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Abstract—Simultaneous wireless information and power trans-
fer (SWIPT) is anticipated to have great applications in fifth-
generation (5G) communication systems and the Internet-of-
Things (IoT). In this paper, we address the energy efficiency (EE)
optimization problem for SWIPT multiple-input multiple-output
broadcast channel (MIMO-BC) with time-switching (TS) receiver
design. Our aim is to maximize the EE of the system whilst
satisfying certain constraints in terms of maximum transmit
power and minimum harvested energy per user. The coupling of
the optimization variables, namely, transmit covariance matrices
and TS ratios, leads to an EE problem which is non-convex,
and hence very difficult to solve directly. Hence, we transform
the original maximization problem with multiple constraints into
a suboptimal min-max problem with a single constraint and
multiple auxiliary variables. We propose a dual inner/outer layer
resource allocation framework to tackle the problem. For the
inner-layer, we invoke an extended SWIPT-based BC-multiple
access channel (MAC) duality approach and provide two iterative
resource allocation schemes under fixed auxiliary variables for
solving the dual MAC problem. A sub-gradient searching scheme
is then proposed for the outer-layer in order to obtain the optimal
auxiliary variables. Numerical results confirm the effectiveness
of the proposed algorithms and illustrate that significant per-
formance gain in terms of EE can be achieved by adopting the
proposed extended BC-MAC duality-based algorithm.

Index Terms—Simultaneous wireless information and pow-
er transfer (SWIPT), energy efficiency (EE), multiple-input
multiple-output (MIMO), Internet-of-Things (IoT).
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I. INTRODUCTION

The pursuit of ever higher data rate in mobile network is
justified by the continual increasing demand. Recent studies
shown that by 2020, the mobile traffic in mature market
is projected to grow from 183 Mb/month/person in 2010
to 16.3 Gb/month/person [1]. Expected to be commercially
available in early 2020s, the fifth generation (5G) network
will need to deliver ultra high data rates to pave the way for
future ultra high rate applications, and the Internet-of-Things
(IoT) era. This trend makes spectral efficiency (SE) to be the
main performance indicator for the design and optimization of
wireless systems, but at the same time constitutes to ever-rising
network power consumption which has severe implications in
terms of both economic and ecological costs.

Energy harvesting (EH) is considered a prominent solution
for prolonging the lifetime of power-constrained wireless
devices [2]. In addition, EH enhances sustainability by empow-
ering wireless nodes to collect energy from the surrounding
environment. In addition to well-recognized renewable energy
sources such as biomass, wind, and solar, wireless power trans-
fer (WPT) has emerged as a new enabler for EH. With WPT,
the transmitter can transfer energy to the receivers via ambient
radio frequency (RF) electromagnetic waves [3]. The integra-
tion of RF-based EH capability in communication systems
opens up the possibility for simultaneous wireless information
and power transfer (SWIPT). This topic has attracted great
attention in both academia and industry recently. The authors
in [4] investigated practical beamforming techniques in a
multiple-input multiple-output (MIMO) SWIPT system, where
two practical receiver approaches, namely time-switching (TS)
and power-splitting (PS), were discussed. The work in [5],
studied the robust beamforming problem for a multi-antenna
SWIPT wireless broadcasting system considering imperfect
channel state information (CSI) at the transmitter. In [6],
a dynamic switching strategy was proposed for a point-to-
point SWIPT link in order to exploit the trade-off between
information decoding (ID) and EH based on the TS technique.
The authors in [7] evaluated the optimal PS ratio in an amplify-
and-forward (AF) wireless cooperative network. The work
in [8] investigated the optimal PS strategy which achieves
the rate-energy region in a single-input single-output (SISO)
SWIPT system. Further, SWIPT was studied in the context
of multi-user orthogonal frequency division multiplexing ac-
cess (OFDMA) in [9], multi-user multiple-input single-output
(MISO) in [10], relay systems in [11], ultra dense networks
in [12], massive MIMO system in [13] and IoT [14]–[16].
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Most research works on SWIPT systems aim to maximize
the rate or the harvested energy, or otherwise achieve a certain
rate-energy balance. Nevertheless, the stand-alone maximiza-
tion of the system throughput would inherently constitute
to the highest network power consumption. This trend goes
against global commitments for tackling the so-called capac-
ity crunch in a sustainable and economically viable manner
[17]. On the other hand, the sole goal of maximizing the
harvested energy may degrade the delivered information, and
in turn quality of service (QoS). An alternative strategy is
therefore to consider energy-efficiency (EE), defined as the
number of delivered bits per unit energy. Thanks to the rapid
resurgence in green radio (GR) research, EE is nowadays
considered a fundamental performance metric in the design
and deployment of wireless networks [18]. In addition to the
many works on the EE optimization problem for conventional
communication setups [19], the maximization of EE has
been recently considered in the context of SWIPT systems
[20]–[24]. The work in [20] provided a resource allocation
algorithm for OFDMA-based SWIPT systems considering a
PS-based receiver with continuous sets of PS ratios. In [21],
the EE optimization problem in the downlink of a multi-
user MISO SWIPT cellular setup was studied, where zero-
forcing (ZF) beamforming was employed at the base station
(BS). In [22], a joint antenna selection and spatial switching
(SS) scheme for QoS-constrained EE optimization in a MIMO
SWIPT system was provided. The results therein revealed that
the SWIPT-based solution is capable of providing additional
EE gain compared to conventional systems.

A. Main Contributions
In contrast to previous literature on EE for SWIPT, such

as multi-carrier OFDMA systems [20], [25], [26], MISO
systems based on a fixed precoder such as ZF [21] or MMSE
[27], in this paper, we address the EE optimization problem
for SWIPT-based MIMO-broadcast channel (BC) where TS
technique is employed at each receiver. Particularly, transmit
covariance matrices and TS ratios allocation policies are
jointly considered towards optimizing the system EE. In addi-
tion, apart from the conventional maximum power condition,
per-user minimum harvested energy constraints are explicitly
included in the EE maximization problem.

Intuitively, by coupling the optimization variables in terms
of transmit covariance matrices and TS ratios, the EE max-
imization problem under consideration becomes non-convex.
Hence, it is very difficult to obtain the system EE solution
using direct methods, in particular, considering that the al-
gorithm should be feasible in practice. Hence, to tackle this
problem, we transform the original optimization problem with
multiple constraints into a min-max problem with a single
constraint and multiple auxiliary variables. In order to tackle
the transformed problem, we propose a dual inner/outer layer
resource allocation framework. By invoking the conventional
BC-multiple access channel (MAC) duality principle [28], we
formulate a dual SWIPT-based MIMO-MAC EE optimization
problem with fixed auxiliary variables and accordingly provide
an iterative resource allocation algorithm based on the Dinkel-
bach method [29] for obtaining the solution. Furthermore,

Fig. 1. A downlink SWIPT-based MIMO-BC system with TS-based
receivers.

in order to reduce the computational complexity, we prove
that there exists a quasi-concave relationship between the EE
and the transmit power in the dual MAC EE optimization
problem. By exploiting the quasi-concavity of the EE in the
transmit power, we develop a low-complexity resource alloca-
tion scheme based on the particular EE-power region. A sub-
gradient searching scheme is then proposed in order to reach
the optimal auxiliary variables in the outer-layer. Simulation
results confirm the validity of the theoretical findings.

B. Paper Organization

The remainder of this paper is organized as follows. The
system model and problem formulation are given in Section II.
In Section III, the equivalent EE optimization problem based
on the extended BC-MAC duality principle is introduced. In
Section IV, an iterative resource allocation scheme based on
Dinkelbach method is proposed. In Section V, an alternative
low-complexity solution based on the quasi-concavity property
of EE-power is proposed. A complete solution to the SWIPT-
based EE maximization problem is presented in Section VI.
Simulation results are provided in Section VII. Finally, con-
clusions are drawn in Section VIII.

Notation: bold upper and lower case letters are used to
denote matrices and vectors; (·)−1 stands for the matrix
inverse, (·)T is the matrix transpose; (·)H corresponds to the
matrix conjugate transpose; INt×Nt is an Nt × Nt identity
matrix; Tr(·) denotes the trace of a matrix; [x]+ represents
max(x, 0); (·)b and (·)m correspond to BC and MAC param-
eters, respectively.

II. PRELIMINARIES

In this section, we introduce the system model of a MIMO-
BC with TS-based SWIPT and mathematically formulate the
EE optimization problem.

A. System Model

The system consists of a BS with Nt transmit antennas and
K users k ∈ {1, 2, . . . ,K} each with Nr receive antennas.
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We denote the channel matrix from the BS to the kth user as
Hk ∈ CNr×Nt . Channel state information (CSI) is assumed
to be perfectly known at the corresponding transmitter and
receivers. Note that the CSI at the receivers can be obtained
from the channel estimation of the downlink pilots. CSI at
the transmitter can be acquired via uplink channel estimation
in time division duplex (TDD) systems. We also make a
reasonable assumption that the association of users with the
BS is fulfilled and fixed during the runtime. Different from
the conventional MIMO downlink system, each transmission
block in the SWIPT-based MIMO-BC system is divided into
two orthogonal time slots, one for ID and the other for EH,
per illustrated in Fig. 1. In particular, the TS-based receiver
periodically switches its operations between ID and EH. It
is assumed that time synchronization has been perfectly built
between the transmitter and the receiver. Hence, the received
signal from the BS to the kth user before TS can be written
as

yk = Hkx + nk, (1)

where nk ∈ CNr×1 is the independent zero-mean additive
white Gaussian noise (AWGN) with each entry CN (0, σ2),
x is the transmitted signal on the downlink. In addition, x =
x1+x2+. . .+xK where xk ∈ CNt×1, is the signal transmitted
to the kth user.

It is important to note that it is unnecessary to convert the
RF band signal to the baseband for the purpose of collecting
the carried energy. However, because of the law of conser-
vation of energy, we could make a reasonable assumption
that the total harvested RF-band power (from all receiving
antennas) is proportional to that of the received baseband
signal. In addition, we note that the structure of an EH-based
receiver depends on its specific implementation in practical
wireless communication systems. For instance, electromag-
netic induction and electromagnetic radiation are capable of
transferring wireless energy [30]. On the other hand, the
receivers’ hardware circuitries as well as the corresponding
EH efficiency could be significantly different. Apart from
that, due to the practical hardware limitations, the decoding
signal cannot be used for collecting energy directly [30].
Consequently, to avoid the impact from the specific hardware
implementation details on the resource allocation algorithm
design, we do not assume a particular type of EH receiver. In
this paper, receivers consisting of a harvesting energy unit and
a conventional signal processing unit for concurrent EH and
ID is under consideration. Let αk with 0 ≤ αk ≤ 1 denote
the percentage of transmission time allocated to the ID time
slot for user k. Thus, 1 − αk corresponds to the percentage
of transmission time allocated to the EH time slot for user k.
Hence, the harvested energy at the receiver of user k can be
written as

Ek = (1− αk)ηktr(GkQ), (2)

where ηk is a constant that accounts for the loss in the energy
transducer for converting the harvested energy to electrical
energy to be stored, Gk = HH

k Hk is the channel covariance
matrix, Q denotes the total transmit covariance matrix at the
BS, Q =

∑K
k=1 Qb

k, Qb
k = E(xkxHk ) is the corresponding

transmit covariance matrix, Qb
k � 0 i.e., Qb

k is a positive
semidefinite matrix. On the other hand, the total capacity of
the MIMO-BC SWIPT system can be expressed as follows

CBC =

K∑
k=1

αkR
b
k, (3)

where Rbk denotes the rate achieved by the user k in the
downlink. Further, note that dirty paper coding (DPC) is
the capacity achieving scheme for Gaussian MIMO-BC [31].
With DPC, the information for different users is encoded
in a sequential fashion. It should be noted that the transmit
covariance matrices remain the same during each transmission
block. This implies that the same transmit covariance matrices
are shared in ID and EH models. Without loss of generality,
with an encoding order (1, · · · ,K), i.e., the codeword of user
1 is encoded first, the data rate Rbk for the kth user can be
written as [28]

Rbk = W log
|INr×Nr

+ 1
σ2 Hk(

∑K
i=k Qb

i )HH
k |

|INr×Nr
+ 1

σ2 Hk(
∑K
i=k+1 Qb

i )HH
k |
. (4)

Defining a quantitative power model is very challenging
given one needs to consider the particular deployment scenario
and components configurations. The following linear power
model is widely shown to be a reasonable representative for
radio access networks [32]

P = ζPT + PC , (5)

where ζ, PT and PC are respectively used to denote the
reciprocal of the power amplifier drain efficiency, transmission
power, and circuit power consumption. However, for the
SWIPT-based MIMO-BC system considered in this work, the
power consumption model should be extended considering EH
devices. In general, small amounts of energy is consumed by
the RF EH devices. On the other hand, the system power con-
sumption is intuitively compensated by the harvested energy.
It may then be apparent that enabling EH can improve the EE
of a wireless communication system. Thus, as in [26], [33], we
take the harvested power into consideration in the formulation
of the system power consumption model (and hence the EE
formulation for the SWIPT-based MIMO-BC system).

Specifically, the total system power consumption is ex-
pressed as follows

P = ζPT + PC −
K∑
k=1

Ek, (6)

where
∑K
k=1Ek represents the harvested power at all the

receivers Note that the minus sign denotes that a portion of the
power radiated in the RF from the transmitter can be harvested
by the K receivers. Recall that PC is the total circuit power
required for supporting reliable communication in our SWIPT-
based MIMO-BC

PC = PBSantNt + Psta +KPRC , (7)

where PBSantNt denotes the power consumption proportional to
the number of transmit antennas, Psta is the constant signal
processing circuit power consumption in the transmitters (due
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to filters, frequency synthesizer, etc., independent of the power
radiated by the transmitter), and PRC denotes the total circuit
power consumption in each receiver.

It should be noted that the minimum required power to
activate the energy harvesting circuit varies depending on
the particular technologies and receiver configurations [34].
For example, it has been shown in [35] that the minimum
RF input power is 16.7 µW with a novel fully integrated
passive transponder integrated circuit. However, in a recent
study by Le et al. [36], a RF-DC power conversion system is
described which can efficiently convert far-field RF energy to
DC voltages for low received power. The presented system can
operate at a distance of maximum 44 meters with a received
signal power as low as 5.5 µW (-22.6 dBm) from a 4 W
Effective Isotropic Radiated Power (EIRP) radiation source.
These harvested energy can be used to power a sensor node
or to recharge a battery.

B. Problem Formulation

In this work, we employ DPC which achieves the sum rate
capacity for SWIPT-based MIMO-BC. It should be noted that
due to certain practical constraints, such as pilot overhead,
coding and modulation, demodulation and decoding, etc., there
exists a performance gap between the channel capacity and the
achievable rate. Nevertheless, the sum rate capacity obtained
by DPC scheme under perfect CSI represents the information-
theoretic upper bound for MIMO-BC, which helps unveil
important insights into the problem.

The EE for SWIPT-based MIMO-BC can be defined as the
total number of delivered bits per unit energy. The energy con-
sumption includes transmission energy consumption, circuit
energy consumption, and harvested energy. Hence, we define
EE in a SWIPT-based MIMO-BC as

λEE ,
CBC
P

=

∑K
k=1 αkR

b
k

ζPT + PC −
∑K
k=1Ek

, (8)

where CBC is the total capacity achieved by all users and
PT =

∑K
k=1 tr(Qb

k) is the total transmission power.
Given the expression of the system sum rate and power

consumption, we can proceed with the problem formulation.
The objective of this paper is to maximize the EE in SWIPT-
based MIMO-BC whilst meeting two constraints in terms of
transmission power and harvested energy. By invoking the
linear power model in (6), the optimization problem can be
formulated as

max
{Qb

k,αk}k∈K

∑K
k=1 αkR

b
k

ζPT + PC −
∑K
k=1(1− αk)ηktr(GkQ)

, (9)

s.t. (1− αk)ηktr(GkQ) ≥ Ek,min, ∀ k ∈ K, (10)
K∑
k=1

tr(Qb
k) ≤ Pmax, (11)

Qb
k � 0, 0 ≤ αk ≤ 1, ∀ k ∈ K, (12)

where Pmax and Ek,min are the maximum total transmit
power constraint at the BS and the minimum harvested energy
constraint for user k ∈ (1, 2, · · · ,K), respectively. Note that
(12) corresponds to the inherent constraints in terms of TS

ratios. It is easy to see that the coupling of optimization
variables leads to the problem (9)-(12) being non-convex and
challenging to solve directly. The complexity is considered the
main drawback for PHY algorithm design. Therefore, in the
following sections, we develop resource allocation schemes
for SWIPT-based MIMO-BC to solve the above optimization
problem. In particular, to overcome the difficulty, we first
transform this multi-constrained EE maximization problem
into its equivalent problem that has a single constraint with
multiple auxiliary variables. We then, exploit the duality
between a SWIPT-based MIMO-BC and a dual MIMO-MAC
in the case where the multiple auxiliary variables are fixed. For
the dual-MAC problem, we accordingly propose two iterative
resource allocation algorithms based on Dinkelbach theory
[29] and EE-power quasi-concavity property.

III. EQUIVALENCE AND EXTENDED BC-MAC DUALITY

It is shown in [28] that under a single sum power constraint,
the weighted sum rate maximization problem for the MIMO-
BC can be transformed to its dual MIMO-MAC problem,
which is convex and can be solved in an efficient manner.
Furthermore, adding an interference constraint to form a CR
MIMO-BC scenario, the authors in [37] proved this BC-MAC
duality still holds for a weighted sum rate maximization prob-
lem. Nevertheless, in our SWIPT-based MIMO-BC setting, the
EE optimization problem in (9)-(12) has not only a sum power
constraint but also multiple minimum harvested energy con-
straints. The imposed multiple constraints further complicates
the formulation of an efficient solvable dual problem.

In order to overcome the aforementioned challenges, moti-
vated by the weak duality property obtained from the Lagrange
dual problem of non-convex optimization problem, we propose
a suboptimal min-max approach where the multi-constrained
EE maximization problem in (9)-(12) is transformed into a
problem that has a single constraint with multiple auxiliary
variables. Based on this, we further develop a duality between
a SWIPT-based MIMO-BC and a SWIPT-based dual MIMO-
MAC in the case where the multiple auxiliary variables are
fixed. In the following, we present an alternative form of the
problem (9)-(12) where a suboptimal solution can be obtained.

min
χ,µk

max
Qm

k �0,0≤αk≤1

∑K
k=1 αkR

b
k

ζPT+PC−
∑K
k=1(1− αk)ηktr(GkQ)

(13)

s.t. χ(

K∑
k=1

tr(Qb
k)− Pmax)

+

K∑
k=1

µk (Ek,min − (1− αk)ηktr(GkQ)) ≤ 0, (14)

where χ and µk are the auxiliary dual variables for the
maximum power constraint and the kth minimum harvested
energy constraint, respectively. The optimal value of the inner
problem (13)-(14), g(χ,µ) = maxQm

k �0,0≤αk≤1 λEE , for any
given pair of χ and µ, is an upper bound on the optimal value
of problem (9)-(12). However, the non-convex property of the
original problem (9)-(12) cannot guarantee zero duality gap,
and hence problem (13)-(14) achieves a suboptimal solution.

However, it is still very difficult to directly find an efficiently
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solvable dual problem for (13)-(14). Extending the decom-
position approach proposed in [37], we develop a two-layer
approach to solve problem (13)-(14). In particular, the inner-
layer is used to solve problem (13)-(14) with fixed χ and µk
whilst the outer-layer is to update χ and µk through a sub-
gradient approach. Thus, in the following, we first investigate
the EE maximization problem considering fixed auxiliary dual
variables χ and µk. The problem in (13)-(14) can hence be
reduced to

max
Qm

k �0,0≤αk≤1

∑K
k=1 αkR

b
k

ζPT + PC −
∑K
k=1(1− αk)ηktr(GkQ)

(15)

s.t. χ(

K∑
k=1

tr(Qb
k)− Pmax)

+

K∑
k=1

µk(Ek,min − (1− αk)ηktr(GkQ)) ≤ 0. (16)

The solution of the above problem is unfortunately non-
trivial given the objective function is non-concave even under
fixed auxiliary dual variables χ and µk. Thus, we exploit an
extended SWIPT-based BC-MAC duality principle based on
results from [28] and [37]. Consequently, the weighted sum
rate maximization problem in SWIPT-based MIMO-BC under
constraints in (14) can be formulated as

max
Qb

k�0,0≤αk≤1

K∑
k=1

αkR
b
k (17)

s.t. χ

K∑
k=1

tr(Qb
k)−

K∑
k=1

µk(1− αk)ηktr(GkQ) ≤ Pall, (18)

where Pall := χPmax −
∑K
k=1 µkEk,min. Since χ and µk are

fixed, Pall is a constant in (17)-(18). Hence, by extending
the general BC-MAC duality principle from [28] to our
SWIPT-based MIMO-BC scenario, we have the following
SWIPT-based dual MAC problem corresponding to the origi-
nal SWIPT-based BC problem in (17)-(18).

Proposition 1: The SWIPT-based dual MAC problem of
(17)-(18) is given by

max
Qm

k �0,0≤αk≤1

K∑
k=1

αkR
m
k (19)

s.t.
K∑
k=1

tr(Qmk ) ≤ Pall, (20)

where Qmk is the transmit signal covariance matrix of the kth

user, and Rmk is the rate achieved by the kth user of the dual
MAC defined as

Rmk = W log
|N +

∑i
k=1 HH

k Qmk Hk|
|N +

∑i−1
k=1 HH

k Qmk Hk|
, (21)

with the noise covariance at the BS denoted with N =
χI−

∑K
k=1 µk(1− αk)ηkGk.

Proof: See Appendix A.
Proposition 1 indicates that the capacity region of a SWIPT-

based MIMO-BC with power constraint PT is equal to the
union of capacity regions of the SWIPT-based dual-MAC with

power constraints such that
∑K
k=1 tr(Qm

k ) = PT . However,
Proposition 1 describes the rate region for SWIPT-based
MIMO-BC system and its duality relationship with SWIPT-
based MIMO-MAC, meaning the EE aspect is still an open
question. Hence, in order to tackle the problem in (15)-(16),
we develop the following proposition (EE aspect) based on
the results in Proposition 2.

Proposition 2: The solution of the SWIPT-based dual MAC
EE maximization problem, namely,

max
Qm

k �0,0≤αk≤1

∑K
k=1 αkR

m
k

ζ
∑K
k=1 tr(Qmk ) + PC

(22)

s.t.
K∑
k=1

tr(Qmk ) ≤ Pall, (23)

is an upper-bound of the solution to the problem in (15)-(16).
Proof: See Appendix B.

Consequently, instead of directly tackling the EE maximiza-
tion problem in (15)-(16), in this work, we have provided a
dual-MAC upper bound solution of (22)-(23). Therefore, the
original problem (9)-(12) can be solved through an efficient
iterative method using the following processes:
(i) Inner-loop: Finds the solution of the SWIPT-based dual

MAC EE maximization problem (22)-(23), under fixed
auxiliary dual variables χ and µk.

(ii) Outer-loop: Obtains the optimal dual variables χ and µk.
It should be noted that due to the additional minimum energy
harvesting constraints and the TS ratio variables αk, the
optimization problem is a non-linear fractional programming
and hence the problem in (22)-(23) cannot be solved via our
previous duality result provided in [19], in which only a single
sum power constraint was considered. Besides, the TS ratio
αk in the SWIPT system plays a very important role in our
optimization problem, hence further increases the complexity
for obtaining a solution. For the optimization problems of
such nature, it is generally helpful to relate it to a concave
program by separating numerator and denominator with the
help of parameter β, this is what is known as the Dinkelbach
method [29]. In the following sections, we propose an iterative
resource allocation algorithm based on the Dinkelbach method
to obtain the upper-bound solution to the problem in (15)-(16).

IV. ITERATIVE RESOURCE ALLOCATION SCHEME BASED
ON DINKELBACH METHOD

Recall that the optimization problem in (22)-(23) belongs to
a family of non-linear fractional programming problems which
are non-convex and difficult to solve directly. Nevertheless, by
invoking the theory of non-linear fractional programming in
[29], we can use the Dinkelbach method to solve this non-
convex non-linear fractional programming problem. Specifi-
cally, we transform the fractional-form objective function into
a numerator-denominator subtractive form as discussed in the
following proposition.

Proposition 3: The maximum EE β∗ can be achieved if and
only if

max
Q,α

UR(Q,α)− β∗UT (Q,α)

= UR(Q∗,α∗)− β∗UT (Q∗,α∗) = 0
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1) Initialize β = 0, and δ as the maximum tolerance;
2) REPEAT
3) For a given β, obtain an intermediate resource

allocation policy {Q,α} by solving the problem
in (27)-(28);

4) IF UR(Q,α)− βUT (Q,α) ≤ δ
5) Convergence = TRUE;
6) RETURN {Q∗,α∗} = {Q,α} and

β∗ = UR(Q,α)
UT (Q,α) ;

7) ELSE
8) Set β = UR(Q,α)

UT (Q,α) and n = n+ 1,
Convergence = FALSE;

9) END IF
10) UNTIL Convergence = TRUE.

TABLE I
PROPOSED ITERATIVE RESOURCE ALLOCATION ALGORITHM BASED ON

DINKELBACH METHOD

for UR(Q,α) ≥ 0 and UT (Q,α) ≥ 0, where

UR(Q,α) =

K∑
k=1

αkR
m
k , (24)

UT (Q,α) = ζ

K∑
k=1

tr(Qm
k ) + PC , (25)

and β∗ =
UR(Q∗,α∗)
UT (Q∗,α∗)

. (26)

Proof: Please refer to [29] for a proof of Proposition 3.
Proposition 3 offers a sufficient and necessary condition for

designing the optimal resource allocation strategy. Particularly,
we can find an equivalent optimization problem with an objec-
tive function in subtractive form, e.g. UR(Q,α)−β∗UT (Q,α)
in the considered case, corresponding to the original optimiza-
tion problem with an objective function in fractional form,
such that both problems share the same optimal solution. In ad-
dition, the optimality guarantees the equality in (24), and thus
we could apply this equality condition to verify the optimality
of the solution. Therefore, we develop a resource allocation
strategy for the equivalent objective function (subtractive form)
whilst satisfying the condition stated in Proposition 3.

Based on Dinkelbach method [29], here, we propose an
iterative algorithm for solving (22)-(23) with an equivalent
objective function such that the obtained solution satisfies the
conditions stated in Proposition 3. The proposed algorithm is
summarized in Table I.

It can be observed from Table I that the key step for
the proposed iterative algorithm concerns the solution to the
following optimization problem for a given parameter β in
each iteration (i.e., step 3),

max
Qm

k �0,0≤αk≤1

K∑
k=1

αkR
m
k − β(ζ

K∑
k=1

tr(Qm
k ) + PC) (27)

s.t.
K∑
k=1

tr(Qm
k ) ≤ Pall. (28)

We define f(Qm
1 , · · · ,Q

m
K , α1, · · · , αK) =

∑K
i=1 ∆k log |N+

∑i
k=1 HH

k Qm
k Hk|, where ∆k = αk−αk+1,

and thus the optimization problem in (27)-(28) can be
reformulated as

max
Qm

k �0,0≤αk≤1
f(Qm

1 , · · · ,Q
m
K , α1, · · · , αK)

−β(ζ

K∑
k=1

tr(Qm
k ) + PC) s.t.

K∑
k=1

tr(Qm
k ) ≤ Pall. (29)

To solve the above problem, Lagrangian dual method can be
employed. However, it should be noted that globally solving
the auxiliary problem in each Dinkelbachs iteration (step 3)
is a critical requirement to be able to claim the optimality.
Therefore, to prove the Lagrangian dual problem has zero
duality gap, we obtain the following Lemma.

Lemma 1. The objective function of problem (29) is jointly
concave in Q and α.
Proof: See Appendix C.

Thus, the problem (29) is a concave maximization problem
with a convex constraint, and zero duality gap is guaranteed.
The corresponding Lagrangian function can be expressed as

L(Qm
1 , · · · ,Q

m
K , α1, · · · , αK , τ) := f(Qm

k , αk)

−β(ζ

K∑
k=1

tr(Qm
k ) + PC)− τ [

K∑
k=1

tr(Qm
k )− Pall], (30)

where τ ≥ 0 is the Lagrangian multipliers associated with
the maximum power constraint. The dual objective function
of (27) is written as

g(τ) = max
Qm

k �0,0≤αk≤1
L(Qm

1 , · · · Qm
K , α1, · · · , αK , τ), (31)

and the dual problem is given by

min
τ
g(τ) s.t. τ ≥ 0. (32)

In this work, an iterative approach is used here in order to
achieve the optimum Qm

k and αk for the dual MIMO-MAC
problem. In particular, we update Qm

k through the gradient of
the Lagrangian function (30) with respect to Qm

k and αk as
follows [37]

∇Qm
k
L :=

∂f [Qm
1 (n), · · · ,Qm

k−1(n),Qm
k (n− 1), · · · ,Qm

K(n− 1)]

∂Qm
k (n− 1)

−βζτINr×Nr , (33)

∇αk
L :=

∂f [α1(n), · · · , αk−1(n), αk(n− 1), · · · , αK(n− 1)]

∂αk(n− 1)
, (34)

Qm
k (n) = [Qm

k (n− 1) + t∇Qm
k
L]+, (35)

αk(n) = αk(n− 1) + t∇αk
L, (36)

where t represents the step size, and the notation [A]+ is
defined as [A]+ :=

∑
i[qi]

+ viv
H
i , with qi and vi denote the

ith eigenvalue and the corresponding eigenvector of A respec-
tively. It should be noted that the existence of the gradient of
the Lagrangian function (30) with respect to Qm

k depends on
two parts: the existence of d log |N+

∑K
k=1 HH

k Qm
k Hk|

dQm
k

and d tr(Qm
k )

dQm
k

.
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It has been shown in [38] (Proposition 3.4) that d tr(Qm
k ) exists

and that d tr(Qm
k ) = tr(dQm

k ). Furthermore, it has also been
shown in [38] (Proposition 3.14) that d ln(det)(Z) exists if
Z ∈ CN×N is invertible. Since every positive definite matrix
is invertible and its inverse is also positive definite [39],
d log |N+

∑K
k=1 HH

k Qm
k Hk|

dQm
k

exists. Therefore, the gradient of the
Lagrangian function (30) with respect to Qm

k exists, and we
can compute the gradient in (33) and (34) as follows

∂f(Qm
1 , · · · ,Q

m
K)

∂Qm
k

=

K∑
j=k

∆jHk(N +

j∑
i=1

HH
i Qm

i Hi)
−1HH

k , (37)

∂f(α1, · · · , αK)

∂αk

=

K∑
i=1

∆itr[µiηiGi(N +

i∑
k=1

HH
k Qm

k Hk)−1)] +Rmk . (38)

After we obtain the optimum Qm
k and αk, our next task is

to find out the optimal τ . Given that the Lagrangian function
g(τ) is a convex function with respect to τ , we can achieve
the optimal τ through a one-dimensional searching approach.
Nevertheless, it is not guaranteed that g(τ) is differentiable,
and thus the gradient approach may not available in this case.
On the other hand, the well-known sub-gradient approach can
be applied here to search the optimal solution where τ is
updated in accordance with the sub-gradient direction as the
following Lemma.

Lemma 2. Pall −
∑K
k=1 tr(Qmk ) is the sub-gradient of the

dual objective function g(τ), where Qmk , k = 1, 2, · · · ,K are
the corresponding optimal covariance matrices under fixed τ .
Proof: The proof of Lemma 2 is similar to that in [37], and
thus is omitted for brevity.

Upon convergence of the transmit covariance matrices
Qm
k , k = 1, 2, · · · ,K and the TS ratios αk, k = 1, 2, · · · ,K,

the current consumption power is saved in order to compare
with Pall. In particular, as stated in Lemma 1, the value of
τ should be increased if

∑K
k=1 tr(Qm

k ) ≥ Pall, and decrease
otherwise. This procedure is continued until convergence, i.e.,
|τmin − τmax| ≤ ε.

We can now present the algorithm to solve the optimization
problem for a given parameter β in each iteration, namely the
bisection-based resource allocation algorithm, as in Table II.

A. Special Case with Equal TS Ratios

In the previous section, we investigated the case in which
different SWIPT-equipments (receivers) are employed by the
users, and hence the optimal TS ratio factors for users are
assumed to vary (depending on their channel gain and the
minimum EH constraints). However, in a practical commu-
nications system, it is very likely that all served users are
equipped with the same SWIPT-equipments, resulting in α =
α1 = α2 · · · = αK . As a result, here, we develop an efficient
solution for solving the equal TS ratio case.

Motivated by the iterative approach proposed in [40], we
here separate the process of determining the TS ratio α and

1) Initialize τmin and τmax;
2) REPEAT
3) τ = (τmin + τmax)/2 ;
4) REPEAT Initialize Qm

1 (0), · · · ,Qm
K(0),

α1(0), · · · , αK(0), n = 1;
5) FOR k = 1, · · · ,K
6) Qm

k (n) = [Qm
k (n− 1) + t∇Qm

k
L]+;

7) αk(n) = αk(n− 1) + t∇αk
L;

8) END FOR
9) n = n+ 1;
10) UNTIL Qm

k and αK for k = 1, · · · ,K converge,
i.e., ||∇Qm

k
L||2 ≤ ε, ||∇αk

L||2 ≤ ε for a small ε;
11) if

∑K
k=1 tr(Qm

k ) ≥ Pall, τmin = τ ,
elseif

∑K
k=1 tr(Qm

k ) ≤ Pall, τmax = τ ;
12) UNTIL |τmin − τmax| ≤ ε.

TABLE II
BISECTION BASED RESOURCE ALLOCATION ALGORITHM

the covariance matrix Q as follows

α[0]→ Q[0]︸ ︷︷ ︸
Initialization

→ · · ·α[t]→ Q[t]︸ ︷︷ ︸
Iteration t

→ αopt → Qopt︸ ︷︷ ︸
Optimal Solution

. (39)

In particular, a bi-section approach is proposed on the basis
of the following proposition.

Proposition 4: For any given transmit covariance matrices
Qmk , k = 1, 2, · · · ,K, that satisfies the constraints in (28), the
following optimization problem,

max
α

ϑ(α) = max
α

K∑
k=1

αRk

−β(ζ

K∑
k=1

tr(Qmk ) + PC) (40)

s.t. 0 ≤ α ≤ 1, (41)

is concave in α.
Proof: Proposition 4 follows immediately from Lemma 1; thus
a similar proof to that in Appendix C can be applied here.

Consequently, Proposition 4 guarantees the existence and
uniqueness of the global maximum solution. Furthermore,
ϑ(α) either strictly decreases or first increases and then
strictly decreases with α. Therefore, problem (27)-(28) can
be decomposed into two layers and solved iteratively through
the bi-section processes, per detailed in Table III.

V. ALTERNATIVE SOLUTION BASED ON
QUASI-CONCAVITY PROPERTY

The proposed iterative resource allocation scheme for the
problem in (22)-(23) is based on the Dinkelbach method, and
hence the convergence speed for β may be slow for some
special cases, i.e., when large number of users exists in the
network. To facilitate practical implementation of the optimal
resource efficient design, we will exploit and prove the quasi-
concave relation between the maximum EE λ∗EE(PmT ) and
transmit power PmT =

∑K
k=1 tr(Qm

k ). In particular, we first
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1) Initialize αmin = 0 and αmax = 1;
2) REPEAT
3) α = (αmin + αmax)/2 ;
4) REPEAT, Initialize Q1(0), · · · ,QK(0), n = 1;
5) FOR k = 1, · · · ,K
6) Qk(n) = [Qk(n− 1) + t∇Qk

L]+;
7) END FOR
8) n = n+ 1;
9) UNTIL Qk for k = 1, · · · ,K converge;
10) if ∇αϑ ≥ 0, αmin = α, elseif ∇αϑ ≤ 0, αmax = α;
11) UNTIL |αmin − αmax| ≤ ε.

TABLE III
BISECTION BASED RESOURCE ALLOCATION ALGORITHM FOR THE EQUAL

TS RATIO CASE.

demonstrate the quasi-concavity of EE in transmit power, and
then develop a dual-layer resource allocation scheme based on
the EE-power relationship.

A. Fundamentals of EE-Power Relationship

We proceed by providing a fundamental study of the EE-
power relationship.

Proposition 5: With transmit covariance matrices Qmk , k =
1, 2, · · · ,K and TS ratios αk, k = 1, 2, · · · ,K, that satisfies
the constraints in (23), i.e., PmT ≤ Pmax, the maximum EE,
λ∗EE = max

Qm
k �0,0≤αk≤1

λEE(PmT ), is strictly quasi-concave in
PmT .
Proof: See Appendix D.

Proposition 6: For any given transmission power in the
region [Pmin, Pmax], the maximum EE, λ∗EE(PmT ), is
(i) strictly decreasing with PmT and is maximized at PmT =
Pmin if

dλ∗EE(PmT )

dPmT

∣∣∣∣
Pm

T =Pmin

≤ 0,

(ii) strictly increasing with PmT and is maximized at PmT =
Pmax if

dλ∗EE(PmT )

dPmT

∣∣∣∣
Pm

T =Pmin

> 0

and
dλ∗EE(P )

dPmT

∣∣∣∣
Pm

T =Pmax

≥ 0,

(iii) first strictly increasing and then strictly decreasing with
PmT and is maximized at PmT = λ̄EE

CBC(λ̄EE)
− PC if

dλ∗EE(PmT )

dP

∣∣∣∣
Pm

T =Pmin

> 0

and
dλ∗EE(PmT )

dPmT

∣∣∣∣
Pm

T =Pmax

≤ 0,

(iv) infeasible if

Pmin > Pmax,

where CBC(λ̄EE) represents the capacity under maximum

achievable EE.
Proof: See Appendix E.

Note that a quasi-concavity property guarantees the exis-
tence of a unique maximum solution, and thus Proposition
5 ensures the existence and uniqueness of the maximum
solution. Moreover, the quasi-concavity further indicates that
λEE(PmT ) either strictly decreases or first increases and then
strictly decreases with PmT . Proposition 6 further reveals that
there exists a maximum point at a finite power region. Thus,
the optimization problem in (22)-(23) can be solved through
a dual-layer decomposition method using the following pro-
cesses,
(i) inner-layer: For a fixed transmit power, PmT , determines
the maximum EE λ∗EE(PmT );
(ii) outer-layer: obtains the optimal EE, λ̄EE , through a
gradient-based approach.
Note that the key challenge of the proposed dual-layer decom-
position method lies in the inner-layer, where λ∗EE(PmT ) is to
be obtained. This is discussed in detail as analysis proceeds.

B. Resource Allocation for the Dual MAC Problem
Recall that the inner-layer is concerned with finding the

maximum EE, λ∗EE(PmT ), based on a given transmission
power, i.e., any PmT in the power region [Pmin, Pmax]. Hence,
the optimization problem with a given transmission power PmT
can be expressed as

max
Qm

k �0,0≤αk≤1

K∑
k=1

αkR
m
k (42)

s.t.
K∑
k=1

tr(Qm
k ) ≤ PmT . (43)

Hence, the inner-layer of the proposed algorithm has been
transformed to solve the optimization problem in (42)-(43)
based on a given transmission power PmT . Apparently, the
optimization problem in (42)-(43) is similar to the problem
in (29), and hence they share the same solution structure. In
other words, the proposed bisection-based resource allocation
algorithm in Section IV can be applied here to solve the sum
rate maximization problem in (42)-(43), and hence the detailed
methodology is omitted here.

We next design a searching algorithm in order to solve the
outer-layer of the EE optimization problem in (22)-(23). We
first initialize the transmit power as PmT (0). Based on the fixed
transmit power, we determine the maximum EE λ∗EE(PmT ) us-
ing the proposed bisection-based resource allocation algorithm
in Section IV. We then develop a searching scheme based on
Proposition 6 to update the transmit power PmT as follows

PmT (n) =


Pm

T (n−1)
ς

dλ∗EE(Pm
T )

dPm
T

∣∣∣∣
Pm

T (n−1)

< 0

ςPmT (n− 1) otherwise
,

(44)
where ς > 1 denotes the searching step. In addition, the value
of ς should be reduced if the sign of gradient dλ∗EE(Pm

T )
dPm

T
is

changed as in

ς(n) =
ς(n− 1)

2
(45)
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and (44) is repeated until convergence, i.e., |PmT (n + 1) −
PmT (n)| ≤ ε or either Pmax or Pmin is achieved. In other
words, the proposed resource allocation algorithm for the
dual MAC problem will converge to the optimal point or
the boundary point. It should be noted that the computational
complexity of the outer-layer algorithm depends on the number
of iterations and is linear with 1

ς2 [41]. Therefore, choosing an
appropriate ς to balance the convergence speed and complexity
is very important.

VI. SOLUTION TO THE SWIPT-BASED EE MAXIMIZATION
PROBLEM

Here, we provide a complete solution to the EE optimization
problem in (13)-(14), namely an extended BC-MAC duality-
based EE maximization algorithm. Under fixed χ and µ, the
problem can be reformulated as follows

x(χ,µ) =

max
Qb

k,αk

∑K
k=1 αkR

b
k

ζPmT + PC −
∑K
k=1

∑K
k=1(1− αk)ηkE[tr(GkQ)]

(46)

s.t. χ(

K∑
k=1

tr(Qb
k)− Pmax)

+

K∑
k=1

µk(Ek,min − (1− αk)ηkE[tr(GkQ)]) ≤ 0, (47)

Qb
k � 0, 0 ≤ αk ≤ 1, ∀ k ∈ K. (48)

In addition, the problem (13)-(14) is equivalent to the follow-
ing

min
χ,µ

x(χ,µ) (49)

s.t. χ ≥ 0 and µk ≥ 0, ∀k ∈ K. (50)

By applying the BC-MAC duality in Section III together
with the proposed Dinkelbach method-based iterative resource
allocation scheme in Section IV, or the alternative solution
based on quasi-concavity property in Section V, one can
achieve x(χ,η). We then apply the BC-MAC covariance
mapping approach from [37] to obtain the corresponding BC
transmit covariance matrices Qb

k, k = 1, · · · ,K. Once we have
obtained the solution for a given χ and µ, we can use the
following lemma to update χ and µ through a sub-gradient
approach.

Lemma 3. The sub-gradient of x(χ,µ) is
[Pmax −

∑K
k=1 tr(Qbk), (1 − αk)ηk[tr(GkQ)] − Ek,min],

k = 1, 2, · · · ,K, where χ ≥ 0, µ ≥ 0 and
Qk, αk, k = 1, 2, · · · ,K, respectively denote the
corresponding optimal transmit covariance matrices and
TS ratios for a fixed χ and µ in (49).
Proof: The proof of Lemma 3 is similar to that in [37], and
thus is omitted for brevity.

It should be noted that with a constant step size, the
sub-gradient approach will converge to a point that is very
close to the optimal value [42], i.e.,

lim
n→∞

|χn − χ∗| < ε, and lim
n→∞

|µnk − µ∗k| < ε, k = 1, · · · ,K,
(51)

5 10 15 20 25 30
0

1

2

3

4

5

Number of iterations

E
E

(b
/H

z/
J)

Proposed Dinkelbach-based method
Proposed quasiconcavity-based scheme (ς = 5)
Proposed quasiconcavity-based scheme (ς = 2)
Full-search-based optimal approach

Fig. 2. Convergence behavior of the proposed Dinkelbach method-based
scheme and quasi-concavity-based approach.

where χ∗ and µ∗k are the optimal values, and χn and µnk
are the values of χ and µk at the nth iteration of the sub-
gradient approach, respectively. This result indicates that the
sub-gradient approach determines an ε-suboptimal point in a
finite number of iterations.

In Table IV, the computational complexities of the
aforementioned Dinkelbach method-based solution and
quasiconcavity-based solution based on the number of
floating points [43] are listed for comparison. It should be
noted that the computational complexity of DPC depends
on QR decomposition, which is approximately of order
O(KN2

t Nr) [44]. Furthermore, the computational complexity
of the Dinkelbach method with stopping criteria ε is
O( 1

ε2 log(K)) [29], whereas the computational complexity of
the quasiconcavity-based solution is linear with 1

ς2 , where ς
is the searching step [41]. Therefore, as it can be seen from
Table IV, the proposed quasiconcavity-based solution has a
lower computational complexity compared to the proposed
Dinkelbach method-based solution.

Algorithm Complexity

Dinkelbach-Method O( 1
ε2

1
ε2 log(K)KN2

t Nr)

Quasiconcavity-Solution O( 1
ε2

1
ς2KN

2
t Nr)

TABLE IV
COMPLEXITY COMPARISON FOR THE PROPOSED ALGORITHMS

VII. SIMULATION RESULTS

In this section, we present simulation results to verify the
theoretical findings and analyze the effectiveness of the pro-
posed approaches. In our simulation, the BS employs Nt = 4
transmit antennas and is surrounded by uniformly-distributed
users. Each user is equipped with Nr = 2 receive antennas,
and the total number of users is set to K = 4. The dynamic
power consumption proportional to the number of antennas
PBSant is set to be 1 W [45]. The path-loss is calculated using
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Fig. 3. λ∗EE -versus-Pm
T curve using the proposed quasi-concavity-based

resource allocation approach.

128.1 + 37.6 log10 d with distance d (in Kilometers) [46], and
the radius of the cell is set to 500 m. The drain efficiency of
the power amplifier ζ is set to 38% in our simulation whilst
the energy harvesting efficiency is set to η = 50%. The power
budget for each BS is considered to be 46 dBm. The minimum
harvesting energy Ek is set to 10% of the maximum transmit
power. In addition, a larger stopping criteria ε and ς will
increase the convergence speed of the proposed algorithms, but
this comes at the cost of reduced accuracy in the achievable
EE. Hence, to guarantee a precise convergence with all these
factors, ε and ς are set to 1e−3 for our simulations. It is noted
that these system parameters are merely chosen to demonstrate
the EE optimization in an example and can easily be modified
to any other values to address different scenarios.

In the first simulation, the performance of the proposed
algorithms for the SWIPT-based dual MAC EE maximization
problem is studied. The convergence behavior of the pro-
posed Dinkelbach method-based scheme and quasi-concavity-
based approach are first evaluated by illustrating how the
EE performance behaves with the number of iterations. As
shown in Fig. 2, both the proposed Dinkelbach method-based
iterative resource allocation scheme and the proposed quasi-
concavity-based scheme converge to the optimal value. In
particular, the EE converges after approximately 30 iterations
when ς = 2, but is reduced to 12 iterations when a larger
step size is chosen, e.g., ς = 5. This result coincides with
our theoretical findings where the computational complexity is
inversely proportional to the square of the step size ς2. Hence,
compared to the proposed Dinkelbach method-based scheme,
the proposed quasi-concavity-based scheme is more compu-
tationally efficient when an appropriate ς is selected. Similar
results can be observed in a MIMO-BC scenario [41], where ς
is set to 3 for improving the convergence speed. Next, we study
the relationship between the achievable EE and transmission
power. It can be seen from Fig. 3 that the EE-transmission
power relationship has a bell shape curve. This quasi-concavity
is the foundation of the proposed methodology and infers

0 10 20 30 40 50 60 70
3

3.5

4

4.5

5

5.5

6

6.5

Number of Iterations

E
E

(b
/H

z/
J)

Proposed EE maximization algorithm, t = 0.01

Proposed EE maximization algorithm, t = 0.1

Full-search-based optimal approach

Fig. 4. Convergence behavior of the proposed extended BC-MAC duality-
based EE maximization algorithm in terms of EE.

that the proposed quasi-concavity-based resource allocation
algorithm always leads to the maximum EE performance. In
addition, the convergence behavior of the proposed extended
BC-MAC duality-based resource allocation algorithm is also
studied. Fig. 4 depicts the EE versus the number of iterations
for step sizes 0.1 and 0.01. As it can be seen from the
figure, the proposed extended BC-MAC duality-based EE
maximization algorithm converges to a stable value, and the
step size affects the accuracy and convergence speed of the
algorithm. Moreover, the EE achieved by the proposed solution
is very close to the optimal EE with only a 3% loss. It should
be noted that due to the min-max nature of the problem in (13)-
(14), the initial iterations can have a higher EE than the optimal
one. However in those iterations, the outer minimization is not
yet completed and hence although the numerical EE value is
higher, those solution is not valid. It is only until the outer
minimization converges. A similar trend is also reported in
[37] where the sum rate maximization problem is solved using
a min-max approach. This is the reason for the EE in the initial
iterations to be above the global optimum.

In the next simulation, the proposed extended BC-MAC
duality-based EE maximization algorithm under different max-
imum transmit power allowance is evaluated and presented in
Fig. 5. To show the EE gain achieved by TS-based SWIPT
system, we compare our proposed scheme with the scheme
that maximize the EE without EH [19] and the scheme that
aims for maximizing the system sum rate [47]. It is observed
that the EE achieved by our proposed extended BC-MAC
duality-based EE maximization algorithm is monotonically
non-decreasing with respect to the maximum transmit power
allowance Pmax, and tends to be saturated in the higher
transmit power constraint region, i.e., Pmax > 25 dBm. This is
because in the higher transmit power constraint region, a bal-
ance between the system EE and the total power consumption
can be achieved. On the other hand, all the algorithms achieve
similar performance in terms of the system EE criterion in the
lower transmit power constraint region, i.e., 5 < Pmax < 15
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Fig. 5. The performance of the proposed extended BC-MAC duality-based
EE maximization algorithm.

dBm. Besides, due to the fact that the received power of
the desired signal may not be sufficiently large for delivering
information and energy harvesting at the same time, the system
with TS-based energy harvesting receivers achieves a small
performance gain compared to the system without energy
harvesting receivers. Nevertheless, in the region of higher
transmit power, the proposed extended BC-MAC duality-
based EE maximization algorithm outperforms the other two
schemes substantially. In particular, there is about a 5% gain
in terms of EE can be achieved by our proposed extended
BC-MAC duality-based EE maximization algorithm compared
to the scheme that without energy harvesting receivers [19].
Furthermore, due to the fact that the increasing sum rate of the
system cannot offset the consumption of the transmit power,
the sum rate maximization scheme without energy harvesting
[47] achieves a very low EE.

Furthermore, the proposed extended BC-MAC duality-based
EE maximization algorithm under different channel model is
also studied. To show the effects of wireless fading channels,
we consider Rayleigh fading and Log-Normal shadowing with
standard deviation of 8 dB. As it can be seen from Fig. 6,
the EE gain achieved by the proposed extended BC-MAC
duality-based EE maximization algorithm over the scheme that
maximizes EE without EH [19] and the one that maximizes SE
without EH [47] is reduced compared to that over non-fading
channels1 in Fig. 5. This is because under Rayleigh fading
and Log-Normal shadowing, additional power is required to
satisfy the minimum harvested energy constraint for each user,
resulting in the EE loss in a SWIPT system. Hence, the range
of profitable operation for the TS-based SWIPT system is at
moderate to high transmit power constraint region if Rayleigh
fading and Log-Normal shadowing is considered.

We then investigate the average system EE for the proposed
extended BC-MAC duality-based EE maximization algorithm

1No-fading channels refers to those that suffers only path loss degradation
but without shadowing and multipath fading
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Full-search-based optimal approach
EE maximization with BC-MAC duality
EE maximization without EH [19]
SE maximization without EH [47]

Fig. 6. The performance of the proposed extended BC-MAC duality-
based EE maximization algorithm under Rayleigh fading and Log-Normal
shadowing with standard deviation of 8 dB.
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Fig. 7. Energy efficiency versus the maximum transmit power allowance for
the proposed extended BC-MAC duality-based EE maximization algorithm
with different minimum required power transfer.

with different level of minimum required harvested energy.
As shown in Fig. 7, the increasing level of minimum required
harvested energy will not always lead to an increasing system
EE. Furthermore, jointly considering the results in Fig. 7 and
Fig. 5, we can conclude that there exists an optimal minimum
required harvested energy value for the EE optimization prob-
lem. As a result, the performance of system EE can be further
improved if the TS ratios and the minimum required harvested
energy are jointly considered, and that would be investigated
in our future works.

Finally, we evaluate the achievable EE under different
number of users in the SWIPT-based MIMO-BC. To show
the impact of number of users, we fix the number of antennas
at the BS and each user to Nt = 8 and Nr = 2, respectively.
As shown in Fig. 8, the EE first increases then decreases with
increasing number of users for the proposed extended BC-
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Fig. 8. Comparison of the achievable EE for different number of users in
the network, where Nt = 8 and Nr = 2.

MAC duality-based EE maximization algorithm. The best EE
performance in this simulation scenario is achieved when there
exists K = 6 users. Since the spatial dimensions for DPC
is min(Nr × K,Nt), the maximum multiplexing gain under
these simulation parameters is eight, which also indicates the
maximum number of users achieving the maximum spatial
dimensions is K = 4. Nonetheless, there exists multiuser
diversity in BC scenario; in other words, the sum rate capacity
will still increase marginally if the number of admitted users
is increased beyond 4. On the other hand, since each user
should achieve a minimum harvested energy, the total power
consumption increases with K. Hence, when the number of
users is further increased, the increase in power consumption
will outgrow the gain in sum-rate from multiuser diversity.
This explains why the optimal number of user is 6 in this
scenario. Furthermore, the advantage of having SWIPT in a
MIMO-BC scenario is clearly demonstrated, where the EE
gain is further increased with increasing number of users in
the network.

VIII. CONCLUSIONS

In this paper, we addressed the EE optimization problem
for SWIPT-based MIMO-BC with TS receiver. Our aim was to
maximize the EE of the system whilst satisfying constraints in
terms of maximum power and minimum harvested energy for
each user. The corresponding EE maximization problem from
the coupling of the optimization variables, namely the transmit
covariance matrices and TS ratios, is non-convex. Hence, to
tackle the problem, we transform the original maximization
problem with multiple constraints into a suboptimal min-max
problem with single constraint and multiple auxiliary vari-
ables. For the min-max problem with single constraint, a dual-
layer resource allocation strategy is proposed. We incorporate
an extended SWIPT-based BC-MAC duality principle in order
to simplify the inner-layer problem, and accordingly provide t-
wo different iterative resource allocation algorithms for solving

the dual MAC problem with fixed auxiliary variables. A sub-
gradient-based searching scheme is then proposed to obtain
the optimal auxiliary variables in the outer-layer. Numerical
results validate the effectiveness of the proposed algorithms
and show that significant performance gain in terms of EE
can be achieved by our proposed extended BC-MAC duality-
based EE maximization algorithm.

APPENDIX A

PROOF OF PROPOSITION 1

We can rewrite the constraint (16) (left hand side) as the
following linear formulation

χ

K∑
k=1

tr(Qb
k)−

K∑
k=1

µk(1− αk)ηk[tr(GkQ)]

= χtr(
K∑
k=1

Qb
k)− tr(

K∑
k=1

µk(1− αk)ηkGkQ))

= χtr(Q)− tr(GQ)), (52)

where G =
∑K
k=1 µk(1− αk)ηkGk. It is clear that constraint

(16) satisfies the general linear power constraint tr(AQ) ≤ P .
Furthermore, it has been shown in [37] that the weighted
factors are shared between the MAC and the BC, thus the TS
ratios α are sharing by the MAC and BC. On the other hand,
if there exists another solution set α̌ that maximizes the MAC
problem but different from the optimal TS ratio α in the BC,
we can also obtain another optimal covariance matrices set in
dual MAC. This is because the noise covariance at the BS in
the dual MAC is written as N = χI−

∑K
k=1 µk(1−αk)ηkGk.

Apparently changing the TS factors in the dual MAC problem
has impact on determining the optimal transmit covariance
matrices. Therefore, this contradicts the uniqueness of the
covariance mapping from the dual MAC to BC. Hence, we
conclude that the duality relationship between SWIPT-based
MIMO-BC system and its dual SWIPT-based MIMO-MAC
stills holds. �

APPENDIX B

PROOF OF PROPOSITION 2

According to Proposition 1, the capacity region of a SWIPT-
based MIMO-BC with power constraint PT is equal to the
union of capacity regions of the SWIPT-based dual-MAC with
power constraints such that

∑K
k=1 tr(Qm

k ) = PT . Substitute
the duality result to problem (22)-(23), the objective function
can be reformulated as

max
Qm

k �0,0≤αk≤1∑K
k=1 αkR

b
k

ζχ
∑K
k=1 tr(Qb

k)− ζ
∑K
k=1 µk(1− αk)ηktr(GkQ) + PC

.

≥ max
Qm

k �0,0≤αk≤1∑K
k=1 αkR

b
k

ζχ
∑K
k=1 tr(Qb

k)−
∑K
k=1 µk(1− αk)ηktr(GkQ) + PC

.
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= g(χ,µ). (53)

Therefore, the solution of the SWIPT-based dual MAC EE
maximization problem (22)-(23) is an upper-bound of the
solution to the problem in (15)-(16). �

APPENDIX C

PROOF OF LEMMA 1

In order to prove the concavity, we define l(Q,α) =∑K
k=1 αkR

m
k − β(ζ

∑K
k=1 tr(Qm

k ) + PC). We first investigate
the relationship between α and the objective function l. Thus,
we obtain the following

∇2l(αk) = 2
dRmk
dαk

+ αk
d2Rmk
dα2

k

. (54)

Substitute (21) into (54), we obtain

dRmk
dαk

= µkηkGktr[(N +

i∑
k=1

HH
k Qm

k Hk)−1

−(N +

i−1∑
k=1

HH
k Qm

k Hk)−1], (55)

d2Rmk
dα2

k

= µ2
kη

2
kG2

ktr[(N +

i−1∑
k=1

HH
k Qm

k Hk)−2

−(N +

i∑
k=1

HH
k Qm

k Hk)−2]. (56)

Thus, defining Zi =
∑i
k=1 HH

k Qm
k Hk, we can rewrite (54) as

∇2l(αk) = tr[2µkηkGk((N + Zi)−1 − (N + Zi−1)−1)

+µ2
kη

2
kG2

k((N + Zi−1)−2 − (N + Zi)−2)]

= tr[µkηkGk((N + Zi)−1 − (N + Zi−1)−1)

(2I− µkηkGk((N + Zi−1)−1 + (N + Zi)−1))]

≤ tr[2µkηkGk((N + Zi)−1 − (N + Zi−1)−1)] (57)

Given that (Zi−Zi−1) = HH
i Qm

i Hi is a positive semi-definite
matrix, ((N+Zi)−1−(N+Zi−1)−1) is a negative semi-definite
matrix. Therefore, applying the property of trace operator,
i.e., tr(AB) = tr(BA), and replacing the channel covariance
matrix Gk = HH

k Hk, we obtain

tr[2µkηkGk((N + Zi)−1 − (N + Zi−1)−1)]

= tr[2µkηkHk((N + Zi)−1 − (N + Zi−1)−1)HH
k ] ≤ 0 (58)

Hence, the objective function of problem (29) is concave with
respect to α. Furthermore, it has been shown in [37] that a sum
rate maximization problem with users covariance matrices as
the variables is concave. In this case, the role of the splitting
factors α is formally played by the weighted parameters, and
these are not variables in the dual problem (α are fixed in
this case). Thus, the objective function of problem (29) is
concave with respect to Q. As a result, we can conclude that
the objective function of problem (29) is jointly concave in Q
and α. �

APPENDIX D

PROOF OF PROPOSITION 5

To prove λ∗EE(PmT ) is a quasi-concave function, we denote
the superlevel sets of λ∗EE(PmT ) as

Sκ = {PmT ≤ Pall|λ∗EE(PmT ) ≥ κ}. (59)

In accordance with [48], for any real number κ, if the
convexity for Sκ holds, λ∗EE(PmT ) is strictly quasi-concave
in PmT . Therefore, we here divide the proof into two cases.
For the case of κ < 0, since EE is always positive and hence
there are no points on the counter, λ∗EE(PmT ) = κ. For the
case of κ ≥ 0, λEE can be rewritten as

λEE =
CMAC(PmT )

ζPmT + PC
, (60)

and hence Sκ is equivalent to κζPmT +κPC−CMAC(PmT ) ≤ 0.
Since it has been proven that CMAC(PmT ) is convex in PmT
[28], therefore the convexity of Sκ holds and λ∗EE(PmT ) is
strictly quasi-concave in PmT . �

APPENDIX E

PROOF OF PROPOSITION 6

To prove the statement in Proposition 6, the limit of
λ∗EE(PmT ) is analyzed as follows

lim
Pm

T →0
λ∗EE(PmT ) = lim

Pm
T →0

max
Qm

k �0, 0≤αk≤1

CMAC(PmT )

ζPmT + PC
.

= lim
Pm

T →0

o(PmT )

ζPmT + PC
= 0. (61)

Thus, given that λ∗EE(PmT ) is strict concave (Appendix
F), beginning with PmT = Pmin, λ∗EE(PmT ) either strictly

decreases with PmT while dλ∗EE(Pm
T )

dPm
T

∣∣∣∣
Pm

T =Pmin

≤ 0, or first

strictly increases and then strictly decreases with PmT while
dλ∗EE(Pm

T )
dPm

T

∣∣∣∣
Pm

T =Pmin

> 0. In addition, we can conclude that

the maximum EE achieved in the power region [Pmin, Pmax]
is straightforward as indicated in Proposition 6. �
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