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Probing the critical point of the Jaynes–Cummings second-order
dissipative quantum phase transition
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We highlight the importance of quantum fluctuations in organizing a dissipative quantum phase transition
for the driven Jaynes–Cummings interaction with variable qubit-cavity detuning. The system response presents
a substantial difference from the predictions of the semiclassical theory, the extent of which is revealed in the
properties of quantum bistability, and visualized with the help of quasi-distribution functions for the cavity
field, subject to an appropriate scale parameter. States anticipated by the neoclassical theory of radiation
coexist in the quantum picture, following the occurrence of spontaneous dressed-state polarization and phase
bistability at resonance.
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The recent experimental demonstration of the break-
down of photon blockade [1] by means of a dissipative
quantum phase transition, following its theoretical pre-
diction shortly beforehand [2], marks an active interest
in the study of phenomena where quantum fluctuations
shape the system dynamics, yielding a response that
cannot be interpreted as the superposition of a small
amount of noise to the semiclassical predictions (see for
example [3, 4]). Under suitable conditions, bosons may
exhibit a fermionic behaviour, with the photon block-
ade – coined as the analogue of the Coulomb blockade
[5] – and the suppression of double occupancy in an ar-
ray of coupled resonators being characteristic examples
where a significant nonlinearity is responsible for the de-
velopment of strong correlations in the spectrum of the
system [6, 2]. The regime of photon blockade has been
recently accessed to extract the fluorescence spectrum
of a collection of coupled driven resonators in a dissi-
pative environment with reference to an effective Ising
chain model [7–9].

The forced Jaynes–Cummings (JC) oscillator, with
one resonant and driven cavity mode coupled to a
two-level system (qubit), exhibits a characteristic

√
n

nonlinearity [10] dependent on the drive (see, e.g.,
[11, 2]). When placed in a dissipative environment it
demonstrates a fundamental out-of-equilibrium light-
matter interaction where quantum phase transitions
can be encountered [12, 2]. In this Letter, we explore
the properties of the JC nonlinearity in the region
of a second-order phase transition, varying the inter
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(system-environment) and intra (qubit-cavity, detuned)
coupling strengths, having as a pivotal reference the crit-
ical point for spontaneous symmetry breaking [13]. This
point has a well-defined position in the parameter space
of the drive, with its frequency equal to that of the qubit
resonant with the cavity, and with its strength equal to
the half of their coupling strength. It signals the col-
lapse of the

√
n nonlinearity to zero where the discrete

quasi-energy spectrum of the JC oscillator merges to a
continuum above threshold [2].

The Master Equation (ME) in the interaction pic-
ture and the rotating wave approximation (RWA) for
a two-level atom with frequency ωq and raising (lower-
ing) operators σ+(σ−) interacting with a single cavity
mode with frequency ωc and raising (lowering) opera-
tors a†(a), driven by a coherent field with strength εd
and frequency ωd in the presence of dissipation at zero
temperature, reads:

ρ̇ = iΔωc[a
†a, ρ] + iΔωq[σ+σ−, ρ]− iεd[a+ a†, ρ]−

− ig[aσ+ + a†σ−, ρ] + κ
(
2aρa† − a†aρ− ρa†a

)
+

+ (γ/2) (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) , (1)

where Δω(c,q) = ωd − ω(c,q) is the detuning between
the laser driving field and the (cavity field, qubit) re-
spectively. The coupling strength between the cavity
mode and the atom, detuned by δ ≡ ωq − ωc [with
|δ| � ω(c,q)], is denoted by g, an interaction which is as-
sumed to be much stronger than the cavity decay rate
2κ and the spontaneous emission rate γ in the strong
coupling regime. The ME (1) does not yield a closed
set of equations for the first-order moments of the field
and the two-level atom. Factorizing higher (than first)
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order moments results in neglecting quantum correla-
tions and produces a closed set of equations called the
Maxwell–Bloch equations [14].

We now require a means to depict the quantum fluc-
tuations for the density matrices satisfying Eq. (1). The
Q function in the steady state:

Q(x+ iy) =
1

π
〈x + iy|ρcv,ss|x+ iy〉 (2)

is used to provide a “classical” visualization of the in-
tracavity radiation field in the quantum-classical corre-
spondence provided by quasi-probability distributions
[15]. In Eq. (2), ρcv,ss is the reduced cavity density ma-
trix ρcv,ss = limt→∞[〈+|ρ(t)|+〉+〈−|ρ(t)|−〉], where |+〉
and |−〉 are the upper and lower states of the two-level
atom, respectively [13]. The quasi-probability distribu-
tion in the Q representation for a cavity field in the
coherent state |αc〉 = |xc+ iyc〉 with average photon oc-
cupation 〈n〉 ≡ 〈a†a〉 = |αc|2 assumes a Gaussian form:
Qc(x+ iy) = (1/π) exp{−[(x− xc)

2 + (y − yc)
2]} [15].

Coupling the JC oscillator to a Markovian bath leads
to the decay of coherence and degradation of quantum
correlations, rendering ultimately the system amenable
to a classical description [16]. Nevertheless, driving the
cavity (or the qubit) with an external coherent field
gives rise to non-trivial steady states with dynamics or-
ganized by quantum fluctuations in the strong coupling
regime, investigated both theoretically and experimen-
tally (see, for example, [17, 13, 18]). For δ = 0, “photon
blockade breaks down by means of a first-order dissi-
pative quantum phase transition, except at a critical
point in the space of drive amplitude and (drive-cavity)
detuning, where a continuous transition is observed” [2].
Such a second-order transition is marked by sponta-
neous symmetry breaking in which the phases of the
emergent states become nonlinear functions of the ratio
εd/g (with εd ≥ g/2) [18].

Interaction with a strong drive prevails over dress-
ing of the JC system coupling (between the coupled
qubit and cavity) which becomes a perturbation past
a set threshold. While the states of phase bistability
above threshold are nonstable in the mean-field, in the
full quantum mechanical picture they become attractors
with two isolated distributions in the Q function for the
intracavity field [13, 18]. In this work, we study the re-
gion of this critical point in the parameter space of the
drive (Δωc/κ, εd/κ) allowing a variation of the qubit-
cavity detuning. We visit key results of the neoclassical
theory of radiation alongside the role of quantum bista-
bility and the associated scale parameters that connect
us to the notion of a thermodynamic limit in a phase
transition. Increasing the detuning between the resonant

cavity mode and the laser driving field results in a ro-
tation of an excitation ring in the phase portrait (x, y)

with varying intracavity photons, as we can see in Fig. 1,
where the drive strength is set to its threshold value
εd = g/2. For the smallest detuning, in Frame (a), the
two states point to phase bistability attained for δ = 0

and Δωc = 0. The rotation of the most probable state
in the half-plane y < 0 for increasing Δωc > 0 corre-
sponds to the intracavity photons following a Lorentzian
curve with variable detuning, depending on the number
of photons in the resonator [see Eq. (24) of [2] for cavity-
qubit resonance].

The less probable state follows always its “phase-
bistable original counterpart”, a more probable brighter
state, as a very low amplitude distribution in the Q func-
tion —an evidence of quantum fluctuation switching be-
tween a resonant excitation with a Lorentzian spectrum,
and a darker cavity state. The Maxwell–Bloch equations
for γ/(2κ) → 0 do not predict any bistability for all the
drive parameters of Fig. 1, but only a bright state with
60, 42, 28, 19 photons in (a)–(d), respectively, in quan-
titative and qualitative contrast to the trend exhibited
by the quantum dynamics (with 〈n〉ss ≈ 30, 63, 53, 38

respectively).

As we can observe in Fig. 2, there is a sharp drop
in the cavity photon number as we move from δ < 0 to
δ > 0 since the probabilities of occupying the two neo-
classical states are reversed, with the low-photon state
(closer to the center of coordinates) becoming dominant
[see Frame (d)]. At the same time, the states of complex-
amplitude quantum bistability remain centered at the
same positions in the phase portrait for the same |δ|.
Moreover, at δ = 0 [Frame (c)] there appears a third
state very close to the center of coordinates along the
excitation path of the JC ladder. This very low ampli-
tude state is a prediction of the neoclassical theory of
radiation, satisfying the state equation [2]:

α = −iεd

[

κ− i

(

Δωc − g2
√
Δω2

c + 4g2|α|2

)]−1

≈

≈− iεd
[
κ− i

(
Δωc − g2

Δωc

)]−1

,Re(α) ≈ −εdΔωc

g2
.(3)

The approximation in the second line would also give
the Rabi resonances at Δωc = ±g in the linear regime,
for a much weaker drive and a larger drive-cavity de-
tuning.
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Fig. 1. (Color online) Complex amplitude bistability shaping an excitation ring. Quasi-probability function Q(x+ iy) of the
intracavity field for varying drive-cavity detuning Δωc/κ: 0.40, 0.96, 1.52, 2.08 in (a)–(d) respectively. Parameters: g/κ = 16,
δ/g = −1.25, γ/(2κ) = 0 and εd = g/2

The two states in Frames (a, b, d) satisfy the mean-
field state equation of the Kerr nonlinearity [19, 2]:

α = −iεd

{

κ− i

[

Δωc +
g2

δ

(
1 +

4g2

δ2
|α|2

)−1/2
]}−1

,

(4)
one for δ < 0 (high-photon) and one for δ > 0 (low-
photon state). We note, remarkably, that both states are
present in the phase portrait quasi-distribution, even if
the value of δ has a definite sign, while the variation
of qubit-cavity detuning results only in the change of
their relative weights. At the same time, the Maxwell-
Bloch equations again do not predict any bistability
for the corresponding drive parameters and vanishing
spontaneous emission rate (compare also with Fig. 3).
The difference between the asymptotic behaviour of the
Maxwell–Bloch state equation for bistability and the so-
lution of the neoclassical equations has been discussed
in detail for resonance (δ = Δωc = 0) in [13], arising
when considering the limit γ/(2κ) → 0 a priori and a
posteriori to forming the steady-state response.

For Δωc = 0, setting δ = ±|δ| in Eq. (4) yields two
complex-conjugate neoclassical field amplitudes iα. Tak-
ing now the limit |δ| → 0 recovers the two states of phase
bistability, α = −iεd[κ± ig/(2|α|)]−1, which is reflected
by two symmetrically located peaks of equal height in
the Q function [13]. In the opposite limit, when |δ| 
 g

and |α|2 � nnc, Kerr, where nnc, Kerr = [δ/(2g)]2, the
resonances of the linear strongly dispersive regime are
located at Δωc = ±g2/|δ| [20–22]. We note that the
scaling of Eq. (4) appears only for the lowest-order Kerr
nonlinearity in the case of weak dispersion at resonance
(δ = 0), after a Taylor expansion of the root in the
first line of Eq. (3), matching the neoclassical predic-
tions for (

√
2g|αss|)2 � Δω2

c [23, 2]. More importantly,
Eq. (3) brings along the scale parameter nsc = g2/(4κ2)

associated with a strong-coupling limit [2]. The low-
photon state of Fig. 2c is linked to the states predicted
by Eq. (4), and is marked by strong quantum fluctua-
tions, despite having |α|2 � nsc.

The disparity between the mean-field predictions
and the ME results persists even when we consider spon-
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Fig. 2. (Color online) Towards qubit-cavity resonance. Quasi-probability function Q(x+ iy) of the intracavity field for varying
cavity-qubit detuning δ/g: −10,−5, 0,+5 in (a)–(d) respectively. Parameters: Δωc/κ = 0.8, g/κ = 16, γ/(2κ) = 0 and
εd = g/2

taneous emission into the modes of the vacuum field
with a rate such that γ/(2κ) = 1. At the driving field
strength about half of its threshold value, the semiclas-
sical bistability region is crossed when δ/g → 0−, as we
can see in Fig. 3a. However, quantum bimodality grad-
ually disappears in the associated Q function [Frames
(b)–(d)]. The bright state – the one furthest away from
the center of coordinates – recedes along the excitation
path of the JC ladder and the cavity photon number
decreases constantly with diminishing qubit-cavity de-
tuning. Due to the presence of appreciable spontaneous
emission, mixing of the states participating in the quan-
tum dynamics takes us to a larger area in the phase
portrait in Frames (b) and (c), receding together with
bistability. We note that here the dim state – the one
closer to the center of co-ordinates – is now situated
on the half-plane x < 0, in contrast to the bistability
with γ = 0 (Figs. 1 and 2). As δ/g → 0−, the dim state
comes to better agreement with the prediction of the
Maxwell–Bloch bistability steady-state equation [14]:

α = − iεd
κ̃

[
1 +

2g2/(κ̃γ̃)

1 + 8g2|α|2/|γ̃|2
]−1

, (5)

where κ̃ = κ − iΔωc and γ̃ = γ − 2iΔωq, lying on the
lower branch of the bistability curve.

Let us now examine side by side the two constituents
of the JC oscillator when γ/(2κ) = 0. In Fig. 4 we
present the average photon number 〈n〉ss = 〈a†a〉ss ex-
tracted from the steady-state of the cavity density ma-
trix, together with the modulus of the qubit coherence
|〈σ−〉ss| [with σ− = (1/2)(σx−iσy)], proportional to the
distance from the z-axis in the Bloch sphere,

√
X2 + Y 2,

both plotted as a function of the qubit-cavity detuning
for varying drive strength. The photon curves are sym-
metric with respect to the sign of δ, as Eq. (4) suggests
for Δωc = 0, while their minima correspond to the neo-
classical asymptotic formula in the steady state [2]:

|α|2 =
ε2d

κ2 + [g/(2 |α|)]2 , (6)
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Fig. 3. (Color online) Maxwell-Bloch and quantum bistability below threshold. (a) – Semiclassical photon number |αss|2 as
a function of the normalized drive field εd/γ for three different values of δ/g: −5.25 (solid very thick line – in purple), −4.5

(solid thick line – in green), −2.5 (solid thin line – in blue), −0.5 (dashed line – in orange). (b)–(d) – Quasi-probability func-
tion Q(x+ iy) of the intracavity field for varying cavity-qubit detuning δ/g: −5.25,−4.5,−0.5, respectively, and εd/g = 0.24

[marked by the vertical line in (a) – in red]. Parameters: γ/(2κ) = 1, g/γ = 20 and Δωc/κ = 2

an approximation whose quality depends on the value of
the drive strength relative to the threshold. The pres-
ence of cavity-drive detuning (for δ = 0) is linked to
the split Lorentzian [2], with the second term in the
denominator of (6) becoming [Δωc ∓ g/(2 |αss|)]2. The
nonlinearity is canceled at Δωc = ±gκ/(2εd), where
|〈σ−〉ss| → 1/2 when εd/κ 
 1 [see Eq. (17) of [2] with
|αss| = εd/κ, the empty-cavity steady-state excitation].
The limit value of 1/2 is a prediction of the neoclassical
theory above threshold at resonance (δ = Δωc = 0),
meaning that the qubit inversion is zero for every value
of the quasi-energy in the continuous JC spectrum [13].
As we can observe in Fig. 4, in the quantum picture
the photon number increases at a steeper rate above
threshold, while the qubit vector lies close the equato-
rial plane of the Bloch sphere, with the corresponding
curve reversing trend and developing an inflection point,
precursor of a curvature change [see Inset of frame (b)].

The Maxwell–Bloch bistability state equation (5) in-
dicates an effective co-operativity [g2/(κ̃γ̃)] as well as a
scale parameter nMB = |γ̃|2 /(8g2). For nMB → ∞, a
weak-coupling limit for the open system, the displayed
nonlinearity becomes essentially classical and quantum

fluctuations play only the role of a negligible perturba-
tion [2, 18]. Alike is the scaling behaviour suggested by
Eq. (4), since nnc, Kerr → ∞ for g → 0. For Δωq = 0,
the scale parameter nMB = γ2/(8g2) corresponds to the
absorptive bistability discussed in [24] and [12] for many
atoms and a single atom, respectively, coupled to a res-
onant cavity mode.

We have already noted in Fig. 3 that the presence of
a very small γ2/(8g2) [� δ2/(4g2)] suffices to alter the
picture of bistability we have met in the preceding fig-
ures, both in terms of the peak locations and quantum
fluctuations. For γ/g → 0, the competition between dy-
namics of different scaling is marked by the pronounced
coexistence of the states of Maxwell–Bloch bistability
and the structurally unstable neoclassical states depen-
dent upon the conservation of the qubit state vector
in the Bloch sphere representation [13, 18]. A simi-
lar phenomenon is observed in a collection of classi-
cal phase oscillators non-locally coupled, where varying
their coupling strength leads to the competition between
structurally stable and turbulent complex states (called
chimeras), a effect that can be viewed as a competition
between coherence and decoherence [25–27].
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Fig. 4. (Color online) Coupled, variably detuned cavity
and qubit. Average cavity photons (a) and modulus of the
qubit coherence (b) as a function of δ/κ for eight equidis-
tant values of the drive strength εd/g ∈ (0.45 − 0.55] [the
inset in (b) is plotted for εd/g = 0.575]. The black (blue)
curves correspond to drive strengths below (above) thresh-
old. The bold curve (in red) in both plots indicates the
threshold value εd/g = 0.5 while the broken line indicates
the end of the range. Parameters: Δωc = 0, γ/(2κ) = 0

and g/κ = 16

In conclusion, varying the detuning between the JC
oscillator constituents and the drive allows us to ex-
tract information on the departure from the semiclassi-
cal theory, bringing together the dispersive and the res-
onant behaviour around the critical point of a second-
order phase transition. The effective JC nonlinearity,
which depends upon the drive-induced dressing and dis-
sipation, is dominated by quantum fluctuations at zero
temperature through a competition of scaling dynamics
governed by different parameters (and asymptotic dy-
namics when limits of these parameters are considered).
Such a competition favours either two weak-coupling
limits or one strong-coupling limit, bringing about a
dissipative quantum phase transition with fundamental
differences from its counterparts in many-body quan-
tum optics, such as the laser and the superradiant phase
transition.

Simulations were performed using the Quan-
tum Optics Toolbox in Matlab. The author thanks
H.J. Carmichael for his guidance. The work was
supported by the Engineering and Physical Sciences
Research Council (EPSRC), UK.
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