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Abstract 

Given that eye movement control can be framed as an inferential process, how are the requisite 

forces generated to produce anticipated or desired fixation? Starting from a generative model based 

on simple Newtonian equations of motion, we derive a variational solution to this problem and 

illustrate the plausibility of its implementation in the oculomotor brainstem. We show, through 

simulation, that the Bayesian filtering equations that implement ‘planning as inference’ can generate 

both saccadic and smooth pursuit eye movements. Crucially, the associated message passing maps 

well onto the known connectivity and neuroanatomy of the brainstem – and the changes in these 

messages over time are strikingly similar to single unit recordings of neurons in the corresponding 

nuclei. Furthermore, we show that simulated lesions to axonal pathways reproduce eye movement 

patterns of neurological patients with damage to these tracts. 

 

Keywords: Free energy; saccades; oculomotor; brainstem; predictive coding; active inference 

 

1. Introduction 

There are many neurological (Sereno and Holzman 1995, Büttner, Helmchen et al. 1999, Perry and 

Zeki 2000, Anderson and MacAskill 2013) and psychiatric (Holzman and Levy 1977, Lipton, Levy et al. 

1983, Sereno and Holzman 1995) conditions that cause impairments of eye movement control. As 

such, assessment of oculomotion forms a crucial part of any neurological examination. We aim to 

characterise the functional anatomy of eye movement control by appealing to active inference, a 

principled approach to describing Bayes optimal behaviour (Friston, Daunizeau et al. 2009). Our 

agenda here is to try and understand the oculomotor system in terms of its computational anatomy, 
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as a complement to similar attempts to understand the control of eye movements at higher levels of 

the visual system; e.g., (Itti and Koch 2001, Bruce and Tsotsos 2009). 

Previous active inference accounts of eye movements have focused on saccadic target selection 

(Mirza, Adams et al. 2016, Friston, Rosch et al. 2017) and ignored the mechanics of oculomotion, or 

have made use of the simplifying assumption that the position of the eyes can be altered directly 

through simple attractor dynamics (Friston, Adams et al. 2012, Friston, Parr et al. 2017). Here, we 

follow the example of models that have treated the eyes as physical objects, subject to Newton’s 

laws (Robinson 1964, Robinson 1968, McSpadden 1998, Adams, Perrinet et al. 2012, Perrinet, Adams 

et al. 2014). We build upon these models by equipping each eye with separate kinetics, which are 

predicted by the brain using a model that is common to both eyes. We emphasise the anatomy and 

electrophysiology that emerge from this theoretical treatment and their striking resemblance to the 

properties of the brainstem (Büttner-Ennever and Büttner 1988, Büttner and Büttner-Ennever 2006). 

The oculomotor system is a crucial interface between inferential processes of the brain, and the 

Newtonian world that it inhabits. It forms a distributed network (Parr and Friston 2017) that involves 

the cerebral cortex (Paus 1996, Corbetta, Akbudak et al. 1998), the cerebellum (Berretta, Bosco et al. 

1993), and the basal ganglia (Hikosaka and Wurtz 1985b, Hikosaka, Takikawa et al. 2000). Ultimately, 

neuronal messages from these regions combine to generate signals to the extraocular muscles to 

move the eyes. It is the brainstem that performs the translation of these instructions into motor 

nerve signals (Sparks 1986, Sparks and Mays 1990, Sparks 2002). In this paper, we seek to 

understand the computations that must be performed to do this, and their neurobiological 

substrates. We begin by describing the mechanics of the eyes. We then provide an overview of the 

principles of active inference, and use these to motivate a predictive (generative) model of eye 

movements. We demonstrate through simulation that this reproduces eye movements consistent 

with health and disease, and show the emergence of established electrophysiological observations 

from these simulations. 

  

2. Mechanics of eye movements 

Saccadic eye movements implement the transition from one stationary fixation to another. While we 

may select a new target for fixation, the physical world does not allow us to alter position directly. 

Instead, changes in position must be brought about by applying forces that accelerate the eyes 

towards their target. We will first discuss the influence of these forces, and consider the translation 

of a desired location into forces in the next section. For simplicity, we assume only two forces acting 
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on each eye. These are resultant forces in the horizontal and vertical dimensions. Each force gives 

rise to a torque, made up of an active term (muscle contraction), an elastic term, and a viscous term. 

Using Newton’s second law in its rotational form, we arrive at the equations of motion shown on the 

left of Fig. 1. These equations are relatively simple, but could in principle be replaced by a set of 

more realistic equations that take account of, among other things, the non-linear relationship 

between muscle elasticity and length (McSpadden 1998). 

In addition to the equation describing the movement of the eyes themselves, it is necessary to 

specify how the angular position and velocity of each eye gives rise to sensory data. The information 

carried from the eye to the brainstem can be classified into two broad categories. Visual information 

is passed through the optic nerve (Cranial nerve II), while proprioceptive data from the extraocular 

muscles travels through afferent fibres in the oculomotor nerves (CN III, IV, VI). We have assumed a 

simple visual signal in this paper: it is generated through an identity mapping, with added noise, 

from the position of the eyes (Faisal, Selen et al. 2008). In other words, what the eyes see depends 

entirely on where they look. 

The nature of proprioceptive signals from the extraocular muscles is a controversial topic (Donaldson 

2000), but the presence of muscle spindles – the sensory organs of proprioception – in human 

extraocular muscles has been convincingly demonstrated (Cooper and Daniel 1949), as has the type 

of reflex associated with these spindles in other muscles (Sherrington 1893). It is worth 

acknowledging that the structure of these spindles is simpler than those found in other muscles 

(Ruskell 1989), but the density is comparable (Lukas, Aigner et al. 1994). In most skeletal muscle, 

afferent nerve fibres from the muscle spindles carry data about the velocity (type Ia afferents) and 

instantaneous length of a muscle (type II afferents). Similar signals have been recorded from the 

oculomotor nerve (Cooper, Daniel et al. 1951, Tomlinson and Schwarz 1977), when the extraocular 

muscles are stretched. We therefore assume that there are two proprioceptive modalities from each 

eye, carrying signals analogous to the II (position) and Ia (velocity) afferent fibres. Each of these has 

a horizontal and a vertical component. The equations determining these outputs are shown on the 

left of Fig. 1. Having specified these primary afferents, we turn to the treatment of these sensory 

signals by the brain. 
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Figure 1 – Equations of motion This schematic shows the equations used to determine the motion 

of the eyes, and the sensations they generate. On the left, the pair of equations defining the ‘real-

world’ generative process are shown. On the right, the analogous equations are shown for a 

generative model of that process. Note that the dimension of the sensory data, y , is equal for both, 

but the dimensions of the hidden states, x , differ. In the generative process, 1,2,3,4x  are the (2 x 2) 

angular horizontal and vertical positions for the right and left eye (components of the x  vectors). 

5,6,7,8x  are the angular velocities (components of the x  vectors). Each of these is associated with a 

result torque involving the extraocular muscles, 1,2,3,4a , an elastic torque with spring constant 1k , 

and a viscous torque with a viscosity constant 2k . The resultant torque is converted to acceleration 

through division by the moment of inertia of the eyeballs J . In the generative model, 1,2x  are the 

horizontal and vertical positions of both eyes, which are crucially assumed to be the same. 3,4x  are 

the velocities. 1,2v  are the two components of the target fixation vector. w  and z  are random 

Gaussian fluctuations with means of zero and precisions of x  and y respectively. 

 

3. Active inference 

The Free energy principle states that living systems must minimise their variational free energy over 

time (Friston, Kilner et al. 2006, Friston 2009).  The Free energy is an upper bound on surprise – or 

negative log evidence – so this is equivalent to the (almost tautological) statement that organisms 
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are ‘self-evidencing’ (Hohwy 2016), and seek out the sensory data that maximises the evidence for 

their own existence. For example, humans exist only within narrow range of temperatures. Sensing a 

temperature that is comfortably within this range carries greater evidence for existence than one 

outside it, so the free energy principle mandates that humans should act to ensure the former 

(Bruineberg, Kiverstein et al. 2016). Minimisation of free energy through action and perception is 

referred to as active inference. The equivalence between active inference and self-evidencing can be 

seen through Jensen’s inequality (Beal 2003): 

 

 

Free Energy Negative log evidence

Jensen's inequality

( , , ) ( , , )
( , ) E ln ln E ln ( ) : arg min

( , ) ( , )
q q

p y x v p y x v
F y q p y q F

q x v q x v
  

 

In the above, p  is a probability distribution that defines the beliefs an organism has about the way 

in which sensory data is generated. q  is an arbitrary probability distribution that approximates a 

posterior probability distribution when the free energy is minimised. We refer to v  as hidden 

causes, while x  are latent or hidden states. The sensory data y  is the only set of variables an 

organism has access to. The tilde notation implies generalised coordinates of motion (Friston, 

Trujillo-Barreto et al. 2008), ( , , , )y vec y y y , a vector of temporal derivatives. This defines the 

trajectory of a variable in the same way as a Taylor series. With these definitions, we can write the 

equations of active inference as gradient descents on the variational free energy. 

 

v

x

v v

x x

a

D F

D F

a F

  

The notation 
u

u
 is used to simplify the equations above. 

v
 and 

x
 are the means 

(expectations) of the approximate posterior distributions of v  and  x , respectively. D  is a block 

diagonal matrix with components 

 
1 if 1

0 otherwise
ij

j i
D  . 

The foregoing provides a brief account of a very general formulation of (self evidencing) systems 

that effectively infer the causes of their sensory input to suppress surprise – or maximise Bayesian 
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model evidence. Technically, the first pair of equations above corresponds to a generalised 

(Bayesian) filter. In this setting, a ‘filter’ is a process that recovers latent or hidden states from 

observed signals. However, the last equation changes the game profoundly. This is because it 

describes action on the generative process – that changes the ‘filtered’ signals, as we will see below. 

It is clear from this formulation that we must compute the free energy gradients in the above 

equation to perform a gradient descent. To do this, we have to define the joint distribution 

( , , )p y x v  that expresses an organism’s beliefs about the processes that generate its sensations – 

its generative model. 

 

4. Generative model 

To specify the generative model, we factorise the joint distribution above to give 

 

( , , ) ( | , ) ( | ) ( )

( | , ) ,

( | ) ,

( ) ,

y

x

v

p y x v p y x v p x v p v

p y x v N g

p x v N f

p v N

  

This factorisation rests on a pair of equations, f  and g , analogous to those in the generative 

process above: one that determines the temporal dynamics of the system, and one that determines 

how the system gives rise to sensory data. These are depicted on the right of Fig. 1.  is the mean of 

the prior distribution over v , and 
v

 is its precision (i.e., inverse covariance matrix). 

The interface between the generative model and process is illustrated in the Bayesian network in 

Fig. 2, and this highlights the important differences between the two. The model is much simpler 

than the process. This is because the model does not allow for each eye to move independently, 

whereas the position of one eye offers no constraint over that of the other in the physical world. The 

other key differences are that action is part of the generative process, while hidden causes are only 

found in the model. The former causes changes in angular velocity, while the latter changes angular 

position. The hidden cause acts as a point attractor, drawing the eyes towards this position. 
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Figure 2 – The interface between model and process This Bayesian network shows how the 

generative process (filled circles) gives rise to sensory data, and how the generative model (unfilled 

circles) proposes this data is generated. Arrows connecting two variables indicate that the second 

variable is conditionally dependent on the first. Note that, as described in the main text, action of 

the extraocular muscles (EOM) in the real world causes changes in velocity (i.e. accelerations); while 

fictive fixation locations cause changes in position in the generative model. The relationship 

between the vectors in this graph and the variables of Fig. 1 are shown on the right. 

 

If we compute the free energy gradients using a generative model of the form outlined above 

(Appendix), they can be substituted into the gradient descent equations to arrive at the differential 

equations in Fig. 3 (Friston, Stephan et al. 2010). On the right hand side of Fig. 3, we illustrate how 

these equations could be implemented by passing messages between populations of neurons 

(Friston and Kiebel 2009, Bastos, Usrey et al. 2012, Shipp 2016). Ascending messages here are 

(excitatory) prediction errors, while descending messages are (inhibitory) predictions. It is this 

pattern that characterises predictive coding (Rao and Ballard 1999, Friston and Kiebel 2009). 
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Figure 3 – Neuronal message passing On the left are the equations describing a gradient descent on 

variational free energy. On the right, we show how these equations map to a neuronal message 

passing scheme for the generative model outlined above. To do so, we have simply assigned the 

terms on the left hand side of each equation to a neuronal population, and mapped the influences 

between each population with excitatory and inhibitory connections. We have separated the states 

representing positions and velocities into right and left components; for consistency with the 

representation of each hemifield on the contralateral side of the sagittal plane in the brain. The 

numbers in little blue circles refer to the anatomical designation of expectation and error units in 

Fig. 5. 

 

Fig. 4 shows the results of applying these equations, with two different prior distributions over the 

trajectory of a fictive fixation location. The first is a discontinuous function that changes discretely to 

different values, inducing saccades. The second is a sinusoidal function that gives rise to smooth 

pursuit eye movements. For both priors, the active inference scheme successfully computes the 

forces required to fulfil these beliefs. The common generative model for both eyes ensures the eye 

movements are conjugate – i.e. the eyes move together. In summary, using a plausible generative 

model and standard (active inference or filtering) dynamics we can reproduce the control of eye 

movements. Notice that we have not appealed to any control theory: in active inference, motor 

control follows naturally from the suppression of prediction errors generated by prior expectations: 

see Fig. 3. In other words, the active filter has prior beliefs about where it should be looking and 

action fulfils those beliefs in a Bayes optimal fashion. The plausibility of this sort of scheme has been 

addressed in the context of visual search (Friston, Adams et al. 2012) and oculomotor delays 

(Perrinet, Adams et al. 2014). 



Computational oculomotion 

8 
 

We now turn to the question of the biological substrates of the active filtering equations used to 

generate oculomotor behaviour per se. 
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Figure 4 – Simulated eye movements These plots show the changes in expectations (solid lines) and 

prediction errors (dotted lines) over time for the hidden causes and states during saccadic eye 

movements (upper), and smooth pursuit movements (lower). The eye positions at various times are 

shown on the left of each set of plots. The grey regions correspond to 90% Bayesian confidence 

intervals around the inferred hidden states; namely the vertical and horizontal angular positions and 

velocities. The legend in the lower right of each plot indicates the modality represented by each line 

(visual=V , type II afferent/position= , type Ia afferent/velocity= ). For example, a dotted line with 

a colour associated with V represents a prediction error in the visual domain. To see the key 

variables plotted individually, please refer to Figure 5, where these are represented in separate 

raster plots. 

 

5. Anatomy and electrophysiology 

The biological implementation of the equations in Fig. 3 is anatomically constrained in several ways. 

First, sensory inputs must reach the brain by the cranial nerves that carry that information. The 

neuronal populations that receive these inputs directly must reside in regions of the brain that 

contain the terminals of the relevant sensory afferent fibres. Similarly, neurons encoding actions 

should be lower motor neurons that contribute efferent fibres to the cranial nerves. The abducens 

nucleus mediates movements in the horizontal dimension only, and all movements in the vertical 

dimension are mediated by cranial nerves originating in the midbrain. The computational anatomy 

shown in Fig. 5 satisfies these constraints, and is remarkably consistent with the patterns of 

excitatory and inhibitory connectivity of the brainstem (Parr and Friston 2017). 

To illustrate the neuronal plausibility of this computational anatomy, electrophysiological responses 

of cells in each region were simulated by taking the representations of each variable, as shown in the 

plots in Fig. 4, and converting them into raster plots. The first two raster plots in Fig. 5 show the 

firing rates of two of the three neuronal populations in the superior colliculus. The colliculus contains 

cells with three distinct electrophysiological phenotypes: ‘burst’, ‘fixation’, and ‘build-up’ cells 

(Munoz and Wurtz 1995a). Burst cells fire at the start of a saccade, as can be seen in the first raster 

plot. This cell type is known to disnaptically inhibit cells in the Raphe nucleus interpositus (RIP) 

(Yoshida, Iwamoto et al. 2001). This is consistent with the computational anatomy here, as there is 

an excitatory connection to a second collicular population that has inhibitory connections to the RIP. 

Both physiologically and anatomically, this cell type appears to be consistent with prediction error 

units signalling visual prediction (or ‘retinal-slip’) errors of the type implicated in models of eye 

movement (Krauzlis and Lisberger 1989).  
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Fixation cells are active while a fixation is maintained. The second firing rate plot shows a cell that is 

active maximally only during fixations in one direction. These cells are known to project directly to 

cells in the RIP (Gandhi and Keller 1997), again showing consistency with our proposed anatomy. 

These cells appear to signal the expected hidden cause. Build-up cells have yet another distinct 

phenotype, and must be assigned to the only remaining collicular cell type in Fig. 5, which signals the 

error in the expected hidden cause. We discuss this cell type in more detail below, but first turn to a 

key target of projections from the superior colliculus.  

The RIP contains a population of cells known as ‘omnipause’ cells (Büttner-Ennever, Cohen et al. 

1988). These cease firing at the start of a saccade, but are active during fixations. This corresponds 

well to the third raster plot that shows a decrease in activity locked to each saccade. This signal is 

the prediction error related to the hidden states encoding current eye position. Neurons in the RIP 

inhibit those in the rostral interstitial nucleus of the medial longitudinal fasciculus (thought to 

coordinate vertical saccades (Büttner-Ennever and Büttner 1978)) and in the parapontine reticular 

formation (that coordinates horizontal saccades (Cohen, Komatsuzaki et al. 1968, Henn 1992)) 

(Strassman, Highstein et al. 1986). The fourth and fifth rows of raster plots show neurons in the 

latter area. These neurons show bursting activity that triggers a saccade, here related to the error in 

positional (proprioceptive) sensations. We have simulated such neurons representing saccades to 

either side of space. 
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Figure 5 – The computational anatomy of oculomotion On the left of this schematic, we show a 

plausible anatomical implementation of the Bayesian filtering equations in Fig. 3. This satisfies the 

connectivity constraints described in the main text. Note that we have included motor neurons 

(grey) that represent action. As Fig. 3 indicates, these only receive direct influences from the 

prediction error units at the sensory level. On the right, we show the simulated neuronal activities, 

along with a horizontal electrooculographic (HEOG) trace indicating the eye position. Each of the 

numbered raster plots is associated with a particular neuronal population indicated by numbers in 

little blue circles. See the main text for a description of these units and Fig. 3 for their equivalent 

location in the computational architecture. SC = superior colliculus; riMLF = rostral interstitial 

nucleus of the medial longitudinal fasciculus; PPRF = parapontine reticular formation; RIP = raphe 

interpositus nucleus. 

 

The pattern of activity of the build-up cells is very interesting, when viewed at a population level 

(Lee, Rohrer et al. 1988, Munoz and Wurtz 1995b). To simulate the spatiotemporal characteristics of 

electrophysiological responses in collicular build-up cells during saccades, we treated the retinotopic 

location vectors (i.e. the horizontal and vertical components of the error) as encoding the peaks of 

activity in the superior colliculus. This enabled us to generate simulated responses of colliculus 

neurons in which (Gaussian) ‘bumps’ of activity moved over a retinotopic map, similar to those 
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elicited in computational models of the superior colliculus (Bozis and Moschovakis 1998, Seung 

1998, Seung, Lee et al. 2000, Trappenberg, Dorris et al. 2001, Richert, Nageswaran et al. 2013). In 

turn, this enabled us to simulate spatiotemporal responses that would have been observed (by 

assuming a fixed shape of bump); either by imaging perisaccadic population responses in the deep 

layers of the superior colliculus (see Fig. 6A) – or unit responses at any particular location – over time 

– in terms of perisaccadic time histograms (see Fig. 6B). The post stimulus (saccade) time histograms 

bear a remarkable similarity to empirical results of the sort shown in Fig. 6C (Munoz and Wurtz 

1995b).  

 

 

Figure 6 – Collicular ‘build-up’ cells This shows the population activity in collicular build-up cells 

during one of the saccades illustrated in Fig. 4 (left). Our simulated build-up cells are those that 

signal the error in the hidden cause (target fixation location). A shows this as if we had imaged the 

right superior colliculus, which represents the left side of space. We have made use of the known 

retinotopy of the colliculus (Quaia, Aizawa et al. 1998) to plot this activity. B shows a set of simulated 

recordings of single cells from the onset to end of the saccade. Each cell represents a different 

retinotopic location, indicated by the angles given for each plot. Note that the eccentricity increases 
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with each row. C shows real data (adapted from (Munoz and Wurtz 1995b)) from single unit 

recordings of build-up cells in the superior colliculus.  

 

6. Lesions 

Having demonstrated the anatomical and physiological plausibility of an active inference formulation 

of oculomotor control, we used the anatomical constraints underwriting the computational anatomy 

in Fig. 5 to motivate simulated lesions. Our first lesion removed all the connections that travel in the 

oculomotor cranial nerves on the left. This is to demonstrate that the simulation reproduces sensible 

results; i.e. the paralysis of the left eye (Fig. 7, left). Computationally, this disconnection precludes 

the receipt of sensory data by proprioceptive prediction error units for the left eye, and disconnects 

action units from the extraocular muscles.  

The second simulation aims to model a subtler lesion: damage to the medial longitudinal fasciculus, 

that travels from the abducens (CN VI) nucleus in the pons to the contralateral oculomotor (CN III) 

nucleus in the midbrain, causes a clinical sign referred to as an ‘internuclear ophthalmoplegia’. This 

is commonly seen in demyelinating conditions, such as multiple sclerosis, that induce white matter 

lesions. This pathology represents a disconnection syndrome (Catani and ffytche 2005) that 

manifests as a failure of conjugate control of eye movements.  

Fig. 7 (right) shows the results of performing this lesion in silico. Our lesion disrupts the signal from 

the left CN VI to the right CN III (see Fig. 5). Computationally, this represents a disconnection 

between error and expectation units encoding horizontal positional error and angular velocity 

respectively. As in real patients, both eyes are able to look to the right normally. However, when 

looking to the left, the left eye is able to look laterally, but the right eye fails to keep up while 

moving medially. This violation of conjugacy induces nystagmus in the (healthy) left eye. In our 

simulation, nystagmus is seen in both eyes, but more the left than the right. The deficit is most 

obvious in the plot labelled ‘action’. 
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Figure 7 – Computational lesions These plots demonstrate the consequences of simulated lesions. 

The first is a lesion of all the connections between the brainstem and the extraocular muscles of the 

left eye. As both the plots and the simulated eyes show, this causes a paralysis of the left eye, in 

keeping with what we would expect. On the right, we show the consequences of a lesion to the 

medial longitudinal fasciculus. The images and the plot of ‘action’ show that rightward gaze occurs 

normally in both eyes, but that leftward gaze reveals a deficit. The right eye fails to adduct to the 

same degree as the left abducts, and this induces nystagmus in both eyes – primarily the left. This is 

known clinically as an internuclear ophthalmoplegia. Please see refer to Figure 4 for an explanation 

of these plots. 

 

7. Discussion 

We have demonstrated in the above that, given a prior belief about anticipated fixation locations, , 

Bayesian filtering can be used to generate movements that fulfil these beliefs. An important 

outstanding issue relates to the source of these priors. In predictive coding, there are typically higher 

hierarchical levels in play that send descending messages (predictions) to the lower level (Kiebel, 

Daunizeau et al. 2008). These are used to derive the (empirical) prior beliefs at the lower level. In 

short, in this paper we have focused on the lowest level of deep (hierarchical) active vision that 

translates predictions about "where I am going to look next" into oculomotion that realises these 

predictions. As the predictions  enter the Bayesian filtering equations to form prediction errors 
v

, any descending connections would have to target units encoding these prediction errors. The 

anatomy of connections to the superior colliculus therefore hints at the anatomy of higher levels 

generating top-down predictions (Parr and Friston 2017). This anatomy includes projections from 

the frontal eye fields (Fries 1984), the parietal cortex, and the substantia nigra pars reticulata 

(Hikosaka and Wurtz 1983). We will attempt to address the role of these connections in future work, 

and to link them to the decision processes we have previously attributed to cortical and subcortical 

regions (Parr and Friston 2017). This will be essential in order to account for more complex, 

oculomotor behaviour, including the spatial patterns of saccadic searches their resemblance to ‘Lèvy 

flights’ (Brockmann and Geisel 1999, Roberts, Wallis et al. 2013). 

 

We note that there are some subtle differences in the neuronal responses we have simulated (Figure 

5) compared to those measured in real neurons. For example, our simulated burst neurons show not 

only an increase in firing before a saccade in a given direction, but also a decrease in firing rate 

before a contralateral saccade. When these neurons have been interrogated in vivo (Munoz and 
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Wurtz 1995a), a directional sensitivity of this type has been demonstrated. The firing rate of a burst 

neuron is higher when a saccade is performed in one direction compared to a saccade in the 

opposite direction. However, there is no clear decrease in activity, relative to baseline firing rate, in 

response to a saccade contralateral to the preferred direction of a burst neuron – as seen in our 

simulations. There are several possible explanations for this discrepancy. One is that, as firing rates 

cannot be negative, the positive and negative parts of the variables encoded by our synthetic 

neurons are actually represented by different groups of burst neurons. A second possibility is that 

the mapping between these variables and neuronal firing rates is a convex function. If this is the 

case, we would expect very small changes in firing rate for a change in a variable at the lower end of 

the scale compared to those induced by the same change at higher values. The low baseline firing 

rate of burst neurons (Munoz and Wurtz 1995a) supports this interpretation. 

 

In addition to the oculomotor syndromes simulated here, an interesting next step would be to 

consider a broader range of pathologies. For example, schizophrenia is a psychiatric disorder 

associated with subtle oculomotor abnormalities, including changes in smooth pursuit eye 

movements (Thaker, Ross et al. 1998). Previous research using this form of modelling has been 

useful in characterising this kind of deficit in terms of abnormal estimates of precision in the 

generative model (Adams, Perrinet et al. 2012). In addition, eye movement signs are ubiquitous in 

neurology (Anderson and MacAskill 2013). To take this model forward – to address cardinal 

oculomotor deficits in psychiatry and neurology – we may need to develop a more complete model 

that, in addition to accounting for visual and proprioceptive data, accounts for vestibular inputs. This 

is likely to be important in the development of nystagmus due to cerebellar or brainstem damage 

(Troost 1989). 

 

 

 

8. Conclusion 

In this paper, we have demonstrated that active inference provides a sufficient and principled 

account of oculomotor forces that fulfil prior beliefs about eye movements. By using a generative 

model that is common to both eyes, we enforce conjugate eye movements. When we map the 

ensuing Bayesian filtering equations to their associated process theory; namely, predictive coding, 

we find a connectivity structure that is remarkably consistent with the neuroanatomy of the 

oculomotor brainstem. Once this anatomical assignment is made, it is possible to simulate saccade-

related responses we would expect to record from these regions with an electrode. These were 
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formally very similar to recordings from the homologous anatomical regions in the 

electrophysiological literature. Finally, we showed that anatomically motivated computational 

lesions reproduced the eye movement deficits seen in neurological patients. 
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Appendix –generalised (Bayesian) filtering 

To derive the filtering equations (Friston, Stephan et al. 2010) in Fig. 3, we first must specify the form 

of the approximate posterior distribution, ( , )q x v . We start by making a mean field approximation: 

this assumes the full distribution can be obtained through a product of marginal distributions for 

each temporal derivative ( [ ]ix  means 
thi  derivative of x ) of the hidden states and causes. 

 [ ] [ ]( , ) ( ) ( )i i

i

q x v q x q v   

If we take one of these marginal posterior distributions, we can relate this to the joint density given 

by the generative model through Bayes rule. We can then expand this, using a Taylor series, to find 

an appropriate form for the distribution. 

 

[ ] [ ]

[ ] [ ] \ [ ] \

[ ] \ [ ] [ ] 2 [ ]1 1
2

[ ] [ ]

[ ] [ ] \

( ) ( | , , ) ( , , , )

exp ln ( , , , ) ( ) ...

( , )

ln ( , , , )i i

i i i i i

i i i i i

x x xZ

i i

x x

i i i

x xx x

q x p x x v y p x x v y

p x v y x P

N P

P p x v y

  

The Taylor series expansion reveals the approximate equality between a marginal posterior and a 

Gaussian distribution (this is also true for [ ]( )iq v ). This is known as the Laplace approximation 

(Friston, Mattout et al. 2007). Notably, the precision of this distribution is an analytic function of the 

mean. This means that we only need optimise the mean explicitly. 
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To find the free energy gradients, we can take the variational derivative with respect to each 

marginal, and set this to zero. Omitting terms constant terms, this gives: 
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As the expectations above are with respect to Gaussian distributions, it follows that the optimal 

means of these distributions are the values that maximise the terms over which the expectation is 

taken. This allows us to substitute the means into the arguments of the expectations above, and to 

perform a generalised gradient ascent of the quantity within the expectation. 
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The second line comes from expanding the log Gaussians, where 
[ ] [ ] [ ]i i i

y y g , 
[ ] [ 1] [ ]i i i

x x f , 

and 
[ ] [ ] [ ]i i i

v v . Similarly, 

 [ ] [ ]

[ ] [ 1] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
i i

i i i i i i i i i i

v v y y x x v vv v
g f   

Expressing these equalities in terms of generalised coordinates of motion gives the generalised 

filtering equations shown in Fig. 3. 
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Figure 1 – Equations of motion This schematic shows the equations used to determine the motion 

of the eyes, and the sensations they generate. On the left, the pair of equations defining the ‘real-

world’ generative process are shown. On the right, the analogous equations are shown for a 

generative model of that process. Note that the dimension of the sensory data, y , is equal for both, 

but the dimensions of the hidden states, x , differ. In the generative process, 
1,2,3,4x  are the (2 x 2) 

angular horizontal and vertical positions for the right and left eye (components of the x  vectors). 

5,6,7,8x  are the angular velocities (components of the x  vectors). Each of these is associated with a 

result torque involving the extraocular muscles, 1,2,3,4a , an elastic torque with spring constant 1k , 

and a viscous torque with a viscosity constant 2k . The resultant torque is converted to acceleration 

through division by the moment of inertia of the eyeballs J . In the generative model, 1,2x  are the 

horizontal and vertical positions of both eyes, which are crucially assumed to be the same. 
3,4x  are 

the velocities. 
1,2v  are the two components of the target fixation vector. w  and z  are random 

Gaussian fluctuations with means of zero and precisions of x  and y respectively. 

Figure 2 – The interface between model and process This Bayesian network shows how the 

generative process (filled circles) gives rise to sensory data, and how the generative model (unfilled 

circles) proposes this data is generated. Arrows connecting two variables indicate that the second 

variable is conditionally dependent on the first. Note that, as described in the main text, action of 

the extraocular muscles (EOM) in the real world causes changes in velocity (i.e. accelerations); while 

fictive fixation locations cause changes in position in the generative model. The relationship 

between the vectors in this graph and the variables of Fig. 1 are shown on the right. 

Figure 3 – Neuronal message passing On the left are the equations describing a gradient descent on 

variational free energy. On the right, we show how these equations map to a neuronal message 

passing scheme for the generative model outlined above. To do so, we have simply assigned the 

terms on the left hand side of each equation to a neuronal population, and mapped the influences 

between each population with excitatory and inhibitory connections. We have separated the states 

representing positions and velocities into right and left components; for consistency with the 

representation of each hemifield on the contralateral side of the sagittal plane in the brain. The 

numbers in little blue circles refer to the anatomical designation of expectation and error units in 

Fig. 5. 
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Figure 4 – Simulated eye movements These plots show the changes in expectations (solid lines) and 

prediction errors (dotted lines) over time for the hidden causes and states during saccadic eye 

movements (upper), and smooth pursuit movements (lower). The eye positions at various times are 

shown on the left of each set of plots. The grey regions correspond to 90% Bayesian confidence 

intervals around the inferred hidden states; namely the vertical and horizontal angular positions and 

velocities. The legend in the lower right of each plot indicates the modality represented by each line 

(visual=V , type II afferent/position= , type Ia afferent/velocity= ). For example, a dotted line with 

a colour associated with V represents a prediction error in the visual domain. To see the key 

variables plotted individually, please refer to Figure 5, where these are represented in separate 

raster plots. 

Figure 5 – The computational anatomy of oculomotion On the left of this schematic, we show a 

plausible anatomical implementation of the Bayesian filtering equations in Fig. 3. This satisfies the 

connectivity constraints described in the main text. Note that we have included motor neurons 

(grey) that represent action. As Fig. 3 indicates, these only receive direct influences from the 

prediction error units at the sensory level. On the right, we show the simulated neuronal activities, 

along with a horizontal electrooculographic (HEOG) trace indicating the eye position. Each of the 

numbered raster plots is associated with a particular neuronal population indicated by numbers in 

little blue circles. See the main text for a description of these units and Fig. 3 for their equivalent 

location in the computational architecture. SC = superior colliculus; riMLF = rostral interstitial 

nucleus of the medial longitudinal fasciculus; PPRF = parapontine reticular formation; RIP = raphe 

interpositus nucleus. 

Figure 6 – Collicular ‘build-up’ cells This shows the population activity in collicular build-up cells 

during one of the saccades illustrated in Fig. 4 (left). Our simulated build-up cells are those that 

signal the error in the hidden cause (target fixation location). A shows this as if we had imaged the 

right superior colliculus, which represents the left side of space. We have made use of the known 

retinotopy of the colliculus (Quaia, Aizawa et al. 1998) to plot this activity. B shows a set of simulated 

recordings of single cells from the onset to end of the saccade. Each cell represents a different 

retinotopic location, indicated by the angles given for each plot. Note that the eccentricity increases 

with each row. C shows real data (adapted from (Munoz and Wurtz 1995b)) from single unit 

recordings of build-up cells in the superior colliculus.  

Figure 7 – Computational lesions These plots demonstrate the consequences of simulated lesions. 

The first is a lesion of all the connections between the brainstem and the extraocular muscles of the 

left eye. As both the plots and the simulated eyes show, this causes a paralysis of the left eye, in 
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keeping with what we would expect. On the right, we show the consequences of a lesion to the 

medial longitudinal fasciculus. The images and the plot of ‘action’ show that rightward gaze occurs 

normally in both eyes, but that leftward gaze reveals a deficit. The right eye fails to adduct to the 

same degree as the left abducts, and this induces nystagmus in both eyes – primarily the left. This is 

known clinically as an internuclear ophthalmoplegia. Please see refer to Figure 4 for an explanation 

of these plots. 

 

 

 

 

 

Highlights 

 Eye movement control is cast as an inferential process that induces Newtonian rotational 

forces 

 A plausible computational anatomy of Bayesian filtering in the brainstem is proposed 

 Smooth pursuit and saccadic eye movements are simulated 

 Lesions to the model cause similar patterns of eye movements to those found in 

neurological patients 

 




