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Abstract  13 

Offshore Gravity Base Foundations (GBFs) are often designed with complex geometries. Such structures 14 

interact with the local hydrodynamics, creating an adverse pressure gradient which is responsible for flow and 15 

scour phenomena including the bed shear stress amplification. In this study a method is presented for predicting 16 

clearwater scour around cylindrical structures with non-uniform geometries under the forcing of a unidirectional 17 

current. The interaction of the flow field with the sediment around these complex structures is described in terms 18 

of non-dimensional parameters that characterize the similitude of water-sediment movement. The paper presents 19 

insights to the influence the streamwise depth-averaged Euler number has on the equilibrium scour around 20 

uniform and non-uniform cylindrical structures. Here the Euler number is based on the depth-averaged streamwise 21 

pressure gradient (calculated using potential flow theory), the mean flow velocity and the fluid density. 22 

Following a dimensional analysis, the controlling parameters were found to be the Euler number, pile 23 

Reynolds number, Froude number, sediment mobility number and the non-dimensional flow depth. Based on this 24 

finding a new scour prediction equation was developed. This new method shows good agreement with the database 25 

of scour depths acquired in this study (𝑅2 = 0.91). Measurements of the equilibrium scour depth around non-26 

Manuscript Click here to download Manuscript Final_Manuscript-NST.docx 

http://www.editorialmanager.com/jrnwweng/download.aspx?id=131650&guid=ddf2689d-a810-40f2-8039-86faaa93c65e&scheme=1
http://www.editorialmanager.com/jrnwweng/download.aspx?id=131650&guid=ddf2689d-a810-40f2-8039-86faaa93c65e&scheme=1


 

Page 2 of 26 

 

uniform cylindrical structures are used to show the importance of the Euler number on the scour process. Finally, 27 

the importance of the remaining non-dimensional quantities with respect to scour is also investigated in this study.   28 

Introduction 29 

Research into scour around offshore foundations has mainly been focused on the impacts different 30 

hydrodynamic conditions have on the bed when they interact with a monopile. A systematic review is given by 31 

Whitehouse (1998) and Sumer and Fredsøe (2002). While a considerable amount of research has been conducted 32 

for the fluid-structure-soil interaction around monopiles, extensive research for more complex structures such as 33 

Gravity Base Foundations (GBFs) has not been conducted, although the resulting scour has been analysed by 34 

Whitehouse et al. (2011). 35 

Interest in renewable energy on a global level has enabled the offshore wind industry to plan and construct a 36 

large number of offshore wind farms in shallow waters (10 to 30m). Due to the increasing demand for offshore 37 

wind energy, wind farm locations are being planned for greater water depths (30 to 60m). These locations are 38 

characterized by hydraulic conditions that are similar to those faced by offshore oil platforms where wave 39 

conditions may be more energetic, but the influence of waves on scour may be less pronounced due to the 40 

increased water depth, whilst tidal currents may be more dominant. This is because the bed orbital velocities at 41 

greater water depths will be smaller than those in shallower waters for an identical wave, which may lead to less 42 

wave generated scour and backfilling compared to the shallow water case. In these locations GBFs may become 43 

a more cost competitive support structure for wind turbines relative to monopiles foundation because: 44 

 construction material (i.e. concrete) is readily available and at a lower cost compared to steel; 45 

 GBFs tend to be stiffer structures which may lead to advantages with respect to blade passing and wave 46 

excitation frequencies; 47 

 GBFs that are floating towable structures can lead to the faster installation of the foundation; and, 48 

 GBFs can be fabricated near the installation site, thus decreasing the transportation costs. 49 

There has been a limited amount of research into the scour potential of non-uniform cylindrical structures. 50 

One of the first studies on scour around composite structural geometries is reported by Chabert and Engeldinger 51 

(1956), who examined the influence of a larger diameter foundation footing has on scour; their results showed 52 

that the equilibrium scour depth was significantly reduced when the footing was below the original bed level. The 53 

first investigation into scour around a GBF is given by Teramoto et al. (1973) who concluded that the controlling 54 
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factor of scour for sit-on-bottom structures is the structure’s height, and they derived a scour prediction formula 55 

for the time development of scour for rectangular submerged structures. The effect conical GBF structures have 56 

on scour was investigated by Khalfin (1983). Khalfin concluded that the scour formation and depth were 57 

fundamentally different for cylindrical and conical GBFs, and also derived a prediction formula for the 58 

determination of the equilibrium scour under the forcing of currents. Hoffmans and Verheij (1997) modified 59 

Khalfin’s formula to extend its applicability for rectangular structures and proposed the use of an equivalent 60 

diameter of the structure in order to use the formula for more complex geometries. Subsequently Bos et al. (2002) 61 

conducted a study on scour around large-scale submerged offshore structures subjected to the combined effect of 62 

wind waves and currents. The study agreed with the findings of Teramoto et al. (1973) and developed an 63 

equilibrium scour prediction formula for rectangular submerged GBFs for situations with low 𝑈/𝑈𝑐, i.e. low 64 

sediment mobility. In addition to this, some research has been conducted in the context of scour around complex 65 

pier shaped foundations in rivers. Examples of such studies are Jones et al. (1992), Parola et al. (1996) and Melville 66 

and Raudkivi (1996) who investigated the effect of the bottom footing of a pier on scour, and proposed different 67 

empirical equations to obtain an equivalent diameter length scale for non-dimensionalising the equilibrium scour 68 

depth. These studies reveal important information about the effect of different parameters on scour development 69 

around GBFs, but they also show that there is not a unified approach for determining the equilibrium scour for 70 

different types of structures (submerged-emerged, cylindrical and complex geometries).  71 

This paper presents a method for predicting the equilibrium scour depth around uniform and non-uniform 72 

cylindrical structures. The method was derived using newly generated physical model results and a wide range of 73 

equilibrium scour depth data from previously published studies. The method is based on a functional relationship 74 

between the equilibrium scour depth and non-dimensional quantities that arise from a similitude analysis. These 75 

variables include the non-dimensional flow depth, sediment mobility ratio, pile Reynolds number, Froude number 76 

and Euler number. Here the Euler number is defined using the depth-averaged pressure gradient, which is a 77 

physical quantity that has never been used in the past to describe the scour process.  78 

The structure of this paper is as follows. Firstly, the similitude of the non-dimensional quantities that describe 79 

the scour processes are presented along with the formulation of the pressure gradient. Then, the details of the 80 

equilibrium scour database and the physical modelling tests are presented. The paper then presents the derivation 81 

of the scour prediction formula based on the Buckingham π theorem. The results and the importance of each of 82 

the non-dimensional parameters on the equilibrium scour are then discussed.  83 
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Similitude of scour at complex geometries 84 

The flow-structure-bed interaction around both complex and uniform cylinders can be described in terms of 85 

non-dimensionalised parameters. For a steady-state flow with an isotropic, homogeneous Newtonian fluid over a 86 

flat bed comprised of cohesioneless sediment the most important variables that describe the interaction are: 87 

𝑆 = 𝑓(𝜌, 𝜇, 𝛥𝑝, 𝐷, ℎ, 𝑔, 𝑈, 𝑈𝑐) (1) 

Here 𝜌 is the fluid density; 𝜇 the dynamic viscosity of the fluid; 𝛥𝑝 the change in the local pressure in the 88 

streamwise direction induced by the structure; 𝐷 is the diameter of the structure in the case of a monopile, and the 89 

diameter of the base in the case of a complex structure as suggested by Yeow and Cheng (2003); ℎ is the flow 90 

depth; 𝑔 the gravitational acceleration; 𝑆 is the equilibrium scour depth; 𝑈 the depth-averaged flow velocity and 91 

𝑈𝑐 is the critical depth-averaged velocity for bed sediment movement, which can be calculated using the Soulsby 92 

(1997) method: 93 

𝑈𝑐 = 7(
ℎ

𝑑50
)

1
7
[𝑔(𝑠 − 1)𝑑50𝑓(𝐷∗)]

0.5 (2) 

with  94 

 95 

Further, 𝑑50 is the median sediment diameter, 𝑠 is the ratio of sediment grain density in water, and 𝜈 kinematic 96 

viscosity of water. 97 

By adopting a polar coordinate system, 𝛥𝑝 in equation (1) can then be represented in terms of the pressure 98 

gradient by taking the derivative in the angular direction (𝜑) (see Figure 1 for definition sketch); this can be 99 

calculated using potential flow theory. This yields: 100 

𝑆 = 𝑓 (𝜌, 𝜇,
𝑑𝑝

𝑑𝜑
, 𝐷, ℎ, 𝑔, 𝑈, 𝑈𝑐) (5) 

By applying the Buckingham π theorem with normalising variables 𝜌, 𝐷 and 𝑈 the following dependence is 101 

obtained for the non-dimensional scour depth 𝑆/𝐷: 102 

𝑆

𝐷
= 𝑓(

𝑑𝑝
𝑑𝜑

𝑈2𝜌
,
U

√𝑔ℎ
,
𝑈

𝑈𝑐
,
𝑈𝐷𝜌

𝜇
,
ℎ

𝐷
) (6) 

This expression is equivalent to: 103 

𝑓(𝐷∗) =
0.30

1 + 1.2𝐷∗
+ 0.055[1 − exp(−0.02𝐷∗)] (3) 

𝐷∗ = [
𝑔(𝑠 − 1)

𝜈2
]

1
3

𝑑50 (4) 
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𝑆

𝐷
= 𝑓 (𝐸𝑢, 𝐹𝑟,

𝑈

𝑈𝑐
, 𝑅𝑒𝐷,

ℎ

𝐷
) (7) 

This expression suggests that the pile Reynolds number (𝑅𝑒𝐷 = 𝑈𝐷/𝜈) is the form of 𝑅𝑒 that  best 104 

characterises the effect on the scour process. Indeed this is verified when considering that the flow conditions in 105 

most experimental and prototype conditions are fully developed, thus making viscous effects negligible for a 106 

channel 𝑅𝑒 =
𝑈ℎ

𝜈
> 104 (Hughes, 1993). In addition, the critical grain Reynolds number is also considered 107 

implicitly in expression (7) as 𝑈𝑐 ∝ √𝜃𝑐 ∝ 𝑅𝑒∗ which implies that the effects of hydrodynamically rough and 108 

smooth flows are also considered through the Shields parameter 𝜃𝑐. 109 

Both 𝑅𝑒𝐷 and 𝐸𝑢 are of importance in the scour process. The pile Reynolds number controls two important 110 

aspects of the flow structure interaction. Firstly, the separation point of the flow along the perimeter of a cylinder 111 

shifts towards the lee of the pile for an increasing 𝑅𝑒𝐷 (Achenbach, 1968). This results in a narrower wake, which 112 

translates into a delay in the separation of the boundary layer, a weaker horseshoe vortex at the upstream face of 113 

the structure (Roulund et al., 2005) and a smaller equilibrium non-dimensional scour depth. Secondly, the 114 

frequency of the lee wake vortices is altered. For cylinders in the same approach flow, the vortex shedding 115 

frequency process will be influenced by any change in the structures’ diameter (i.e. change in the pile Reynolds 116 

number) (Sarpkaya, 2010). This change in 𝑅𝑒𝐷 will result in changes in the size of the vortices and their frequency 117 

(Melville, 2008). The importance of turbulent structures at the lee of structures with respect to scour was 118 

confirmed through a series of experiments by Ettema et al., 2006. In the study the vorticity and shedding frequency 119 

around cylinders were measured, showing that the small cylinders produce twice as much vorticity compared to 120 

the larger cylinders. According to Ettema et al., (2006) this difference is one of the mechanisms that contribute 121 

towards the general tendency of finding smaller non-dimensional scour depths in prototype conditions compared 122 

to experimental.  This can partially explain the discrepancies between small scale laboratory experiments and 123 

prototype scour measurements, the latter tending to have relatively small non-dimensional scour depths (Ettema 124 

et al., 2006) whereas prototype observations of scour in the field with live-bed conditions can be large (i.e. scour 125 

depth around 1.8D; Harris and Whitehouse, 2015). 126 

Expression (7) shows that both the pile Reynolds number and the Euler number are of particular importance 127 

when attempting to describe the processes involved in scour around uniform and complex structures. To the 128 

authors’ knowledge this form of the Euler number has not previously been used to describe the scour process. In 129 

the context of scour 𝐸𝑢 has only been discussed in Ettema et al. (2006) who argues that, for uniform cylinders, 130 

𝑈2/𝑔𝐷 is a form of the Euler number as it emerges from the Euler equation when applied to a water surface across 131 



 

Page 6 of 26 

 

an eddy. This is equivalent to describing the lee wake vorticity intensity. The formulation shown in (7) differs 132 

from most existing scour prediction formulae (e.g. Khalfin, 1983, for shallow foundations; Breusers et al., 1977; 133 

and Johnson, 1992, for deep foundations) that are based only on: 134 

𝑆

𝐷
= 𝑓 (𝐹𝑟,

𝑈

𝑈𝑐
,
ℎ

𝐷
) (8) 

As mentioned previously the Euler number is the non-dimensional form of the adverse pressure gradient 135 

induced by the flow-structure interaction. This pressure gradient is responsible for the formation of the horseshoe 136 

vortex and explains the flow structure interaction outside the pile wall boundary layer and outside the lee wake 137 

region where the viscous effects are negligible. By approximating that the flow boundary layer of the structure is 138 

fully developed the pressure at the face of the structure can be determined by applying Prandtl’s boundary layer 139 

theory with the familiar Bernoulli equation in polar coordinates: 140 

𝑢𝜑
2 + 𝑢𝑟

2

2𝑔
+
𝑝

𝛾
+ 𝑧 = 𝐶 (9) 

where: 141 

𝛾 is the specific gravity of water, p is the pressure, 𝑢𝜑 is the tangential component of the velocity in polar 142 

coordinates with its origin at the centre of the structure, 𝑢𝑟 is the radial component of the velocity in polar 143 

coordinates with its origin at the centre of the structure, z is the height  above the initial bed, and 𝐶 is a constant. 144 

When combined with the equations for the velocity in the tangential and radial direction this yields equation (10): 145 

𝑧 +
𝑝

𝛾
+
1

2𝑔
𝑢(𝑧)2(

(
𝐷
2
)
4

𝑟4
−
2(
𝐷
2
)
2

𝑟2
cos(2𝜑) + 1) = 𝐶 (10) 

And by differentiating with respect to 𝜑: 146 

𝑑𝑝

𝑑𝜑
= −2𝜌𝑢(𝑧)2

(

 
(
𝐷(𝑧)
2
)
2

𝑟2

)

 sin(2𝜑) (11) 

where: 147 

𝑧 is the vertical distance from the bed,  𝜌 is the density of water, 𝜑 is the angle relative to the approach flow 148 

direction, 𝐷(𝑧) is the diameter of the structure as a function of the vertical distance from the bed for complex 149 

geometries, 
𝑑𝑝

𝑑𝜑
 is the pressure gradient at any given location around the structure, 𝑟 is the distance from the pier 150 

centre where the pressure gradient is evaluated, and 𝑢(𝑧) is the approach velocity at any given height “z” above 151 

the initial bed. 152 
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An estimate of the effect the pressure gradient has on the bed can then be determined by calculating the depth-153 

averaged pressure gradient (〈𝑑𝑝/𝑑𝜑〉) which leads to equation (12).   154 

〈
𝑑𝑝

𝑑𝜑
〉 =

1

ℎ
∫

(

 −2𝜌𝑢(𝑧)2

(

 
(
𝐷(𝑧)
2
)
2

𝑟2

)

 sin(2𝜑)

)

 𝑑𝑧
ℎ

0

 (12) 

In equation (12) the integration assumes that there is no energy transfer between the fluid layers in the water 155 

column and the velocity profile can be approximated by the equations of the hydrodynamically rough velocity 156 

profile given in Einstein (1950) (i.e. equations 13 and 14) and the Nikuradse roughness (equation 15): 157 

𝑢(𝑧)

𝑈𝑓
= 8.6 + 2.5 ln (

𝑧

𝑘𝑠
) (13) 

where: 158 

𝑈𝑓 =
𝑈

6.0 + 2.5 ln (
ℎ
𝑘𝑠
)
 

 

(14) 

𝑘𝑠 = 2.5 𝑑50 (15) 

𝑑50 is the median sediment size; 𝑘𝑠 is the roughness length-scale;  ℎ is the water depth and  𝑈𝑓  is the friction 159 

velocity based on the depth-averaged velocity and median sediment diameter.  160 

The maximum depth-averaged pressure gradient can then be determined by integrating throughout the water 161 

column at the point where the maximum tangential pressure gradient is expected (i.e. 𝜑 =  𝜋/4  𝑎𝑛𝑑 𝑟 =162 

 𝐷𝑏𝑎𝑠𝑒/2) which leads to expression (16). 163 

〈
𝑑𝑝

𝑑𝜑
〉𝑚𝑎𝑥 = |

1

ℎ
∫ (−2𝜌𝑢(𝑧)2 (

𝐷(𝑧)

𝐷𝑏𝑎𝑠𝑒
))𝑑𝑧

ℎ

0

| (16) 

where 𝐷𝑏𝑎𝑠𝑒 is the diameter of the base of the structure (Figure 1a).Equation (16) implies that for the same 164 

hydrodynamic conditions the structure that has a non-uniform structure geometry such as a conical base structure 165 

of increasing diameter towards the bed will have a smaller depth-averaged pressure gradient compared to a 166 

monopile. This in turn would result in a smaller downflow on the face of the structure, a reduced amplification of 167 

the bed shear stress and thus, smaller scour depths. This statement is verified by Tavouktsoglou et al. (2015) who 168 

measured the amplification of the bed shear stress for the same flow conditions and structures for which the 169 

pressure gradient distribution is calculated in Figure 2. The pressure gradients were calculated for two of the small 170 

scale structures listed in Figure 3 and for a mean flow velocity of 0.39 m/s and a water depth of 0.165 m. They 171 

found that there is a significant increase in the amplification of the bed shear stress between a conical base structure 172 
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and a monopile, which agrees qualitatively with the pressure gradient profiles depicted in Figure 2. Similarly, 173 

equation (16) suggests that different vertical distributions of the flow profile also have an effect on the pressure 174 

gradient and thus on the scour potential for a given situation. Figure 1 (a) shows a structure that has been subjected 175 

to two different flow conditions 𝑢1 and 𝑢2 with different depth profiles but the same overall flow flux (i.e. same 176 

depth-averaged velocity). Applying equation (16) to these two cases, the profile 𝑢2 produces a smaller depth-177 

averaged pressure gradient compared to that in 𝑢1as smaller velocities are interacting with the widest portion of 178 

the structure. This phenomenon is of particular interest in practice when considering flows in locations where 179 

large lateral wind loads are expected such as the locations where offshore wind farms are situated. In these 180 

locations the wind load effectively produces a wind driven shear flow on top of the existing logarithmic flow 181 

creating a flow profile similar to that of  𝑢2 in Figure 1 (a) (Davies and Lawrence, 1994). 182 

Based on equations (6) and (16) the non-dimensional form of the depth-averaged pressure gradient can now 183 

be defined as the depth-averaged Euler number, which can be written as follows: 184 

〈𝐸𝑢〉 =
〈
𝑑𝑝
𝑑𝜑
〉𝑚𝑎𝑥

𝑈2𝜌
 

(17) 

For the simpler case of a logarithmic flow profile interacting with a uniform cylinder the Euler number can 185 

conservatively be assumed to take a value of 2 (Tavouktsoglou et al., 2016). For all other conditions designers are 186 

recommended to: 187 

 establish a functional relationship that describes the vertical distribution of the streamwise flow velocity 188 

(𝑢(𝑧)); 189 

 create a function that describes the diameter of the non-cylindrical structure (𝐷(𝑧)) as a function of the 190 

distance from the bed (𝑧); and, 191 

 calculate the depth-averaged pressure gradient though the integration of equation (16) or by evaluating 192 

equation (16) at a minimum of 50 points throughout the water column and substituting in expression 193 

(17). This process can be automated in a spreadsheet to assist in the calculation of 〈𝐸𝑢〉 for different flow 194 

and structural conditions. 195 

Equation (17) gives the maximum non-dimensional pressure gradient for a given set of structural parameters 196 

and flow conditions. As stated previously potential flow theory does not account for the viscous effects within the 197 

boundary layer and the lee wake region; and the vertical integration does not allow for the determination of the 198 

vertical exchange in energy across the face of the structure. For this reason 〈𝐸𝑢〉 by itself is not sufficient to predict 199 
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the equilibrium scour depth. The remaining parameters in equation (7) are required in order to determine the 200 

influence of phenomena and processes not covered by the Euler number, as will be described later. 201 

Database Description 202 

A significant amount of equilibrium scour data have been published in the past. In this study published data 203 

on equilibrium scour depths around both uniform and complex cylindrical structures were selected in order to 204 

create an equilibrium scour prediction equation for clearwater scour conditions. The decision to focus on the 205 

clearwater regime was made in order to avoid data that were influenced by ripple formation upstream of the 206 

structure, which would introduce additional sediment transport scale effects. A summary of the sources and 207 

quantities of scour data is given in Table 1 and the distribution of the most important non-dimensional parameters 208 

are given in Figure 4. 209 

The data presented include scour tests that were conducted in the clearwater regime for cohesionless 210 

sediments only. Data were included only if all relevant parameters were presented in the publication. The 211 

aforementioned parameters include the median sediment size, average flow velocity, the sediment geometric 212 

standard deviation, water depth, structural dimensions and the time to equilibrium scour. Tests were discarded if: 213 

 they were not run for a sufficiently long period to achieve equilibrium scour. According to Melville and 214 

Chiew (1999) this is the time required to reach a scour depth in which the scour rate does not exceed 5% 215 

of the structure diameter in 24 hours; and,  216 

 the sediment geometric standard deviation (𝜎𝑔 ) was greater than 1.3. This was done to avoid the effects 217 

of bed armouring. 218 

 In addition, for a limited number of structures that did not have a circular footprint the equivalent diameter 219 

was determined and used. Only one field study is included in this dataset even though there have been a large 220 

number of field studies published. The majority of field studies were excluded for three reasons: 221 

 field measurements tend to have time-varying flows which make it difficult to determine if a given scour 222 

hole has reached the equilibrium phase; 223 

 in most cases, naturally occurring flows in tidal or alluvial environments are high, thus forcing scour to 224 

occur in the live bed regime for at least part of the time. The extensive bed formations developed 225 

upstream of the structure and the general lowering of the bed would provide additional difficulty in 226 

generalising any information; and, 227 
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 in most cases it is not possible to monitor the scour development systematically and, therefore, it is not 228 

possible to determine if the scour hole is fully developed. 229 

As Figure 4 shows, the majority of the data have a Froude number ranging between 0 and 0.4 which is 230 

representative of the Fr expected in most offshore locations, typically 0 to 0.2. The values of the depth-averaged 231 

Euler number are spread over the range of 0 to 1.8, showing that there is a good distribution of complex 232 

geometries, while the distribution of 〈𝐸𝑢〉 is clustered around the value of 2 for the uniform cylinders which is 233 

explained by the higher pressure gradients expected for uniform cylinders extending to the water surface. In this 234 

dataset the majority of the data points have a mobility ratio (𝑈/𝑈𝑐) value close to 1 for both structure categories 235 

which yields the deepest scour for the given hydrodynamic conditions. In addition, the non-dimensional flow 236 

depth is mainly below 5 for both categories, which is typical of offshore locations where structures are constructed. 237 

Finally, the majority of the data have Reynolds numbers mainly smaller than 106, which is due to the lack of 238 

prototype data.  239 

Experiment description 240 

A series of tests were conducted to investigate the relationship between the depth-averaged Euler number of 241 

complex structure geometries and the equilibrium scour depth. These tests also gave a good opportunity to fill 242 

some gaps in the previously mentioned database. These gaps are attributed to the limited amount of published 243 

equilibrium scour depth data for non-uniform cylindrical structures which correspond to 〈𝐸𝑢〉 ∈  (0.5, 1.5). Two 244 

sets of experiments were conducted at different structural scales. The first set were run in a reversing current flume 245 

with dimensions of 10 m x 0.3 m x 0.5 m (LxWxH). The second were conducted in a flume with dimensions of 246 

20 m x 1.2 m x 1 m (LxWxH). The experimental apparatus in both cases consisted of a false bed that was installed 247 

around the midpoint of the flume, where the sediment was placed, and extended across the full width of the flume. 248 

A schematic of the set-up for the first set of experiments is presented in Figure 5. All tests in the present study 249 

were conducted under the forcing of a steady current. The scour depth was evaluated by the use of a scale which 250 

was marked onto the model structure (below the initial bed level) and monitored continuously by a camera taking 251 

time lapse images at an interval of 15 s. 252 

In the first set of tests, six structural geometries were subjected to a range of different hydraulic conditions. 253 

These included three different conical base structures, one cylindrical base structure, one truncated cylinder and 254 

one uniform cylinder with the base diameter equal to that of the uniform cylinder. The second set of experiments 255 
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looked at one cylinder, two conical based structures and one cylindrical based structure at scale four times larger 256 

than the first set of structures. These models were subjected to two sets of flow conditions: 257 

 a logarithmic flow profile, in order to examine possible scale effects compared to the smaller scale 258 

experiments; and,  259 

 a non-logarithmic flow profile with the same flow flux as in the first set, for the purpose of examining 260 

the influence non-logarithmic flow profiles have on the scour process. The flow profile was altered 261 

through a series of wire meshes in order to achieve a flow profile resembling one subject to a wind stress 262 

at the surface (profile  𝑢2 Figure 1 a).  263 

The smooth walled structures selected in this study are representative of geometries that have been used in the 264 

offshore wind industry details of which can be found in Figure 3. 265 

Experiments were conducted under clearwater scour conditions in order to avoid bedform generation 266 

upstream of the  structure and because clearwater scour with values of 𝑈/𝑈𝑐  close to 1 produces the deepest 267 

equilibrium scour (Melville and Sutherland, 1988). The structures shown in Figure 3 were subjected to a range of 268 

different flow conditions which are summarized in Figure 6. In order to avoid scaling issues due to the sediment 269 

size to pile diameter ratio (Chiew, 1984) the two sediment sizes used in the experiments were selected such that 270 

𝐷𝑏𝑎𝑠𝑒/𝑑50 > 50. The flow depths were also selected in order to satisfy the blockage criterion 𝐴𝑚𝑜𝑑𝑒𝑙/𝐴𝑓𝑙𝑜𝑤  <271 

 1/6 where 𝐴𝑚𝑜𝑑𝑒𝑙  and 𝐴𝑓𝑙𝑜𝑤  are the cross-sectional area of the structure and the channel projected to the flow 272 

(Whitehouse, 1998). 273 

Velocity profiles were measured at the beginning of each experiment, using a Laser Doppler Velocimeter 274 

(LDV) for the small scale experiments and an Acoustic Doppler Velocimeter (ADV) during the large scale 275 

experiments, to ensure that the same flow conditions were maintained for each experimental test. Representative 276 

profiles of the different flow conditions are shown in Figure 7 in a non-dimensional form. 277 

Equilibrium scour depth prediction equation 278 

On non-dimensional grounds the equilibrium scour depth for any structure and flow condition can be derived 279 

through Equation (6), assuming that the flow is incompressible and steady, that the soil consists of cohesionless 280 

particles with a low geometric standard deviation (𝜎𝑔 < 1.3) and the scour is in clearwater regime. The main goal 281 

of the proposed formula is to provide a tool that is able to predict the equilibrium scour depth around both complex 282 

and uniform structures reliably for unidirectional currents. This allows for the prediction of scour depths in alluvial 283 
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environments accurately and in a conservative manner in offshore conditions as the action of waves reduces the 284 

effects of scour due to tidal action because of its ability to backfill the scour hole (Sumer et al., 2013).   285 

In order to develop the new formula the general concept presented by Breusers et al. (1977) is adopted. This 286 

describes scour as a function of the product of the governing non-dimensional parameters (𝑓𝑖) identified as 287 

influencing the process. The general form reads: 288 

𝑆

𝐷𝑏𝑎𝑠𝑒
= 𝑓 (∏𝑓𝑖

𝑛

1

) (18) 

 289 

By performing parametric model studies, Equation (19) was selected as the most effective formula for predicting 290 

the non-dimensional scour depth. 291 

𝑆

𝐷𝑏𝑎𝑠𝑒
=
𝑎 𝜁 + 𝑏

𝜁 + 𝑐
 (19) 

where: 

𝜁 = (
1

log(𝑅𝑒𝐷)
) (

ℎ

𝐷𝑏𝑎𝑠𝑒
) (𝐹𝑟)(𝐸𝑢)0.5 (

𝑈

𝑈𝑐
)
0.5

 

(20) 

𝑎, 𝑏 and 𝑐 are coefficients that were determined through parameter optimisation according to McCuen and Snyder 292 

(1986). Their values for the given data-set with the corresponding 95% confidence bounds are: 293 

𝑎 =  2.163 ∈ [2.1, 2.3];  294 

𝑏 =  0 ∈ [−0.009, 0.005]; and, 295 

𝑐 =  0.03 ∈ [0.01, 0.05]. 296 

Figure 8 plots the relationship between the non-dimensional scour depth and parameter 𝜁. It can be observed that 297 

low values of 𝜁 produce small equilibrium scour depths while for increasing values of 𝜁, 𝑆/𝐷𝑏𝑎𝑠𝑒  increases. This 298 

behaviour can be explained by the presence of 𝐷𝑏𝑎𝑠𝑒 at the denominator at the right hand side of Equation (19), 299 

which implies that larger structures (in diameter) produce relatively shallower scour holes while smaller structures 300 

create deeper non-dimensional equilibrium scour depths. This is the behaviour reported by numerous authors such 301 

as Ettema et al. (2006). An example of such large experimental scour depths are the results of Chiew (1984) who 302 

measured scour depths up to S/D = 2.7. This discrepancy is attributed to the effect of the pile Reynolds number 303 

according to Ettema et al. (2006), although a number of examples have been reported in the literature (e.g. Harris 304 

and Whitehouse, 2015) where prototype scour depths were comparable to those of laboratory experiments (i.e. 305 
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S/D~1.8).  In addition to the effect of the pile size several physical phenomena have also been found to contribute 306 

to the smaller scour depths in offshore locations. McGovern et al. (2014) concluded that scour in tidal flows is 307 

less than the corresponding scour induced by a unidirectional current. This conclusion was debated by Harris and 308 

Whitehouse (2015) who showed that scour depths around monopiles in offshore locations fit within the same 309 

population as scour induced around piles in unidirectional flows. This finding is also supported by Porter et al. 310 

(2015) who conducted a series of experiments and found that the scour depth between reversing and unidirectional 311 

currents does not differ. Furthermore, Sumer et al. (2012) concluded, through a series of experiments, that when 312 

the wave climate changes the equilibrium scour depth may be reduced due to a backfilling process. The previous 313 

discussion shows that there are numerous phenomena that may partially explain the observation of smaller scour 314 

depths at offshore monopoles in granular soils in some cases, but in general terms scour depths similar to those 315 

induced by unidirectional currents in rivers should be expected. It should be noted that additional research is 316 

required in order to understand the exact consequences these phenomena have on offshore scour.  317 

 During the analysis of the data the velocity profile of a number of tests from the database included in this 318 

study were not known and were assumed to be logarithmic and to follow Equation (13). This assumption, along 319 

with the fact that laboratory experiments are prone to laboratory effects such as wall friction and non-uniform 320 

flow distribution across the width of the flume, are expected to have contributed to the scatter in Figure 8. 321 

The accuracy of the present scour prediction method is evaluated through the comparison of the predicted 322 

scour depths (using equation 19) to the corresponding measurements (Figure 9). The figure shows that a good 323 

agreement is found between the proposed method and the scour depth database compiled in this study. 55% of the 324 

predictions have an error smaller than 10% and 82% of the predictions an error smaller than 20%. The values of 325 

correlation coefficient (𝑅2) and RMSE (Root Mean Squared Error) were calculated to be of 0.91 and 0.16 326 

respectively. It should be kept in mind that a factor contributing to this high accuracy is that the same database 327 

that was used to evaluate the accuracy of the model was also used to develop it. A limited number of scour 328 

predictors for complex structures are found in the literature. Most of them rely on shape factors to account for the 329 

different structure geometry (e.g. Breusers et al., 1977; Laursen and Toch, 1956). Scour prediction around GBFs 330 

can be calculated through the Khalfin (1983) method which may lead to the underestimation of the scour depth in 331 

some cases. This is because the method was derived for foundations with a limited skirt depth. Others provide a 332 

conservative method of estimating the equilibrium scour depth through envelope curves (i.e. FDOT, 2005) which 333 

leads to the overestimation of the scour depths in some cases. Thus the present equation may be a good solution 334 
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for providing a basis for the deterministic and probabilistic assessment of scour, which cannot be done with the 335 

other prediction methods. 336 

Behaviour of scour prediction equation  337 

Having derived the scour prediction formula, the contribution of different physical factors to its behaviour 338 

are assessed. 339 

Influence of depth averaged Euler number 340 

Given that the viscous forces in the flow-structure interaction around piers are negligible, one needs to find a 341 

non-dimensional quantity to describe the flow alteration upstream of the structure. This implies that a variable 342 

that includes the structure length scale and some form of the kinetic energy is required.  The depth-averaged 343 

pressure gradient in the form of the Euler number, described earlier in this paper, includes both of these physical 344 

quantities, and hence it should be possible to describe the two main mechanisms driving the scour process, which 345 

are present upstream of the structure. The first of these is the horseshoe vortex and the second is the flow 346 

acceleration. Potential flow theory suggests that, given the flow conditions remain constant, an increasing 347 

blockage induced by a structure would result in a larger amplification of the adverse pressure gradient and thus 348 

an increase in the local scour potential. The experiments conducted in the current study were designed to test this 349 

hypothesis and yield results which relate the depth-averaged Euler number to the equilibrium scour depth for 350 

different structures. Figures 10 through 12 show the influence that the pressure gradient has on the equilibrium 351 

scour depth for different ranges of sediment mobility parameter, flow depth and velocity profiles. In these figures 352 

the different colours denote a different type of structure while the different symbols correspond to the different 353 

flow conditions. Figure 10 shows the influence of 〈𝐸𝑢〉 on the equilibrium scour depth for test series 1.1 through 354 

1.29 and the lines correspond to the prediction given by Equation (19) for the corresponding flow conditions. It 355 

shows that an increasing Euler number yields an increase in the equilibrium scour depth given that the remaining 356 

flow conditions are the same and it reaches an asymptotic value of 𝑆/𝐷 as 〈𝐸𝑢〉 approaches 2.  357 

Further observation of Figures 10 and 11 shows that tests conducted with different sediment sizes but having 358 

the same sediment mobility number do not differ significantly with regards to the equilibrium scour depth. In 359 

addition, a decrease in the mobility parameter (𝑈/𝑈𝑐) or (ℎ/𝐷𝑏𝑎𝑠𝑒) results in the same trend described above with 360 

respect to 〈𝐸𝑢〉, but with the horizontal asymptote shifting to a lower value of  𝑆/𝐷𝑏𝑎𝑠𝑒  .  361 
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Figure 12 shows the results from the larger scale scour tests. It can be observed that the equilibrium scour 362 

depth increases as 〈𝐸𝑢〉 increases in the same manner as for the smaller scale tests. Furthermore, the data for 363 

complex foundation shapes corresponding to the non-logarithmic flow profile are shifted further to the left 364 

compared to the tests that were subjected to the logarithmic flow profile, while both test results fall onto the same 365 

trend line.  The effect of the non-logarithmic profile on scour for the monopile is less than for the complex 366 

foundation shapes.  Given that the depth-averaged flow velocity in both cases is the same, lower flow velocities 367 

are observed near the bed in the case of the non-logarithmic profile case. This translates to less kinetic energy 368 

interacting with the larger base which yields smaller 〈𝐸𝑢〉 and thus smaller scour depths. In addition, given that 369 

all of the remaining non-dimensional flow parameters listed in equation (7) are kept constant during the two tests, 370 

it is also expected that both results fall on to the same curve defined by equation (19). Finally, even though the 371 

larger scale data plotted in Figure 12 were derived from experiments with slightly different values of the non-372 

dimensional water depth, mobility ratio and 𝐹𝑟, it can be observed that an increase in the structural scale of each 373 

of the foundation models results in a significant decrease in the non-dimensional equilibrium scour depth. This 374 

effect is linked to the different pile Reynolds number this set of tests has, and will be elaborated on further in the 375 

following section. 376 

Influence of pile Reynolds number 377 

During the large scale experiment two main sediment transport systems were identified: 378 

 the sediment from the upstream region of the structure was transported and deposited at the lee of the 379 

structure at an angle 160°-200° relative to the flow direction. This process is primarily induced by the 380 

local increase in the horseshoe vortex in front of the structure and thus described by the change in 𝐸𝑢, 381 

ℎ/𝐷 and 𝐹𝑟; and, 382 

 a secondary process that suspends the previously deposited sediment at the lee of the structure into the 383 

water column, which is then carried away from the scour hole and deposited further downstream from 384 

the structure. This process is mainly driven by the longitudinal counter-rotating vortices which are 385 

created partly by the horseshoe vortex and the variation of the shedding frequency over the height of the 386 

structure (Baykal et al., 2015; Petersen et al., 2015; Kirkil and Constantinescu, 2010). Thus this process 387 

should be characterised by the pile Reynolds number.  388 

This finding is presented in Figure 13, and shows that the pile Reynolds number is an important factor 389 

controlling the scour process. According to Schlichting (1979) the size of the pile wall boundary layer is 390 
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proportional to  1/𝑙𝑛(𝑅𝑒𝐷) which means that the overall turbulence induced by the flow-structure interaction 391 

would decrease as the Reynolds number increases. In addition Achenbach (1968) showed that an increasing 𝑅𝑒𝐷 392 

forces the separation point to shift further downstream of the pile, which also would result in a decrease in the 393 

sediment transport capacity of the lee wake vortices and thus decrease the overall scour potential. This shows that 394 

𝑅𝑒𝐷 could account for some scale effects that result in smaller non-dimensional scour depths for larger scale 395 

structures. 396 

To demonstrate this effect Figure 13 shows the influence of 𝑅𝑒𝐷 (103  ≤  𝑅𝑒𝐷  ≤  4 10
6) on the equilibrium 397 

scour depth for varying 𝑅𝑒𝐷. The data points in this figure correspond to scour tests (from the dataset presented 398 

in this study) in which the remaining flow parameters did not vary significantly 𝐹𝑟 = {0.15 − 0.20}, 𝑈/𝑈𝑐 =399 

{0.7 − 0.85}, ℎ/𝐷 = {2 − 3} and 〈𝐸𝑢〉 = {1.7 − 2}. As can be observed in the figure an increasing pile Reynolds 400 

number does indeed have the effect of decreasing the non-dimensional equilibrium scour depth. This trend is 401 

captured relatively well by the scour prediction equation given in (19) over a wide range of 𝑅𝑒𝐷. 402 

An increase in the flow velocity or the diameter of the structure would also change the other non-dimensional 403 

parameters found in equation (19) in addition to the pile Reynolds number. For instance, an increase in the mean 404 

flow velocity would also increase the sediment mobility number and the Froude number. The combined effect of 405 

an increase in the mean flow velocity and the pile diameter was investigated by Shen et al. (1969). In the study 406 

the influence of the pile Reynolds number was explored. The experiments were conducted for a circular pier with 407 

diameters ranging from 0.15m to 0.9m and a median sand diameter of 0.24mm under the forcing of a unidirectional 408 

current with different flow velocities 0.3 < 𝑈/𝑈𝑐 < 3. A best fit equation was then obtained by combining the 409 

test results with other published data with similar non-dimensional flow depths and pile diameters, which resulted 410 

in the following equilibrium scour depth prediction equation: 411 

 𝑆 = 0.00022𝑅𝑒𝐷
0.619 (𝑆. 𝐼. 𝑢𝑛𝑖𝑡𝑠) (21) 

In Figure 14 a comparison of the present equation (equation 19) and equation (21) is shown for data compiled 412 

over a more limited range of ReD in the centre of the Figure 13 range The prediction equations are plotted against 413 

the equilibrium scour depth data compiled by Breusers et al. (1977) which were obtained from Sheppard et al. 414 

(2011). In this figure only the clearwater scour data are plotted, as live bed scour is outside the scope of this study. 415 

As can be seen the two equations show a similar agreement with the clearwater scour data for 𝑅𝑒𝐷 < 4 ∗ 10
4. In 416 

the same figure it can be observed that the equation in Shen et al. (1969) equation shows a tendency to  give a 417 

better prediction of the Chabert and Engeldinger (1956) data, while equation (19) shows a better agreement with 418 
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the data of Shen et al., 1969 for larger 𝑅𝑒𝐷.  At the lower Reynolds number range the methods tend to underpredict, 419 

and this may be related to the comment by Sheppard et al. (2011), that the Chabert and Engeldinger data in the 420 

range 𝑈/𝑈𝑐 < 0.7  tend to feature much deeper scour than other datasets. 421 

Influence of Froude number  422 

According to numerous authors (e.g. Baker, 1986; Graf and Yulistiyanto, 1998) a significant process that 423 

controls the scour process is the strength of the horseshoe vortex. On physical grounds it can be understood that 424 

the intensity of the horseshoe vortex should be strongly influenced by the downflow at the face of the structure. 425 

Based on the Bernoulli equation and the conservation of energy it can be concluded that the downflow is 426 

dependent on both the hydrostatic component and the kinetic component of the energy. Therefore, by applying 427 

the Bernoulli equation from a location far away from the structure (where the flow field is undisturbed) to its 428 

leading face, we can obtain: 429 

𝑦

ℎ
∝ 𝐹𝑟𝑒 (22) 

where y is the vertical location of the stagnation point (see Figure 15) along the face of the structure and 𝑒 is a 430 

constant. 431 

Figure 16 shows the influence of the Froude number on the equilibrium scour depth for a subset of the data 432 

presented in Table 1.  In this figure the depicted data points have values of the Froude number ranging from 0.11 433 

to 0.97 while 𝑅𝑒𝐷 = {75000 − 150000}, 𝑈/𝑈𝑐 = {0.8 − 1}, ℎ/𝐷 = {2 − 3}  and 〈𝐸𝑢〉 = {1.7 − 2}. It can be 434 

observed that the scour depth increases following a logarithmic trend and reaches a horizontal asymptote 435 

as 𝐹𝑟∞. This means that for shallow water depths the high Froude number results in a stronger kinetic 436 

component of the pressure field and, therefore, in a stagnation point which is closer to the water surface. Thus a 437 

larger portion of the flow is “captured” by the downflow which results in deeper scour depths. On the other hand 438 

greater flow depths result in smaller Froude numbers which means that the hydrodynamic component of the 439 

pressure force is larger, effectively creating a more evenly distributed pressure field along the face of the structure 440 

and thus leading to a vertical stagnation point closer to the bed and, therefore, smaller scour depths (Harris and 441 

Whitehouse, 2015). 442 

Influence of non-dimensional flow depth 443 

The flow depth also influences the scour depth in a way that cannot be captured by the Froude number. 444 

According to Sumer and Fredsøe (2002) the boundary layer separation at the bed will be delayed if the non-445 
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dimensional water depth is small, as a smaller ℎ/𝐷 would result in a more uniform flow distribution. This in turn 446 

will result in a smaller horseshoe vortex and, therefore, in a smaller scour potential. Figure 17 shows the influence 447 

of the water depth on the non-dimensional scour depth for data where the rest of the flow conditions do not vary 448 

significantly; 𝑅𝑒𝐷 = {100000 − 300000}, 𝑈/𝑈𝑐 = {0.8 − 1}, 𝐹𝑟 = {0.1 − 0.25}  and 〈𝐸𝑢〉 = {1.7 − 2}. 449 

In reality a change in the water depth (h) would affect both the Froude number and the non-dimensional flow 450 

depth (ℎ/𝐷). According to the discussion presented in the previous sections, an increase in the flow depth would 451 

decrease the Froude number and increase ℎ/𝐷. The combined effect of a change in the water depth while 452 

maintaining the values of the remaining parameters constant is demonstrated in Figure 18, where the clearwater 453 

equilibrium scour depth data compiled by Melville and Sutherland (1988) is also plotted. It can be observed that 454 

Equation (19) captures the trend of their data well, albeit with a tendency to over-predict the scour depths for 455 

0.5 <  ℎ/𝐷 <  1.5.  456 

Influence of the sediment mobility ratio 457 

As mentioned earlier the sediment mobility ratio significantly effects the equilibrium scour depth potential 458 

for a given structure and flow conditions. In the context of the equilibrium scour Equation (19), 𝑈/𝑈𝑐 is a factor 459 

that describes the resistance of the local bed to the hydrodynamic forces that are amplified due to the presence of 460 

the structure. The importance of the sediment mobility ratio on physical grounds can be obtained by applying the 461 

2D-Vertical continuity equation at a control volume extending from a location upstream of the scour hole to the 462 

deepest point of the scour hole and assuming that at the equilibrium phase of scour the incoming flow into the 463 

scour hole is 𝑈 and the mean flow velocity at the deepest point of the scour hole is 𝑈𝑐, leading to Equation (23): 464 

𝑆

𝐷
= 𝑑 (

𝑈

𝑈𝑐
)  𝑓𝑜𝑟 𝑈 ≤ 𝑈𝑐 (23) 

in which variable 𝑑 is a function of the length of the scour hole in the streamwise direction at equilibrium and the 465 

structure’s diameter. 466 

Figure 19 demonstrates the effect of the mobility parameter on the equilibrium scour for a set of data where 467 

𝑈/𝑈𝑐 varies between 0.35 and 0.99 and 𝑅𝑒𝐷 = {50000 − 200000}, ℎ/𝐷 = {3 − 6}, 𝐹𝑟 = {0.1 − 0.15} and 468 

〈𝐸𝑢〉 = {1.7 − 2}. The data show reasonably good agreement with Equation (19) and with the observations 469 

reported by Melville and Sutherland (1988) who analysed the data of Baker (1986). 470 
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Conclusions 471 

In this research a design method for the prediction of the equilibrium scour depth around uniform and non-472 

uniform cylindrical structure geometries under clearwater scour conditions is presented. The equation is derived 473 

based on experimental and field data obtained by experiments in this study and other published work. This method 474 

is based on a new physical quantity, the depth-averaged Euler number, the influence of which is verified through 475 

experimental data collected during this research. Other influencing physical quantities that have been identified 476 

in this study are 𝑅𝑒𝐷, 𝐹𝑟, 𝑈/𝑈𝑐and ℎ/𝐷. The importance and influence has been explained through experimental 477 

data and on physical grounds. 478 
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Notation 483 

𝐴 = constant; 484 

𝐴𝑚𝑜𝑑𝑒𝑙  = cross-sectional area of model projected to the flow; 485 

𝐴𝑓𝑙𝑜𝑤  = cross-sectional area of channel projected to the flow; 486 

𝑎 = constant; 487 

𝑏 = constant; 488 

𝑐 = constant; 489 

𝐷 = diameter of pile; 490 

𝐷𝑏𝑎𝑠𝑒  = diameter of base in a structure; 491 

𝑑50 = median grain diameter; 492 

𝐷∗ = dimensionless grain size; 493 
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𝑑 = constant; 494 

𝑑𝑝/𝑑𝜑 = pressure gradient at any given location around the structure; 495 

〈𝑑𝑝/𝑑𝜑〉 = depth averaged pressure gradient at any given location around the structure; 496 

𝐸𝑢 = Euler number; 497 

〈𝐸𝑢〉 = depth averaged Euler number; 498 

𝑒  = constant; 499 

𝐹𝑟 = Froude number; 500 

𝑓𝑖 = non dimensional quantity influencing scour;  501 

𝑔 = gravitational acceleration; 502 

ℎ = flow depth; 503 

𝐾𝑖 = product of all correction factors; 504 

𝑘𝑠 = Nikuradse roughness length scale; 505 

𝑝 = pressure; 506 

R = the radius of the structure; 507 

𝑅2 = Squared multiple correlation coefficient; 508 

𝑅𝑒 = Reynolds Number; 509 

𝑅𝑒𝐷 = pile Reynolds Number; 510 

𝑅𝑒∗ = grain Reynolds Number; 511 

𝑟 = radial distance from the pier centre where the pressure gradient is evaluated; 512 

𝑆 = equilibrium scour depth;𝑠 = ratio of densities of grains and water; 513 

𝑈 = depth averaged flow velocity; 514 

𝑈𝑐 = critical velocity for bed sediment movement; 515 
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𝑈𝑓 = friction velocity based on the average velocity and sediment size; 516 

𝑢𝜑 = tangential component of the velocity in polar coordinates with origin the centre of the structure; 517 

𝑢𝑟 = radial component of the velocity in polar coordinates with origin the centre of the structure; 518 

𝑦 = vertical distance of the stagnation point from the bed 519 

𝑌 = vertical distance of the top of the pile cap from the bed  520 

𝑧 = vertical distance from bed;𝛾 = specific gravity of water; 521 

𝜁 = (
1

log(𝑅𝑒𝐷)
) (

ℎ

𝐷𝑏𝑎𝑠𝑒
) (𝐹𝑟)(𝐸𝑢)0.5  (

𝑈

𝑈𝑐
)
0.5

; 522 

𝜃𝑐 = critical shields number 523 

𝜇 = dynamic viscosity of water; 524 

𝜈 = kinematic viscosity of water; 525 

𝜌 = density of water; 526 

𝜎𝑔 = geometric standard deviation of sediment (d84/d16; ratio of 84th and 16th percentile in size grading); and, 527 

𝜑 = angle relative to the flow direction. 528 
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Tables 648 

Table 1: Summary of sources populating the scour database. 649 

Data Source Number of data points 

Complex geometries 

Amini et al. (2014) 6 

Ataie-Ashtiani et al (2010) 8 

Ferraro et al (2013) 10 

Hoffmans and Verheij (1997) 1 

Jannaty et al (2015) 2 

Melville and Raudkivi (1996) 7 

Moreno et al (2015) 8 

Parola et al (1996) 13 

Present study  40 

Simons et al (2009) 4 

Whitehouse et al. (2011) 2 

Total complex geometries 101 

Uniform Cylinders 

Chabert and Engeldinger (1956) 85 

Dey et al (1995) 18 

Ettema (1980) 70 

Ettema et al (2006) 5 

Jain and Fischer (1979) 26 

Melville (1997) 5 

Melville and Chiew (1999) 12 

Mututano et al (2013) 10 

Shen et al (1969) 16 

Sheppard and Miller (2006) 4 

Sheppard et al (2004) 4 

Yanmaz and Altinbilek (1991) 14 

Total uniform cylinders 269 
 650 



Fig. 1. Definition sketch of main parameters: (a) side view; (b) top
view.

Click here to download Figure Fig. 1.tif 

http://www.editorialmanager.com/jrnwweng/download.aspx?id=131723&guid=8f15f660-eb45-407e-891a-76b552ad4b4a&scheme=1
http://www.editorialmanager.com/jrnwweng/download.aspx?id=131723&guid=8f15f660-eb45-407e-891a-76b552ad4b4a&scheme=1


Fig. 2. Pressure gradient distribution through the water column (calculated using
Equation 11) for two different structures under the same flow conditions.
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Fig. 3. Structure geometries used in this study (geometries shown in this figure include
the part of the structure protruding from the original bed level).
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Fig. 4. Percent distribution of non-dimensional quantities in database. Click here to download Figure Fig. 4.tif 
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Fig. 5. Layout of flume (top: top view; bottom side view). Click here to download Figure Fig. 5.tif 
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Fig. 6. Summary of flow conditions used in the test series. Click here to download Figure Fig. 6.tif 
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Fig. 7. Representative non-dimensional flow profiles for the seven different flow
conditions used in these experiments. (see Figure 6 for symbols).

Click here to download Figure Fig. 7.tif 
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Fig. 8. Agreement between non-dimensional scour depth and ζ. Click here to download Figure Fig. 8.tif 
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Fig. 9: Agreement of scour depth prediction (using equation 19) and measured scour
depths with 10% and 20% confidence bounds.
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Fig. 10. Influence of the sediment mobility ratio (U/U_c={0.74.0.88 and 1}) on the
variation of the equilibrium scour depth as a function of 〈Eu〉. Solid line shows the
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http://www.editorialmanager.com/jrnwweng/download.aspx?id=131732&guid=6fb750d4-651e-44ab-a76d-147ed51ca2bf&scheme=1
http://www.editorialmanager.com/jrnwweng/download.aspx?id=131732&guid=6fb750d4-651e-44ab-a76d-147ed51ca2bf&scheme=1


Fig. 11. Influence of the non-dimensional water depth (h/D={2.2 and 3.7}) on the
variation of the equilibrium scour depth as a function of 〈Eu〉. Solid line shows the
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Fig. 12. Influence of the vertical flow distribution on the variation of the equilibrium
scour depth as a function of 〈Eu〉. Solid line shows the prediction given be equation 19
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Fig. 13. Influence of 〖Re〗_D on equilibrium scour. Comparison of equation (19) to
scour depth data with varying〖Re〗_D and Fr={0.15-0.20},U/U_c ={0.7-0.85},h/D={2-
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Fig. 14. Effect of the pile Reynolds number on scour. Comparison of present equation
(eq. 19) and the equation of Shen et al, (1969) (eq. 21) to the data presented in
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Fig. 15. Definition diagram of the location of the vertical stagnation point. Click here to download Figure Fig.15.tif 
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Fig. 16. Influence of Fr on equilibrium scour. Comparison of equation (19) to scour
depth data with varying Fr and 〖Re〗_D={75000-150000},U/U_c ={0.8-1},h/D={2-3}
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Fig. 17. Influence of h/D on equilibrium scour. Comparison of equation (19) to scour
depth data with varying h/D and 〖Re〗_D={100000-300000}, U/Uc={0.8-1}, Fr={0.1-
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Fig. 18. Effect of boundary layer thickness on scour. Comparison of equation (19) with
clearwater scour data compiled from Melville and Sutherland (1988).
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Fig. 19. Effect of sediment mobility ratio on scour for monopiles. Comparison of
equation (19) to scour depth data with varying U/U_c  and 〖Re〗_D={50000-
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