

1 1) Article type: special article

- 2 2)Title: Childhood antecedents of adult cardiovascular risk: could plant-based diets for
- 3 children improve adult cardio-metabolic health?
- 4 **3**) Authors:
- 5

6 Małgorzata A. Desmond

- 7 1. UCL Great Ormond Street Institute of Child Health. University College London. United
- 8 Kingdom. 2. Department of Paediatrics, Nutrition and Metabolic Diseases. Children's
- 9 Memorial Health Institute. Warsaw. Poland.

10 Jakub Sobiecki

- 11 1. School of Public Health. Imperial College London. United Kingdom. 2. Department of
- 12 Paediatrics, Nutrition and Metabolic Diseases. Children's Memorial Health Institute.
- 13 Warsaw. Poland.
- 14 Mary Fewtrell
- 15 UCL Great Ormond Street Institute of Child Health. University College London. United
- 16 Kingdom
- 17 Jonathan C.K. Wells
- 18 UCL Great Ormond Street Institute of Child Health. University College London. United
- 19 Kingdom.

20 4) Corresponding author:

- 21 Malgorzata Desmond; Childhood Nutrition Research Centre; Population, Policy and Practice;
- 22 UCL Great Ormond Street Institute of Child Health; 30 Guilford Street; London WC1N 1EH,
- 23 United Kingdom; +44207 905 2104, malgorzata.desmond.11@ucl.ac.uk;

24 **5)** Abstract:

25 Cardiovascular disease (CVD) is the largest contributor to global mortality and this trend is expected to continue. Mortality rates have been falling, however adverse developments in 26 27 obesity and diabetes could reverse this. It has been estimated that the only viable strategy to 28 reduce the epidemic is to focus on population-wide risk factor reduction. Primordial 29 prevention, a strategy aimed at avoiding the development of risk factors before the disease 30 onset, has been shown to reduce the CVD epidemic substantially. Plant-based diets appear 31 beneficial for prevention of cardio-metabolic diseases, with adult vegetarians and vegans 32 having lower CVD risk than omnivores. Atherosclerosis starts in childhood and progresses in relation to classical CVD risk factors, which, along with dietary habits, track to adulthood. 33 34 Based on this evidence, we propose the hypothesis that plant-based diets in childhood could 35 promote cardio-metabolic health in adults, and thereby reduce CVD and promote longevity 36 and health. However, we also note the need for additional research to establish the safety of predominantly or exclusively plant-based diets in children. 37 38 6) Key words: vegetarian diets, children, primordial prevention, cardiovascular disease, cardiovascular disease risk factors 39 40 41 42 43 44

46 Introduction

47 Cardiovascular disease (CVD) remains the number one cause of premature mortality in the world.¹ In high-income countries it also contributes the highest percentage of ill health in 48 adults.² In most industrialized countries CVD death rates have been declining since the late 49 1970s.³ However, two factors threaten to reverse this trend today: ageing of the population 50 51 (i.e. increased absolute numbers of those aged 70+ and 80+ years) which increases the 52 lifetime exposure to the risk factors; and global increases in the prevalence of obesity and diabetes,⁴ and in some countries in mean blood pressure and smoking prevalence.⁵ These 53 54 trends may be beginning to cancel out the health gains linked to declines in other risk factors 55 and better care and treatment achieved in recent decades as recently shown for younger adults in the UK, US and Australia.^{4, 5,6} The consequence of these antagonistic trends might be an 56 increase in the actual burden of CVD.⁴ 57 It has been postulated that the only strategy capable of substantially reducing the CVD 58 burden in the current scenario is to focus on population-wide reduction of major CVD risk 59 60 factors, particularly targeting cholesterol levels and blood pressure. This approach has been 61 shown to be more effective than focusing on pharmacological intervention in high-risk individuals.⁷ The potential impact of implementing risk-factor reduction policies focused on 62 diet and lifestyle in 9 European countries has been recently quantified and it was estimated 63 that it would result in up to 29.1% fewer CVD deaths by 2020.⁸ 64

65

However, there is increasing evidence that cardio-metabolic risk in adulthood is partially
determined by the same risk profile in childhood.⁹ Therefore interventions that target risk
factors in young people could potentially be key aspects of preventive strategies in the longterm.

70

71	Diet is well established to be one of the most important factors affecting cardiovascular risk
72	in adults. ¹⁰ A number of axes of dietary variability have been linked with cardio-metabolic
73	risk, including the consumption of saturated and trans-fats, sodium, fruits and vegetables,
74	whole grains, fish and nuts. ¹⁰ However, there is growing interest in one particular axis, that
75	may also relate to many of the others: namely the proportion of the diet obtained from plants.
76	Plant- based diets include vegan diets that exclude products of animal origin; vegetarian diets
77	that rule out meat and fish consumption, and also dietary patterns predominantly based on
78	plant foods with undefined and individually determined levels of animal product
79	consumption. For the purpose of this review, vegetarian and vegan diets will be jointly
80	defined as meat-free diets.
81	Going beyond their potential health benefits, it is notable that plant-based diets are also
01	
82	considered critical for long-term planetary sustainability ¹¹ and they are furthermore chosen
83	for ethical reasons by those who sympathize with animal welfare movements. ¹² It appears
84	that interest in meat-free diets is growing in many countries, ¹³ however exact estimates of
85	these trends are yet to be produced. These issues collectively justify greater research into how
86	plant-based diets might be adapted to simultaneously promote health and decrease ecological
87	damage.
88	In adults, as we review in detail below, dietary patterns emphasizing the intake of
89	unprocessed foods of plant origin seem to confer substantial protection against CVD. In
90	particular, fruit and vegetables, whole grains, nuts and legumes consumption has been linked
91	inversely with CVD risk in dose-dependent fashion. ¹⁰ In this context, it does not seem
92	surprising that adults systematically pursuing vegetarian and vegan diets have a more
93	favourable profile of CVD risk factors ^{14,15} translating to lower prevalence of ischemic heart

disease (IHD; the predominant form of CVD in Western populations) $risk^{16,17}$ than otherwise

similar non-vegetarians, primarily attributed to their diet.¹⁸ However, a note of caution is that

studies are inconsistent regarding whether the rate of mortality from IHD differs between
vegetarians/vegans and omnivores, with one study showing 26-34% reductions in risk for
different vegetarian diets¹⁷, but another study reporting no difference ¹⁹. Moreover, there is
currently no evidence that vegetarians/vegans have lower rates of cerebrovascular disease.
^{17,20, 19}

Some of this inconsistency in the association of diet and mortality risk could potentially be explained by differences in the uptake of treatment and other health services between vegetarians and non-vegetarians; or differences in the duration of consuming the vegetarian diet. Another possibility is that the cardioprotective effects of plant-based diets relating to decreased IHD risk may be counter-balanced by a lack of beneficial effects on non-IHD CVD risk. Further research is required to improve understanding of these scenarios.

107 While the overt manifestation of cardiovascular disease occurs primarily in adult life, the origins of atherosclerosis start well before.²¹ and the atherogenic process is influenced by 108 109 measurable risk factors. So far, research on childhood cardio-metabolic risk has placed greatest emphasis on markers of growth and nutritional status, including birth weight,^{22,23} 110 childhood body mass index (BMI)^{24,25} and catch-up growth.²⁶ However, these childhood risk 111 112 factors are potentially influenced by dietary composition, and healthy childhood dietary patterns have been found to be associated with lower adulthood CVD risk.²⁷ This might be 113 mediated via beneficial effects of prudent diets on the CVD risk factor profile in childhood 114 115 other than just BMI.

In this article we therefore review substantial evidence on (a) the association between meatfree diets and CVD risk in adults, and (b) the developmental origins of atherosclerosis, and (c) the tendency for childhood cardio-metabolic risk factors to track into adulthood. This generates a new hypothesis that meat-free or plant-based diets in childhood, through their

120 effects on blood biochemistry and other cardiovascular risk factors, offer a novel opportunity

to promote a healthy childhood trajectory towards adult cardio-metabolic health.

122

123 Plant based diets and adult CVD risk

124 Diet represents a key modifiable direct risk factor for CVD, and it also impacts other

125 components of risk, including: obesity, unhealthy lipid profile, hypertension, raised blood

126 glucose, and even physical activity level. It is foods of plant origin that have the most

- 127 established protective effect on CVD.¹⁰
- 128 As previously noted, vegetarian diets may decrease the risk of IHD, which is likely to be at

129 least partly mediated via classical CVD risk factors. Descriptive analysis of cardiovascular

130 profile of vegetarians may thus help elucidate mechanisms through which plant-based diets

131 exert their cardioprotective effects.

132 First, vegetarians and vegans have lower levels of body fat, mainly characterised by BMI. A

133 recent systematic review incorporating meta-analysis of 71 cross-sectional studies examining

the effect of a vegetarian diet and 19 cross-sectional studies examining the effect of a vegan

diet showed that these diets are associated with $1.49 \text{ kg/m}^2 (95\% \text{ CI} - 1.72 - 1.25)$

and 1.72 kg/m^2 (95% CI –2.21- –1.22) lower BMI, respectively.²⁰ These lower BMI values

are attributed to the lower energy density of diets high in fruits and vegetables, and the

138 satiating effect of increased fibre intakes.²⁸ The association of obesity with CVD risk is

- 139 mediated by various other risk factors.²² And these, as well, show a better profile among
- 140 people following vegetarian diets.

142	Second, vegetarians, especially vegans, have lower levels of total and non-HDL cholesterol.
143	A recent systematic review with meta-analysis of observational studies showed estimates of
144	effect size ranging from 0.72 mmol/L(95% CI- 0.80.64) reductions in total cholesterol
145	and 0.55 mmol/L (95% CI $-0.62 - 0.47$) in LDL cholesterol (LDL-C) associated with
146	vegetarian diets compared to omnivore diets (based on 64 and 46 cross sectional studies
147	respectively) and 0.80 mmol/L (95% CI– 0.90 - -0.70) reductions in total cholesterol and
148	0.59 mmol/L (95% CI -0.770.40) in LDL-C associated with vegan diets (based on 19 and
149	13 cross-sectional studies respectively). ²⁰ Both total and non-HDL cholesterol concentrations
150	tend to be highest in meat eaters and lowest in vegans, with vegetarians having intermediate
151	values. ³⁰ In another systematic review and meta-analysis of 11 randomised clinical trials (7
152	included a vegan diet, 2 included a lacto-ovo vegetarian diet, 2 included a lacto vegetarian
153	diet), Wang et al. ¹⁴ showed that vegetarian diets were associated with significantly lower total
154	cholesterol, LDL-C and non-HDL with pooled estimated effects of -0.36 mmol/L (95%
155	confidence interval (95% CI- 0.550.17), -0.34 mmol/L (95% CI -0.570.11), and -0.30
156	mmol/L(95% CI -0.500.10) respectively. A 1-mmol/L reduction in TC and LDL-C levels
157	results in a 26.6% to 29.5% decrease for any cardiovascular disease–related event. ³¹
158	Therefore, the average reductions of TC and LDL-C concentrations following a vegetarian
159	diet would correspond to a decrease in cardiovascular disease risk of about 9.0% to 10.6%. ¹⁴
160	Mechanistically, vegetarian diets may reduce blood cholesterol concentrations due to their
161	lower content of saturated, total fat and cholesterol, ³² and their higher intake of dietary fibre
162	and numerous phytochemicals, all of which have been linked to lower blood lipids. ³³
163	Third, adults on plant based diets have lower systolic (SBP) and diastolic blood pressures
164	(DBP), and lower risk of hypertension, compared to meat eaters. In the cross-sectional
165	analysis of a sub-set of 592 black women and men enrolled in the Adventist Health Study-2
166	(25% vegetarian and vegan; 75% non - vegetarian) the risk of hypertension varied among

167	dietary groups and was lowest for vegans and highest for omnivores. The relative risk (RR) in
168	comparison to omnivores was 0.37 (95% CI 0.19- 0.74) and 0.57 (95% CI 0.36-0.92) 0.53 for
169	vegans and vegetarians respectively in a model adjusted for, age, sex, physical activity. ³⁴ In a
170	matched cohort study of 4109 Taiwanese non-smokers, where each vegetarian was matched
171	with five non-vegetarians by age, sex, and study site, vegetarians had 28% lower risk (RR
172	0.72; 95% CI 0.55-0.86) for hypertension adjusting for age, sex, C-reactive protein, waist
173	circumference, and fasting glucose. ³⁵
174	Similarly, a systematic review and meta-analysis of controlled clinical trials and
175	observational studies showed a reduction in mean SBP (-4.8 mm Hg; 95% CI-6.63.1)
176	and DBP (-2.2 mm Hg; ; 95% CI -3.51.0) after application of a vegetarian diet compared
177	with the consumption of omnivorous diets (7 controlled trials, including 311 participants;
178	mean age, 44.5 years) and lower mean SBP (-6.9 mm; CI, -9.14.7) and DBP (-4.7 mm
179	Hg; 95% CI, -6.33.1) associated with consumption of vegetarian compared with
180	omnivorous diets (32 observational studies; a total of 21,604 participants; mean age 46.6
181	years). ¹⁵
182	Mechanistically, several dietary factors in plant-based diets, other than those affecting BMI,
183	may account for their effects on BP. Vegetarians have higher fibre intakes, ³⁶ which have been
184	shown to lower blood pressure. ³⁷ Other factors, including higher plant protein ³⁸ and
185	potassium intake ^{39,40} and lower haem iron intake ⁴¹ may improve blood pressure regulation.
186	Potential mechanisms include baroreceptor sensitivity, direct vasodilatory effects, and
187	changes in catecholamine and renin-angiotensin-aldosterone metabolism,42 along with
188	changes in blood viscosity. ³⁸

Nutrition Reviews

190	Every 10 mm Hg reduction in SBP significantly reduces the risk of major cardiovascular
191	disease events (RR 0.80, 95% CI 0.77–0.83), coronary heart disease (RR 0.83, 95% CI 0.78–
192	0.88), and stroke (RR 0.73, 95% CI 0.68–0.77). ⁴⁴
193	Fourth, plant-based diets are associated with lower blood glucose levels, insulin resistance
194	and diabetes risk. ⁴⁵ In a systematic review and meta-analysis of observational studies,
195	including 27 studies with 2256 vegetarian and 2192 non-vegetarian participants, and 4 studies
196	of 83 vegans and 125 omnivores, plant-based diets were significantly associated with lower
197	blood glucose levels (vegetarians -5.08 mg/dL, 95% CI -5.984.19; vegans - 6.39 mg/dL,
198	95% CI $-12.350.41$). ²⁰ Observational studies further show that the prevalence of type 2
199	diabetes is 1.6 to 2 times lower in vegetarians compared to omnivores, even after controlling
200	for body weight. ^{46, 47}

201

Likewise, clinical interventions in subjects with type 2 diabetes have demonstrated that 202 203 adopting a vegetarian diet leads to a greater reduction in fasting plasma glucose, HbA1c, and hypoglycemic medication compared to a conventional hypocaloric diet.^{47,48} These results 204 confirm substantial protective effects of the portfolio of foods found in plant-based diets, ⁴⁹ 205 ^{50,51, 52} along with the avoidance of meat, ⁵³ on glycaemic control and risk of diabetes. 206 Mechanistically, plant-based diets may confer protective effects on diabetes risk through 207 208 caloric restriction, reduced intake of saturated fatty acids, high intake of polyunsaturated and 209 monounsaturated fatty acids, low glycaemic index, increased intake of fibre, higher intake of 210 non-haem iron and reduction in iron stores, increased intake of antioxidants, vitamins and 211 micronutrients, high intake of vegetable instead of animal protein, and high intake of plant 212 sterols and prebiotics. All of these have been shown to have a positive effect on diabetes prevention.46 213

- 214 Diabetes confers about a two-fold excess risk for CVD, independently from other
- conventional risk factors. In people without diabetes, fasting blood glucose concentration is
- 216 modestly and non-linearly associated with risk of vascular disease.⁵⁴
- Finally, lower levels of C-reactive protein (CRP) have been reported in adult vegetarians
- 218 (0.77 mg/L; standard error (SE) 1.29) for vegetarians; (1.30 mg/L; (SE 1.38)) for matched
- omnivores, P<0.01),⁵⁵ and a decrease in CRP was observed in adults adopting vegan diets (-
- 220 28.2%; (SE 10.8%), P = .02).⁵⁶ Some studies have shown that healthy adult lacto vegetarians
- have significantly lower carotid intima media thickness (IMT)⁵⁷, and the advantage was
- related to the duration of consuming the vegetarian diet 58 , but one study showed no such
- 223 difference.⁵⁹
- Altogether, a lower prevalence of cardio-metabolic risk factors among adults following plant-
- based diets is likely to be the primary reason why they have $\sim 25\%$ lower risk of developing
- ischemic heart disease.^{16,20} The overall pattern in which vegetarian or vegan diets affect IHD
- risk factors and incidence is illustrated in Figure 1. The effects of meat-free diets on
- 228 cardiovascular risk factors are summarised in Table 1.
- However, while the main burden of CVD morbidity and mortality occurs in adults, there is
- compelling evidence that CVD risk is strongly shaped by experience at earlier ages.

231 Atherosclerosis starts in childhood

- Atherosclerosis comprises arterial lesions that are a fundamental component of adult CVD.
- 233 These lesions develop over time, starting with the relatively harmless accumulation of lipid-
- filled macrophages, called fatty streaks, and progressing to more advanced stages where the
- streaks are raised and vulnerable to rupture, manifesting as fibrous and calcified plaques.⁶⁰

236 Histological studies indicate that the clinically significant lesions develop from these initially harmless changes in symptomatic individuals.⁶¹ 237 238 It was early autopsy studies that first suggested that atherosclerosis begins early in life. Enos et al.⁶² showed gross evidence of coronary atherosclerosis among autopsies of 77.3% US 239 soldiers, average age 22 years, killed in the Korean war.² 240 241 Around the same time, Holman et al.²¹ demonstrated the presence of fatty streaks in the 242 aortas of children as young as 3 years. Subsequently, McNamara et al⁶³ reported 243 244 atherosclerosis in 45% and severe coronary atherosclerosis in 5% of 105 autopsies of US 245 soldiers killed in Vietnam. 246 More recently, the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study 247 described the emergence of clinically significant atherosclerotic lesions in a large sample of

autopsied persons aged 15–34 years who died in accidents.⁶⁰ Other studies reported some

degree of fatty streaks in the aorta in all 12-15 year olds,⁶⁴ and fatty streaks in the coronary

arteries in~30% of children aged 8-11 years and 69% of 12-15 year olds.⁶¹ The clinical

significance of these lesions depends on their anatomical location.

252 While epidemiological studies have not directly confirmed the link between the early 253 presence of aortic fatty streaks and the occurrence of clinically significant atherosclerotic plagues in later life,^{65,66} there is a relationship between the location of fatty streaks in the 254 coronary arteries in children and atherosclerotic lesions in the same site later in life.⁶⁷ In non-255 black populations, the extent of involvement of coronary artery with fatty streaks in youth 256 predicts the extent of its involvement with raised lesions in older persons.⁶⁸ In an autopsy 257 258 study of coronary arteries of 565 subjects aged 0 to 29 years, the progressive transformation of fatty streaks in children's coronary arteries to a well-advanced fibrous plaque in young 259 adulthood was observed.⁶⁹ In this study, by puberty a small 8%-10% percentage of children 260

261	had evidence of more advanced lesions and about 30% of the young adults in their twenties
262	had well-developed raised lesions with large extracellular lipid cores and thick fibromuscular
263	caps. ⁶⁹

Overall, the evidence indicates that atherosclerotic process starts in the early years, and this

emphasises the importance of understanding the factors contributing to variability between

266 individuals during childhood.

267 Childhood antecedents of adult atherosclerosis and clinical CVD

268 The only direct evidence linking cardio-metabolic risk factors other than BMI in youth ⁷⁰

with overt clinical disease in adulthood comes from genetic disorders related to high

270 cholesterol.

271 In homozygous familial hypercholesterolemia, a genetic disease whereby LDL cholesterol

272 clearance is impaired, LDL-C levels exceed 20.68 mmol/L already in infants, CVD events

begin in the first decade of life and life span is reduced⁷¹. In heterozygous

hypercholesterolemia, in which LDL-C levels usually exceed 5.17 mmol/L and total

cholesterol levels exceed 6.5 mmo/L beginning in infancy, 50% of men and 25% of women

experience clinical coronary events by the age of $50.^{71}$

277 Furthermore, in familial hypertriglyceridaemia, another genetic disorder resulting in excess

triglyceride levels, childhood triglycerides (TG) independently predict CVD in the 4th-

279 5^{th} decade of life.⁷²

280 The substantial genetic component of CVD risk can also be seen among children of patients

suffering from premature myocardial infarction (<55 years), who have higher levels of total

282 cholesterol, LDL-C, TG and lower levels of HDL cholesterol (HDL-C) than controls.⁷³

283 Another piece of evidence linking childhood blood lipids with CVD risk in adulthood in the

284	context of genetic predisposition stems from Mendelian randomization studies. Meta-analysis		
285	of such studies found a 54.5% (95% CI 48.8%-59.5%) reduction in the risk of IHD per each		
286	mmol/l reduction in LDL-C (effect size 3-fold greater than that achieved via treatment with		
287	statins in later life) due to genetic polymorphism, and thus relating to lifetime exposure. ⁷⁴		
288	Most evidence suggesting that childhood cardio-metabolic physiology affects adult arterial		
289	pathology is indirect, and comes from autopsy and imaging studies linking childhood risk		
290	factors with atherosclerosis and its surrogate markers.		
291	The extent to which the artery surface is involved in individual children with lesions varies,		
292	however it is influenced by the same classical risk factors that predict adult coronary heart		
293	disease. ^{61,75}		
294	The Bogalusa Heart Study has demonstrated a strong association of BMI, SBP, DBP and		
295	serum concentrations of total cholesterol, TG, LDL-C, and HDL-C with vascular lesions in		
296	children and young adults on autopsy. ⁷⁶		
297	The PDAY autopsy study showed strong relationships between atherosclerotic severity and		
298	extent with age, non-HDL cholesterol, HDL-C, hypertension (determined by renal artery		
299	thickness), tobacco use (thiocyanate concentration), diabetes mellitus (glycohemoglobin), and		
300	(in men) obesity. It also showed that a 30 mg/dL incremental increase in non-HDL		
301	cholesterol was equivalent to 2 years of 'vascular aging'. ⁷⁷ The severity and extent of the		
302	lesions were positively associated with age, and increased in association with the number of		
303	risk factors. At the same time, an absence of risk factors was associated with a virtual absence		
304	of advanced atherosclerotic lesions, even in the oldest subjects in the study.		
305	Analyses from four longitudinal cohorts (Cardiovascular Risk in Young Finns Study,		

306 Childhood Determinants of Adult Health study, Bogalusa Heart Study, and Muscatine Study)

307	showed that risk factors measured at age 9 years or after (total cholesterol, TG, blood
308	pressure, and BMI) were predictive of elevated carotid IMT in adulthood, ⁷⁸ recognized as a
309	predictive measure of clinical coronary events in middle-aged and elderly populations. ⁷⁹
310	Similarly, SBP, DBP, total cholesterol, LDL-C, HDL- C and smoking status were linked to
311	IMT of the femoral artery, a surrogate measure of coronary and peripheral atherosclerosis, in
312	asymptomatic young individuals in the Bogalusa Heart Study. ⁸⁰
313	Additionally, in the Cardiovascular Risk in Young Finns Study, childhood LDL-C (≥80th
314	percentile), elevated blood pressure, skinfold thickness, low HDL-C (<20th percentile), and
315	smoking were inversely associated with artery elasticity in adulthood, ⁸¹ a marker of
316	pathophysiological changes in the arteries relevant to the development of atherosclerosis later
317	in life. ⁸² Increased body size, increased blood pressure and decreased HDL-C were associated
210	with coronary artery calcification in young adults in the Muscatine Study. ⁸³
318	with coronary artery calenteation in young adurs in the Museatine Study.
318	Other studies have examined the relationship of isolated childhood risk factors to various
319	Other studies have examined the relationship of isolated childhood risk factors to various
319 320	Other studies have examined the relationship of isolated childhood risk factors to various measures of atherosclerosis and CVD risk. Dietary fat quality reflected in the serum
319 320 321	Other studies have examined the relationship of isolated childhood risk factors to various measures of atherosclerosis and CVD risk. Dietary fat quality reflected in the serum cholesterol ester fraction in childhood was associated with carotid IMT in adult women. ⁸⁴
319320321322	Other studies have examined the relationship of isolated childhood risk factors to various measures of atherosclerosis and CVD risk. Dietary fat quality reflected in the serum cholesterol ester fraction in childhood was associated with carotid IMT in adult women. ⁸⁴ Children with hypercholesterolemia and diabetes showed increased IMTs compared with
 319 320 321 322 323 	Other studies have examined the relationship of isolated childhood risk factors to various measures of atherosclerosis and CVD risk. Dietary fat quality reflected in the serum cholesterol ester fraction in childhood was associated with carotid IMT in adult women. ⁸⁴ Children with hypercholesterolemia and diabetes showed increased IMTs compared with healthy controls ⁸⁵ and cumulative exposure to hyperlipidaemia in young adulthood increased
 319 320 321 322 323 324 	Other studies have examined the relationship of isolated childhood risk factors to various measures of atherosclerosis and CVD risk. Dietary fat quality reflected in the serum cholesterol ester fraction in childhood was associated with carotid IMT in adult women. ⁸⁴ Children with hypercholesterolemia and diabetes showed increased IMTs compared with healthy controls ⁸⁵ and cumulative exposure to hyperlipidaemia in young adulthood increased subsequent risk of coronary heart disease in a dose-dependent fashion. ⁸⁶ Other, non diet-
 319 320 321 322 323 324 325 	Other studies have examined the relationship of isolated childhood risk factors to various measures of atherosclerosis and CVD risk. Dietary fat quality reflected in the serum cholesterol ester fraction in childhood was associated with carotid IMT in adult women. ⁸⁴ Children with hypercholesterolemia and diabetes showed increased IMTs compared with healthy controls ⁸⁵ and cumulative exposure to hyperlipidaemia in young adulthood increased subsequent risk of coronary heart disease in a dose-dependent fashion. ⁸⁶ Other, non diet-related risk factors like smoking ⁸⁷ and exercise ⁸⁸ in childhood were also associated with adult
 319 320 321 322 323 324 325 326 	Other studies have examined the relationship of isolated childhood risk factors to various measures of atherosclerosis and CVD risk. Dietary fat quality reflected in the serum cholesterol ester fraction in childhood was associated with carotid IMT in adult women. ⁸⁴ Children with hypercholesterolemia and diabetes showed increased IMTs compared with healthy controls ⁸⁵ and cumulative exposure to hyperlipidaemia in young adulthood increased subsequent risk of coronary heart disease in a dose-dependent fashion. ⁸⁶ Other, non diet-related risk factors like smoking ⁸⁷ and exercise ⁸⁸ in childhood were also associated with adult atherosclerosis in a pattern similar to that in adulthood.
 319 320 321 322 323 324 325 326 327 	Other studies have examined the relationship of isolated childhood risk factors to various measures of atherosclerosis and CVD risk. Dietary fat quality reflected in the serum cholesterol ester fraction in childhood was associated with carotid IMT in adult women. ⁸⁴ Children with hypercholesterolemia and diabetes showed increased IMTs compared with healthy controls ⁸⁵ and cumulative exposure to hyperlipidaemia in young adulthood increased subsequent risk of coronary heart disease in a dose-dependent fashion. ⁸⁶ Other, non diet-related risk factors like smoking ⁸⁷ and exercise ⁸⁸ in childhood were also associated with adult atherosclerosis in a pattern similar to that in adulthood.

330 Children with fewer cardio-metabolic risk factors show lower prevalence of atherosclerotic

risk in later life. Dietary-influenced risk factors in childhood and their relation toatherosclerosis are summarised in Table 2.

333

334 Tracking of childhood CVD risk factors and their determinants into adulthood

Cardio-metabolic risk factors in childhood deserve attention not only because of their
association with atherosclerosis in adulthood, but also because there is evidence that they
themselves track (i.e. persist) into adult life, therefore generating a cumulative impact on the
process of disease.

339 Evidence for tracking is strongest for obesity, with childhood BMI levels predictive of adult obesity.⁸⁹ A recent systematic review of 13 prospective or retrospective longitudinal studies 340 341 published after 2001 showed that the risk of an overweight child becoming an overweight adult is at least twice as high compared with normal - weight children and it is even higher 342 for obese children.⁹⁰ This could be due both to the direct tracking of body composition, and 343 also due to the tracking of obesity-related behaviours - such as physical inactivity and 344 unhealthy diets- between childhood and adulthood.⁹¹ 345 346 Correlation coefficients for cholesterol tracking are in the range of 0.4 and have been

347 reported consistently in numerous studies examining children as young as 5 to 10 years of

age and their lipid levels 20 - 30 years later.⁷¹ In the Muscatine Study, 75% of children aged

5-10 years who had total cholesterol concentrations greater than the 90th percentile at

baseline had total cholesterol concentrations of >200 mg/dL in their early 20s.^{92,93} In the

- 351 Bogalusa Heart Study, approximately 50% of those children who had total cholesterol levels
- 352 or LDL-C levels above the 75th percentile at baseline remained elevated 12 years later.⁹⁴ In

the same study, adverse glucose levels in childhood not only persisted into adulthood but also
 predicted adult pre-diabetes and type 2 diabetes.⁹⁵

In a retrospective cohort study of 1058 normoglycaemic, 37 pre-diabetic, and 25 type 2

diabetic adults aged 19–39 years followed on average for 17 years since childhood, at least

357 50% of the individuals who ranked in the top childhood quintile for glucose, insulin, and

HOMA insulin resistance maintained their high rank by being above the 60th percentile in

359 adulthood.⁹⁵

360 Elevated blood pressure in youth predicts adult hypertension, and a systematic review and

361 meta- analysis of 50 cohort studies reported degree of tracking with correlation coefficient at

362 0.38 for SBP and 0.28 for DBP.⁹⁶

363 Significant tracking of CRP levels was observed between childhood and adulthood in a

cohort of 1617 subjects, aged 3 to 18 years at baseline and re-examined at 24 to 39 years.

The age- and sex-specific correlations were the highest in the group aged 18 years at baseline

366 (r=0.47 in females, r=0.32 in males).⁹⁷

367 Of particular relevance to this review, diet itself, one of the strongest correlates of

368 cardiometabolic risk, also tracks from childhood into adulthood. The Cardiovascular Risk in

369 Young Finns Study, a prospective cohort study with 21-year follow-up, reported some level

of tracking of dietary patterns. ⁹⁸ Similarly, a review of studies published between 2003 and

2013 reported moderate level of tracking for a range of eating behaviours (e.g. food

372 preferences; dietary variety; dietary intake; eating habits) measured before 10 years of age

and reassessed in adulthood.⁹⁹

374

375 The significance of primordial prevention

377	As discussed at the outset of this review, the considerable gains made in reducing CVD
378	mortality rates since the 1970-ties through risk factor reductions and better treatment of the
379	disease are increasingly challenged by adverse trends in obesity and diabetes. ^{100,101}
380	Better treatment strategies are not expected to offset these adverse trends, ^{102,7} and would
381	increase exponentially the medical costs given the ageing of most populations. Moreover,
382	they only reduce but do not eliminate the risk of $CVD^{103,104}$.
383	
384	Therefore risk factor reduction strategies are critical for reducing the CVD burden. Numerous
385	modelling studies have estimated that population-wide risk factor reductions can bring
386	substantial decreases of CVD burden ^{8,105,106,107} even taking into account current trends of
387	obesity and diabetes. It has also been shown that mortality trends respond very rapidly to
388	changes in risk factors at the population level. ¹⁰⁸
389	Given compelling evidence that the atherosclerotic process starts in childhood, and is linked
390	to well-defined, modifiable risk factors that track into adulthood, there is increasing
391	recognition that primordial prevention, i.e. avoiding the development of risk factors before
392	the disease onset, should be embraced as a major component of global CVD prevention
393	policies. ¹⁰⁹ This is an approach through which favorable patters for all lifestyle and all major
394	lifestyle-related risk factors can be promoted from conception throughout childhood. Those
395	patterns can then potentially be maintained into adulthood. ¹¹⁰
396	The concept of primordial prevention is strongly backed by data. Two prospective studies
397	from the late 1960s and 1970s - the Chicago Heart Association Detection Project in Industry
398	Study ¹¹¹ (n=8,816) and the Multiple Risk Factor Intervention Trial Study ¹¹² (n = 12,866) -

399	showed that favorable levels of all readily-measured major CVD risk factors in young
400	adulthood (TC <5.17 mmol/L; SBP \leq 120, DBP \leq 80 and BMI < 25.0 kg/m ²) lead to
401	substantially reduced CVD mortality rates (76-89% for men and 60-67% lower in women)
402	and sizable increases in life expectancy (8-12 years greater).
403	So far, CVD prevention strategies targeting early life have primarily been focused on tackling
404	childhood obesity, though success rates are poor. ¹¹³ Interest has also focused on factors like
405	birth weight ²³ and early catch-up growth, ²⁶ though some of these traits are difficult to target
406	through interventions, due to the need to change maternal physiology. We know, however,
407	from the Cardiovascular Risk in Young Finns Study, Childhood Determinants of Adult
408	Health study, Bogalusa Heart Study, and Muscatine Study, that other classical CVD risk
408	factors relate to adult atherosclerosis independently from BMI, ⁷⁸ and would therefore benefit
409	from additional interventions. For example, recent evidence from the US suggests that up to
	1/3 of pre-pubertal children with normal weight have abnormal lipid levels ¹¹⁴ and that the
411	
412	prevalence of hypertension in the paediatric population has been increasing. ¹¹⁵
413	Therefore interventions effectively targeting all classical risk factors in young people could
414	potentially play a key role in preventive strategies. We therefore now link the two
415	components of our review – that adults consuming plant-based diets have lower CVD risk,
416	and that cardio-metabolic risk tracks from childhood into adulthood - by proposing a new
417	testable hypothesis: namely that plant-based diet in childhood could promote cardio-
418	metabolic health in adults, and thereby reduce CVD and promote longevity and health.
419	Could plant-based diets in childhood promote cardio-metabolic health in adulthood?
420	Diet in children appears to be one of the strongest determinants of the CVD risk factors. ¹¹⁶
421	Additionally, childhood diets show some degree of tracking into adulthood, 98,99 associate

422

Nutrition Reviews

with adulthood cardiovascular risk factors and vascular markers of subclinical atherosclerosis

423	and CVD risk. ²⁷
424	The few available studies in this area suggest that healthy childhood dietary patterns are
425	associated with lower adulthood CVD risk. ^{27,117} Intakes particularly of plant foods
426	(vegetables, fruits and fibre) and polyunsaturated fatty acids have shown protective
427	effects. ^{27,117}
428	Vegan and vegetarian children have lower rates of overweight and obesity. ²⁸ Preliminary
429	evidence suggests that they have lower cholesterol levels ^{118,114} and higher antioxidant status
430	in the blood. ¹²⁰ They consume more fruits and vegetables than their omnivore
431	counterparts. ^{121,122} Moreover, a recent trail showed that an intervention with low-fat vegan
432	diet was more effective at reducing CVD risk factors in obese and hypercholesterolaemic
433	children aged 9 to 18 years old than with the American Heart Associated recommended diet.
434	Children assigned to the vegan intervention had more significant reductions in CVD risk
435	factors from baseline: BMI Z-score (-0.14), systolic SBP (-6.43 mm Hg), total cholesterol
436	(-22.5 mg/dL), LDL-C (-13.14 mg/dL), high sensitivity CRP (-2.09 mg/L), insulin
437	(-5.42uU/ml), myeloperoxidase (-75.34 pmol/L), mid-arm circumference (-2.02 cm),
438	weight (-3.05 kg); whereas the significant reductions in the AHA group were noted only for
439	the last 3 risk factors (69.23 pmol/L, /-1.55 cm, -1.14 kg respectively) and waist
440	circumference (-2.96 cm). ¹²³
441	Therefore vegetarian and vegan children might have a better CVD risk profile than omnivore
442	children, and if the diet and risk profile tracks into adulthood, plant based diets in paediatric
443	populations, through their effects on blood biochemistry, other cardiovascular risk factors and

establishing healthy eating patterns, could offer an effective strategy of CVD primordial

prevention. This would present a novel opportunity to promote a healthy childhood trajectorytowards cardiovascular health (see Figure 2).

At the same time, data on the safety of vegetarian diets in childhood is sparse, and suggests 447 448 increased risk of nutrient deficiencies especially in vegan children, including some that can 449 differentially affect CVD risk like vitamin B12, vitamin D, Omega 3 essential fatty acids and iron.^{121,124} Therefore two issues are of importance. First, further research is required to 450 451 comprehensively assess the safety, along with the CVD-protective potential, of vegetarian 452 and vegan diets in childhood. Second, preventive strategies should potentially consider not 453 only promoting vegatarian diets per se, but also increasing the percentage of plant foods within omnivore diets in children. 454

455 Conclusion

456 The population - wide reduction of CVD risk factors seems currently to be the only feasible 457 strategy to combat the CVD epidemic. More attention should be given to paediatric 458 populations in this context to take advantage of primordial prevention. Atherosclerosis starts 459 in early life and progresses in relation to the same classical risk factors in children that 460 influence the course of the disease in adults. Moreover, these risk factors along with dietary 461 habits track into adulthood. Children with fewer cardio-metabolic risk factors show lower 462 prevalence of atherosclerotic risk in later life. Plant - based diets have been shown to substantially reduce CVD risk factors, morbidity and mortality in adults along with offering 463 464 planetary sustainability benefits. If applied in children, they could potentially offer cardio-465 metabolic health benefits, via reduction of CVD risk from the early life, a strategy which has 466 been tested to bring the most favourable CVD mortality reductions and increases in life 467 expectancy. At the same time, little is known about the safety and potential cardio-metabolic 468 benefits of these diets applied from childhood and further research in this area is warranted.

469			
470	Acknowledgements:		
471			
472	Funding: none		
473	Declaration of interest: none		
474	Table 1. Effects of vegetarian diets on cardiovascular risk factors .		
475	Table 2 . Dietary-influenced risk factors in childhood and their relation to atherosclerosis.		
476	Figure 1 The overall pattern in which vegetarian/vegan diets affect IHD risk factors and		
477	incidence.		
478	Figure 2. Potential direct and indirect mechanisms through which plant-based diets in		
479	children could benefit cardio-metabolic health in adults.		
480	30 References:		
481 482	1.	WHO Global status report on noncommunicable diseases 2010. WHO. http://www.who.int/nmh/publications/ncd_report2010/en/. Accessed April 6, 2017.	
483 484 485	2.	WHO Disability-adjusted life years (DALYs). WHO. http://www.who.int/gho/mortality_burden_disease/daly_rates/text/en/. Accessed April 6, 2017.	
486 487 488 489	3.	Levi F, Chatenoud L, Bertuccio P, Lucchini F, Negri E, La Vecchia C. Mortality from cardiovascular and cerebrovascular diseases in Europe and other areas of the world: an update. <i>Eur J Cardiovasc Prev Rehabil</i> . 2009;16(3):333-350. doi:10.1097/HJR.0b013e328325d67d.	
490 491 492	4.	Allender S, Scarborough P, O'Flaherty M, Capewell S. Patterns of coronary heart disease mortality over the 20th century in England and Wales: Possible plateaus in the rate of decline. <i>BMC Public Health</i> . 2008;8:148. doi:10.1186/1471-2458-8-148.	
493 494 495	5.	Ford ES, Capewell S. Coronary heart disease mortality among young adults in the U.S. from 1980 through 2002: concealed leveling of mortality rates. <i>J Am Coll Cardiol</i> . 2007;50(22):2128-2132. doi:10.1016/j.jacc.2007.05.056.	

496 497 498	6.	O'Flaherty M, Allender S, Taylor R, Stevenson C, Peeters A, Capewell S. The decline in coronary heart disease mortality is slowing in young adults (Australia 1976-2006): a time trend analysis. <i>Int J Cardiol</i> . 2012;158(2):193-198. doi:10.1016/j.ijcard.2011.01.016.
499 500 501	7.	Emberson J, Whincup P, Morris R, Walker M, Ebrahim S. Evaluating the impact of population and high-risk strategies for the primary prevention of cardiovascular disease. <i>Eur Heart J</i> . 2004;25(6):484-491. doi:10.1016/j.ehj.2003.11.012.
502 503 504	8.	O'Flaherty M, Bandosz P, Critchley J, et al. Exploring potential mortality reductions in 9 European countries by improving diet and lifestyle: A modelling approach. <i>Int J Cardiol</i> . 2016;207:286-291. doi:10.1016/j.ijcard.2016.01.147.
505 506 507 508	9.	Childhood origins of arterial disease : Current Opinion in Pediatrics. LWW. http://journals.lww.com/co- pediatrics/Fulltext/2007/10000/Childhood_origins_of_arterial_disease.3.aspx. Accessed April 30, 2017.
509 510	10.	Mozaffarian D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity. <i>Circulation</i> . 2016;133(2):187-225. doi:10.1161/CIRCULATIONAHA.115.018585.
511 512	11.	Sabaté J, Soret S. Sustainability of plant-based diets: back to the future. <i>Am J Clin Nutr.</i> 2014;100 Suppl 1:476S-82S. doi:10.3945/ajcn.113.071522.
513 514	12.	The Market for Vegetarian Foods. http://www.vrg.org/nutshell/market.htm#market. Accessed April 11, 2017.
515 516 517	13.	BigHospitality.co.uk. Vegetarian and vegan trend soars as consumers reduce meat intake. BigHospitality.co.uk. http://www.bighospitality.co.uk/Trends-Reports/Vegetarian-and-vegan- trend-soars-as-consumers-reduce-meat-intake. Accessed April 11, 2017.
518 519 520	14.	Wang F, Zheng J, Yang B, Jiang J, Fu Y, Li D. Effects of Vegetarian Diets on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. <i>J Am Heart Assoc.</i> 2015;4(10):e002408. doi:10.1161/JAHA.115.002408.
521 522	15.	Yokoyama Y, Nishimura K, Barnard ND, et al. Vegetarian diets and blood pressure: a meta- analysis. JAMA Intern Med. 2014;174(4):577-587. doi:10.1001/jamainternmed.2013.14547.
523 524 525	16.	Crowe FL, Appleby PN, Travis RC, Key TJ. Risk of hospitalization or death from ischemic heart disease among British vegetarians and nonvegetarians: results from the EPIC-Oxford cohort study. <i>Am J Clin Nutr</i> . 2013;97(3):597-603. doi:10.3945/ajcn.112.044073.
526 527 528	17.	Key TJ, Fraser GE, Thorogood M, et al. Mortality in vegetarians and nonvegetarians: detailed findings from a collaborative analysis of 5 prospective studies. <i>Am J Clin Nutr</i> . 1999;70(3 Suppl):516S-524S.
529 530	18.	Fraser GE. Vegetarian diets: what do we know of their effects on common chronic diseases? <i>Am J Clin Nutr</i> . 2009;89(5):1607S-1612S. doi:10.3945/ajcn.2009.26736K.
531 532 533	19.	Appleby PN, Crowe FL, Bradbury KE, Travis RC, Key TJ. Mortality in vegetarians and comparable nonvegetarians in the United Kingdom. <i>Am J Clin Nutr</i> . December 2015:ajcn119461. doi:10.3945/ajcn.115.119461.

534 535 536	20.	Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. <i>Crit Rev Food Sci Nutr</i> . February 2016:0. doi:10.1080/10408398.2016.1138447.
537 538	21.	Holman RL, McGill HC, Strong JP, Geer JC. The Natural History of Atherosclerosis. <i>Am J Pathol</i> . 1958;34(2):209-235.
539 540 541	22.	Palatianou ME, Simos YV, Andronikou SK, Kiortsis DN. Long-term metabolic effects of high birth weight: a critical review of the literature. <i>Horm Metab Res Horm Stoffwechselforschung Horm Metab</i> . 2014;46(13):911-920. doi:10.1055/s-0034-1395561.
542 543 544	23.	Wang S-F, Shu L, Sheng J, et al. Birth weight and risk of coronary heart disease in adults: a meta-analysis of prospective cohort studies. <i>J Dev Orig Health Dis</i> . 2014;5(6):408-419. doi:10.1017/S2040174414000440.
545 546	24.	Lloyd LJ, Langley-Evans SC, McMullen S. Childhood obesity and adult cardiovascular disease risk: a systematic review. <i>Int J Obes 2005</i> . 2010;34(1):18-28. doi:10.1038/ijo.2009.61.
547 548 549	25.	Park MH, Falconer C, Viner RM, Kinra S. The impact of childhood obesity on morbidity and mortality in adulthood: a systematic review. <i>Obes Rev Off J Int Assoc Study Obes</i> . 2012;13(11):985-1000. doi:10.1111/j.1467-789X.2012.01015.x.
550 551	26.	Jain V, Singhal A. Catch up growth in low birth weight infants: striking a healthy balance. <i>Rev Endocr Metab Disord</i> . 2012;13(2):141-147. doi:10.1007/s11154-012-9216-6.
552 553 554	27.	Kaikkonen JE, Mikkilä V, Raitakari OT. Role of Childhood Food Patterns on Adult Cardiovascular Disease Risk. <i>Curr Atheroscler Rep</i> . 2014;16(10):443. doi:10.1007/s11883-014- 0443-z.
555 556	28.	Sabaté J, Wien M. Vegetarian diets and childhood obesity prevention. <i>Am J Clin Nutr</i> . 2010;91(5):1525S-1529S. doi:10.3945/ajcn.2010.28701F.
557 558 559 560 561	29.	Klein S, Burke LE, Bray GA, et al. Clinical implications of obesity with specific focus on cardiovascular disease: a statement for professionals from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Foundation. <i>Circulation</i> . 2004;110(18):2952-2967. doi:10.1161/01.CIR.0000145546.97738.1E.
562 563 564 565	30.	Bradbury KE, Crowe FL, Appleby PN, Schmidt JA, Travis RC, Key TJ. Serum concentrations of cholesterol, apolipoprotein A-I and apolipoprotein B in a total of 1694 meat-eaters, fish- eaters, vegetarians and vegans. <i>Eur J Clin Nutr</i> . 2014;68(2):178-183. doi:10.1038/ejcn.2013.248.
566 567 568	31.	Schwingshackl L, Hoffmann G. Comparison of effects of long-term low-fat vs high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-analysis. <i>J Acad Nutr Diet</i> . 2013;113(12):1640-1661. doi:10.1016/j.jand.2013.07.010.
569 570	32.	Li D. Chemistry behind Vegetarianism. <i>J Agric Food Chem</i> . 2011;59(3):777-784. doi:10.1021/jf103846u.
571 572	33.	Craig WJ. Nutrition concerns and health effects of vegetarian diets. <i>Nutr Clin Pract Off Publ Am Soc Parenter Enter Nutr</i> . 2010;25(6):613-620. doi:10.1177/0884533610385707.

573 574	34.	Orlich MJ, Fraser GE. Vegetarian diets in the Adventist Health Study 2: a review of initial published findings. <i>Am J Clin Nutr</i> . 2014;100 Suppl 1:353S-8S. doi:10.3945/ajcn.113.071233.
575 576 577	35.	Chuang S-Y, Chiu THT, Lee C-Y, et al. Vegetarian diet reduces the risk of hypertension independent of abdominal obesity and inflammation: a prospective study. <i>J Hypertens</i> . 2016;34(11):2164-2171. doi:10.1097/HJH.000000000000001068.
578 579 580 581	36.	Sobiecki JG, Appleby PN, Bradbury KE, Key TJ. High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: results from the European Prospective Investigation into Cancer and Nutrition–Oxford study. <i>Nutr Res</i> . 2016;36(5):464- 477. doi:10.1016/j.nutres.2015.12.016.
582 583 584	37.	Evans CEL, Greenwood DC, Threapleton DE, et al. Effects of dietary fibre type on blood pressure: a systematic review and meta-analysis of randomized controlled trials of healthy individuals. <i>J Hypertens</i> . 2015;33(5):897-911. doi:10.1097/HJH.000000000000515.
585 586	38.	He J, Gu D, Wu X, et al. Effect of soybean protein on blood pressure: a randomized, controlled trial. <i>Ann Intern Med</i> . 2005;143(1):1-9.
587 588	39.	Haddad EH, Tanzman JS. What do vegetarians in the United States eat? <i>Am J Clin Nutr</i> . 2003;78(3 Suppl):626S-632S.
589 590 591	40.	Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. <i>BMJ</i> . 2013;346:f1378. doi:10.1136/bmj.f1378.
592 593	41.	Galan P, Vergnaud A-C, Tzoulaki I, et al. Low total and nonheme iron intakes are associated with a greater risk of hypertension. <i>J Nutr</i> . 2010;140(1):75-80. doi:10.3945/jn.109.114082.
594 595 596	42.	Sciarrone SE, Strahan MT, Beilin LJ, Burke V, Rogers P, Rouse IL. Biochemical and neurohormonal responses to the introduction of a lacto-ovovegetarian diet. <i>J Hypertens</i> . 1993;11(8):849-860.
597 598	43.	Ernst E, Pietsch L, Matrai A, Eisenberg J. Blood rheology in vegetarians. <i>Br J Nutr</i> . 1986;56(3):555-560.
599 600 601	44.	Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. <i>The Lancet</i> . 2016;387(10022):957-967. doi:10.1016/S0140-6736(15)01225-8.
602 603	45.	Tonstad S, Butler T, Yan R, Fraser GE. Type of Vegetarian Diet, Body Weight, and Prevalence of Type 2 Diabetes. <i>Diabetes Care</i> . 2009;32(5):791-796. doi:10.2337/dc08-1886.
604 605	46.	Kahleova H, Pelikanova T. Vegetarian Diets in the Prevention and Treatment of Type 2 Diabetes. <i>J Am Coll Nutr</i> . 2015;34(5):448-458. doi:10.1080/07315724.2014.976890.
606 607 608	47.	Kahleova H, Matoulek M, Malinska H, et al. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes. <i>Diabet Med J Br Diabet Assoc</i> . 2011;28(5):549-559. doi:10.1111/j.1464-5491.2010.03209.x.
609 610 611	48.	Barnard ND, Cohen J, Jenkins DJA, et al. A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes. <i>Diabetes Care</i> . 2006;29(8):1777-1783. doi:10.2337/dc06-0606.

612 613 614	49.	Fung TT, Schulze M, Manson JE, Willett WC, Hu FB. Dietary patterns, meat intake, and the risk of type 2 diabetes in women. <i>Arch Intern Med</i> . 2004;164(20):2235-2240. doi:10.1001/archinte.164.20.2235.
615 616 617 618	50.	Sievenpiper JL, Kendall CWC, Esfahani A, et al. Effect of non-oil-seed pulses on glycaemic control: A systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. <i>ResearchGate</i> . 2009;52(8):1479-1495. doi:10.1007/s00125-009-1395-7.
619 620 621	51.	Aune D, Norat T, Romundstad P, Vatten LJ. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. <i>ResearchGate</i> . 2013;28(11). doi:10.1007/s10654-013-9852-5.
622 623 624	52.	Cooper AJ, Forouhi NG, Ye Z, et al. Fruit and vegetable intake and type 2 diabetes: EPIC- InterAct prospective study and meta-analysis. <i>Eur J Clin Nutr</i> . 2012;66(10):1082-1092. doi:10.1038/ejcn.2012.85.
625 626 627	53.	Pan A, Sun Q, Bernstein AM, et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. <i>Am J Clin Nutr</i> . 2011;94(4):1088-1096. doi:10.3945/ajcn.111.018978.
628 629 630	54.	Collaboration TERF. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. <i>The Lancet</i> . 2010;375(9733):2215-2222. doi:10.1016/S0140-6736(10)60484-9.
631 632 633	55.	Szeto YT, Kwok TCY, Benzie IFF. Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. <i>Nutr Burbank Los Angel Cty Calif.</i> 2004;20(10):863-866. doi:10.1016/j.nut.2004.06.006.
634 635 636	56.	Dod HS, Bhardwaj R, Sajja V, et al. Effect of intensive lifestyle changes on endothelial function and on inflammatory markers of atherosclerosis. <i>Am J Cardiol</i> . 2010;105(3):362-367. doi:10.1016/j.amjcard.2009.09.038.
637 638 639	57.	Acosta-Navarro J, Antoniazzi L, Oki AM, et al. Reduced subclinical carotid vascular disease and arterial stiffness in vegetarian men: The CARVOS Study. <i>Int J Cardiol</i> . 2017;230:562-566. doi:10.1016/j.ijcard.2016.12.058.
640 641 642	58.	Yang S-Y, Zhang H-J, Sun S-Y, et al. Relationship of carotid intima-media thickness and duration of vegetarian diet in Chinese male vegetarians. <i>Nutr Metab</i> . 2011;8(1):63. doi:10.1186/1743-7075-8-63.
643 644 645	59.	Su T-C, Jeng J-S, Wang J-D, et al. Homocysteine, circulating vascular cell adhesion molecule and carotid atherosclerosis in postmenopausal vegetarian women and omnivores. <i>Atherosclerosis</i> . 2006;184(2):356-362. doi:10.1016/j.atherosclerosis.2005.04.022.
646 647	60.	McGill HC, McMahan CA, Herderick EE, et al. Origin of atherosclerosis in childhood and adolescence. <i>Am J Clin Nutr</i> . 2000;72(5):1307s-1315s.
648 649	61.	Stary HC. Lipid and macrophage accumulations in arteries of children and the development of atherosclerosis. <i>Am J Clin Nutr</i> . 2000;72(5):1297s-1306s.

650 62. Enos WF, Holmes RH, Beyer J. CORONARY DISEASE AMONG UNITED STATES SOLDIERS KILLED 651 IN ACTION IN KOREA: PRELIMINARY REPORT. J Am Med Assoc. 1953;152(12):1090-1093. 652 doi:10.1001/jama.1953.03690120006002. 653 63. McNamara JJ, Molot MA, Stremple JF, Cutting RT. Coronary Artery Disease in Combat 654 Casualties in Vietnam. JAMA. 1971;216(7):1185-1187. 655 doi:10.1001/jama.1971.03180330061012. 656 64. Stary HC YZ. The natural history of atherosclerosis in the aorta in the first forty years of life. 657 In: Syndromes of Atherosclerosis: Correlations of Clinical Imaging and Pathology. New York: 658 Futura Publishing; 1996:225-38. 659 65. Stehbens WE. The epidemiological relationship of hypercholesterolemia, hypertension, 660 diabetes mellitus and obesity to coronary heart disease and atherogenesis. J Clin Epidemiol. 661 1990;43(8):733-741. doi:10.1016/0895-4356(90)90231-D. 662 66. Newman TB, Garber AM, Holtzman NA, Hulley SB. Problems With the Report of the Expert 663 Panel on Blood Cholesterol Levels in Children and Adolescents. Arch Pediatr Adolesc Med. 664 1995;149(3):241-247. doi:10.1001/archpedi.1995.02170150021003. 665 67. Montenegro MR, Eggen DA. Topography of atherosclerosis in the coronary arteries. Lab 666 Investig J Tech Methods Pathol. 1968;18(5):586-593. 667 68. Smith EB. THE INFLUENCE OF AGE AND ATHEROSCLEROSIS ON THE CHEMISTRY OF AORTIC 668 INTIMA.2. COLLAGEN AND MUCOPOLYSACCHARIDES. J Atheroscler Res. 1965;5(2):241-248. 669 69. Stary HC. Evolution and progression of atherosclerotic lesions in coronary arteries of children 670 and young adults. Arterioscler Dallas Tex. 1989;9(1 Suppl):119-32. 671 70. Twig G, Yaniv G, Levine H, et al. Body-Mass Index in 2.3 Million Adolescents and 672 Cardiovascular Death in Adulthood. N Engl J Med. 2016;374(25):2430-2440. 673 doi:10.1056/NEJMoa1503840. 674 71. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in 675 Children and Adolescents: Summary Report. Pediatrics. 2011;128(Suppl 5):S213-S256. 676 doi:10.1542/peds.2009-2107C. 677 72. Morrison JA, Glueck CJ, Wang P. CHILDHOOD RISK FACTORS PREDICT CARDIOVASCULAR 678 DISEASE, IMPAIRED FASTING GLUCOSE PLUS TYPE 2 DIABETES MELLITUS, AND HIGH BLOOD 679 PRESSURE 26 YEARS LATER AT MEAN AGE 38: THE PRINCETON-LRC FOLLOW-UP STUDY. 680 Metabolism. 2012;61(4):531-541. doi:10.1016/j.metabol.2011.08.010. 681 73. Kelishadi R, Zadegan NS, Naderi GA, Asgary S, Bashardoust N. Atherosclerosis risk factors in 682 children and adolescents with or without family history of premature coronary artery disease. 683 Med Sci Monit Int Med J Exp Clin Res. 2002;8(6):CR425-429. 684 74. Ference BA, Yoo W, Alesh I, et al. Effect of long-term exposure to lower low-density 685 lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a 686 Mendelian randomization analysis. J Am Coll Cardiol. 2012;60(25):2631-2639. 687 doi:10.1016/j.jacc.2012.09.017.

688 689 690	75.	Newman WP, Freedman DS, Voors AW, et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. The Bogalusa Heart Study. <i>N Engl J Med</i> . 1986;314(3):138-144. doi:10.1056/NEJM198601163140302.
691 692 693	76.	Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA. Association between Multiple Cardiovascular Risk Factors and Atherosclerosis in Children and Young Adults. <i>N Engl J Med</i> . 1998;338(23):1650-1656. doi:10.1056/NEJM199806043382302.
694 695 696	77.	McMahan CA, Gidding SS, Malcom GT, Tracy RE, Strong JP, McGill HC. Pathobiological Determinants of Atherosclerosis in Youth Risk Scores Are Associated With Early and Advanced Atherosclerosis. <i>Pediatrics</i> . 2006;118(4):1447-1455. doi:10.1542/peds.2006-0970.
697 698 699 700 701 702	78.	Juonala M, Magnussen CG, Venn A, et al. Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study, the Childhood Determinants of Adult Health Study, the Bogalusa Heart Study, and the Muscatine Study for the International Childhood Cardiovascular Cohort (i3C) Consortium. <i>Circulation</i> . 2010;122(24):2514-2520. doi:10.1161/CIRCULATIONAHA.110.966465.
703 704	79.	Hodis HN, Mack WJ, LaBree L, et al. The role of carotid arterial intima-media thickness in predicting clinical coronary events. <i>Ann Intern Med</i> . 1998;128(4):262-269.
705 706 707	80.	Paul TK, Srinivasan SR, Wei C, et al. Cardiovascular risk profile of asymptomatic healthy young adults with increased femoral artery intima-media thickness: The Bogalusa Heart Study. <i>Am J Med Sci</i> . 2005;330(3):105-110.
708 709 710	81.	Juonala M, Järvisalo MJ, Mäki-Torkko N, Kähönen M, Viikari JSA, Raitakari OT. Risk Factors Identified in Childhood and Decreased Carotid Artery Elasticity in Adulthood. <i>Circulation</i> . 2005;112(10):1486-1493. doi:10.1161/CIRCULATIONAHA.104.502161.
711 712 713	82.	Oliver JJ, Webb DJ. Noninvasive Assessment of Arterial Stiffness and Risk of Atherosclerotic Events. <i>Arterioscler Thromb Vasc Biol</i> . 2003;23(4):554-566. doi:10.1161/01.ATV.0000060460.52916.D6.
714 715 716	83.	Mahoney LT, Burns TL, Stanford W, et al. Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine Study. <i>J Am Coll Cardiol</i> . 1996;27(2):277-284.
717 718 719	84.	Kaikkonen JE, Jula A, Mikkilä V, et al. Childhood serum fatty acid quality is associated with adult carotid artery intima media thickness in women but not in men. <i>J Nutr</i> . 2013;143(5):682-689. doi:10.3945/jn.112.172866.
720 721	85.	Järvisalo MJ, Jartti L, Näntö-Salonen K, et al. Increased Aortic Intima-Media Thickness. <i>Circulation</i> . 2001;104(24):2943-2947. doi:10.1161/hc4901.100522.
722 723 724 725	86.	Navar-Boggan AM, Peterson ED, D'Agostino RB, Neely B, Sniderman AD, Pencina MJ. Hyperlipidemia in Early Adulthood Increases Long-Term Risk of Coronary Heart Disease. <i>Circulation</i> . January 2015:CIRCULATIONAHA.114.012477. doi:10.1161/CIRCULATIONAHA.114.012477.
726 727 728	87.	Priest JR, Nead KT, Wehner MR, Cooke JP, Leeper NJ. Self-reported history of childhood smoking is associated with an increased risk for peripheral arterial disease independent of lifetime smoking burden. <i>PloS One</i> . 2014;9(2):e88972. doi:10.1371/journal.pone.0088972.

Ried-Larsen M, Grøntved A, Kristensen PL, Froberg K, Andersen LB. Moderate-and-vigorous

729

88.

730 731 732	00.	physical activity from adolescence to adulthood and subclinical atherosclerosis in adulthood: prospective observations from the European Youth Heart Study. <i>Br J Sports Med.</i> 2015;49(2):107-112. doi:10.1136/bjsports-2013-092409.
733 734 735	89.	Srinivasan SR, Bao W, Wattigney WA, Berenson GS. Adolescent overweight is associated with adult overweight and related multiple cardiovascular risk factors: the Bogalusa Heart Study. <i>Metabolism</i> . 1996;45(2):235-240.
736 737 738	90.	Singh AS, Mulder C, Twisk JWR, Van Mechelen W, Chinapaw MJM. Tracking of childhood overweight into adulthood: a systematic review of the literature. <i>Obes Rev</i> . 2008;9(5):474-488. doi:10.1111/j.1467-789X.2008.00475.x.
739 740 741	91.	Craigie AM, Lake AA, Kelly SA, Adamson AJ, Mathers JC. Tracking of obesity-related behaviours from childhood to adulthood: A systematic review. <i>Maturitas</i> . 2011;70(3):266-284. doi:10.1016/j.maturitas.2011.08.005.
742 743	92.	Lauer RM, Lee J, Clarke WR. Factors affecting the relationship between childhood and adult cholesterol levels: the Muscatine Study. <i>Pediatrics</i> . 1988;82(3):309-318.
744 745	93.	Lauer RM, Clarke WR. Use of cholesterol measurements in childhood for the prediction of adult hypercholesterolemia. The Muscatine Study. <i>JAMA</i> . 1990;264(23):3034-3038.
746 747 748	94.	Webber LS, Srinivasan SR, Wattigney WA, Berenson GS. Tracking of Serum Lipids and Lipoproteins from Childhood to Adulthood The Bogalusa Heart Study. <i>Am J Epidemiol</i> . 1991;133(9):884-899.
749 750 751	95.	Nguyen QM, Srinivasan SR, Xu J-H, Chen W, Kieltyka L, Berenson GS. Utility of Childhood Glucose Homeostasis Variables in Predicting Adult Diabetes and Related Cardiometabolic Risk Factors. <i>Diabetes Care</i> . 2010;33(3):670-675. doi:10.2337/dc09-1635.
752 753 754	96.	Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: A systematic review and meta-regression analysis. <i>Circulation</i> . 2008;117(25):3171-3180. doi:10.1161/CIRCULATIONAHA.107.730366.
755 756 757 758	97.	Juonala M, Viikari JSA, Rönnemaa T, Taittonen L, Marniemi J, Raitakari OT. Childhood C- Reactive Protein in Predicting CRP and Carotid Intima-Media Thickness in Adulthood. <i>Arterioscler Thromb Vasc Biol</i> . 2006;26(8):1883-1888. doi:10.1161/01.ATV.0000228818.11968.7a.
759 760 761	98.	Mikkilä V, Räsänen L, Raitakari OT, Pietinen P, Viikari J. Consistent dietary patterns identified from childhood to adulthood: the cardiovascular risk in Young Finns Study. <i>Br J Nutr</i> . 2005;93(6):923-931.
762 763	99.	Nicklaus S, Remy E. Early Origins of Overeating: Tracking Between Early Food Habits and Later Eating Patterns. <i>Curr Obes Rep</i> . 2013;2(2):179-184. doi:10.1007/s13679-013-0055-x.
764 765 766	100.	DevelopingCountries I of M (US) C on P the GE of CDM the C in, Fuster V, Kelly BB. Epidemiology of Cardiovascular Disease. National Academies Press (US); 2010. https://www.nchi.nlm.nih.gov/books/NBK45688/_Accessed April 8, 2017

766 https://www.ncbi.nlm.nih.gov/books/NBK45688/. Accessed April 8, 2017.

767 768 769	101.	Capewell S, Buchan I. Why have sustained increases in obesity and type 2 diabetes not offset declines in cardiovascular mortality over recent decades in Western countries? <i>Nutr Metab Cardiovasc Dis NMCD</i> . 2012;22(4):307-311. doi:10.1016/j.numecd.2012.01.005.
770 771 772	102.	Capewell S, Ford ES, Croft JB, Critchley JA, Greenlund KJ, Labarthe DR. Cardiovascular risk factor trends and potential for reducing coronary heart disease mortality in the United States of America. <i>Bull World Health Organ</i> . 2010;88(2):120-130. doi:10.2471/BLT.08.057885.
773 774 775	103.	Bibbins-Domingo K, Grossman DC, Curry SJ, et al. Statin Use for the Primary Prevention of Cardiovascular Disease in Adults: US Preventive Services Task Force Recommendation Statement. <i>JAMA</i> . 2016;316(19):1997-2007. doi:10.1001/jama.2016.15450.
776 777	104.	Gosmanova EO, Kovesdy CP. Adherence to antihypertensive medications: is prescribing the right pill enough? <i>Nephrol Dial Transplant</i> . 2015;30(10):1649-1656. doi:10.1093/ndt/gfu330.
778 779	105.	Hughes J, Kabir Z, Bennett K, et al. Modelling Future Coronary Heart Disease Mortality to 2030 in the British Isles. <i>PLoS ONE</i> . 2015;10(9). doi:10.1371/journal.pone.0138044.
780 781 782	106.	Scholes S, Bajekal M, Norman P, et al. Quantifying policy options for reducing future coronary heart disease mortality in England: a modelling study. <i>PloS One</i> . 2013;8(7):e69935. doi:10.1371/journal.pone.0069935.
783 784 785	107.	Huffman MD, Lloyd-Jones DM, Ning H, et al. Quantifying Options for Reducing Coronary Heart Disease Mortality By 2020. <i>Circulation</i> . 2013;127(25):2477-2484. doi:10.1161/CIRCULATIONAHA.112.000769.
786 787	108.	Capewell S, O'Flaherty M. Rapid mortality falls after risk-factor changes in populations. <i>Lancet Lond Engl.</i> 2011;378(9793):752-753. doi:10.1016/S0140-6736(10)62302-1.
788 789	109.	Tanrikulu MA, Agirbasli M, Berenson G. Primordial Prevention of Cardiometabolic Risk in Childhood. <i>Adv Exp Med Biol</i> . November 2016. doi:10.1007/5584_2016_172.
790 791	110.	Lauer RM, Burns TL, Daniels SR. <i>Pediatric Prevention of Atherosclerotic Cardiovascular Disease</i> . Oxford University Press; 2006.
792 793 794	111.	Stamler J, Dyer AR, Shekelle RB, Neaton J, Stamler R. Relationship of Baseline Major Risk Factors to Coronary and All-Cause Mortality, and to Longevity: Findings from Long-Term Follow-Up of Chicago Cohorts. <i>Cardiology</i> . 1993;82(2-3):191-222. doi:10.1159/000175868.
795 796	112.	Multiple risk factor intervention trial. Risk factor changes and mortality results. Multiple Risk Factor Intervention Trial Research Group. <i>JAMA</i> . 1982;248(12):1465-1477.
797 798 799 800	113.	Colquitt JL, Loveman E, O'Malley C, et al. Diet, physical activity, and behavioural interventions for the treatment of overweight or obesity in preschool children up to the age of 6 years. In: <i>Cochrane Database of Systematic Reviews</i> . John Wiley & Sons, Ltd; 2016. doi:10.1002/14651858.CD012105.
801 802 803 804	114.	Seery T, Moodie D, Cephus C, Sexson K. LIPID PROFILES PERFORMED AT THE TIME OF ROUTINE PHYSICAL EXAMINATIONS IN 9-11 YEAR OLDS WITHIN TEXAS CHILDREN'S PEDIATRIC ASSOCIATES PRIMARY CARE PEDIATRIC CLINICS. <i>J Am Coll Cardiol</i> . 2014;12 Supplement(63):A1461. doi:10.1016/S0735-1097(14)61461-3.

805 806 807	115.	Din-Dzietham R, Liu Y, Bielo M-V, Shamsa F. High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. <i>Circulation</i> . 2007;116(13):1488-1496. doi:10.1161/CIRCULATIONAHA.106.683243.				
808 809 810	116.	Laitinen TT, Pahkala K, Venn A, et al. Childhood lifestyle and clinical determinants of adult ideal cardiovascular health. <i>Int J Cardiol</i> . 2013;169(2):126-132. doi:10.1016/j.ijcard.2013.08.090.				
811 812 813	117.	Dahm CC, Chomistek AK, Jakobsen MU, et al. Adolescent Diet Quality and Cardiovascular Disease Risk Factors and Incident Cardiovascular Disease in Middle-Aged Women. <i>J Am Heart</i> <i>Assoc</i> . 2016;5(12). doi:10.1161/JAHA.116.003583.				
814 815	118.	Ruys J, Hickie JB. Serum cholesterol and triglyceride levels in Australian adolescent vegetarians. <i>Br Med J</i> . 1976;2(6027):87.				
816 817 818	119.	Yen C-E, Yen C-H, Huang M-C, Cheng C-H, Huang Y-C. Dietary intake and nutritional status of vegetarian and omnivorous preschool children and their parents in Taiwan. <i>Nutr Res.</i> 2008;28(7):430-436. doi:10.1016/j.nutres.2008.03.012.				
819 820 821	120.	Krajčovičová-Kudláčková M, Šimončič R, Béderová A, Grančičová E, Magálová T. Influence of vegetarian and mixed nutrition on selected haematological and biochemical parameters in children. <i>Food Nahr</i> . 1997;41(5):311-314. doi:10.1002/food.19970410513.				
822 823	121.	Nathan I, Hackett AF, Kirby S. The dietary intake of a group of vegetarian children aged 7-11 years compared with matched omnivores. <i>Br J Nutr</i> . 1996;75(4):533-544.				
824 825	122.	al-Dlaigan YH, Shaw L, Smith AJ. Vegetarian children and dental erosion. <i>Int J Paediatr Dent</i> . 2001;11(3):184-192.				
826 827 828	123.	Macknin M, Kong T, Weier A, et al. Plant-Based No Added Fat or American Heart Association Diets, Impact on Cardiovascular Risk in Obese Hypercholesterolemic Children and Their Parents. <i>J Pediatr</i> . 2015;166(4):953-959.e3. doi:10.1016/j.jpeds.2014.12.058.				
829 830	124.	Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. <i>J Acad Nutr Diet</i> . 2016;116(12):1970-1980. doi:10.1016/j.jand.2016.09.025.				
831 832	125.	Snowdon DA, Phillips RL. Does a vegetarian diet reduce the occurrence of diabetes? <i>Am J Public Health</i> . 1985;75(5):507-512.				
833 834 835	126.	Jenkins DJA, Kendall CWC, Marchie A, et al. Effects of a Dietary Portfolio of Cholesterol- Lowering Foods vs Lovastatin on Serum Lipids and C-Reactive Protein. <i>JAMA</i> . 2003;290(4):502-510. doi:10.1001/jama.290.4.502.				
836						
837						

Table 1. Effects of vegetarian diets on cardiovascular risk factors

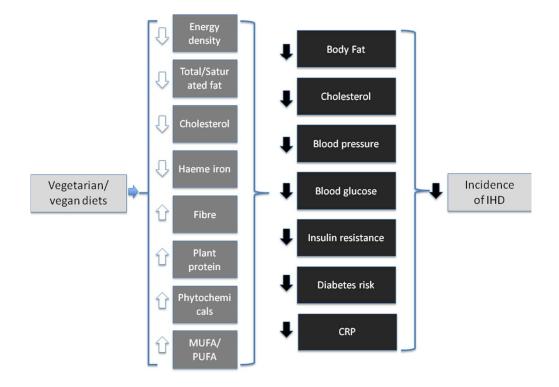
Study design	Populations	CVD Risk Factor	Key Findings	Reference group	Ref
Systematic review and meta-analysis of cross - sectional studies	71 studies for vegetarian and 19 studies for vegan diet	BMI	-1.49 kg/m2 (95% CI -1.721.25) for vegetarians; -1.72 kg/m2 (95% CI -2.211.22) for vegans	Various otherwise similar non- vegetarian populations	Dinu et al. (2016) ²⁰
Systematic review and meta-analysis of cross-sectional studies	64 studies for vegetarian and 19 studies for vegan diet	Total cholesterol	-0.72 mmol/L (95% CI- 0.80.64) for vegetarians; -0.80mmol/L (95% CI- 0.900.70) for vegans	Various otherwise similar non- vegetarian populations	Dinu et al. (2016) ²⁰
Systematic review and meta-analysis of cross-sectional studies	46 studies for vegetarian and 13 studies for vegan diet	LDL cholesterol	-0.55 mmol/L (95% CI -0.620.47) for vegetarians -0.59 mmol/L (95% CI -0.770.40) for vegans	Various otherwise similar non- vegetarian populations	Dinu et al. (2016) ²⁰
Systematic review and meta- analysis of randomised clinical trials	7 trials of intervention with vegan diet and 4 trials of intervention with vegetarian diet	Total cholesterol	-0.36 mmol/L (95% CI 0.550.17) with intervention with vegetarian or vegan diet (pooled estimates)	Trial control period	Wang et al. (2015) ¹⁴
Systematic review and meta- analysis of 11 randomised clinical trials	7 trials of intervention with vegan diet and 4 trials of intervention with vegetarian diet	LDL cholesterol	-0.34 mmol/L (95% CI -0.570.11) with intervention with vegetarian or vegan diet (pooled estimates)	Trial control period	Wang et al. (2015) ¹⁴
Systematic review and meta- analysis of 11	7 trials of intervention with	non-HDL cholesterol	-0.30 mmol/L (95% CI -0.500.10) with	Trial control period	Wang et al. $(2015)^{14}$

	vegan diet and 4 trials of intervention with vegetarian diet		intervention with vegetarian or vegan diet (pooled estimates)		
Adventist Health Study 2, a cohort study	96,000 participants (7% vegan, 29.2% vegetarian)	Risk of hypertension	RR 0.86 (95% CI 0.51- 1.45) for vegetarians RR 0.53(95% CI 0.25- 1.11) for vegans	Non -vegetarian Adventists	Orlich et al. (2014) ³⁴
Matched cohort study	4109 Taiwanese nonsmokers,	Risk of hypertension	RR 0.72(95% CI 0.55- 0.86) for vegetarians	Five omnivores matched to one vegetarian by age, sex, and study site,	Chuang et al. $(2016)^{35}$
A systematic review and meta- analysis of controlled clinical trials and observational studies	Seven trials, a total of 311 participants, mean age 44.5 years; 32 observational studies, a total of	Systolic blood pressure	a reduction in mean systolic blood pressure (-4.8 mm Hg; 95% CI-6.6 to-3.1) for vegetarian diet	Trial control period	Yokoyama et al.(2014) ¹⁵
	21,604 participants, mean age, 46.6 years		lower mean systolic blood pressure (-6.9 mm; 95% CI, -9.1 to -4.7) for vegetarian diet	Various otherwise similar non- vegetarian populations	
A systematic review and meta- analysis of controlled clinical trials and observational studies	Seven trials, a total of 311 participants, mean age 44.5 years; 32 observational studies, a total of	Diastolic blood pressure	a reduction in mean diastolic blood pressure (-2.2 mm Hg; 95% CI -3.51.0) for vegetarian diet	Trial control period	Yokoyama et al.(2014) ¹⁵

	21,604 participants, mean age, 46.6 years		lower mean systolic BP (-4.7 mm Hg; 95% CI, -6.33.1) for vegetarian diet	Various otherwise similar non- vegetarian populations	
Two prospective cohort studies	Adventist Health Study 1(25,698 participants; ca. 50% vegetarians) and 2 (60 903 participants; 52% vegetarians)	Prevalence of diabetes	1.5 to 2 times lower	Non -vegetarian Adventists	Snowdon and Phillips (1985) ¹²⁵ Tonstad et al. (2009) ⁴⁵
Systematic review and meta-analysis of observational studies	Twenty seven studies with 2256 vegetarian and 2192 non-vegetarian participants; 4 studies of 83 vegans and 125 omnivores	Blood glucose levels	-5.08 mg/dL (95% CI -5.984.19) for vegetarians -6.39 mg/dL(95% CI -12.350.41) for vegans	Various otherwise similar non- vegetarian populations	Dinu et al. (2016) ²⁰
Review	Two randomized clinical trials of interventions with vegetarian diet in diabetes including 43 and 74 participants with diabetes	Effect on various diabetes markers	a greater reduction various measures of diabetes, including body weight, fasting plasma glucose, HbA1c, and hypoglycaemic medication and greater increase in insulin sensitivity with vegetarian diet	Hypocaloric diet or a diet recommended by American Diabetes Association	Kahleova et al. (2015) ⁴⁷
Cross -sectional study	Thirty long term (≥5 years) vegetarians and 30 age- matched omnivores	C reactive protein (CRP) levels	Lower CRP levels in vegetarians (0.77 mg/L; (1.29), P<0.01) than in omnivores (1.30 mg/L; (1.38))	Matched omnivores	Szeto et al. (2004) ⁵⁵
Randomized control trial	Forty-six healthy, hyperlipidaemic	Effect on CRP levels	Vegetarian diet intervention reduced CRP	Control arm of the clinical trial	Jenkins et al. $(2003)^{126}$

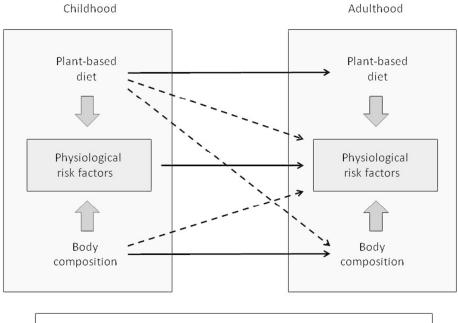
adults randomised	levels by 28.2% (10.8%)	
to a diet low in	(p = .02), whereas control	
saturated fat and a	diet by 10% (8.6%) (p =	
vegetarian diet high	.27)	
in plant sterols		

Table 2. Dietary-influenced risk factors in childhood and their relation to atherosclerosis


Study	Population	Findings	Locations of the lesions measured	Additional information	Reference
The Bogalusa Heart Study	Autopsies on 204 young persons 2 to 39 years	A strong association of BMI ¹ , SBP ² , DBP ³ and serum concentrations of total cholesterol, TG ⁴ , LDL-C ⁵ , and HDL-C ⁶ with vascular lesions in children and young adults on autopsy	Coronary arteries, aorta	The association between less advanced lesions (fatty streaks) and more advanced ones (fibrous plaques) was much stronger in the coronary arteries than in the aorta	Berenson et al.(1998) ⁷⁶
The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study	>3000 autopsies of persons 15 to 34 years	Strong relationships between atherosclerotic severity/extent with age, non–HDL cholesterol, HDL-C, hypertension, tobacco use, diabetes mellitus, and (in men) obesity on autopsy	Left anterior descending coronary artery, right coronary artery, and abdominal aorta	Severity and extent of lesions positively associated with age and with number of risk factors.	McMahan et al. (2006) ⁷⁷
4 longitudinal cohorts (Cardiovascular Risk in Young Finns Study, Childhood	4380 members of 4 prospective cohorts with cardiovascular risk factor data from childhood (3	Risk factors at 9+ years (total cholesterol, TG, blood pressure, and BMI) were predictive of elevated carotid IMT in adulthood	Carotid IMT	The associations with risk factors measured at age 3 years and 6 years were weaker and nonsignificant.	Juonala et al. (2010) ⁷⁸

¹ Body mass index
 ² Systolic Blood Pressure
 ³ Diastolic Blood Pressure
 ⁴ Triglicerydes
 ⁵ LDL cholesterol
 ⁶ HDL cholesterol

Determinants of Adult Health study, Bogalusa Heart Study, and Muscatine Study)	to 18 years) and intima media thickness (IMT) in adulthood (20 to 45 years)				
The Bogalusa Heart Study	1080 black and white subjects (24-43 years; 71% white, 43% male); individuals in the top (n=54) versus bottom fifth (n=54) percentiles distribution of femoral IMT were compared for traditional cardiovascular risk factors profile	SBP, DBP, total cholesterol , LDL-C, HDL- C and smoking status were linked to IMT of the femoral artery	Femoral artery IMT		(Paul et al. 2005) ⁸⁰
The Cardiovascular Risk in Young Finns Study	2255 healthy white adults aged 24 to 39 years who had risk factor data available since childhood	Childhood LDL cholesterol (≥80th percentile), elevated blood pressure, skinfold thickness, low HDL cholesterol (≤20th percentile), and smoking were inversely associated with artery elasticity in adulthood	Carotid artery elasticity comprising carotid artery compliance, Young's elastic modulus, and stiffness index	Associations remained highly significant after adjustment for the number of risk factors identified in adulthood	Juonala et al. (2005) ⁸¹
The Muscatine Study	384 subjects (197 men, 187 women) who had coronary risk factors measured in childhood (mean age 15 years) and twice during young adult life (mean ages 27	Increased body size, increased blood pressure and decreased HDL-C were associated with coronary artery calcification in young adults			Mahoney et al.(1996) ⁸³


	and 33 years)			
Cross-sectional	88 children (aged	children with	Aortic and carotid	Järvisalo et al.
study	11±2 years)	hypercholesterolemia and	IMT	$(2001)^{85}$
-		diabetes showed increased		
		IMTs compared with		
		healthy controls		

Jwe. Jointois

254x190mm (96 x 96 DPI)

Key → Direct tracking from childhood adulthood --> Mechanistic influence of childhood state on adult state

254x190mm (96 x 96 DPI)

