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Abstract

Paediatric cancers evolve very differently to adult cancers: they develop over

months, not decades, and are exposed to few exogenous mutagens. Despite major

strides in our understanding of adult cancers, little is known about the evolutionary

trajectories of paediatric solid cancers. This thesis focuses on the commonest pae-

diatric malignancies of the kidney and liver to determine their genetic past.

Constructing the evolutionary history of a cancer requires estimating the num-

ber of cells possessing each mutation in a tumour and determining their ordering.

In the first part of the thesis, I compare copy number alterations (CNAs) in multiple

tumour regions to construct the histories of 20 Wilms’ tumours (WTs). I uncover

patterns of CNA occurrence, describe their role in the different stages of tumorige-

nesis, and relate phylogeny to clinically important features.

In the second part, I develop a method to estimate cellular proportion of CNAs

by modelling heterozygous single nucleotide polymorphisms from array data as a

Gaussian mixture. By determining the composition of spatially separate and locally

mixing clones, I perform a comprehensive reconstruction of the evolutionary histo-

ries of >70 WTs and 11 hepatoblastomas.

Supporting my analysis using targeted sequencing of ~180 genes, I show that

convergent evolution of CNAs and single nucleotide variation highlights context-

dependent selection. I discover subtype-specific features of WT evolution, includ-

ing a consistent trajectory of stromal WT evolution. Finally, I show CNA instability



as a potential biomarker in WT, suggesting that burden of CNAs may identify high-

risk patients.

In summary, this thesis describes the diversity of evolution in two paediatric solid

cancers and novel approaches to studying these diseases. By uncovering evidence

for how these cancers evolve over time, I gain insights into the sequential genetic

changes that form the histories of these cancers and demonstrate the clinical rele-

vance both in terms of sub-type diagnosis and prognosis.
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Impact Statement

The importance and complexity of cancer evolution for modern medicine has been

demonstrated profoundly in the last decade. Despite the fact that cancer researchers

have accepted that tumours evolve through an evolutionary process since the mid-

20th century, contemporary genome-wide assays are now enabling scientists to

model tumour evolution in increasingly advanced ways. Evolution as a system is

adept at allowing for the proliferation of a species in harsh conditions exemplified

by extremophiles in nature. Evolution in cancer is integral in causing metastasis,

relapse and therefore death. The implications of tumour evolution are pervasive

amongst all cancer types including childhood cancers.

This thesis explores cancer evolution in the setting of cancers that occur early

in life. Cancer is a major cause of death in childhood, however survival rates have

increased dramatically since the advent of chemotherapy. Unfortunately, childhood

cancer survivors subsequently face a decreased quality of life into adulthood and

reduced life expectancy due to the long-term effects of cytotoxic therapies such as

chemotherapy and radiotherapy.

Clinical trials that search for genetic biomarkers for patient stratification may

provide an opportunity to select patients for optimised therapeutic programmes to

balance survival and long-term life quality. However, clinical trials should also be

viewed in the context of tumour evolution. Tumour evolution produces diversity

and diversity affects biomarker detection. By understanding tumour evolution, fu-

ture trials can be designed to take into account the likelihood of detecting genetic



biomarkers. Conversely, alternative sampling strategies may be utilised to over-

come this challenge, for example by assaying tumour DNA present in the blood

instead of sampling the tumour directly.

In this thesis I explore the idea of using traits of tumour evolution itself to stratify

patients. Redefining our idea of a genetic biomarker, from a single mutation, to the

relationships between mutations may prove to be a powerful improvement for our

perception of cancer prognosis. Studying evolution in cancer remains expensive

and challenging; findings in this thesis may help to intelligently design large tumour

evolution studies.

Understanding tumour evolution can also aid decision making in the context of

routine clinical problems. Are synchronous tumours that occur in separate organs

related or independent? What drives strikingly different phenotypes within the

same tumour mass? Medical practitioners are faced with these issues on a regular

basis. Work in this thesis seeks to communicate with clinicians ways in which

evolution can help answer these questions to shape the perception of a case in light

of the underlying biology.

This research contributes to the growing repertoire of tumour evolution studies.

Together many groups across the world are adding detail to the concept of tumour

evolution. These findings often show why cancer is prone to resistance and is such

a difficult disease to treat. By supplementing this school of thought this thesis

should contribute to the education of the general public. The more aware that can-

cer patients are of how cancers grow and survive, the closer the relationship will be

between patient and doctor, as well as the public and the researcher.
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Chapter 1

Introduction

1.1 Cancer in Early Life

Cancer is a disease in which phenotypically normal cells in the body transform by

acquiring the ability to proliferate uncontrollably, overcoming normal biological

barriers of unlimited cell growth and forming malignant neoplasms. In order for a

cancer to acquire the hallmarks of malignancy, key genes in a cell of origin must

acquire mutations. The disease is a major cause of death across the world and one

in two people born after 1960 will be diagnosed with cancer during their lifetime [1].

Cancer can arise in any organ of the body, however cancer incidence per tissue

is underpinned by the innate proliferation rate of the cell, its relative exposure to

mutagens, as well as other underlying biological and genetic factors [2]. Some of

the most common tissues for cancer development include lung, breast, prostate and

colon [1]. Lung cancer is a common example of a tumour type linked to environ-

mental exposures as it is strongly associated with tobacco smoking which leads to

long-term mutagenic insults to the genetic material of cells [3].

The ability of smokers to live for decades cancer-free demonstrates the ability

of the body to prevent the emergence of cancer through DNA damage repair, cell

signalling, controlled cell death and immune surveillance [4, 5]. In this regard,

the delay in the development of cancer over time illustrates why it is considered a



disease of age as well as a disease of genetic aberration. Cancer incidence increases

dramatically with age and in the United Kingdom approximately half of cancers are

diagnosed in individuals older than 70 years [1].

Despite this, cancer can also present in childhood. Cancer contributes significantly

to childhood mortality, causing 1 in 5 deaths in 1–14 year olds, and is increasing

in incidence [6, 7]. Genetic predispositions are an important factor for the devel-

opment of cancer in the early stages of life, but only explain a subset of childhood

cancers [8]. In the 1960s childhood cancer survival rates were much lower com-

pared to modern standards, as more than 50% of patients did not survive past 5

years [9]. Since then, through the rational design of clinical trials centred around

the use of chemotherapy and radiotherapy in children, survival rates have achieved

~80%. Unfortunately, this success has come at a cost. The use of chemotherapy

and radiotherapy has severe long-term implications when used in young children,

leading to a reduced quality of life and an increased chance of death decades later.

For example, the use of anthracyclines is known to cause cardiotoxicity that can

start in adulthood [10]. Additionally, more than 10% of survivors of childhood can-

cer treated with anthracyclines in combination with radiotherapy experience heart

failure before the age of 45 [11]. These effects, in addition to the contribution of

other cytotoxic anti-cancer agents, contribute to the fact that 18% of individuals that

were diagnosed with a childhood cancer in the 1970s/1980s and achieved five-year

survival, died within the subsequent quarter of a century.

Childhood cancers highlight a separate spectrum of affected tissues types com-

pared with adult cancer. These are broadly split into 12 categories of both liquid

and solid tumours [7, 12]. The 11 defined categories are leukaemia, lymphoma,

central nervous system tumours, sympathetic nervous system tumours, retinoblas-

toma, renal tumours, hepatic tumours, bone tumours, soft tissue sarcomas, germ

cell and gonadal tumours and, epithelial tumours and melanoma. Most adult can-

cers are carcinomas as most tissues with high proliferation rates and carcinogen
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exposure in adults are epithelial cells. Contrasting, in children many other histo-

logical types are common, perhaps due to many childhood cancers being caused by

aberrations in developmental processes that are largely concluded in adults [12, 13].

Cancer incidence rates in 0–4 year olds are higher than in later childhood years

until 14 years old [1]. As a proportion of the total incidence, renal and hepatic

tumours contribute more to the 0–4 year old age bracket than older age brackets,

meaning they are significant contributors to cancer in childhood in early years [7].

This thesis focuses on studying the two most common tumour types in the kidney

and liver, Wilms’ tumours (nephroblastomas) and hepatoblastomas, as representa-

tive of solid childhood tumours.

1.2 Wilms’ tumour biology

Approximately 90% of all paediatric renal tumours are Wilms’ tumours (WTs).

These tumours make up ~6% of all childhood tumours and 1 in every 100,000

child under 15 years of age will develop a WT annually (95–140 cases per year in

the UK). The median age of diagnosis is ~3 years of age [14]. WTs are thought

to develop as a result of aberrant mesenchymal-to-epithelial transition during the

differentiation of the ureteric bud to form the mature kidney [15]. Interestingly,

the opposite process, epithelial-to-mesenchymal transition often occurs in adult

carcinomas as a pathway towards tumour metastasis [16].

The ureteric bud, which invades the metanephric blastema, triggers the differen-

tiation of stromal and epithelial cells to form the nephron structure of the mature

kidney (Fig. 1.1A) [18]. When this differentiation is blocked or disrupted in WT

development, these cell types are produced aberrantly [15]. This is thought to lead

to the presentation of the ‘classic’ triphasic histology seen in WTs. Here, WTs

are often seen to form tumours with variable compositions of the three cell types

related to ureteric bud induced differentiation – blastema, stroma and epithelia (Fig.

1.1B–C). The cellular composition of a WT may provide clues of the natural his-
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Figure 1.1: Understanding how a WT develops and its links to clinical presentation are vital
to understanding how the cancer evolves. In normal kidney development, the
ureteric bud invades the metanephric blastema to begin the process of differen-
tiation that will form the mature tubules of the kidney (A – inspired by [17]).
Normal kidney development involves the differentiation of blastema into stro-
mal and epithelial components. A block/dysregulation of this differentiation
process is linked to WT formation (B). This is thought to cause the develop-
ment of triphasic WT histology involving variable components of blastema,
stroma and epithelia. (C) represents the histology of a mixed type WT in which
no single cell-type dominates (10X magnification). The three components of
triphasic WT histology (blastema, epithelia and stroma) are enlarged in the
image. An additional important feature of WT histology is the development
of anaplasia which is associated with TP53 mutation and 17p LOH (D). This
image is 40X magnification and shows a multipolar mitotic figure alongside
hyperchromatic nuclei. Finally, small nodules with the appearance of imma-
ture kidney, known as nephrogenic rests, are thought to be the precursor lesion
to WT. When WTs present at diagnosis they can be unilateral, multifocal or
bilateral (E).

tory of the tumour. Another histological feature also present in a subset of WTs

is anaplasia, in which chaotic mitotic figures are observed often showing multiple

poles in addition to cells with hyperchromatic nuclei (Fig. 1.1D) [19].

The precursor lesion of WT is thought to be nephrogenic rests (Fig. 1.1E). These

are often observed as small nodules of immature kidney which are benign. These

rests are often associated with genetic syndromes such as Beckwith-Wiedemann
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syndrome that is associated with WT and hepatoblastoma development [20, 21].

According to International Society of Paediatric Oncology (SIOP) guidelines in

Europe, risk stratification for WT is largely based on histological presentation [22].

WTs are categorised according to their variable cellular composition. If any given

cell type compromises >66% of the tumour, the tumour is classified according to

that cell type (e.g. blastemal, stromal or epithelial). If no one single cell type dom-

inates the tumour, the tumour is classified as being ‘mixed’ type. Additionally the

tumour is assessed for anaplasia. If anaplasia is observed in multiple loci the tumour

is considered ‘diffuse anaplastic’ regardless of the triphasic composition. If anapla-

sia is observed in only a single location, it is considered ‘focal anaplastic’. Tumours

with >66% dead cells – necrosis – are considered to be regressive type tumours

and if the tumour is >99% necrotic the tumour is considered a necrotic type tumour.

All patients that are treated according to SIOP guidelines undergo pre-surgery

chemotherapy prior to removal of the tumour, often performed as a nephrectomy.

The typing of the tumour post-nephrectomy determines further treatment. Dif-

fuse anaplastic and blastemal type tumours are considered high risk due to their

worse survival, due to their association with genomic instability and chemotherapy-

resistant undifferentiated cells, respectively. Only necrotic type tumours are consid-

ered to be low risk. All other types are considered to be intermediate risk. Higher

risk types receive extended post-surgery chemotherapy, whilst low risk tumours

receive no post-surgery chemotherapy [22].

Approximately 15% of WTs patients will relapse within two years. More than

half of WT cases that relapse are not high risk cases, clearly showing that there is

a need for increased treatment in some cases [14]. However, WT patients are not

exempt from the negative long term effects of a chemotherapy and/or radiotherapy

programme of treatment in early life. Furthermore, half of high risk cases do not

relapse but are treated with anthracycline which is linked to heart tissue damage
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and heart failure decades later in life [11].

An additional form of high risk is associated with tumours which present pri-

mary lesions in both kidneys upon diagnosis – bilateral tumours. WTs can also be

multifocal within a single kidney (Fig. 1.1E). Bilateral WTs are associated with

syndromic disorders which can predispose to WT formation [23]. These malforma-

tion syndromes, in which patients present with constitutional molecular defects, are

present in up to ~17% of WT cases, despite only around 1–2% of WT cases being

familial, indicating that defects are acquired post-fertilisation [24, 25].

1.3 Hepatoblastoma tumour biology

Hepatoblastoma is the most common hepatic tumour in children, however it is very

rare as only 1–1.5 children per 1,000,000 are diagnosed with it annually (10–25

cases per year in the UK) [26, 27]. It is described as an ‘embryonal’ tumour and

despite its aetiology remaining relatively unknown, it is thought to arise from aber-

rant liver development [28]. Support for this concept comes from its histological

presentation as cells in hepatoblastoma resemble immature liver cells in the differ-

ent stages of liver development [29].

The histology of hepatoblastomas is very heterogeneous both within a tumour

and between tumours. Hepatoblastomas show variable amounts of epithelial and

stromal components. The epithelial components show variability within themselves

as these components can present as embryonal or fetal epithelia. A mixed presen-

tation of both epithelia and stromal is most common in hepatoblastoma (~44%).

Purely fetal epithelial type compromise 31% of cases and purely embryonal make

up 19% of cases [28].

Tumour treatment largely depends upon the Pretreatment Extent of Disease (PRE-

TEXT) protocol in which risk depends on how many sections of the liver the

tumour has invaded [30]. Survival rates have doubled since the use of chemother-
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apy in hepatoblastomas to ~80% [31]. The incidence of hepatoblastoma is also

reportedly increasing [26]. Treatment of high risk hepatoblastoma involves the use

of an anthracycline which damages heart tissue [11, 28]. Hepatoblastoma is also

associated with syndromes such as Beckwith-Wiedermann syndrome and familial

adenomatous polyposis and syndromic patients make up ~15% of all hepatoblas-

toma patients [28, 31].

1.4 Genetic mutation in childhood cancer

1.4.1 Small sequence mutation in childhood cancers

Small sequence mutations are a type of genetic alteration acquired in carcinogenesis

that can provide a strong phenotypic change to drive cancer development and are

one of the best characterised types of mutation that are present in cancer. Generally

speaking small sequence mutation are made up of three different types of alter-

ations (1) point mutations, in which single bases are mutated to an alternate base,

(2) insertions, in which short sequence are acquired at a locus in the genome and

(3) deletions in which short sequences are lost. The latter two types of mutations

are generally grouped together as ‘indels’.

If these mutations occur in the exon of a gene they can potentially cause changes to

the codon sequence that allow for transfer RNAs possessing alternate amino acids

to be incorporated during protein synthesis and the protein sequence of the mutated

gene to be permanently changed on a single allele. In the context of point mutations,

changes to the genetic sequence that affect the amino acid sequence are considered

non-synonymous mutations. These come in two forms, missense mutations which

alter a single amino acid in a protein sequence and nonsense mutations which cause

a premature stop codon to be incorporated in the protein sequence, causing the early

termination of the synthesis of the protein.

Missense mutations can cause a gain-of-function by altering the chemical struc-

ture of key protein motifs. One of the most common examples of this in cancer is
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the alteration of a valine to a glutamic acid (V600E) in the protein product of the

gene BRAF. BRAF propagates growth signals in the cell and this amino acid change

allows the protein to become constitutively active which leads to increased prolifer-

ation rate and is associated with skin and large intestine malignancies [32]. Genes

like BRAF which often gain function when mutated in cancer are known as ‘onco-

genes’. Other mutations may cause a loss-of-function – the removal of a protein’s

function or the removal of a stable version of the protein. This may be caused by a

missense mutation and it is nearly always the consequence of a nonsense mutation.

Genes which often exhibit loss-of-function mutations are considered tumour sup-

pressors. An example of a tumour suppressor gene is RB1 that encodes for a protein

product that controls cell cycle progression [33]. Single nucleotide point mutations

that do not cause a change in amino acid sequence, due to codon redundancy, are

known as synonymous or silent mutations, often leaving the protein unaffected.

Indels always alter the protein coding sequence if they are present in the gene

exon. If the size of the insertion/deletion is not divisible by three, the mutation

causes a frameshift. Here for the entire length of the gene, downstream of the

mutation, the amino acid sequence may be altered. Frameshifts often lead to a

loss-of-function, as the new protein sequence is unlikely to be biologically func-

tional. If the size of the indel is divisible by three the mutation causes an ‘in-frame’

insertion/deletion. Here a number of amino acids are either removed or inserted in

an amino acid sequence, whilst the majority of the sequence remains unaffected.

In WT, recurrent small sequence mutations are known to affect several genes.

These include WT1, a gene that encodes for a transcription factor that controls cell

proliferation and is involved in kidney development [15]. Germline WT1 mutations

are associated with predisposition to WT development and WT1 is also frequently

mutated somatically. Mutations in AMER1 and CTNNB1 are also common in WT.

These three genes were the earliest known recurrently mutated genes and account

for approximately one third of all WTs [34]. AMER1, also known as WTX, ap-
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pears to be involved in WNT signalling, potentially promoting the degradation of

β -catenin [35]. β -catenin, encoded by CTNNB1, transmits signalling induced by

the WNT ligands to the nucleus of the cell to alter cellular transcription and is

associated with several oncogenic processes such as growth and differentiation.

The protein is often mutated at sites of phosphorylatable amino acids (e.g. serines

and threonine) to prevent phosphorylation which would normally target the protein

for degradation, therefore allowing WNT signalling to propagate [36]. The tumour

suppressor p53, that is encoded by TP53 and conducts the response of the cell to

stresses such as DNA damage, is mutated in at least half of diffuse anaplastic WTs

[37, 38, 39].

Large exome sequencing studies of WT have highlighted less recurrent mutations in

micro RNA (miRNA) processing pathways and SIX1/SIX2 signalling genes, which

are important developmental regulators [40, 41]. Genes such as DICER1, DGCR8

and DROSHA all play key roles in the maturation of miRNAs [42]. SIX1 and SIX2

are frequently mutated at the hotspot Q177R in the homeobox domain in blastemal

type WTs which alters its DNA-binding potential [40]. Recurrent mutations have

also been highlighted in MLLT1 in the YEATS domain. The protein product of

MLLT1, ENL, is involved in transcriptional elongation in early development [43].

MYCN, an oncogene discovered in neuroblastoma, has also found to be mutated in

WTs [40, 44].

Largely owing to its rarity, very few recurrent mutations have been discovered

in hepatoblastomas. The clearest recurrent mutation in this cancer is in CTNNB1.

Other sequencing projects have highlighted other potential candidates such as

NFE2L2 which implicates the activation of the NFE2L2-KEAP1 pathway, which

protects cells against oxidative damage, in hepatoblastoma tumorigenesis [29, 45].

1.4.2 Copy number alterations and childhood cancers

Most cells in the human body are diploid and possess two copies of each gene in the

human genome, one copy from each parent. Normal cells are capable of replicating
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this diploid genome accurately to then segregate the chromosomes evenly into two

daughter cells to allow for cell replication and proliferation through mitosis. A key

hallmark of cancer is the loss of genomic integrity. This leads to the genomes of

cancer cells becoming unstable, possibly owing to defective DNA repair machinery

or chromosome segregation in combination with evasion of regulated cell death

[5, 46]. In this situation, replication of the genome can provide an increased risk

of improper segregation of chromosomes to daughter cells that may be propagated

and tolerated in the progeny. The somatic inheritance of additional or fewer copies

in daughter cells changes the copy number of sections of the genome therefore also

alters the number of copies of each gene in the affected region. Altering gene copy

number can affect gene expression levels in a positively correlated manner [47].

Copy number states of genomic regions may increase or decrease and are referred

to as gains and losses respectively. Copy number gains are linked to increased

expression and by contrast copy number losses are associated with reduced gene

expression. As copy number changes can affect either the maternal or paternal chro-

mosome these events can be specific to particular alleles, which has implications to

both expression levels of transcripts and the expression of protein variations which

may arise as a consequence of allele-specific constitutional or somatic nucleotide

variants. A deletion of the remaining wild-type copy of a gene to produce loss of

heterozygosity (LOH) is often observed following a somatic mutation as a ‘second

hit’ to the gene locus and may be required to produce an oncogenic effect [48].

Copy number alterations (CNAs) can be of any size, affecting both whole chro-

mosomes and chromosome arms, but also being focal, affecting a small group of

genes. In large chromosome CNAs it can be difficult to pinpoint the important

genes which are being altered by the variation. It is often only possible to hypoth-

esise as to the importance of the large CNA if it affects a region which contains

a gene of known importance. An example of this may be the loss of the p-arm

of chromosome 17 that contains a wild-type copy of TP53 in a situation in which
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the other copy is mutated. Focal CNAs are easier to interpret biologically in terms

of their consequences as they affect much fewer genes. Focal changes are also

more likely to be tolerated in extreme copy number states such as complete loss (a

loss of both alleles) or amplification to high copy number states. Amplifications

of the MYC gene family, transcription factors that regulate cell proliferation, often

produce high copy number states in several cancer types for example, MYCN in

neuroblastoma, owing to their large oncogenic potential [44, 49].

Chromosomal structure can also be affected in a manner in which the total copy

number state remains constant but one allele is lost and another is effectively du-

plicated. This is considered copy number neutral LOH (CNNLOH) and leads to

the same copy number but a LOH. This is also called uniparental disomy (UPD),

especially in contexts highlighting parental-specific allele expression. The overall

effect of CNNLOH/UPD is often a subtle allele-specific alteration in expression

levels leaving genes with no allele-specific expression unaltered.

The underlying mechanisms of genomic instability in cancer are broad and may act

in many combinations. These include unrepaired double stranded breaks in DNA

and chromosome missegregation among others. The process of mitotic recombina-

tion, in which chromosomes recombine in a somatic mitotic setting is thought to

be the major mechanism for the formation of CNNLOH/UPD [50]. Additionally,

breakage-fusion-bridge cycling, a process in which breakage followed by fusion

can lead to a cyclic process which generates an increasingly complex chromosome

structure, is considered a contributing factor to the generation of amplifications [51].

Somatic CNAs are informative of cancer biology and patient prognosis and there

are several examples of informative CNAs in WT. Chromosome 11p UPD is a

common event in WT. This event will almost always affect 11p15.5, the telomeric

cytoband of the p-arm. IGF2, an important gene for regulating fetal growth, maps

to this cytoband. This gene is imprinted and is therefore expressed in an allele-
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specific manner. Here, the paternal chromosome expresses IGF2 whilst the materal

copy of the gene is repressed through DNA methylation. In WT, UPD of 11p15.5

often leads to the loss of the materal copy and the duplication of the paternal allele,

leading to IGF2 overexpression [52, 53]. As WT1 is also present on chromosome

11p (11p13), a UPD event can often alter both IGF2 and WT1, therefore having

implications for both genes and demonstrating the context of mutation events that

have horizontal relationships across the genome. Additionally, MYCN amplifica-

tion in WT demonstrates the importance of MYCN as an oncogene in a subset of

WTs [54]. Lastly, as mentioned previously, TP53 mutations are common in diffuse

anaplastic WTs. TP53 is located on the p-arm of chromosome 17 and LOH of this

chromosome arm is often indicative of the presence of a mutation in TP53 as LOH

removes the remaining wild-type copy of the gene [38].

CNAs are also prognostic in WTs. The observation of a combination of chro-

mosome 1p loss and chromosome 16q loss leads to a WT patient being considered

high-risk in the USA [55]. Chromosome 1q gain is also currently being trialled

as a prognostic marker in WT and may prove to be of greater use to prognosis

as it is more common owing to the fact it is one of the most prevalent CNAs in

cancer [56, 57, 58, 59]. Finally, chromosome 4q and 14q losses are associated with

high risk diffuse anaplastic WTs, indicating they may play an important role in this

phenotype [54].

In hepatoblastomas, gains are frequently present in chromosome 1q, 2, 8 and 20

[60]. Additionally, chromosome losses are often observed in the p-arm of chromo-

some 1. Recurrent copy number gain of the cytoband 20q13.2 has been associated

with poor prognosis in these tumours [61].

1.4.3 Ploidy states and childhood cancers

It is possible for cancer cells to possess genomes with higher or lower ploidy states

than diploid (2n). The most commonly accepted mechanism for higher ploidy states

to be achieved is through whole genome duplication (WGD). Here, through mis-
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regulation of mitosis – perhaps through nondisjunction occurring during anaphase

– one daughter cell may inherit a completely duplicated copy of the entire genome

[62]. High ploidy states may also be achieved by multiple successive chromosomal

duplications.

High ploidy states, such as tetraploidy (4n), are often observed in cancer, par-

ticularly in tumours that often present with high genomic instability [63]. A high

ploidy state may allow cancer cells to achieve a more subtle set of CNA relation-

ships and expression patterns. This may provide an evolutionary advantage to the

tumour. In a related manner high ploidy states may also be more tolerant of sub-

sequent genomic instability. Interestingly, polyploidy is a potential mechanism of

rapid evolution in speciation [64].

WGDs have been timed as having occurred decades prior to the presentation of

cancer at diagnosis. The timing of these events by analysing mutational types and

their frequencies in cancer samples demonstrate that adult cancers have long life

histories [65, 66]. However, despite being cancers with relatively short life histo-

ries, paediatric cancers such as WT and hepatoblastoma have also been shown to

display high ploidy states such as tetraploidy [67, 68, 69].

1.4.4 Chromothripsis and childhood cancers

Another mechanism of genomic instability in cancer is the occurrence of a phe-

nomenon known as ‘chromothripsis’. Here, often within a relatively short region

of a chromosome, many different copy number states are observed. These are

thought to be produced in a single catastrophic event that causes the shattering of

a region of the chromosome. This shattered region often involves the telomeric

end of a chromosome indicating the shattering affects the end of a chromosome

arm. This shattered chromosome is then aberrantly reassembled, propagating a

chromosome with a chaotic new structure to daughter cells. Chromothripsis is a

mechanism that causes extreme changes to the cancer genome in a single event [70].
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It has been shown that TP53 mutation is associated with chromothripsis, sug-

gesting a role for p53 in protecting against chromothripsis events being propagated

to daughter cells [71]. Chromothripsis has been observed in several paediatric tu-

mours [72]. In WTs chromothripsis is strongly associated with both high ploidy

states and TP53 mutation. Additionally these tumours have poor outcomes and

were associated with anaplasia [40]. Clearly, chromothripsis events are associated

with high-risk WTs. Overall, extreme events such as chromothripsis can be seen as

symptoms of genomic instability.

1.4.5 Burden of mutations across cancer types

Across the many different types of cancer, the burden of genomic mutation varies

due to several factors including, but not limited to, age at diagnosis, environmental

exposure and underlying DNA repair defects, which may be acquired somatically or

inherited. The process of ageing and damaging effects of environmental mutagens

leave characteristic ‘mutational signatures’ on the genomes of a cancer, allowing

researchers to deconvolute the mutational processes that a cancer is subject to dur-

ing its development [74]. The gradual accumulation over time of these mutational

processes can burden the genome of a cancer with large numbers of somatic muta-

tions.

It is vital to recognise that paediatric tumours, particularly those that mostly occur

in children younger than 4 years of age, are not exposed to regular mutagens such

as ultra-violet (UV) light or tobacco smoke to the same extent as adults. Addition-

ally the ageing process is extremely nascent. In this regard the context of genomic

mutation is largely different in these cancers. This is demonstrated by the fact that

most paediatric cancers have far fewer SNVs in exome-wide sequencing studies

(range of 2–13.5 median mutations, Fig. 1.2). This is in vast contrast to many adult

cancers which can have 10-100 fold more non-synonymous point mutations and

therefore have far more plastic genomes [29, 41, 73]. The almost complete removal

of the effects of age and common carcinogens in paediatric cancers places them in

a completely alternative context to the majority of adult cancers.
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Figure 1.2: The number of non-synonymous point mutations varies in each tumour
type. Box plots for each cancer type represent the median number of non-
synonymous point mutations in studies of different cancer subtypes and the
size of the box represents the interquartile range (IQR) of the distribution of
point mutations reported. Generally cancer types with a mutagenic pheno-
type (turquoise) such as colorectal cancers with microsatellite instability (Colo-
MSI), small cell lung cancer (Lung-SmCl), non-small cell lung cancers in
smokers (LunNSC-S) and melanomas (Melano) have a very large number of
mutations (>100 non-synonymous mutations). Solid adult tumours (red) ex-
hibit between 30-100 non-synonymous mutations across the exome. Paediatric
cancers generally have fewer non-synonymous point mutations (purple) simi-
lar to liquid cancers (green). WTs (Wilms) and hepatoblastomas (HepBl) have
a low median number of non-synonymous point mutations (8 and 2 respec-
tively). Data is derived from Vogelstein et al, 2013 [73] and supplemented with
data from Walz et al, 2015 [41] and Eichenmüller et al, 2014 [29].

1.5 Clonal evolution in cancer

1.5.1 The principles of clonal evolution

Cancers develop through a process of clonal evolution. Here a cell of origin begins

the process of carcinogenesis by acquiring a somatic mutation which gives it a

selective advantage over the surrounding normal cells. If this cell survives, the cell
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Figure 1.3: Cancer evolution as first conceptualised by Peter Nowell [75] dictates that can-
cers successively accumulate mutations in a process that can be branched and
lead to the accumulation of genetically distinct subclones. A graphical simpli-
fication of the process is demonstrated and shows the accumulation of five mu-
tations (mutA–E) across a branching population of cells from a cell of origin.
The evolutionary history stipulates that three clones are present at diagnosis
(AB, ABD and ABCE) and the abundance of each of the mutations is linked to
the abundance of the clones and their ancestry.

will replicate to produce a population of cells sharing this advantageous mutation.

This population is known as a clonal population as each cell in the population is in

effect a clone of the cell of origin in that they all share this common genetic trait

(Fig. 1.3) [75].

This process can continue to repeat itself as the clonal population can acquire

additional mutations, which increase the fitness of its progeny further, potentially

allowing the new clonal population to proliferate at a higher rate than the previous

clonal population. This process is essentially branched, as cells replicate to produce

two daughter cells that have an opportunity to produce progeny. Key mutations that

provide a selective advantage are known as ‘driver mutations’ as they are thought to

accelerate the process of tumorigenesis forward. However, other mutations are also
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acquired that are largely considered to have little effect on the tumour but persist

in the tumour population. These mutations are known as ‘passenger’ mutations

as they ‘hitchhike’ a ride on the back of the effect of driver mutations and are far

more frequent than driver mutations as the vast majority of possible mutations in

the human genome will not produce an oncogenic effect. Passenger mutations that

are acquired prior to the first driver mutation, particularly in cancers exposed to

a life-time supply of carcinogens, for example UV light in melanomas, are then

present in all cancer cells and contribute to the genetic background of the cancer

[76, 77]. As the majority of mutations are thought to have little effect on fitness,

and are therefore not negatively selected against, passenger mutations nearly always

outnumber driver mutations and are a tribute to the tolerance of the cancer cell to

mutational burden.

The concept of clonal evolution dictates that the process of mutation, cell sur-

vival and selection proceeds until a cancer has acquired the necessary hallmarks to

become malignant [5]. As cell division is a branched process and mutation may

occur in practically every cell division, genetic diversity – also commonly referred

to as heterogeneity – is an inherent property of a tumour.

1.5.2 Mutability of the cancer genome is an essential property

of evolution

Mutability is an essential part of all evolutionary processes and the clonal evolu-

tion of cancer is no exception. These mutations may be small sequence mutations

such as point mutations and indels or large chromosomal alterations as is the case

with CNAs. Additionally they can be random permeations in epigenetic patterning

which are passed onto daughter cells. Regardless of the mutation type, all human

cells have a baseline level of mutation as an inherent risk of cell division, ergo all

cells which still divide have a chance of making the first step towards transformation

[78]. However this chance is greatly increased when the tissue is exposed to car-

cinogens. The continued mutability of the cancer genome during clonal evolution

is essential for the cancer to explore the fitness landscape and to achieve phenotype
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alterations which are potentially advantageous.

Many mutations may not have large effects on fitness individually but may have a

cumulative effect on cell fitness. Mutability also must exist in a ‘Goldilocks’ zone

as, if mutability is too high, the effect on fitness may become negative. Considering

that clonal evolution in cancer is analogous to asexual reproduction in microbes,

cancer cells are at risk of ‘Muller’s ratchet’ in which deleterious mutations become

irreversible [78]. This is potentially reflected in the fact that some cancers with

extreme genomic instability have slightly better survival rates than those with a

more intermediate range of genomic instability [79].

1.5.3 Drift in the context of cancer evolution

It is also important to recognise that cancer cells are subject to genetic drift. A vital

point in this concept is that the acquisition of a mutation occurs in just a single

cell. At this point with a population of one, the cell is in a precarious position

for achieving survival. Even if the cell possesses an advantageous mutation, the

stochastic process of drift, in which all cells have a chance of not surviving, can

affect the ability of a clonal population to become fixed. Small populations of cells

are at an increased risk of being eliminated due to drift than larger populations,

therefore the effect of drift is at its most important in the early stages of mutational

acquisition [80, 81].

1.5.4 Selection in cancer evolution

Mutation and drift are largely stochastic processes, although there is evidence to

suggest that mutation is non-random, at least in terms of the areas of the genome

that it affects [82]. However, clearly the major deterministic force in clonal evo-

lution is selection. Once the clonal population has become robust to drift, it is

selection that ultimately determines the success of a clonal population. Selection

can be both positive or negative and is clearly highly dependent on context. Clonal

populations may remain a subset of the total population (a ‘subclone’) or grow

to dominate the entire tumour. Negative selection means that in certain contexts,
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mutations are unlikely to survive in the cell population, or have reduced survival

rates compared to the rest of the population. Despite the fact that each mutation

appears in a different context, for some mutations selection may be predictable. For

instance, the identification of common driver mutations in different cancer types

dictates that these mutations are likely to be selected for. However, we ultimately

do not know how many ‘trials’ a driver mutation in each gene has had in the cancer

population before it becomes established [78, 80].

An important factor when considering the forces of evolution in a cancer popu-

lation is the size of the population. In small population sizes, the effect of selection

on the make up of the total population is likely to be higher as the new clonal

population will constitute to a larger fraction of the cancer population. However,

as the tumour grows to a large size new populations, even advantageous mutations

that would be under strong selection in a small population may find it more difficult

to establish themselves and may explain the presence of a subclonal driver muta-

tions [83]. Furthermore, as the population of cells increases and the number of cell

divisions that have occurred goes up, the chance that the mutable cancer genome

has mutated at any given base at least once in the population increases, meaning

the probability of an important driver mutation being acquired in at least one cell

increases in larger tumours [78].

As the cancer cell population increases, so does the size of the tumour itself and the

tumour begins to occupy more space. As the tumour grows in size the importance

of spatial location increases and the context dependence of selection related to

where the cell sits becomes more important. Cell selection may be influenced by its

interaction with neighbouring normal tissue or may also be affected by its viability

in the interior of the tumour, that may produce increasingly hypoxic conditions [84].

Essentially the ecosystem in which tumour cells find themselves is highly im-

portant for determining cell survival [85]. Cells, like animals or other units of
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selection, must compete for resources with other cancer cells and normal cells.

The demand of the cancer cell for resources may also be much greater than that

of the surrounding normal tissue as cancer cells have a higher metabolic rate [5].

Therefore a population of cancer cells must overcome several environmental barri-

ers before they are fully capable of establishing large malignant populations. These

barriers could be key to the long periods of latency observed in tumour development

in adults [65, 66, 85].

Perhaps the most extreme example of the importance of the environment in se-

lection in cancer is the establishment of a metastasis. Here a cancer cell or a group

of cancer cells must establish a new population in a completely new context [78].

The drastic change in environmental context is likely to select only for a particu-

larly viable clone from the primary tumour, even though the cells from the primary

tumour have already established most/all of the hallmarks of cancer. This selection

in the new environment is likely to mould the metastasis into a unique population,

distinct from the primary tumour. The required divergence of the metastasis from

the primary tumour is likely to be closely related to tumour type and metastatic site

[86].

Selection pressures clearly must exist in tumour populations, however it may be

the case that at diagnosis tumour are not longer under active selection. ‘Neutral

evolution’ is a term used to describe the existence of a population of cancer cells

that is not under active selection following a series of driver events and may appro-

priately describe a large proportion of tumours at diagnosis [87]. It may be possible

that neutral evolution must be rejected in order to determine the presence of active

selection in a tumour population.

1.5.5 The temporal nature of cancer evolution

It is also important to recognise that the process of evolution occurs through time

and many factors that shape the evolving tumour are temporal. For instance, the

mutability of the genomes of the cancer cells is changeable and over time the
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average mutation rate may increase, fuelling tumour evolution, as intrinsic repair

mechanisms break down or environmental exposure increases damage. Perhaps one

of the most dramatic changes in selection pressure for a cancer is the insult derived

from treatment, such as chemotherapy. Here therapy aims to alter the environment

of the tumour in order to increase negative selection of tumour cells and cause

cell death. However, it is also common that within the large tumour population

there is a clone that is resistant to therapy and becomes positively selected for as

part of a process known as ‘competitive release’ [88]. In this way, genetic diver-

sity becomes essential for the population to survive large shifts in selection pressure.

The genetic context of tumour evolution also changes temporally. The order in

which mutations are capable of establishing themselves may be dictated by epistatic

prerequisites. Here a mutation may only cause a positively selected phenotypic

change if it follows from another mutation which provides a phenotype fertile for

the development of this sequential mutation [78, 88].

Furthermore as the cancer evolves and subclones become established, selection will

shift depending on the competition between the clones as they compete for space

and resources. It is this competition that may reduce a clone to a low undetectable

population level, that may be released upon a therapeutic shift in the selection

environment. Alternatively, clones may cooperate, developing a symbiotic-like

relationship in which clones depend upon each other [89, 90]. Overall, clones are

not existing independently but make up a system which interacts with itself and is

malleable.

1.5.6 General patterns of clonal evolution

Overall the cumulation of these factors in the framework of this system may provide

a predictable pattern of mutation acquisition and clonal success. However, there is

much debate about the nature of these changing steps. Early work in cancer pro-

gression from cross-sectional studies suggested tumours evolve largely as a linear

set of transitions [91]. These may take the form of successive clonal sweeps in
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Figure 1.4: There are conflicting theories as to how clonal evolution occurs over time in
tumours. These can be generalised into two groups, gradual evolution in which
clones emerge and then grow to dominate the tumour in gradual successive
clonal sweeps, and punctuated evolution in which large shifts in clonal make-
up occur in dramatic bursts which subsequently undergo few adjustments in
latter stages. This is represented in this in figure which shows clones as colours
and the width of the graphic is related to tumour size across its evolutionary
history.

which new clones with increased fitness advantage grow to dominate the tumour.

Perhaps these steps may equate to a gradual process in which the tumour develops

traits in a piecemeal-like fashion [88].

Alternatively evolution may occur in a more punctuated pattern in which cells

acquire various additional traits and then in a short period of time dramatically

increase in size or diversify in terms of population composition, causing expan-

sions in size or shifts in fitness to occur in bursts. Punctuated evolution may even

show large explosions in size in which several clones all dramatically increase in

size largely at the same time (Fig. 1.4). This is known as the ‘big bang’ model
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of evolution [83]. Here distant, spatially separate clones in the diagnosed tumour

largely developed at the same time point as opposed to spatially separate clones

in a tumour that developed through selective sweeps in which distant clones may

represent observable ancestors [92].

Overall patterns of evolution are likely to be determined by the multiple layers

of factors that may only be generalisable depending on the cell of origin and the

cancer subtype [93]. Evolution is a repeated process in cancer but no two contexts

are identical nor are the stochastic processes driving them, which ultimately leads

to each cancer being unique.

1.6 Cancer from an evolutionary perspective

1.6.1 Tumour evolution and cancer treatment

Cancer evolution underpins tumour growth and phenotypic presentation in every tu-

mour. All cancer biology can be put in the context of tumour evolution as each can-

cer hallmark must be selected for [93]. Understanding tumour evolution allows for

important genetic events to be reconstructed across real time and for the dynamics

of tumour growth prior to diagnosis to be elucidated by utilising principles derived

from evolutionary biology [66, 83]. Through studying large cohorts of patients the

patterns of driver mutation ordering can also be resolved [66, 94, 95]. Determining

mutational ordering in tumour types reveal the genetic events that are important

in the earliest stages of tumour growth and are likely to be clonal in a diagnosed

tumour, in addition to revealing mutations that are more likely to be acquired late

in the tumour’s evolution and be present in only a fraction of the tumour population.

Determining if targetable genetic events are more likely to be clonal mutations

present in all tumour cells can allow for targeted treatments to be selected. If

therapies target mutations often present in only a fraction of the tumour cells, a

proportion of the population will be unaffected and likely be ancestral to the clones

that present at relapse [96]. Studies that quantify the frequency of subclonality in
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important genetic alterations relevant for potential treatments, for example human

leukocyte antigen LOH in lung cancers that may be candidates for immunotherapy,

provide rationale for selecting patients for treatment [97]. Furthermore, recognising

that clonal diversity in 3D space in solid tumour tissue may prevent the detection

of important biomarkers has highlighted the advantages of assaying tumour DNA

in circulation. Tumour DNA extracted from the blood may represent a mixture of

DNA from all clones present in a tumour and may allow for better detection of

biomarkers across a patient cohort [98].

Assessing the relatedness of tumour samples across space and time also reveals

how the population of tumour cells alters in the establishment of metastases or eva-

sion of therapy. For instance, metastases may develop through a linear progression

of changes, in parallel, or may be derived from a dormant population of tumour

cells [99]. In each model of metastasis the relatedness of the metastatic clones to

the primary tumour determines the likelihood that a single therapy will eradicate

the cancer at all tumour sites. Assaying tumour divergence between timepoints in

addition to between tumour sites also reveals if rare populations of cells are ca-

pable of replacing the original tumour population following therapy, revealing the

potential of a cancer population to be completely restructured across the course of

treatment [100].

Modelling clonal growth dynamics over time, as well as the common ordering

of mutations, may allow for predictions to be generated of the ability of the tumour,

or a precursor cell, to continue to grow, or allow for the capability of a tumour

to adapt to changes in selection pressure (e.g. during treatment) to be predicted

[101, 102]. Approaches that model evolutionary dynamics may outperform genetic

biomarker assays as they will assess tumour population fitness directly.

Nevertheless, a recognition of intratumour genetic heterogeneity should alter the

perspective of the ability of single sample studies to detect biomarkers, for instance
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when assessing chromosome 1q gain as a biomarker in WT, as these studies are

likely to be affected by clonal diversity [103, 104]. Understanding the relatedness

of clones in separate tumour sites, masses, nodules or areas presenting with pheno-

typic differences, allows us to address how similar different tumour cell populations

are and if they should be treated as a single homogeneous mass.

1.6.2 Clonal evolution in paedatric tumours

Studies assessing the clonal evolution of paediatric cancer by directly assaying mul-

tiple tissue samples predate contemporary studies. At the turn of the 21st century

groups studying neuroblastoma assessed multiple samples from primary tumour,

metastasis and recurrence to assess how tumour cytogenetics altered over the course

of the disease [105, 106]. More recently, assaying primary-relapse pairs in neurob-

lastoma has implicated mutations in the growth-promoting RAS-MAPK pathway

in clones capable of causing recurrence [107].

Research in medulloblastoma metastasis and recurrence samples has demonstrated

that these devastating lesions can be formed by clones that are rare in the primary

tumour. Here clones identified in metastatic and recurrent tumour samples were

strongly divergent from the primary tumour [108, 109]. Interestingly multiple

tumour samples taken from primary medulloblastomas showed that the tumour

is transcriptomically homogeneous, yet by the same approach somatic mutations

were strongly heterogeneous. Therefore demonstrating that somatic mutation may

be pressured into a form of parallel evolution to achieve a uniform expression phe-

notype [110].

In the aggressive paediatric brain tumour, diffuse intrinsic pontine glioma (now

included in the World Health Organization 2016 entity of ‘diffuse midline glioma’

[111]), multiple tumour samples revealed that histone 3 K27M mutations, that can

induce cell proliferation, occur early in tumour evolution. Contrastingly mutations

in the PI3K pathway, that similarly propagates growth factor signals, were found to

occur later on. The genetic history of the tumour shows that most of the spreading
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of the cancer occurs before its diversification but that main drivers, unlike in medul-

loblastoma, are clonal [112].

CNAs have been timed in single sample studies in both rhabdomyosarcoma and

adrenocortical tumours. Interestingly, in both tumours chromosome 11p15.5 LOH

was considered an early event. In adrenocortical tumours chromosome 17p LOH

was also observed as an early event which may be related to the association of the

tumour with germline TP53 mutations [113]. In rhabdomyosarcoma mutations in

the RAS pathway were also found to occur early [114].

In WTs within-sample mixing of clones detected in single nucleotide polymor-

phism (SNP) arrays has been considered to be prognostic. Additionally multiple

tumour pieces have shown genetic diversity [115]. Many key aberrations in WT

have also been observed to be heterogeneous and likely late events in some tumours,

such as AMER1 mutation [116], TP53 deactivation [117] and MYCN upregulation

[118].

1.7 Assessing clonal evolution in cancer

Through understanding the mechanism of clonal evolution and abstracting its impli-

cations for tumour growth, we can conceptualise the course of tumour progression.

However, it is ultimately through assaying the genomic composition of a tumour

and inferring evolutionary relationships through these assessments that we are capa-

ble of adding detail to this picture. Owing largely to the advent of modern genomic

assays, there has been an explosion in research into assaying the products of tumour

evolution.

Analysis of the total population however is difficult. In a tumour with a diame-

ter of approximately 2cm, there are likely to be several billion tumour cells [119].

Therefore, to assay a tumour’s evolutionary history multiple approaches have been

taken to decipher the details of such a large and diverse population (Fig. 1.5A).
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Figure 1.5: Assaying a resected primary tumour to determine its evolutionary history is per-
formed in many ways. It can be performed on single samples which contain a
mixed population, by biopsying many samples that contain spatially separated
clones or by extracting single cells. Each method provides a unique perspec-
tive on evolutionary history although no single method is likely to allow the
assessment of all clones. In (A) this is represented by the ‘blue’ clone which
evades detection by any methodology in the example. Lastly liquid tumours
and ctDNA can be traced across time by liquid biopsies at multiple time points
(T1–T3) (B). Here clones can be determined by resolving the changes in cancer
cell fraction across time. This approach can be used to determine the expansion,
regression, eradication or the emergence of clones across a given time-frame.

1.7.1 Single bulk tumour samples

The majority of tumour tissue samples taken for research from patient derived tu-

mours are single biopsies. This may relate to the fact that many tumour assays

have been based on the assumption, or acceptance, that tumours are genetically

homogeneous enough that single samples are representative of the total mass.

However, the sample of tissue taken still remains a sample of the overall tumour

and contains a mixed population of cells. By assessing the contribution of each

mutation to the total cancer cell population, the structure of the population can be

inferred. For example, mutations present in all cells can be considered ‘clonal’, that

is to say that they occurred early in the evolution of the cancer and each cell has sub-

sequently cloned this mutation [120, 121]. By identifying a set of clonal mutations

it is possible to consider these mutations as having come before other non-clonal

mutations. Non-clonal mutations, also called ‘subclonal’, are only present in a frac-

tion of the population and are assumed to have occurred after the clonal mutations.

Subclonal mutations can then be ordered amongst themselves. It is assumed that
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during the expansion of a subclone in the population that the basket of mutations

that it carries will be present with the same/similar estimated contribution to the

cancer cell population (cancer cell fraction). Therefore subclonal mutation clusters

can be identified by being calculated as groups of mutations with similar cancer

cell fractions. This problem can be modelled as an n-component mixture that can

be solved with a hierarchical Bayesian Dirichlet process, for example, that may be

used to estimate the unknown number of subclones, their proportion in the tumour

and their mutational burden [120].

The cancer cell fractions of each subclone may then consequently be used to order

their appearance in the tumour’s evolution. Subclones with a lower cancer cell frac-

tion may be considered to appear within the population of a subclone with a higher

cancer cell fraction in a linear fashion. Branched evolution may also be shown to

exist, only if the cancer cell fractions of potentially independent subclones (those

on separate branches) do not total more than 100% of the tumour population. These

rules were succinctly described by Nik-Zainal and colleagues and are relevant for a

range of single sample evolutionary studies [120].

1.7.2 Multiregion tumour profiling

One method for overcoming the complexities of inferring population structure

within a single sample, where all estimations of mutation cancer cell fraction are

decoupled from their underlying subclonal association, is to take advantage of the

fact that separate clones are likely to be present in spatially separate areas as physi-

cal mixing of clones can be restricted in solid tumours (although this is not the case

in all tumours, such as in the Big Bang model of tumour growth [83]). This can be

achieved by assessing multiple pieces of tissue separately, which can also allow for

a wider range of clones to be sampled.

The mutational profiles of each sample can therefore be assessed and samples

that share mutations are subsequently known to likely be related. For instance,

the presence of a mutation in all biopsy samples taken suggests the mutation is
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clonal, whereas a subset of samples sharing a mutation may be related at a later

point of divergence from other samples. Multiregion sequencing has shown great

strength in assessing a snapshot of the multiple clones present in separate tumour

sites highlighting, for example, the presence of genes presenting unique mutations

in separate tumour regions (convergent evolution) [65, 122, 123]. Additionally,

microdissection can also be performed to analyse specific cells across the tumour

that may aid phylogenetic reconstruction, for example glands in colorectal tumours

[83].

1.7.3 Temporal assessment of tumour evolution

The previous two approaches to tumour sampling often involve sampling at only a

single given timepoint. It is sometimes possible to detect mixing in the cell popula-

tion and to resolve subclones by tracking the contributions of mutations to the total

population across a time-course (Fig. 1.5B). Mutations belonging to the same clone

will produce the same pattern of cancer cell fraction changes over time. This method

is limited in solid tumours, often to comparing between primary tumours and re-

lapse samples [124, 125]. However, this is far more feasible in liquid cancers in

which the cancer can be monitored at regular intervals across time [126, 127]. This

can allow for the tracking of clonal progression across long periods of time [128].

The prospect of assaying circulating tumour DNA (ctDNA) released from primary

solid tumours and potentially their metastases into the bloodstream may allow for

solid tumours to be monitored in a similar fashion to a liquid cancer [129, 130].

1.7.4 Single tumour cell assays

The previous assessments of tumour clonality all involve assaying a mixed popu-

lation of cells. However, it is clear that the single cell itself is the unit of selection

in cancer evolution. Assessing single cells individually was one of the first ways in

which genetic diversity in cancer was observed [131].

By assaying genome-wide mutations in single cells there is no requirement to

infer subclones as each subclone is being measured directly [132, 133]. Single cell
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assays however are limited by the numbers of cells which can be assessed and by

the limitations of noise that comes with attempting to assay directly only a few

molecules of DNA for each base pair.

1.7.5 Combining approaches

These different approaches may be combined to great effect. For instance, the prin-

ciples of single sample bulk assessments can be applied to each assessed tumour

piece in a multi-sample assay to potentially greatly increase the resolution of phylo-

genetic reconstruction across multiple samples and also avoid erroneous identifica-

tion of convergent evolution [94, 134, 135]. Additionally, assaying multiple regions

in a primary tumour can allow for subclones to be resolved and tracked longitudi-

nally in ctDNA [98]. Furthermore, to overcome sampling bias, single cell assays

can be combined with bulk assays. Using a set of single cells to compare with bulk

samples can help resolve subclones that present in the bulk sample with less reliance

on previously described assumptions [136, 137].

1.8 Assaying the genome
To assess genome-wide mutation in an evolving cancer, a researcher must utilise

a genomic assay. There are two common techniques to approaching this in cancer

research (1) second generation / next generation sequencing (NGS) which assays

genomic DNA by sequencing millions of short DNA fragments and (2) SNP arrays

in which genome-wide allele-specific CNAs can be assessed.

1.8.1 Next generation sequencing

Until the mid-2000s Sanger sequencing was the predominant method of resolving

the base sequence of a given section of the genome. However, in the latter half

of the decade several companies had developed methods of achieving massively

parallel DNA sequencing, termed NGS. The key to this technology was to separate

individual DNA fragments and to clone them in spatially separate compartments

or regions. These separate fragment clones could then be sequenced in parallel to

sequence millions of fragments simultaneously [138, 139].
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This method of sequencing is often referred to as ‘massively parallel’ and allows

for many short sequences to be obtained from the same sample of mixed DNA frag-

ments. Sequences are commonly short ~35–150bp due to a decrease in base quality

as sequencing progresses, often due to ‘dephasing’ in which base sequencing in the

clone cluster goes out of sync [138, 139].

NGS can be performed on any DNA sequence that is of a large enough length

and allows for whole genome sequencing (WGS) to be possible in pragmatic time

frames. However, NGS is also often used to sequence a subset of the genome

that is of interest to a particular study [140], for example, the exome or a panel

of cancer genes. Additionally, NGS can be used to sequence copy DNA reverse

transcribed from RNA (RNA-seq). Sequencing only a subset of the genome allows

for the target region to be sequenced more times (a higher coverage) or for more

samples to be sequenced for the same sequencing cost. NGS can also be used to

sequence low quantities of DNA, for example, DNA derived from single cells [132].

NGS can detect all types of sequencing alterations and as the probability of a

region being sequenced is proportional to its copy number, sequencing can also be

used to identify CNAs.

1.8.2 Next generation sequencing data analysis

The primary output of a NGS run are large numbers of reads – small sequences of a

determined length – often stored as FASTQ files which also possess information re-

garding the quality of the base call in each base of the reads. To interpret these large

numbers of small sequences (often 1x106–1x108) these reads need to be mapped

back to the genomic location from which they were derived. This computational

challenge is called alignment. Common software developed for this challenge are

BWA [141] and bowtie2 [142]. If enough reads have been produced across the

sequenced DNA multiple reads will map to overlapping locations forming pile-ups.

The number of overlapping reads at any given genomic location is called coverage.
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It is in this aligned form that sequence variation can be assessed. It is impor-

tant to note that there is an inherent trade-off between alignment and biological

sequence variation. Read aligners require large section of the read to match per-

fectly to the reference genome to achieve accurate alignment. However, sequence

variants will not align perfectly to the genome. Most aligners are robust to this

however as they must take into account mismatches generated by false base calls

in addition to biological variation, nevertheless alignment and variant calling are

closely related [141, 142].

Perhaps the sequence variation that highlights this problem to the least extent is

the single nucleotide variation (SNV). However identifying a SNV remains non-

trivial and there are several software developed to achieve this including MuTect

[143], VarScan2 [144] and Freebayes [145]. Small insertions and deletions are

more complex to identify as they alter larger sections of the genome and cause

alignment to become increasingly difficult. Software such as MuTect2 [146] ap-

proach this problem using local realignment. These algorithms report candidate

variants as alternative bases to the reference base(s) and also detail the numbers of

reads supporting the variant compared to the reference nucleotide(s).

1.8.3 Single nucleotide polymorphism arrays

Developed originally to genotype human DNA, SNP arrays have become a common

method for assessing mutations in cancer, principally CNAs. By probing for SNPs

in the genome the array can report on total copy number level of the SNP as well as

the allelic balance between the two bases being probed. SNP arrays are based on nu-

cleotide biochemistry that dictates that complementary base pairs will preferentially

hybridise. The genome of the sample is fragmented and denatured to become single

stranded. These genomic DNA fragments are then hybridised to complementary

probe sequences on an array that are designed to match regions surrounding SNPs

with a high minor allele frequency in the population that will bind to fragments and

allow for allele specific output. An allele-specific fluorescence-based signal inten-

sity is then reported for each probed SNP and ultimately the signal is proportional
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Figure 1.6: Illumina® SNP arrays utilise single-base extension technology. Here sample
DNA containing a known SNP hybridises with a complementary sequence ad-
jacent to the location of the known SNP attached to a bead. This leaves the
SNP position in the DNA as the first base in the overhang of the hybridisation.
Single-base extension is then performed in which the fluorescent-labelled nu-
cleotide complementary to the SNP locus is incorporated. This fluorescence is
then read as output for both the arbitrarily assigned ‘A’ allele and ‘B’ allele.
This figure is adapted from LaFramboise, 2009 [147].

to the amount of sample DNA that is hybridised. This yields an estimation of total

DNA content for each SNP in the sample and can be used for both genotyping and

studying the somatic CNAs in a cancer genome. The major manufacturers of SNP

arrays are Affymetrix® and Illumina®, each with unique chemistry and algorithms

to process the raw data, however the output is broadly equivalent [147]. Figure

1.6 demonstrates single-base extension utilised by Illumina® SNP arrays. Here,

fluorescent-labelled nucleotides representing the polymorphism are incorporated as

a base extension following the hybridisation of the sample DNA sequence to an ad-

jacent complementary sequence. The genotype of the SNP can be interpreted from

the relative proportions of the allele-specific fluorescence based signal.
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1.8.4 Single nucleotide polymorphism data analysis

Output for SNP arrays produced by either Illumina® or Affymetrix® can be inter-

preted using two types of data, Log R ratio (LRR) and B-allele frequency (BAF)

(although they are an Illumina® concept). LRR is defined as the log2 of the fluo-

rescence observed over fluorescence expected for both alleles at a single position.

In this respect the LRR represents the total copy number state at the position of the

SNP. The two alleles of the SNP being probed can be arbitrarily assigned as either

A or B. BAF represents the ratio between the signal from these two alleles and

therefore represents allelic imbalance by calculating the proportion of the signal

generated by the B allele as a fraction of the total signal. Homozygous SNPs in an

AA or BB state therefore produce BAF values of 0 and 1 respectively, whereas het-

erozygous SNPs will produce values in between 0 and 1 [148]. LRR and BAF can

also be generated from NGS data using the same principles, where allele-specific

coverage represents allelic abundance.

Analysis of this output involves identifying regions of genomically adjacent SNPs

with a similar signal that may represent a particular copy number state. This is

often performed by a process called segmentation and algorithms such as circular

binary segmentation [149] are used to perform this. Once the genome has been

segmented into regions of similar/the same copy number state, the average LRR

and BAF values of these segments can then be used to model the underlying integer

values. To do this in cancer, aspects such as tumour purity and ploidy must be first

estimated when interpreting the copy number profile of the cancer sample. Popular

software for calculating allele-specific cancer copy number profiles include ASCAT

[150] and ABSOLUTE [151], among others, and take advantage of simultaneous

modelling of both purity and ploidy.

1.8.5 Cellular prevalence of copy number alterations

As with somatic short sequence mutations, it is also possible to estimate the cancer

cell fractions of CNAs. Like all mutations in cancer, CNAs may also be present

in only a fraction of the cancer cell population and be carried by a non-dominant
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subclone. By estimating the cell cancer fraction of CNAs we can also infer the

clonal structure of single tumour sample assays utilising the same principles as for

short sequence mutations.

As described by Nik-Zainal and colleagues, to achieve an accurate estimation

of CNA cancer cell fraction, it is necessary to have a precise estimation of major

allele frequency for each CNA to determine allelic imbalance. To achieve this it

is necessary to estimate the BAF distribution that is produced by the major al-

lele [120]. BAF data produced by a cancer sample is comprised of four different

distributions. Two distributions tightly bound to 0 and 1 that represent pure ho-

mozygous states (AA and BB, respectively) that are produced by both tumour cells

and contaminating normal cells if the SNPs producing the homozygous signal are

also homozygous in the germline. SNPs that are homozygous in the germline are

unimportative as their signal does not change in the event of a CNA and therefore

by identifying germline homozygous SNPs, for example in a tissue sample known

to be healthy, these distributions can be removed from the data.

Additionally, there are two distributions produced by the major and minor alle-

les at heterozygous SNPs. The major allele is defined as the chromosomal locus

with the greater number of copies and in allelic balance both the major and minor

alleles have the same copy number. In segments of the genome where there is

allelic balance in both the tumour and normal cells, i.e. a normal diploid state,

these two distributions are equal with a mean of 0.5. However, in a somatic allelic

imbalance, these distributions separate according to the ratio of the major allele to

the minor allele and the percentage of normal cell contamination (tumour purity of

the sample). The means of both distributions are equidistant from 0.5 and the major

allele distribution has a mean BAF greater than the minor allele distribution.

A simple, but insufficient, method of estimating the major allele distribution is

to subtract all germline heterozygous BAF values less than 0.5 from 1, essentially
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Figure 1.7: Performing a haplotype prediction of a cancer patient can allow for the identi-
fication of the major allele distribution. Panel A shows the allele frequencies
of variants in heterozygous SNPs across a hypothetical chromosome in which
there is an allelic imbalance. The separation of the major and minor allele dis-
tributions is not clear as the tails of the distributions overlap. Panel B shows
the product of a hypothetical haplotype prediction, the two chromosomes are
termed ‘Predicted A’ and ‘Predicted B’. When taking only a single chromosome
prediction (‘Predicted A’, panel C), three ‘haplotype blocks’ are observed pro-
duced by two ‘switchpoints’ in which the linkage of adjacent SNPs was falsely
predicted. Two of these haplotype blocks are part of the major allele distribu-
tion (mean >0.5) and the middle block is part of the minor allele distribution
(mean <0.5). The allele frequencies in the minor allele haplotype block are
subtracted from 1 to generate an estimation of the major allele distribution.

mirroring the BAF distributions at 0.5 [152]. This sufficiently estimates the major

allele distribution in pure CNAs with a large imbalances (e.g. hemizygous losses)

if no BAF values in the lower tail of the major allele distribution are less than

0.5. However, in impure allelic imbalances and in allelic balance, a significant

proportion of the lower tail of the major allele distribution is less than 0.5 causing

the mirroring transformation to skew the estimated major allele distribution and its

mean value. To overcome this, and to accurately estimate the major allele distribu-

tion, Nik-Zainal and colleagues used haplotype ‘phasing’ [120].

Here, Nik-Zainal and colleagues take advantage of the fact that genetic linkage

between variants in SNPs on chromosomes is predictable, as the closer two variants

are to each other on a chromosome, the less likely they are to be separated during

36



chromosomal crossover. Using reference information from a haplotyped dataset,

such as the 1000 Genomes Project [153], a computational prediction of the phys-

ical linkage of each variant in the heterozygous SNPs of a patient sample can be

performed [154]. This generates a prediction of the haplotype representing each

chromosome, based on the genotype of patient. Consequently, the measured allele

frequencies of each variant in a haplotype can be identified. It is unlikely that a

haplotype prediction is accurate for the length of a whole chromosome, however a

sufficient prediction will be accurate for a consecutive series of SNP loci in blocks.

These blocks will then belong interchangeably to the major and minor alleles,

separated by an inaccurate prediction of linkage between two SNP loci (Figure

1.7). A series of correct linkage predictions are known as ‘haplotype blocks’ and

the inaccurate predictions between two SNP loci that separate them are known as

‘switchpoints’. A lower frequency of inaccurate linkage prediction between two

adjacent SNPs increases the size of the ‘haplotype blocks’ and reduces the number

of ‘switchpoints’. To estimate the major allele distribution the ‘haplotype blocks’

are identified through segmentation and the allele frequency of each SNP in the

minor allele ‘haplotype blocks’ (a mean allele frequency <0.5) are subtracted from

1. This produces an estimation of the major allele distribution and retains the lower

tail in regions of allelic balance and impure allelic imbalance.

This approach forms the basis of a tool known as ‘Battenberg’ in reference to

the patterning of the haplotype blocks. The accurate major allele distribution esti-

mation can then be used to model each CNA loci as a mixture of multiple states and

allows for the cancer cell fraction to be estimated [120].

1.9 Inferring phylogeny in cancer data

A key output for the study of tumour evolution is the inference of phylogeny be-

tween the observed clones. There are many approaches to understanding cancer

evolution, many of which have roots in approaches designed for speciation phyloge-

netics. However, clonal evolution presents a unique context compared to speciation
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Figure 1.8: The phylogenetic history of a tumour can be inferred from the copy number
profiles of multiple tumour pieces. This figure represents the inferred phy-
logeny produced from four unique copy number profiles in a single chromo-
some by MEDICC. The inferred phylogeny is rooted by a normal diploid sam-
ple (green). By determining minimum evolution and the copy number state
changes between these four samples, an ancestral copy number state is recon-
structed (Internal 1) as well as the order of copy number changes that may
have produced the observed states (tumour samples – red). Performing this
allows the relationships between the tumour samples and their history to be de-
termined. Each profile shows total copy number state (red) and copy number
of the A allele (turquoise). Integer copy numbers for each allele are displayed
under the profile and the number of events between related profiles is displayed
next to each branch. This figure is an adaption of Figure 1 in Schwarz et al,
2014 [155]

due to factors such as purely asexual reproduction, large population sizes with large

amounts of diversity and perhaps most importantly, rapid mutation rates including

dramatic structural rearrangements [156].

The approach for understanding clonal evolution also depends on the type of data

being collected and the method of choice for sampling the cell population. The most

commonly measured type of variant for evolution is SNV and CNA, although other

variations can be used such as gene expression or DNA methylation [156, 157].
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There are many ways in which relationships between clones can be inferred, for

example, maximum parsimony [65, 158], minimum evolution [159, 160] and neigh-

bour joining [132, 133]. SNVs are often assumed to only occur once in tumour

evolution (infinite sites assumption) as well as being irreversible. These assump-

tions are likely not true for all mutations in the tumour history but these events are

apparently so rare they are assumed to have negligible effect on modelling evolution

[157]. These assumptions allow for the interpretation of SNV fraction in the cancer

cell population to be an indirect measure of the cancer cell fraction of the subclone

of which it has arisen from.

Some tumour phylogeny algorithms use only SNVs to infer phylogeny. These

approaches either ignore or avoid local copy number states and their effects on

variant allele frequency (VAF) [161, 162]. SNV cancer cell fraction should be

corrected for local copy number state when that state is aberrant and there are sev-

eral algorithms that approach solving this problem in order to infer phylogenetic

relationships [163, 164, 165].

Evolution can also be traced using CNAs alone, however CNAs have a more

complex relationship across clones compared with SNVs. This is due to multiple

differences between the nature of CNAs and SNVs. For instance, a CNA of a

given set of breakpoints can alter in copy number to multiple levels, for instance a

chromosome arm can exist with a total copy number state of 3 in one clone and 4

in another whilst originating from a copy number state of 2. Therefore the ability

of a CNA to change in total copy number whilst retaining identical breakpoints

must be accounted for. Furthermore, a tumour can possess independent CNAs in

which the genomic location of the breakpoint boundaries can be different but the

lost or gained regions overlap in different clones. Therefore, distinct CNAs can

affect the same genomic location. CNAs are also allele-specific and one allele in

one clone may be affected by a similar CNA as its opposite allele is in another clone

(mirrored subclonal allelic imbalance, MSAI) [94]. Additionally, once an allele has
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been deleted in an evolutionary trajectory, it cannot be reversed. Lastly, large whole

genome changes such as WGD can affect the CNA evolution in dramatic fashion

[156, 157].

Some algorithms such as TuMult [166] and MEDICC [155] have looked specif-

ically at CNA evolution. MEDICC solves the problem of CNA evolution by taking

CNA profiles across multiple samples and ‘phasing’ them by predicting the assign-

ment of CNA states in the maternal and paternal alleles by calculating the minimum

pairwise event distance between the multiple samples. MEDICC then constructs

the phylogenetic tree using minimum evolution, a parsimony-like approach to a

distance matrix between the multiple CNA profiles (Fig. 1.8). This method allows

for CNA phylogenetics to be compared across many different platform types.

The field of tumour phylogenetic inference is nascent despite many novel ap-

proaches to solving the problems presented by clonal evolution being proposed.

Ultimately the appropriate strategy for choosing algorithmic approach depends on

data type and collection. No single solution has been found to suit all situations in

the field yet. Indeed, it is through the current cyclic process of collecting genomic

data, inferring evolution, drawing conclusions and adjusting modelling of clonal

evolution, that the field of tumour phylogenetics will develop.

1.10 Aims of the thesis

This thesis aims to explore the role of tumour evolution in the context of paediatric

solid tumours, focusing primarily on a large cohort of WTs and hepatoblastomas.

Assessing tumour evolution in a large of cohort of solid paediatric tumours remains

largely unexplored, preventing the illumination of the underlying dynamics of the

genetic development of these tumours. I hypothesise that by assessing multiple

tissue samples from the same primary tumour and utilising genome-wide assays

to explore their mutational landscape, I will be able to identify multiple, unique

cancer clones. Moreover, if multiple clones within the primary tumour of a patient
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are resolved, the phylogenetic history of each individual tumour may be inferred

by comparing mutations that are both common and unique to the clones. I aim to

achieve this by utilising phylogenetic methods such as minimum evolution.

I will analyse multiple CNA profiles generated from SNP arrays across several

tumour tissue samples, as well as targeted next generation sequencing of important

genes in a subset of cases in the same DNA extractions. I aim to develop a bioin-

formatics approach to compare between different mutational profiles from the same

patient, particularly of CNA profiles. Furthermore, I also aim to estimate the cancer

cell fraction of each CNA/mutation to identify mixed clones within a single tissue

sample. I hypothesise that this will allow for further timing of CNAs/mutations in

the phylogenetic history of the tumour.

By determining the evolutionary histories of a large number of tumours of the

same type, I will be capable of identifying common patterns of evolution, not only

specific to the tumour type, but also in tumour subtypes and risk stratifications.

Furthermore, I aim to compare my results to common clinical questions and I

hypothesise that understanding tumour evolution in a single patient may allow us

to increase our understanding of many clinical aspects, including but not limited

to: differential treatment response between areas of the tumour, the presentation

of histological heterogeneity within multiple tissue samples, and the relatedness of

separate tumour masses (e.g. bilateral tumours). Inter- and intra-tumour phenotypic

differences are unexplained from a phylogenetic standpoint, therefore I aim to use

a phylogenetic understanding to support a rationale for differences in phenotypic

presentation.

Moreover, I hypothesise that common molecular biomarkers, such as 1q gain in

WT, can potentially occur as late events that have variable detection within a single

tumour. I aim to evaluate intratumour heterogeneity of CNA biomarkers in order to

inform future studies of the ability to detect biomarkers and to place old studies in
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this new context. Furthermore, I aim to use my results to evaluate aspects of tumour

evolution that may provide novel prognostic value for stratifying patients with solid

paediatric tumours.

Also, I aim to identify common selection pressures in WT and hepatoblastoma.

By assessing if CNAs/mutations occur early or late in tumour evolution I hypoth-

esise that I will be able to discuss the selection for, and importance of, particular

CNAs/mutations at the early or late stages of tumorigenesis. I aim to identify con-

vergent evolution, if it occurs in the data, as an example of both repeated evolution

within a tumour and potentially strong selection pressure for a CNA/mutation. Fi-

nally, I hypothesise that by identifying common selection pressures in a large cohort

of cancers that occur early in life, I will be able to describe tumour evolution in a

unique context and will highlight new patterns of tumour evolution rarely observed

in adult cancers.
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Chapter 2

Methods

This chapter will outline the methods used throughout the thesis. The relationship

between each section in this chapter and the corresponding chapter later in the thesis

is referred to in the text or made explicit by referring to the datasets separately by

their shorthand names. The corresponding datasets are as follows:

• WT20 – An initial series of twenty multi-sampled WTs presented in Chapter

3. The reanalysis of this dataset is presented in Chapter 4.

• MicMa – MicMa highlights breast carcinoma data derived from the Oslo

Micrometastasis project previously presented as a series of 112 Illumina®

Human-1 109K BeadChip SNP arrays by van Loo and colleagues [150] and a

series of six patients analysed using Affymetrix® Genome-Wide Human SNP

6.0 arrays by Demeulemeester and colleagues [136]. This data is presented

in Chapter 4.

• PKC66 – A series of sixty-six paediatric kidney cancers (~94% WTs) pre-

sented in Chapter 5.

• Hep11 – Eleven hepatoblastomas cases presented in Chapter 6.

Methods detailed in Sections 2.1.1, 2.2, 2.3 and 2.11 were performed in collabora-

tion with the laboratory of Professor Kathy Pritchard-Jones at UCL Great Ormond

Street Institute of Child Health.



2.1 Sample collection

2.1.1 Sample collection and histological analyses in the WT20

and PKC66 series

We obtained multiple tumour samples from WT nephrectomy/nephron-sparing

surgery specimens from patients enrolled on the SIOP WT2001 trial [167], the

subsequent Improving Population Outcomes for Renal Tumours of Childhood (IM-

PORT) study or whose parents had consented for additional tissue to be used in

research as part of the UK Children’s Cancer and Leukaemia Group (CCLG) tissue

bank. In a subset of cases, we also studied material obtained at diagnostic nee-

dle core biopsy. In addition, in one case, tissue from a relapse biopsy was also

used. The research was approved by a national research ethics committee. Patients

received preoperative chemotherapy as per the SIOP WT 2001 trial protocol or

according to national clinical guidelines based on this trial.

WTs were classified for diagnostic purposes as previously described [22]. Each

research tissue sample was divided into two pieces. One piece was formalin-fixed

and paraffin-embedded and from this at least one histological section was prepared,

stained with haematoxylin and eosin (H&E stain) and reviewed by one pathologist

(Dr. William Mifsud). Standard histological methods, as per standard operating

procedures in place at the Department of Histopathology at Great Ormond Street

Hospital, were used. The matching piece was flash-frozen in liquid nitrogen. Only

samples with more than 50% viable tumour (the remainder consisting of necrotic

tumour/post-chemotherapy change) on histological section were used in this study.

DNA was extracted from frozen tissue samples using standard techniques, and from

adjacent non-tumorous kidney tissue and/or peripheral blood lymphocytes where

they were available.

2.1.2 Sample collection in the Hep11 series

This was performed in collaboration with Professor John Anderson’s laboratory at

the UCL Great Ormond Street Institute of Child Health. Frozen tumour samples
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and where available peripheral blood lymphocytes were obtained by Professor An-

derson’s laboratory from the CCLG tissue bank. They were assessed and DNA

was extracted by Dr. Tessa Kasia using standard methods in Professor Anderson’s

laboratory.

2.2 Magnetic resonance tumour imaging

In one case (Case 8) in Chapter 3, different regions within the same tumour were

identified prospectively as distinct nodules in the same overall tumour mass on T1-

and T2-weighted magnetic resonance (MR) imaging, and matched on comparison

of pre- and post-chemotherapy images. Apparent diffusion coefficient (ADC) was

calculated by one observer as previously described [168]. Radiological images were

assessed by Dr. Øystein E. Olsen at Great Ormond Street Hospital.

2.3 Molecular analyses

2.3.1 Illumina® SNP microarrays

Illumina® HumanCytoSNP-12 v2.1 microarrays (~300,000 probes) and Illumina®

CoreExome-24 SNP arrays (~500,000 probes) were hybridised with 250ng DNA

per sample according to the manufacturer’s instructions. Log R ratio (log2[observed

intensity/reference intensity], LRR) and B-allele frequency (BAF) were calculated

using the Illumina® GenomeStudio software for each array using default settings.

SNP array data in these array platforms was generated by UCL Genomics.

2.3.2 Methylation-specific multiplex ligation-dependent probe

amplification

Methylation-specific multiplex ligation-dependent probe amplification (MS-

MLPA) for 11p15 was carried out as previously described [169], using the Salsa

MS-MLPA BWS/RSS ME030-C3 probemix (MRC-Holland®) and data visualised

in Coffalyser.NET (MRC-Holland®), performed and analysed in the Pritchard-

Jones lab.
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2.3.3 Design of targeted bait capture

A selection of genes was chosen to be pulled down for DNA sequencing using

NGS to assay a subset of the WT genome. In total 181 genes were pulled down

for sequencing analysis and are listed in Table B.6. These were used to create a

bait capture design using Agilent® SureSelect in the SureDesign suite. These genes

were chosen based on known WT genes from the literature, results from an exome

study by Wegert and colleagues [40] (taking genes mutated multiple times in the

study) and recommendations from experienced WT biologists within the group of

Professor Pritchard-Jones. The gene list was curated to ensure a potential role in

WT biology. Maximum tiling density was used to pull down the exons of this gene

list (5X). In total the capture design probes for 0.881 MB of genes.

Additionally, a region of 125 bp surrounding high minor allele frequency SNPs

were also probed in this bait capture design to assess a subset of CNAs, determined

by the ‘OneSeq’ backbone provided by Agilent®. Targeted regions were chromo-

some 1 (1p and 1q), 4q, 11p, 14q, 16q and 22 and cytobands containing the genes

MYCN and TP53 (2p24.3 and 17p13.1, respectively). In whole chromosomes or

chromosome arms I took every one in ten SNPs from the Agilent® OneSeq back-

bone for inclusion into the bait capture, for the single cytobands, I included every

other SNP for panel inclusion (50%). Tiling density of the CNA regions was 1X.

This CNA data was not included in this study but is referred to briefly in Chapter 5.

2.3.4 Targeted next generation sequencing of tumour samples

Library preparation, targeted capture and sequencing was carried out at the UCL

Pathogen Genomics Unit. NGS was performed on an Illumina® NextSeq machine.

For each sample paired-end reads of 151 base pairs were generated. Sequencing

data was provided as FASTQ files.
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2.4 Multiregion copy number alteration phylogenetic

analysis in SNP arrays

2.4.1 Correction of genomic waviness in LRR data

LRR genomic waves [170] were detected in normal tissue samples and corrected

from all arrays in an array specific manner for Illumina® HumanCytoSNP-12 v2.1

and Illumina® CoreExome-24 v1.0/v1.1 SNP arrays. A normal sample cohort for

each array type was selected. For each autosomal SNP array probe, the mean LRR

across all arrays in the normal tissue cohort was calculated, generating a mean nor-

mal profile. For each autosome a moving average LRR profile was generated from

the mean normal profile using a window size of 10 probes. The moving average

profile from the normal samples represents the genomic waves of each autosome

in the array. Genomic wave detection was applied separately for male and female

X chromosome LRRs. To centre the male X chromosome signal around zero, the

profile was subtracted by the median value. The contribution of the genomic waves

to genome-wide LRR variation in each array is determined by subtracting the ge-

nomic waves (G) from corresponding array probe LRRs (S) using the coefficient (α)

which minimises LRR population variation across all genomic probes to generate

normalised LRR (N),

argmin{var(Si−αGi)}= αmin,

Si−αminGi = Ni.

LRR values were corrected for genomic waves in each array for all autosome and

X chromosome probes if included in the study.

Methods described in the following sections, 2.4.2–2.4.6, were developed for and

specifically used in Chapter 3.
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2.4.2 Identifying regions of copy number changes per case using

CGHcall-CGHregions

The LRRs from each WT20 array were segmented and copy number states were

determined using the CGHcall R package [171] in Bioconductor [172] using the

‘sdundo’ option for the ‘undo.splits’ parameter for segmentation (undo.SD = 5, clen

= 13, relSDlong = 8.33). Called copy number segment boundaries were smoothed

and segments were condensed into genomic regions with corresponding copy num-

ber state in each region per case using the ‘CGHregions’ R package [173] in Biocon-

ductor (c = 0). Genomic regions that contained less than 100 probes were removed.

Genomic regions were retained if the number of base pairs per array probe was

within the median probe density plus/minus double the interquartile range of all ge-

nomic regions of all cases analysed in WT20 (103.5 to 104.4 base pairs per probe in

the WT20 series, i.e. median(all regions) ± 2*IQR*[all regions]) to filter genomic

regions with extreme tiling densities.

2.4.3 Tumour-specific mirrored B-allele frequency profile

In order to generate a tumour specific mirrored BAF (mBAF) profile the estimation

of aberrant cell fraction (A) generated by ASCAT [150] (min. 0.8, max. 0.95)

was used to define a threshold (T ) above which probe mBAF values are considered

non-informative homozygous SNPs and removed,

1/(1+(1−A)) = T

The remaining mBAF values (B) that are greater than 0.56 (used as a threshold of

allelic imbalance in [152]) are scaled between 0.5 and the non-informative homozy-

gous SNP threshold (T ) to give a tumour specific mBAF value (M),

((0.5B)−0.5)/(T −0.5)+0.5 = M

Mean mBAF was calculated for each copy number loss (copy number = 1) and gain

(copy number = 3) state genomic region and for each region, calls were reversed

to normal if the mean mBAF was not greater than 0.58 and 0.64 for gain and loss
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states respectively. This was on an empirical cut off to remove the distribution of

normal mBAF values (~0.5) when allelic imbalance was expected.

2.4.4 Copy number neutral loss of heterozygosity detection

As ‘CGHcall’ uses LRR data to generate copy number segments, copy number neu-

tral loss of heterozygosity events, that do not alter LRR, are not detected. Therefore

I developed an algorithm to identify LOH in genomic regions of a total copy number

of 2. Here I counted the number of probes with a tumour-specific mBAF <= 0.66

in windows of 100 SNP probes, sliding by 10 probes per chromosome. Windows

with 1% or fewer probes with mBAF <= 0.66 were considered to not be in the ‘AB

state’ of normal allelic balance. Consecutive windows of allelic imbalance were

merged for each array and boundaries across different arrays from the same tumour

were smoothed to make these regions comparable. These newly identified regions

were then incorporated into the genomic regions generated from the LRR data, if

(1) an allelic imbalance region was called within a genome region with a copy num-

ber state of 2 (as described earlier) and (2) the allelic imbalance region contained

equal to or more than 1000 SNP probes (more than 90 consecutive windows called

as allelic imbalance).

2.4.5 Calculation of major and minor copy numbers

Once the genomic regions of copy number states for a case were identified, I calcu-

lated major (A) and minor (B) allele copy numbers for each region using the total

copy number (T – as called by ‘CGHcall’) and the mean scaled mBAF (M) for

the probes within each genomic region. I used the following equation to determine

major and minor allele copy numbers;

round(T M) = A

T −A = B
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2.4.6 Phylogenetic analysis of tumour samples

The major and minor allele copy numbers per chromosome per array were used as

input for MEDICC [155]. MEDICC was used to infer clonal evolution of samples

in each case. Normal tissue samples were used to root phylogenetic trees.

2.5 MicMa breast carcinoma array datasets
The dataset of 110 MicMa breast carcinomas analysed in Chapter 4 was generated

using Illumina® Human-1 109K BeadChip SNP arrays and published by van Loo

and colleagues [150]. The original dataset contains 112 samples however in Chap-

ter 4 only 110 are presented as two samples failed to provide a purity and ploidy

solution in ASCAT.

The five MicMa breast carcinoma samples also presented in Chapter 4 were anal-

ysed using Affymetrix® Genome-Wide Human SNP 6.0 arrays and taken from a

previous study by Demeulemeester and colleagues [136].

2.6 Copy number alteration cancer cell fraction phy-

logenetic analysis

2.6.1 Phasing of SNP array data to predict major allele distri-

bution

Phasing was performed in two array types, Affymetrix® Genome-Wide Human SNP

6.0 arrays and Illumina® HumanCytoSNP-12 v2.1, as described by Nik-Zainal and

colleagues [120]. This initially involves converting CEL files to LRR and BAF

using the PennCNV-Affy pipeline (available at penncnv.openbioinformatics.org/,

accessed September 12, 2017) excluding the generation of a canonical genotype

clustering file (step 1.3) for the Affymetrix® Genome-Wide Human SNP 6.0 ar-

rays. Phasing was then performed on both array types using impute2 [154] and the

phased 1000 Genome Project reference genomes (v3, 2012) [153] using heterozy-

gous SNPs determined by the corresponding normal sample. Haplotype blocks
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were identified by segmenting a single haplotype prediction using piecewise con-

stant fitting (PCF) segmentation as developed in the ASCAT package (gamma = 1,

kmin = 3) [150]. BAF values in haplotype block segments with a mean BAF less

than 0.5 are transformed to represent the alternate allele by subtracting from 1 (1

– BAF). This produces a major allele distribution prediction which is then subse-

quently segmented using PCF with stricter segmentation settings (gamma = 10) to

identify allelic imbalances and therefore CNAs.

2.6.2 Mixture modelling approach to predicting major allele

distribution

This method is described in Chapter 4 and uses two component Gaussian mixture

modelling to predict the major allele distribution, in this Section I will detail sup-

plementary information relevant to the implementation of this method. This ap-

proach was applied to four separate datasets in this study as presented in Chapters

4, 5 and 6. These datasets are referred to as MicMa 109K (Chapter 4), WT20

(Chapters 3, 4), PKC66 (Chapter 5) and Hep11 (Chapter 6). Genomic waviness

was corrected for as outlined in Section 2.4.1 except for the MicMa 109K dataset

which was normalised using the ASCAT methodology [150] (github.com/Crick-

CancerGenomics/ascat, accessed September 12, 2017). Only autosomes were anal-

ysed using this approach in these datasets as male X chromosomes do not possess

heterozygous SNPs. LRRs from each array were normalised to the median and

outliers were smoothed according to the CGHcall normalize() function [171].

Heterozygous probes were identified either by selecting probes in a matched nor-

mal sample with BAF values between 0.3 – 0.7 or through manual selection in cases

without a good quality matched normal sample. The heterozygous probe BAF val-

ues are transformed to mBAF using the equation,

|BAF−0.5|+0.5 = mBAF

The mBAF for each array is then segmented using PCF (kmin = 3). For WT and

hepatoblastoma datasets that were multi-sampled, segmentation gamma was chosen
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to be 4.72 as this value is able to identify a pure [2+1] state of 44 SNPs 50% of

the time given a BAF sd = 0.033 (sd, standard deviation). In the MicMa dataset,

gamma was reduced to 1 to identify more segments in the single sample study

(Table 2.1). A two component Gaussian mixture model is then fitted to the BAFs

of each segment using expectation maximisation (EM) and the normalmixEM()

function in the mixtools R package version 1.0.4 [174]. The starting value for

the component means is the mean mBAF and 1 – mean mBAF. The value of sd

converged upon for each segment is recorded across the array. The values of sd are

smoothed using kernel density smoothing using the basic R function density()

with default settings for bandwidth (BW) calculation. The sd that produces the

highest peak of this density is taken as the representative sd of the array and a range

either side of the array sd is chosen for parameter testing as listed in Table 2.1. The

comparison of the phasing and mixture modelling approach in five tumour samples

analysed on Affymetrix® Genome-Wide Human SNP 6.0 arrays in Chapter 4 used

a distance of ±0.01sd.

Segmentation of the mBAF is then performed twice, on the separate chromoso-

mal arms (split version), in addition to the whole chromosome. These two versions

of segmentation are then compared as outlined in Figure 2.1. Firstly the distance

of each mBAF value to the mean mBAF of its segment is measured for each probe

and summed. The summed distance for the two versions are compared and if the

sum distance of the split version minus the sum distance of the original version is

greater than 0.58, the original version is retained. This prevents missing segments

by splitting at the centromere. If the split version is taken, the distribution of BAFs

in the segments which lie immediately adjacent of the centromere are tested to

be significantly different using the Kolmogorov-Smirnov test. If the distributions

are significantly different (p<0.05) the centromere split is retained as the final

segmentation output, if not, the original version is kept.

In each segment the BAF distribution is then tested for a normal BAF distribution

(mean = 0.5), using the expected normal distribution given the array BAF sd and
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Is the distance
difference when

split >0.58?

Are distributions
either side of the
split significantly

different?

Splitting worsens
segmentation

Use separate
chromosome
arm splitting

Segments are
not different

No Yes

Yes No

Figure 2.1: The decision tree used for choosing to segment chromosomes as a whole or
split by the centromere (segment chromosome arms separately). Firstly, the
difference between each mBAF value in the segment and the mean mBAF of
the segment is calculated for each probe and summed for both the split and the
not split version. If the difference between, the sum of the differences for the
split version and the sum of the differences for the non-split version, is greater
than 0.58 then the split version is considered to worsen segmentation as the
difference between the raw data and segments is too large. If not the raw BAF
distributions in the segments immediately neighbouring the centromere in the
p arm and the q arm are tested to be different using a Kolmogorov-Smirnov
test. If the segments are considered different (p <0.05) then the split at the
centromere is taken and the chromosome arms are segmented separately.

using a Kolmogorov-Smirnov test. If the test shows significant difference (p<0.05)

then the segment proceeds to be modelled as two mixtures. Values for distance

from 0.5 (distribution means) are used in the range of 0 – 0.5 in intervals of 0.01

in combination with the range of sds with a given number of equal intervals (20)

to perform a ‘global’ grid search. The combination that produces the largest log-

likelihood is the chosen as the ‘global’ solution. Next, a ‘local’ search takes place

using the values in the grid immediately neighbouring the ‘global’ solution using 10

intervals between the sd values and 20 intervals for the values of the means of the

distributions. The combination of parameters producing the largest log-likelihood

in the ‘local’ search is taken as the final solution for determining the means and sd

of the major/minor allele distributions.
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2.6.3 Predicting copy number state mixing and calculating can-

cer cell fraction

The median BAF and the mean LRR of each segment are then inputted into the AS-

CAT workflow to determine the purity, ρ and ploidy, ψ , of the sample as well as the

array gamma (a multiplier that represents the compression effect in the SNP array

as described by van Loo and colleagues), γ , using the ASCAT equations that model

LRR and BAF [150]. In short this involves calculating major and minor allele copy

number states across a grid search of ρ (0.1 – 1) and ψ (1 – 5.5) values. These copy

numbers are then measured genome-wide for distance from integer states. I altered

this workflow by also performing this across a range of γ values and selecting the

grid search with closest solution to an integer state, in order to also select for the

most appropriate γ . The grid is then searched for local optima and the combination

of ρ and ψ is reported for each local minima. I then selected for the solution within

a range of accepted ψ and ρ values that produced the highest ρ , apart from in the

MicMa 109K dataset. These parameters were adjusted in particular cases which

showed likely tetraploidy. In general diploid solutions were taken unless segment

produced combinations of values impossible in a diploid state (e.g. allelic balance

in the BAF but a loss-like negative LRR value – a [1+1], diploid, state in a [2+2],

tetraploid, genome). The chosen ρ (purity), ψ (ploidy) and γ are then used to model

copy number state mixing.

The modelling of mixed copy number states was performed according to the method

of Nik-Zainal and colleagues which is an extension of the ASCAT equations and de-

tailed in ‘Extended Experimental Procedures’ in the following citation [120]. This

algorithm is known as ‘Battenberg’ and was developed as part of a pipeline which

utilises phasing (https://github.com/cancerit/cgpBattenberg, accessed September

12, 2017). In short, the closest integer state to the major and minor alleles copy

numbers calculated for each segment according to the ASCAT equations. The

theoretical mean BAF value of this integer state is then calculated and is tested if

it is representative of the distribution of major allele frequency values (two-sided
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Approach / Parameter MicMa 109K WT20 PKC66 Hep11
Genomic Wave Correction ASCAT meth. Sec. 2.4.1 Sec. 2.4.1 Sec. 2.4.1

PCF gamma 1 4.72 4.72 4.72
sd range ±0.01sd ±1/3sd ±1/3sd ±1/3sd
γ range 0.43–0.63 0.25–0.5 0.25–0.5 0.25–0.5
ρ range 0.2–1 0.5–1 0.5–1 0.5–1
ψ range 1.6–5.5 1.6–3.4 1.6–3.4 1.6–3.4

Highest ρ solution? No Yes Yes Yes

Table 2.1: Parameters and approaches taken for datasets analysed by mixture modelling.

t-test, p>=0.05). If the theoretical clonal BAF of the segment is considered to be

representative the segment is considered to be in the closest integer state in 100% of

cells. If the theoretical clonal BAF is not representative of the major allele distribu-

tion (p<0.05) then two state mixtures of copy numbers are modelled according to

the Battenberg methodology [120]. Here, I choose to ensure the first two state solu-

tion is between a normal state [1+1] and the closest aberrant state, then remaining

combinations as determined by the Battenberg methodology are tested. For each

subclonal segment, a series of two state copy number combinations are reported as

cancer cell fraction mixtures, the first combination of [1+1] and the closest aberrant

state is then taken as the combination with first priority.

2.6.4 Exceptions for higher than diploid ploidy states

Two cases clearly harboured tetraploid genomes, these were IMPORTs 108 and

170 in the PKC66 dataset. Here a larger range of ψ was tested in order to allow

for a tetraploid solution (1.6 – 5.5) than listed in Table 2.1. To settle on a tetraploid

solution in the R2 sample of IMPORT 108, the range of tested ρ values was also

expanded (0.2 – 1) in this case and R2 of IMPORT 108 reached a tetraploid solution

with a purity of 49%. Also for both profiles in IMPORT 108 the best fitting local

minima solution was taken, not the solution with the highest ρ .

Owing to the fact that the background in tetraploid cases is no longer a [1+1]

state, the two state mixture of [1+1] and an aberrant state is no longer taken as

the first option and the the ordering of states is taken entirely according to the
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Battenberg methodology.

2.6.5 Clustering copy number alternations to identify subclones

Once the cancer cell fraction of each copy number change has been calculated,

each individual array is then analysed to identify clusters of CNAs that may have

formed from the same clonal expansion and therefore represent the same clone. I

performed this utilising kernel density estimation. Firstly, segments with a mixed

copy number state of two aberrations are assumed to have acquired the aberration

with a copy number state closer to [1+1] earlier and the state is considered to have

been previously clonal and considered to have 100% purity.

Next Gaussian density smoothing is performed using the basic density() func-

tion in R using a fixed BW of 0.08. Troughs in the kernel density estimation are

identified and used as boundaries between groups of CNAs. CNAs within these

boundaries are then grouped together and considered to be part of the same ‘clone’

and the peak density of each of these clones is taken as the cancer cell fraction of

the clone.

The first option for a mixed modelling is a combination of a normal state [1+1]

and the nearest aberrant state. This can produce estimated cancer cell fractions of

the aberrant state that exceed 100%. If an identified ‘clone’ has a cancer cell frac-

tion greater than 110% the ‘second’ option is considered for all CNAs belonging

in it (first Battenberg option that is not a combination with [1+1]). As this will

be a mixture of two ‘aberrant’ states, the state closest to [1+1] is considered to

have once been clonal and the cancer cell fraction is then considered to be 100%.

The identification of clones using kernel density smoothing is then repeated and all

clone cancer cell fractions will be <110%.

Finally, for each inferred clone duplicated CNA locations are searched for and

the CNA that is furthest in distance from the normal state [1+1] and therefore has

the lowest cancer cell fraction within the clone is retained whereas the other state
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of the segment is removed from the clone. An example of this may be a mixture

of [2+1] and [2+2] in which the former cancer cell fraction is 10% and the latter

cancer cell fraction is 90%. As [2+1] is closer in distance to [1+1] it is considered to

have been the precursor CNA to the [2+2] state and therefore its cancer cell fraction

is considered to be 100%. However as the cancer cell fraction of the [2+2] state is

90%, this change may be grouped together with the clonal cluster of changes that

are ~100%. Both CNAs cannot co-exist in the same clone and therefore the CNA

closer to the normal state is removed.

2.6.6 Inferring phylogenetic relationships in multiple tumour

regions with multiple clones

Once clones have been identified within each tumour array across multiple samples,

phylogeny is inferred. For an initial interpretation of phylogeny the clones within

each sample are considered to be ‘nested’ even if they can, through virtue of the

‘pigeon hole principle’, be on separate branches in cases with 3 or more subclones

in a single sample. However, the ‘pigeon hole principle’ was only considered later

in the interpretation of the phylogenetic tree. The profiles of nested clones was then

condensed into regions of CNAs using CGHregions (c = 0) [173]. Two separate in-

puts were then used for running MEDICC [155], all profiles including ‘clonal’ and

‘subclonal’ and only the ‘clonal’ profiles (CNAs in each sample with the highest

cancer cell fraction).

This was performed as MEDICC treats each copy number profile used as input

entirely separate and is, in the purest sense, only suitable for interpreting copy

number profiles taken as averages from separate samples, as presented in Chapter

3. To this effect it is unable to understand the predetermined temporal relation-

ship between two clones identified in a single sample, i.e. that the clone with the

higher cancer cell fraction must have arisen prior to the clone with the lower cancer

cell fraction if this clone is considered to be ‘nested’ inside the higher cancer cell

fraction clone. Therefore each phylogenetic tree was produced by required manual

assessment of both approaches, using all identified CNA profiles (all ‘subclones’)
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and the phylogenetic tree produced by only the ‘clonal’ CNA profiles of each sam-

ple (the cluster with the highest cancer cell fraction). The MEDICC phylogenetic

tree could then be assessed for misordering of nested clones when all CNA profiles

were used as input and the MEDICC tree produced using only the CNA profiles

generated from the highest cancer cell fraction cluster per sample could be in-

terpreted as a possible ‘backbone’ of clonal phylogenetic changes and the nested

‘subclonal’ profile could be mapped on as extension of this backbone.

However, further considerations were also taken when manually assessing the

output of MEDICC. These include:

• CNAs affecting largely the same region with clearly different breakpoint

boundaries were mostly interpreted as being separate events affecting the

same region as opposed to the shortening or lengthening of a pre-existing

CNA.

• Breakpoints that were very close but inaccurately identified due to tumour

sample impurity were manually defined to be the same if another sample

clearly showed a purer version of the same CNA when inspecting profiles.

• Some CNA mixture combinations were re-interpreted if such a change was

supported by another sample. Often if the CNA mixture was considered to

change the total copy number state but did not alter LRR, it was re-interpreted

as a mixture of 2+0 and 1+1, this was often the case for the mis-identification

of 11p LOH as a mixture of 2+1 and 1+1 or 2+0 and 2+1.

• If CNAs across a chromosome overlapped they were considered for the pos-

sibility of being a mixture of two overlapping CNA states in separate clones.

• The detection of MSAI (a CNA affecting a different allele) was used to sep-

arate CNAs as being separate events, even if the breakpoint boundary was

equal.

Some sets of CNAs were too challenging to manually assess, such as regions of
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possible chromothripsis and MEDICC was used to interpret these changes. In some

cases WGD makes interpreting CNA evolution difficult (e.g. IMPORTs 108 and

170), and for these cases the interpretation of CNA evolution was carried out by

using the results of MEDICC using only the highest cancer cell fraction clones in

each sample and then mapping the additional within-sample clones on to the tree.

2.7 Identifying mirrored subclonal allelic imbalance

MSAI was identified in each case by utilising the regions produced following the

detection of within-sample clones. Here, for the BAF values of each region of CNA

boundaries across multiple samples, k-means clustering was performed using the

basic function kmeans() in R (centers = 2). A region showing allelic imbalance

is one in which the centres of the clusters of BAF values within the region of a

single sample show a difference of 0.1, if two samples show allelic imbalances in

opposite directions, a region of MSAI is called.

2.8 Copy number alteration evolution features as

predictors for event-free survival

Follow up information, in the form of event-free survival, was available for 54 of

the 66 cases in PKC66 in Chapter 5. In order to quantify mutational burden across

tumour evolution, the number of CNA events was counted for each CNA-only phy-

logenetic tree split by laterality (bilateral tumours were counted separately). The

number of events that was considered representative for the case as a whole was not

the sum of the events across the bilateral tumours but the unilateral tumour with the

maximum number of events. Subclonality was also calculated for each lateral tu-

mour, as the number of non-clonal CNA events as a percentage of the total number

of CNA events, taking the maximum value of the two tumours in bilateral cases to

be representative of the case. If two separate tumours were suspected, subclonality

was considered to be 100%. Tumours with a subclonality of 100% were removed

from the predictive assessment of subclonality.
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2.8.1 Receiver operating characteristic curve analysis

Receiver operating characteristic (ROC) curve analysis was performed using the

pROC R package [175] using the event-free survival status as the response and the

number of events or the percentage of subclonal CNAs as the predictor. The area

under the curve was calculated using the auc() function in the pROC package.

The threshold to split the cases by the predictor was calculated by measuring the

part of the ROC curve which is furthest from the function that represents a random

predictor (y =−x+1).

2.8.2 Survival analysis

The Kaplan-Meier curves and log-rank test were calculated and performed using

the survival R package using the survdiff() and survfit() functions [176].

2.9 Sequencing data bioinformatic processing and

analysis

2.9.1 Removing adapter sequences

FASTQ files for each sample were firstly processed by trimming Illumina® TruSeq

Universal Adapter sequences from paired end reads. This was performed using

cutadapt [177].

2.9.2 Alignment to the human genome and further processing

Trimmed, paired end FASTQ files were then aligned to the human genome

(GRCh37.p13) using bowtie2 [142]. Bowtie2 was run using the settings

--sensitive --score-min L,0,-0.12. This translates to roughly al-

lowing for one mismatch in every 50bp. Samtools, using the settings -huF 4 –

which outputs only mapped reads – was used to pipe into sambamba which was

used to sort the sam file output of bowtie2 and compress the file into a bam format

[178]. Sambamba is available online (github.com/lomereiter/sambamba, accessed

September 12, 2017). Duplicated reads were then marked using MarkDuplicates

which is part of the picard tools software suite (broadinstitute.github.io/picard,

accessed September 12, 2017).
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2.9.3 Calling point mutations

For each case point mutations were called in each individual tumour sample using

the normal tissue sample in each case as a control. Mutations were called using

MuTect version 1.1.7 [143] using the dbsnp138 release as reference for the option

--dbsnp and only performing calling on the targeted genes according to the bait

capture design pull-down regions in the option --intervals. Failed calls that

use the MuTect judgment call ‘nearby gap events’ and ‘alt allele in normal’ alone

were reversed.

2.9.4 Calling insertions and deletions

Indels were called in each tumour sample using the case normal sample as a con-

trol and using MuTect2 in the Genome Analysis Tool Kit version 3.6 [146]. The

dbsnp138 release as reference for the option --dbsnp. MuTect2 was used to anal-

yse the targeted pull down regions of the genes CTNNB1, WT1, AMER1, DICER1,

DGCR8, TP53, DROSHA and MLLT1. Failed calls that use the MuTect2 judgement

call ‘str contraction’ and ‘alt allele in normal’ alone were reversed.

2.9.5 Filtering mutations

Point mutations and indels were then only kept if the VAF in the tumour sample was

10X greater than in the normal sample and that there were at least 10 reads reporting

the mutation in the tumour sample. Each mutation called in the samples across the

whole tumour were then compared in all samples to see if they were present and

the VAF of the mutation in all samples is also reported. Mutations were annotated

using Oncotator [179].

2.10 Supplementing point mutations into copy num-

ber based phylogenies
To incorporate sequence mutations into copy number phylogeny the VAF of the se-

quence mutation is compared to the local copy number state in order to estimate the

cancer cell fraction of the mutation. The prediction of the cancer cell fraction of

mutant cells as a proportion of the tumour is performed using the following equa-
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tions. As stated in a recent paper by Jiang and colleagues [164], VAF represents

mutant cancer cell fraction when a CNA is pure in the following relationship:

V = (B∗R)/(2∗ (1−R)+A∗R)∗M

Here and throughout the rest of this section V represents the VAF, R is the propor-

tion of the sample cells that are tumorous, M is the proportion of the cancer cells

that possess the mutation, A is the total copy number state and B is the number of

alleles within the CNA that possess the mutation.

This equation can be rearranged to make M the subject:

M =V ∗ ((A−2)∗R+2)/(B∗R)

If the copy number alteration precedes the SNV/indel but is impure in the tumour

sample as a whole and is only mixed with a diploid state, the following adjustment

of this equation can be made in which the local CNA state is modelled as if it is pure.

This is achieved by calculating the proportion of the total sample that contains the

CNA:

r = R∗C

Here r is the purity of the CNA as a proportion of the total sample and C is the

cancer cell fraction of the CNA as a proportion of the tumour cells, as reported by

Battenberg. r can then replace R in the equation to calculate the percentage of the

mutant cells, m, as a proportion of the cells carrying the CNA:

m =V ∗ ((A−2)∗ r+2)/(B∗ r)

The cancer cell fraction of the mutant cells as a proportion of the tumour cells (M) is

then calculated by adjusting m by the cancer cell fraction of the CNA as a proportion

of the tumour cells (C):

62



M = m∗C

If using this method, m, is greater than 1, the mutation is likely to be in all cells pos-

sessing the CNA plus additional cells (providing B is correct), therefore it is likely

that the SNV/indel precedes the CNA. To assess the mutant cancer cell fraction (M)

of a SNV/indel that is in all cells possessing the CNA as well as a fraction of diploid

cells in a heterozygous state, the following equation is used:

M = (r ∗ ((A∗V )−B− (2∗V )+1)+(2∗V ))/R

The cancer cell fraction of each mutation is then used to recalculate subclonal

grouping in the sample according to Section 2.6.5. The clones are then remapped

onto the CNA phylogenetic tree to assess relationships between the clones.

This was performed on IMPORT 54 and 143 in Chapter 5. VAF was derived

from output from MuTect for point mutations, however due to the fact MuTect2

filters uninformative reads which alters the VAF compared to the raw data, I de-

rived the VAF for indels from the raw bam file as produced by bowtie2 alignment.

Tumour purity was taken as produced by ASCAT in the Battenberg workflow, apart

from in R2 of IMPORT 54 where the tumour purity was adjusted to 1 as the purity

of the sequenced mutations was much higher than the copy number profile purity

(0.59). Number of mutated alleles was assumed to be 1 except for in copy number

states in which an alleles was duplicated, then it was assumed that the duplicated

allele was the mutated allele in these two cases (B = 2).

2.11 Assessing circulating tumour DNA using digital

droplet PCR

2.11.1 Isolating ctDNA and performing ddPCR

Isolation of ctDNA/utDNA (urinary tumour DNA) and the digital droplet poly-

merase chain reaction (ddPCR) assay was performed by Dr. Taryn Treger in the
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laboratory of Professor Kathy Pritchard-Jones. Briefly, extraction of ctDNA from

200µL of plasma, serum and urine was carried out with the Circulating Nucleic

Acid Kit (Qiagen®) as per protocol.

For mutation detection in four cases with TP53 mutations, assays with sequence-

specific primers and TaqMan-based probes for mutant and wild type alleles were

designed (PrimePCR ddPCR Mutation Assay Bio-Rad for TP53®). Twenty mi-

crolitres of ddPCR mixture were partitioned into droplets using the QX100 Droplet

Generator (Bio-Rad®). Droplets were read on a QX100 Droplet Reader (Bio-

Rad®). Three technical replicates were used for each sample. QuantaSoft software

(version 1.3.2.0, Bio-Rad®) was used to process the droplet data.

2.11.2 ddPCR data processing

The concentration of positive alleles ([A]) was calculated by counting the number

of positive (P) and negative (N) droplets and applying the following equation:

[A] =− ln(1− (P/P+N))

The concentration of the mutant allele ([AM]) is then calculated via the positive and

negative droplets of the mutant probe and the concentration of the wild-type allele

([AW]) is calculated from the droplet results produced by the wild type probe. The

mutant allele frequency (MAF) is calculated as a ratio of the calculated concentra-

tions for each sample at a given time period.

MAF = [AM]/[AM]+ [AW]

2.12 Analysing miRNA expression array data
miRNA expression in WT was analysed using a series of miRNA microarrays

(Agilent® Unrestricted Human miRNA V16.0 Microarray) analysed by Ludwig and

colleagues [40, 180]. This data was downloaded from GEO database (GSE57370).

The miRNAs in the C19MC cluster and cases by histological subtype were subset
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from these arrays and hierarchical clustering was performed using the Heatmap()

function in the R package ComplexHeatmap [181].
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Chapter 3

Multiple Wilms’ tumour regions

reveal genetic heterogeneity

3.1 Introduction

In order to investigate whether important CNA biomarkers in WT are heterogeneous

and to place this heterogeneity in the context of evolution, myself and colleagues

began a study in which multiple pieces of tumour tissue were taken from a series of

20 WT patients at Great Ormond Street Hospital, London (WT20). WT histological

subtypes were not preselected in these patients in order to ensure subtype-specific

biases were not introduced (for instance anaplastic WTs are more likely to have

chromosome 17p LOH events [38]). The key to this investigation was our attempt

to sample as many pieces of tumour as was feasible. This resulted in a range of

sampling from 2–6 tumour pieces per patient and allowed for a thorough assessment

of CNA heterogeneity within individual patients and across a cohort. Additionally,

the larger the number of tumour samples taken, the more detailed the reconstruction

of the evolution of the tumour could be resolved through tracking CNAs, as each

sample would represent a state in the phylogenetic tree. As WTs can present as bi-

lateral tumours, sampling multiple tumour pieces in WT patients should be thought

of in two ways; firstly in terms of the number of samples taken per patient and

secondly in terms of the number of samples from each kidney, as bilateral tumours

present as separate masses in each kidney (as represented in Table 3.1).



Number of samples By patient By kidney
1 0 2
2 3 7
3 11 11
4 1 1
5 3 1
6 2 2

Table 3.1: Number of samples taken in the WT20 dataset per patient (n=20) and per kidney
(n=24).

There were multiple aims to this investigation, firstly we assessed how heteroge-

neous important WT CNAs are. The heterogeneity of CNAs, such as, 1p–, 1q+,

11p LOH, 16q– and 17p LOH, within WT tissue has strong implications on the

feasibility of these CNAs as biomarkers that can stratify WT patients for treatment

appropriate to their risk of relapse/death, especially in the context of single tumour

piece profiling. Therefore our investigation intended to inform those who may de-

sign future clinical trials using these CNA biomarkers of the ability they would have

to detect the presence of a CNA from a single tissue sample and, retrospectively,

may highlight that results from previous investigations may require reinterpretation.

Secondly, it is possible to use CNAs from multiple regions to understand the

phylogenetic relationships between different sites in the tumour and to understand

how the genome has been altered across time (specifically in terms of ploidy of

chromosomes and subchromosomal regions). We aimed to reconstruct the tumour

phylogeny in order to gain insight into the evolution of a solid paediatric tumour

and the underlying biology influencing this process, as well as clinical presentation

in the context of evolution. We were also particularly interested in understanding

whether different tumour masses in different kidneys had any phylogenetic relation-

ship, at least in terms of CNAs. We hypothesised that this would help answer the

question of whether bilateral WTs masses were related and separated early in em-

bryogenesis, arose as a consequence of metastasis, or whether they were completely

separate tumours. Lastly, we compared all phylogenetic analysis to all available
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clinical information, including per tumour region histology and available imaging

data to associate tumour evolution to defining clinical features.

To assess CNAs in DNA extracted from these tumour pieces we used Illumina®

CytoSNP12v2.1 arrays to assess both total copy number and allelic imbalance in

each piece to profile somatic CNAs, as well as a matched normal kidney sample

and/or a peripheral blood leukocytes sample in all bar one case to assess germline

CNAs. My specific role was to generate phylogenetic trees using the processed

fluorescence data from these SNP arrays (LRR and BAF) as well as to assess the

presentation of the CNAs in general in each patient and to associate the phylogeny

of each tumour to available clinical data (tumour imagining, sample site maps and

per piece histology). My assessment of tumour phylogenetics using copy number

profiles per tumour piece was inspired by work done by Schwarz and colleagues and

their phylogenetic algorithm MEDICC which uses minimum evolution of CNAs to

infer a cancer’s evolution [155].

This chapter was performed in collaboration with the laboratory of Professor Kathy

Pritchard-Jones, who generated the presented data. Further details are given in

Chapter 2.

3.2 Genetic diversity in Wilms’ tumour

I studied high resolution SNP array data from 70 distinct tumour samples from 24

tumours in 20 patients (mean 3.5 samples/case, range 2–6 samples), with matched

DNA from non-tumorous kidney and/or peripheral blood leukocytes in 19 cases.

Five patients (Cases 9, 10, 16, 17, 20) had bilateral WT, and we obtained sam-

ples from both tumours in four of them; in Case 9, the contralateral tumour had

been removed prior to the start of the study and was not available for analysis.

Patient characteristics and samples are summarised in Table 3.2. To achieve our

objectives, I developed a pipeline that processed the raw data from genome-wide

allele-specific CNA and LOH events using SNP arrays hybridised with genomic
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Case Gender Age Stage Subtype Normal sample
1 F 10 1 S NK, PBL
2 M 18 2 M -
3 M 32 3 M PBL
4 F 58 2 B NK
5 M 48 2 R NK
6 M 19 3 M NK
7 F 10 2 M NK
8 M 34 2 M NK
9 F 32 1 M NK

10 M 36 1 (R), 2 (L) M (R), M (L) NK (L)
11 F 20 1 R NK
12 F 6 1 M NK
13 F 27 3 M NK
14 M 12 1 M NK
15 M 14 2 M NK
16 M 28 3 (R), 3 (L) R (R), R (L) NK (R), PBL
17 F 5 2 (R), 1 (L) M (R), M (L) NK (R)
18 F 50 3 DA NK
19 F 42 1 M NK
20 M 29 1 (R), 1 (L) M (R), S (L) NK (R)

Table 3.2: Clinical information of twenty patient cohort. Patient age is recorded as age
in months at the time of nephrectomy and therefore removal of the primary tu-
mour(s). Stage and subtype refer to histology and are noted separately for right
(R) and left (L) kidneys. Histological subtypes in the study include; Mixed (M),
Blastemal (B), Stromal (S), Regressive (R) and Diffuse Anaplastic (DA). Nor-
mal refers to the normal tissue sample taken (if at all) and whether it is normal
kidney (NK) or peripheral blood lymphocytes (PBL). In the case of bilateral
WTs, the side in which the NK sample was taken is noted.

DNA from each tumour region by first segmenting the LRR signal, which is rep-

resentative of total copy number, and subsequently the BAF values, representative

of allelic (im)balance. This data was used to call allele-specific copy number states

per tumour region. The copy number states were compared across these regions

and differences between states were considered ‘events’, changes that must have

been acquired as the tumour evolved. Segments were then subject to several stages

of quality control to ensure they were reliable (number of probes representing the

segment, being present in a region of the genome with unusual SNP coverage [SNP

bp-1], see Section 2.4.2). LRR and BAF were segmented separately in order to

include all possible events such as CNNLOH that could not be detected in the LRR
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Figure 3.1: Copy number alterations in the WT20 series. Chromosomes are displayed in
order horizontally. Patients are grouped vertically into three groups, those with
genetically homogeneous unilateral tumours, heterogeneous unilateral tumours
(according to the presence of private CNA events in the MEDICC output) and
bilateral tumours. These patients are labelled by case number and separated
by a bold line. Tumour samples from each patients are separated as rows with
hatching at borders between chromosomes. White represents an expected copy
number (2 for autosomes and female X chromosomes, 1 for male X chromo-
somes). Red represents copy number gain and blue represents copy number
loss. Grey represents CNNLOH (2+0 state). Contralateral tumour samples in
the bilateral cases are separated by a bold tick between the samples.

alone (a 2+0 state produces normal LRR in a diploid genome). In summary, this

procedure condenses the genome into regions of copy number changes and pro-
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Figure 3.2: A comparison of the number of phylogenetic events as determined by MEDICC
in 13 cases and their heterogeneity status (unilateral tumours only). Events is
defined as the number of changes required to explain all CNA state differences.

duces a major and minor allele copy number per region for each sample (including

the normal sample), by comparing total copy number to the major allele frequency.

Figure 3.1 is a graphical representation of all CNA and CNNLOH events across the

70 tumour samples. We detected most known recurrent WT CNA/LOH, including

those associated with poor outcome [55, 56, 57, 58]. Surprisingly, 1q+ was het-

erogeneous in four of seven (57%) multi-sampled tumours with this change (see

Section 3.5). In general, we found remarkable diversity in the extent of intratumour

CNA and CNNLOH heterogeneity, ranging from cases with unique CNA/CNNLOH

events in all or most samples (such as Cases 1 and 15) to tumours exhibiting no

CNA/CNNLOH heterogeneity across all samples. The latter either lacked somatic

CNAs/CNNLOH (Case 12 – these samples were confirmed to be tumour through

histological assessment) or showed a consistent pattern of somatic CNAs/CNNLOH

across all samples (Cases 2, 3, 6), where the single dominant clone in each tu-
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mour showed few (0–4) CNAs/CNNLOH events, hinting at a relationship between

intratumoural genetic diversity and mutational burden (Figure 3.2). The four pa-

tients with these homogeneous (and unilateral) tumours were not statistically sig-

nificantly younger than the other twelve patients with heterogeneous unilateral tu-

mours (Welch two sample one-tailed t-test, t = -1.52, p = 0.08), suggesting that

heterogeneity does not arise purely as a consequence of later age at diagnosis.

3.3 Evolutionary Patterns in Wilms’ Tumour

In order to infer the evolutionary history of tumours, I generated phylogenetic trees

depicting the relationships between the multiple tumour samples. My pipeline re-

quired a minimum of four samples, as dictated by the minimum requirements of

MEDICC, and this condition was satisfied in seventeen cases. In thirteen cases,

all tumour samples were from the same kidney (unilateral). We obtained a ‘flat’

phylogenetic tree, where all samples contain the same clone, in Cases 3, 6 and 12.

Cases 7 and 9 gave a linear tree, in which clones are derived from ‘ancestral’ clones

sharing all prior evolutionary events. Branched evolution, in which more than one

clone contains unique events compared with a common ancestor, was observed in

the remaining seven unilateral tumours (1, 4, 8, 11, 13, 15, 18, 19).

Branched evolution is particularly well demonstrated by Cases 15 and 19, with

marked branching that began early in the clonal evolution of the tumour. In Case 19

(Figure 3.3), the most recent common ancestor (MRCA) clone observed in sample

R4 shows 1q+ and 16q–. All other tumour samples display extra CNAs: R3 and R2

share four additional events (+13, 16p+, +20, +X) and cluster separately from R5,

R1 and R6. R2 contains a clone with two additional events (11q– and 13q13.1–) to

R3. Interestingly, 13q13.1 loss removes the specific chromosomal region encom-

passing BRCA2, after previous gain of the entire chromosome 13, indicating that

the increased expression of the tumour suppressor BRCA2 as a consequence of +13

was compensated for with this specific loss. R5, R1 and R6 share a +12 event that

explains the distinct branching of the samples. However, further branching is seen
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Figure 3.3: Branched evolution in Case 19. A) Phylogenetic analysis of the multiple tu-
mour regions reveals acquisition of CNAs across the evolution of the tumour.
The green node represents the NK, germline copy number profile and red nodes
represent six tumour regions (R1–6). The edges represent the events explaining
the difference between the states with the length being proportional to number
of events and the events being annotated next to the edges. B) Genome-wide
plots of LRR representing total copy number in the NK and tumour regions.
Point colour represents copy number call with grey representing normal, green
representing copy number gain and red representing copy number loss. C) Im-
age of the tumour from which the regions were taking with the white circles
representing the mapped positions of these samples.

in these samples as R5 contains two unique events (+6, +18), and R1 and R6 both

exclusively share four events (+8, 3p25.3–, 14q22.2–23.3–, 22q13.31–). The clone

present in R1 and R6 acquired three focal losses late in its evolution that encompass
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known cancer genes such as VHL, a tumour suppressor gene commonly mutated in

clear cell renal cell carcinoma (ccRCC) [182], and SIX1, a gene that was recently

reported to be recurrently mutated in WT [40, 41] (3p25.3– and 14q22.2–23.3–, re-

spectively). Chromosome 22q13.31 contains the gene WNT7B, which indicates that

this CNA may affect WNT signalling, a commonly dysregulated pathway in WT

[183]. Case 15 is even more diversified, with unique events in five of six samples.

3.4 Chromosome 11p15 UPD is an Early Event in

WT tumorigenesis
I observed 11p15 CNNLOH in 9 of 20 cases (Figure 3.1). In six of these cases,

LOH also involved the entire 11p13 region, which contains the gene WT1, and in

Case 18, it involved part of the 11p13 region, including the WT1 locus. In Cases 4

and 8, 11p LOH did not involve 11p13. In all but Case 14, 11p15 CNN LOH was

detected in all tumour samples, indicating that it occurred in a common ancestor

of all observed clones in these tumours, and is thus a consistent early event in WT

tumorigenesis. The observation that 11p15 CNNLOH was a truncal event in the

evolution of these WTs was confirmed by phylogenetic analysis. In Case 14, 11p15

CNNLOH was called in just one of the two samples taken from this tumour, where

it was the only CNA observed (Figure 3.1). Visual inspection of the chromosome

11 BAF plots for this case shows that, despite not being identified in one of the sam-

ples through calling allelic imbalance by detecting sustained absence of balanced

SNPs, the event does appear to be present in a low fraction of cells, indicating a

detection limit in my approach (Figure 3.4). Therefore, Case 14 does not contradict

the evidence from other cases that 11p15 CNNLOH is a consistently early event in

WT tumorigenesis.

Since chromosome 11p15 contains a cluster of imprinted genes, including the IGF2

oncogene, we performed MS-MLPA on the 11p15.5 locus in all cases with 11p

CNNLOH, and in all tested samples found UPD, as indicated by hypermethylation

of the H19 differentially methylated region (DMR) (consistent with overexpression
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Figure 3.4: Chromosome 11p LOH is an early event in Wilms’ tumorigenesis. Chromo-
some 11 wide BAF plots for nine cases in which chromosome 11p LOH occurs
show the event to be present in all tumour samples yet absence in the normal
sample (unproven in Case 2 due to a missing normal samples). The x-axis
represents position along the chromosome in MB. Points coloured in blue rep-
resent SNPs called as being in a state of allelic imbalance whereas grey points
represent SNPs called to be normal. The arrow highlights a chromosome 11p
LOH event in a tumour sample of Case 14 that was not called as being in
imbalance due to being present in a low number of cells. For reference, the
centromere in chromosome 11 is present at 53.7 MB.

of IGF2) and hypomethylation of the KvDMR, (i.e. a paternal pattern) [169, 184].

DNA from adjacent normal kidney was available for eight of the nine cases with

11p15 CNNLOH, and in all eight cases, there was neither 11p CNNLOH nor abnor-

mal methylation, indicating that the CNNLOH and methylation abnormalities were

somatic events in the tumour cells. This indicates that methylation changes caused
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by CNNLOH in 11p15.5 leading to a paternal methylation pattern are crucial steps

in the early stages of tumorigenesis in a subset of WTs.

In contrast, MS-MLPA on the cases without somatic 11p15 CNNLOH showed

five cases (Cases 6, 10, 13, 17, 19) with hypermethylation of the H19 DMR only,

with normal methylation of KvDMR. In these cases, the abnormal methylation

pattern was homogeneous across all tumour regions and was also present in ad-

jacent histologically normal kidney. Case 6 had known hemihypertrophy, but the

other cases had not been diagnosed with Beckwith-Wiedemann syndrome, hemihy-

pertrophy, abnormal growth, macroglossia, hypoglycemia or other tumours. This

suggests that the hypermethylation of the H19 DMR may be a mosaic event in these

patients that precedes tumour formation. Hypermethylation of the H19 DMR, and

therefore IGF2 overexpression, was an early event in 14 of the 20 patients investi-

gated, suggesting a crucial founding role in WT formation. This finding also builds

on the previous observations of somatic 11p CNNLOH in WT precursor lesions

(nephrogenic rests) [185].

3.5 Gain of Chromosome 1q Shows Variable Timing

We observed 1q+ in eight patients (40%, Figure 3.5). For seven of these we had

multisampled the tumours in which we detected the change. 1q+ is present in all

the tumour samples in three of these cases (Cases 11, 15, 19). In Cases 11 and

19 the same 1q+ is in all samples. In Case 15 there is gain affecting all or part of

chromosome 1q in all tumour samples (n = 6); there are several unique CNAs that

affect this chromosome arm, thus displaying intra-tumour genetic heterogeneity

(ITGH) in the extent of 1q+ itself, indicating that the event occurred several times.

In the remaining four cases, 1q+ is present in one of three (Cases 4 and 9), one of

two (Case 16, right kidney tumour) and two of three (Case 20, right kidney tumour)

samples. This indicates that, if we had single sampled our tumours, we would

have probably only been certain of identifying 1q+ in three of seven tumours; the

probability of finding 1q+ in all seven tumours with single sampling is only 0.037.
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Figure 3.5: Heterogeneity of chromosome 1q gain in WT. Chromosome 1 wide LRR plots
for the eight patients in which we observe 1q+, split into the five patients which
were sampled from a single tumour and three patients where samples were
taken from two bilateral tumours, separating out the individual left (L) and right
(R) tumour samples. The x-axis represents position along the chromosome in
MB. Points which are grey represent SNPs called as having a normal copy
number, green points represent copy number gain and red points represent copy
number loss. Normal sample chromosome 1 LRR is displayed for reference.
The centromere in chromosome 1 is present at 125 MB.
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Indeed, the average probability of obtaining a negative single sample per tumour in

our set of seven multi-sampled tumours with 1q+ is 0.31 (95% confidence interval

is 0.08–0.54), despite 1q+ being present in all samples obtained from three of the

seven positive tumours. The cumulative binomial distribution with p = 0.69 indi-

cates that at least three samples per tumour must be studied in order to ensure that

greater than 95% of tumours with 1q+ are detected, assuming a uniform probability

of detecting the change in each tumour.

In the four tumours which display 1q+ ITGH, 1q+ shows no preference in evo-

lutionary timing. In Cases 9 and 16 chromosome 1q+ timing is indistinguishable

from other copy number changes present in the tumour because samples from these

tumours represent either the only clone with tumour-specific CNAs or have a copy

number profile that is indistinguishable from matched germline DNA. In Cases 4

and 20 1q+ follows other CNAs (e.g. UPD of chromosome 11p in both cases)

indicating that 1q+ evolved late. In contrast, in Cases 11 and 19, where 1q+ is ho-

mogeneous with identical breakpoint boundaries across the samples, it is a truncal

event that occurred early in tumour evolution.

3.6 Rarer Biomarkers

Other WT biomarkers are difficult to assess without larger patient cohorts. Never-

theless, I observed 16q– in four tumours, three of which are multi-sampled, one of

which was a single sampled right kidney mass in Case 10 (Figure 3.1). Of the multi-

sampled tumours, Cases 18 and 19 show homogeneous 16q–, accompanied in Case

18 by homogeneous 1p– and 4q–. In Case 13, 16q– is apparently heterogeneous,

but the change is present in the one sample that is from a tumour that probably

originated independently in the same kidney (see Section 3.8); therefore, we have

no evidence to support 16q– as a heterogeneous event. Two cases contain a LOH

event that affects the TP53 locus: homogeneous 17p CNNLOH in Case 18 and ap-

parently heterogeneous loss of TP53 in Case 13 occurring in the single sample from

the tumour with probable independent origin, again indicating a lack of evidence
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Figure 3.6: Phylogenetics of the four bilateral WT cases as interpreted by MEDICC.
Germline copy number profiles are represented as green nodes (blood and NK)
and tumour regions are represented as red nodes. Region numbers are preceded
by L (left) or R (right) to state the laterality of the tumour sample (e.g. RR1,
right region 1). Edges are not weighted in the horizontal axis, this is used to
separate nodes of the same copy number profile. Edges are weighted by phylo-
genetic events (copy number changes) vertically and the scale for each case is
displayed using a key at the left of the tree.

for heterogeneous TP53 loss. Case 18 showed diffuse anaplasia on histological ex-

amination, whereas Case 13 showed neither diffuse nor focal anaplasia or nuclear

unrest, instead the tumour region with 17p LOH was dominated by epithelial struc-

tures. Focal MYCN gain is heterogeneous in Cases 7 and 8 and homogeneous in

Cases 3 and 16. MYCN gain is germline in Case 16 (previously reported [118]).

3.7 Bilateral tumours

Five cases in the dataset are bilateral WTs, and in four of these both sides were

sampled (Cases 10, 16, 17 and 20, Figure 3.6). Overall, bilateral tumours appear

genetically distinct and probably arose independently. Cases 10 and 17 provide

the clearest examples of the striking differences in copy number profiles between

contralateral tumours. In Case 10 the only tumour-specific CNAs in the two sam-

ples taken from the left tumour are two focal deletions in chromosome 9, whereas

the sample from the right tumour shows 1q+, +9, +12, +20, +X, 7p– and 16q–. In

Case 17, the left tumour of Case 17 shows +7, +8, +12, +13, +16, +17, +22 and

+X, while the right tumour shows no tumour-specific CNAs. In both these cases,
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Figure 3.7: Multiple interpretations that are equally parsimonious of the phylogenetic
events in Case 20. Two interpretations of the same tumour regions of Case
20 are displayed on the left (Case 20 [a] and Case 20 [b]). The green node
represents the germline copy number profile (NK) and the red nodes represent
the tumour regions, each tumour region is preceded by L (left) / R (right) to
indicate tumour laterality of the tumour region. Edges are weighted vertically
by phylogenetic events. The grid of numbers to the left of the edges represents
the changes that occur to the regions representing chromosome 11 in these two
interpretations, where numbers in bold have changed from the preceding state
(all normal in this case). Chromosome 11 BAF plots of the tumour regions
taken from the left and right tumour are displayed on the right of the figure.
The x-axis displays chromosome position in MB. Points coloured in blue rep-
resent SNPs which are called to be in state of allelic imbalance, grey points
represent normal allelic balance regions. The arrows highlight the group of
SNPs which have differential allelic imbalance across the two regions, high-
lighting the different breakpoints of this chromosome 11p LOH across the left
and right tumours.

the two contralateral tumours share no tumour-specific CNAs and are not heteroge-

neous within the individual kidney. Case 16 only showed CNAs in one sample of

two taken from the right tumour, thus making the right tumour heterogeneous. The

left tumour sample of Case 16 did not have any CNAs.

Case 20 was heterogeneous within the right tumour, with 11p CNNLOH in all

three samples but 1q+ in only two samples. The left tumour also contained 11p

CNNLOH, but with a different breakpoint boundary on the centromeric side, in-

dicating this may have been a separate unrelated event in the left tumour (Figure

3.7). The UPD event is allele specific in the same way in both tumours (loss of ma-

ternal, gain of paternal). However, we cannot formally exclude the possibility that
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Figure 3.8: Evidence for two tumours in a single mass in Case 13. Phylogenetic analysis
reveals two genetically distinct WTs with tumour regions taken from the supe-
rior nodule (R5, red) and middle nodule (R1–4, red) as their only ancestral state
is the copy number profile of the normal kidney (NK, green). Specific CNA are
noted adjacent to the edges of the tree. Histology of the tumour nodules is
displayed at 10X magnification for R5 (superior nodule) and R3 (middle nod-
ule). The histology of the middle nodule is triphasic, with blastemal, epithelial
and stromal elements (i.e. mixed), whereas the superior nodule, represented by
R5, is markedly different and composed exclusively of more mature epithelial
elements.

the tumours in the two kidneys developed from a single clone with the shorter 11p

CNNLOH, showing no further evolution in the left tumour and extension of 11p

CNNLOH in the right kidney. The chosen phylogenetic tree algorithm MEDICC

outputs this latter interpretation, however a phylogeny in which the tumours evolved

separately is equally parsimonious to this solution.

3.8 Evidence for Two Separate Tumours in the Same

Mass
Case 13 presented as one tumour mass consisting of a larger middle nodule, present-

ing mixed blastemal, epithelial and stromal elements, contiguous with a superior

nodule composed of relatively well-differentiated epithelial structures, thus show-
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ing two contrasting WT histological phenotypes in the same apparent tumour. Four

samples were obtained from the middle nodule and one from the superior nodule.

The samples from the middle nodule were heterogeneous due to the presence or

absence of +2, with homogeneous +6, +8, +9, +10, +12 as clonal CNAs. The sam-

ple from the superior nodule contained 16q– and 17p– and none of the CNAs in

the middle nodule. Thus, the two nodules showed completely independent branch-

ing from germline DNA, suggesting that they arose independently, based on copy

number and histological data, despite appearing as one contiguous tumour (Figure

3.8). Phylogenetic reconstruction was necessary for interpreting the clonality of the

16q– and 17p– events (see Section 3.6), showing that heterogeneity must be inter-

preted in the context of evolution. By applying this approach we have uncovered

evidence of independent origins of two synchronous WT, not only in bilateral cases,

but also within the same kidney containing an intratumoural nodule with divergent

histology.

3.9 Relation to Treatment Response
Case 8 also presented with a large intrarenal mass contiguous with a smaller nodule

(Figure 3.9A). Following neoadjuvant chemotherapy, however, the smaller nodule

showed a greater shrinkage (78% vs. 42%, Figure 3.9B) and increased ADC (0.71

to 1.71 vs. 0.73 to 1.32, Figure 3.9C) than the main tumour mass, indicating a better

response to chemotherapy due to greater diffusion of water molecules in the tissue

and a disintegration of tissue structure [168, 186]. Histologically, all areas of the

tumour showed the same, mixed histology of blastema, epithelia and stroma.
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Figure 3.9: Tumour phylogenetics and chemotherapy response in Case 8. (A) Pre- and
post-chemotherapy T2-weighted MR images show the two masses indicated by
red (small nodule) and orange (large nodule) dashed lines. (B) Estimated tu-
mour volumes pre- and post-treatment shows that the small nodule (red) shrank
by 78% and the large nodule shrank by 42% (orange). (C) The small nodule
(red) showed a greater post-chemotherapy gain in the mean assessed diffusion
coefficient (ADC) than the large nodule (orange), indicating a better response
to chemotherapy. (D) A phylogenetic tree shows the genetic relationships be-
tween samples from the large nodule (R3–4, orange) and the small nodule (R1,
red). The normal kidney sample is represented by a green node (NK). The small
nodule is related to the rest of the tumour, but has evolved additional changes,
including focal gain of MYCN.
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We obtained one sample from the smaller nodule (R1) and two from the larger

mass (R3, R4); these samples display ITGH and their phylogeny shows that R4

represents a clonal ancestor of the other two samples. R3, also from the larger mass,

evolved an additional Xp11.23–, while the sample taken from the smaller nodule

(R1) developed 2q CNNLOH and a copy number gain of the oncogene MYCN. As

MYCN amplification is known to result in increased cell proliferation, it is possible

that this nodule specific CNA causes this smaller nodule to become more sensitive

to neoadjuvant chemotherapy.

3.10 Concluding Remarks

In this chapter I presented results of my initial approach for automatically recon-

structing tumour phylogeny in an initial pilot series of 20 WT cases, surveying CNA

heterogeneity and evolution patterns across our cohort. I was able to demonstrate

that in a subset of patients, even in tumours sampled up to six times, unique clones

can be detected in nearly every sample of a WT. Patients such as Case 19 exemplify

the large genetic diversity present in a single WT. This chapter also demonstrates

that, not only can this diversity be detected in multiple samples, but can also be

utilised to infer the ordering of CNA acquisitions as the multiple WT clones de-

velop through branched evolution. Six tumour samples represents the greatest

number of WT samples assessed in an evolutionary study, yet demonstrates that in

these WT patients the limit to gaining additional information, in respect to genetic

diversity, remains undetectable, suggesting more unique clones may be identified if

sampling was increased further.

This analysis highlighted key issues produced by CNA biomarker heterogeneity

that are relevant for clinical trials, as demonstrated by 1q+. Two recent studies

assaying 1q+ as a prognostic biomarker have both shown the prevalence of the

CNA to be 28% in their independent cohorts, based on just a single tissue piece per

tumour [104, 103]. Interestingly, if the probability of obtaining a negative sample in

a tumour that contains at least one sample with a 1q+ is 0.31 (as proposed in Section
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3.5), single sampling our cohort of 20 patients would produce a 1q+ prevalence of

~28%. Exemplifying that despite our low number of patients, our cohort may be

representative of 1q+ prevalence in WT and therefore also representative of 1q+

heterogeneity, suggesting that ~17% of WTs considered 1q+ negative in these stud-

ies may be 1q+ positive. It is important to recognise that despite closely matching

1q+ prevalence, these results are only based on 7 multisampled WT with variable

sampling (2–6 samples). Furthermore, a uniform probability of detecting a negative

sample in each 1q+ positive tumour is not likely to be a true representation of de-

tection probability. It is likely that a subset of patients possess a clonal 1q gain and

others posses subclonal 1q gain. This suggests that there are multiple modes of de-

tection probability based on the evolutionary histories of patients in the cohort. The

probability of detecting a negative sample in a patient with a truly clonal 1q gain is

0, yet the probability of detecting a negative sample in a tumour with subclonal 1q+

is dependent on the timing of the event per tumour. Larger studies with consistent

sampling strategies are required to understand the true distribution of 1q+ detection.

This study showed for the first time in the context of tumour evolution, in a large

number of patients, that 11p15 LOH is an early mutation event in the development

of WT. This finding strings together many other indications that 11p15 LOH is an

early event, such as the common presence of 11p15 LOH in a precursor lesion of

WTs, nephrogenic rests, and the fact that 11p15 LOH is detected in a large portion

of WT patients (suggesting detection is not limited by subclonality) [185, 187].

This is further supported by the observation of 11p15 LOH as an early event in

other paediatric solid tumours [113, 114].

Additionally, I have highlighted that WT patients have the capacity to develop

multiple tumours, with no evidence for evolutionary relationships between bilat-

eral tumours as well as being able to suggest the presence of two tumours in the

same tumour mass in Case 13. Case 13 highlights that multicentric WTs may be

under-recognised and not treated appropriately despite this being only a single case
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in the study. Additionally, the genetic independence of bilateral WTs may prove

to be a defining feature of these synchronous tumours, although only four patients

with bilateral WT were assayed from both tumours in this study. Assessing genetic

independence in these patients is complicated by the absence of CNAs in samples

taken from Cases 16 and 17. As samples with no somatic CNAs are equivalent

to the root of the phylogenetic tree, they can be interpreted as being a common

ancestor to all/none of the samples, making them uninformative to tumour sample

relatedness.

Finally, by comparing tumour phylogenetics to data such as tumour imaging and

physical characteristics (i.e. volume and ADC), I have been able to associate tu-

mour phylogeny with clinical features such as response to treatment. Although

just a single case, a heterogeneous MYCN gain may be associated with increased

treatment response in the subclones possessing the alteration in Case 8. This study

demonstrates that associating differential, intratumour treatment response with ge-

netic diversity is possible and may allow us to understand why some regions of a

tumour respond better to therapy than others.

In this chapter I have presented a detailed picture of WT evolution. However,

there are several limitations to this study. Firstly, the study assumes the copy num-

ber profiles determined for each tumour sample are not subject to the mixing of

clones. Additionally, the methodology in this chapter firstly segments the LRR

and then incorporates the CNAs only detectable in the BAF (CNNLOH/UPD) as

a second, latter step. A singular approach that is able to detect CNNLOH/UPD

alongside other CNAs that alter LRR would allow for a more concise approach to

CNA detection. The specific detection of CNNLOH/LOH developed for this chap-

ter (detailed in Section 2.4.4) was unable to detect an impure 11p15 UPD event in

Case 14 as shown in Figure 3.4. An improved approach to CNA detection should be

able to detect impure changes. Finally, although 20 cases is a large enough cohort to

describe WTs generally, it is clear that different WT subtypes may display different
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patterns of clonal evolution. For example Case 18, the only diffuse anaplastic case

in this series, largely displays copy number losses despite the majority of cases

in this study being dominated by copy number gains. A larger cohort of patients

would increase the amount of evidence for subtype specific evolutionary patterns.

These findings describe the spectrum of WT evolution, from homogeneous tumours

dominated by single clones, to genetically diverse tumours, and helped me to con-

ceptualise the process of evolution in WT. This study highlights key characteristics

of the evolution of this solid paediatric cancer. Additionally, this work provided a

context for meeting the challenge of understanding CNA evolution across multiple

tumour SNP array samples.

88



Chapter 4

Detecting and Reconstructing Clonal

Mixtures in Allele-Specific Copy

Number Profiles

4.1 Introduction

Assessing multiple regions of a tumour is a powerful approach to determine the

evolutionary history of a cancer. It is clear that by assessing tissue from several

sites across a tumour, a much broader assessment of tumour genetics is achieved

and a much larger collection of genomic variations are identified, compared with

assaying just a single sample. However, it is also apparent that each sample still

represents a large mixture of tumour cells that produce heterogeneity and the fun-

damental problem that is presented when assaying clonal architecture using single

samples still affects multiregion studies. Ignoring the fact each sample from a

multiregion assay represents a mixture of cells may reduce the information gained

from these studies, as well as bias the results to describe genetic variations across

the tumour as opposed to within local tumour regions that make up a single tumour

sample. Therefore, to gain a complete insight into tumour evolution we must assay

genetic variation both within a tumour sample and across several tumour samples.

To address the heterogeneous nature of a single tumour sample in the context



of CNAs we must assess the underlying mixed population of tumour cells. To

achieve this it is important to estimate the fraction of tumour cells – the cancer cell

fraction – harbouring each CNA individually and remove the limitation of assuming

a CNA profile is homogeneous across all genomes in a single sample population.

As noted by Nik-Zainal and colleagues [120], this requires an accurate estimation

of the BAF for each segment by determining the separation between the major and

minor allele distributions. An approach to achieve this must balance the detection

of true separation with ensuring normal segments are identified correctly in which

these distributions are identical.

Nik-Zainal and colleagues approached this problem by directly predicting the

physical chromosomal linkage of SNPs in each patient based on their genotype.

This was achieved by phasing the genotype using an imputation algorithm called

impute2 [154] and by comparing this computationally predicted phasing to the

BAF distributions derived from the patient to identify the major allele distribution.

This has been performed using data from high-density Affymetrix® SNP6 arrays

as well as in whole-genome sequencing experiments [120, 136]. However, it is un-

clear if this approach can be performed on inexpensive SNP arrays with lower tiling

densities and therefore a reduced information content on the genotype of the patient.

Here I developed an alternative approach to contrast phasing by identifying the

separation in major and minor allele distributions using a two component Gaus-

sian mixture model. This chapter will focus on comparing the performance of this

mixture model approach on high-density Affymetrix® SNP6 arrays to the ‘gold

standard’ of phasing the genotype. I will then present results of using this approach

on a low density array type that probes 9X fewer SNPs to identify possible sub-

clonality in a dataset of breast carcinoma patients. Finally this chapter will focus

on comparing mixture modelling to phasing in the dataset presented in Chapter 3 to

assess which approach is more suited to the ‘medium’ density Illumina® CytoSNP

arrays. The advantages gained from understanding within sample subclonality in
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SNP array name Array size (SNPs) Density
Affymetrix® Genome-Wide Human 6.0 901,095 High

Illumina® HumanCytoSNP-12 v2.1 288,852 Medium
Illumina® Human-1 109K BeadChip 109,302 Low

Table 4.1: This chapter will focus on data from three different arrays, one produced by
Affymetrix® and two produced by Illumina®. For each array the number of
SNPs probed is noted (array size) and the relative density is also presented as
will be referred to in this investigation. The number of SNPs represents tiling
across chromosomes 1 to 22 and X.

multi-region datasets such as WT20 will be expanded upon. The various array types

described in this Chapter are described in Table 4.1.

Previously published datasets were kindly made available to me by Dr. Peter

van Loo and his lab to perform these comparisons [136, 150].

4.2 Mixture modelling allows for the detection of

allele-specific BAF distributions
In order to generate accurate estimates of copy number cancer cell fraction, it is

important to estimate BAF accurately as this value is representative of copy number

state and the proportion of cells in which the state is present. For states of allelic

imbalance with high purity this task is often trivial and can be performed by calcu-

lating the mean mBAF:

|BAF−0.5|+0.5 = mBAF

Calculating the mBAF only produces accurate mean major allele BAF values if

the lower tail of the major allele distribution does not produce values in the range

of values representative of the minor allele distribution (0 – 0.5). However if an

allelic imbalance is present in a low number of cells (a low cancer cell fraction or

if the tumour itself is impure) the lower tail of the major allele distribution and the

upper tail of the minor allele distributions may overlap and the mean mBAF is no

longer representative of the major allele BAF. Furthermore, calculating mBAF for
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each segment prevents the accurate detection of normal allelic balance in which the

major and minor allele distributions are identical.

One approach to this problem developed by Nik-Zainal and colleagues [120] is

to phase the genotype of the patient. Here, using a genotype imputation algorithm

such as impute2 [154] and a dataset such as the 1000 Genomes Project as a refer-

ence panel representative of the human population [153], a prediction is made of the

physical linkage between bases in each SNP that is, which base of the SNP lies on

the maternal chromosome and which base is present on the paternal chromosome.

Once the prediction has been made, if the phasing is completely accurate across

the genome, the major and minor alleles would have been identified. However, due

to the large number of SNPs probed in each chromosome and the variation in the

human population, phasing the entire chromosome perfectly is practically impossi-

ble. Instead, phasing may accurately predict physical linkage correctly for a short

series of adjacent SNPs across the chromosome. These are referred to as ‘haplotype

blocks’. Taking the BAF values of SNPs that are predicted to lie on one physical

chromosome, haplotype blocks can be identified through segmentation even if these

haplotype blocks are located interchangeably on the major and minor alleles. The

larger the haplotype blocks, the easier it is to identify these correctly using segmen-

tation. Haplotype blocks with a mean BAF <0.5 are considered to belong to the

minor allele and all SNPs within this block are transformed by subtracting from 1

(1 – BAF) to generate a predicted major allele distribution. This technique serves to

preserve the lower tail of the major allele distribution and allows for accurate BAF

values to be generated.

If phasing accurately detects haplotype blocks, it demonstrates an ability to de-

tect very small cancer cell fraction CNAs, however it has only been shown to

be effective thus far in whole genome sequencing and high density SNP arrays

[120, 136]. It may not be possible to phase lower density SNP arrays accurately due

to the reduced information content of the array (fewer probed SNPs) meaning less
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data is available for genotype prediction. To address this problem and to provide an

alternative to phasing, I developed an approach which makes use of a two compo-

nent Gaussian mixture model to identify major and minor allele distributions. This

approach contains several advantages over phasing, as mixture modelling:

• Requires much less computational time.

• Does not require a pre-phased reference dataset (e.g. 1000 Genomes Project)

which may not contain enough reference information relevant to the genotype

being phased and can incorporate ethnic group bias if the reference dataset is

not representative.

• Does not require accurate identification of haplotype blocks. If haplotype

blocks are not identified accurately by segmentation, minor allele SNPs will

be determined to be present in the major allele distribution regardless of the

purity of the allelic imbalance, distorting mean major allele distribution.

The mixture modelling workflow used to detect the major allele distribution is out-

lined in Figure 4.1. The initial objective of the workflow is to identify segments

which are affected by the same allelic imbalance. It is only possible to model a

segment as a two component Gaussian mixture if a single CNA is affecting it. To

achieve this the mBAF of each chromosome is segmented using PCF (Fig. 4.1A).

In order to conduct a parameter search using a grid search, an appropriate range of

parameters must be determined. The range of means that are possible in the BAF

values of the allelic distributions of a CNA segment are bounded by their distance

from 0.5 (0 – 0.5). However, the range of standard deviation (sd) of the distributions

are unbounded. Therefore to find an appropriate range of sd to test in a grid search

a two component Gaussian mixture model is fitted to the BAFs of each segment

across the genome using EM. The model is bounded by the following constraints

which reduce parameter space and are appropriate for the underlying data type:

• The means of the two fitted distributions, m, must be equidistant from 0.5.

• The sd of each of the two distributions fitted must be equal.
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EM then searches this parameter space to optimise log-likelihood across a limited

of number of iterations (Fig. 4.1B). Once this is performed on each segment the sd

converged upon is recorded for each segment and a representative sd is chosen as

well as a range either side of this sd (see Section 2.6.2).
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Figure 4.1: Using a mixture model of two Gaussian distributions allows for the detection
of the major allele distribution. The beginning of this workflow requires the
identification of a segment in which only a single CNA state is present. To
achieve this the BAF across each chromosome is mirrored on 0.5 (mBAF) and
segmented (A). Taking the non-reflected BAF within each segment, a two com-
ponent Gaussian mixture model is fitted to the data using EM (B). The mixture
model is constrained by the means being equidistant from a balanced BAF and
the sd of each distribution being equal. Based on the fitting of the model across
all segments, a representative range of sd is chosen. This range is then used to
conduct a ‘global’ grid search including all possible BAF means (C) for each
segment followed by a ‘local’ search (D) of a range of parameters surrounding
the parameter combination with the largest log-likelihood of the global search.

(continued)
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Figure 4.1: The mean and sd of the two Gaussian distribution are used generate a ratio of
the densities of the minor allele distribution (mean <0.5) over the sum of the
two densities, this ratio is then interpreted as the probability of a SNP being
present in the minor allele distribution given its BAF (E). A representative ma-
jor allele distribution is then generated by reassigning each BAF value as 1 –
BAF, with the reassignment based on the minor allele distribution probability
(F). This approach can replace phasing in order to estimate CNA cancer cell
fraction using the Battenberg workflow.

By defining a bounded parameter range of sd to search, and a range of intervals

between the bounds of distances from 0.5 appropriate for the distribution means (0

– 0.5), a grid search can be performed. Here, a log-likelihood is calculated for each

combination of distance from 0.5 for the means of the distributions and sd of those

distributions and the highest log-likelihood is chosen for the given data (Fig. 4.1C).

A grid search overcomes the random seeding of EM and its ability to converge on

local optima. Conducting a grid search also ensures all extreme values are tested

(such as the means of both distributions being equal, i.e. distance = 0), yet is com-

putationally efficient. The dimensionality of the grid search is greatly reduced by

introduced constraints on the sd and means of the distributions. Following this first

‘global’ grid search, a ‘local’ grid search is implemented in a more refined range

of values surrounding the chosen solution to the global grid search to improve the

chosen solution (Fig. 4.1D).

Once two distributions have been fitted to the BAFs in the segment a ‘minor al-

lele ratio’ is calculated using the densities of these two normal distributions given

the chosen mean and sd. The distribution with a mean <0.5 is considered to be

the minor allele distribution and the distribution with a mean >0.5 is defined as

the major allele distribution. The ratio is calculated for a given BAF value as the

density of minor allele distribution divided by the sum of the densities of the minor

and major allele densities. This ratio is then considered to be representative of a

probability that a SNP with a given BAF belongs to the minor allele distribution

(Fig. 4.1E). Each SNP in the segment is subsequently mirrored at 0.5 (1 – BAF)

according to the probability that it is in the minor allele distribution. This then
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transforms the BAFs across the segments into a representation of the major allele

distribution (Fig. 4.1F).

4.3 Comparison to phasing of breast carcinoma high-

density SNP arrays
In order to test the mixture modelling approach I obtained five MicMa breast car-

cinoma samples in which the major allele distribution was estimated using phasing

and the 1000 Genomes Project dataset as a reference [136]. These cancer samples

were run on high density Affymetrix® Genome-Wide Human SNP 6.0 arrays. For

each segment identified by segmenting the estimation of the major allele distribu-

tion by phasing this dataset, I applied the mixture modelling workflow from the

point of estimating the sd of the distributions (Fig. 4.1B). I then compared the esti-

mated major allele BAF obtained by the mixture model to the mean of the segment

identified following phasing (Fig. 4.2).

Overall the concordance between the two approaches is very good. The lowest

R2 across the five arrays was 0.97. Generally phasing has a tendency to produce a

higher estimation of BAF closer to the normal state (0.5). This is most obvious in

MicMa 044 where there are higher BAF values close to 0.5 for a cluster of segments

in the phasing estimation. This may indicate the greater sensitivity of the phasing

approach to very low cancer cell fraction allelic imbalances. This effect however is

not found in higher BAF estimations.

In the opposite manner segments of a higher cancer cell fraction tend to have a

slightly higher estimated major allele BAF in the mixture model approach. This

may be due to the fact that mixture modelling is not affected by accurate segmen-

tation of haplotype blocks which if not identified properly can underestimate the

mean major allele BAF. This effect increases as the purity of the allelic imbalance

rises.
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Figure 4.2: A comparison of the predicted major allele distribution as predicted by the
approach outlined in Fig. 4.1 and produced by phasing using impute2 and the

(continued)
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Figure 4.2: 1000 Genomes Project dataset as a reference. The data is derived from five
Affymetrix SNP6 arrays which assayed samples taken from the MicMa breast
carcinoma study. Segments produced by the phasing approach were then used
as input for the mixture model approach (replacing step A in Fig. 4.1) to allow
for a direct comparison of predicted major allele BAF. The points in the scatter
plot represent each segment and the size of the points are scaled to the length
of the segment, as detailed in the legend of each plot (value represents the
exponent of base 10 of the numbers of SNPs). The dotted line represents an
identical prediction and the R2 is also displayed.

Figure 4.3 shows two chromosomes, 12 and 17, taken from MicMa 107. The fig-

ure shows the estimated BAFs of the major and minor alleles using the phasing

approach (red) and the mixture modelling approach (blue). Firstly, it is clear both

phasing and mixture modelling correctly detect the absence of a CNA in chromo-

some 12. However in both chromosome 12 and 17 the estimations of BAF derived

from the two methods, in both the major and minor allele, can differ. In chromo-

some 12 the CNA is estimated to be purer by the phasing approach, however for the

CNAs in chromosome 17 with higher BAFs, the mixture modelling estimates BAF

to be higher, representative of the pattern show in Figure 4.2. This may display

the ability of phasing to be more sensitive to low cancer cell fraction CNA but the

ability of mixture modelling to estimate BAF of purer allelic imbalances better.

4.4 Analysis of genome-wide low density breast car-

cinoma SNP arrays
After testing the mixture modelling approach on high density Affymetrix® SNP6

arrays, I tested the approach on lower density SNP arrays, to gain insight into the

ability of the workflow to estimate major allele distributions in arrays not conven-

tionally used for subclonality analysis. Therefore I analysed 110 MicMa breast

carcinoma samples that were run on Illumina® Human-1 109K BeadChip SNP

arrays [150]. As noted in Table 4.1, these arrays probe for ~88% fewer SNPs than

Affymetrix® Genome-Wide Human SNP6 arrays.
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Figure 4.3: A comparison of the estimations of major and minor allele frequencies across
chromosome 12 and 17 in MicMa 107. Blue lines represent the results from
the mixture model and red lines represent the results from the phasing-based
approach. Chromosome 12 shows a CNA surrounded by normal allelic bal-
ance. In this region the phasing BAF estimation is higher than the mixture
model (0.555 and 0.543, respectively). In chromosome 17 of MicMa 107, the
predicted BAF by phasing is reduced compared to mixture modelling. The re-
gions of normal allelic balance in chromosome 12 show phasing and mixture
modelling identifying the normal state.

As shown in Figure 4.4, the mixture modelling approach is able to detect subclonal

CNAs in these low density SNP arrays. The upper panel of Fig. 4.4 shows the

output of cancer cell fraction estimates according to the Battenberg workflow for

chromosome 1 of a breast carcinoma sample in which mixture modelling has re-

placed phasing [120]. This chromosome possesses two CNAs, a whole arm single
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Figure 4.4: Using mixture modelling on low-density Illumina® Human-1 109K BeadChip
SNP array from a breast carcinoma sample to determine CNA cancer cell frac-
tion. In the upper panel (A) the BAF and segment copy number calls are shown
along with their cancer cell fractions. This tumour sample contains a chromo-
some 1q gain [2+1] in all cells but a copy number loss [1+0] affecting 1p31.3–
p22.1 (62.7–93.8 MB) that is determined to be present in 52.6% cells. The
lower panel (B) represents the cancer cell fractions of all CNAs called in the
sample as a mixture of an aberrant and diploid state [1+1] across all chromo-
somes. Here two groups of cancer cell fractions are observed, the clonal CNAs
which are fixed at 100% (green star) and a distribution of subclonal CNAs dis-
tributed around 0.5 (red star). The line in the lower panel represents the kernel
density estimation of the distribution using a BW of 0.08.

gain of chromosome 1q [2+1] and a single loss of 1p31.3–p22.1. The chromosome

1q gain is estimated to be in 100% of cells whereas the loss in 1p31.3–p22.1 is con-

sidered to be subclonal (red) in 52.6% of cells. The mixture modelling estimates a
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normal allelic balance in the rest the chromosome.

The lower panel in Figure 4.4 shows the distribution of the cancer cell fractions

of all the CNAs identified in the same tumour sample across the genome. The

whole arm gain of chromosome 1q is clonal, and along with other CNAs, forms

part of the ‘clonal’ distribution (green star). Other CNAs are considered to have

cancer cell fractions less than 100% and are potentially subclonal. The loss in

1p31.3–p22.1 is in 52.6% of cells and forms part of the distribution of ‘subclonal’

CNAs (red star). By identifying troughs in the kernel density estimate, it is possible

to separate CNAs into groups of similar cancer cell fractions. One CNA is estimated

to have a cancer cell fraction >100% because the closest integer copy number state

in this CNA is modelled as a mixture with a normal copy number state [1+1] but

gives an impossible result (>100%) based on the purity and ploidy of the sample.

This may be due to the purity or ploidy of the sample being inaccurate or that the

CNA is a mixture of two aberrant states.

By running the mixture modelling and Battenberg workflow on these 110 MicMa

breast carcinoma samples I could, for the first time, analyse subclonality in these

low density arrays. A genome-wide summary of this analysis is shown in Figure

4.5. The upper panel (Fig. 4.5A) displays the number of CNA alterations identi-

fied across the genome in this dataset as a fraction of the total number of samples

analysed (n = 110). Overall the regions with some of the largest number of CNAs

included chromosome 1q, 8, 11q, 16q and 17p (>60% of samples).

The lower panel in the figure shows the percentage of subclonal mutations called

as a fraction of the total CNA count. The genomic location with the highest en-

richment of subclonal CNAs was in chromosome 1p. The cytoband affected by

the most subclonal CNAs was mapped as being 1p22.2 where CNAs affecting this

cytoband were subclonal in >70% of CNAs. Perhaps more interestingly some

whole chromosomes had a tendency not to be subclonal. Chromosomes 3, 17 and

102



21 showed a depletion in subclonal CNAs indicating these chromosomes are often

clonal and may play important early roles in the evolution of this cancer type.
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Figure 4.5: By taking a large set of low density SNP arrays run on breast carcinoma sam-
ples and using mixture modelling to identify major allele distributions, it is
possible to gain insight into subclonality of CNAs across the set, despite the
relatively low number of SNPs probed. Panel A displays the percentage of
samples containing a CNA in a given genomic location. Generally this shows

(continued)
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Figure 4.5: chromosome 1q, 8, 11q, 16q and 17p to be most affected by CNAs. The second
panel (B) shows the percentage of CNAs that are subclonal. Patterns of sub-
clonality are less clear genome-wide, however the q-end region of the p-arm of
chromosome 1 appears to harbour a large number of subclonal CNAs. CNAs
across in chromosomes 3, 17 and 21 are more commonly clonal.

4.5 Comparison to phasing of medium density SNP

arrays in the WT20 series
To explore the power of mixture modelling for detecting subclonality further, I

applied the approach to the WT20 series of Wilms’ tumours presented in Chapter

3. The SNP arrays analysed in the WT20 series are ‘medium’ density Illumina®

HumanCytoSNP-12 v2.1 arrays which have only ~30% the number of SNPs that

are probed for in high density Affymetrix® SNP6 arrays. I compared the ability to

estimate the major allele distribution using mixture modelling as well as phasing

using impute2 and the 1000 Genome Project reference genomes. Generally the

phasing approach under-performed as it produced poor haplotype block predictions

that led to an underestimation of the major allele BAF and erroneous segmentation.

The mixture modelling approach was not affected by these two general problems.

The disadvantages of phasing medium density SNP arrays are presented in Fig-

ure 4.6. Here, Figure 4.6A shows data from chromosome 2 in a tumour sample in

Case 15. The left graph shows the estimated major allele distribution produced by

the phasing approach. Here it is clear that there are several SNPs with BAFs less

than 0.5 that are derived from the minor allele distribution. These remain present as

the predicted haplotype blocks were not sufficiently accurate enough to be correctly

identified through segmentation. The right panel of Figure 4.6A then shows that

the mean BAF (red) of the phasing result is reduced compared with the mixture

modelling result (blue) and is inaccurate, likely leading to lower cancer cell fraction

estimates.
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Figure 4.6: Both phasing and mixture modelling were used to estimate major allele BAF
in the WT20 dataset presented in Chapter 3 that was performed on medium
density SNP arrays. A copy number gain in chromosome 2 in Case 15 shows
SNPs of the minor allele distribution present in the estimation of major al-
lele distribution by phasing (A). This reduces the mean BAF produced by the
phasing approach (red line) compared to the mean BAF estimated by mixture
modelling (blue line). Poor phasing in chromosome 11 and the purity of the al-
lelic imbalance in this sample causes erroneous segmentation (red line) due to
segmentation detecting minor allele SNPs (B). This effect is shown in the com-
parison scatter plot (C) as a series of segments with high major allele frequency
produced by the mixture model but variable BAF produced by phasing.
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Figure 4.6B shows chromosome 11 from the same tumour sample. Again BAF

values far less than 0.5 (~0) are present in the estimation of the major allele distri-

bution in chromosome 11 due to poor haplotype block identification. However in

this instance the segmentation performed on the major allele distribution estimated

by phasing, to identify CNAs, calls SNPs in the minor allele distribution as separate

segments from the major allele distribution. These segments are clearly problematic

for accurate identification of CNAs in this chromosome. The mixture modelling

approach is not subject to this issue.

Additionally, Figure 4.6C shows a comparison of the major allele BAFs of seg-

ments produced by the phasing approach compared to the mixture model approach.

The clearest evidence of erroneous segmentation is the presence of many segments

which have high (~1) BAF values as determined by mixture modelling, but have

highly variable BAF values according to the phasing approach, likely due to poor

haplotype block identification. Finally, it is also evident that generally speaking,

BAF value estimations are slightly higher for the mixture modelling approach

compared with the phasing approach.

4.6 Reanalysis of the WT20 study

Reanalysing the WT20 dataset using mixture modelling to estimate the major allele

distribution and estimating CNA cancer cell fraction using Battenberg allows for

the re-evaluation of inferred phylogeny in those cases. Figure 4.7 shows the reinter-

pretation of Figure 3.3 from Chapter 3. The first improvement that understanding

subclonality produces is the identification of more observable states in the tumour.

In Figure 4.7A there are five observed tumour states across six samples, however

in 4.7B the detection of subclonal architecture means seven states are observed,

adding more detail to our picture of tumour evolution. Secondly, through allowing

for the detection of subclonal CNAs, more CNAs in total are detected, as CNA

calling does not require CNAs to match to a single profile. This is seen in R4 where

four additional CNAs are observed (17p-, 17p+, +20 and +21), clearly detailing a
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Figure 4.7: Detecting subclonal CNAs in Case 19 from Chapter 3 allows for a more detailed
picture of WT evolution. Panel A is taken from Fig. 3.3 and panel B includes
subclonal detection in phylogenetic reconstruction. Here the mixture modelling
and Battenberg workflow was applied to the array samples of Case 19 and five
CNAs in four chromosomes across two samples were detected as subclonal.
Four of the subclonal CNAs were present in R4. These included 17p-, 17q+,
+20 and +21. The chromosomes with detected subclonal CNAs in R4 and R6
are shown in panel C.

more accurate detection of the range of CNAs in the tumour.

The detection of both more CNAs and estimation of their cancer cell fraction allows

for the ordering of CNAs to be further clarified in the inferred phylogeny. For
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instance, the gain of chromosome 20 present in R4 allows us to interpret this event

as occurring first in the successive CNAs that are acquired by R2 and R3, which

also contain a chromosome 20 gain. Additionally, the detection of 14q22.2–q24.1

loss as being subclonal in R6 informs us that in the acquisition of CNAs unique

to R1 and R6, this loss of 14q22.2–q24.1 occurred last. Discrepancies observed

between Figure 4.7A and 4.7B are explained by the differences between this mixture

modelling-Battenberg approach and the methodology of Chapter 3. These include:

• The removal of the X chromosome from analysis in Figure 4.7B due to the

lack of heterozygous SNPs in male patients.

• Segmentation is performed on the mBAF of heterozygous SNPs in Figure

4.7B and not primarily the LRR as in Figure 4.7A. This explains boundary

differences seen in the CNAs of chromosome 3 and chromosome 14, as well

as the different interpretation of chromosome 13.

• The increased sensitivity to higher gain states in Figure 4.7B and therefore the

additional gain of chromosome 1q in R2 and R3 [3+1] by using the ASCAT

equations which gives unlimited copy number states as opposed to CGHcall

which is limited to a total copy number state of 4.

Figure 4.7C shows the five subclonal CNA calls in the four chromosomes across R4

and R6. Cancer cell fraction estimations range from 6.8% to 57.5%.

4.7 Concluding Remarks
To gain full insight into the evolution of a tumour, it is clear that subclonality within

single tumour samples must be accounted for. By estimating CNA subclonality,

it is possible to observe more states in the clonal architecture of a tumour. This

increases the amount of information used for constructing phylogeny as well as

providing important constraints for establishing the progress of genetic change in a

tumour’s evolution. Through detecting that a CNA is subclonal, we make clear that

it is highly likely to have occurred after a clonal CNA (or more accurately, a CNA

present in 100% of cells in a sample). Elucidating subclonality in one sample can
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then provide insight to the ordering of genetic events in other samples which may

be hidden by changes being present in all cells, as exemplified by the subclonal +20

in R4 that is clonal in R3, allowing it to be timed as occurring prior to the other

clonal CNAs in R3 that are unique to the sample.

Sensitive and accurate detection of allelic distributions across the cancer genome

is vital for understanding CNA cancer cell fraction. Whereas it is established that

phasing provides a powerful tool for achieving this, the approach I developed using

mixture modelling is also capable of achieving the same objective. By providing an

alternative to phasing, mixture modelling opens up the option of assessing subclon-

ality in a range of situations in which phasing a genome effectively is not possible.

These situations may include difficult to phase genotypes that are not represented

accurately by a reference genotype dataset. This situation may arise if phased geno-

types are not available for specific ethnicities or if a genotype is uncommon in the

general population, such as those arising from consanguineous parentage, that may

occur in childhood malignancies [188].

Mixture modelling is capable of detecting the allelic distributions in arrays

with lower tiling density such as Illumina® HumanCytoSNP-12 v2.1 arrays and

Illumina® Human-1 109K BeadChip SNP arrays and may also perform well on

targeted sequencing experiments such as exome sequencing. In general the ability

of mixture modelling to perform on lower tiling density arrays may ‘unlock’ many

large legacy genomic studies previously thought to be unsuitable for subclonality

analysis. As shown in the WT20 Illumina® HumanCytoSNP-12 v2.1 array series,

phasing an array with approximately 300,000 SNPs does not appear to produce

accurate haplotype block predictions. Yet, in this chapter CNA subclonality was

assessed in the MicMa breast carcinoma dataset analysed on Illumina® Human-1

109K BeadChip SNP arrays using mixture modelling despite their low tiling den-

sity (~100,000 probes) [150].
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It should be noted that phasing may be more robust to noise in the BAF data as

compared to mixture modelling. Fitting a mixture model to the BAF data will be

affected by noise in the BAF distributions in the SNP array. However, phasing

is performed on the genotype information that, assuming the identification of ho-

mozygous and heterozygous SNPs is accurate, is performed on the genotype of

the patient directly and is not affected by this type of noise initially. However, the

subsequent identification of haplotype blocks requires accurate segmentation and

this will be compromised by poor quality BAF data.

Phasing a patient’s genotype is a powerful approach to assessing CNA cancer

cell fraction and accurately estimating BAF. However, mixture modelling provides

several advantages that makes it a viable alternative to phasing. Whereas mixture

modelling may not be more preferable to phasing in all situations, the fact that it

is computed quickly and at low cost makes it a good source of comparison, at a

minimum, for all studies of CNA subclonality.
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Chapter 5

Comprehensive Evolutionary

Reconstruction of Paediatric Kidney

Cancer

5.1 Introduction

Extending my investigation into paediatric solid tumour evolution, I analysed a

larger more diverse cohort of patients diagnosed with paediatric kidney cancer

(PKC) in which cancerous tissue was both numerously and longitudinally sampled,

where possible. To expand even further our knowledge of these tumours and to

display the advantages of detecting clones both within tumour samples as well as

across tumour samples, the aim was to assay copy number variations using an accu-

rate estimation of copy number cancer cell fraction from data derived from Illumina

CoreExome-24 SNP arrays. Additionally, we assayed mutations in multiple regions

using a WT-specific DNA pull down panel to capture the exons of genes implicated

in WT development using deep sequencing in a subset of cases.

By utilising methods presented in Chapter 4 I aimed to infer mixing of clones

in all array samples individually, to construct a more accurate picture of PKC evo-

lution by further elucidating the individual stepped changes that CNAs undergo

when evolving. Overall, as well as being able to provide an interpretation of tu-



mour evolution by comparing between multiple samples as presented in Chapter 3,

I hypothesised that being able to detect these mixed clones in single samples would

allow me to order copy number changes further when comparing to multiple tissue

sites. The detection of mixing clones would identify more directly observed states

to be used in phylogeny construction and the increased and accurate detection of

low cancer cell fraction changes, as well as the recognition that these low cancer

cell fraction changes do not require to be explained in a single ‘average’ profile

alongside higher cancer cell fraction/clonal CNAs, would also provide a larger

number of detected events across the multiple tumour pieces that may also help

explain ordering of changes between samples as well as identifying changes that

may have previously gone undetected. Performing this across multiple samples

would synergise two major approaches in detecting diversity produced by evolu-

tion in the field, the reconstruction of clones from bulk data and the derivation of

phylogenetic history from comparing between multiple sites that possess spatially

separated clones.

As presented in Chapter 3, copy number changes occur frequently in WTs and

are informative for deducing the order of events that occurred during the evolution

of the cancer. However, like the vast majority of cancers, WTs are known to also

possess point mutations and small insertions/deletions. Until this stage we had

not addressed these mutations from the view point of heterogeneity and evolution.

We chose to address this because, unlike many CNAs – and especially in large

CNAs like those that often appear in WT (1p–, 1q+, 16q- etc.) – the functional

consequences of small sequence mutations are predictable as we can determine the

amino acid changes that affect the translated protein from the mutated gene. In this

regard, point mutations and indels are perhaps more informative as individual muta-

tions than CNAs from a functional perspective. Additionally, these point mutations

are likely to alter the phenotype therefore relative fitness of clones. However, as

explored in Chapter 1, WTs possess relatively few non-synonymous mutations com-

paratively to the majority of adult cancers. Bearing this in mind, and whilst aiming
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to perform an assay of small sequence mutations in multiple regions of a sizeable

cohort of cases with relatively high coverage to ensure accurate VAF estimations,

we chose to design a WT-specific targeted sequencing panel that we would apply to

the PKCs in our cohort. We felt this approach to be both the most cost effective as

well as the best way to ‘hedge our bets’ of finding the majority of mutations in each

paedatric cancer genome. In addition to assaying the spatial presence of SNVs and

indels in the tumour, the panel would also serve as a prototype for a diagnostic assay.

I designed the WT-specific targeted sequencing panel to include both coding and

non-coding genes implicated in WT development, specifically those which have

previous evidence of mutation, as well as eight regions of the genome that often

exhibit potentially prognostic CNAs in WTs. In total I included 167 coding genes

and 14 non-coding genes, this included any gene that showed a level of recurrence

in WTs (mutated more than once in a recent exome study [40]). Further details can

be found in Section 2.3.3.

Alongside the aim to reconstruct the evolutionary trajectories of PKCs more ac-

curately using improved processing of CNA data and assaying SNVs and indels,

we also took advantage of the tissue collection routinely being performed as part of

the IMPORT study. This UK-wide study enrolled all consenting PKC patients in the

UK across multiple centres from ~2013 and stored these samples at Great Ormond

Street Hospital, London. The study is of PKCs generally and therefore is represen-

tative of the spectrum of PKCs, ergo the majority of the cases (~90%) are WTs [14].

As part of this study patients are sampled in various ways longitudinally. Firstly,

a multiple sampling approach takes place at nephrectomy if possible, additionally

tumour samples may also be available from a diagnostic needle biopsy, providing

a tissue sample from before chemotherapy and therefore prior to nephrectomy,

furthermore tumour samples taken from metastases as well as relapses (therefore a

later timepoint) are also taken in this study. In addition to tumour sampling, liquid

samples were also available as both blood and urine samples are stored from these
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patients at several timepoints (diagnosis, mid-point of chemotherapy, pre-operation,

post-operation, end of treatment). These samples were taken to assess ctDNA and

utDNA.

In total I analysed tissue samples from 66 patients (PKC66) that were enrolled

as part of IMPORT to determine ordering of CNAs in the life history of these

PKCs. This included 10 patients with pre-chemotherapy biopsies taken at diagno-

sis. Of the PKC66 patients, multiple tumour regions from 30 cases were assayed

using a WT-specific sequencing panel.

I hypothesised that using a larger cohort could potentially allow us to assess a large

enough number of WT histological subtypes to understand evolution in specific

phenotypes, particularly in those subtypes that have differential risk stratifications.

Additionally, by utilising a large enough dataset, I aimed to identify patterns of

diversification and mutational ordering to paint a generalised picture of evolution

in these solid paediatric tumours. By utilising methods to detect clonal mixing in

single samples, I was also able to present within sample mixing across multiple re-

gions, to display a comparison of ‘micro’- and ‘macro’-heterogeneity (as described

by [115]), as I gained an overall picture of both of these approaches to studying

intratumour genetic diversity in a large number of patients.

We also wished to compare clonality of specific mutations to their levels in ctDNA,

specifically of TP53 in diffuse anaplastic type WT to understand if levels of TP53

in the blood reflected primary tumour clonality. Additionally, I hypothesised that

assessing general characteristics of WT phylogeny may be informative for distin-

guishing between high and intermediate risk WTs and may additionally be prog-

nostic. For the majority of cases we had sample specific histological assessment

as well as images of the primary tumours in a subset, I aimed to utilise this data to

map tumour phylogeny back to spatial position and phenotype information.
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My role in this part of the study was to create an analysis structure to call allele-

specific copy number changes and to calculate the cancer cell fraction of each of

these copy number changes. I then aimed to infer subclones from this data by

clustering copy number cancer cell fractions which may have arose as part of the

same clonal expansion. Once assigning copy number variations to mixed clones

within single samples, I compared these events to the multiple samples of the tu-

mour to recreate the phylogenetic tree for the case, informed by MEDICC. I also

processed the raw sequencing data from the WT-specific panel to call mutations

in these samples and to use these to aid phylogenetic reconstruction. My role was

then to compare my findings to all available clinical data and to highlight general

patterns in the cohort.

This chapter was performed in collaboration with the laboratory of Professor Kathy

Pritchard-Jones. In general, none of the data presented was generated by myself,

however I performed all presented analysis. Further details are presented in Chapter

2.

5.2 Subclonal reconstruction in sixty-six paediatric

kidney cancers
The PKC66 set of patients were selected in an unbiased manner from cases that pro-

duced DNA which could be assayed. The majority of the patients were diagnosed

with WT (62/66). The non-WT cases included diagnoses of diffuse hyperplastic

perilobar nephroblastomatosis (DHPN), diffuse nephroblastomatosis, metanephric

adenofibroma and rell cell carcinoma. The commonest subtype of WT was ‘mixed’

when considering unilateral cases alone and together with bilateral tumours (Ta-

ble 5.1). Interestingly, diffuse anaplastic WTs were the second most representative

subtype in unilateral tumours, however when including the individual tumours from

bilateral cases, stromal was the second most representative subtype, highlighting an

enrichment of stromal type tumours in the bilateral cases. Approximately 31% of

unilateral tumours were a high risk subtype (blastemal and diffuse anaplastic), ~4%
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Tumour Type Subtype Uni. tumours Uni. & Bi.

Wilms’ tumour

Blastemal 6 6
Diffuse Anaplastic 9 9
Epithelial 5 9
Focal Anaplastic 1 1
Mixed 12 22
Necrotic 2 2
Regressive 6 7
Stromal 7 13

DHPN - 0 1
Diffuse Nephroblastomatosis - 0 1
Metanephric Adenofibroma - 1 1
Renal Cell Carcinoma - 1 1

Table 5.1: A summary of the tumour types in the cohort of 66 paediatric kidney cancer
cases. The majority of these cases were WT (~96%) and the individual subtypes
of WT are also noted, firstly for only the unilateral tumours (Uni. tumours), and
secondly including the subtypes of each individual side from the 16 bilateral
cases (Uni & Bi.).

were the low risk necrotic subtype and the majority (~65%) were intermediate type

WTs.

In the PKC66 cohort 14 cases were bilateral WTs. Table 5.2 displays these cases

labelled by their IMPORT IDs (CCLG-897 is not strictly an IMPORT case as the

patient was not eligible due to not being a UK resident but was multi-sampled

and assayed in line with the IMPORT study and is therefore included). The table

summarises the diagnosed subtypes of the tumours from each kidney in these cases

as well as the number of tumour samples taken from each side. In total ~25% of

the WTs cases were bilateral cases, this higher than expected (~8%) [14]. Due to

findings in Chapter 3 indicating that bilateral tumour appear not to be related, for

general conclusions of the patterns of phylogeny I consider these tumours to have

arose separately and only highlight the bilateral nature of these cases if it is in a

relevant context.

Across the PKC66 series multiple tumour samples were taken for the majority of

cases (~80%). The mean number of samples taken was 3.2 tumour samples and
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IMPORT ID Left Subtype # Samples Right Subtype # Samples
4 Mixed 1 Mixed 2
7 Epithelial 2 Mixed 4
9 Mixed 2 Mixed 3
16 Stromal 2 Mixed 4
21 Epithelial 2 Regressive 3
30 Epithelial 2 Epithelial 3
47 Stromal 1 Stromal 3
61 Mixed 1 NA 0
66 NA 0 Mixed 2
78 Stromal 6 NA 0

147 NA 0 Mixed 4
153 Mixed 1 NA 0
171 Stromal 4 NA 0

CCLG-897 NA 0 Stromal 6

Table 5.2: A summary of the 14 bilateral WT cases in the PKC66 series stating the IM-
PORT ID, the subtype and the number of tumour samples taken for each tumour
by laterality.

two non-bilateral cases were sampled up to seven samples. Table 5.3 shows the

spectrum of sampling in the PKC66 cohort, including per case and per kidney to

take into account the bilateral cases. The majority of tumour samples are frozen

nephrectomy (FN) samples taken from the primary tumour when it is removed

after surgery, however 11 of these tumour samples are pre-chemotherapy biopsies

(FBs) in 10 cases, one case contains a lung metastasis sample taken at relapse (FR).

Eight cases (~12%) did not have a matching normal sample (blood/normal kidney)

available which produced a high quality SNP array, therefore for these cases het-

erozygous SNPs had to be identified manually (IMPORTs 25, 27, 52, 85, 88, 108,

111 and 146). Six cases in the PKC66 series overlap with the WT20 series (Cases

15–20 were reanalysed as IMPORT 3, 4, 7, 8, 12 and 16 respectively).

5.3 Subtype-specific evolutionary observations
Following phylogeny reconstruction for the PKC66 cases, my aim was to assess

the evolutionary trajectories of these cases as an ‘ecosystem’, studying the land-

scape as a whole by grouping by subtypes and comparing between them. I split the
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Number of Samples By Patient By Kidney
1 13 15
2 19 25
3 8 10
4 7 9
5 9 6
6 7 6
7 3 2

Table 5.3: A summary of the number of tumour samples per case and per kidney (treating
each tumour in bilateral cases as separate unilateral tumours). The number of
tumour samples includes FNs, FBs and FRs.

cohort by the diagnosed tumour type to search for patterns that may be specific for

each subtype. Overall, patterns were not completely consistent within each subtype,

however some generalisable conclusions were apparent.

5.3.1 Necrotic tumours

Necrotic tumours represent the only low risk histological subtype in WTs. With

only two cases in the cohort I was limited in conclusions that I could draw from

these cases (Fig. 5.1). Both tumours were only sampled once at primary nephrec-

tomy and the only multisampled case including biopsy (32) had no events detected

and the second case with only a single sample at nephrectomy contained six clonal

copy number variations (133). Sampling in these tumours is limited by tissue qual-

ity.

5.3.2 Mixed tumours

WTs with a histology comprising of variable amounts of blastemal, epithelial and

stromal cells with no single cell type being completely predominant (>66%) rep-

resented most of the unilateral tumours (12 cases – Fig. 5.2 and Fig. 5.3). Gen-

erally speaking there was a range of events and diversification in the mixed type

tumours. Three cases had no copy number events and the most prevalent cell type

was blastema in two cases (71, 120) and epithelial in one (52). Four other cases

had only a few events (1–7), apparently enriched for 11p LOH changes and stroma

(the predominant cell type in three cases) relative to other cell types (5, 38, 39, 64).

Contrastingly, some cases presented with large diversity and clear branched evolu-
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Figure 5.1: Necrotic WTs. Two cases in our series were diagnosed as necrotic type WT,
neither was multi-sampled at nephrectomy, one case shows no CNAs (32) and
one case (133) shows several different changes. Generally there are too few
cases and samples to draw conclusions from these necrotic tumours, in IM-
PORT 133 no CNAs were called as subclonal. White circles represent the nor-
mal state and coloured circles represent clones in each tumour sample.

tion displaying the presence of non-clonal CNAs after relatively few clonal events

(3, 12, 85). This striking explosion in diversification is markedly different from

‘quieter’ mixed tumours. IMPORT 85 was considered a ‘borderline’ blastemal case

(65% blastemal content) and displayed MSAI in four chromosomes (explored in

Section 5.6.4). The most dominant cell type in IMPORT 3 and 12 was stroma (60%

and 55% respectively). IMPORT 108 was a tetraploid case (ploidy of 3.78 – R1,

and 3.94 – R2) likely due to a WGD event and consequently showed many events

plus branching. IMPORT 24 was only single sampled but did present several events

and some non-clonal CNAs such as a 1q+.

5.3.3 Stromal tumours

Seven cases in the PKC66 cohort were unilateral stromal tumours (Fig. 5.4). Of the

several WT subtypes in the cohort, stromal tumours displayed the most consistent

evolutionary pattern. Six of the seven cases (23, 26, 29, 37, 143, 146) presented

with an 11p LOH event, with various breakpoints, that always affected both 11p15

and therefore IGF2 as well as 11p13, the WT1 locus, and this change was always

clonal consistent with findings in Chapter 3. Five of the cases have aberrations

affecting chromosome 3 and in four cases this aberration affects the p-arm (26, 29,
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Figure 5.2: Six of the twelve mixed type Wilms’ tumours in the series. Mixed tumours
show a variety of evolutionary patterns. IMPORTs 3, 5 and 12 show branched
evolution and IMPORTs 3 and 12 have a large number of events. Contrastingly
IMPORTs 24, 38 and 39 show a linear trajectory of evolution and IMPORTs 38
and 39 only have aberrations affecting loci in the 11p arm. Areas of the circles
represent the contribution of each clone to the sample in which it was detected.

143, 169). In three cases the aberration affects the CTNNB1 locus (26, 29, 143) and

in two cases it is detected as non-clonal (26, 143). Stromal WTs have previously

been associated with 11p LOH events, WT1 and CTNNB1 mutation [189] and these

findings could hint at a model for stromal WT development in which 11p LOH

occurs early in the development of a stromal WT followed by a CTNNB1 mutation
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Figure 5.3: The remaining six mixed type Wilms’ tumours of the twelve in the series show
the same variety in evolutionary patterns. IMPORT 52, 71 and 120 have no
copy number events yet IMPORTs 85 and 108 have many (IMPORT 108 has a
possible WGD). IMPORTs 64, 85 and 108 display branched evolution.

and subsequent CNA of the CTNNB1 locus. As presented in Section 5.9, three uni-

lateral stromal WT case in the PKC66 series were sequenced (143, 146 and 169).

Both IMPORTs 143 and 146 fit the previously stated model, however IMPORT 169

did not show WT1 or CTNNB1 mutation. Curiously, the CNA affecting the p arm

in IMPORT 169 did not affect the CTNNB1 locus (3p22.1), however it did affect

a region immediately neighbouring the location (3p21.31–14.3). As IMPORT 169
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Figure 5.4: Stromal WTs. Seven tumours in the series were unilateral stromal tumours.
Generally these tumours showed few events (2-5 CNA events), however there
was a clear evidence of CNA preference in these cases. In all but one case 11p
LOH occurred and was clonal. In 5 cases (26, 29, 143, 146, 169) chromosome 3
aberrations were also present, affecting the p arm of the chromosome in four of
these cases. In two cases these changes occur after the 11p LOH event and there
was no evidence for chromosome 3 aberrations occurring before 11p LOH.

lacks an 11p LOH event, a WT1 or a CTNNB1 mutation, it may represent an alter-

native stromal tumour phenotype.

5.3.4 Epithelial tumours

There were five unilateral WT cases which were diagnosed as epithelial type (36,

75, 88, 98, 166). These tumours had relatively few events (Fig. 5.5). The case with

the most events (166) presented with three clonal CNAs implicated in WT (1p–,

1q+ and 4q LOH) as well as a subclonal +2. The only single sampled case (98)

possessed a –22. The remaining three cases (36, 75, 88) all presented with a clonal

19q LOH event as the only CNA, this is further explored in Section 5.7.
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Figure 5.5: Epithelial WTs. There were five cases of unilateral epithelial type WTs in the
series. They contained relatively few events (1–5). Four of the five tumours
only contained a single CNA and in three cases this was a 19q LOH event (36,
75, 88). Only one case was not multi-sampled (98). The case with the most
changes was IMPORT 166.

5.3.5 Regressive tumours

Regressive type WTs are defined by the presence of >66% necrosis histologically,

which indicates response to chemotherapy. Due to this, sampling was limited in

the six unilateral cases which presented with regressive WTs in the PKC66 set.

Half of these cases were not multisampled (22, 27, 28) and of these only one was

sampled at the point of nephroctomy (22) (Fig. 5.6). This case did present with 25

events including a non-clonal +8 and –22. The other two cases were sampled at the

point of diagnosis and relapse respectively (28, 27). The relapse sample presented

with three typical WT CNAs – 1q+, 14q LOH and 16q– – indicating that these

CNAs may provide resistance to treatment in this case. Of the multisampled cases

one case presented with five events, all of which were clonal (55). The remaining

cases presented with no or few events (91, 145, respectively). Overall, there was no

obvious pattern in this subtype.
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Figure 5.6: Regressive WTs. Six cases were unilateral regressive type WTs. One case
(28) was only sampled once with a biopsy sample and is not included in this
figure. One case only contains a relapse sample (27) noted as ‘Re1’. Of the
cases with initial nephrectomy samples (22, 55, 91, 145), only one is not multi-
sampled (22). Generally, the patterns of evolution are varied. IMPORT 22 has
many events (25), yet all other cases have 6 or less and IMPORT 145 shows no
events. There is within sample clonal mixing detected IMPORT 22, meaning
more than one clone is observed despite being single sampled. IMPORT 91
shows evidence for the mixing of two clones sharing no copy number changes.

5.3.6 Focal anaplastic

Focal anaplasia was the rarest WT diagnosis in the PKC cohort and I only analysed

one case with a single sample (Fig. 5.7). The case (43) displayed 10 clonal copy

number gain events, including a 1q++ [3+1]. This case may not be representative

of focal anaplastic tumours.
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Figure 5.7: Focal Anaplastic WTs. There was just a single case of focal anaplastic WT
in the series which showed 10 events, all of which were copy number gains.
There was only a single sample taken in this case which did not have detectable
clonal mixing.

5.3.7 Diffuse anaplastic tumours

Diffuse anaplastic tumours are chiefly characterised by high numbers of copy num-

ber events and clear branched evolution (Fig. 5.8 and 5.9). IMPORTs 8, 54, 59,

106 and 170 show apparent diversification involving many CNAs. Interestingly,

one region (R3) in IMPORT 54 appears to show no shared CNAs with the other

samples, which will be explored further in Section 5.10 (Fig. 5.23). IMPORT 170

has a tetraploid genome, reaffirming the concept that diffuse anaplastic evolution

can alter the entire genome (ploidy of 3.72 – R1, and 3.65 – R2). IMPORTs 10 and

233 also display large number of changes, however the phylogeny is mostly linear.

In IMPORT 233 the only single CNA (+8) is unique to R2 whereas R1 has addi-

tional events. In stark contrast to other cases, two cases (20, 83) show relatively few

CNAs (7 and 4 events respectively) and little diversity, indicating that these aspects

are not completely archetypal in these tumours. However, I cannot rule out that the

most diverse clones were simply not sampled in these cases as other, diverse diffuse

anaplastic tumours, display living ancestors with fewer events compared to the most

evolved in the tumour (10, 106). Three diffuse anaplastic cases (10, 83, 106) had

clonal 19q LOH. All diffuse anaplastic tumours bar one case (83) displayed 17p

LOH involving the TP53 locus and this change was determined to be not clonal in 4

cases (8, 10, 106 and 233) and apparently in an independent tumour in IMPORT 54.

127



Figure 5.8: Diffuse anaplastic WTs have the potential to display the highest number of
copy number events seen in WTs. In this figure and Fig 5.9, the length of the
branches is one-third of that in other figures in this section (as displayed by
the scale bar next to each phylogenetic tree). Many cases of diffuse anaplastic
Wilms’ tumours show large amounts of branching and many events (IMPORTs
8 and 59). However, diffuse anaplastic WT can also be largely linear such as
in IMPORT 10, despite having many CNA events. Furthermore, large num-
bers of CNAs is not a prerequisite for the development of a diffuse anaplastic
Wilms’ tumours as displayed by the low numbers of events seen in IMPORTs
20 and 54. Only clonal 19q LOH events and CNAs affecting the TP53 locus
are displayed.
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Figure 5.9: In this figure and Fig 5.8 the length of the branches is one-third of that in other
figures in this section (as displayed by the scale bar next to each phylogenetic
tree). Many cases of diffuse anaplastic WTs show large amounts of branching
and many events (IMPORTs 106 and 170). IMPORT 170 shows likely WGD
event. However, diffuse anaplastic Wilms’ tumour can also be largely linear
such as in IMPORT 233, despite having many CNA events. Furthermore, large
numbers of CNAs is not a prerequisite for the development of a diffuse anaplas-
tic WTs as displayed by the low numbers of events seen in IMPORT 83. Only
clonal 19q LOH events and CNAs affecting the TP53 locus are displayed.
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5.3.8 Blastemal tumours

Blastemal type WTs present with a large range of diversification (Fig. 5.10). Four

of the six unilateral blastemal WTs were largely homogeneous (25, 58, 80, 99).

These tumours were mostly dominated by a single clone, although one region in

IMPORT 58 represented an ancestral clone to the clone which dominates the other

samples. Unfortunately one case (25) was not multisampled, limiting our detection

of diversity, however it presented with several changes, all of which were clonal.

The remaining two cases (82, 192) show large diversification and many events. The

six samples in IMPORT 192 all contained at least one unique clone. IMPORT

82 showed large diversity in the two samples taken. Indicating in this small set

that generally blastemal tumours are capable showing vast heterogeneity but may

also be dominated by a single clone, presumably produced by a selective sweep.

Generally these tumours exhibited large numbers of events (Fig. 5.22).
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Figure 5.10: Blastemal type Wilms’ tumours show a range of evolutionary patterns similar
to those seen in mixed type Wilms’ tumours. Some cases have many events
and branching (IMPORTs 82 and 192). Yet they may also show a similar
process of evolution showing little heterogeneity (IMPORT 25, 58, 99 and
80). Only a subset of CNAs are displayed.
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5.3.9 Bilateral WT cases

Fourteen cases in the PKC66 series were bilateral WTs. These tumours are difficult

to group and summarise as individual subtypes as a single patient may present with

a different tumour subtype in each kidney. Overall, as in Chapter 3, there was no

evidence to suggest that bilateral tumours were genetically related, although there

was evidence of convergent evolution as explored in Section 3.7. I chose to sum-

marise these tumours individually, referring back to subtype specific observation in

unilateral tumour subtypes.

In seven of the bilateral cases, samples were taken from both the right and the

left kidney (4, 7, 9, 16, 21, 30, 47) (Fig. 5.11). In four of these seven cases the

histological subtype on both sides was the same (4, 9, 30, 47), for the remainder of

cases each side presented with a different histological subtype.

IMPORT 4 presented with two mixed subtype tumours and no shared CNAs. All

events were clonal in both tumours expect for a subclonal 1q+ event. Both tumours

in IMPORT 47 only exhibited an 11p LOH event, but with different breakpoint

boundaries for each side. These tumours were both the stromal subtype and the

presence of a clonal 11p LOH event is in line with our observations in the unilateral

cases. The left and right tumours of IMPORT 30 were both the epithelial subtype.

Again, in line with observation in unilateral epithelial tumours, both sides had only

a clonal 19q LOH event with no shared boundaries between the lateral sides and

within the left tumour there was also no shared breakpoint between the 19q LOH

events in the two samples taken, this is explored further in Section 5.7. IMPORT

9 was mixed type in both sides. The right side contained no CNAs and the CNAs

presenting in the left side were not shared, indicating the presence of two indepen-

dent tumours in the left kidney of IMPORT 9.
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Figure 5.11: Bilateral WTs with both sides sampled. Seven cases of the fourteen bilateral
WT cases in our series were sampled from both sides. There was no evidence
that bilateral tumours were related to each other (no CNAs with shared break
points between the tumours). In four cases the subtypes were identical in each
kidney (4, 9, 30, 47). In IMPORT 30 and 47 the same type of CNA was
acquired in each kidney also, indicating convergent evolution of two indepen-
dent tumours within a single patient.
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Figure 5.12: Bilateral WTs with only one side sampled. In total there were seven cases
that were bilateral WTs that were only sampled from a single side. Four of
these were mixed type tumours (61, 66, 147, 153) and three stromal tumours
(78, 171, CCLG-897). IMPORT 153 was only sampled at diagnosis with a
biopsy and is not included in the figure. Generally the patterns of evolution
are similar to unilateral tumours of the same type. The mixed type tumours
show a range of events and degree of branching and stromal tumours show
11p LOH events often followed by chromosome 3 events (78, 171).

134



Three cases had different histological subtypes on each side (7, 16, 21). IMPORT

21 presented with a left-sided epithelial tumour and a regressive right-sided tumour.

Neither side displayed CNAs. IMPORT 7 also presented with a left-sided epithelial

tumour but the tumour presented with 7 whole chromosome gains. The right-sided

tumour was mixed subtype and did not exhibit any CNAs. IMPORT 16 was stromal

type in the left tumour and mixed type in the right. Both sides presented with 11p

LOH of different breakpoint boundaries. The right, mixed type tumour, acquired

additional CNAs.

The remaining seven bilateral cases were only sampled on a single side (61, 66,

78, 147, 153, 171, CCLG-897) (Fig. 5.12). Two of these cases (61, 153) were not

multisampled and one case only was sampled at biopsy. Both these tumours were

mixed type and only IMPORT 61 showed a single CNA (–19). Two more of the

remaining cases were also mixed type tumours (66, 147). IMPORT 66 was sam-

pled twice and one sample presented with no CNAs and the other with only two.

Alternatively, IMPORT 147 displayed many events and the majority of these were

non-clonal (83.3%). These two cases displayed a range of events and diversification

similar to those seen in the unilateral mixed WTs.

Lastly, the remaining three bilateral cases sampled only on a single side were

all stromal type (78, 171, CCLG-897). All three cases contained 11p LOH events

and in two cases (78, CCLG-897) exhibited breakpoint boundary differences. The

11p LOH events affected both the IGF2 and WT1 locus in all but one convergent

11p LOH event (LR4 of IMPORT 78 that only affected the IGF2 locus – 11p15.5-

p15.4). Two cases also presented with 3p aberrations (78, 171), with no evidence to

suggest that these changes occurred before the 11p events – showing that stromal

tumours in bilateral cases also appear to be restricted to the model of tumour devel-

opment displayed in the unilateral cases. The presence of convergent evolution in

each of these cases further supports this, as explored in Section 5.6. Each stromal

case displayed 9–10 CNA events and diversification.
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5.3.10 non-WT cases

Four cases were not WTs and all cases were multisampled when also including FB

samples (Fig. 5.13). Three of four tumours displayed no CNAs (DHPN, Diffuse

Nephroblastomatosis and Metanephric Adenofibroma). The only non-WT display-

ing CNAs was a case of renal cell carcinoma. This case was striking as it presented

with four tumour pieces with seemingly unrelated clones in each region (although

no region presented with more than 2 CNAs), this is further explored in Section 5.6.

Figure 5.13: non-WT paediatric kidney cancers. Four cases were not WTs. These diag-
noses included diffuse nephroblastomatosis (6), renal cell carcinoma (15),
metanephric adenofibroma (19) and diffuse hyperplastic perilobar nephrob-
lastomatosis (111). The only case showing CNAs was IMPORT 15 which had
five events. In the four samples from this case, no CNAs were shared (the
1p36.33–p36.32 event affects different alleles between R1 and R2), indicating
the possible presence of unrelated tumours. IMPORT 15 was diagnosed in a
patient aged ~14.5 years old, much older than the majority of patients in the
series.

5.4 Mapping clonal evolution against spatial location
For nine cases we had photographed the primary tumour post-nephrectomy and

annotated the sampled regions (8, 12, 16, 20, 54, 78, 147, 171, 192), allowing me to

compare the locations of the regions taken for analysis with the inferred phylogeny

of the cases (Fig. 5.14). Here I will present the mapping of the clones in six cases

(8, 16, 78, 147, 171, 192). Generally these images allowed us to examine the tra-

jectory of evolution against spatial position which could represent clonal movement

during tumorigenesis.
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In IMPORT 8 the ordering of clones in evolutionary history matches the physi-

cal location of the tumour regions (Fig. 5.14A). Regions R2, R3 and R6 are present

at the bottom of the image and represents clones that are clustered together phylo-

genetically. Regions R1 and R4 present with clones further evolved and are present

in the middle of the tumour. Some of the most evolved clones are present in R5 at

the top of the tumour image. This generally indicates that as the clones gain more

changes as they are moving towards the top of the image. Interestingly however,

R2 (bottom) and R4 (middle) contain some living ancestors of these latter clones.

IMPORT 16 is a bilateral tumour and therefore we have two images, one from

the right and left kidney (Fig. 5.14B). The left kidney presents a small tumour

and the two samples contain the same 11p LOH event. In the right kidney the two

regions with the most ancestral clones are in the middle (RR2 and RR3) and RR2

contains a subclonal 1q+ that is present in the other regions. More evolved clones

are present in the regions at the periphery (RR1 and RR4) and RR4 contains the

most evolved clones.

A single clone dominates the majority of the tumour in IMPORT 78 (LR1, LR2,

LR5, LR6) (Fig. 5.14C). However, there are two unique clones in LR3 and LR4

(left side of the image). Interestingly LR3 contains a clone that has acquired addi-

tional changes compared to the dominant clone, whereas LR4 contains a clone that

uniquely branched from an ancestor of the dominant clone (convergent 11p LOH).
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Figure 5.14: By comparing the inferred phylogenetic trees of tumours to spatial location of
samples, it is possible to hypothesise the the genetic history of the tumour and
the movement of the clones in 3 dimensional space. IMPORT 8 (A) shows
the locations of the six tumour regions compared to the phylogenetic relation-
ship, showing that, for instance the lower part of the image may represent less
developed clones. IMPORT 16 (B) displays the phylogenetic events present
in regions taken from a bilateral WT. IMPORT 78 (C) displays the dominance
of a single clone present in four regions (LR1, LR2, LR5 and LR6), but also
describes the location of other genetically different samples. IMPORT 147
(D) shows a tumour in which the halving of the tumour is not complete and
the dashed white line shows the axis at which the cut is made.

(continued)
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Figure 5.14: This image has a scale and shows that despite being ~1cm apart RR2 and
RR3 show branching and interestingly, convergent evolution. The image also
shows that RR4 is divergent from RR1–3. IMPORT 171 (E) displays a rela-
tionship between distance from the normal kidney and acquisition of CNAs,
where LR3 contains the most mutated clone and is furthest from the normal
kidney. IMPORT 192 (F) shows a complex ‘flowering’ pattern in which gen-
erally speaking, only R2 and R3 show a higher degree of relatedness (shared
events) relative to the other samples.

The tumour in the image for IMPORT 147 shows a tumour not fully sliced in half,

therefore tissue that is reflected across the white dashed line represents tissue which

was originally in contact (Fig. 5.14D). The tumour has a branched evolutionary

pattern. RR4 shows an early divergence and was sampled from a location closest to

the normal kidney. RR1 then shows the next point of divergence and incidentally

is sampled from a point furthest from the normal kidney tissue. RR2 and RR3

which are also closely genetically related are also located close spatially (~1cm).

Incredibly, this there is clear convergent between these clones in such a small area,

indicating that local environment may influence selection (Section 5.6).

The most convincing example of spatial location being related to evolutionary

history is present in IMPORT 171 (Fig. 5.14E). Here, as clones gain more events

they move further away from the normal kidney. The only clonal change in LR1

is 11p LOH. However, LR2 and LR4 develop an additional five changes and are

further from the normal kidney. The most evolved clone is present in LR3, the

furthest region from the normal, which has an additional +8.

IMPORT 192 presents a more complicated picture of spatial evolution (Fig. 5.14F).

All clones in the case branch from a living common ancestor present in R5 in a

‘flowering’-like pattern. From this clone, one clone branches to form the only clone

in R4. Three clones are clustered phylogenetically as they share a 1q+ event but

also develop further unique changes; these include R5b, R6 and R1. R1 exhibits

the most events following the branching point after the shared 1q+. Furthermore,

related clones present in R2 and R3 share several unique changes and branch from
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the ancestral clone of R5a. These are also spatially separated from the other regions,

encompassing most of the tissue on the left side of the tumour image. The MRCA

present in R5 may represent a highly plastic clone from which the explosion of

diversity then spreads across the tumour.

5.5 Pre-chemotherapy biopsies reveal pre-treatment

clones
By assaying needle-biopsy tumour samples taken at diagnosis we were able to

gain some insight into the nature of clones present in the sample prior to treatment

(chemotherapy) and tumour removal. In total there were eleven biopsy samples

taken from 10 patients (~15% patients).

Five of the eleven biopsies had no CNAs. In two cases the biopsy sample was

the only tumour sample available (28, 153), indicating that in these tumours there

were either no CNAs – a possible scenario in WT, or that these samples were po-

tentially not tumour. Two diagnosis biopsies were taken from tumours displaying

no CNAs in the nephrectomy sample also, therefore displaying a CNA profile equal

to the removed tumour post-chemotherapy (6, 7).

IMPORT 10 was the only case in which two pre-chemotherapy biopsies were

taken. One sample contained no CNAs, a rare occurrence in a case diagnosed as

diffuse anaplastic, whereas the other piece contained a large number of genetic

events comparable with the most evolved clone in the tumour sampled at nephrec-

tomy. This biopsy also appears to potentially be a separate tumour, not sharing the

early clonal events seen in the samples taken at nephrectomy. However, if it is a

separate tumour, it shows convergent evolution of 2p42.2–p11.1 and 17p loss (Fig.

5.15).
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Figure 5.15: Six cases had biopsy samples that had CNAs which were comparable with the
primary nephrectomy samples. Four of six of the cases contained clones in
the biopsy which were identified in the primary nephrectomy (IMPORTs 12,
55, 83 and 91) and in these samples clones with additional CNAs were also
sometimes present, for example, the subclone in the biopsy of IMPORT 12
(BiopsyB). In IMPORT 3 the biopsy sample shares clonal CNAs with the rest
of the primary nephrectomy samples but is divergent from the other samples.
In IMPORT 10 Biopsy2 is potentially a product of an independent tumour
with convergent evolution of events in chromosome 2 and 17, however this is
not the only possible explanation of the relationship of these events.
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There were also several CNAs in the FBs of IMPORT 3 and 55. The FB sample

in IMPORT 3 represented a clone that is similarly evolved compared to most FN

samples and branches from the sample MRCA as the other FN clones. In IMPORT

55 only one of the FNs contains CNAs (R2), however it shares all of these changes

with the CNAs present in the highest cancer cell fraction clone of the FB (BiopsyA),

suggesting the FN and the FB represent the same clone.

In three more cases the biopsy sample contains clones identical to clones in a

sample taken from the removed tumour. In IMPORT 12 the clonal CNAs in the

FB sample are identical to the clonal changes R3, allowing us to map this pre-

surgery biopsy spatially onto the removed tumour. This FB sample also contains

several additional non-clonal copy number changes indicating the presence of a

sub-population potentially not present post-treatment.

In IMPORT 83 the FB sample contained the same CNAs as one of the two FN

samples (19q LOH) and represented an ancestral clone to the other further evolved

region, proving that this ancestral clone was present before treatment. In IMPORT

91 the FB contains an 11p LOH event that appears to be mixed together with another

11p LOH event in the tissue sample from the post-treatment primary tumour.

5.6 Convergent evolution and mirrored subclonal al-

lelic imbalance of copy number changes

Convergent evolution can be thought of as separate units of evolution acquiring

genotypic/phenotypic traits in parallel due to selective pressure strongly favouring

those traits. In the context of cancer, this refers to separate clones acquiring the

same/similar mutation, in this study a CNA that affects the same genomic region.

In the context of PKC, parallel evolution may occur between separate tumours in

separate kidneys, separate tumours in the same kidney/mass and parallel evolution

of related clones in the same tumour.
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5.6.1 Convergent evolution between bilateral tumours

Three bilateral cases show clear convergent evolution between tumours in separate

kidneys. Two cases show separate acquisition of 11p LOH in the separate sides

(16, 47, Fig. 5.11) developing tumours dominated by stroma (three stromal subtype

tumours and a mixed tumour with 60% stroma – IMPORT 16 right tumour). These

tumours show clearly that 11p LOH is an important initiating event, particularly

in tumours dominated by stroma. IMPORT 30 develops two bilateral epithelial

tumours. The only event in each sample (2 regions from the left, 3 regions from

the right) was a 19q LOH event (Fig. 5.16A). These events have three separate

breakpoints indicating three separate events. All regions taken from the right share

a breakpoint but it is unique from the left breakpoints. The two regions from the left

have separate breakpoints. This indicates that 19q LOH may have occurred three

times producing potentially three separate tumours – two in the left, one in the right.

Clearly there is strong selective pressure in this individual to develop a 19q LOH

event that then produces an epithelial WT.

5.6.2 Convergent evolution between independent tumours in the

same mass

In addition to the possible presence of two tumours in the left kidney of IMPORT 30

that show convergent evolution. There were six other examples of convergence in

two independent tumours in the same mass – similar to the phenomenon described

in Section 3.8. The clearest evidence for separate tumours which are convergent

based on copy number alterations are in IMPORT 54 and IMPORT CCLG-897. In

IMPORT 54 there are no shared CNAs between R5 and the other two samples R1

and R2 with identical breakpoints (Fig. 5.23). However, there are CNAs affecting

chromosome 16q and 15 in R5 that are different from those breakpoints present in

R1 and R2, indicating clear convergence for these alterations. These convergent

changes affect chromosome 15q14–q21.2 and 16q21–q24.3 in all samples. This

case will be further explored in Section 5.10. IMPORT CCLG-897 is a bilateral

case, but samples were only taken from a single side. All samples contain a 11p
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LOH however, two regions R1 and R2 only contain an 11p LOH event, with differ-

ent breakpoint boundaries to the 11p LOH event in R3–R6, indicating that R1 and

R2 could represent a separate tumour from the same kidney and both tumour have

converged onto an 11p LOH event that affects 11p15 and the WT1 locus (Fig. 5.12).

IMPORT 15, a renal cell carcinoma, was sampled four times. Interestingly, each

sample contains unique CNAs, hinting at the possible development of four sepa-

rate tumours and two of the CNAs are convergent, yet definitely separate events.

These events affect chromosome 3q and 1p36.33–36.32. These changes are cer-

tainly convergent as they affect separate alleles, a phenomenon termed ‘mirrored

subclonal allelic imbalance’ and explored in Section 5.6.4. The regions affected

by a 3q loss are R3 and R4, in both regions chromosome 3q12.3–q29 is affected.

Interestingly, the losses in R1 and R2 both have identical breakpoints, affecting

exactly 1p36.33–36.32, yet different alleles are lost in each region. This may have

been two separate initiating events or potentially could have been a single event that

caused two alterations with identical boundaries (Fig. 5.13).

The only FN sample taken from IMPORT 91 appears to potentially contain a

mixture of two clones, each with a separate 11p LOH event, indicating the mixture

of two tumours in one region but a convergence of 11p LOH. The biopsy sample

for this case contained only one of the two 11p LOH events (Fig. 5.15).

The two tumour regions from the left tumour of IMPORT 9 share no CNA events.

In both regions a CNA event affects chromosome 10p15.3–p11.22, one is a loss of

this specific region and the other is a whole chromosome 10 gain, these changes

also affect alternate alleles (Fig. 5.11).

IMPORTs 9, 30, and CCLG-897 are bilateral cases that also appear to have de-

veloped two tumours of independent origin in one kidney in addition to the tumour

developed in the other (3 tumours in total). This clearly indicates that these patients
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Figure 5.16: Evidence for convergent evolution in WTs. IMPORT 30 (A) represents a bilat-
eral tumour in which an epithelial type tumour has developed in both kidneys.
The case also represents convergent evolution both within potentially two tu-
mours (left) and between tumours of a different laterality. The only CNA in
this case is a 19q LOH event however, across the five tumour samples taken,
three different breakpoints of the chromosome 19q LOH are recorded, one
affecting all samples taken from the right (RR1–3) and a unique breakpoint in
both samples taken from the left tumour. IMPORT 147 represents the pres-
ence of convergent evolution within a single tumour (B). Samples RR1–3 all
contain unique chromosome 7 loss events. The losses in RR2 and RR3 have
different breakpoints and despite the events in RR1 and RR2 affecting the
same breakpoint (insofar as is detectable on the SNP array), the event affects
different alleles in both samples (as represented by the colour of the SNPs).

have a predisposition for WT development.

5.6.3 Convergent evolution in the same tumour

Parallel evolution is also possible within the evolution of a single tumour when

clones acquire similar changes in parallel. There were several examples of this in

the PKC66 cohort. IMPORT 12 shows strong convergence of 1q gain (Fig. 5.2).

The change originates three times in the evolution of this tumour, affecting both

alleles. This indicates that there is high selection pressure for 1q gain in IMPORT

12. The breakpoint boundaries are also always identical according to the detection

of the Illumina® HumanCoreExome array, as each changes affects the whole arm.

IMPORT 147 also shows striking convergent evolution (Fig. 5.16B). Similarly

to IMPORT 12, IMPORT 147 shows convergent evolution of 1q gain, again this
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change affects separate alleles in R2 and R3. Interestingly, there is also convergent

evolution of 7p loss, an event that occurs three times in IMPORT 147, differentiated

by the fact these changes affect both alleles and possess two different breakpoints.

Fascinatingly parallel evolution of 7p loss and 1q gain can be observed in R2 and

R3, two regions that are ~1cm apart in a tumour with a length of ~15cm, indicating

that this particular tumour environment may be selecting for these mutations (Fig.

5.14D).

Chromosome 11p LOH evolved in parallel in IMPORT 78, potentially indicat-

ing a late selection for the initiation of stromal tumour evolution (Fig. 5.12). I also

saw parallel evolution of 3p CNAs in two other stromal cases following an 11p

LOH, indicating the convergent acquisition of changes required to achieve stromal

tumour development (26 – Fig. 5.4, 171 – Fig. 5.12).

Chromosome 1q+ also appears to be convergent in IMPORTs 3, 82 and 192.

Additionally, IMPORT 106 potentially shows convergent evolution of 17p LOH in

three separate clones.

5.6.4 Mirrored subclonal allelic imbalance

In several cases parallel evolution was confirmed by observing mirrored subclonal

allelic imbalance (MSAI), that is defined by the same region of the genome being

altered on separate alleles during evolution [94]. One of the most distinguished ex-

amples of MSAI being present in tumour evolution was in IMPORT 85 (Fig. 5.3).

In this case MSAI affected whole chromosome arm gains in four chromosomes (6,

8, 12, 18). Displaying clear examples of parallel evolution, yet these clones are

related to each other based on sharing allele-specific 11 and 19 LOH and 9 gain.

In total 12 cases are affected by MSAI, five mixed-type tumours, two blastemal

type, four diffuse anaplastic and one renal cell carcinoma. In half of these cases

MSAI affects chromosome 1 (five 1q changes and one 1p change). This is three

or more times more frequent than any other chromosome indicating the non-allele
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Figure 5.17: MSAI was detected in 12 cases in the PKC66 series. It was generally dis-
tributed across the genome. The most common location for MSAI was in
chromosome 1q. Six of the twelve cases with detected MSAI contained the
presence of MSAI in chromosome 1. Chromosome 11 is not affected by any
MSAI events.

specific selection pressure for chromosome 1q changes (Fig. 5.17). Interestingly,

despite being often observed multiple times in parallel in the same case, MSAI

never affects chromosome 11p LOH, unveiling the allele-specific selection for this

change.

5.6.5 Possible evidence for translocations in multiregion SNP ar-

ray data

By assaying MSAI in SNP arrays from multiple tumour pieces I uncovered evidence

for a possible translocation in R5 of IMPORT 192 (Fig. 5.18). Here I have success-

fully phased the alleles across the multiple regions by identifying SNPs which form

the major and minor allele BAF distributions in well separated CNAs in chromo-

some 1q in IMPORT 192. For CNAs with clear breakpoints, observing the distri-
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Figure 5.18: Possible evidence for a translocation within the q–arm of a sample (R5) taken
from IMPORT 192. Here ‘band switching’ is observed in which SNPs which
have been phased together in other samples have switched in a section of
the chromosome arm. This is not detectable by segmentation indicating that
a possible translocation may have occurred, which may explain its identical
BAF to its surrounding regions. Points in blue and red represent the heterozy-
gous SNPs of the two alleles.

bution of SNPs that are often the minor allele distribution but form the major allele

distribution in a subset of samples allowed me to identify MSAI. However, in R5

in IMPORT 192, despite the CNA identified being a whole chromosome 1q gain, a

section of the major allele distribution is comprised of SNPs usually found in the

minor allele distribution. The fact that this band of SNPs matches the surrounding

allele distributions appears to indicate that the switching could have been produced

before the CNA by a process similar to mitotic recombination. This event was not

taken into account phylogenetically as it did not dominate the entire CNA.

The observation of MSAI in losses that affect identical breakpoint in IMPORT 15

(1p36.33–36.32) in R1 and R2 may have been produced by a similar single event to

a translocation or mitotic recombination. Without additional validation I was unable

to confirm these events to be evidence of a translocation.
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Figure 5.19: miRNA array data generated by Ludwig and colleagues [180] shows that
C19MC miRNAs are overexpressed in a subset of epithelial and anaplastic
WTs. The heatmap represents expression levels of miRNAs present at the
C19MC cluster clustered using hierarchical clustering in both the columns
(samples) and the rows (miRNAs). The dendrograms representing the cluster-
ing of the rows and columns are displayed alongside the data. Samples were
grouped into two clusters as displayed by the bar above the heatmap (red and
dark green). The histological subtype of each samples is also displayed above
the heatmap. Diffuse anaplastic (blue), focal anaplastic (purple) and epithe-
lial (orange) subtypes were included for analysis. Additionally, normal kidney
samples were also included (green). Cluster 1 (dark green) appears to repre-
sent the normal expression pattern of the C19MC miRNAs as the majority of
the normal samples belong to the group (3/4), cluster 2 (red) shows increase
expression levels in the several of the C19MC miRNAs and potentially repre-
sents an aberrant C19MC expression pattern.

5.7 Chromosome 19q uniparental disomy is an early

event in a subset of Wilms’ tumours

I observed LOH affecting the telomeric end of chromosome 19q in 15 cases (10,

30, 36, 37, 59, 61, 75, 82, 83, 85, 88, 99, 106, 108, 170). In 11 cases the LOH
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was clonal (subclonal in 37, 59, 82, 108). Of the cases in which the chromosome

19q LOH event was clonal, eight of these events were UPD [2+0], the other three

were losses (61, 99, 170). Interestingly, of the eight cases in which clonal UPD of

19q was observed, four were epithelial type WT (30, 36, 75, 88), three were diffuse

anaplastic type (10, 83, 106) and one was a mixed histology case (85). Additionally,

two of these three diffuse anaplastic cases were dominated by epithelial cells (83 –

70%, 106 – 80%).

Remarkably, in all four epithelial tumours a clonal 19q UPD event is the only

observed change (IMPORT 30 developed three tumours each only with a chromo-

some 19q UPD event). Indicating that, from a purely CNA perspective, 19q UPD

is sufficient to form an epithelial WT. Additionally, in all three diffuse anaplastic

tumours with a clonal 19q UPD event there is at least one FN sample in each in

which the aberration is the only CNA observed (10, 83) or the only observed CNA

which is completely clonal (106). Potentially these diffuse anaplastic cases may be

further evolved epithelial tumours.

By examining the 19q UPD events in each tumour in which they are clonal, the

genomic location which is affected can be mapped. In all eight cases the UPD event

affects the entirety of chromosome 19q13.43 and in seven cases it also affects all of

chromosome 19q13.42. The case in which the UPD event doesn’t affect all of chro-

mosome 19q13.42 is the case which lacked a single sample in which chromosome

19q UPD was the only observed event (106). All chromosome 19q13.42–43 clonal

UPD events are not affected by MSAI, indicating that the event is allele-specific.

These observations implicate loss of imprinting (LOI) as a potential mechanism

for oncogenic effect produced by UPD in this region. I identified the imprinted

primate-specific microRNA gene cluster – C19MC – in chromosome 19q13.42 as

a candidate for producing the oncogenic effect when expression is aberrant due to

UPD. This cluster is aberrantly expressed in other paediatric cancers such as em-

bryonal tumours with multilayered rosettes (a classification that includes tumours
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Figure 5.20: C19MC oncomiRs show increased expression in the group of patients with po-
tentially aberrant C19MC expression (cluster 2). Clusters are equal to those
that appear in Figure 5.19. OncomiRs are defined by studies detailed by Gi-
rardot and colleagues [190]. Data is downloaded from [180].

formerly known as aggressive primitive neuroectodermal brain tumours) [111, 191].

To investigate if this cluster of miRNAs was aberrantly expressed in WTs, I down-

loaded a dataset of miRNA expression arrays published by Ludwig and colleagues

[180]. Here I selected the miRNAs belonging to the C19MC cluster [190]. As

19q UPD appears to preferentially affect epithelial and diffuse anaplastic tumours

in the PKC66 dataset, I performed hierarchical clustering specifically on epithelial

and anaplasic subtypes, as well as normal sample controls taken from WT patients

(Fig. 5.19). The result showed two clear clusters, one with the majority of C19MC

miRNA showing high expression levels (cluster 2). Interestingly, one of the four

normal kidney samples was grouped in cluster 2, indicating that the miRNA C19MC

LOI event may occur in apparently normal kidney in WT, similarly to IGF2 LOI

[192].

In addition to clustering samples based on expression levels across the C19MC

miRNAs, I also compared the expression levels of individual oncogenic miRNAs
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Figure 5.21: Genomic instability, measured as total number of CNA events in tumour evo-
lution, and percentage of CNA which are subclonal, appear to be prognostic
for event-free survival. To investigate this both the number of events per tu-
mour and fraction of subclonal events were used to perform ROC analysis
(A, C), here the number of events has a greater area under the curve (AUC)
than fraction subclonal (0.65 v 0.58) indicating that events is more predictive
of event-free survival than subclonality. Based on the the ROC analysis the
threshold that produced the value furthest from the line representing a ran-
dom predictor (x = 1 - y) in ROC space was taken (as shown by the grey
dashed arrows). This value was 11 events, for number of events, and 81.4%
CNAs subclonal, for subclonality. Performing a log-rank test on the Kaplan-
Meier curves for each predictor (B, D) showed both the number of events (p
= 1.03x10-4) and the fraction of subclonal CNAs (p = 0.013) to be predictive
of event-free survival.

(onco-miRs) which form part of the C19MC cluster (miR-517a, miR-517c, miR-

520c-3p, miR-520g) [190]. For each of these onco-miRs the expression level was

higher in cluster 2 in the subset of epithelial and anaplastic tumours (Fig. 5.20).
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5.8 Copy number evolution and patient follow-up

As we collected follow up data for the PKC66 cases I was able to test if general

features of the evolution of these cancers were prognostic. We obtained follow up

data for 54 of the PKC66 cases. The median follow up time for cases was ~2.48

years (0.45 – 3.9 years) for patients that did not have observed death/relapse (n

= 41). I assessed both total number of CNA events across the series as well as

percentage of CNAs subclonal, as possible predictors of relapse/death. For both

predictors I generated a ROC curve to test for the relationship between specificity

and sensitivity of these predictors for predicting event-free survival. Additionally,

the ROC curve allowed me to choose a threshold for each predictor that seeks to

maximise sensitivity and specificity.

Using the number of events for predicting relapse/death showed predictive value

(AUC = 0.65, Fig. 5.21A). The threshold that produced a sensitivity/specificity

with the greatest distance from what is expected randomly was 11 events. Using

this value to differentiate between patients in a category of high/low number of

events significantly predicted event-free survival (p = 1.03x10-4, log-rank test, Fig.

5.21B). This indicates that genomic instability is predictive of event-free survival

in PKCs. Performing the same tests on percentage of subclonal CNAs required

removing tumours which could possibly be multiple tumours in a single mass as

subclonality is difficult to assess in these cases.

Performing a ROC curve on CNA subclonality showed this predictor to be less

predictive (AUC = 0.58, Fig. 5.21C). A threshold of 81.4% CNAs subclonal was

determined to provide the best balance between sensitivity and specificity. Using

this threshold as a classifier predicted event-free survival (p = 0.013, log-rank test,

Fig. 5.21D). This indicated that a high percentage of subclonal CNA events is pre-

dictive of event-free survival. However, only five cases had a subclonality greater

than 81.4% and all of these cases also had a number of events greater than 11

(18–67). The threshold chosen by ROC curve analysis selects for a highly specific
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Figure 5.22: The number of CNA events per histological WT risk type is variable. Low
risk WTs and other PKCs have very few CNA events over the course of their
evolutionary history (low risk median number of events = 3, n = 2). In stark
contrast, high risk WTs show many events, with a median number of events
of 12 and a range from 4–110 (n = 13). Intermediate risk WTs generally have
much fewer events than high risk WTs (median = 3, n = 42), however there
are outlier cases that have more than 15 CNA events (A). When using the
threshold for determining a high/low number of events (11) from Fig. 5.21
and performing a log-rank test on the Kaplan-Meier curves produced for the
high risk cases considered to have either a high or low number of CNA events,
the survival differences are considered to be significant (p = 0.012, n = 13).

threshold (0.95) but not a sensitive threshold (0.25). Taking a threshold of 4%

CNAs subclonal for example (sensitivity = 0.58, specificity = 0.58) is not predictive

of event-free survival (p = 0.26, log-rank test).

For bilateral cases the higher value for the individual tumours for both predic-

tors was taken for analysis, as I felt this would better represent the level of risk in

the individual case.

5.8.1 Number of CNA events predicts event-free survival in the

high-risk subtype

To explore further the role of the number of CNAs events in WTs and its rela-

tionship to prognosis, I assessed the numbers of CNA events across different risk

subtypes (in cases with follow-up data whilst treating the bilateral tumours as uni-

lateral tumours). Generally, I observed that high risk tumours have a larger number

of CNA events (median number of events = 12, range 4–110). The median numbers
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Number of Samples Cases
2 5
3 0
4 9
5 8
6 8

Table 5.4: A summary of the number of tumour samples per case in the 30 PKC66 WT
cases sequenced.

of CNA events for intermediate and low risk were both 3 events and the median

number of CNA events for non-WT PKCs was 0. The range of events however was

greater for intermediate type WTs (0–32) and five tumours, shown as outliers in

Fig. 5.22A, have more than 15 CNA events.

I then chose to test if number of CNA events could be prognostic within high

risk WTs themselves. Taking the threshold for high/low risk patients from the

dataset as a whole (number of CNA events = 11), which is similar to the median

number of events in high risk cases (12), I performed a log-rank test on the Kaplan-

Meier curves of the high risk cases, separating cases as high/low instability based

on if they possessed >11 CNA events. Number of evolutionary CNA events in

these cases appeared to be prognostic of relapse/death (p = 0.012, log-rank test,

Fig. 5.22B). This suggests that the number of CNA events can be used to distin-

guish between high-risk cases that are likely to relapse or not, adding further power

to risk stratification (n = 13).

5.9 Integration of sequence mutation evolution in

Wilms’ tumour

We used our WT-specific targeted sequencing panel to sequence tumour pieces

taken from 30 WT cases in the PKC66 series. The mean extent of sampling was

~4.47 (range 2–6), at least one normal sample was also sequenced for each case to

allow for somatic variant calling.
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Number of SNVs Cases
0 8
1 11
2 5
3 3
4 2
5 0
6 0
7 1

Table 5.5: A summary of the number of SNVs identified across the 30 PKC66 WT cases
sequenced with the WT-specific bait capture design.

I identified a mean of ~1.5 somatic point mutations per case across all sequenced

samples (0–7 mutations). The number of point mutations identified did not correlate

with number of samples sequenced (Spearman’s rho = -0.007). Five genes showed

point mutations in multiple cases. CTNNB1 was mutated in five stromal cases, a

mixed type case and blastemal case (n = 7). TP53 was mutated in six cases, all

of which were diffuse anaplastic cases (n = 6). DROSHA, AMER1 and RYR2 were

mutated in two cases each.

Across the series 41 unique SNVs were identified. Missense mutations made up 25

of the point mutations, four were nonsense mutations, four silent, six were intronic,

one affected a splice site and one was in an intergenic region.

Three of the six TP53 point mutations appeared clonal (8, 59, 170), and only

two of the seven CTNNB1 mutated cases had apparent clonal CTNNB1 mutation

(146, 171). Non-synonymous point mutations also appeared clonal in DROSHA (54

and 78), WT1 (64) and TRIM37 (80).

Additionally, I analysed eight genes for insertions and deletions (indels). These

genes were AMER1, CTNNB1, DGCR8, DICER1, DROSHA, MLLT1, TP53 and

WT1. Across the 30 cases, 7 cases displayed an indel in one of these genes. No

case possessed an indel in more than one of these genes. These seven cases con-

tained five unique mutations, surprisingly three of these mutations were in frame
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deletions whereas one was a frame shift deletion and one was a frame shift insertion.

Three cases possessed a CTNNB1 deletion (7, 64, 78) and strikingly each time

this deletion was identical – S45del. This in-frame deletion perfectly deletes the

45th codon of CTNNB1 which encodes for serine (CTT). This mutation was clonal

in the right tumour of IMPORT 7 (RR1 – RR4), but was only present in a single

sample in IMPORT 64 (R1) and IMPORT 78 (LR2).

Two cases contained a WT1 indel (146, 143), one insertion (146) and one dele-

tion (143) that both cause frameshifts (L302fs and Q26fs, respectively). Both WT1

indels appeared clonal in the samples sequenced. Deletions were discovered in

TP53 (54) and DICER1 (4) also, both caused in frame deletions (E339del and

I1744del, respectively) and were only discovered in a single sample in each case

(R3 and LR1, respectively).

Mutation cancer cell fraction was calculated based on allele frequency, tumour

purity and local copy number state and was used to cluster alongside copy number

variations to identify subclones and infer phylogeny alongside copy number data in

two cases, IMPORT 54 and 143.

5.10 Diversification of Wilms’ tumour evolution

Performing WT-specific targeted sequencing revealed further complexity to WT

evolution and allowed us to further explain relationships between tumour samples.

Diversification was most striking in cases with heterogeneous TP53 mutation. Four

cases appeared to display heterogeneous TP53 and all cases were diagnosed as

diffuse anaplastic (10, 54, 106, 233).

The phylogeny inferred from the CNAs in IMPORT 54 suggest that there may

be two tumours present as tumour section R3 shares no CNAs with R1 and R2
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Figure 5.23: Strong diversification in a WT case (54). Tumour regions R1–2, r4 appear to
follow a separate evolutionary trajectory (top left) to R3 following the acqui-
sition of a clonal DROSHA E993K mutation. R1–2, r4 acquire an additional
DROSHA mutation (T1108P) and R1, R2 further diversify acquiring a SIX1
Q177R mutation and CNAs. R1 and R2 showed blastemal histology. R3
developed unique CNAs (including 17p loss) and a TP53 E339del mutation.
R3 showed diffuse anaplasia and led to the case being diagnosed as such.
The heatmap (top right) shows the VAF of each point mutation across the re-
gions supporting this phylogeny. The photograph of the tumour (bottom right)
clearly shows that the region are located in distinct sites. The most evolved
clones (R1 and R2c) form part of what appears to be an outgrowth, perhaps
due to increased the proliferation of these clones. R3 is spatially separate from
R1–2, r4.

(although all regions have losses affecting 16q and 15q14–21.2, the losses in R3

have different boundaries to R1 and R2, as described in Section 5.6). However,

sequencing reveals that all regions possess a DROSHA E993K mutation, indicating

that these regions are indeed related and that they are not completely independent

tumours. Therefore DROSHA E993K mutation is the only detected clonal mutation

in this case. R3 uniquely contains a TP53 small deletion (E339del). Regions R1

and R2 share two mutations uniquely between them. A second DROSHA mutation

(T1108P) and a SIX1 Q177R mutation. SIX1 Q177R mutations have previously

been reported in blastemal type WTs [40]. Phenotypically R1 and R2 were domi-

nated by blastema whereas R3 showed diffuse anaplasia (leading to the diagnosis).

The tumour therefore shows the phenotype of two high risk WT subtypes in a single
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mass. This phenotypic disparity is clearly a result of large mutational divergence

following the DROSHA E993K mutation – which may have been a field effect

causing mutation.

A fourth region (r4) was also sequenced in IMPORT 54 but unfortunately did not

produce a SNP array with adequate quality for analysis. This region only shared

the clonal DROSHA E993K mutation with all regions and the DROSHA T1108P

mutation with the R1 and R2 but uniquely possessed a GNAS R201H mutation, a

known driver mutation [193]. Manual assessment of the SNP array and assessment

of the CNA probes included as part of the target sequencing design suggest the

region contains no CNAs. This would place DROSHA T1108P mutation earlier

than all CNAs in R1 and R2 and would indicate an ancestral subclone to R1 and R2

uniquely possessing GNAS R201H is present in the tumour. This case represents the

large potential for diversity in WT with three of the four regions showing drastically

different yet related genotypes.

IMPORT 233 also contains a heterogeneous TP53 mutation. This tumour shows a

strikingly more linear divergence (Fig. 5.9). In the two tumour samples assayed, R2

uniquely contains a TP53 H179L mutation and possesses several additional CNA

events whilst sharing all but one of the CNA events with R1, therefore displaying

a linear fashion of evolution. It appears that the TP53 mutation may cause the

expansion of a genomically unstable clone in R2. R1 uniquely contains a +8 and a

MLLT1 N115K mutation. Indicating that R1 may have further evolved to develop a

unique phenotype.

IMPORT 10 displayed heterogeneous TP53 mutation in the two samples which

were sequenced (R2 and R3). Similarly to IMPORT 233, this mutation appears to

be associated with a linear progression in CNAs (Fig. 5.8). R2 only contained a 19q

UPD event and did not possess a TP53 mutation, however, R3, which contained

several additional CNAs, possessed a E285K mutation in TP53.
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Strikingly, in IMPORT 106, there were two unique point mutations in TP53 identi-

fied in separate samples (R2 – R342*, R4 – G245S) but not in the other two samples

sequenced (R1 and R3). This case showed extensive branching in the CNA follow-

ing a 19q UPD event and the development of unique TP53 events may explain this

(Fig. 5.9). Surprisingly, R1, which showed the largest number of CNA events was

not called as having a point mutation or an indel in TP53 according to my analysis,

however, an insertion in TP53 was called in this sample by muTect2 but removed

due to my custom filter based on low coverage as reported by muTect2 (<10 reads

reporting mutation – five reads reported a P82fs insertion with 1 read reporting the

reference). If this insertion is real it is likely the cause of such chromosomal chaos.

This would mean TP53 mutation was converged on three times in this case.

Striking pheno-/genotypic diversification was also observed in IMPORT 147, here

one sample, RR4, exclusively contains a N387K CTNNB1 mutation and the tis-

sue piece is composed of 95% stroma. The other tumour pieces RR1–RR3 share

a R358* AMER1 mutation, present in only 2% of reads in RR4. Tumour pieces

RR1–RR3 possess a mixed-type histology in which no one cell-type dominates,

ergo the tumour is diagnosed as mixed-type. These tumours are related by shared

whole chromosomal gains of 8, 12 and 18, yet show divergence both genetically

and phenotypically (Fig. 5.12). Interestingly RR4 also contains a +3, suggesting

these cells are evolving down a pathway common to stromal tumours in this series.

5.11 Heterogeneity and convergent evolution of

CTNNB1 mutation
In addition to observing convergent evolution of CNA in several cases and of TP53

in IMPORT 106, I also observed convergent evolution of sequence mutation in

CTNNB1 in three stromal tumours (47, 78, 143). Five regions of IMPORT 143

were sequenced (R1–R5). The stromal WT contains a clonal 11p UPD event, in

line with almost all stromal tumours in the PKC66 series. CTNNB1 mutation was
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Figure 5.24: IMPORT 143 shows convergent evolution of CTNNB1 mutations. Here fol-
lowing a truncating WT1 frameshift mutation and a 11p UPD event, four
CTNNB1 have been acquired, as observed in five separate tumour pieces (A).
The heatmap (B) shows the recorded VAF of the CTNNB1 mutations.

observed in all regions of this tumour, however strikingly two regions (R1 and R4)

possess a T41A mutation exclusively, two regions (R3 and R5) contain a S45Y

mutation, also exclusively, and R2 contained two additional mutations affecting the

same allele (P44A and S45P – reported on the same read). This indicates that fol-

lowing the 11p LOH event there is a very strong selection pressure for a CTNNB1

mutation and as a result, three mutated alleles emerge in parallel. Three of four of

these mutations are known to be functional as they mutate phosphorylatable sites in

CTNNB1 which allow it to appropriately respond to degradation signals. The mu-

tation of a proline to an alanine in R2 is also likely to cause a structural alteration.

Interestingly, the VAF (0.65) for the S45Y mutation in R3 does not fit the copy

number profile of the sample closely (there is a chromosome 3 gain [2+1] but it is

subclonal and in ~20% of cells). This VAF is could potentially be explained by this

mutation occurring twice in this sample.

Curiously all incidences of a P44A CTNNB1 reported in a WT in COSMIC (can-

161



cer.sanger.ac.uk/cosmic) are reported in samples that also contain a S45P mutation

[194, 195, 196, 197]. This possibly indicates a common mechanism of mutation

that causes two point mutations in a distance of two codons or a high selection for

this combination of mutations when the same allele is affected.

IMPORT 47 also exhibited convergent evolution of CTNNB1. The only tumour

sample taken from the left kidney in this bilateral case showed no CTNNB1 mu-

tation (LR1). Three of the four samples taken from the right kidney contained a

K335I mutation (RR2–RR4), whereas RR1 contained a S45P mutation (Fig. 5.11).

IMPORT 78 displayed convergent evolution of CTNNB1 also as LR1, LR5 and

LR6 all contained a S45Y mutation and LR2 contains a S45del in frame deletion.

All regions sequenced in this case (LR1–LR3, LR5, LR6) contain a clonal E1147K

DROSHA mutation and also all contain clonal gains of chromosome 12 and 18 (Fig.

5.12).

Tumour region R3 in IMPORT 192 uniquely possessed a S45C mutation in

CTNNB1. IMPORT 192 is a blastemal WT case.

5.12 Possible evidence for mosaicism in Wilms’ tu-

mour
Deep targeted sequencing of Wilms’ tumour normal tissue samples can reveal

mutations present in a low number of cells and therefore could identify possible

mosaicisms in the individual that predispose to a tumour. Two cases reported sev-

eral reads, that were mutant in the tumour, in their respective normal samples that

became clonal in the tumour evolution. In the normal kidney sample taken from IM-

PORT 54 there are 7/571 reads reporting the clonal E993K mutation in DROSHA,

yet there is not a single read reporting the other non-clonal point mutations discov-

ered in DROSHA, SIX1 and GNAS in the normal kidney sample. Potentially 2.45%

(1.19% – 5.017%, binomial confidence interval, Wilson method) of the cells in this
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normal kidney sample may already carry the E993K DROSHA mutation. This may

explain the striking diversification seen after this mutation in this tumour as these

tumours may have developed from two separate cells in a mosaic kidney.

Additionally, 6/709 reads in the normal sample of IMPORT 64 report the clonal

E128* mutation in WT1. Here potentially 1.69% (0.78% – 3.67%, binomial con-

fidence interval, Wilson method) of cells may carry this mutation in the normal

sample and these cells may have given rise to the tumour. Interestingly, the normal

sample in this case from derived from the blood, indicating that the mosaicism may

be across the whole individual.

5.13 Comparing TP53 heterogeneity status to circu-

lating tumour DNA
To assess the possibility of assaying ctDNA in WT, we conducted a study in

which we selected four diffuse anaplastic cases in the PKC66 series which we had

sequenced (8, 59, 170, 233) and knew to contain a TP53 mutation, a mutation asso-

ciated with this high risk subtype. The mutations in TP53 were R248Q (8), R337C

(59), R273C (170) and H179L (233).

A ddPCR assay was designed to measure patient-specific mutant TP53 from cir-

culating serum, plasma and urine samples across several time-points, including at

diagnosis, at the two week point of the four week chemotherapy programme prior

to surgery, prior to removing the tumour (pre-operation) and after the operation.

To assess ctDNA specifically, a DNA extraction protocol to specifically select for

ctDNA was used when extracting DNA from these liquid samples.

The clearest results and most abundant observations of mutant DNA were seen

in the plasma and serum derived from IMPORT 59. This case was sampled at diag-

nosis (Dx), mid-chemotherapy and post-operation. At diagnosis the mutant allele
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Figure 5.25: Mutant TP53 can be detected in ctDNA but not in utDNA in diffuse anaplastic
WT cases. Mutant TP53 was detected in blood plasma (red) in all three cases
in which is was measured (59, 170, 233) displaying the highest MAFs prior to
nephrectomy, at diagnosis (Dx) in IMPORT 59 and mid-chemotherapy (MC)
in IMPORTs 170 and 233. Mutant TP53 was also detected in serum (purple)
samples taken from IMPORT 59. Urine (blue) samples appeared to show no
detectable mutant TP53. In the title for each panel the VAF of the bulk tumour
is estimated (tVAF) as calculated based on all tumour samples sequenced and
arrayed per case for comparison and the number of tumour samples contain-
ing mutant TP53 as a ratio of the total numbers of samples sequenced is noted
(Het). IMPORT 233 (bottom right) was the only case that showed hetero-
geneous TP53 and the dotted horizontal line displays the tVAF for this case
for comparison. Additional timepoints compared to those already mentioned
include pre-operation (PrO), post-operation (PsO) and end of treatment (EoT).

frequency (MAF) of TP53 R337C in the plasma was 0.54, meaning over half of the

alleles detected in the ctDNA of this patient at this time point were mutant TP53,

the corresponding value was 0.13 in the serum. During chemotherapy these values

declined to 0.32 in the plasma and 0.09 in serum and post-operation TP53 levels

were negligible, reflecting the removal of the source of the mutant DNA and the

short half-life of ctDNA in this example. The VAF in the bulk tumour sample was 1.
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IMPORT 170 and 233 show much lower MAF in plasma samples compared to

IMPORT 59. For both cases the timepoint at which the MAF was highest was

mid-chemotherapy, possibly due to increased cell death and the release of tumour

DNA into the bloodstream. However, the MAF values were significantly lower

than IMPORT 59 at 0.04 and 0.05 for IMPORT 170 and 233 respectively. Similarly

to IMPORT 59 the post-operation timepoint had negligible MAF in the plasma in

170 and 233, probably due to tumour removal. Interestingly, IMPORT 233 had

a heterogeneous TP53 mutation as detected in the two samples sequenced, if all

circulating DNA was produced by these assayed primary tumour cells the expected

MAF would only be 0.33 (2 wild type alleles in R1, 1 mutant allele in R2). Ergo,

relatively speaking, tumour DNA is contributing more to the circulating DNA in

IMPORT 233 than IMPORT 170 by virtue of the fact the mutation is heterogeneous

in IMPORT 233, despite the MAF in both cases being similar.

IMPORT 8 showed little signal and actually displayed a small increase post-

operation compared to pre-operation, potentially the tumour may not have been

entirely removed. Overall, urine showed little/no signal.

5.14 Concluding Remarks

In this chapter I have presented a wide ranging assessment of paediatric kidney

cancer evolution. By exploring the genomes of multiple tumour pieces of these

tissues using two major genome-wide assays in cancer, genome-wide SNP array

genotyping and NGS, I integrated the approaches to gain a holistic assessment

of PKC clonal evolution. These findings are fundamentally important for under-

standing how PKC and indeed other solid paediatric tumour evolve, how events in

their evolution may lead to characteristic phenotypes and how understanding these

cancers in the context of their evolution is essential for understanding and further

exploring the importance of particular genomic mutations.
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Furthermore, these discoveries are clearly significant for future clinical practice.

By assaying the genomic make-up of multiple tumour pieces it becomes apparent

that PKCs and in particular WTs have great potential for evolutionary diversi-

fication and further still seemingly show great potential for developing multiple

possibly independent tumours. We have also assessed the detection of mutant TP53

in ctDNA over time and compared detection to the expected VAF based on the

characterisation of the tumour as a heterogeneous mixture of clones – assessing the

use of a minimally invasive assay for the detection of an important mutation in the

context of a heterogeneous tumour.

By attempting to take an unbiased selection of PKC patients we sampled a large

set of patients and then subdivided into different histological groups and assessed

the similarities and differences between and within different histological groups.

Furthermore, I assessed if patterns within these subgroups may be indicative of

different journeys down the same path of selection.

The most striking example of a consistent evolutionary pattern was the obser-

vation of a progression model in the stromal subtype of WT. All cases bar one

unilateral stromal tumour (6/7) displayed a clonal 11p LOH event. All stromal

tumours in the bilateral cases also showed 11p LOH, although in two cases it was

not clonal, it emerged multiple times through convergent evolution. Many of these

11p LOH events were then followed by 3p changes, which may be possibly due to

the acquisition of a CTNNB1 mutation, as supported by sequencing evidence. This

indicates that the progression of a stromal WT tumour begins with a 11p15 LOH

event followed by a CTNNB1 and chromosome 3p CNA, highly likely to be mutant

allele specific. This path of mutation acquisition is elegantly displayed in the 13

stromal tumours in the PKC66 series.

Another model of tumour evolution appears to connect epithelial type WTs and

high risk diffuse anaplastic WTs as both these subtypes appear to present with
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clonal chromosome 19q UPD in a subset of cases, drawing an evolutionary link

between two WT subtypes. The importance of 19q UPD in epithelial tumours

is dramatically supported by the convergence onto this event in IMPORT 30 in

which three potentially separate epithelial tumours have developed following the

acquisition of chromosome 19q UPD, indicating how understanding repeated evo-

lution enables us to understand the importance of this change as an initial CNA in

epithelial WTs. When chromosome 19q UPD was acquired in epithelial tumours

it was always the only event and of the diffuse anaplastic tumours in which 19q

UPD was clonal, there were samples in which it is the only clonal change observed,

suggesting it occurred first. It is possible that 19q UPD is a priming event for dif-

fuse anaplasia and that the epithelial tumours, in which 19q UPD is the only event,

may have been removed and diagnosed prior to developing diffuse anaplasia. In

the diffuse anaplastic cases with 19q UPD, a clone may have developed a second

hit to develop an anaplasic phenotype and lose genomic stability, this second hit

may be a TP53 mutation and indeed IMPORT 10 and 106 have chromosome 17p

LOH events in the samples with the highest mutational burden. Furthermore, two

of these three diffuse anaplastic cases would have been diagnosed as epithelial

subtype if they did not show diffuse anaplasia (over 66% epithelial cells in 83 and

106), further supporting the idea they may have initially been genomically stable

epithelial tumours. Not only do these results link two WT subtypes but highlight

a potential progression model from one subtype to another. These observations

however remain limited by the number of cases in which they were observed (4

epithelial cases, 3 diffuse anaplastic cases). This link may only be relevant for half

of epithelial-type tumours (4/8 cases) and a third of diffuse anaplastic tumours (3/9

cases) but is only identifiable by conducting a study on a large cohort of unselected

patients. Future studies may seek to confirm this link by specifically focusing on

this quesiton by generating larger cohorts of epithelial and diffuse anaplastic type

tumours.

This chapter demonstrates that evolutionary diversification continues to be a com-
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mon theme in multisampled WT studies. Branched evolution is demonstrated most

clearly in mixed, blastemal and diffuse anaplastic type histologies and can be visu-

alised by comparing these evolutionary patterns to the images mapping the origin

of these tumour samples. Although caution should be taken when assuming the

directionality of clonal movement in these images as they are merely a snapshot

of tumour evolution. Diversification can develop early in WT evolution as demon-

strated in IMPORT 54 in Section 5.10. This case supports the observation of a single

mass presenting with tissue samples that do not have CNAs with equal breakpoints

as is presented in Section 3.8, but exemplifies that highly divergent clones may still

share ancestral point mutations and highlights that NGS is vital for determining true

genetic independence. This chapter also presents an additional 4 cases of bilateral

WT in which both tumours were sampled and supports the observation in Chapter

3 that bilateral tumours are genetically independent.

WTs are highly diverse in their clinical presentation and cellular composition and

are also diverse in their phylogenetic patterning. The nature of genetic diversity in

WT risks undermining the success of single biomarker assays, however a study with

more consistent sampling strategy would be more appropriate for elucidating this

risk. Overall, the variegated nature of the PKC66 series and WTs generally makes

summarising findings for translating into clinical practice challenging. However, it

is clear that the ability to acquire mutational burden across the tumour’s evolution-

ary history is associated with poor prognosis. An assay that assesses multiregion

CNA events could potentially be clinically useful as I have shown that the number

of these events can identify patients that are likely to relapse. This test is capa-

ble of identifying high-risk patients irrespective of underlying histology. This is

somewhat unsurprising as a high burden of CNAs is typically displayed by high-

risk diffuse anaplastic cases but I also observe high CNA burden a subset of the

high-risk blastemal cases. Perhaps more strikingly, this test was able to distinguish

between patients that relapse earlier within high-risk patients alone. Further studies

may seek to consistently multisample WTs and assay multiregion CNA burden
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to validate this finding. Myself and colleagues have also shown that one potential

biomarker of high CNA burden, mutant TP53, is detectable longitudinally in patient

blood and that DNA released by the tumour can contribute to the majority of the

circulating alleles in a patient prior to nephrectomy (e.g. IMPORT 59). A ctDNA

assay could be utilised to pre-screen patients prior to surgery to assess the risk of

the patient presenting with a genomically unstable tumour. Despite the association

of mutant TP53 with genomic instability, IMPORT 54 was not categorised as hav-

ing high CNA burden despite possessing mutant TP53. However, this case is an

example of how early divergence can obscure the detection of multiregion CNA

burden as the area of the tumour displaying diffuse anaplasia was essentially only

single sampled.

Overall, this chapter attempts to convey the dynamism and diversity of sixty-six

PKCs and exhibit the selective pressures that they are under, whilst constantly

interacting with important clinical questions.
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Chapter 6

Copy Number Evolution in

Hepatoblastoma

6.1 Introduction

In addition to studying WTs as a model of solid paediatric tumour evolution, I also

analysed a dataset consisting of a small blue round cell tumour of the liver, hepato-

blastoma. This tumour is rarer than WT, with an incidence of 1.2–1.5 cases/million

population/year [31]. We were only able to gather tumour samples from eleven

patients. Multiple tumour pieces were taken from a resection sample where possi-

ble (7/11 cases, 63.6%). The range of tumour sampling was 1–4. Tumour samples

were also derived in the form of pre-chemotherapy biopsies in 4/11 cases. Con-

stitutional DNA as peripheral blood lymphocytes was only available in 7/11 cases.

Heterozygous SNPs were determined manually in those cases without normal sam-

ples. In Patient 1, a patient with confirmed Beckwith-Wiedemann syndrome, the

non-tumorous liver was also sampled multiple times (L1–L4).

The primary aim of this chapter is to describe for the first time the process of copy

number evolution in this rare solid paediatric tumour, despite a relatively small

number of cases and samples. I aimed to determine the clonal composition of the

tumours in each patient across tumour samples and within each sample in order to

generate a detailed picture of chromosomal evolution in these cases as possible. To



Number of samples Cases (resection-only) Cases (inc. biopsy)
0 2 0
1 2 4
2 3 2
3 2 2
4 2 3

Table 6.1: Number of samples taken in the study per patient taking into account numbers
of samples derived from primary tumour resection and with the addition of pre-
chemotherapy biopsies.

achieve this, I used analytical methods outlined in Chapter 4. Each sample in this

series was analysed on a Illumina® HumanCoreExome array to generate LRR and

BAF values across the ~500,000 SNPs on the array. Once the cancer cell fraction

contribution of each copy number alteration was determined and clones inferred,

phylogeny was determined using MEDICC and inspected manually for a recreation

of the orderings supported by inferred subclonal composition.

This chapter was carried out as a collaboration with the laboratory of Professor

John Anderson who collected the samples and generated the SNP array data. Fur-

ther details are described in Chapter 2.

6.2 Evidence for two independent tumours in a hep-

atoblastoma case
One case (Patient 3) in the eleven patients analysed shows evidence for two inde-

pendent tumours in a single hepatoblastoma (Fig. 6.1). Here, R1–R2 contain no

CNAs with identical breakpoint boundaries to the CNAs observed in R3, indicating

that this patient potentially presented with a mass containing two independent tu-

mours. R1–R2a contain losses of chromosome 1p, 11 and 18q and gains of 1q and

20q. R3 contains many focal single and double losses in the q-arm of chromosome

4 (4q34.1–q35.2), a focal UPD event affecting the CDKN1C locus (chr11:2749015–

2929552, hg19), a gain of 2q22.3–q33.3 and a gain of the majority of chromosome

1q (1q21.3–q44). However, this gain in 1q does not share the same break points as

the gain in R1–R2, indicating it is potentially unrelated to the gain of the whole arm
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Figure 6.1: Evidence for the development of two independent hepatoblastomas in Patient
3. An interpretation of the phylogeny for this patient is displayed of the left of
this figure that shows that no copy number alterations in R1–R2 and R3 share
CNAs with equal breakpoint boundaries. The right of the figure show the copy
number profiles inferred for all clones across the regions. Both the total copy
number (red) and the minor allele copy number (blue) are displayed.

in R1–R2. A gain of a region of chromosome 1q (1q21.1–1q21.3) is also present in

25% of tumour cells in R3.

It is possible that R1–R2 and R3 are related to one another via a whole gain of

chromosome 1q and then a loss back to a normal 1+1 state in 75% of cells of

1q21.1–1q21.3 in R3. This possibility is actually more parsimonious. However,

chromosome 1q gain was the commonest CNA in this series, indicating its propen-

sity to occur in hepatoblastomas. Furthermore, as presented in section 6.3, there

is no other evidence for such branched evolution in this series. Overall, it is not

possible to prove definitively that these samples are completely independent.

The constitutional DNA sample taken from this patient contains a gain of 8p22–

p21.3 (chr8:18574874–19379421, hg19) which is duplicated to a 3+1 state in ~20%
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of cells in R2. Interestingly, the mean BAF for this gain in the constitutional DNA

is 0.65 which would indicate the gain is in 85.7% of cells and not 100%. The gain

is reported by 71 SNPs on the array and by bootstrapping the BAF data of this

gain through random replacement, calculating the mean BAF through 1,000,000

iterations, the 2.5th and 97.5th percentiles suggest the cancer cell fraction of the

gain may be between 80.5% and 90.9% of cells in the sample.

This suggests that the gain of 8p22–p21.3 is potentially somatic and occurs as

a mosaicism in the individual, causing a possible field effect for the formation of

multiple hepatoblastomas.

6.3 No evidence for branched evolution in hepato-

blastoma
Seven hepatoblastomas in our series were multisampled. Taking the interpretation

of Patient 3 as a mass consisting of two independent tumours, all seven tumours

showed no evidence of branched evolution and all phylogenetic relationships were

of a living ancestor to a more evolved clone (Fig. 6.2).

Linear evolution of these hepatoblastoma cases is further supported by the identi-

fication of subclonal copy number changes in Patients 2, 4, 5 and 9 that become

clonal in other regions. In Patient 2, ~21% of tumour cells in R1 contain nine

CNAs that contribute to the clonal CNA profile of R2, therefore displaying linear

evolution but also confirming that these CNAs belong to the same clone. In Patient

4 a chromosome 6p gain was present in 43.1% of tumour cells in R1 and is found

to be clonal in R2. R3 and R4 in this case only contain the ancestral 5q21.1–q31.1

loss that is clonal in R1. Patient 5 contained a biopsy sample (B) which contained a

clonal 13q34 gain, that was also clonal in R3. Two chromosome gains of 2 and 20

are found to be subclonal (~15% of tumour cells) in the biopsy sample that became

clonal in the most evolved tumour clone present in R2, the subclone present in R3

(~60% of tumour cells) also contains a chromosome 17 gain which is found to be
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Figure 6.2: There is no evidence for branched evolution in hepatoblastoma. Seven cases
in our series were multisampled. Taking the interpretation discussed in section
6.2 that the tumour taken from Patient 3 contains two independent tumours,
all multisampled hepatoblastomas showed linear evolution. In Patients 2, 4, 5
and 9, this is further supported by the subclonal deconstruction of copy number
changes that are subclonal in one region and become clonal in a further evolved
region. Multisampled liver is denoted as L1–4 in Patient 1.

clonal in R2, which incidentally does not show any clonal mixing. Unfortunately

there is no normal sample taken from Patient 5 and we are unable to determine if the

13q34 gain is present in normal tissue, however the BAF of this gain do not indicate

it is in all cells in any of the tumour samples taken, indicating normal cells without

this change must exist. Finally, subclonal gains of 2p, 5, 8 and 17 are present in

~88.7% of tumour cells in R2 of Patient 9, therefore according to the pigeon hole

principle (these four CNA gain all have cancer cell fractions ~88.7% – there must

be cells which contain all these changes), this subclone supports the continuation

of linear evolution in this case.
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Patient 1 shows an 11p LOH event in six samples, including in all the multiple

liver samples (L1–4, R1–2), which then further develops in a linear fashion three

additional CNA events in the remaining two samples (R3–R4). Furthermore, it is

striking that the primary tumour samples taken at surgical resection in Patient 10

display no CNAs yet the pre-surgery biopsy sample contains several copy number

gains. This may potentially owe to the elimination of the clone discovered in the

biopsy over a treatment course.

The presence of linear evolution in multisampled tumours meant that orderings

implied by subclonal inference were supported by MEDICC, except in Patient 3.

MEDICC described branched evolution in Patient 9 due to a difference of two

probes in the breakpoint separation between chromosome 1p and 1q in R1 and

R2. This was manually reinterpreted to be the same breakpoint boundary upon

inspection and linear evolution was taken as the solution.

6.4 Single sampled hepatoblastomas

There are four cases in this hepatoblastoma series that were not multisampled (Fig.

6.3). Two of these cases were only sampled by biopsy (Patient 6 and 11) and in this

biopsy in both cases, only a 11p UPD event was described. Chromosome 11p UPD

is associated with Beckwith-Wiedemann syndrome and patients with Beckwith-

Wiedemann syndrome have an increased incidence of hepatoblastoma [31, 198], in

Patient 6 the constitutional DNA also shows this aberration. In Patient 11 the 11p

UPD event was reinterpreted as a mixture of 2+0 and 1+1 from a mixture of 2+1

and 2+0 after manual inspection.

Patients 7 and 8 showed several CNA events despite being only sampled once.

Patient 7 contained many loss events in a region of chromosome 4q (4q32.2–

q35.2), in addition to focal CNAs in 2q24.2–q24.3 and 15q15.1 (a gain and a loss

respectively). Patient 8 contained the most events in the series (26 events) including

a focal UPD event encompassing the locus of BMP4 (chr14:54198782– 54862710,
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Figure 6.3: Four hepatoblastoma cases in the series were only sampled once and in two
cases (6 and 11), this was in the form of a pre-chemotherapy biopsy. Both of
these biopsies contained a chromosome 11p UPD event, and the constitutional
DNA sample in Patient 6 also contains this aberration. Patients 7 and 8 show
several CNAs. Patient 8 also shows clonal mixing as aberrations of 12q and
chromosome 3 are determined to be subclonal.

hg19). This case was the only single sampled case which contained subclonal

CNAs (chromosome 12q12–q24.33 gain and chromosome 3 UPD).

6.5 Concluding Remarks

Despite this series being limited in terms of both sampling and number, I was able to

describe for the first time the nature of copy number evolution in this rare paediatric

cancer of the liver. All eleven cases displayed CNAs and only the primary tumour

samples taken at surgical resection in Patient 10 showed no CNAs despite the fact

the pre-surgery biopsy sample did. Overall, the commonest CNA seen in these

tumours was chromosome 1q gain, which was seen in seven cases (1, 2, 3, 7, 8, 9
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and 10). Gain of chromosome 20 was also in six cases (1, 2, 3, 5, 8 and 10), UPD

of 11p in 5 cases (1, 3, 6, 9 and 11) and chromosome 1p loss in 3 cases (1, 3 and

9). Interestingly, large sets of focal losses were present in the 4q34.1–q35.2 region

of chromosome 4 in Patients 3 and 7. These close groupings of focal losses may be

explained by catastrophic events such as chromothripsis, however it would only be

possible to prove this with additional data such as fluorescence in situ hybridization

(FISH) or DNA sequencing.

Similar to a case study presented in Section 3.8, of a WT presenting as a single

mass with no shared CNA events with identical breakpoint boundaries between

different sets of tumour pieces samples, it appears that Patient 3 in this series of

hepatoblastoma may also present as a single mass in which tumour samples R1–R2

and R3 appear to share no CNAs. This would provide evidence that hepatoblas-

tomas, like nephroblastomas, may be capable of forming multiple tumours in a

single mass. The origin of a heightened propensity to develop multiple tumours

in a single mass may have origins in somatic CNAs developing early in human

development and being present as a mosaicism in individual. In Patient 3 this is

supported by the fact that the BAF of a copy number gain of 8p22–p21.3 does not

support the gain being present in all cells in the individual. This finding sheds light

on the ability of hepatoblastomas to develop in a single patient and may force treat-

ment strategies to take into account phenotypic heterogeneity potentially produced

by multiple tumours. It is also important to note that the presence of a 1q+ in all

samples in Patient 3 – despite each gain possessing separate breakpoint boundaries

– makes it difficult to exclude the possibility of a MRCA existing that possessed

only a 1q+.

One of the most distinctive features of this study appears to be the lack of branched

evolution seen across this series of eleven hepatoblastomas. Despite the limited size

of the series and number of tumour samples taken per case, it is still striking that

no branched evolution is clearly present. This may indicate that the evolution and
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development of hepatoblastomas may occur across a linear series of clonal sweeps.

This may present an opening for understanding the genetic changes that lead to the

development of hepatoblastoma by determining the linear events that produce these

tumours through prediction and allow for further studies to identify the driver(s) of

a linear trajectory of evolution. Determining the order of CNAs in hepatoblastoma

may in turn provide therapeutic opportunity for treating hepatoblastomas by under-

standing how ‘evolved’ a tumour is and what the subsequent genetic changes are

likely to be. This study is unable to present an order of CNA events as a progression

model for hepatoblastoma as the study was limited by both patient number (n=11)

and sampling (4 patients with only a single tumour sample).
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Chapter 7

Discussion

This thesis presents a broad and detailed assessment of paediatric solid tumour

evolution. Taking advantage of multiple tumour samples to gain a high resolution

picture of paediatric cancer evolution with a particular focus on CNA evolution.

Chapter 3 highlights the beginning of my investigation in a set of 20 WTs. Here

my approach involves comparing ‘average’ CNA profiles across multiple tumour

samples. This study highlighted important bioinformatics challenges regarding seg-

menting the genome across multiple tumour samples. Steps were taken to ensure

potential false positive calls were not incorporated across the genome. The approach

also showed the limitation of segmenting on the LRR as common CNNLOH/UPD

events were unaccounted for by this initial segmentation that led me to develop a

downstream analysis to incorporate regions of genomic imbalance.

Nevertheless the work conducted in Chapter 3 proved vital for understanding the

initial aspects of WT evolution and the bioinformatic challenges that must be ad-

dressed to unveil them. Chapter 3 reveals that WTs can be broadly homogeneous

with only few CNAs or can be highly branched with many CNAs. This simple

observation of the broad range of evolutionary trajectories was not obvious prior to

this study and is an important finding unto itself. By focusing on these patterns I

unravelled important aspects of WT genetics that were largely consistent with the

expansion of the investigation in Chapter 5. Important findings included biomarker



heterogeneity (particularly of chromosome 1q+), describing the founding CNA

events in WT development such as 11p15.5 UPD, and resolving the differential ge-

netic composition of tumour nodules that are important for understanding tumour

origin as well as differential treatment response.

Chapter 4 focuses on two major advancements from methodologies proposed in

Chapter 3, (1) the detection of a single major allele distribution, essential for

accurate segmentation and allelic imbalance modelling and (2) the detection of

non-clonal CNAs. A mixture modelling approach proves to be effective at separat-

ing the major and minor allele distributions allowing for segments to be modelled

using the Battenberg workflow [120]. These improvements allow for more CNAs

to be identified as well as more observable clone states to be used for phylogenetic

reconstruction as demonstrated in Figure 4.7. These findings lead to more sensitive

CNA detection and allowed for a more accurate phylogenetic profile to be drawn.

Overall this methodology proved vital for uncovering the details of evolution pre-

sented in Chapter 5 and Chapter 6.

Detailing the evolution of 66 PKCs of which 30 were subject to targeted sequenc-

ing, Chapter 5 represents one of the most extensive assessments of WT genetics

in the field. By carefully dissecting tumour evolution, taking into account histo-

logical subtypes as well as tumour laterality, I find consistent observations that are

difficult to highlight in smaller studies. Here, consistent patterns of evolution are

determined and parallels are drawn between different tumour types. For instance,

19q UPD may provide a link between epithelial and diffuse anaplastic tumours.

Parallel evolution also provides a framework for understanding selection in WTs.

Finally, I show that tumour phylogenies can be translated into clinically relevant

variables. Chapter 6 then demonstrates the use of the approach to extract a maximal

impression of tumour evolution in a rare cancer and shows that it evolves mostly

linearly as well as being able to form potentially unrelated masses.
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Overall this study has highlighted concepts and challenges that are not only im-

portant for solid paediatric tumours but also for the study of tumour evolution in

general. From their origin and their development to their eventual clinical presenta-

tion, studying evolution allows for the nature of individual cancers to be illuminated

and their commonalities to be explored. Putting the spotlight on the concept of tu-

mour evolution uncovers the dynamics of cancers and allows us to perceive the

disease in new ways.

7.1 Patterns of paediatric solid tumour evolution are

diverse
WTs produce a spectrum of different phenotypes, often characterised by a range

of different histologies. This thesis shows that WTs are also genetically diverse

and this translates to its evolutionary history. There are several examples of the

extremes of genomic instability as well as diversification in WTs, from cases with

no CNAs to cases with many changes and high ploidy states. Additionally, patterns

of evolution can be linear or branched irrespective of mutational burden.

Despite this variation between tumours being complex, there are still patterns

which can be mapped onto tumour subtypes. Broadly speaking, stromal, epithelial,

regressive, necrotic and focal anaplastic tumour evolutionary patterns were not fre-

quently branched. In regressive and necrotic tumours this may be due to the lack

of multiple sampling because of limitations in DNA extraction due to tissue quality

and in the focal anaplastic subtype because only one case was assayed.

However, there was sufficient multi-sampled cases taken from stromal and ep-

ithelial tumours to be confident that this lack of branching was convincing. These

tumours are often evolving linearly and have few CNAs. Interestingly, patterns in

these CNAs are strikingly consistent. Most unilateral stromal tumours contained

a clonal 11p UPD event and the majority of tumours contained a chromosome

3 aberration, which appears subclonal in some cases. CNAs affecting these two
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chromosomes therefore composed the majority of CNAs observed in stromal type

tumours. Stromal histologies were also exclusively affected by convergent evolu-

tion of CTNNB1 mutation, indicating CTNNB1 mutation as a late event in stromal

tumour evolution that is under strong selection. All cases with somatic WT1 muta-

tion the mutation appeared clonal and occurred in tumours that also had CTNNB1

mutation, in which two cases had heterogeneous CTNNB1 mutation. One of these

cases however was a mixed type tumour. Clearly WT1 and CTNNB1 mutation are

associated as described previously [199]. I hypothesise that stromal tumours un-

dergo a predictable pattern of evolution. A typical evolution of a stromal tumour

likely involves WT1 mutation followed by a 11p UPD event that involves 11p13

(therefore the WT1 locus). This then leads to strong selection for CTNNB1 mutation

as well as chromosome 3 gains or CNNLOH/UPD events (no chromosome 3 losses

were observed in stromal WT that had a 11p UPD event). This linear progression is

similar to Vogelstein’s model of colorectal cancer evolution [91] and indeed could

be used to test how ‘evolved’ a given stromal tumour is. For example, detection of

CTNNB1 mutation may be informative of a late stage stromal tumour.

It is unclear why selection for CTNNB1 mutation is only strong following the

11p UPD event despite WT1 mutation preceding the CNA in some cases. Poten-

tially IGF2 overexpression caused by CNNLOH/UPD of both 11p15.5 and 11p13

could play a role in triggering CTNNB1 mutation selection in the genetic context

of a WT1 mutated tumour. This progression model has already been implicated

in mouse models developed by Huff and colleagues. Here, Wt1 ablation and Igf2

upregulation were shown to be capable of forming WTs in mice and more recent

experiments have also tested Wt1 ablation in combination with stabilised Ctnnb1 in

nephron and stromal progenitors of the kidney. Interestingly, double knock out of

Wt1 and Ctnnb1 stabilisation showed the highest potential for generating WTs in

mice in nephron progenitors [200, 201]. The tumorigenicity of Wt1 double knock

out, Igf2 overexpression and Ctnnb1 stabilisation was not tested. Additionally, there

is evidence of many CTNNB1 mutations in a single WT case suggesting tumours
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of independent origin or parallel evolution [202]. This model of evolution is poten-

tially also occurring in stromal components of other WTs for instance in mixed type

tumours. RR4 in IMPORT 147, which is a mixed type tumour, uniquely possesses

a chromosome 3 gain and a CTNNB1 and unlike the other samples which showed

mixed histology RR4 showed 95% stromal cells. Mixed type tumours could be

conglomerates of different subtypes evolving in parallel, as appears plausible given

the observations of diversification in Chapters 3 and 5. Overall stromal tumour

evolution is the most predictable sequence of events in any WT subtype.

Epithelial tumours appear to also progress largely linearly with few events. How-

ever, like 11p UPD in stromal tumours, clonal 19q UPD is common – indeed, 3/5

unilateral epithelial tumours contain only a 19q UPD event and the only case with

bilateral epithelial tumours showed convergent evolution of 19q UPD. Three dif-

fuse anaplastic tumours (IMPORTs 10, 83, 106) also appeared to possess clones

with only 19q UPD present whereas many other CNAs were present in other clones

across the tumour samples. We sequenced two of these cases and found heteroge-

neous TP53 mutation in both (IMPORTs 10, 106). This possibly indicates that 19q

UPD may act as a founding event for late TP53 mutation causing heterogeneous

CNA instability and diffuse anaplasia. This could also potentially implicate epithe-

lial tumours as having a higher risk of developing anaplasia. Furthermore, evidence

for an early role of 19q UPD in Wilms’ tumorigenesis, in a similar fashion to 11p15

UPD, suggests that the subtle effects of UPD may be particularly advantageous in

the early stages of WT development.

Additionally, hepatoblastomas appear less diverse than WTs in terms of their evo-

lutionary trajectories. In Chapter 6 they are seen to always evolve linearly with

an association with clonal 11p UPD which can often be present in normal tissue.

Although they display a range of a genomic instability similar to WTs.

Mixed, blastemal and diffuse anaplastic type WTs are most likely to develop
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branched evolution and genomic instability. However, even in diffuse anaplas-

tic tumours, which are associated with unstable genomes, there are tumours with

little branching and very few events (e.g. IMPORTs 20, 54, 83). However, it may

be possible that in these tumours, regions that contained TP53 mutation and an

increase in CNA events were not sampled for study (although a E339del TP53

mutation was found in IMPORT 54, it seemingly does not cause extensive CNA

instability, suggesting not all TP53 mutations lead to CNA instability). Clearly

further work is required to elucidate the pattern of development of these tumours,

particularly in blastemal and mixed type tumours.

7.2 WTs and hepatoblastomas can develop separate

tumours in parallel
Evidence in Chapters 3 and 5 shows that bilateral tumours are likely to independent

masses and such be treated as such. Additionally Chapters 3, 5 and 6 show exam-

ples of tumours which appear independent but present in the same organ. Clearly

both WTs and hepatoblastomas can form tumours which are highly divergent. This

is not exclusive to solid paediatric tumours as it has been suggested that indepen-

dent tumours appear in other adult cancers also, for instance breast and lung cancers

[65, 100].

However, whether these tumours are completely independent, especially in the

case of two highly divergent tumours in the same mass, is cast into doubt by obser-

vations in IMPORT 54 (Fig. 5.23). The CNAs in the tumours samples taken from

the potentially independent tumours are not shared (when taking the interpretation

that separate CNA breakpoint boundaries are separate events). However, when

sequencing the samples a single DROSHA E993K mutation was shared between

the candidate independent tumours, implying they did not exist independently. Not

all cases with potentially independent tumours were assayed by sequencing, for

example in Case 13 from Chapter 3, and if targeted sequencing was extended to

other cases, it may have identified a shared ancestral mutation between samples
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also making them divergent but not independent.

WGS would likely be the most comprehensive method of assaying these tumours to

separate the difference between early divergence and independence. Indeed, such

an assay may be applicable to bilateral tumours also. There is evidence in IMPORT

54 that the DROSHA E993K mutation is present in ~2.45% of cells in the normal

sample, implying that the mutation may be mosaic and potentially causing a field

effect from which the blastemal and diffuse anaplastic type tumours arose from by

exploring different fitness landscapes. Despite this possible mosaicism being on

the edge of detection, even for deep sequencing, ~2.45% of cells in a tissue sample

likely translates to 1–10 million cells, each of which can prime subsequent steps

in oncogenesis due to their apparent tumorigenic phenotype. CNAs may also be

mosaic as suggested in Patient 3 in Chapter 6, for example.

An interesting point of cancer aetiology is the question of at what stage should

we consider tumours unrelated as all cells in the body derive from the fertilised egg

and ultimately have a shared lineage. If at each cell division there is a possibility

of mutation, it is then possible to trace this lineage in a method similar to studying

cancer evolution [203, 204]. All divergent tumours including bilateral tumours may

be affected by a mutation early during cell division in embryogenesis. Bilateral

tumours may simply be characterised by this mutation occurring early enough that

it is passed to both kidneys. This may be caused by poorly characterised WT

mutations that cause only mild oncogenic potential that may explain the latency

of bilateral tumour developing, leaving normal kidney development largely unaf-

fected. Additionally, there is evidence that CNAs have the potential to occur very

early on in gestation [205].

Regardless of the specifics of cancer aetiology, it is practically important for clini-

cians to recognise that tumours can be formed by masses that are divergent enough

genetically that they should treated as independent cancers. Furthermore, only
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genetically assaying multiple, phenotypically different samples will identify this

phenomena.

7.3 WTs and hepatoblastomas support gradual evo-

lution
In Chapter 1 I outlined that there are two broadly contrasting theories of the general

pattern of cancer evolution, (1) gradual evolution, which involves successive accu-

mulation of driver mutations and clonal sweeps that establish a clone carrying the

new driver mutation as the dominant clone and (2) punctuated evolution in which

evolutionary tempo increases in short bursts causing wide ranging diversification

which is then followed by a period of expansion but no large changes in clonal

architecture.

The common detection of observable ancestors and linear evolution appears to

suggest that WTs and hepatoblastomas may tend to develop as part of the gradual

model. Here observable ancestors represent ‘older’ clones that have not been elim-

inated from the cancer population and this are thought to be a consequence of a

gradual model of evolution [92]. However, the detection of TP53 mutation in tu-

mour regions with large numbers of CNAs, in diffuse anaplastic cases, may suggest

the late acquisition of genomic instability that has not dominated the tumour. Here

TP53 mutation may lead to a punctuated burst of genetic diversity that is localised

spatially. Additionally, some heavily branched tumours may also fit into the burst

of diversity associated with the punctuated model of tumour evolution, especially

when the relatedness of the samples is weak (e.g. IMPORT 3, IMPORT 106, IM-

PORT 192).

Mapping phylogenetic trees to tumour images can given an impression of the

growth of clones. These images remind us that tumour clones are spatially con-

strained in 3D spaces (Fig. 5.14). Tumours such as IMPORT 16 (Fig. Fig. 5.14B)

and IMPORT 171 (Fig. Fig. 5.14E) seemingly support a gradual model of evolution
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as observable clones are still present and are positionally ordered along the tissue in

a manner that suggests expansion of clones away from the normal kidney. Perhaps

in these cases older clones are not outcompeted by new clones as the tumour still

has space to expand into, therefore allowing for the accommodation of both the

‘new’ and the ‘old’ clone. Other more branched phylogenies may represent rapid

expansion of multiple clones into several direction which may have occurred in a

punctuated manner.

These assumptions of the temporal dynamics of clonal evolution must be treated

with caution however as evolution is not being directly measured in real time.

Assays of primary tumour resections are snapshots of a point in evolution that

can be interpreted in the perspective of a model, but the process has not been di-

rectly observed. Direct observation are only possible in temporal studies of tumour

evolution. This thesis presents two types of temporal evolution assessment, (1)

pre-treatment, pre-resection biopsy samples in comparison with resection samples

and (2) ctDNA assessment. Conclusions derived from pre-treatment biopsies are

difficult to draw when only a single biopsy is taken, like in this thesis. This is due to

the fact that it is impossible to know if clones identified in the pre-treatment biopsy

are also present in the primary tumour at resection if they are not observed in the

tumour samples taken, therefore temporal context is difficult to pinpoint. Multiple

biopsies may provide a more extensive phylogeny of the cancer population prior to

treatment for comparison with the resection samples but it is practically difficult to

perform large numbers of invasive biopsies. In this thesis pre-treatment biopsies

were used to show the existence of clones prior to resection and to physically map

the location from which the biopsy was taken from as a proof of the power of

phylogeny mapping (IMPORT 12).

Assaying ctDNA is more likely to be informative of temporal clonal dynamics.

In this thesis I showed that TP53 allele abundance in serum and plasma is variable

across the course of treatment. In this study this likely translates to tumour burden
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and not clonal dynamics. However, work by Jamal–Hanjani and colleagues has

shown that subclone dynamics and emergence are traceable across time in ctDNA

[94]. This assessment would be possible in WTs as Section 5.13 shows that ctDNA

provides detectable signal of an important mutation when it is both clonal and sub-

clonal (IMPORT 233).

Measuring time in a snapshot assessment of tumour evolution may be possible

by inferring time using mutational signatures associated with age. Mutational sig-

natures as defined by Alexandrov and colleagues showed that the 1A/B signatures

strongly correlated with age positively. Signatures 1A/B are associated with spon-

taneous deamination of 5‘-methylcytosine which is considered a sporadic process

across the lifetime of an individual and could be associated with clonal and sub-

clonal mutations to infer real time [66, 74]. The applicability of this assessment to

very young cancers is underappreciated.

Overall, despite gradual and punctuated evolution representing two competing

ideas in cancer evolutionary theory, it is highly likely that both of these models are

relevant. Gradual and punctuated evolution likely depends on context and may even

co-exist between tumours of the same type or even within the same tumour.

7.4 Convergence is a common feature of paediatric

solid tumour evolution
There are several examples of convergent evolution in Chapters 3, 5 and 6 of this

thesis. Parallel evolution is seen between tumours that appear independent, includ-

ing bilateral tumours as well as tumours which appear independent in the same

organ, and during the evolution of a single tumour. Parallel evolution is highly in-

formative as it provides evidence for which mutations are likely being selected for

at different stages of tumour evolution. Often parallel evolution shows researchers

how mutations are selected for at later stages of tumour evolution, for example

convergent evolution of SETD2 in renal carcinomas [122]. However, the examples
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of convergent evolution in independent tumours also reveals important mutations in

the early stages of tumour development, for example 11p UPD in WT.

Parallel evolution acts like a repeated experiment in the sense that there are several

cells of a clone with similar genomes and when parallel evolution occurs, multiple

cells have navigated the same pathway through the fitness landscape they are pre-

sented with. Parallel evolution is an example of how selection acts on the whole

population and that different clones with the same mutation can establish them-

selves before a parallel clone can dominate the tumour.

In this study parallel evolution is mostly seen in CNAs and mutations which are

of known importance in WT development, confirming their relevance to the dis-

ease. Examples of parallel evolution between independent tumours appear to often

involve CNAs that are important for the early stages of WT development such as

11p and 19q UPD. Examples of parallel evolution within an individual tumour is

perhaps evidence for the importance of particular mutations later in the tumour’s

life history. These mutations include 1q+, 7p–, 17p LOH and mutation of TP53 and

CTNNB1.

The mechanism by which some of these mutations drive WT evolution are al-

ready characterised, for example IGF2 overexpression and WT1 homozygosity

explains selection for 11p UPD, the evolutionary benefits of genomic instability is

the likely cause of selection of TP53 mutation and 17p LOH, and WNT signalling

dysregulation leads to selection of CTNNB1 mutation. However, the phenotypic

alteration leading to selection of 19q UPD, 1q+ and 7p– remain unresolved but are

clearly important in WT development, although 19q UPD may be selected for due

to C19MC dysregulation. Furthermore, by examining MSAI in CNAs it is possible

to estimate if these changes are allele specific in nature, for example 11p UPD did

not show MSAI in this thesis yet 1q+ was not allele specific and regularly displayed

MSAI.
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Mapping convergent evolution to tumour images can reveal the local vicinity in

which parallel evolution emerges. For example, IMPORT 147 (Fig. 5.14D) shows

parallel evolution of both 1q+ and 7p– in a space of ~1cm, indicating a potentially

strong local selection pressure for these changes in a relatively small region of the

tumour. Local parallel evolution may represent microenvironment selection pres-

sures specific to a tumour region. The tumour’s dimensions are 16.5cm x 14.5cm

x 7cm, indicating just how much diversity may be being missed in such a large mass.

Parallel evolution presents several examples in which epistasis may be occurring.

In 3 stromal cases in the PKC66 series I observed parallel evolution of CTNNB1

mutation. Considering this followed an 11p UPD in each case and in one case a

WT1 mutation, this could be an example of the epistatic relationship between 11p

UPD and CTNNB1, in which selection for CTNNB1 mutation is greatly increased

following a 11p UPD event, leading to extensive convergent evolution. Similarly,

the presence of 2 (possibly 3) TP53 mutations in IMPORT 106 following a single

19q UPD event, as well as the presence of 19q UPD as the initiating event in sev-

eral other diffuse anaplastic tumours, may indicate epistasis between 19q UPD and

TP53 mutation.

It is worth recognising that, as illustrated by Alves and colleagues [135], con-

vergent evolution can only be accurately recognised if the mixing of cancer cell

population within a single sample is addressed. Sample trees, as produced in Chap-

ter 3, can incorrectly show parallel evolution if a clone is present as a fraction of

multiple samples. I only describe convergent evolution in Chapter 5 in which my

methods address the possibility of CNA profiles existing as admixtures in each

tumour sample. The vast majority of examples of convergent evolution of CNAs in

this series are also supported by clear differences in breakpoint boundaries or via

the observation of MSAI. Nearly all described observations of convergent evolution

derived from small sequence mutations in the targeted sequencing data involve
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unique mutations affecting the same gene. The correct reasoning presented by

Alves and colleagues is in reference to incorrectly called convergent evolution of

mutations that are identical.

Interestingly Lipinski and colleagues suggest that parallel evolution is an inher-

ent property of large tumours which have a low mutation rate [78]. As WTs contain

both of these properties, it may be that parallel evolution is a predictable property of

WT development. It is likely that even with up to seven samples per tumour we may

not be able to detect all clones that are undergoing parallel evolution, particularly

if it can occur in a small region of the tumour as in IMPORT 147. Furthermore,

IMPORT 143 which developed 4 (possibly 5) CTNNB1 mutations challenges the

concept that genomic instability is required in order to ‘hit’ driver mutations fre-

quently, as in this case only a clonal WT1 mutation was also present as well as just

two CNAs. This may support evidence that some regions of the genome are more

vulnerable to mutations than others. Although to judge this one must take into

the numbers of cell divisions that have occurred prior to diagnosis as well as the

mutation rate of the tumour.

7.5 Inferring cancer evolution remains challenging

Inferring cancer evolution is a conceptually and computationally difficult prob-

lem. Deconvoluting mutational heterogeneity in both small sequence mutations and

CNAs remains very challenging. This thesis highlights several of these challenges.

Using multiple tumour regions is a powerful method of finding the clonal ar-

chitecture of a heterogeneous tumour as the spatial separation of clones provides

key information of the clonal belonging of mutations. However, as each region is

analysed separately, it demands that analytical methods are capable of performing

well across each tumour region to detect mutations across each site. Furthermore,

there is a cumulative effect in the unwanted detection of false calls as these calls

will be accumulated across all respective samples. This is true for detection in both
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small sequencing mutations and CNAs, however CNAs are further complicated by

achieving accurate breakpoint boundary detection. Most of these potential artefacts

are affected by altering tumour sample purity as well as issues relating to varying

qualities of the generated data per region (variable coverage in NGS experiments

and variable noise levels in SNP arrays).

I address these challenges in this thesis by, for example (1) removing regions

which were small or had unusual tiling density from my analysis in Chapter 3 to re-

move spurious CNA calls that remodel phylogeny, (2) using CGHregions to smooth

boundaries between segments across multiple samples as well as using centromere

splitting to test for improvements in segmentation and (3) by searching for evi-

dence of all mutations called in any sample across all samples in data from targeted

sequencing in Chapter 5. Unfortunately low tumour purities can lead to highly

divergent CNA segments and in some examples I had to manually curate segments

which were erroneous in order to achieve accurate phylogenies in Chapters 5 and

6. False detection as well as incorrectly segmented regions can dramatically alter

inferred phylogenies.

Once each segment has been identified, work in Chapters 4, 5 and 6 utilised the

Battenberg workflow to test for possible combinations of CNAs that may produce

the LRR and BAF observed in a particular segment. Firstly, this requires very

accurate estimations of LRR and BAF in order to model small percentage changes

in CNA composition, which is addressed in Chapter 4. Most importantly however,

solving a two-state mixture of CNAs for a segment produces infinite solutions. For

example, a 2+0 state in 100% of cells may also be explained by a 50:50 mixture of

3+0 and 1+0. Additionally, MSAI within a single sample can make its detection

very difficult as, for example, a 50:50 mixture of two 2+1 gains displaying MSAI

would appear as a 2+2 state with a 50% purity. Solving >2 states makes this prob-

lem increasingly complex and yet is possible in a cancer cell population. Deciding

on the appropriate mixture often derives from choosing the solution with the closest
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distance from the diploid state. In this thesis I always initially test combinations of

1+1 and the nearest aberrant state (normal + aberrant). This allowed for 2+0 and

1+1 mixtures to be tested, which are known mixtures in WTs and hepatoblastoma.

Modelling a mixture with 1+1 was not appropriate in cases with probable WGD.

Inferring clonal architecture in a sample from these CNA mixtures also requires

assumptions. Here I assume CNAs that are in all cells arose first in tumour evolu-

tion, therefore implying a phylogenetic relationship when reconstructing the clones

in a single sample. I also assumed that CNAs arise from a 1+1 state and that 1+1 is

always representative of an ancestor despite the fact that CNAs could be reversed

from an aberrant state to 1+1. In mixtures of two CNAs I assumed that the nearest

state to diploid occurred prior to the other CNA in the mixture. These assumptions

are likely often true but are not rules of cancer evolution.

Furthermore, subsequent clustering of CNAs is based on the assumption that CNAs

of a similar cancer cell fraction arise from the same clonal expansion. This is very

likely to be true in clusters >50% cancer cell fraction as these likely co-exist due

to the pigeon hole principle. However cancer cell fraction clusters in less than

50% of cells cannot be applied to the pigeon hole principle. Mixing two branched

clones equally would yield two groups of cellularies of ~50% that by the principle

of ‘similar cancer cell fraction equals same clone’ would lead to these clones being

grouped together. As cancer cell fractions decrease, the space for the number of

potentially, branched clones producing similar cancer cell fractions increases ex-

ponentially and, for example, at ~10% cancer cell fraction there are 10 subclonal

‘compartments’ in which mutations may exist in various combinations. In this

thesis I use the assumption that mutations of a similar cancer cell fraction belong to

the same clone and that clones have evolved linearly within the same sample unless

mutations in other samples conflict with this interpretation. For almost all cases

there was no conflict. One interpretation of CNA states that necessitates branched

evolution within a sample however is the possibility of CNAs overlapping as these
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states cannot co-exist.

To my knowledge there is no approach to solving the problem of CNA evolution

that addresses all of the following problems:

1. Interpreting within sample phylogenetic relationships of CNA cancer cell

fraction in the context of multiple region datasets.

2. Interpreting different breakpoint boundaries in different regions as being

likely to have been produced by separate events.

3. Interpreting the possibility that CNAs in different clones with different break-

points may co-exist in the same sample.

4. Understanding that different alleles may have been affected by similar CNAs

as is the case with MSAI.

5. Understanding that a WGD is a potential single event state change but one

that is likely to be infrequent.

6. Understanding that 2+0 states probably arise as a consequence of mitotic re-

combination and are therefore a single event.

7. Identifying chromothripsis and calling it as a single chaotic event.

8. Interpreting CNA data in a platform naı̈ve manner. The majority of algorithms

that provide an interpretation of CNA evolution are designed for NGS data

input.

Overall CNA evolution is a highly complex problem that requires further study and

this thesis provides evidence of the challenges that require addressing. The problem

of CNA evolution produces multiple solutions and therefore requires many assump-

tions to settle on an answer. To solve CNA phylogenies in Chapters 4, 5 and 6 I

used manual curation of multiple interpretations of the data by using Battenberg and

MEDICC. This approach is not sustainable for larger cohorts and more genomically

unstable tumours. Indeed, I relied on MEDICC to interpret complex tetraploidy and
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chromothripsis.

Additionally, assumptions are made when interpreting sequence mutation, includ-

ing the belonging of a mutation to a CNA or the infinite sites assumption that each

alteration only occurs once, which may possibly be incorrect in R3 of IMPORT 143.

New algorithms, such as Canopy and SPRUCE, signal continued development

in the field [164, 165]. However, despite the plethora of algorithmic development

in cancer evolution, each approach still requires extensive testing and manual as-

sessment as well as conceptual critique. Different cancer types present different

contexts and problems and paediatric solid tumours are an example of that. Future

holistic approaches may seek to develop algorithms applying principles to CNA

evolution that are synthesised by mathematical modelling and evolutionary theory

but also that account for cancer biology and mechanisms of genomic instability.

Single cell approaches may be the future of studying CNA evolution over bulk

assays as no inference of CNA/clonal mixing is required. However it may be sev-

eral years before data quality issues are resolved for consistently accurate profiling

and for enough cells to be sequenced across representative regions of the tumour.

Furthermore, the prospect of the erroneous sequencing of multiple cells makes

detecting WGDs difficult [136]. These assays may require 10s of 1000s of cells

to be assayed to capture the full repertoire of CNA evolution which will likely

make studies of large tumour cohorts an expensive, labour intensive task without

technological advancements.

7.6 Understanding cancer evolution is vital for clini-

cal biomarkers
At the same time as addressing key fundamental questions of paediatric solid tu-

mour evolution, this thesis relates findings to outstanding clinical questions. One

of the primary aims of the investigation in Chapter 3 was to assess CNA biomarker
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heterogeneity in WT, particularly of chromosome 1q gain. This CNA is attrac-

tive as a biomarker in WT as it is common and shows value for prognostication

[56, 57, 58]. However, as results in Section 3.5 show (as well as results across

tumours in Chapter 5), chromosome 1q gain is frequently heterogeneous. Other

important biomarkers appear to be clonal more frequently, such as 11p15 UPD and

16q loss, the former CNA was proposed as the most prognostic CNA in WT in

a recent systematic literature review [187]. Discovering CNAs with the potential

to be frequently clonal may circumvent the detection challenges associated with

heterogeneous biomarkers.

Understanding evolution however is vital for interpreting heterogeneity. If Case

13 wasn’t interpreted as being composed of two independent masses in Chapter 3,

16q loss and 17p loss would have been interpreted as heterogeneous. Furthermore,

reanalysis of Case 19 in Chapter 5 as IMPORT 12 shows that despite chromosome

1q gain presenting as homogeneous in Chapter 3, recognition of MSAI and a more

sensitive detection of higher copy number states dictates that chromosome 1q gain

likely occurred four times in the tumour and is not a clonal event despite appearing

homogeneous.

Due to the fact no single CNA biomarker appears to satisfactorily explain WT out-

comes, I hypothesised that mutational burden, interpreted as the number of CNA

event occurring across the evolution of a multiple sampled WT, may be prognostic.

Indeed, results presented in Section 5.8 suggest that the number of CNA alterations

occurring during the evolution of a WT is prognostic and that if a tumour possesses

more than 11 CNA events, it should be considered high-risk. Interestingly, this

appears to also be prognostic within currently defined high-risk patients, potentially

indicating that high-risk patients with low CNA burden could be candidates for

treatment reduction or that high-risk patients with high CNA burden require longer

treatment regimes. To assess this biomarker, multiple tumour samples must be

assessed and tumour phylogenetics must be inferred. Sampling biases may cause
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the detection of clones of varying genomic instability and poor sampling may miss

clones with high numbers of CNA events such as R1 in IMPORT 106, that are

caused by heterogeneous TP53 mutation. A simplified, single test, that would not

require sophisticated phylogenetics to assay mutational burden in a clinical trial

may involve sampling a fixed number of tumour regions and mixing DNA into a

single sample assay to ‘count’ the number of CNAs regardless of their phylogenetic

relationship. This could however still lead to an underestimate of CNA burden,

for example, if MSAI is present across the tumour regions. Biomarkers such as

chromosome 1q gain, that are common but weakly prognostic and heterogeneous,

may simply be a proxy measure of CNA burden. CNA burden may be prognostic

as it represents the progress of evolution in a given tumour and may be particular

useful as it is agnostic of tumour histology. Unfortunately, as event-free survival

in WT is high, larger numbers of cases are required to be confident of a prognostic

value.

Mengelbier and colleagues have proposed that detecting heterogeneity – which

they termed ‘microdiversity’ – in single tumour samples is prognostic in WTs [115].

Across multiple samples in the PKC66 study, I did not find subclonality, as defined

as percentage of CNA event that are not clonal, to be a useful biomarker, as despite

it showing statistical significance, it was outperformed by mutational burden. This

is supported by the fact that the threshold generated by ROC curve analysis only

separated five cases as having ‘high’ subclonality (>81.4% CNAs subclonal), each

of which showed more than 11 events. Furthermore, my own analysis of clonal

mixing in single samples revealed that the detection of clonal mixing is also subject

to sampling bias. Many tumours in the PKC66 series possessed samples both with

and without ‘microdiversity’ indicating that detecting heterogeneity is itself subject

to issues of heterogeneity. I hypothesise that understanding the phylogenetic history

is more important than understanding its by-product, heterogeneity.

Understanding evolution may overcome barriers set by histological classification.
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For example, the diffuse anaplastic phenotype could be replaced by a subtype that

presents with high CNA instability and TP53 mutation or a 11p UPD–CTNNB1

mutation subtype could replace stromal type tumours. Introducing a molecular

basis of subtyping may overcome unsatisfactory histological classifications such as

‘mixed’ type which is highly diverse both molecularly and phenotypically.

The molecular relationships between subtypes also requires further expansion.

Future investigations primed by this research may seek to determine in a larger

cohort of epithelial tumours if 19q UPD is prognostic of event-free survival and if

relapses in these cases tend to present as diffuse anaplastic tumours considering the

association between epithelial and diffuse anaplastic tumours and clonal 19q UPD

in this study. Furthermore, regressive type WT interestingly contribute to 44%

of all metastasising WTs yet is a tumour defined by response to therapy (>66%

necrotic cells) [14]. This could potentially be due to the fact that diversity within

this type is under recognised and some regressive type WTs may possess aggressive

clones. Further studies may seek to assay metastasising regressive WTs to identify

metastatic clones that may expand in size due to ‘competitive release’, such a study

may require prudent microdissection of viable tissue in order to assay DNA.

7.7 Final thoughts

The principles of evolution are redefining how the field perceives cancer biology

and treatment. This work contributes to a refinement of our outlook of solid pae-

diatric tumour evolution with a particular focus on WTs. Liquid biopsies and

advanced phylogenetic tumour profiling should advance the clinic in new unprece-

dented ways. Clinical approaches that take into account the principles of tumour

evolution should be used to fine-tune methods of drug development and biomarker

identification as well as patient care. As we increase our understanding of tumour

evolution we must seek to determine ways to make a phylogenetic understanding

of a cancer translatable to a health-care scenario. This may require phylogenetic

algorithms to take a form that is understandable to non-experts and for researchers
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to determine easy to interpret output variables that describe tumour evolution.

Research into WTs and hepatoblastomas will be advanced by assaying more cases

and in WTs specifically, by building larger cohorts of individual subtypes. One

possible route of analysis in non-anaplastic WTs may be to disregard the blastemal,

epithelial, stromal and mixed subtypes and to study general principles across the

spectrum of triphasic histology as a whole. This may unravel the complexity of the

mixed WT subtype.

Additionally, tumour sampling should also be increased to gain a more detailed

picture of 3D tumour composition in future studies. This is limited by tumour size

and tissue quality, however large tumours could be potentially sampled 10 or more

times, effectively tripling the number of samples taken on average in this study.

In smaller tumours, sampling smaller tumour regions may aid the generation of a

higher number of samples. These higher sampling strategies would require expert

tissue dissection and therefore a good working relationship with clinical colleagues,

as higher sampling increases labour time and the need for streamlined documenta-

tion. Larger studies may seek to produce a device for routine sampling that may cut

a tumour into regular shaped cubes designed for easy labelling and documentation

of the location of cubed tissue. Such a device may also allow for 3D computational

reconstruction of the tumour clones following a genomic assay as demonstrated

by Mamlouk and colleagues [206]. Similarly future phylogenetic algorithms may

seek to consider 3D spatial constraints of tumour region locations when generating

phylogenetic trees and resolving clones in studies with a large number of multiple

samples.

Further work may also integrate methylomics and transcriptomics in the study

of WT and hepatoblastoma evolution. These additional data types may be partic-

ularly informative in cases with few somatic mutations or CNAs. However, the

heterogeneous cellular composition of WTs will produce cell type specific expres-
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sion patterns that would have to be delineated from patterns produced specifically

by evolutionary diversity. Tumours with no obvious driver mutations may also be

subject to WGS in order to determine potential intergenic mutations.

One case study in this thesis in Chapter 3 related tumour phylogeny to specific

response of nodules in a WT to chemotherapy. Performing an integration of tumour

imaging, sampling and phylogenetic analysis in a larger cohort of patients would

produce an invaluable study for determining the genetic rationale for treatment

response. As mentioned previously, this would require a close working relationship

between cancer geneticists and radiologists, as well as the creation of databases that

are practical for both sets of experts.

This thesis begins with the observation of the simple features of genetic hetero-

geneity driven by tumour evolution in WT, but extends to the complex phylogenetic

patterning of WT subtypes. Despite assaying over 90 cases of WT and hepato-

blastoma, it appears that the repertoire of evolutionary patterns in solid paediatric

tumours is only now being gradually unravelled.
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Appendix A

List of abbreviations



Apparent diffusion coefficient ADC
APC membrane recruitment protein 1 AMER1
Area under the curve AUC
B-allele frequency BAF
B-Raf proto-oncogene BRAF
Band-width BW
UK Children’s Cancer and Leukaemia Group CCLG
Copy number aberrations CNA
Copy number neutral loss of heterozygosity CNNLOH
Circulating tumour deoxyribonucleic acid ctDNA
Catenin Beta 1 CTNNB1
Digital droplet polymerase chain reaction ddPCR
DiGeorge syndrome critical region gene 8 DGCR8
Diffuse hyperplastic perilobar nephroblastomatosis DHPN
Differentially methylated region DMR
Deoxyribonucleic acid DNA
Diagnosis Dx
Expectation maximisation EM
Eleven-nineteen-leukaemia protein ENL
Frozen biopsy FB
Fluorescence in-situ hybridization FISH
Frozen nephrectomy FN
Frozen relapse FR
Set of 11 hepatoblastoma cases Hep11
Insulin-like growth factor 2 IGF2
Improving population outcomes in renal tumours IMPORT
Insertion and/or deletion indel
Interquartile range IQR
Intra-tumour genetic heterogeneity ITGH
Kelch-like ECH associated protein 1 KEAP1
Loss of heterozygosity LOH
Loss of imprinting LOI
Log R ratio LRR
Mutant allele frequency MAF
Mitogen-activated protein kinase MAPK
Megabases MB
Mirrored B-Allele Frequency mBAF
Minimum event distance for intra-tumour copy-number comparisons MEDICC
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Micrometastasis project breast carcinoma samples MicMa
Micro ribonucleic acid miRNA
Myeloid/lymphoid or mixed-lineage leukemia translocated to, 1 MLLT1
Most recent common ancestor MRCA
Magnetic resonance MR
Mirrored subclonal allelic imbalance MSAI
Methylation-specific multiplex ligation-dependent probe amplification MS-MLPA
Myc proto-oncogene MYC
Neuroblastoma MYC MYCN
Nuclear Factor, Erythroid 2 Like 2 NFE2L2
Next generation sequencing NGS
Normal kidney NK
Oncogenic micro ribonucleic acid onco-miR
Piecewise Constant Fitting PCF
Phosphatidylinositol-4,5-bisphosphate 3-kinase PI3K
Paediatric kidney cancer PKC
Set of sixty-six paediatric kidney cancer patients PKC66
Pretreatment extent of disease PRETEXT
Retinoblastoma transcriptional corepressor 1 RB1
Ribonucleic acid RNA
Receiver operating characteristic ROC
Standard deviation sd
International Society of Paediatric Oncology SIOP
Sine oculis homeobox homolog SIX
Single nucleotide polymorphism SNP
Single nucleotide variation SNV
Tumour Protein P53 TP53
Uniparental disomy UPD
Urinary tumour deoxyribonucleic acid utDNA
Ultra-violet UV
Variant allele frequency VAF
Whole genome duplication WGD
Whole genome sequencing WGS
Wilms’ tumour WT
Wilms tumour on the X WTX
Wilms’ tumour 1 WT1
Initial Wilms’ tumour series of twenty patients WT20
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Appendix B

Data produced by targeted

sequencing analysis in PKC66



Case Region Gene Mut R V A B C M
54 R1 DROSHA T1108P 0.84 0.49 2 1 1.00 1.16
54 R1 DROSHA E993K 0.84 0.47 2 1 1.00 1.12
54 R1 SIX1 Q177R 0.84 0.45 2 1 1.00 1.06
54 R2 DROSHA T1108P 1.00* 0.47 2 1 1.00 0.95
54 R2 DROSHA E993K 1.00* 0.53 2 1 1.00 1.06
54 R2 SIX1 Q177R 1.00* 0.45 2 1 1.00 0.89
54 R3 DROSHA E993K 0.92 0.45 2 1 1.00 0.98
54 R3 TP53 E339del 0.92 0.83 1 1 1.00 0.98
54 r4 DROSHA T1108P 1.00 0.19 2 1 1.00 0.39
54 r4 DROSHA E993K 1.00 0.18 2 1 1.00 0.36
54 r4 GNAS R201H 1.00 0.23 2 1 1.00 0.46

143 R1 CTNNB1 T41A 0.97 0.45 2 1 1.00 0.92
143 R1 WT1 Q26fs 0.97 0.86 2 2 1.00 0.89
143 R2 CTNNB1 P44A 0.89 0.29 2 1 1.00 0.65
143 R2 CTNNB1 S45P 0.89 0.29 2 1 1.00 0.66
143 R2 WT1 Q26fs 0.89 0.77 2 2 1.00 0.87
143 R3 CTNNB1 S45Y 0.86 0.65 3 2 0.20 1.43
143 R3 WT1 Q26fs 0.86 0.70 2 2 0.97 0.81
143 R4 CTNNB1 T41A 0.91 0.47 2 1 1.00 1.03
143 R4 WT1 Q26fs 0.91 0.71 2 2 1.00 0.78*
143 R5 CTNNB1 S45Y 1.00 0.35 2 1 1.00 0.70
143 R5 WT1 Q26fs 1.00 0.51 2 2 0.67 0.51

Table B.1: A table of the variables used for calculating mutation cellularity. R is the tumour
purity as determined by ASCAT. In R2 of IMPORT 54 the purity is manually
changed to 1 due to the sequencing mutations being much purer than the copy
number changes (0.59). The cellularity of the WT1 Q26fs mutation was called
lower than the clonal cluster, but is considered clonal due to the weight of evi-
dence in R1–3 and R5. VAFs for TP53 E339del and WT1 Q26fs were derived
from the raw data, whereas VAFs for the other mutations was taken from Mu-
Tect.
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IMPORT Region Gene Contig Mut Ref Alt VAF
3 R3 AMER1 chrX:63412095 G>A 9 161 0.95
3 R4 AMER1 chrX:63412095 G>A 13 114 0.90
3 R5 AMER1 chrX:63412095 G>A 143 89 0.38
3 R6 AMER1 chrX:63412095 G>A 173 123 0.42
8 R1 PIK3C3 chr18:39575890 C>T 440 24 0.05
8 R3 PIK3C3 chr18:39575890 C>T 364 11 0.03
8 R4 PIK3C3 chr18:39575890 C>T 16 3 0.16
8 R5 PIK3C3 chr18:39575890 C>T 442 8 0.02
8 R2 RYR1 chr19:38964226 G>A 491 92 0.16
8 R4 RYR1 chr19:38964226 G>A 84 12 0.12
8 R1 TP53 chr17:7577538 C>T 30 179 0.86
8 R2 TP53 chr17:7577538 C>T 45 67 0.60
8 R3 TP53 chr17:7577538 C>T 35 144 0.80
8 R4 TP53 chr17:7577538 C>T 12 45 0.79
8 R5 TP53 chr17:7577538 C>T 21 142 0.87
8 R6 TP53 chr17:7577538 C>T 5 87 0.95
10 R3 TP53 chr17:7577085 C>T 4 157 0.98
12 R3 GLI3 chr7:42063065 A>C 269 10 0.04
15 R2 chr11:2021676 G>A 207 8 0.04
15 R3 chr11:2021676 G>A 335 18 0.05
15 R4 ABL2 chr1:179112169 C>T 250 46 0.16
15 R2 ALK chr2:29443901 G>T 182 4 0.02
15 R3 ALK chr2:29443900 G>C 129 13 0.09
15 R3 ALK chr2:29443901 G>T 132 12 0.08
15 R3 REST chr4:57785960 C>T 379 35 0.08
15 R4 RYR2 chr1:237670117 A>G 184 18 0.09
15 R4 USP9X chrX:41026835 G>A 72 42 0.37
36 R3 CUX1 chr7:101892227 C>A 387 10 0.03
36 R4 CUX1 chr7:101892227 C>A 193 5 0.03
36 R6 CUX1 chr7:101892227 C>A 469 3 0.01
36 R1 NBPF10 chr1:145325997 A>G 319 15 0.04
36 R2 NBPF10 chr1:145325997 A>G 143 28 0.16
36 R3 NBPF10 chr1:145325997 A>G 72 16 0.18
36 R4 NBPF10 chr1:145325997 A>G 68 14 0.17
36 R5 NBPF10 chr1:145325997 A>G 92 23 0.20
36 R6 NBPF10 chr1:145325997 A>G 122 15 0.11
36 R4 SALL3 chr18:76755106 C>A 251 10 0.04
36 R6 SALL3 chr18:76755106 C>A 480 6 0.01
continued. . .
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IMPORT Region Gene Contig Mut Ref Alt VAF
47 RR1 CTNNB1 chr3:41266136 T>C 206 148 0.42
47 RR2 CTNNB1 chr3:41268766 A>T 130 97 0.43
47 RR3 CTNNB1 chr3:41268766 A>T 194 142 0.42
47 RR4 CTNNB1 chr3:41268766 A>T 123 99 0.45
54 r4 DROSHA chr5:31422991 T>G 149 36 0.19
54 r4 DROSHA chr5:31435937 C>T 113 25 0.18
54 R1 DROSHA chr5:31422991 T>G 89 84 0.49
54 R1 DROSHA chr5:31435937 C>T 70 62 0.47
54 R2 DROSHA chr5:31422991 T>G 48 43 0.47
54 R2 DROSHA chr5:31435937 C>T 42 47 0.53
54 R3 DROSHA chr5:31435937 C>T 221 180 0.45
54 r4 GNAS chr20:57484421 G>A 206 62 0.23
54 R1 SIX1 chr14:61115378 T>C 143 115 0.45
54 R2 SIX1 chr14:61115378 T>C 136 110 0.45
59 R1 TP53 chr17:7574018 G>A 16 66 0.80
59 R3 TP53 chr17:7574018 G>A 21 176 0.89
64 R1 WT1 chr11:32421574 C>A 18 208 0.92
64 R2 WT1 chr11:32421574 C>A 8 404 0.98
64 R3 WT1 chr11:32421574 C>A 22 222 0.91
64 R4 WT1 chr11:32421574 C>A 23 445 0.95
71 R3 CTR9 chr11:10790026 C>T 424 73 0.15
78 R1 CTNNB1 chr3:41266137 C>A 454 150 0.25
78 R5 CTNNB1 chr3:41266137 C>A 235 97 0.29
78 R6 CTNNB1 chr3:41266137 C>A 310 108 0.26
78 R1 DROSHA chr5:31421465 C>T 289 185 0.39
78 R2 DROSHA chr5:31421465 C>T 235 131 0.36
78 R3 DROSHA chr5:31421465 C>T 295 205 0.41
78 R5 DROSHA chr5:31421465 C>T 102 86 0.46
78 R6 DROSHA chr5:31421465 C>T 214 146 0.41
continued. . .
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IMPORT Region Gene Contig Mut Ref Alt VAF
80 R1 HRAS chr11:532749 C>A 428 4 0.01
80 R4 HRAS chr11:532749 C>A 620 6 0.01
80 R5 HRAS chr11:532749 C>A 211 11 0.05
80 R1 TRIM37 chr17:57181701 G>A 205 168 0.45
80 R2 TRIM37 chr17:57181701 G>A 403 213 0.35
80 R3 TRIM37 chr17:57181701 G>A 302 206 0.41
80 R4 TRIM37 chr17:57181701 G>A 207 137 0.40
80 R5 TRIM37 chr17:57181701 G>A 208 139 0.40
106 R2 TP53 chr17:7574003 G>A 8 143 0.95
106 R4 TP53 chr17:7577548 C>T 60 21 0.26
120 R3 RYR2 chr1:237863520 A>G 37 11 0.23
143 R1 CTNNB1 chr3:41266124 A>G 237 191 0.45
143 R2 CTNNB1 chr3:41266133 C>G 238 97 0.29
143 R2 CTNNB1 chr3:41266136 T>C 235 98 0.29
143 R3 CTNNB1 chr3:41266137 C>A 123 225 0.65
143 R4 CTNNB1 chr3:41266124 A>G 137 121 0.47
143 R5 CTNNB1 chr3:41266137 C>A 243 130 0.35
146 CTNNB1 chr3:41266137 C>T 279 179 0.39
146 R1 CTNNB1 chr3:41266137 C>T 309 154 0.33
147 AMER1 chrX:63412095 G>A 149 100 0.40
147 RR1 AMER1 chrX:63412095 G>A 240 197 0.45
147 RR2 AMER1 chrX:63412095 G>A 167 128 0.43
147 RR3 AMER1 chrX:63412095 G>A 172 158 0.48
147 RR4 AMER1 chrX:63412095 G>A 320 8 0.02
147 RR4 CTNNB1 chr3:41274911 T>A 409 173 0.30
170 R1 TP53 chr17:7577121 G>A 13 166 0.93
170 R2 TP53 chr17:7577121 G>A 11 147 0.93
171 LR1 CTNNB1 chr3:41266137 C>G 134 266 0.66
171 LR2 CTNNB1 chr3:41266137 C>G 198 397 0.67
171 LR3 CTNNB1 chr3:41266137 C>G 133 243 0.65
171 LR4 CTNNB1 chr3:41266137 C>G 216 376 0.64
192 R3 CTNNB1 chr3:41266137 C>G 178 124 0.41
233 R1 BCL9 chr1:147084752 C>A 310 3 0.01
233 R2 BCL9 chr1:147084752 C>A 560 61 0.10
233 R1 MLLT1 chr19:6230656 G>C 178 49 0.22
233 R2 MLLT1 chr19:6230656 G>C 250 6 0.02
233 R1 TP53 chr17:7578394 T>A 220 6 0.03
233 R2 TP53 chr17:7578394 T>A 29 153 0.84

Table B.2: This table details all point mutations called in the different regions of the 30
cases sequenced. Ref and Alt shows reads reported by MuTect supporting each
allele. Contig reports the location according to hg19.
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IMPORT Region Gene Contig Mut Ref Alt VAF*
4 LR1 DICER1 chr14:95560356 AGAT>A 653 11 0.02
7 RR1 CTNNB1 chr3:41266133 CCTT>C 102 13 0.11
7 RR2 CTNNB1 chr3:41266133 CCTT>C 313 31 0.09
7 RR3 CTNNB1 chr3:41266133 CCTT>C 91 12 0.12
7 RR4 CTNNB1 chr3:41266133 CCTT>C 392 65 0.14
54 R3 TP53 chr17:7574009 TCTC>T 77 107 0.58
64 R1 CTNNB1 chr3:41266133 CCTT>C 205 84 0.29
78 R2 CTNNB1 chr3:41266133 CCTT>C 439 14 0.03
143 R1 WT1 chr11:32450099 TGC>T 12 8 0.40
143 R2 WT1 chr11:32450099 TGC>T 18 9 0.33
143 R3 WT1 chr11:32450099 TGC>T 22 15 0.41
143 R4 WT1 chr11:32450099 TGC>T 31 12 0.28
143 R5 WT1 chr11:32450099 TGC>T 49 6 0.11
146 WT1 chr11:32410609 G>GC 90 92 0.51
146 R1 WT1 chr11:32410609 G>GC 94 61 0.39

Table B.3: This table details all indels called in the different regions of the 30 cases se-
quenced. Ref and Alt shows reads reported by MuTect2 supporting each allele.
Contig reports the location according to hg19. VAF are not used for phyloge-
netic reconstruction due to filtering of uninformative reads by MuTect2.
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Gene Chr Start Ref Alt Change Type
ABL2 1 179112169 C T Intron
ALK 2 29443900 G C Intron
ALK 2 29443901 G T Intron
AMER1 X 63412095 G A p.R358* Nonsense
BCL9 1 147084752 C A p.L42M Missense
CTNNB1 3 41266124 A G p.T41A Missense
CTNNB1 3 41266133 C G p.P44A Missense
CTNNB1 3 41266134 CTT - p.S45del In Frame
CTNNB1 3 41266136 T C p.S45P Missense
CTNNB1 3 41266137 C A p.S45Y Missense
CTNNB1 3 41266137 C G p.S45C Missense
CTNNB1 3 41266137 C T p.S45F Missense
CTNNB1 3 41268766 A T p.K335I Missense
CTNNB1 3 41274911 T A p.N387K Missense
CTR9 11 10790026 C T p.S699S Silent
CUX1 7 101892227 C A p.P1475T Missense
DICER1 14 95560357 GAT - p.I1744del In Frame
DROSHA 5 31421465 C T p.E1147K Missense
DROSHA 5 31422991 T G p.T1108P Missense
DROSHA 5 31435937 C T p.E993K Missense
GLI3 7 42063065 A C Splice Site
GNAS 20 57484421 G A p.R201H Missense
HRAS 11 532749 C A p.E153* Nonsense
continued. . .

213



Gene Chr Start Ref Alt Change Type
MLLT1 19 6230656 G C p.N115K Missense
NBPF10 1 145325997 A G p.Q1290Q Silent
PIK3C3 18 39575890 C T p.R275W Missense
REST 4 57785960 C T p.R302R Silent
RYR1 19 38964226 G A p.A1325A Silent
RYR2 1 237670117 A G Intron
RYR2 1 237863520 A G Intron
SALL3 18 76755106 C A p.P1039T Missense
SIX1 14 61115378 T C p.Q177R Missense
TP53 17 7574003 G A p.R342* Nonsense
TP53 17 7574010 CTC - p.E339del In Frame
TP53 17 7574018 G A p.R337C Missense
TP53 17 7577085 C T p.E285K Missense
TP53 17 7577121 G A p.R273C Missense
TP53 17 7577538 C T p.R248Q Missense
TP53 17 7577548 C T p.G245S Missense
TP53 17 7578394 T A p.H179L Missense
TRIM37 17 57181701 G A p.R26C Missense
Unknown 11 2021676 G A IGR
USP9X X 41026835 G A Intron
WT1 11 32410609 - C p.L302fs Frame Shift
WT1 11 32421574 C A p.E128* Nonsense
WT1 11 32450100 GC - p.Q26fs Frame Shift

Table B.4: This table details types of mutations called in this study as annotated by Onco-
tator (http://portals.broadinstitute.org/oncotator/).
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IMPORT Array.Region Type ICH number
3 FK 10627
3 R1 FN 10629
3 R2 FN 10630
3 R3 FN 10632
3 R4 FN 10633
3 R5 FN 10634
3 R6 FN 10635
4 RR1 FN 10888
4 RR2 FN 10890
4 FK 10892
4 LR1 FN 10894
4 FN 12311
7 RR1 FN 10687
7 RR2 FN 10689
7 RR3 FN 10691
7 RR4 FN 10693
7 FK 10695
7 LR1 FN 10697
7 LR2 FN 10699
8 R1 FN 10673
8 R2 FN 10675
8 R3 FN 10677
8 R4 FN 10679
8 R5 FN 10681
8 R6 FN 10683
8 FK 10685
9 FN 11039
9 LR1 FN 11040
9 LR2 FN 11042
9 RR1 FN 11585
9 RR2 FN 11586
9 RR3 FN 11587
9 FK 11588
10 R2 FN 11214
10 R3 FN 11215
10 CF 11206
12 R1 FN 10998
12 R2 FN 10999
12 R3 FN 11000
12 R4 FN 11001
12 R5 FN 11002
12 R6 FN 11003
12 FK 11004
continued. . .
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IMPORT Array.Region Type ICH number
15 FK 11052
15 R1 FN 11053
15 R2 FN 11054
15 R3 FN 11055
15 R4 FN 11056
16 RR1 FN 10900
16 RR4 FN 10903
16 FK 10905
16 LR1 FN 11143
16 LR2 FN 11144
16 FK 11146
21 RR2 FN 11186
21 RR3 FN 11188
21 LR1 FN 11466
21 FK 11467
21 LR2 FN 11468
30 RR1 FN 11495
30 RR2 FN 11496
30 RR3 FN 11497
30 LR1 FN 11501
30 LR2 FN 11502
30 FK 11503
36 R1 FN 11170
36 R2 FN 11172
36 R3 FN 11174
36 R4 FN 11176
36 R5 FN 11178
36 R6 FN 11180
36 FK 11182
47 CF 11484
47 RR1 FN 11487
47 RR2 FN 11488
47 RR3 FN 11489
47 RR4 FN 11490
47 LR1 FN 11641
54 R1 FN 11409
54 R2 FN 11410
54 r4 FN 11411
54 R3 FN 11413
54 FK 11415
59 CF 11716
59 R3 FN 12180
59 CF 11706
59 R1 FN 11734
continued. . .

216



IMPORT Array.Region Type ICH number
64 R1 FN 11550
64 R2 FN 11551
64 R3 FN 11552
64 R4 FN 11553
64 CF 11864
71 R1 FN 11562
71 R2 FN 11563
71 R3 FN 11564
71 R4 FN 11565
71 R5 FN 11566
71 R6 FN 11567
71 FK 11568
78 LR1 FN 11940
78 LR2 FN 11941
78 LR3 FN 11942
78 LR5 FN 11944
78 LR6 FN 11945
78 FK 11946
80 R1 FN 11851
80 R2 FN 11852
80 R3 FN 11853
80 R4 FN 11854
80 R5 FN 11855
80 FK 11856
85 FN 12219
85 R1 FN 12220
85 R2 FN 12221
85 R3 FN 12222
85 R4 FN 12223
85 CF 12239
106 R1 FN 12203
106 R2 FN 12204
106 R4 FN 12206
106 FK 12202
106 R3 FN 12205
106 CF 13167
120 R1 FN 12129
120 R2 FN 12130
120 R3 FN 12131
120 R4 FN 12132
120 R5 FN 12133
120 FK 12134
continued. . .
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IMPORT Array.Region Type ICH number
143 R1 FN 12389
143 R2 FN 12390
143 R3 FN 12391
143 R4 FN 12392
143 R5 FN 12393
143 FK 12394
146 FN 12718
146 R1 FN 12720
146 FK 12721
147 RR1 FN 12819
147 FN 12820
147 RR3 FN 12821
147 RR4 FN 12822
147 FK 12823
147 RR2 FN 12824
169 R1 FN 12608
169 R2 FN 12609
169 FN 12610
169 FN 12611
169 CF 12653
170 R1 FN 13328
170 R2 FN 13329
170 CF 13372
171 LR1 FN 12553
171 LR2 FN 12554
171 LR3 FN 12555
171 LR4 FN 12556
171 FK 12557
192 R1 FN 13191
192 R2 FN 13192
192 R3 FN 13193
192 R4 FN 13194
192 R5 FN 13195
192 R6 FN 13196
192 FK 13197
233 CF 14228
233 R1 FN 14239
233 R2 FN 14240

Table B.5: This table details samples sequenced in the 30 cases in PKC66. FN = frozen
nephrectomy, FK = frozen kidney and CF = cell fraction (normal tissue from
blood). ICH number is an internal sample ID.
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ABL2 CUX1 HOXD11 MSH6 SETD5
AGO1 DACT1 HOXD12 MTOR SH3BP1
AGO2 DCLRE1B HOXD13 MYCN SIX1
AGO3 DDX1 HOXD3 NBPF10 SIX2
AGO4 DGCR10 HOXD4 NBPF4 SIX4
AKT2 DGCR6 HOXD8 NBPF6 SIX6
ALK DGCR8 HOXD9 NIPBL SMARCA4
AMER1 DGCR9 HRAS NOTCH1 SMC1A
AR DICER1 IGF1 NSL1 SMC3
ARID1A DIS3 IGF2 NTRK2 SMURF1
ARID1B DIS3L2 IRS2 PAX5 SOX1
ARID3B DNAJA2 JAK2 PAX6 SOX2
ATRX DROSHA KIF7 PHF2 SOX6
BCL11A ERG KMT2C PHLDA1 TAF1
BCL9 EYA1 LIN28A PIK3C3 TARBP2
BLM EYS LIN28B PKHD1 TBX22
BMP5 FANCG MAP3K2 PLCH2 TFE3
BRAF FBXO11 MAPK10 POU3F1 TGFB2
BRCA2 FBXW7 MAPK8 POU4F1 TOP3B
BUB1B FGF19 MAX POU6F2 TP53
CDC73 FGFR4 MDM4 PPARA TRAF2
CDH1 GAREM MED12 PREX2 TRIM37
CDH4 GAS6 MIRLET7A1 PRODH U2AF1
CDK20 GATA3 MIRLET7A2 PTF1A USP9X
CDK6 GATA6 MIRLET7A3 PTPN14 VHL
CDK8 GDF7 MIRLET7B RAB22A WBSCR17
CDKN1C GLI3 MIRLET7C RAI14 WHSC1
CDKN2B GNAS MIRLET7D REG4 WNT7B
CEP57 GPC3 MIRLET7E RERE WT1
CHD1L GREM2 MIRLET7F1 REST XPO5
CHD3 H19 MIRLET7F2 RMI2 YEATS2
CHD4 HACE1 MIRLET7G RUNX2 ZFHX3
CREBBP HDAC4 MIRLET7I RYR1 ZFPM2
CRLF1 HFM1 MIS18A RYR2
CSNK2A2 HIF1A MLLT1 SALL1
CTNNB1 HOXD1 MLLT3 SALL3
CTR9 HOXD10 MSH5 SETD2

Table B.6: Genes included on the WT-specific targeted sequencing panel designed using
Agilent SureSelect.
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Appendix C

CNA manual adjustment

documentation in PKC66
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cio H. Malogolowkin, and Rebecka L. Meyers. Hepatoblastoma state of the

art. Current Opinion in Pediatrics, 26(1):19–28, Feb 2014.

[32] Helen Davies, Graham R. Bignell, Charles Cox, Philip Stephens, Sarah

Edkins, Sheila Clegg, Jon Teague, Hayley Woffendin, Mathew J. Garnett,

William Bottomley, Neil Davis, Ed Dicks, Rebecca Ewing, Yvonne Floyd,

Kristian Gray, Sarah Hall, Rachel Hawes, Jaime Hughes, Vivian Kosmidou,

Andrew Menzies, Catherine Mould, Adrian Parker, Claire Stevens, Stephen

Watt, Steven Hooper, Rebecca Wilson, Hiran Jayatilake, Barry A. Gusterson,

Colin Cooper, Janet Shipley, Darren Hargrave, Katherine Pritchard-Jones,

Norman Maitland, Georgia Chenevix-Trench, Gregory J. Riggins, Darell D.

227



Bigner, Giuseppe Palmieri, Antonio Cossu, Adrienne Flanagan, Andrew

Nicholson, Judy W. C. Ho, Suet Y. Leung, Siu T. Yuen, Barbara L. We-

ber, Hilliard F. Seigler, Timothy L. Darrow, Hugh Paterson, Richard Marais,

Christopher J. Marshall, Richard Wooster, Michael R. Stratton, and P. An-

drew Futreal. Mutations of the BRAF gene in human cancer. Nature,

417(6892):949–954, Jun 2002.

[33] Robert A Weinberg. The retinoblastoma protein and cell cycle control. Cell,

81(3):323–330, May 1995.

[34] E. Cristy Ruteshouser, Stephen M. Robinson, and Vicki Huff. Wilms tumor

genetics: Mutations in WT1,WTX and CTNNB1 account for only about one-

third of tumors. Genes Chromosomes and Cancer, 47(6):461–470, 2008.

[35] M. B. Major, N. D. Camp, J. D. Berndt, X. Yi, S. J. Goldenberg, C. Hubbert,

T. L. Biechele, A.-C. Gingras, N. Zheng, M. J. MacCoss, S. Angers, and

R. T. Moon. Wilms Tumor Suppressor WTX Negatively Regulates WNT/β -

Catenin Signaling. Science, 316(5827):1043–1046, May 2007.

[36] Jamie N. Anastas and Randall T. Moon. WNT signalling pathways as thera-

peutic targets in cancer. Nature Reviews Cancer, 13(1):11–26, Dec 2012.

[37] Arnold J Levine. p53 the Cellular Gatekeeper for Growth and Division. Cell,

88(3):323–331, Feb 1997.

[38] Nabeel Bardeesy, David Falkoff, Mary-Jane Petruzzi, Norma Nowak, Bern-

hard Zabel, Mohammed Adam, Maria C. Aguiar, Paul Grundy, Tom Shows,

and Jerry Pelletier. Anaplastic Wilms' tumour a subtype displaying poor

prognosis, harbours p53 gene mutations. Nature Genetics, 7(1):91–97, May

1994.

[39] Mariana Maschietto, Richard D. Williams, Tasnim Chagtai, Sergey D. Popov,

Neil J. Sebire, Gordan Vujanic, Elizabeth Perlman, James R. Anderson, Paul

228



Grundy, Jeffrey S. Dome, and Kathy Pritchard-Jones. TP53 Mutational Sta-

tus Is a Potential Marker for Risk Stratification in Wilms Tumour with Dif-

fuse Anaplasia. PLoS ONE, 9(10):e109924, Oct 2014.

[40] Jenny Wegert, Naveed Ishaque, Romina Vardapour, Christina Geörg,

Zuguang Gu, Matthias Bieg, Barbara Ziegler, Sabrina Bausenwein, Nase-

nien Nourkami, Nicole Ludwig, Andreas Keller, Clemens Grimm, Susanne

Kneitz, Richard D. Williams, Tas Chagtai, Kathy Pritchard-Jones, Peter van

Sluis, Richard Volckmann, Jan Koster, Rogier Versteeg, Tomas Acha, Mau-

reen J. O’Sullivan, Peter K. Bode, Felix Niggli, Godelieve A. Tytgat, Harm

van Tinteren, Marry M. van den Heuvel-Eibrink, Eckart Meese, Christian

Vokuhl, Ivo Leuschner, Norbert Graf, Roland Eils, Stefan M. Pfister, Mar-

cel Kool, and Manfred Gessler. Mutations in the SIX1/2 Pathway and the

DROSHA/DGCR8 miRNA Microprocessor Complex Underlie High-Risk

Blastemal Type Wilms Tumors. Cancer Cell, 27(2):298–311, Feb 2015.

[41] Amy L. Walz, Ariadne Ooms, Samantha Gadd, Daniela S. Gerhard, Mal-

colm A. Smith, Jaime M. Guidry Auvil, Daoud Meerzaman, Qing-Rong

Chen, Chih Hao Hsu, Chunhua Yan, Cu Nguyen, Ying Hu, Reanne Bowlby,

Denise Brooks, Yussanne Ma, Andrew J. Mungall, Richard A. Moore,

Jacqueline Schein, Marco A. Marra, Vicki Huff, Jeffrey S. Dome, Yueh-Yun

Chi, Charles G. Mullighan, Jing Ma, David A. Wheeler, Oliver A. Hampton,

Nadereh Jafari, Nicole Ross, Julie M. Gastier-Foster, and Elizabeth J. Perl-

man. Recurrent DGCR8, DROSHA and SIX Homeodomain Mutations in

Favorable Histology Wilms Tumors. Cancer Cell, 27(3):426, Mar 2015.

[42] Shuibin Lin and Richard I. Gregory. MicroRNA biogenesis pathways in can-

cer. Nature Reviews Cancer, 15(6):321–333, May 2015.

[43] Elizabeth J. Perlman, Samantha Gadd, Stefan T. Arold, Anand Radhakrish-

nan, Daniela S. Gerhard, Lawrence Jennings, Vicki Huff, Jaime M. Guidry

Auvil, Tanja M. Davidsen, Jeffrey S. Dome, Daoud Meerzaman, Chih Hao

Hsu, Cu Nguyen, James Anderson, Yussanne Ma, Andrew J. Mungall,

229



Richard A. Moore, Marco A. Marra, Charles G. Mullighan, Jing Ma,

David A. Wheeler, Oliver A. Hampton, Julie M. Gastier-Foster, Nicole Ross,

and Malcolm A. Smith. MLLT1 YEATS domain mutations in clinically

distinctive favourable histology wilms tumours. Nature Communications,

6:10013, Dec 2015.

[44] G. Brodeur, R. Seeger, M Schwab, H. Varmus, and J. Bishop. Amplifica-

tion of N-myc in untreated human neuroblastomas correlates with advanced

disease stage. Science, 224(4653):1121–1124, Jun 1984.

[45] Keiko Taguchi, Hozumi Motohashi, and Masayuki Yamamoto. Molecular

mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolu-

tion. Genes to Cells, 16(2):123–140, Jan 2011.

[46] Prasad V. Jallepalli and Christoph Lengauer. Chromosome segregation and

cancer: cutting through the mystery. Nature Reviews Cancer, 1(2):109–117,

Nov 2001.

[47] B. E. Stranger, M. S. Forrest, M. Dunning, C. E. Ingle, C. Beazley, N. Thorne,

R. Redon, C. P. Bird, A. de Grassi, C. Lee, C. Tyler-Smith, N. Carter, S. W.

Scherer, S. Tavare, P. Deloukas, M. E. Hurles, and E. T. Dermitzakis. Rela-

tive Impact of Nucleotide and Copy Number Variation on Gene Expression

Phenotypes. Science, 315(5813):848–853, Feb 2007.

[48] Georgina L. Ryland, Maria A. Doyle, David Goode, Samantha E. Boyle,

David Y.H. Choong, Simone M. Rowley, Jason Li, David DL Bowtell,

Richard W. Tothill, Ian G. Campbell, and Kylie L. Gorringe. Loss of het-

erozygosity: what is it good for? BMC Medical Genomics, 8(1):45, Aug

2015.

[49] Gerard I. Evan, Andrew H. Wyllie, Christopher S. Gilbert, Trevor D. Little-

wood, Hartmut Land, Mary Brooks, Catherine M. Waters, Linda Z. Penn, and

David C. Hancock. Induction of apoptosis in fibroblasts by c-myc protein.

Cell, 69(1):119–128, Apr 1992.

230



[50] M. S. Esposito. Evidence that spontaneous mitotic recombination occurs

at the two-strand stage. Proceedings of the National Academy of Sciences,

75(9):4436–4440, Sep 1978.

[51] P. J. Hastings, James R. Lupski, Susan M. Rosenberg, and Grzegorz Ira.

Mechanisms of change in gene copy number. Nature Reviews Genetics,

10(8):551–564, Aug 2009.

[52] J. Scott, J. Cowell, M. E. Robertson, L. M. Priestley, R. Wadey, B. Hopkins,

J. Pritchard, G. I. Bell, L. B. Rall, C. F. Graham, and T. J. Knott. Insulin-like

growth factor-II gene expression in Wilms' tumour and embryonic tissues.

Nature, 317(6034):260–262, Sep 1985.

[53] Osamu Ogawa, Michael R. Eccles, Jenny Szeto, Leslie A. McNoe, Kankatsu

Yun, Marion A. Maw, Peter J. Smith, and Anthony E. Reeve. Relaxation of

insulin-like growth factor II gene imprinting implicated in Wilms' tumour.

Nature, 362(6422):749–751, Apr 1993.

[54] Richard D. Williams, Reem Al-Saadi, Rachael Natrajan, Alan Mackay, Tas-

nim Chagtai, Suzanne Little, Sandra N. Hing, Kerry Fenwick, Alan Ash-

worth, Paul Grundy, James R. Anderson, Jeffrey S. Dome, Elizabeth J. Perl-

man, Chris Jones, and Kathy Pritchard-Jones. Molecular profiling reveals

frequent gain of MYCN and anaplasia-specific loss of 4q and 14q in wilms

tumor. Genes Chromosomes and Cancer, 50(12):982–995, Aug 2011.

[55] Paul E. Grundy, Norman E. Breslow, Sierra Li, Elizabeth Perlman, J. Bruce

Beckwith, Michael L. Ritchey, Robert C. Shamberger, Gerald M. Haase,

Giulio J. D’Angio, Milton Donaldson, Max J. Coppes, Marcio Malo-

golowkin, Patricia Shearer, Patrick R.M. Thomas, Roger Macklis, Gail Tom-

linson, Vicki Huff, and Daniel M. Green. Loss of Heterozygosity for Chro-

mosomes 1p and 16q Is an Adverse Prognostic Factor in Favorable-Histology

Wilms Tumor: A Report From the National Wilms Tumor Study Group.

Journal of Clinical Oncology, 23(29):7312–7321, Aug 2005.

231



[56] R Natrajan, RD Williams, SN Hing, A Mackay, JS Reis-Filho, K Fen-

wick, M Iravani, H Valgeirsson, A Grigoriadis, CF Langford, O Dovey,

SG Gregory, BL Weber, A Ashworth, PE Grundy, K Pritchard-Jones, and

C Jones. Array CGH profiling of favourable histology Wilms tumours re-

veals novel gains and losses associated with relapse. The Journal of Pathol-

ogy, 210(1):49–58, 2006.

[57] Eric J. Gratias, Lawrence J. Jennings, James R. Anderson, Jeffrey S. Dome,

Paul Grundy, and Elizabeth J. Perlman. Gain of 1q is associated with inferior

event-free and overall survival in patients with favorable histology Wilms tu-

mor: A report from the Children's Oncology Group. Cancer, 119(21):3887–

3894, Aug 2013.

[58] H. Segers, M. M. van den Heuvel-Eibrink, R. D. Williams, H. van Tinteren,

G. Vujanic, R. Pieters, K. Pritchard-Jones, and N. Bown. Gain of 1q is a

marker of poor prognosis in Wilms' tumors. Genes Chromosomes and Can-

cer, 52(11):1065–1074, Sep 2013.

[59] Teresa Davoli, Hajime Uno, Eric C. Wooten, and Stephen J. Elledge. Tumor

aneuploidy correlates with markers of immune evasion and with reduced re-

sponse to immunotherapy. Science, 355(6322):eaaf8399, Jan 2017.

[60] Gail E. Tomlinson and Roland Kappler. Genetics and epigenetics of hepato-

blastoma. Pediatric Blood & Cancer, 59(5):785–792, Jul 2012.

[61] Pavel Sumazin, Yidong Chen, Lisa R. Treviño, Stephen F. Sarabia, Oliver A.

Hampton, Kayuri Patel, Toni-Ann Mistretta, Barry Zorman, Patrick Thomp-

son, Andras Heczey, Sarah Comerford, David A. Wheeler, Murali Chin-

tagumpala, Rebecka Meyers, Dinesh Rakheja, Milton J. Finegold, Gail Tom-

linson, D. Williams Parsons, and Dolores López-Terrada. Genomic analysis
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Stephen C Mack, Jüri Reimand, Steffen Albrecht, Adam M Fontebasso,

245



Nina Thiessen, Yisu Li, Jacqueline E Schein, Darlene Lee, Rebecca Carlsen,

Michael Mayo, Kane Tse, Angela Tam, Noreen Dhalla, Adrian Ally, Eric

Chuah, Young Cheng, Patrick Plettner, Haiyan I Li, Richard D Corbett,

Tina Wong, William Long, James Loukides, Pawel Buczkowicz, Cynthia E

Hawkins, Uri Tabori, Brian R Rood, John S Myseros, Roger J Packer, Andrey

Korshunov, Peter Lichter, Marcel Kool, Stefan M Pfister, Ulrich Schüller, Pe-

ter Dirks, Annie Huang, Eric Bouffet, James T Rutka, Gary D Bader, Charles

Swanton, Yusanne Ma, Richard A Moore, Andrew J Mungall, Jacek Majew-

ski, Steven J M Jones, Sunit Das, David Malkin, Nada Jabado, Marco A

Marra, and Michael D Taylor. Spatial heterogeneity in medulloblastoma.

Nature Genetics, 49(5):780–788, Apr 2017.

[111] David N. Louis, Arie Perry, Guido Reifenberger, Andreas von Deimling, Do-

minique Figarella-Branger, Webster K. Cavenee, Hiroko Ohgaki, Otmar D.

Wiestler, Paul Kleihues, and David W. Ellison. The 2016 World Health Or-

ganization classification of tumors of the central nervous system: a summary.

Acta Neuropathologica, 131(6):803–820, May 2016.

[112] Hamid Nikbakht, Eshini Panditharatna, Leonie G. Mikael, Rui Li, Tenzin

Gayden, Matthew Osmond, Cheng-Ying Ho, Madhuri Kambhampati, Eu-

gene I. Hwang, Damien Faury, Alan Siu, Simon Papillon-Cavanagh, Denise

Bechet, Keith L. Ligon, Benjamin Ellezam, Wendy J. Ingram, Caedyn Stin-

son, Andrew S. Moore, Katherine E. Warren, Jason Karamchandani, Roger J.

Packer, Nada Jabado, Jacek Majewski, and Javad Nazarian. Spatial and tem-

poral homogeneity of driver mutations in diffuse intrinsic pontine glioma.

Nature Communications, 7:11185, Apr 2016.

[113] Emilia M. Pinto, Xiang Chen, John Easton, David Finkelstein, Zhifa Liu,

Stanley Pounds, Carlos Rodriguez-Galindo, Troy C. Lund, Elaine R. Mardis,

Richard K. Wilson, Kristy Boggs, Donald Yergeau, Jinjun Cheng, Heather L.

Mulder, Jayanthi Manne, Jesse Jenkins, Maria J. Mastellaro, Bonald C.

Figueiredo, Michael A. Dyer, Alberto Pappo, Jinghui Zhang, James R.

246



Downing, Raul C. Ribeiro, and Gerard P. Zambetti. Genomic landscape of

paediatric adrenocortical tumours. Nature Communications, 6:6302, Mar

2015.

[114] Li Chen, Jack F. Shern, Jun S. Wei, Marielle E. Yohe, Young K. Song, Laura

Hurd, Hongling Liao, Daniel Catchpoole, Stephen X. Skapek, Frederic G.

Barr, Douglas S. Hawkins, and Javed Khan. Clonality and Evolutionary His-

tory of Rhabdomyosarcoma. PLOS Genetics, 11(3):e1005075, Mar 2015.

[115] Linda Holmquist Mengelbier, Jenny Karlsson, David Lindgren, Anders

Valind, Henrik Lilljebjörn, Caroline Jansson, Daniel Bexell, Noémie

Braekeveldt, Adam Ameur, Tord Jonson, Hanna Göransson Kultima, An-

ders Isaksson, Jurate Asmundsson, Rogier Versteeg, Marianne Rissler, Thoas

Fioretos, Bengt Sandstedt, Anna Börjesson, Torbjörn Backman, Niklas Pal,

Ingrid Øra, Markus Mayrhofer, and David Gisselsson. Intratumoral genome

diversity parallels progression and predicts outcome in pediatric cancer. Na-

ture Communications, 6:6125, Jan 2015.

[116] Jenny Wegert, Stefanie Wittmann, Ivo Leuschner, Eva Geissinger, Norbert

Graf, and Manfred Gessler. WTX inactivation is a frequent but late event in

Wilms tumors without apparent clinical impact. Genes, Chromosomes and

Cancer, 48(12):1102–1111, Dec 2009.

[117] Sergey D. Popov, Gordan M. Vujanic, Neil J. Sebire, Tasnim Chagtai,

Richard Williams, Sucheta Vaidya, and Kathy Pritchard-Jones. Bilateral

Wilms Tumor with TP53 -Related Anaplasia. Pediatric and Developmen-

tal Pathology, 16(3):217–223, May 2013.

[118] Richard D. Williams, Tasnim Chagtai, Marisa Alcaide-German, John Apps,

Jenny Wegert, Sergey Popov, Gordan Vujanic, Harm van Tinteren, Marry M.

van den Heuvel-Eibrink, Marcel Kool, Jan de Kraker, David Gisselsson, Nor-

bert Graf, Manfred Gessler, and Kathy Pritchard-Jones. Multiple mecha-

247



nisms of MYCN dysregulation in Wilms tumour. Oncotarget, 6(9):7232–

7243, Apr 2015.

[119] Ugo Del Monte. Does the cell number 109 still really fit one gram of tumor

tissue? Cell Cycle, 8(3):505–506, Feb 2009.

[120] Serena Nik-Zainal, Peter Van Loo, David C. Wedge, Ludmil B. Alexan-

drov, Christopher D. Greenman, King Wai Lau, Keiran Raine, David Jones,

John Marshall, Manasa Ramakrishna, Adam Shlien, Susanna L. Cooke,

Jonathan Hinton, Andrew Menzies, Lucy A. Stebbings, Catherine Leroy,

Mingming Jia, Richard Rance, Laura J. Mudie, Stephen J. Gamble, Philip J.

Stephens, Stuart McLaren, Patrick S. Tarpey, Elli Papaemmanuil, Helen R.

Davies, Ignacio Varela, David J. McBride, Graham R. Bignell, Kenric Le-

ung, Adam P. Butler, Jon W. Teague, Sancha Martin, Goran Jönsson, Odette

Mariani, Sandrine Boyault, Penelope Miron, Aquila Fatima, Anita Langerød,

Samuel A.J.R. Aparicio, Andrew Tutt, Anieta M. Sieuwerts, Åke Borg,
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