a) Give characteristics of study participants (eg demographic, clinical, social) and information on 

exposures and potential confounders 

13 Demographics table 

(b) Indicate number of participants with missing data for each variable of interest 13 Demoraphics table 

(c) Cohort study—Summarise follow-up time (eg, average and total amount) 13 Demoraphics table 

Outcome data 15* Cohort study—Report numbers of outcome events or summary measures over time 13 Demoraphics table 

Case-control study—Report numbers in each exposure category, or summary measures of exposure   

Cross-sectional study—Report numbers of outcome events or summary measures   
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Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision 

(eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were 

included 

Figures, 

online 

interactive 

We provide an online resource to 

look at the actual estimates for 

every parameter for every region 

(b) Report category boundaries when continuous variables were categorized   

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time 

period 

  

Continued on next page   
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Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses   

Discussion 

Key results 18 Summarise key results with reference to study objectives 8 
AD is not static but possesses dynamism in 
terms of what pathological processes first 

appear, and how such pathology propagates 

throughout the brain. As dementia onset is 
predictable in ADAD, it provides an elegant 

model with which to examine pathological 

staging. Characterizing the spatial and 
temporal spread of pathology provides 

insight to the pathophysiology of the disease, 

informs how neuroimaging could aid optimal 
subject recruitment in clinical trials, and is 

critical to measure the efficacy of 

interventions on longitudinal biomarker 
measurements.  

 

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss 

both direction and magnitude of any potential bias 

10 Almost all of page 10 considers 

limitations of the study 

Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of 

analyses, results from similar studies, and other relevant evidence 

10 
The discussion takes pains to present work in 

a cautions manner. For example “This means 

results at the edges of the EYO range where 
outliers have disproportional influence must 

be interpreted with care. As the DIAN study 

gains more time points longitudinal estimates 
will be improved further and it may be 

possible to compare the three types of 

mutations.” 

Generalisability 21 Discuss the generalisability (external validity) of the study results 10 
Finally, although ADAD can serve as a 
model for sporadic AD, direct comparisons 

must explore potential differences. 

 

Other information  

Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the 

original study on which the present article is based 

13 
This research was funded by the National 
Institutes of Health (NIH) UFAG032438, 

UL1TR000448, P30NS098577, 

R01EB009352, the German Center for 
Neurodegenerative Diseases (DZNE), the 

National Institute for Health Research 

(NIHR) Queen Square Dementia Biomedical 
Research Centre, and the Medical Research 

Council Dementias Platform UK 

(MR/L023784/1 and MR/009076/1). DIAN 

ClinicalTrials.gov number, NCT00869817. 

We acknowledge the financial support of 
Fred Simmons and Olga Mohan, the 
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Barnes-Jewish Hospital Foundation, the 
Charles F. and Joanne Knight Alzheimer’s 
Research Initiative, the Hope Center for 
Neurological Disorders, the Mallinckrodt 
Institute of Radiology and the Paula and 

Rodger Riney fund. Computations were 

performed using the facilities of the 
Washington University Center for High 

Performance Computing, which were 

partially funded by NIH grants 
1S10RR022984-01A1 and 1S10OD018091-

01. 

 

 

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. 

 

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE 

checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at 

http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org. 


