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A Bayesian Semiparametric Markov Regression
Model for Juvenile Dermatomyositis

Maria De Iorioa∗, Natacha Gallotb, Beatriz Valcárcelc and Lucy R.
Wedderburnd

Juvenile Dermatomyositis (JDM) is a rare autoimmune disease which may lead to serious complications, even
to death. We develop a two state Markov regression model in a Bayesian framework to characterise disease
progression in JDM over time and gain a better understanding of the factors influencing disease risk. The transition
probabilities between disease and remission state (and vice-versa) are a function of time homogeneous and time-
varying covariates. These latter type of covariates are introduced in the model through a latent health state
function, which describes patient-specific health over time and accounts for variability among patients. We assume
a nonparameteric prior based on the Dirichlet Process to model the health state function and the baseline transition
intensities between disease and remission state and vice-versa. The Dirichlet Process induces a clustering of the
patients in homogeneous risk groups. To highlight clinical variables that most affect the transition probabilities
we perform variable selection using spike and slab prior distributions. Posterior inference is performed through
Markov chain Monte Carlo methods. Data were made available from the UK JDM Cohort and Biomarker Study
and Repository, hosted at the UCL Institute of Child Health. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. Introduction

Juvenile Dermatomyositis (JDM) is a rare autoimmune disease that occurs in childhood. An autoimmune disease is caused
by dysfunctional antibodies or lymphocytes that attack self molecules present in the body. The incidence of JDM is about
2-3 per million children per year and it is more common in females than males (2:1 ratio) [1, 2]. JDM is characterised by
chronic inflammation affecting muscle, skin and other organs, which can cause pain, suffering, long term disability, and
even death. In severe cases of JDM, growth, bone health and development can all be negatively affected.

Examples of severe complications in JDM are [3]:

• calcinosis, lumps of calcium that form under the skin or in the muscle,
• ulcerative skin disease,
• interstitial lung disease that causes inflammation of lungs making it difficult to inhale enough oxygen,
• gastrointestinal complications including ulceration, perforation or haemorrhage which can be fatal.

Since Juvenile Dermatomyositis is a rare chronic disease, research effort has been limited compared to more common
diseases such as cardiovascular diseases or cancer. In particular, there have been no studies modelling the progression of
JDM from disease to remission (and vice-versa), trying to identify the epidemiological and medical features of JDM and to
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unveil the biological mechanisms that underlie it. As a consequence, at present there are no reliable methods, either clinical
features or biomarkers, with which to stratify patients according to the level of risk of severe complications and in order to
direct medication choices appropriately. However, increasing efforts have been made in the last decades to collect data on
patients affected by JDM in order to gain a better understanding of the disease [4]. The Juvenile Dermatomyositis Cohort
Biomarker Study and Repository (UK JDM Cohort Study, http://www.juveniledermatomyositis.org.uk/, JDCBS), housed
at UCL, is a large cohort of 530 JDM cases contributed from 17 centres across the UK, with detailed longitudinal clinical
data, linked biobank (DNA, cells, serum, muscle biopsy), genome-wide genotyping data and detailed immunological
and serological data on blood/tissue biomarkers. The centres involved in the Juvenile Dermatomyositis Research Group
(JDRG) all have specialist Paediatric Rheumatology teams working in the field. Research work in this field has clearly
shown that JDM is not in fact homogeneous but highly heterogeneous and that different clinical subtypes may have widely
differing long term outcomes [5]. Even though no curative treatment of JDM has been discovered yet, there are treatments
available to control the disease and prevent severe medical complications. The outcomes, especially the time to achieve
remission, may be very different between patients whilst depending on the choice of the treatment.

In this work we develop statistical methods within a Bayesian framework to model disease progression in JDM,
highlighting the major risk factors. Disease progression models present many advantages: a better understanding of JDM
progression, resulting in a more accurate and earlier diagnosis for patients and in therapy choices specifically adapted
to suit patient needs. The available data consists of longitudinal measurements of disease status (remission/disease) on
paediatric patients, with few measurements over time for each subject. It is typical of longitudinal medical studies on
disease progression that disease development is expressed in terms of distinct health stages, where patients are observed
periodically and this status is recorded at the time of the visit, resulting in interval censored data. Often covariate
information is collected at the time of visit. This type of data is usually referred to as panel data and are often modelled
as observations at arbitrary times of a continuous-time process with multiple transient states. Multi-state models are
generalizations of survival and competing risks models and have been successfully applied to model the complex evolution
of chronic diseases, generally assuming a Markov structure in the evolution of the disease [6, 7]. The complexity of a multi-
state model mainly depends on the number of states and the possible transitions from these states. In this framework we are
interested in modelling the transition probabilities from one state to another. When we deal with homogeneous processes
(i.e. such probabilities do not change over time) this task is relatively easy as the transition probabilities from a state to
another can be expressed simply in terms of transition intensities, but this is not the case for inhomogeneous Markov
processes. Moreover, in the presence of interval censored data, several paths are possible for transitioning from state h to
state j between time s and time t, and this uncertainty needs to be accounted for in the model. Transition probabilities
are usually modelled parametrically, e.g. [8, 9], but parametric assumptions are often too restrictive in applications. More
flexible alternatives can be found, for example, in Fahrmeir et al. [10], who model the transition intensities in a Cox-
type manner with smoothing splines for time-varying effects, and in Aalen et al. [11], who introduce dynamic versions
of multi-state models based on an additive risk model. Kneib et al. [12] propose a Bayesian semiparametric multi-state
model with flexible transition intensities based on penalised splines. The transition intensities are modelled as smooth
functions of time and can be related to parametric as well as nonparametric covariate effects.

In this work we also adopt a Bayesian semiparametric approach to model the transition probabilities from disease to
remission and inversely over a specified time interval. These are expressed as function of time-invariant and time-varying
covariates, as well as baseline transition intensities and a subject-specific health function. These latter two components
are modelled nonparametrically to account for inter-subject variability, using a Dirichlet process mixture prior. Dirichlet
process mixture (DPM) models [13, 14] are arguably the most common nonparametric Bayesian prior and have proved
successful in many applications due to their flexibility and ease of computation. DPM models are mixtures of a parametric
kernel with a random mixing measure, in this case the Dirichlet process (DP) introduced by Ferguson [15], and they
can accommodate for heterogeneity in the population, allow for outliers, clustering of individuals and over-dispersion.
This higher level of flexibility is often difficult to achieve using a single parametric distribution. Moreover, we are able
to account for missing covariate information and to identify the most important clinical features and therapy information
affecting the rate of progression of JDM, by specifying a spike and slab prior on the parameters that govern the distribution
of the time-varying covariates.

Posterior inference is performed through Markov chain Monte Carlo (MCMC) algorithms, in particular we employ the
software JAGS [16] and the R package R2jags to implement the Gibbs sampling for our analysis. In Supplementary
Material we provide the JAGS code.

In Section 2 we describe the data and in Section 3 the Bayesian semiparametric model for disease progression. In
Section 4 we introduce our variable selection strategy. Finally, in Section 6 the results of the analysis are presented and in
Section 7 we conclude with a discussion.
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2. The Juvenile Dermatomyositis National (UK & Ireland) Cohort Biomarker Study and
Repository for Idiopathic Inflammatory Myopathies

Data for the analysis were provided by the Juvenile Dermatomyositis Research group (JDRG,
/www.juveniledermatomyositis.org.uk), which is part of the Juvenile Dermatomyositis Cohort Biomarker
Study and Repository (UK and Ireland) for Idiopathic Inflammatory Myopathies [4]. The latter is a multicentre cohort
study in which children newly-diagnosed or previously diagnosed with idiopathic inflammatory myopathies in the UK
have been followed up from 2000. One of its main objectives is to determine the clinical characteristics of JDM and to
identify important biomarkers with the goal of improving diagnosis, therapeutic choices, treatment response and patient
management. Patients are eligible to enter the study if they are diagnosed with an established or presumed myositis,
including JDM, before their sixteenth birthday. Children participating in another registry are excluded. Demography data,
medical history, examination findings comprising physical examinations, clinical features of JDM (skin, rash and joints)
and muscle assessments, laboratory results and therapy information are prospectively collected in 14 centres across the
UK. Each patient is examined at the study entry time, then every 3-4 months for the first two years and following that
once a year. An initial inspection of the database has revealed a large quantity of missing data, data inconsistencies and
data entry errors. As such extensive quality control has been carried out by our group.

To summarise, the analysis dataset includes 54 covariates that are observed on 157 individuals for a total of 766 time
points, which implies 4.9 observation times per patient on average (range 2-15).

2.1. Patients’ demographics

We focus our analysis on an information rich subset of the data. We consider 157 children. As fixed covariates (i.e.
not changing over time) in our analysis we use data on three medical history covariates - myalgia, rash and weakness -
appraised as potentially clinically relevant [17, 18], as well as sex (with female as baseline), ethnicity and age at diagnosis.
The study population includes nearly three times as many female children (74.6%) as male ones (25.4%). It concurs with
previous research [3, 18]: prevalence is higher in females. The mean age of patients at diagnosis is 8.0 years old and the
median age is 7.7. Regarding ethnicity, most patients (76.3%) are white, 5.8% are black and the remainder are distributed
among other ethnic groups.

2.2. Patients’ physical examinations and laboratory results

Physical examinations and blood assessments give information to the clinicians about patients’ general health over time,
which allows them to assess the improvement in health for each patient. We have information over time on height,
weight, white blood cell (WBC) count, platelets, haemoglobin (Hb) and erythrocyte sedimentation rate (ESR). These
covariates present deviations from normality and, therefore, it is reasonable to transform them prior to analysis. We use
a log transformation for WBC, haemoglobin and height to reduce skewness. We employ a square root transformation for
weight and platelets, as it is a variance stabilising transformation, while we choose a Box-Cox transformation for ESR. In
summary, six continuous (transformed) covariates have been included in the final analysis, for which we assume a Normal
distribution: haemoglobin, platelets, weight, height, WBC and ESR. Moreover, we include in the analysis a functional
score, the CHAQ (Child Health Assessment Questionnaire) Score, which requires further modelling assumptions (see
Subsection 3.4). Basic summaries of these variables in the original scale are given in Table 1in Supplementary Material.

2.3. Patients’ symptoms and therapy data

Symptoms and therapy information were collected at the study entry and during follow-up. Since there are no reliable
methods to accurately diagnose JDM, its diagnosis is made through a set of manifold examinations investigating the
presence or absence of symptoms. These latter can be grouped into categories according to the type and/or location
of symptoms: skin manifestations other than rash, rash distribution, joints, oedema, abdomen and other symptoms.
Descriptive statistics for the symptoms are shown in Table 2 in Supplementary Material. The symptoms that seem to be
more recurrent over time are Gottron’s papules (40%), nailfold changes (30.4%), rash (> 20%), joints with limited range
of motion (17.5%) and calcinosis (15.7%). These statistics seem to be consistent with previous research [18, 1, 19, 17]. As
mentioned previously, there are many missing data, especially for the symptoms, with the percentage of missing values
varying from 2% to 24%.

Depending on different criteria such as disease severity, centre or physicians’ personal judgements, a treatment (either
a drug or a combination of drugs or one of these two associated with physiotherapy) is prescribed to the patient. The most
often administered drugs are methotrexate (69.2%) and oral steroids (37.6%). See Table 3 in Supplementary Material.
All covariates about patients’ symptoms and therapy listed in Tables 2 and 3 in Supplementary Material were included in
the model. Correlation between clinical covariates and the laboratory test results is investigated using logistic regression
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and most symptoms seem correlated with at least one of the laboratory results. Also the treatments are correlated with
laboratory results. For example, oral steroids seem to be strongly correlated with WBC and hydroxychloroquine with
weight.

2.4. Patients’ remission

We now describe the clinical outcome. We consider a binary response representing disease or remission state in children
affected by JDM over time. The clinically inactive disease for JDM has been defined by the Paediatric Rheumatology
International Trials Organisation (PRINTO) criteria. Lazarevic et al. [20] classify patients as achieving remission if at
least three out of the four following criteria are satisfied:

• Creatinin Kinase (CPK) ≤ 150 (CPK is a serum muscle enzyme),
• Childhood Myositis Assessment Scale (CMAS) ≥ 48 (CMAS determines the muscle strength/endurance),
• Manual Muscle Testing (MMT) ≥ 78, (MMT is manual testing of eight muscle groups),
• Physician Global Assessment Visual Analogue Scale (PhyGloVAS) ≤ 0.2 (PhyGloVAS is the physician’s global

assessment of the patient’s overall well-being on a 10 cm Visual Analogue Scale).

FIGURE 1 ABOUT HERE

As JDM is a chronic disease, the children are expected to alternate between disease and remission over time. Figure
1 illustrates these transitions over vistis for all patients in the dataset. It is noteworthy that the health state, disease or
remission, is known only at the time of observation and there is no available information on health status between two
observation times. Furthermore, the time interval between two visits and the number of visits vary among patients. This
situation is typical in medical applications. For ease of visualization, in Figure 1 the x-axis represents the visit number
instead of the time on a continuous scale (the maximum number of follow-up visits is 15). On the y-axis, for each child,
we report the the observed health status at the attendance visit.

Table 1. Summary of state transitions.

To
From Disease Remission

Disease 176 148

Remission 49 236

Overall, there are 609 observed transitions, of which 148 from disease state to remission. On only 49 occasions,
remission is followed by a relapse (see Table 1). The transitions from one state to another will be our actual response
variable in the analysis. These transitions are governed by transition intensities which represents the instantaneous risk of
moving from one state to the other. An initial estimate of the baseline transition rates which does not account for covariate
information and patient heterogeneity is reported in Table 2. The results have been obtained using the R package msm [6],
which implements maximum likelihood estimation of Multi-state Markov models.

2.5. Exploratory Data Analysis

To gain an initial understanding of the relationship between the response variable and the time-varying covariates we
perform a two sample t-test for continuous covariates and Fisher test for binary covariates. Most predictors show
significant association with the response. Results are shown in Tables 4 and 5 in Supplementary Material. Moreover,
we fit a generalized linear mixed models using the lme4 package [21] in R, specifying a logit link function. Because of
optimization problems due to collinearity between the predictors, we fit two separate models, one including only time-
varying continuous covariates and the other only binary covariates, but always a subject specific random intercept and
time from diagnosis as predictors. The results are presented in Tables 6 and 7 in Supplementary Material. Considering the
fixed effect estimates, we conclude that the most significant predictors of health status are Time from diagnosis, CHAQ
score, haemoglobin, platelets and ESR among the continuous covariates and abnormal respiration, combined skin rash,
periorbital rash, pain on motion, hydrotherapy and oral steroids among the binary ones.
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Table 2. Initial Transition Intensities: model with covariates. Estimates obtained using the R package msm. In brackets we
report 95% confidence intervals.

To

From Disease Remission

Disease -1.70 (-2.27,-1.28) 1.70 ( 1.28, 2.27)

Remission 0.79 ( 0.55, 1.13) -0.79 (-1.13,-0.55)

Table 3. Hazard ratios: estimates obtained using the R package msm. In brackets we report 95% confidence intervals.

To

Disease⇒ Remission Remission⇒ Disease

Balck Ethnicity 1.725 (0.436, 6.823) 2.950 (0.579, 15.028)

Other Ethnicity 8.445 (0.409, 174.464) 24.926 (1.242, 500.345)

Sex 0.177 (0.057, 0.546) 0.333 (0.086, 1.2960)

Age at Diagnosis 1.175 (1.027, 1.345) 1.095 (0.929, 1.290)

Rash 21.946 (3.155, 152.683) 41.022 (4.536, 371.004)

Weakness 4.576 (0.026, 802.237) 9.248 (0.055, 1553.945)

Myalgia 0.009 (0.000, 2.877) 0.003 (0.000, 0.976)

CHAQ Score 0.244 (0.113, 0.530) 0.317 (0.123, 0.816)

Haemoglobin 21.377 (0.100, 4564.495) 17.186 (0.019, 14943.320)

Platelets 1.392 (1.099, 1.765) 1.558 (1.176, 2.065)

ESR 0.288 (0.087, 0.951) 0.234 (0.061, 0.899)

Using the R package msmwe fit a Markov multi-state model which includes covariate information. In this case the effect
of a vector of explanatory variables on the transition intensity for individual i at time j is modelled using proportional
intensities, similarly to a Cox proportional hazard model. See [6] for details. We include all the time homogeneous
covariates and, due to optimization problems, only CHAQ Score, haemoglobin, platelets and ESR among the time-varying
continuous covariates. Inclusion of time-varying binary covariates is challenging in this set-up and will be discussed more
extensively in Section 3.4. Estimates of baseline transition intensities are reported in Table 8 in Supplementary Material,
while Table 3 displays hazard ratios for each covariate on each transition with 95% confidence intervals. Note that some
of the confidence intervals are extremely wide, for example, the ones for rash and haemoglobin. This initial analysis
highlights some of the challenges associated with this application, in particular, the inclusion of time-inhomogeneous
binary covariates and the presence of strong collinearity among predictors. Moreover, this initial exploratory analysis has
been conducted excluding individuals with missing data.

3. Bayesian Markov Regression Model

In this section we present our modelling strategy. As we record a binary clinical outcome over time, we employ a two-state
Markov Model to model disease progression. We assume that the observed remission/disease state is determined by the
overall health status of each patient, which is unobserved and modelled through a subject specific linear growth curve. The
advantage of including a latent health curve is that it becomes straightforward to account for time-changing covariates.
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Moreover, in a Bayesian framework, missing data are easily accounted for, at least in principle. Finally, we employ spike
and slab priors for the parameters that link the covariates to the latent health status function to perform variable selection.

3.1. A two-state Markov Model

Each individual patient is assessed to be in one of two possible states: ’disease’ (Yt = 0) or ‘remission’ (Yt = 1) at each
time of observation t. To model disease progression over time we assume a continuous time two-state Markov Model [22].
The Markov assumption implies that future states are independent of the past states given the current state [23], i.e.:

P (Yt+1 | Yt, . . . , Y1, Y0) = P (Yt+1 | Yt).

The movement on the discrete state space is determined by a set of transition intensities denoted by λrs, which
corresponds to the instantaneous risk of moving from state r to s

λrs = lim
δt→0

P (Y (t+ δt) = s | Y (t) = r)

δt

with s = 1− r and r ∈ {0, 1}. The matrix of transition intensities for the two-state model is then given by

Q =

(
−λ01 λ01

λ10 −λ10

)
.

The probability, prs(ε), of a transition from state r to state s during the interval ε can be easily derived using the
Chapman-Kolmogorov equations [23].

p01(ε) =
λ01

λ01 + λ10
(1− exp{−(λ01 + λ10) ε})

p10(ε) =
λ10

λ01 + λ10
(1− exp{−(λ01 + λ10) ε})

These probability determine the transition probability matrix P(ε) over the time interval ε:

P(ε) =

[
p00(ε) p01(ε)

p10(ε) p11(ε)

]
=

[
1− p01(ε) p01(ε)

p10(ε) 1− p10(ε)

]
. (1)

Let N be the total number of patients in the study and let Yi = Yi1, . . . , Yini
denote the interval-censored vector of

binary responses over time for individual i, with Yij ∈ {0, 1}. Let ti = ti1, . . . , tini
denote the observation times for patient

i, where ni is the total number of successive observations for individual i. Therefore, Yi = (Yi1, . . . , Yini
) represents the

trajectory over time of individual i. In absence of explanatory variables, the likelihood is calculated from the transition
matrix P in (1). The contribution to the likelihood of individual i with observations times ti1 < . . . < tini , conditioning
on the first state, is:

Li(λi) = p(Yi | λi, Yi1) = P (Yini , . . . Yi2|Yi1, λi) = P (Yini |Yi,ni−1, λi)× . . .× P (Yi2|Yi1, λi)

with the restriction P (Yi1 | λi) = 1. As the transitions from remission to disease and inversely may be subject to variation
between and within individuals, we assume a subject specific vector of transition intensities λi = (λi01, λi10). The
transitions between states are the actual observations, with probabilities given in (1). We denote with εij = ti,j+1 − tij
the time interval between two successive observation times, tij and ti,j+1, and with mi = ni − 1 the number of observed
transitions for individual i. Therefore, the likelihood contribution for individual i becomes:

Li(λi) =

mi∏
j=1

piYi(tij)Yi(ti,j+1)(εij ;λiYi(tij)Yi(ti,j+1)); Yi(tij) ∈ {0, 1}

where pirs(ε) is the patient specific transition probability from state r to s over the interval ε. Finally, the full likelihood
of the model is the product of probabilities of transition between observed states over all individuals i and transitions j

L(λ1, . . . , λN ) =

N∏
i=1

L(λi) =

N∏
i=1

mi∏
j=1

{piYi(tij)Yi(ti,j+1)(εij ;λiYi(tij)Yi(ti,j+1))}
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as individual trajectories are assumed independent given the parameters in the model.
It is easy to incorporate in the model time homogeneous covariates (which do not change with time), such as sex or age

at diagnosis, by specifying a regression model on the transition intensities:

λirs = λ̃irs exp{xi βrs} (2)

where Xi = xi1, . . . , xig denotes the vector of time invariant covariates for individual i, βrs = (βrs1, . . . , βrsg) is the
vector of regression parameters of length g for the transition from r to s and λ̃irs is the individual baseline intensity for
the transition from state r to state s, with r ∈ {0, 1} and s = 1− r.

3.2. Latent health curve

As we have seen in the previous section, time invariant covariates are easily incorporated in the model through a regression
model on the transition intensities. We now present our strategy to include time-varying covariates. When the time-varying
covariates are continuous and are observed at the same time as the response, it is common practice to include them in the
regression model for λi by taking as predictor the mean of the covariate over the interval of observation. Dealing with
categorical covariates that change over time is more complex. A possible solution is to model jointly the categorical
covariates and the response by specifying a Markov model on the state space given by the possible realisations of both
Y and X. This approach is most feasible when the number of categorical covariates and of the corresponding number
of levels is small, as this would limit the dimension of the implied state space and the computational cost. As the JDM
dataset contains a large number of binary symptoms that change over time, following [24] and [25], we introduce a subject-
specific health function that varies over time to which we link the time-varying predictors. The health state is latent or
unobservable, and represents the true well-being of an individual. Although it is not measurable, the covariate data can
be used as a proxy for it. This strategy improves the utilization of data from diverse sources and also different patient
populations potentially leading to better characterization of disease progression. We consider time-varying continuous
measurements and binary variables representing the presence of symptoms and the administration of treatments. To model
the health state function, we employ a growth curve which we assume linear in time:

θij = η0i + η1itij + ρi; i = 1, . . . , N ; j = 1, . . . , ni (3)

where θij is the health state for the individual i at the time tij , η0i is the baseline health state for the individual i across all
observation times, η1i characterises the subject-specific change over time of θ and ρi is the random component associated
with the health state function for individual i. We assume the ρi to be independent and identically distributed N(0, 1)
random variables. We fix the variance of ρi to 1 for identifiability reasons. The latent health curve is then linked to the
transition probabilities by including θij in the regression for the baseline intensities in (2). As the health state changes over
time, the approximate effect of the latent curve for individual i can be estimated by assuming that its value is constant over
each interval of observations εij [6, 26], leading to a piecewise constant model for Q. We set θij equal to its mean θ̄iε over
the interval of observation ε, obtaining:

λirs(ε) = λ̃irs exp{xi βrs + γrsθ̄iε}
(4)

where r = 0, 1; s = 1− r, and the λ̃irs are independent given the remaining parameters in the model.

3.3. A Nonparametric Random Effects Distribution

In this section we describe the choice of prior distribution for the parameters that govern the latent health curve (η0i, η1i,
see (3)) and the baseline transition intensities λ̃irs (see (4)). An obvious parametric choice would be a Gamma distribution
for the intensities and a multivariate Normal for the health curve parameters. In our analysis, we have found a need to
move beyond the traditional parametric assumptions for the random effect distribution, as there is known inter-individual
heterogeneity that cannot be described in a simple parametric model. Moreover, the random-effects distribution needs
to accommodate the heterogeneity in the population and to allow for outliers, clustering and overdispersion. A second
important element of the model proposed in this paper is the use of a semiparametric population model. This heterogeneity
between patients and within patients is a common feature of many biomedical data. We employ the Dirichlet Process (DP;
[15]) to define a flexible nonparametric model for an unknown random-effects distribution. A DP defines a probability
model on the space of probability distributions so that if a random measure G ∼ DP(α,G0), then G is almost surely
discrete. G0 is the base measure, a distribution around which the DP is centred, while α ∈ R+ denotes the precision
parameter. A constructive definition of the DP, extremely useful in applications, is the stick breaking representation [27].
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Due to its discreteness, G can be represented as the infinite sum of point masses:

G =

∞∑
k=1

wkδφk

where δφk
is the Dirac measure taking value 1 in correspondence of φk and 0 otherwise. The weights wk, conditional on

wh, h < k, are generated by rescaled beta distributions:

wk∏
h<k wh

iid∼ Beta(1, α)

while the point masses φk are independent and identically distributed samples from the base measure, independent of the
weights.

Let φi = (λ̃i01, λ̃i10, η0i, η1i) denote the random effect vector. We can now rewrite the model for the health state function
and the transition intensities as follows:

λirs(ε) = λ̃irs exp{xi βrs + γrsθ̄iε}
θij | η0i, η1i ∼ N(η0i + η1itij , 1)

φi | G
iid∼ G

G ∼ DP(α,G0)

G0(φi) = Gamma(λ̃i01;α01, d01)×Gamma(λ̃i10;α10, d10)×N(η0i;µ0, v0)×N(η1i;µ1, v1)

Setting a DP prior on the parameter vectors φi implies a non-zero probability that two or more vectors are equal. This,
in turn, implies that the DP imposes a clustering structure on the data so that the observations will be grouped together
in K ≤ n clusters, each characterised by a specific distribution. The parameters wk include the prior probabilities of
belonging to each cluster and φk denotes the cluster-specific parameter vector. Patients are clustered together according to
their health trajectory over time and their baseline transition intensities. The advantage of this strategy is that the number
of components K is also learned from the data through the posterior distribution. Thus, the vectors of individual-level
parameters φ1, . . . , φn reduce to the vectors of unique values φ∗1, . . . , φ∗K assigned to the n observations.

3.4. Time-varying covariates

The time-varying covariates are linked directly to the health state function. We start our discussion with the case of binary
covariates. Suppose we have p binary covariates and let Hij = Hij1, . . . ,Hijp be the vector of latent binary time-varying
covariates for individual i at time tij . We assume that

Hijh ∼ Bernoulli (P (Hijh))

P (Hijh) = Φ (ah θij − bh) (5)

where Φ(·) is the cumulative distribution function of the standard Normal distribution and θij is the i−th individual health
state at time j. Hence, the prediction model forHijh is described as a probit model, which has the computational advantage
of being easily implemented in a Gibbs sampler [28]. The parameter ah indicates how much more likely the symptom is to
be present given an individual health state. It can be interpreted as the effect on the probability that the symptom occurs for
a one unit increment in the health state function θ. Φ(−b) is the probability that the symptom is present in the population
when the health state function is equal to 0. van den Hout et al. [24] develop a similar approach using longitudinal data
to model stroke with cognition as a latent time-dependent risk factor. Assuming that the symptoms are independent given
the health state function, the likelihood contribution of the symptoms is then given by:

P (H|θ,a,b) =

N∏
i=1

ni∏
j=1

p∏
h=1

P (Hijh = 1|θij , ah, bh)Hijh (1− P (Hijh = 1| θij , ah, bh))1−Hijh .

The health state function θij is linked also to the time-varying continuous covariates through their expectations:

Zijl ∼ N {(c0l + c1l θij), τl}, l = 1, . . . , q. (6)

where Zijl denotes the continuous covariate l for individual i at time tij , q is the number of time-varying continuous
covariates, c0l is the baseline value of the continuous covariate l over all individuals and c1l is the effect on the value of
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continuous covariate l of an increase of one unit in the health state function. Moreover we assume that the continuous
covariates are independent among themselves and from the binary symptoms given the state of health.

One of the continuous covariates, the CHAQ Score, presents an excess of zeros as it represents a score and a simple
parametric density would not be appropriate to capture its distribution. Therefore we model the square root of such
covariate with a mixture of a point mass at zero and a Normal distribution. The choice of the square root is due to the fact
that it is a well known variance stabilising transformation. Let S denote the variable representing the CHAQ Score. Then,
we assume

Sij ∼ πijδ0 + (1− πij)N(m0 +m1θij , τS)

logit πij = ψ0 + ψ1θij

where δ0 denotes a point mass at 0. This type of strategy is known in the literature as a Zero Inflated model [29].
Finally, the full covariate model is given by

P (Z,H, S|θ,a,b, c0, c1, τ,m, ψ, π, τS) ∝ P (H|θ,a,b) P (Z|θ, c0, c1, τ)P (S | θ, π,m, ψ, τS)

with Z = {Zijl; l = 1, . . . , q, i = 1, . . . , N, j = 1, . . . , ni},H = {Hijl;h = 1, . . . , p, i = 1, . . . , N, j = 1, . . . , ni}, S =
{Sij ; i = 1, . . . , N, j = 1, . . . , ni}.

3.5. Missing values

The dataset contains a substantial amount of missing covariate data especially among the time-varying covariates (refer
to Tables 2 and 3 in Supplementary Material). However, the objective is to include as much information as possible. Only
completely observed baseline variables have been incorporated in the model. Therefore only 6 covariates were considered:
sex, ethnicity, age at diagnosis and the presence or absence of rash, weakness and myalgia in the medical history of
patients. These three last variables have been already reported to have a potential role in the prognosis of the disease
[17, 18, 19]. Time-varying covariates present missing rates in the range [0.018, 0.240]. As we have specified a probability
model for the time-inhomogeneous covariates, missing values are automatically accounted for in a Bayesian framework
and they are imputed within the MCMC algorithm from the posterior predictive distribution of the missing observations
given the observed data. The time-varying covariates are a function of the health state function θ. We implicitly make
the assumption of Missing At Random (MAR) so that the missing data mechanism is ignorable. We also assume that the
missing data mechanism is independent from θ. These two assumptions are the weakest ones in order to draw correct
Bayesian inference according to Rubin [30].

3.6. Hyperprior specification

To complete the model, we specify hyperpriors on the remaining parameters. These hyperpriors are chosen mainly for
computational reasons and are, in general, uninformative. We assume:

• Model for baseline intensities: βrsj are independent normally distributed random variables with mean 0 and variance
equal to 1000, j = 1, . . . , g; r = 0, 1, s = 1− r. Moreover, γ01 and γ10 are also independent normally distributed
random variables with mean 0 and variance equal to 1000.
• Random effect distribution: in G0 we set α01 = α10 = d01 = d10 = 1, v0 = v1 = 100, µ0 ∼ N(0, 1000) and µ1 ∼

N(0, 1000). For the precision parameter α of the DP we assume a Uniform distribution on the interval (0.3, 5) as
this prior choice leads to more stable computations in JAGS. Since the implementation in JAGS of the DP is based
on approximating the infinite mixture with a finite one, the prior choice for α together with using a mixture of 50
components implies an approximation error smaller than 10−8 (see [31]). Furthermore, the prior specification on α
affects the prior distribution of the number K of clusters in the mixture. The conditional mean and variance of K
given the precision parameter of the DP and the sample size N are [32, 33]:

E(K | α) =

N∑
i

α

α+ i− 1

var(K | α) =

N∑
i

α(i− 1)

α+ i− 1

From this we can derive that the our prior on α implies that marginally E(K) = 11 and var(K) = 8.
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• Model for time-varying binary covariates: in (5) we assume ah and bh, h = 1, . . . , p, a priori independent, normally
distributed random variables with mean 0 and variance 1000.

• Model for time-varying continuous covariates: in (6), we specify independent N(0, 1000) priors for c0l, c1l and
Gamma(1,1) prior for 1/τl, l = 1, . . . , q.

• Zero Inflated model: we assume independent N(0, 1000) priors for m0,m1, ψ0, ψ1 and a Gamma(1,1) prior
distribution for 1/τS .

4. Variable selection using spike and slab priors

The main objective of this analysis is to ascertain a subset of symptoms and continuous markers which are most associated
with the latent health function and hence have a strong effect on disease progression. To this end, we want to identify
those binary and continuous variables for which the posterior distribution of ah and c1l is concentrated away from zero.
We specify a spike and slab prior for the regression coefficients a in (5) and c1 in (6) to implement Stochastic Search
Variable Selection (SSVS, [34]).

ah|ωh ∼ (1− ωh) δ0 + ωh N(0, τah) (7)
c1l|ωl ∼ (1− ωl) δ0 + ωh N(0, τcl) (8)

where δ0 is a point mass at 0 and ωh is a latent variable taking only values 0 or 1. The τah and τcl are set equal to 1000.
The use of ωh in a mixture of Normals model directs the choice of the prior distribution for ah and determines whether the
symptoms h is a good proxy for the unobserved health state. If ωh = 0, then ah = 0 else ah|ωh ∼ N (0, τah). A similar
interpretation holds for ωl. The shrinkage properties of SSVS are sensitive to the shape of the spike and the slab (see e.g.
[35, 36]). The precision of the Normal component is usually set to be small enough to identify the most relevant variables
in the model. Larger values of the slab (Normal component) variance allow large effects to take on arbitrarily large values
and encouraging stronger penalisation of small nonzero effects. Larger values of this variance are therefore more suited to
sparse underlying models. On the other hand, small values of the slab variance reflect the belief that there are few close to
zero effects and therefore are more suited to nonsparse models. In the implementation of the model, we have set the slab
variances τah and τcl equal to 1000. The random variables ωh and ωl are assigned Bernoulli priors:

ωh ∼ Bernoulli(pωh), h = 1, . . . , p (9)
pωh ∼ Beta(0.1, 0.1) (10)
ωl ∼ Bernoulli(pωl), l = 1, . . . , q (11)
pωl ∼ Beta(0.1, 0.1) (12)

The ωh and the ωl are assumed all a priori independent as well as the pωh and pωl. The specification of the Beta hyper-prior
has been proposed by [37] to induce extra sparsity on the regression coefficients, encouraging those associated with the
covariates having no effect on the response variable to shrink toward zero. Note that in the original formulation of [34]
the inclusion variables, ωj , are assigned Bernoulli prior distributions with a common probability of success p̃. Usually a
Uniform[0, 1] is chosen as hyper-prior for p̃, but other options, e.g. a more informative Beta distribution, could also be
used. In order to test the robustness of the Stochastic Search Variable Selection, we have conducted a sensitivity analysis
using different values for τah, τcl ∈ { 0.01, 0.1} and different prior hyper-parameters for pωl and pωh. An alternative and
easy to implement strategy is the one proposed by Kuo and Mallick [38]. This involves introducing for each covariate an
indicator variable ωj , j = 1, 2, . . . , p+ q taking values in {0, 1}.

ãh | ωh = ωhah, h = 1, . . . , p

c̃1l | ωl = ωlc1l, l = 1, . . . , q

ωj ∼ Bernoulli(p̃), j = 1, . . . , q + p

When ωj = 1, the j-th predictor influences the health function. When ωj = 0, then the distribution of the j-th predictor
does not depend on θt. In the original formulation p̃ is set equal to 0.5. We could extend this approach by specifying a
Beta hyper-prior on p̃ to induce sparsity. See [39] for a review of Bayesian variable selection methods. In what follows,
covariates for which the mean of the posterior distribution of their coefficients ωh and ωl is higher than 0.5 are considered
most relevant to explain disease progression.

We conclude this section noting that a different, but still effective alternative, to identify important predictors consists of
specifying as prior for ah and c1l a local scale mixture of Normal distributions, such as the horseshoe [40] and the hyper-
lasso [41] prior. This approach connects continuous prior distributions for regression parameters to models selection and
involve intentional bias of the estimates to stabilise posterior inference. See [42] for a review.
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5. Simulated Examples

We generate data on 100 subjects from a continuous time Markov Chain with two states, representing health (represented
by 1) and disease status (represented by 0). We consider two groups of 50 individuals each. We fix η0i = 0 in (3) and
assume η1i = 1 for the first group and η1i = −1 for the second one. We generate observation times for each individual
on the time interval (0, 10) from a Normal distribution with mean 1, standard deviation 1, left truncated at 1/6 which
corresponds to the minimum time distance between observations. The average number of observations per subject is
equal to 8. We then generate the health function for each individual at the corresponding observation times. We simulate
realisations from a continuous-time Markov process up to time T = 10 using the function sim.msm in the R package
msm using the health function as time-inhomogeneous covariate. We fix the transition intensity matrix of the Markov
process equal to

Q =

(
−0.13 0.13

0.25 −0.25

)
The effect of time-dependent variables on the transition intensities can be modelled in the R package msm assuming that
it is constant in between the observation times. In our simulations we set γ01 = 0.08 and γ10 = 0.05. The simulation
parameters were based on a real data example described in [43]. Finally we generate two binary and two continuous
time-varying predictor variables by setting in (5) and (6)

a1 = 0.07, b1 = 0.2

a2 = −0.08, b2 = 0

c01 = 2, c11 = 3, τ1 = 0.5

c02 = 0, c12 = 1 τ2 = 1

We fit the Bayesian semiparametric model described in Section 3 to the simulated data. The posterior distribution of the
number of cluster K has mode in 2 (see Figure 3 in Supplementary Material), which corresponds to the true simulation
scenario. We summarise the clustering output by reporting the clustering that minimizes the posterior expectation of
Binder’s loss as described by [44] and implemented in the R package mclust. Our model is able to perfectly recover the
original individual allocation. Moreover, in Figure 2 we display the predictive distribution of η1 for a new hypothetical
patient, which is bimodal with the two modes centred around -1 and 1, respectively. Moreover, the model is able to
capture correctly the relationship between time-varying covariates and health function, as the posterior distribution of the
regression coefficients linking the covariates to the health function are centred around the true values used to simulate the
data. See Figure 3. Finally Figure 4 in Supplementary Material shows the posterior estimates of the transition probabilities
prs(εij), with εij = ti,j+1 − tij , of the observed transitions for two randomly selected subjects.

To asses the ability of the model to select important covariates we generate data from a continuous time Markov chain,
with eight states. Each state is denoted by (i, j, k) where i, j, k ∈ {0, 1}. The true model has the following transition
intensity matrix:

Q =



−0.48 0.01 0.01 0.05 0.01 0.1 0.1 0.2

0.20 −0.97 0.01 0.05 0.01 0.2 0.2 0.3

0.20 0.01 −0.87 0.05 0.01 0.1 0.2 0.3

0.10 0.05 0.05 −1.01 0.01 0.2 0.2 0.4

0.10 0.01 0.01 0.05 −0.87 0.2 0.2 0.3

0.10 0.05 0.05 0.01 0.05 −0.76 0.2 0.3

0.10 0.05 0.05 0.01 0.05 0.2 −0.76 0.3

0.01 0.01 0.01 0.10 0.05 0.2 0.2 −0.58


The columns (and rows) correspond to the following order of states:
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1). The above Q implies that transition where two or
three components are equal to one are favoured. We simulate 100 trajectories over the time interval (0,15) using the
function sim.msm in the R package msm. We then introduce interval censoring by simulating, for each individual
Markov chain, observation times from a Normal distribution with mean 2, standard deviation 1, truncated at 1/12 which
corresponds to the minimum time distance between observations. To fit the Bayesian semiparametric model we use the
first component of each state as response variable and the remaining components as time varying binary covariates. We
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refer to these latter two variable as V1 and V2, which are obviously associated to the response variable given the data
simulation process. Finally we generate three independent binary time-varying predictor variables from a Bernoulli with
probability of success 0.5, which are also independent of the response. We perform variable selection using model (8) and
specifying a Beta(1,1) prior on pωh and pωl, since we have few predictors. We obtain a posterior probability of inclusion
greater than 0.5 for V1 and V2 (approximately 0.7), while for the remaining covariates the posterior probability of inclusion
is approximately 0.3.

6. Results

We ran the MCMC algorithm for 50000 iterations, discarding 20000 samples as burn-in and thinning every 5 iterations.
We used a truncation of 50 clusters for the DP. In Figure 4 we plot the posterior distribution of the precision parameter α
of the DP (posterior mean 1.34, posterior standard deviation 0.63) and the posterior distribution of the number of clusters
for the general model. The analysis indicates that there are 6 main clusters among the patients, each characterised by a
specific health function trajectory over time and associated transition intensities. In Figure 5 we show the health function
θ(t) for six randomly chosen patients. It is important to notice the different patterns of the function, mainly captured by the
slope.The analysis of the slope coefficients suggests that a negative slope corresponds to an improvement of the patients
condition over time. Hence the slopes of θt for sicker patients are generally less steep, although they seem to ameliorate
over time. On the other hand a sharp decline in the θt function reflects a faster recovery. The latent function θt seems to be
able to satisfactorily characterise the underlying state of health of patients despite a few discrepancies when comparing to
the observed states. This could be due to the linear assumption on the health curve, which can be too simplistic to represent
some patients’ progression.

FIGURE 2 ABOUT HERE

FIGURE 3 ABOUT HERE

FIGURE 4 ABOUT HERE

We now consider the effect of the time-homogeneous covariates on the transition intensities in (4), including the coefficient
of the latent health function, γrs. Most of the fixed effect covariates appear to be important determinants of disease
progression as their posterior distributions are centred away from zero. A weaker effect is noted for ethnicity. In Table 4 we
report the posterior mean (posterior standard deviation) of the regression coefficients of the time-homogeneous covariates.
A positive coefficient of a covariate implies a higher risk of transition. See also Figures 1 and 2 in Supplementary Material.
Although patients health status tends to ameliorate with time, JDM is a chronic disease and children move from disease to
remission and vice-versa over time. In general, transitions from remission to disease become less frequent as the child gets
older. This is reflected in the estimates of the regression coefficients of the health function. Moreover, only some patients
do really reach true remission, long lasting and off drugs. Current research shows ongoing disease well into adult life. For
example, Sanner et al. [45] show that after 16.8 years after symptom onset 51-73% of JDM patients have active disease.
Sanner et al. [46] report that majority of the patients in the study have cumulative organ damage during disease course
(median 16.8 years) while Schwartz et al. [47] find signs of impaired cardiac systolic function with reduced long-axis
strain in JDM patients seen 16.8 years after disease onset.

Figure 6 displays posterior inference for all parameters a = (a1, . . . , ap) and highlights symptoms and therapies
most associated with the latent health function and, therefore, with JDM. All the binary covariates, with exception of
Cyclophosphamide, present a 95% credible interval which is not centred around 0 (see Figure 6), with most of them
centred around positive values. This implies that the probability of symptom manifestation drops for a one unit decrease
in the health state function or θt, thus suggesting that a decrease in the health state function (i.e. improvement in health) for
an individual corresponds to a less likely manifestation of the symptoms. Moreover, only the coefficient for Methotrexate
is centred around negative values. This can be interpreted as a better health condition being associated on being on
Methotrexate therapy. In Figure 7 we plot the posterior distribution of the coefficients c1 = (c11, . . . , c1q), which represent
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Table 4. Posterior mean (standard deviation) of the coefficients in the regression model for the transition intensities.

Disease→ Remission Remission→ Disease

Health Function -24.64 (2.63) -23.68 (2.62)

Black Ethnicity 14.92 (8.07) 15.79 (8.07)

Other Ethnicity -12.14 (10.98) -12.28 (11.09)

Sex -26.56 (7.11) -26.13 (7.15)

Age at Diagnosis 1.58 (0.85) 1.52 (0.85)

Rash -25.84 (7.76) -26.13 (7.72)

Weakness 10.23 (5.64) 11.66 (5.69)

Myalgia 26.44 (4.77) 26.25 (4.75)

the link between the continuous covariates and θt. They all present a posterior distribution centred away from zero. In
particular, Height and Weight have negative coefficients. This is consistent with what is known, as these covariates can be
thought as a proxy for growth and patients tend to get better as they grow older.

FIGURE 5 ABOUT HERE

Finally, in Figure 8 we show the regression coefficient of the health function in the Zero Inflated model for the CHAQ
Score. In the left panel of Figure 8 we plot the posterior distribution of ψ1 which corresponds to the logistic regression
for the probability of the zero outcome, while in the right panel we show the posterior distribution of m1 which links the
mean of the continuous component to the health function. Both distributions are centred around positive values, implying
that an improvement in health leads to a lower probability of a zero score.

To assess predictive performance, we fit the model leaving out 10 randomly selected patients among those with more
than one transition. For this subjects we only include covariate information and only the initial state at time zero. As such
we are left with 48 transitions to predict. We obtain posterior predictive probabilities of obtaining the observed outcome
greater than 0.5 in 75% of the cases. Note that these estimates are obtained averaging over all the possible (simulated)
trajectories for each patients.

FIGURE 6 ABOUT HERE

To highlight the most important determinants of disease progression, the Stochastic Search Variable Selection (SSVS)
described in (8)-(12) is performed on the 36 potential binary predictors and the 6 continuous covariates. Using a
Beta(0.1,0.1) prior for the probability of inclusion, we identify 22 binary covariates and five continuous markers with
a posterior probability of inclusion greater than 0.5. The robustness of the variable selection procedure is tested by fitting
the original version of the SSVS with a uniform prior on p̃ and the Kuo-Mallick approach with p̃ equal to 0.5. Results are
reported in Table 5 for binary time-varying covariates and in Table 6 for continuous time-varying covariates. The results
of the different methods are consistent with the SSVS based on a Beta(0.1, 0.1) hyper-prior and the Kuo-Mallick method
leading to more shrinkage of the inclusion probabilities. The results of the variable selection are consistent with existing
clinical literature on JDM.

7. Conclusions

In this work, we have proposed a semiparametric model to describe the progression of JDM, a paediatric chronic disease,
based on the Dirichlet process prior. The main modelling strategy includes a two-state Markov model and the specification
of an underlying health state function which captures the patient’s well being through a linear growth curve model. Time-
varying covariates are linked directly to the health state function. This is an important feature of the model as it allows us
to incorporate a large number of binary and continuous time-inhomogeneous covariates, which are often correlated. The
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Table 5. Posterior probabilities of inclusion of the binary time-varying covariates. The first column corresponds to the
SSVS described in (8)-(12) with a Beta(0.1,0.1) prior, the second column corresponds to the original version of the SSVS,

while the third presents the results obtained employing the Kuo-Mallick approach.

Beta(0.1,0.1) Original SSVS K-M

Abnomrmal Respisration 0.91 0.67 1.00

Gottron’s Papules 0.92 0.67 1.00

Ulceration 0.92 0.67 1.00

Lipoatrophy 0.92 0.67 1.00

Oedema 0.92 0.67 1.00

Nailfold Changes 0.91 0.67 1.00

Calcinosis 0.09 0.36 0.09

Combined Skin Rash 0.91 0.67 1.00

Periorbital Rash 0.92 0.67 1.00

Periungual Rash 0.92 0.67 1.00

Trunk Rash 0.92 0.67 1.00

Small Joints Rash 0.92 0.66 1.00

Large Joints Rash 0.92 0.67 1.00

Arthritis 0.91 0.66 1.00

Pain On Motion 0.92 0.67 1.00

Joints with Limited ROM 0.92 0.67 1.00

Contractures 0.91 0.66 1.00

Periorbitial/Facial Oedema 0.92 0.66 1.00

Limb Oedema 0.91 0.67 1.00

Trunk Oedema 0.92 0.67 1.00

Abdominal Masses 0.09 0.34 0.00

Abdomen Tenderness 0.08 0.34 0.00

Hepatomegaly 0.21 0.63 0.22

Splenomegaly 0.10 0.34 0.01

Eyes 0.08 0.33 0.00

Other 0.08 0.33 0.01

Physiotherapy Dry Land 0.32 0.34 0.14

Physiotherapy Hydrotherapy 0.08 0.34 0.02

Oral Steroids 0.92 0.67 1.00

Intravenous Steroids 0.92 0.66 1.00

Methotrexate 0.08 0.33 0.00

Cyclosporin 0.09 0.33 0.01

Azathioprine 0.08 0.33 0.00

Cyclophosphamide 0.91 0.67 1.00

Hydroxychloroquine 0.09 0.34 0.00

Intravenous Immunoglobulin 0.10 0.34 0.01
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Table 6. Posterior probabilities of inclusion of the continuous time-varying covariates. The first column corresponds to
the SSVS described in (8)-(12) with a Beta(0.1,0.1) prior, the second column corresponds to the original version of the

SSVS, while the third presents the results obtained employing the Kuo-Mallick approach.

Beta(0.1,0.1) Original SSVS K-M

Hb 0.08 0.36 0.00

WBC 0.89 0.66 1.00

Platelets 0.71 0.50 0.18

ESR 0.91 0.46 0.80

Height 0.92 0.67 0.00

Weight 0.92 0.66 1.00

introduction of a latent health function is reminiscent of techniques used in Item Response Theory (IRT), which has been
successufully applied in medical research. For example, Ueckert et al. [48] combine pharmacometric modelling and IRT
to model cognition in clinical trials in Alzheimers Disease patients, while Gottpati et al [49] apply IRT methodology to
integrate different versions of the main clinical endpoints used in Parkinsons disease studies into one unique framework,
by mapping them to the same underlying latent variable(s). The same strategy can be extended to incorporate data from
different sources. The model performs data-driven clustering of the patients according to their health profile over time and
their baseline risk to move between health and disease states, in this way accounting for patients heterogeneity/similarity.

The data present a large amount of missing values. In absence of further information, we assume that the missing
values for the covariates are Missing At Random (MAR) [30] and by specifying a model on the covariates we were able
to deal with the missing observations in a Bayesian framework by imputing them in the MCMC algorithm. We were
able to perform variable selection by employing a Stochastic Search Variable Selection approach which yields results
consistent with current clinical understanding of JDM. Further advantages of the modelling strategy described in the
paper include interpretability of the parameters, ability to cope with censoring, ease of computation and the potential to
include more complex set-ups. Moreover, a more complex modelling of the health function could better capture relapses
and intra-individual variability, leading to a more flexible strategy

The main drawback of our approach consists in defining the response variables as a binary outcome (remission/disease)
by discretising the measurements of four clinically relevant continuous outcomes as described by the PRINTO criteria.
For example, [50] compare different tools to assess skin disease in patients with Juvenile Dermatomyositis and highlight
the need for a better one. However, PRINTO criteria are commonly used in clinical practice to define disease activity
and as such it is clinically relevant to treat them as the main outcome. Current research involves modelling directly the
longitudinal outcomes on which such criteria are based, to gain a better understanding of the JDM and of the clinical
markers associated with disease activity and capable of predicting its evolution.
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Figure 1. Transitions over visits for all patients affected by Juvenile Dermatomyositis.The x-axis represents the number of the follow-up visit, while the y-axis shows the health
status observed at the attendance visit. Black denotes disease state (D), dark grey indicates remission (R), while light grey indicates that the patient has not been observed at that
visit (NA).
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Figure 2. Simulated data: marginal predictive distribution of the parameter η1 of the health function.
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Figure 3. Simulated data: posterior distribution of the regression coefficients a1, a2, c11, c12, linking the time-varying covariates to the health function. The crosses indicate the
true value used in the simulations.
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Figure 4. Posterior density of the precision parameter α (left panel) and posterior distribution of the number of clusters K for the general model (right panel).
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Figure 5. Health state function for six randomly selected patients over time. Circles represents disease state, while crosses denote remission.
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Figure 6. Boxplots of the posterior distribution of parameters ah, h = 1, . . . , 36 of the linear growth curve. The symptoms are ordered according to the list on the right.
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Figure 7. Boxplots of the posterior distribution of the parameters c1 in the continuous covariate model.
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Figure 8. Posterior distribution of the regression coefficients of the health function in the Zero Inflated model for the CHAQ Score: posterior distribution of ψ1 in the left panel
and posterior distribution ofm1 in the right panel.
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