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Abstract 

This PhD investigates the perception of  laughter and crying, two non verbal 
expressions of  emotion, and how this perception is affected by the authenticity 
of  the expressed emotions. Three separate approaches were used to address the 
perception of  these stimuli by healthy participants: behavioural rating tasks, 
physiological responses recordings, and functional magnetic resonance imaging 
(fMRI) techniques. A series of  behavioural ratings established that naïve listeners 
can reliably differentiate involuntary laughter from voluntary laughter, however, 
their performance was poorer when discriminating between involuntary crying 
and voluntary crying. In a larger set of  behavioural ratings collected at the 
Science Museum (n=1723, age range = 3-76 years old), the ratings accuracy of  
voluntary and involuntary emotional vocalizations were both found to improve 
over age, however, the developmental trajectories of  the voluntary expressions 
were shown to have a steeper slope throughout early adulthood than involuntary 
expressions. This difference may reflect a developmental learning process of  
perceiving voluntary emotional expressions through social interactions. The 
results of  behavioural and developmental experiments consistently show that the 
involuntary crying was perceived as moe similar to voluntary crying than 
voluntary and involuntary laughter However the physiological responses (pupil 
size) shows a different pattern: listeners’ pupils were significantly more dilated for 
involuntary vocalizations than for voluntary ones, regardless of  emotions. This 
discrepancy between physiological responses and behavioural ratings on crying 
suggests that social learning processes influence the perceivers’ judgments of  
involuntary crying, other than pure perceptual processes. In the fMRI study, we 
found that perceiving laughter and crying requires activation of  similar areas in 
an emotional motor task as well as in a theory-of-mind task, suggesting that a 
shared interactive neural network of  perceiving and interpreting emotions is 
involved. However, the cortical areas involved in differentiating voluntary and 
involuntary vocalizations are partly distinct for laughter and for crying, implying 
different neural networks may be responsible for the authenticity differentiation 
of  different emotions. 

In summary, this thesis demonstrates the existence of  emotion-specific 
differences in perception of  non-verbal emotional vocalizations and these 
differences may be due to developmental factors. Moreover, multiple neural 
networks were shown to play important roles in perceiving and differentiating 
positive and negative emotions. 
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Chapter 1 Literature review 

1.1 Emotions 

Emotions are crucial to human life, but what are emotions? Although we all 

think we know what emotions are, it is difficult to give an universal definition 

(Fehr & Russell, 1984). The nature of  emotions has been described in a variety 

of  different ways. For example, social constructivists argue that emotions are 

merely transitory social roles in a society, in which shared rules and expectations 

govern a person’s emotional responses (Averill, 1980). Cognitive appraisal 

theorists suggest that emotions are individualised by a series of  appraisals of  

events, so the emotions are not determined by the event per se but by 

interpretations and evaluations of  a particular situation (Roseman, 1991). Some 

propose that emotions are biologically driven functions which evolve for dealing 

with fundamental life tasks such as withstanding the loss of  significant others or 

achieving a specific goal (Ekman, 1992a). 

Different research methodologies are commonly associated with 

theoretical arguments about what emotions are and what emotions do, whether 

they are socially constructed or rooted in our nature, and whether emotions exist 

in categories or in dimensions. For example, researchers who are more 

biologically oriented intend to distinguish emotions based on physiological 

variables (e.g., Ekman, Levenson, & Friesen, 1983) and facial muscle movements 

(e.g., Ekman, 2003; Ekman & Oster, 1979). However, researchers who are more 

culturally oriented focus on how the biological responses were evaluated and 

grouped by linguistic contexts and individual experience (Barrett & Russell, 

1998). In fact, these two influential perspectives on emotions and their ongoing 
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debates since 1970 have initiated an era for our understanding of  emotions, and 

therefore these two theoretical frameworks are briefly outlined below. 

1.1.1 The basic emotions 

A wealth of  studies on emotions conducted in the past few decades have been 

greatly influenced by the theory of  basic emotions outlined by Paul Ekman. The 

basic emotions were first proposed as ‘primary affects’, which includes six 

discrete affective states: happiness, sadness, fear, disgust, surprise, and anger (Paul 

Ekman & Friesen, 1969; Paul Ekman, Sorenson, & Friesen, 1969). Ekman 

established the theoretical framework using a wealth of  empirical data across 

cultures and found that these basic emotions can be universally recognized from 

the face (Ekman & Friesen, 1971; Ekman et al., 1969). Each of  these basic 

emotions has been demonstrated to be associated with a specific set of  facial 

muscle movements (Ekman, Freisen, & Ancoli, 1980; Ekman & Rosenberg, 

2005). The core arguments in the theory argues that these six emotions are innate 

and universal. Ekman later elaborated the term ‘basic’ as having distinctive 

characteristics in these six emotions, which have evolved to solve different 

fundamental life tasks (Ekman, 1992a). For example, fear, anger, disgust, and 

sadness were found to have distinctive patterns of  physiological responses (i.e. 

heart rate and galvanic skin response) which were proposed to have distinct 

evolutionary histories (Ekman et al., 1983; Levenson, 1992). For example, to 

survive in various environments, a quick and unique response must prepare the 

body to react to different emotions, and these adaptive properties of  the 

autonomic nervous system are viewed as evidence of  supporting the emotions 

are innate (Ekman, 1992b; Ekman et al., 1983).  

1.1.2 The dimensional model 

From the view of  the dimensional model, emotions are represented in continua 

and each emotion is defined relative to other emotions by similarities and 

differences. One important contemporary dimensional model is James Russell’s 

circumplex configuration model (Russell, 1980). In this model, these affective 

states are placed in a circular order divided by two orthogonal dimensions: 

pleasure-displeasure and degree of  arousal. These affective states have fuzzy 
  15



boundaries which are identified by personal interpretation of  input information. 

The interpretation that individuals are aware of  becomes affective experience 

(Russell, 1980). According to the circumplex configuration model, the primary 

form of  emotions is called ‘core affect’, commonly known as a ‘feeling’. The core 

affect is proposed to be a neurophysiological state prior to affective experience, 

and individuals can consciously access to it without denoting any explicit emotion 

categories (e.g. fear, happiness, sadness). Any single point on the space created by 

the two dimensions is a core affect which can be moved around on the space by 

internal and external causes (Russell, 2003). The dimensional account views 

affective experience as being socially constructed rather than natural kinds 

(Barrett, 2006). Based on the constructivist view, wide spread functional neural 

networks can be activated as a specific constellation to a psychological state. 

Therefore, rather than mapping specific anatomical substrates to a specific 

emotion, constructivists consider a domain-general framework to subserve the 

emotional states (Barrett & Satpute, 2013; Lindquist & Barrett, 2012). 

1.2 Emotions in voice 

Recognition of  other’s emotional states plays a crucial role in social interactions, 

as this enhances communications by exposing underlying meaning and allows 

interlocutors to receive information beyond linguistic content. In addition to 

emotions expressed via facial expressions, bodily posture, manual gesture, and 

vocal cues can also communicate emotions (Atkinson, Dittrich, Gemmell, & 

Young, 2004; K. Scherer, 2003). Like facial expressions, vocal cues were 

demonstrated to have systematic properties which correlate with emotional 

factors: the constellations of  acoustic properties of  each emotional sound could 

predict the emotional character that participants perceived (Sauter, Eisner, Calder, 

& Scott, 2010). The emotional vocalisations communicating the negative basic 

emotions further proved to be recognised cross culturally, as were expressions of  

laughter (Sauter, Eisner, Ekman, & Scott, 2010), and these vocal cues were not 

considered as only a mirror of  facial expressions (Scott, Sauter, & Mcgettigan, 

2009). Instead, each emotional vocalization may have different types of  

expression that connote distinct meanings; for example, joyful laughter, 

  16



schadenfreude laughter, taunting laughter, and tickling laughter were found to 

well convey different kinds of  emotional connotation (Szameitat et al., 2009) in 

native German speakers (and less so for native English speakers). 

Vocal cues are effective for conveying emotional information, and 

moreover the vocal cues with rich details in acoustic properties might be 

beneficial for investigating various types of  positive emotions which were 

proposed to be primarily delivered via vocal-auditory channels (Scott, 2013). 

Distinct from other positive emotional sounds (i.e., cheering or relief), laughter 

can be composed of  voiced and/or unvoiced segments making it a continuous 

but also chopping vocalisation by exhaled and inhaled breath; laughter can also 

be relatively involuntary or uncontrolled depending on the degree of  expressed 

joyfulness and the context. Laughter is generated by repeated contraction of  the 

diaphragm and intercostal muscles as it is characterised by spasmodic articulation 

which can also be seen as a modified way of  breathing (Kohler, 2008; Provine, 

2016; Scott, 2013). 

Although quite distinct in emotional terms, crying is very similar to 

laughter in terms of  production. The same vocal apparatus is found to underlie 

human vocal behaviour as in laughing, crying, speaking, singing, and other vocal 

expressions, but crying was observed to be especially similar to laughter 

compared to others – both vocalisations can be spasmodic, contagious, and 

involuntary. Crying sound has been described containing more sustained vowel-

like voiced utterances, compared to laughter, and it also has a longer rhythmic 

pattern by having intervals synchronising with respiratory cycle (Provine, 2012). 

However, there has been somewhat less research into the vocalisations of  crying, 

especially in adults. 

1.3 The developmental and evolutionary perspective 

Crying 

Crying is the first recognisable emotional vocalisation that infants can produce to 

signal pain, hunger or fatigue, or to gain attention from caregivers, and is 

regarded as the primary emotional vocalisation to communicate infants’ basic 

needs with their caregivers (Cohen-Bendahan, van Doornen, & de Weerth, 2014). 
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It has been reported that more than a single meaning in a class of  

emotional vocalisations is first observed in infants’ crying sounds. Although cries 

of  distress are only recognisable in babies older that six weeks (Bridges, 1932), it 

still remains to be investigated whether the crying of  infants under a month is an 

emotional reaction or just part of  general reactions (e.g., grabbing, kicking) due 

to excitement. However, empirical research has determined that there are 

different kinds of  infant crying, which listeners can distinguish, including ‘painful 

cry sounds’ which have different average fundamental frequencies (F0) compared 

to ‘growing discomfort cry sounds’ (Green, Gustafson, Irwin, Kalinowski, & 

Wood, 1995). The painful cry sound is specific to sudden intense distress, while 

the ‘growing discomfort cry sounds’ are specific to the sensation of  hunger, 

sleepiness, or tiredness. The painful cry sounds are perceived by adult 

participants as having decreasing urgency over time, while the hungry cry sounds 

are perceived as having increasing urgency over time. Over time, the average 

fundamental frequencies were consistently found to rise for hungry crying 

sounds and to fall over time for painful crying sounds (Zeskind, Sale, Maio, 

Huntington, & Weiseman, 1985). The difference between the perception of  these 

two types of  sounds is further demonstrated to be more dependent on duration 

and contexts but less on F0 (Zeifman, 2004), showing that these two types of  

crying sounds can reliably convey distinct needs to caregivers for establishing 

reciprocal relationship between  infants and the surrounding environment in early 

stages.  

Infants use crying sounds to signal their needs to caregivers, but they also 

use crying sounds to respond to cries of  other infants. Calm infants started 

crying when they heard crying recordings of  other infants, and crying infants 

continued crying when they heard cries of  other infants but stopped when they 

heard their own crying sounds in the recordings (Martin & Clark, 1982). The 

results indicated that infants younger than 40 hours can distinguish their own 

crying from others, and furthermore, the ‘contagious crying phenomenon’ could 

be shown by only listening to recordings of  other infants’ cries. However, is this 

contagious crying phenomenon ‘style specific’? When one-to-nine-month-old 

infants heard different styles of  infant crying, such as intense distressed cries (i.e., 

the sudden sensation of  pain), they would produce a similar pattern of  distressed 

cry. There were not responding distressed crying sounds when the infants heard 

other styles of  cries such as low intensity cries (e.g., the sensation of  hunger) 
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(Geangu, Benga, Stahl, & Striano, 2010). This contagious crying response shows 

that crying can be a social response to others that specific behaviour is induced 

by another specific behaviour reliably. By producing the same style of  crying 

when infants hear others, contagious crying is suggested to be an early sign of  

empathy development where infants share a similar affective state with others 

(Geangu et al., 2010). 

However, the contagious crying phenomenon can be affected when 

feedback from the environment to crying infants is diminished. A depressed 

caregiver can have less responsive behaviour towards a crying infant than does a 

non-depressed caregiver (Field, Diego, Hernandez-Reif, & Fernandez, 2007). The 

infant’s ability to distinguish their own crying from others can be impaired when 

their main caregiver suffered from depression, and these infants were also less 

responsive to cries of  others than infants of  non-depressed mothers (Field et al., 

2007). The study indicated that when a crying infant could not solicit proper 

attending behaviour from main caregivers, the development of  their crying 

behaviour can be affected. This interactive relationship between crying infants 

and the caregivers can suggest that the crying behaviour is sensitively connected 

to the outside environment of  the crying infants. 

Crying is mostly regarded as an early communication development, and 

the interaction between main caregivers and infants as stated above particularly 

received much attention (Boukydis & Burgess, 1982; Franklin et al., 2014; Murray, 

1979). It has been shown that patterns of  crying sounds could be recognised by 

caregivers when achieving further reactions from feeding, calming, or diaper 

changing (Bell & Ainsworth, 1972; Murray, 1979). Crying continues to be a 

prominent way of  communicating negative emotion during the preschool years, 

as children’s linguistic ability is still developing. However, crying behaviour 

decreases sharply during the second year and continues to decrease throughout 

childhood (Provine, 2012), which may be due to the developing cognitive and 

affective abilities of  recognising, expressing, and regulating emotions. 

Laughter 

Laughter, in addition to crying, is another emotional vocalisation that can elicit 

responsive behaviour from caregivers during a human’s formative period of  life. 
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Laughter is first expressed around two to four months of  age and increases in 

frequency over time (Provine, 2012). The amount of  laughter infants used to 

respond to an act of  agent was observed to increase from 10% to 43% within 

four to twelve months in infancy (Sroufe & Wunsch, 1972). Laughing develops 

later than crying in babies as a means of  interaction with their environment, but 

it effectively signifies an engagement in behaviour by an acting agent, which may 

prolong the interaction between babies and the agent (Bridges, 1932; Ruch & 

Ekman, 2001; Sroufe & Wunsch, 1972). Previous research on the interaction 

between infants and their mothers showed that infants’ laughter was mostly 

followed by mothers’ laughter rather than mothers’ laughter being followed by 

infants’ laughter. In the second year, coactive laughter (their overlapping laughter 

duration) was found to increasingly occur more than it did during the first year 

(Nwokah, Dobrowolska, & Fogel, 1994). These observations may provide 

evidence that laughter not only reinforces engagement of  the parent, it also 

builds intimacy between producers and receivers of  the laughter. 

As children grow older, there is more laughing but less crying in daily life. 

The decrease of  crying and increase of  laughing might be shaped by social 

interactions and living experience (Brackett, 1934). As adults, crying seems to be 

present only in the company of  close family members and friends, indicating that 

the social function of  crying is crucial but limited to intimate relationships 

(Provine, 2012). Comparing to crying, the occurrence of  laughter can be found in 

almost every conversation and social interaction and conveys positive signals that 

enhance the relationship between laugher and the receiver (Scott, 2013). Laughter 

is described as a ‘social glue’ which maintains intergroup affiliations (McGettigan 

et al., 2015), as it is usually associated with agreement, bonding, appreciation, and 

gratitude (Weisfeld, 1993). 

Laughter is the only vocally expressed positive emotion which has been 

established to be recognised cross culturally (Sauter et al., 2010). In this study, 

several vocal cues were first generated by the European native English speakers 

and by the Himba, which is a remote seminomadic society in northern Namibia 

having little contact with modern Western culture. These emotional vocalisations 

communicating different emotional information including anger, disgust, fear, 

achievement, amusement, sensual pleasure, relief, sadness, and surprise were then 

presented to the UK participants and the Himba. The results demonstrated that 

  20



the basic emotional vocalisations (i.e., fear, sadness, surprise, anger, amusement, 

and disgust) were accurately recognised by the participants in both cultures, and 

the laughter representing joy (i.e., amusement) was the only recognisable vocal 

cue among positive emotional expressions. Other positive vocal cues expressing 

emotions of  relief, sensual pleasure, and achievement were only recognisable 

within each culture but were not cross-culturally identified (Sauter et al., 2010). 

The cross-cultural finding on the successfully bidirectional recognition of  

laughter provide empirical evidence that although laughter begins later than 

crying in human infancy, it can be emerged from evolutionary heritage (Ekman, 

1992a). 

Laughter is not exclusive to humans, as it has been observed in other 

mammals such as rats and chimpanzees (Davila-Ross, Allcock, Thomas, & Bard, 

2011; Panksepp, 2000, 2005; Panksepp & Burgdorf, 1999, 2003; Ross, Owren, & 

Zimmermann, 2009, 2010). Panksepp and Burgdorf  (1999) reported that rats 

produced high frequency ultrasonic vocalisations (i.e., 50k-Hz chirps) when they 

were tickled by experimenters, in which the chirps were identified to resemble 

what the rats vocalised during social play signifying desire of  social interaction 

(Knutson, Burgdorf, & Panksepp, 1998). The manual tickling by experimenters 

was further revealed to be an effective stimulation to induce positive affective 

states in rodents by showing reward-seeking behaviour (Knutson, Burgdorf, & 

Panksepp, 2002; Panksepp & Burgdorf, 1999). It is concluded that in contrast to 

other kinds of  vocalisations with long length and low frequency range signifying 

aversive affective states, the kind of  vocalisations with short length and high 

frequency range observed in young rats demonstrated an ancestral form of  the 

human laughter which can be observed extensively during social play in human 

childhood (Panksepp, 2005). 

In great apes, play panting is often observed during social playing, which 

can be spontaneously generated or as a response to play panting emitted by 

another social partner. In some occasions, play panting can occur by being tickled 

or during chasing (Davila-Ross et al., 2011; Matsusaka, 2004; Ross et al., 2009, 

2010). Play panting was found to appear to prolong ‘fragile’ social playing, as one 

play partner continued performing aggressive behaviour and the play panting 

vocaliser used this kind of  specific panting to encourage positive social 

interactions (Matsusaka, 2004). Play panting was found to be expressed 
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distinctively to serve different purposes (Davila-Ross et al., 2011). The 

expressions were distinguished depending on whether the play pants were 

spontaneously generated or socially elicited. In the latter situation, chimpanzees 

produced play panting to respond to the panting emitted by social partners. Just 

as one function of  laughter in human society has been suggested to be social 

bonding, panting in chimpanzee colonies shares a striking similarity to human 

laughter in that it can signify cooperation and social affiliation. For example, new 

colonies produced more socially elicited panting than old colonies, and in 

contrast, old colonies produced more spontaneous panting than new colonies. 

Furthermore, old colonies produced significantly more spontaneous panting 

compared to socially elicited panting, while on the other hand, no significant 

difference was found in new colonies in terms of  producing different kinds of  

panting. The socially elicited panting was found to be distinctively shorter than 

spontaneous panting, and the playing duration was reported to be maintained 

longer when there was more socially elicited panting involved. The authors 

suggested that the socially elicited panting resembles conversational laughter of  

humans, which encourages social interaction and establishes mutual affiliation 

(Davila-Ross et al., 2011). 

1.4 Perceiving emotional information in social contexts 

1.4.1 Appraisal theory and social norm 

Perceiving emotional information can automatically elicit a process of  evaluation 

in perceivers’ minds (Moors, Ellsworth, Scherer, & Frijda, 2013). The process is 

proposed as a series of  appraisal which directs perceivers to prepare appropriate 

reactions to emotional stimuli (Scherer, 2001). According to Scherer’s appraisal 

theory (2001), perceivers consciously or unconsciously appraise emotional stimuli 

on the basis of  relevance, implications, coping potential and normative 

significance. It states that perceivers constantly process external or internal events 

to evaluate their relevance and whether they deserve to be further processed; 

perceivers assess possible implications which can be caused by emotional stimuli 

and assess the extent to which affect the perceivers’ survival in an uncertain 

environment; perceivers determine what types of  responses are available under 
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different situations to coping with emotional stimuli; perceivers evaluate external 

and internal standards based on social or cultural norms related to emotional 

stimuli, and then determine an appropriate emotional reaction. The appraisal 

theory suggests that an emotional reaction is not merely a certain response 

corresponding to a certain stimulus, but a process depending on perceivers’ 

personal experience, self-concepts, and social rules which perceivers valued 

(Ellsworth & Scherer, 2003).  

Emotional expressions are delivered and received when both senders and 

receivers follow ‘display rules’ embedded in social norms (Ekman & Friesen, 

1975). Social norms which govern how, when and what emotions individuals 

should express (Ekman, 2003). To acquire knowledge of  display rules, individuals 

need to firstly be able to ‘read’ emotions beyond appearance. Pre-schoolers are 

found to be able to distinguish real (internal) emotions from apparent emotions 

expressed by adults, showing that 3- to 5-year-old children are developing abilities 

to understand that the meaning of  emotional expressions are dependent on 

social contexts (Banerjee, 1997). The ability to recognise emotions which are 

socially contextualised keeps developing during adolescence (Blakemore, 2008). 

By developing social cognitive abilities, adolescents are building up competence 

of  understanding others’ emotions during complex social situations (Burnett & 

Blakemore, 2009). Simultaneously, adolescents are undergoing structural and 

functional brain development which can result in hypersensitivity to peer 

influence (Ahmed, Bittencourt-Hewitt, & Sebastian, 2015) and vulnerability to 

social rejection (Sebastian et al., 2011). These ongoing changes are suggested to 

contribute to adolescents’ impulsive behaviour in which adolescents intend to 

follow group norms for obtaining peers’ in-group approval (Burnett, Sebastian, 

Cohen Kadosh, & Blakemore, 2011). Recognising emotions and learning an 

appropriate reaction to an emotional event under various social contexts play 

central roles in human life. 

Laughter and crying are social emotions constrained by emotional display 

rules built in cultures. For example, although laughter is mostly observed in social 

interactions, showing affiliations and affection between group members (Scott, 

Lavan, Chen, & McGettigan, 2014), laughter can also signal disapproval, 

schadenfreude, or taunting depending on distinct social contexts. On the other 

hand, crying can be a strong negative emotional expression signalling distress and 
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sadness, but it can also be used as an expression of  joyfulness (e.g., winning a 

gold medal in tennis matches). Humans so far are the only animals to our 

knowledge who shed emotional tears (Provine, 2012), however the frequency of  

shedding tears is found to be associated with cultural differences. Specifically, a 

culture which is more open to self-disclosure and less restrict to display rules is 

more likely allowing individuals to shed emotional tears (van Hemert, van de 

Vijver, & Vingerhoets, 2011). Shedding tears can also induce complex emotional 

reactions in receivers who can be willing to help and feeling more connected to 

the tearful individual but also perceive them as less competent (van de Ven, Meijs, 

& Vingerhoets, 2017; Vingerhoets, van de Ven, & van der Velden, 2016). This 

complex emotional reaction toward tearful individuals can reflect appraisal 

process in perceivers’ minds including whether the situation is relevant enough 

for further actions or whether the weeping behaviour violates display rules in a 

culture (Vingerhoets, Cornelius, Van Heck, & Becht, 2000).  

1.4.2 Theory of mind  

Theory of  mind is the ability to infer other’s mental states and this mentalising 

ability is proposed to be a crucial psychological process underlying social 

interactions, as it enables individuals to interpret perceived emotions, intentions, 

behaviour, etc. Saxe and Kanwisher (2003) conducted an experiment 

investigating neural substrates activated in the process of  reasoning others’ 

minds. The study found robust and reliable brain activation in the temporo-

parietal conjunction (TPJ) that is selectively response to mentalising another 

human’s mental state under social contexts, compared with reasoning nonhuman 

objects or reasoning another human’s mind under non-social situations.  

 It is suggested that there is a partially overlapping relationship between 

emotion perception and the ability of  reasoning others’ mental states (Mitchell & 

Phillips, 2015). Perceiving emotions is proposed to involve a lower-level 

emotional information processing, and reasoning others’ mind involves a higher-

level cognitive processing. When perceivers need to decode social meanings of  a 

complex emotional expression (e.g., sarcasm), the two processes converge to 

subserve a multi-level processing of  information about people. Although some 

models (e.g., information processing approach) view emotion perception as a 
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precedent for mentalising other’s emotional and intentional states (Corrigan, 

1997), it is argued that they share common components (Mitchell & Phillips, 

2015). There are also several candidate brain areas suggested to play roles in the 

overlapping relationship including medial and lateral prefrontal cortex, temporal 

pole, and TPJ (Frith & Frith, 2006; Hervé, Razafimandimby, Jobard, & Tzourio-

Mazoyer, 2013; Mitchell & Phillips, 2015).  

1.5 Functional neural imaging studies of laughter and crying 

Only a few studies have investigated neural correlates underlying the production 

of  laughter, and yet no studies to our knowledge have investigated the neural 

activations during the production of  crying by healthy adults. For the 

investigation of  producing laughter, Wattendorf  et al. (2013) conducted a 

functional imaging study while participants laughed in the scanner. During 

tickling conditions, the participants were either instructed to inhibit laughter or to 

allow laughter during tickling. In further conditions the participants were 

instructed to produce laughter voluntarily without being tickled. There were 

highly similar regions identified in producing tickling laughter and voluntary 

laughter. However, when the participants inhibited laughter, the degree of  

involvement of  lateral sensorimotor regions was greater than in the conditions 

when participants were allowed to burst into laughter or to laugh voluntarily. 

Moreover, in the same study the engagement of  the lateral sensorimotor cortices 

was also shown when producing voluntary laughter and tickling laughter. The 

role of  the lateral sensorimotor system is proposed to be involved in the 

production of  laughter and in the inhibition of  uncontrolled laughter. 

In the neural correlates of  laughter production demonstrated by 

Wattendorf  et al. (2013), the lateral hypothalamus, parietal operculum, the 

amygdala, and right cerebellum increased activity during producing tickling 

laughter compared with producing voluntary laughter. Furthermore, activation of  

the periaqueductal gray matter (PAG) was observed during voluntary and tickling 

laughter but was absent during the condition of  inhibiting laughter, thus the PAG 

area is proposed to act as a coordinating centre in the process of  producing 

laughter. 
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Aside from tickling laughter and voluntary laughter, laughter has been 

suggested to have different types of  expressions which can be correctly 

recognised by perceivers (Szameitat et al., 2009). The perception of  tickling and 

other types of  laughter (i.e., taunting and schadenfreude) was found to activate 

partly distinct brain regions, in which the right STG was suggested to be 

modulated by complex acoustic properties of  tickling laughter, and the anterior 

rostral medial frontal cortex (arMFC) was proposed to be sensitive to other types 

of  laughter associated with social saliency (Szameitat et al., 2010). 

 Gervais and Wilson (2005) suggested that there are two different kinds 

of  laughter derived from biological and evolutionary basis: involuntary laughter, 

which is described to be spontaneous and automatic, and voluntary laughter, 

which is depicted as a volitional vocalisation mostly appearing in the context of  

social play. In a recent review, laughter is evidently shown as a complex vocal cue 

which is distinct from speech by having rapidly intercostal muscle movements 

and minimal supra-laryngeal modulation. On the other hand, laughter signals 

emotional intensity conveyed by the degree of  its voluntary control, and listeners 

can decode different degree of  involuntariness by either engaging in the similar 

emotional experience or by inferring mental states of  others during social 

interaction (Scott, Lavan, Chen, & McGettigan, 2014). 

Vocal crying in adults has received little attention in the research field. 

Although vocal laughing and crying develop from early infancy and both 

vocalisations preserve some degree of  contagiousness, the frequency of  vocal 

crying decreases with age and is replaced by tearful faces for expressing sadness 

(Provine, 2012). Crying behaviour in adults is observed to occurs much less than 

laughing, however it is a prominent behaviour for soliciting assistance and to 

elicit perceivers’ prosocial behaviour (Hendriks et al., 2008; Provine, 2012; 

Vingerhoets & Bylsma, 2016). Studies have shown that perceivers rated tearful 

faces as warmer but less competent (van de Ven et al., 2017), and crying faces 

were perceived as less aggressive and less emotionally stable compared to other 

expressions such as angry and fearful faces (Hendriks & Vingerhoets, 2006). 

A study discovered that when authentic laughter and crying sounds 

accompanied by emotional facial expressions were simultaneously shown to 

participants, the information of  facial expressions was automatically integrated in 
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the process of  evaluation even though they were requested to evaluate the 

valence of  the vocalisations  (Lavan, Lima, Harvey, Scott, & McGettigan, 2015). 

The underlying neural correlates of  perceiving laughter and crying was reported 

that the auditory cortex, amygdala, and insula were more active in perceiving 

laughter and crying compared with perceiving the same vocalisations but in a 

time-reversed form (Sander & Scheich, 2001, 2005). 

Although neuroimaging studies investigating laughter and crying in 

healthy adults are relatively rare, it is worth noting that these two vocalisations 

have been studied in patients from the last century. More literature will be 

reviewed in the next sections. 

1.6 Neurobiology of pathological laughing and crying 

1.6.1 Pathological laughing and crying 

Both laughter and crying are—uniquely—associated with clinical, pathological 

production disorders, in which they are produced in an uncontrolled and 

inappropriate fashion. Other non-verbal emotional expressions (e.g., disgust, fear) 

are not frequently described in conditions where their production is 

inappropriate or uncontrolled. In pathological laughter and crying, which can 

occur separately or together, the production is inappropriate, involuntary, and 

may or may not be linked to affective states. 

Pathological laughing and crying (PLC) is a symptom of  involuntary 

emotional expression disorder (IEED), in which patients express 

disproportionate or inappropriate laughter and/or crying in response to evoking 

stimuli. Wilson (1924) first described PLC as uncontrollable emotional displays 

which were dissociated from underlying mood. A model of  emotional expression 

regulation which involved dual pathways for voluntary control and involuntary 

control was described to account for PLC. Voluntary control is associated with 

volitional motor pathways which allow voluntary emotional expressions, while 

involuntary control is driven by emotional motor pathways and can be inhibited 

by the voluntary pathway (Wilson, 1924). PLC is viewed to be abnormal function 

of  a volitional motor pathway which disinhibits activities of  emotional motor 
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pathways. The functions of  these two pathways can be seen in cases of  

emotional facial paresis (EFP) and volitional facial paresis (VFP). EFP patients 

can express emotions voluntarily but cannot produce normal involuntary 

emotional expressions, such as not laughing when told a joke. In contrast, VFP is 

observable when a patient cannot express emotions when instructed, but their 

emotional expressions driven by involuntary emotional impulses are preserved. 

Both VFP and EFP patients have concurrent affective states that are consistent 

with the emotional stimuli, but only the EFP patients were unable to involuntarily 

express emotions. According to this theoretical model, when the volitional motor 

pathway is damaged, PLC patients would involuntarily express emotions which 

can be evoked by inciting stimuli regardless of  consistency to the emotion, and 

they are unable to terminate the disproportionate or inappropriate expression. 

A second subtype of  IEED is known as emotional liability (EL), which 

had its first diagnostic criteria detailed by Cummings et al. (2006). Similar to PLC, 

EL patients suffer from disproportionate or inappropriate episodes of  laughter 

and/or crying. However, the expressions are disproportionate to inciting stimuli. 

In contrast to PLC, EL patients express uncontrollable emotions consistent with 

underlying mood. However, although a considerable number of  cases of  PLC 

syndrome have been reported since 1924, terminological confusion is apparent in 

the literature between PLC and EL as IEED subtypes (Lauterbach, Cummings, 

& Kuppuswamy, 2013). In the paper by Lauterbach et al. (2013), 655 citations 

were found when researching IEED-related topics, and only 20 were specified 

with PLC, 35 with PL, and only 12 papers reported PC; the others incompletely 

specified the IEED subtypes. 

In terms of  the underlying neurobiology of  IEED, a wide variety of  

brain lesions have been found to be associated with PLC (Lauterbach et al., 

2013). Wilson (1924) outlined the difficulties of  deciphering the underlying 

mechanism of  PLC, “Hopeless as it is to disentangle specific mechanism from 

widespread disorders of  function entailed by equally widespread lesions” (p. 319). 

In addition to Wilson’s nine cases, Lauterbach et al. (2013) thoroughly reviewed 

studies over the past decades and their results determined that PLC-associated 

widespread lesions can be found in various brain abnormalities, such as strokes, 

tumours (e.g., Achari & Colover, 1976), multiple sclerosis (MS) (e.g., Haiman, 

Pratt, & Miller, 2008), Parkinson’s disease (e.g., Petracca, Jorge, Acion, Weintraub, 
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& Robinson, 2009), and amyotrophic lateral sclerosis (ALS) (e.g., Gallagher, 

1989). These lesions can be found in multiple brain regions and are also 

associated with degeneration of  multiple brain functions, which further 

complicates any anatomic attribution. 

However, despite the wide range of  damaged brain areas observed in 

PLC patients, papers which specified PL, PC, or PLC may still guide our 

understanding of  the differences/commonalities in the neural mechanisms that 

underlie the syndromes of  pathological laughter and/or crying. 

1.6.1.1 Neurodegenerative diseases 

Damage to central neural system 

Amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) are 

neurodegenerative diseases which selectively affect central neural system 

function, and both diseases can be accompanied by PLC syndrome. ALS is a 

motor neurone disease which impacts the motor components of  the spinal cord 

and bulbar areas (i.e., the midbrain, pons, medulla, cerebellum). This 

corticobulbar disease weakens the voluntary control of  patients, and the 

prevalence of  PLC is reported to be 49% of  the ALS patient population 

(Lauterbach et al., 2013). Since ALS is an age-related disease, the cause of  PLC 

has been related to the ageing brain (Gallagher, 1989). However, Gallagher (1989) 

concluded that the origin of  PLC in ALS patients may be due to the bulbar palsy 

rather than due to solely age-related changes. 

MS is also a neurodegenerative disease in which the corticospinal tract is 

mainly affected. By comparing lesion areas between MS patients with (n =14) 

and without (n = 14) PLC syndrome who were all distinct from comorbid mood 

disorder, Ghaffar, Chamelian, and Feinstein (2008) identified neuroanatomical 

correlates of  PLC which were damaged in MS-PLC patients but remained intact 

in the non-PLC MS patients. Discrete differences in lesion volume were noted in 

six brain areas: brainstem, bilateral medial inferior frontal areas, bilateral inferior 

parietal areas, and right superior medial frontal area (i.e., superomedial M1). The 

distinct distribution of  lesions identified in MS-PLC from non-PLC MS 

implicates the association of  a network of  regions with PLC, which supports the 

bulbar involvement and the prefrontal dysfunction that were demonstrated in 
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ALS-PLC patients but not in non-PLC ALS patients. The PLC group and the 

non-PLC group both have damage to the corticospinal tract, however the MS 

patient who acquired PLC showed more lesions in the superomedial M1. The 

lesion in the parietal lobe is considered to be part of  a putative neural network, 

which is a feedback loop running between the amygdala and medial inferior 

frontal regions. This circuit is proposed to mediate an involuntary component of  

emotional expressions, which receives input from primary sensory association 

areas in the parietal lobe and sends projections to the brainstem and 

hypothalamus (Mega, Cummings, Salloway, & Malloy, 1997). 

MS and ALS patients were having impairments in the corticospinal and in 

the corticobulbar track respectively. These tracks both originate from the cerebral 

cortex including the primary motor cortex, premotor cortex, supplementary 

motor area, post central gyrus, and parietal cortex. The fibres of  both tracks 

travel through the internal capsule, midbrain, pons, and then to the medulla. 

While the corticospinal track terminates at different levels of  the spinal cord, the 

corticobulbar track terminates in the brainstem. Along these two tracks from 

cerebral motor areas to subcortical areas, not only ALS and MS patients were 

frequently found to have PLC syndrome, other lesions which include these areas 

can also be accompanied by PLC syndrome. For example, patients with lesions in 

the pons (Arif, Mohr, & Elkind, 2005; Elyas, Bulters, & Sparrow, 2011), midbrain, 

and cerebellum (Parvizi, Anderson, Martin, Damasio, & Damasio, 2001) were 

found to have PLC as secondary symptoms. 

Dysfunctions in prefrontal regions 

The presence of  PLC in ALS and MS patients both appears to be associated with 

impairment in the functional integrity of  the prefrontal cortex. McCullagh et al. 

(1999) used the Wisconsin Card Sort Test (WCST) to probe dorsolateral 

prefrontal function between ALS-PLC patients and ALS non-PLC patients 

regarding performance. Patients with PLC made significantly more total errors 

on the WCST than the other two groups, which suggested that besides the 

primary motor and its descending tract possibly contributing to the development 

of  PLC syndrome, the dorsolateral prefrontal cortex dysfunction may also play a 

role. 
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The prefrontal dysfunction was also demonstrated to be involved in MS-

PLC patients who performed worse than non-PLC MS patients on the Stroop 

Task and the Controlled Oral word Association Test (COWAT) (Feinstein, 

O’Connor, Gray, & Feinstein, 1999), and the significant difference further 

supports a possible relationship between the prefrontal function and PLC 

syndrome which was identified in the ALS patients. However, PLC and non-PLC 

MS patients did not perform differently on the Wisconsin Card Sort Test 

(WCST) which is also a typical test of  the prefrontal function. The authors 

suggested that it is because the WCST although is sensitive to the prefrontal 

function, it is not a timed task. Patients with PLC appear to have relatively greater 

difficulties with speed of  information processing than the non-PLC MS group. 

Because this slow cognitive processing is considered one of  the hallmarks of  

subcortical dementia, the authors proposed that this is due to additional 

subcortical lesions. However, the plausibility of  this proposed explanation is 

unable to be validated since the fMRI data is absent in the study. 

1.6.2 Pathological laughing 

The subcortical lesion areas observed in PLC literature greatly overlap with lesion 

areas in patients found to have selectively pathological laughing syndrome, such 

as the brainstem (e.g., Gallagher, 1989) and cerebellum (e.g., Parvizi & Schiffer, 

2007). The internal capsule is a part of  the corticobulbar tract where the tract 

descends through it to the midbrain, and when the internal capsule was damaged, 

patients were found to have  aemoglo prodromique—crazy/forced laughter—in 31

many cases (e.g., Ceccaldi & Milandre, 1994). The pulvinar and thalamic nuclei 

was another brain site which, when damaged, patients were found to have 

pathological laughing (e.g., Lauterbach, Price, Spears, Jackson, & Kirsh, 1994). 

Patients reported to have more cortical lesions are more likely to develop 

pathological laughing rather than PLC. Mendez, Nakawatase, and Brown (1999) 

reported a patient with lesions in bilateral orbitofrontal areas and anterior 

cingulate gyrus who suffered from PL for 20 years. Tsutsumi, Yasumoto, and Ito 

(2008) reported a patient with a tumour in the right frontal lobe involving 

premotor cortex, who developed PL three months after the onset of  hemiparesis. 

After surgery, the PL syndrome disappeared. In this case, the brainstem, 
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thalamus, hypothalamus, cerebellum, and internal capsule were undamaged. 

Schmitt et al. (2006) stimulated the supplementary sensorimotor area and lateral 

premotor cortex in two patients for pre-surgical epilepsy evaluation and reported 

that laughter was generated in absence of  emotional content. 

Wilson (1924) proposed that the origin of  the anterior corticospinal tract, 

from the frontal operculum and lower end of  the precentral gyrus, is considered 

as a ‘voluntary control centre’ of  emotional expression. Furthermore, PLC 

syndrome was suggested to occur when the descending pathway from the frontal 

operculum to the cerebellum and to the basis pontis was disrupted (Parvizi et al., 

2001). However, the exact role of  the frontal areas in the PLC mechanism 

remains unclear. Previous studies showed that PLC patients had more difficulties 

than non-PLC patients in performing the cognitive tasks which are sensitive to 

prefrontal function, and the lesions in the frontal lobe and the speromedial M1 

were more severe in the MS-PLC group than in the non-PLC MS group. 

Furthermore, the focal frontal lesions can be found in the patients who 

selectively acquired pathological laughing, suggesting that the region may play a 

specific role in generating laughter. 

1.6.3 Pathological crying 

A more limited network of  subcortical regions is associated with pathological 

crying. Pathological crying has been observed in patients with lesions in the 

brainstem (e.g., Andersen, Ingeman-Nielsen, Vestergaard, & Riis, 1994), internal 

capsule (Bharathi & Lee, 2006), midline cerebellar cyst (Parvizi & Schiffer, 2007), 

and bulbar components (Gallagher, 1989) and has been observed in patients with 

diseases such as Parkinson’s disease (Petracca et al., 2009) and Machado-Joseph 

disease (Guimarães, Bugalho, & Coutinho, 2008). 

Parkinson’s disease (PD), as a degenerative disorder of  the central 

nervous system, mainly affects the motor system. Petracca et al. (2009) 

investigated 131 PD patients and found 22 with pathological crying and 15.3% 

comorbid with depression. In addition, not only PC syndrome was identified in 

PD patients, but also the syndrome was found to be associated with the severity 

of  PD. However, the anatomic attributions of  PC were difficult to identify in PD 

patients due to multiple damaged regions. 
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The Pathological crying was also shown when the patient had been 

deeply stimulated in the subthalamic-thalamic region (Okun et al., 2004) and the 

internal capsule (Low, Sayer, & Honey, 2008). So far from the literature, PC is 

very different from the PLC and PL syndromes, in which the latter two 

syndromes were reported with a wide variety of  lesions in the cortical and/or 

subcortical areas. 

1.6.4 Gelastic and dacrystic seizures 

Gelastic (laughing) and dacrystic (crying) seizures are rare types of  epileptic 

syndromes and frequently reported when patients have hypothalamic 

hamartomas (HH) (Kahane, Ryvlin, Hoffmann, Minotti, & Benabid, 2003). 

These patients suffer from laughter (i.e., gelastic) and/or crying (i.e., dacrystic) 

attacks for seconds to a minute once or several times a day without 

accompanying mirth or sadness. HH are rare tumour-like developmental 

malformations which occur in the region of  the inferior hypothalamus, which is 

suggested to play a crucial role in the gelastic and dacrystic seizures. When the 

HH was removed from patients, they were reported to be seizure free after 

surgery (Kahane et al., 2003). Kahane et al. (2003) investigated five patients with 

gelastic and/or dacrystic seizures associated with HH, and four of  the five 

patients were recorded using stereotactic intracerebral EEG (SEEG) during 

seizures. After the HH discharges, these recordings also showed subtle cortical 

EEG changes recorded over the two cingulate gyri (gelastic), the right fronto-

centro-temporal regions (dacrystic), and the right orbito-cingulate cortex (mixed). 

In contrast, the recordings of  the fourth patients (gelastic) were mainly observed 

to occur at the cortical level (i.e., the left cingulate gyrus and the left 

hippocampus), whereas the changes recorded in the HH were subtle. The 

authors suggested that the cortical EEG changes were due to a spread of  seizure 

activity from the HH to the cortex, regardless of  the epileptic types(gelastic or 

dacrystic seizures). The evidence so far indicated that the hypothalamus is highly 

associated with gelastic and/or dacrystic seizures. However, there might be a 

closer relationship between HH and gelastic/dacrystic seizures (Parvizi et al., 

2011) than the relationship between HH and pure dacrystic seizures (Blumberg et 

al., 2012). 
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Parvizi et al. (2011) reviewed 100 patients with HH and gelastic seizures. The 

lesion sites in all patients were confined to mammillary bodies in the posterior 

hypothalamus. 32 of  the 100 patients with pure gelastic seizures had longer 

durations of  epilepsy than the rest of  the patients who had multiple types of  

seizure. In the review, no dacrystic seizure was mentioned. However, the limited 

presence of  dacrystic seizures may be due to the intrinsically scarce number of  

cases.  Blumberg et al. (2012) reviewed 6851 patients admitted to EEG long-

term monitoring studies (i.e., at least 12 hours) in five epilepsy centres. The 

authors found nine cases with dacrystic seizures which resulted in a 0.13%, 

frequency of  dacrystic seizures, and even when the authors included patients 

reported to have dacrystic seizures since 1990, the frequency was still considered 

to be low (i.e., <0.5%). In the nine cases the authors reviewed, five patients with 

gelastic and daceystic seizures were all found to be associated with HH, however 

three of  the four patients with pure dacrystic seizres were found to have mesial 

temporal sclerosis (MTS). The fourth dacrystic patient was found to have left 

frontal glioblastoma. Although the HH and MTS were both reported to be 

common substrates underlying dacrystic seizures (Tatum & Loddenkemper, 

2010), mesial temporal regions seem more likely to be associated with the pure 

dacrystic seizures. 

In conclusion, few points can be addressed from the review of  

comparing the neural substrates underlying the PLC, PL, and PC. Firstly, damage 

to the corticobulbar and the corticospinal tracts accompanying by the 

dysfunction in the prefrontal regions can likely lead to PLC syndrome, rather 

than to the pure form of  PL or PC. Secondly, PL seems to show well localised 

areas in the M1 and frontal regions associated with the syndrome. Thirdly, cases 

of  PC are the rarest found in the IEED syndrome, in addition the PC has more 

opportunities to be found in patients identified only with damages to the 

subcortical regions. However, PC as the rarest case reported, which can be due to 

the syndrome is likely closely linked to emotional liability, so complicated PC 

cases were excluded from our review. Finally, patients with epileptic seizures can 

be found other cortical regions showing abnormal neural activities which were 

infrequent identified in other kinds of  patients (e.g., MS, ALS). 

Although the current experiments in this thesis only focus on the 

perception of  laughter and crying, the knowledge of  similarities and 
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dissimilarities reviewed on the patient studies can pinpoint the possible areas 

which are highly associated with the perception of  laughter and crying. 

Moreover, it can provide beneficial information to understand the underlying 

mechanism of  involuntary and voluntary pathways. 
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Chapter 2 Aims of the thesis 

The aims of  the thesis are to explore underlying processes involved in the 

perception of  laughter and crying, and to determine whether similar 

psychological processes are involved in perceiving laughter and in perceiving 

crying, and how this is affected by differences between involuntary and voluntary 

vocalisations. There are three distinct approaches used in this thesis: behavioural 

rating tasks, physiological responses recordings, and neuroimaging techniques. 

The first experiment took place at the Science Museum in London. By 

collecting behavioural data from a large number of  participants with various 

backgrounds and ages, we aim to find out developmental trajectories of  

perceiving these emotional vocalisations (see Chapter 4). 

The second experiment used pupillometry to understand the 

physiological responses to these emotional vocalisations, in which the technique 

can provide us a continuous index of  the perception with high temporal 

resolution measure of  the underlying biological changes (see Chapter 5). 

The third experiment used neuroimaging technique to further investigate 

the neural correlates underlying the perception of  laughter and crying, and we 

aim to understand the inconsistent results derived from the behavioural rating 

tasks and the physiological response recordings (see Chapter 6). 



Chapter 3 Materials preparation 

3.1 Emotional stimuli 

We recorded voluntary and involuntary exemplars of  laughter and crying from 

six adults who were not professional actors (aged between 23 to 46 years; three 

females). Recordings were generated in a sound-proof, anechoic chamber at 

University College London. Stimuli were recorded with a Bruel Kjaer 2231 Sound 

Level Meter on a digital audio tape recorder (Sony 60ES; Sony UK Limited, 

Weybridge, UK) and fed to the S/PDIF digital input of  a PC sound card (M-

Audio Delta 66; M-Audio, Iver Heath, UK). Speakers were always asked to 

produce voluntary vocalizations before involuntary vocalisations. This practice 

aimed to avoid any effect of  the emotional states associated with involuntary 

vocalisations on the production of  voluntary vocalisations. To produce voluntary 

vocalisations, speakers were asked to generate vocalisations without external 

stimulation and in the absence of  an underlying emotional state. The procedures 

for involuntary laughter and involuntary crying were different. To elicit 

involuntary laughter, each speaker was shown funny videos on a computer screen 

and with headphones, using videos that were previously identified as amusing by 

the speakers (Lavan et al., 2015; McGettigan et al., 2015). The participants 

described the emotional experience during and after the recording session of  

involuntary laughter as delightful and each participant confirmed that they had 

been laughing spontaneously. Because it is difficult to create an experimental 

situation that would induce an emotional state of  sadness for all participants, 

speakers were asked to think about negative events (i.e., personal loss or tragedy) 

that could induce a sad mood in order to evoke involuntary crying. As a result of  

this negative emotional experience by self-induction, speakers reported feeling 

sorrowful and sad. Recording sessions lasted around one hour per speaker. 
  37



The raw audio files were downsampled at a rate of  44100 Hz to 

mono.wav files with 32-bit resolution. Individual files were prepared for each 

vocalisation from each speaker by visually identifying the onset and offset of  

each event in the oscillograms. All files were then normalised for root-mean-

square (RMS) amplitude using PRAAT (Boersma & Weenink, 2015). Fifty tokens 

were extracted per category (200 in total) and submitted to pilot perceptual 

validation (average duration = 2.51 seconds; SD = 0.36; range = 1.7 – 3.14). 

Thirty native British speakers took part in the pilot experiment (average 

age = 24.93 years; SD = 4.77; range = 19 – 38; 16 females; none of  these 

participants took part in the main study). They were asked to rate each of  the 200 

stimuli on four different parameters using the following 7-point Likert scales: 

authenticity, emotion, and control. These rating scales corresponded to separate 

blocks, and the order of  the blocks was counterbalanced across participants. For 

authenticity ratings, participants rated the extent to which the emotional sound 

reflected a genuinely-felt emotion (‘Does the sound reflect a genuinely-felt 

emotion?’ 1 signified posed: the speaker was not feeling the emotion and 7 

signified genuine: the speaker was genuinely feeling the emotion). Participants 

were informed that half  of  the sounds were genuine and half  were posed. For 

emotion ratings, participants rated the extent to which the emotional sound 

expressed happiness or sadness (‘Does the sound express happiness or sadness?’ 

1 signified that the person was very sad, and 7 signified that the person was very 

happy). For frequency ratings, participants rated the extent to which the 

emotional sounds are heard in everyday life (‘How frequently do you hear these 

sounds in your everyday life?’ 1 signified very rarely, and 7 signified very often). 

Finally, for control ratings, participants rated the extent to which the speaker 

could control the vocalisation or not (‘Can the speaker control the expression?’ 1 

signified that the speaker was in control while 7 signified that the speaker was not 

in control). Although response latencies were not measured, participants were 

encouraged to be as quick as possible; they had up to three seconds to respond 

after the stimulus’ offset. The order of  stimuli was randomized in each block and 

responses were collected via keyboard presses. Stimuli were presented using 

laptops with MATLAB (version R2012b, Mathworks, Sherborn, MA, USA) and 

the psychophysics toolbox (Brainard 1997; Pelli 1997), and played via high-quality 

headphones (Sennheiser Porfessional HD 25-II). 
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A 2x2 ANOVA was conducted for each scale, with expression (laughter/

crying) and involuntariness (involuntary/voluntary) as repeated-measures factors. 

On the authenticity scale, involuntary vocalisations (M = 4.58, SD = 0.67) were 

rated higher (i.e., more authentic) than voluntary vocalisations (M = 3.31, SD = 

0.45; main effect of  involuntariness: F[1,29] = 102.257, MSE = .47, p <. 001,   

= .779). The main effect of  expression was also significant, indicating that 

laughter (M = 4.48, SD = 0.53) was generally rated as more authentic than crying 

(M = 3.42, SD = 0.72; F[1, 29] = 41.971, MSE = .801, p < 0.001,   = .591). The 

interaction was also significant (F[1, 29] = 32.353, MSE = .184, p < 0.001,   = .

527), indicating that the difference between involuntary crying and voluntary 

crying in perception of  authenticity was smaller than the difference between 

involuntary laughter and voluntary laughter. A follow up pairwise comparison 

was conducted for each expression to test whether the authenticity ratings of  

involuntary vocalisations differed from voluntary vocalisations. Involuntary 

laughter (M = 5.33, SD = 0.72) was rated higher than voluntary laughter (M = 

3.62, SD = 0.78; t(29) = 8.91, p < .001), and involuntary crying (M = 3.82; SD = 

0.80) was rated higher than voluntary crying (M = 3.00; SD = 0.72; t(29) = 10.08, 

p < .001) (Fig. 3.1). 

Figure 3.1 Authenticity ratings of the four conditions 
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On the emotion scale, laughter (M = 5.59, SD = 0.48) was generally rated 

more positively than crying (M = 2.42, SD = 0.40), as expected (main effect of  

expression: F[1,29] = 612.001, MSE = 301.470, p < .001,   = .955). Involuntary 

expressions (M = 4.21, SD = 0.35) were also rated more positively than voluntary 

expressions (M = 3.81, SD = 0.25; main effect of  involuntariness: F[1,29] = 

69.986, MSE = 4.956, p < .001,   = .707). A significant interaction (F[1,29] = 

40.919, MSE = 3.942, p < .001,   = .585) suggests that involuntary laughter (M 

= 5.98, SD = 0.54) was perceived more positively than voluntary laughter (M = 

5.21, SD = 0.53; t(29) = 9.497, p < .001), while there was no difference between 

involuntary crying (M = 2.45, SD = 0.42) and voluntary crying (M = 2.40, SD = 

0.46; t(29) = .649, p = .522) (Fig. 3.2). 

Figure 3.2 Emotion ratings of the four conditions. 

On the frequency scale, only the main effect of  expression was found 

significant; that is, laughter (M = 4.45, SD = 0.90) was reported to be heard more 

often in everyday life than crying (M = 2.08, SD = 0.62; F[1,29] = 161.951, MSE 

= 1.039, p < .001, ŋp2= .848). The main effect of involuntariness was found not 
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significant on the frequency scale, which suggests that involuntary vocalisations 

(M = 3.34, SD = 0.65; involuntary laughter: M = 4.48, SD = 0.95; involuntary 

crying: M = 2.21, SD = 0.63) were not heard more frequently than voluntary 

vocalisations (M = 3.19, SD = 0.64; voluntary laughter: M = 4.43, SD = 1.10 ; 

voluntary crying: M = 1.96, SD = 0.64; F[1,29] = 2.245, MSE = .710, p = .145, 

ŋp2 = .072). There was also no significant interaction between expression and 

involuntariness (F[1,29] = 1.471, MSE = .320, p = .235, ŋp2 = .048) (Fig. 3.3). 

Finally, on the control scale, involuntary vocalisations (M = 5.02, SD = 

0.58) were rated as sounding like the speakers were in control of  the expression 

voluntary vocalisations (M = 3.61, SD = 0.44; main effect of  involuntariness, 

F[1,29] = 184.320, MSE = 60.080, p <. 001,   = .864). The main effect of  

expression was not significant (laughter: M = 4.43, SD = 0.42; crying: M = 4.20, 

SD = 0.76; F[1,29] = 2.059, MSE = 1.553, p =. 162,   = .066), which indicates 

that the participants perceived no difference between laughter and crying in 

terms of  control or lack thereof  by the speakers. However, a significant 

interaction (F[1,29] = 57.510, MSE = 11.508, p <. 001,   = .751) suggests that 

Figure 3.3 Frequency ratings of the four conditions
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the difference between involuntary laughter (M = 5.45, SD = 0.60) and voluntary 

laughter (M = 3.41, SD = 0.61; t(29) = 13.115, p < .001) was perceived as 

showing greater differences in speaker control than the difference between 

involuntary crying (M = 4.60,  SD = 0.81) and voluntary crying (M = 3.80, SD = 

0.77; t(29) = 9.923, p < .001) (Fig.3.4). 

Figure 3.4 Control ratings on four conditions. 

3.2 Main studies 

For the following experiments, 20 tokens were selected for each condition from 

the pilot dataset (80 in total). For the involuntary laughter and involuntary crying 

conditions, we selected the most highly-rated tokens on the authenticity scale. All 

samples of  involuntary laughter were rated above the mid-point of  the scale (i.e., 

above four) (M = 5.80; SD = 0.45; range = 4.833 –  6.50) while the samples of  

involuntary crying were mostly rated above 4 (only three of  20 stimuli were 
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below four, M = 4.47; SD = 0.47; range = 3.885 – 5.310). These two groups of  

involuntary emotional vocalisations were rated differently based on the 

authenticity scale (t(38) = 9.134, p < .001), which may reflect basic differences 

between these stimuli (Fig. 3.5). For the voluntary laughter and crying conditions, 

the tokens that received the lowest ratings on the authenticity scale were selected; 

they were all rated below the mid-point of  the scale (i.e., below four) (laughter: M 

= 3.299, SD = 0.426, range = 2.433 – 3.933; crying: M = 2.638, SD = 0.787, 

range = 1.033 – 3.900). These two groups of  voluntary tokens were also rated 

differently on the authenticity scale (t(38) = 3.295, p = .002) (Fig. 3.5). In each 

condition, half  of  the tokens were produced by male speakers and half  by female 

speakers. The stimuli were matched for duration across conditions (involuntary 

laughter: M = 2.530 seconds, SD = .385; voluntary laughter: M = 2.382 seconds, 

SD = .362; involuntary crying: M = 2.649 seconds, SD = .265; voluntary crying: 

M = 2.486, SD = .375), and no significant difference in duration was found 

(main effect of  expression: F[1,19] = 2.541, p = .127,   = .118; main effect of  

authenticity: F[1,19] = 3.107, p = .094,   = .141; interaction: F[1,19] = .015, p = .

904,   = .001). 
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Figure 3.5 Authenticity ratings of the selected 80 stimuli 
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Chapter 4 The Science Museum Project 

4.1 Introduction 

Over our life span, we experience different emotions and continuously change 

the way we express and respond to emotions. As we grow older, we learn to 

modulate the expression of  our emotions according to the social context. Not 

only do our emotional expressions evolve, but we also learn to understand and 

react to the emotional vocalisations made by others. 

The ability to recognise facial emotions develops early in life. During 

infancy, 4-month-old infants are able to distinguish smiling and frowning facial 

expressions (Barrera & Maurer, 1981). Hertenstein and Campos (2004) observed 

that the social behaviour of  14-month-old infants can be affected by facial 

expressions of  disgust or happiness that adults exhibited one hour prior. 

Moreover, pupillary responses of  14-month-old infants increased more when 

they were viewing incongruent pairs of  facial expressions and actions in adults 

than when they viewed congruent pairs (Hepach & Westermann, 2013). From 

the age of  3-to-5 years, preschool children continue to develop the ability to 

recognize facial emotional expressions until adolescence. According to previous 

research, preschool children recognise facial expressions with the lowest accuracy, 

compared to other groups. Among preschool children, school children, and 

young adolescents, accuracy increases by ascending age group. Young 

adolescents, however, do not perform differently to late adolescents (Herba, 

Landau, Russell, Ecker, & Phillips, 2006; Montirosso, Peverelli, Frigerio, Crespi, 

& Borgatti, 2010). 

Although little research has focused on developmental trajectories of  

recognising vocal emotions, there is evidence that the ability develops from 
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infancy. At the age of  seven months, infants can discriminate spoken words in 

happy and angry prosody from neutral prosody, which manifests in increased 

oxygenated  aemoglobin concentration changes in the right hemisphere 45

(Grossmann, Oberecker, Koch, & Friederici, 2010). At this age, they are also able 

to distinguish congruent pairs of  vocal and facial emotional expressions by 

showing more centro-parietal positive component (~600 ms) for congruent pairs 

than for incongruent pairs (Grossmann, Striano, & Friederic, 2006). 

Furthermore, there is evidence that the ability to distinguish vocal emotional 

expressions continues to develop throughout childhood. At the age of  5-to-10- 

years, children can correctly match vocal emotional expressions to photographs 

of  facial emotions, and this ability improves with age. Moreover, children are 

better at recognizing some vocal expressions (e.g., amusement, relief, and disgust) 

than others (e.g., sadness and neutral), indicating that the ability to recognise 

different vocal emotions may follow distinct developmental trajectories of  

emotion processing (Sauter, Panattoni, & Happé, 2013). The finding that 

children’s ability to recognise vocal expressions of  sadness develops more slowly 

than the ability to recognise other emotional expressions has been replicated by a 

recent study (Chronaki, Hadwin, Garner, Maurage, & Sonuga-Barke, 2014). In 

this study, non-linguistic vocal expressions were generally recognised less 

accurately than facial expressions. In addition, the researchers found that the 

ability to recognise expressions of  sadness continues to develop after the age of  

11 years. The ability to recognise non-linguistic, emotional vocal expressions of  

sadness, therefore, is consistently reported to develop more slowly, and later, than 

the ability to recognise facial expressions of  sadness or expressions of  anger and 

happiness in both modalities. 

Emotional development in adolescence is usually studied in regards to 

developmental changes in the brain. The starting point of  adolescence is defined 

by the onset of  puberty. Along with hormonal changes, adolescents are 

characterized during this transition period from childhood to adulthood by a 

tendency toward risk-taking and sensitivity to peer influence. In one study, 

children and adolescents were found to be more easily affected by others during a 

rating task of  risk assessments than adults (i.e., age 26-59) (Knoll, Magis-

Weinberg, Speekenbrink, & Blakemore, 2015). In the rating task, mid-adolescents 

(i.e., age 15-18) and young adults (i.e., age 19-25) were more likely to change their 

  45



ratings after knowing what others had rated than were adults. Mid-adolescents 

and young adults relied in particular on the ratings made by adult groups, not by 

teenage groups. Meanwhile, the ratings made by teenage groups exerted a major 

influence on the ratings of  young adolescents (i.e., age 12-14), indicating that 

adolescents between the ages of  12 and 14 value peers’ opinions noticeably. The 

risk perception of  adolescents and its susceptible nature may be considered a 

consequence of  their enhanced sensitivity to emotions and reduced emotion 

regulation capacity (Pfeifer et al., 2011). 

In the study conducted by Pfeifer et al. (2011), participating adolescents 

were tested on two occasions: at the age of  10 years (i.e., late childhood, T1) and 

at the age of  13 years (i.e., early adolescence, T2). In each instance, the adolescent 

participants underwent fMRI  while viewing photographs of  emotional 

expressions (i.e., anger, sadness, happiness, fear, and neutral), and completed two 

questionnaires that measured the extent of  their ability to resist peer influence 

(using the RPI scale, i.e., Resistance to Peer Influence) and to what extent they 

had used substances or otherwise reported delinquency (using the IRBD scale, 

i.e., Indicators of  Risk Behaviour and Delinquency). The study aimed to examine 

the relationship between brain activations that are sensitive to facial emotion 

recognition and changes in behavioural measures during adolescence. The study 

showed that activations of  ventral striatum (VS) and ventromedial prefrontal 

cortex (vmPFC) increased from T1 to T2 in the condition of  viewing emotional 

facial expressions, and the increased activity in the VS was associated with 

viewing photographs of  sadness and happiness relative to neutral faces. The 

increased activation of  VS between T1 and T2 was positively correlated with RPI 

score changes between the two time points, demonstrating that the more 

adolescents could resist peer influence, the more VS activity was found. The 

increased VS activity across the two time points was also negatively correlated 

with changes in IRBD scores, indicating that the greater the reported substance 

use, the less VS was activated. VS activation, which has been reported to be 

highly involved in emotion regulation during adolescence (Forbes et al., 2009), is 

proposed to serve as a form of  protection for children or adolescents being 

influenced by peers (Pfeifer et al., 2011). The evidence highlighted above 

demonstrates that perceiving facial emotions of  sadness and happiness is 

associated with the ability to resist peer influence during adolescence, which 
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manifests in neural developmental changes in the brain area involved in emotion 

regulation. Although other brain areas such as the temporal pole, ventrolateral 

prefrontal cortex (PFC), and dorsomedial PFC were also found to be sensitive to 

facial emotions through enhanced activity during adolescence (Moore et al., 

2012), there is very little research on the perception of  vocal emotional 

expressions during this transition period. 

Vocal emotions like laughter and crying are important in communicating 

both positive and negative emotions. Indeed, these two vocal emotions are seen 

at the early stages of  life and are thought to be universal across cultures (Sauter et 

al., 2010). At present, we know relatively little about how typically developing 

children process emotional vocalizations and how factors such as age and cultural 

experience play a role in the social learning process. 

Nevertheless, we are yet to determine clear evidence of  social influences 

on the perception of  laughter and crying. For example, crying is the first 

emotional vocalization that infants express to interact with their environment. It 

is also the main way children express negative emotion, although it becomes less 

frequent over our lifespan. On the other hand, laughter appears to increase in 

frequency. Babies produce their first laughs at about four months of  age and 

laugh even more frequently as adolescents (Bridges, 1932; Bryant, 1982). It is 

therefore suggested that experience shapes the way that we express emotional 

vocalizations, in this case laughing with increased frequency, and crying with 

reduced frequency. 

In life, we probably begin by using vocal emotions involuntarily (e.g., 

“helpless” laughter or crying), but we can also learn to use vocal emotions 

communicatively to elicit certain behaviours from our social partners. For 

example, we laugh to show that we got a joke, or cry to seek attention. We react 

to the voluntariness of  emotions people express, and can correctly categorise 

involuntary and voluntary laughter (McGettigan et al., 2015). This allows us to 

ascertain the intention of  the vocal expression, which is important knowledge in 

most everyday social interactions. However, it is clear that the valence of  the 

vocal emotion (e.g., laughing or crying) also affects adults’ perception of  

voluntariness that neutral stimuli were rated as more authentic than positive ones, 
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and the positive stimuli were rated as more authentic than negative ones (Fecteau 

et al., 2005). 

In this study, I addressed how the perception of  different vocal emotions 

(laughing and crying) changes over the lifespan. There is pilot data (Scott et al., in 

prep) suggesting that there are age-related changes in how we react to others’ 

laughter. In particular, children judge the contagion and voluntariness of  both 

voluntary and involuntary laughter differently than adults. However, this dataset 

does not allow us to judge whether this is true of  both positive and negative 

emotions, and how older adults might differ from younger adults. Understanding 

how we react to vocal emotions over the lifespan will allow us to understand how 

age and social experience influence emotional perception. Furthermore, this 

would be extremely valuable normative information from a clinical perspective, 

as it can inform studies on those with autism, depression and emotional 

disorders. 

4.2 Methods 

4.2.1 Participants 

All participants were recruited at the Science Museum in London as they took 

part in the Live Science Project – “Who am I?” – during their visit. There were 

1,847 healthy participants (age range = 3-76.9 years; mean age = 23; SD = 14.83; 

1,067 females) who participated in the experiment and successfully finished the 

tasks. 

Among the 1,847 participants, 119 participants (age range = 3-63 years; 

mean age = 12.51; SD = 12.91; 55 females) were excluded from further analysis 

because they correctly answered less than half  of  the catch trials (i.e., successfully 

identifying the gender of  the speaker in random trials. For more details, see 

section 4.2.4). Five participants were also excluded because they failed to enter a 

valid date of  birth. 
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The remaining 1,723 participants (age range = 3-76.9 years; mean age = 

23.79; SD = 14.64; 1,010 females) met the criteria of  catch trials, resulting in a  

62.5% rate of  accuracy. The distribution of  age shows that participants between 

six and 30 years old account for 73.7% (n = 1,271) of  all participants, and those 

between 31 and 50 years old account for 19% (n =335) of  all participants. Only 

0.06% (n=103) of  all participants were over 50 years old (Fig. 4.1). This 

distribution may reflect the populations who tend to visit the Science Museum as 

young adults and children represent the majority of  visitors and the ageing 

population represents a smaller portion. Although females account for 58.61% 

of  all participants, female and male participants exhibited a similar distribution 

of  age (Table 4.1). 

  

Figure 4.1 Age distribution of the participants. 

The figure shows the age distribution of  the participants who took part in the 

experiment and met the criteria of  catch trials 
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Table 4.1 Age demographics by sex 

Participants were from 72 countries around the world. Participants from 

the UK accounted for 64.25% (n = 1107) of  all participants, followed in 

abundance by participants from France (n=60), Italy (n=55), Germany (n=52), 

Spain (n=45), and the United States (n=42) (see Appendix 4.1). 

4.2.1.1 The UK profile 

Participants from the UK (n=1,107; age range= 3.67-73.92; mean age=23.25; SD 

= 15.82; 670 females) represent the majority of  the sample population. The age 

distribution of  the UK participants (Fig. 4.2) reveals that the majority of  the 

population (66%) was between five and 29 years of  age, and the second largest 

population (19%) was between 30 and 49 years old. The participants between 

ages 51 and 73 only accounted for 0.07% (n=73; age range= 51-73.91 years; 

mean age = 60.70 years; SD = 6.29; 48 females) of  all participants from the UK.  

In consideration of  this age distribution, the following analysis of  the perception 

of  authenticity and contagion by age group only includes participants from age 

three to 50 (n=1,034; age range= 3.67-50.92 years; mean age = 20.60 years; SD = 

12.62, 622 females). The age distribution of  the UK participants for females (n 

=670, age range = 3.67-73.92, mean age = 23.66, SD = 16.07) and males (n= 

437, age range = 4.08-71, mean age = 22.62, SD = 15.43) share a similar pattern. 

Female 
(n =1010)

Male 

Age (years)

Min 3.67 4.08

Median 21.54 21.50

Mean 23.96 23.55

Max 73.92 76.92

SD 14.73 14.52
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Figure 4.2 Distribution of age of the UK participants 

4.2.2 Stimuli 

The stimuli were selected from the materials (see Chapter 3) and which consisted 

of  20 stimuli in each condition (i.e., involuntary laughter, voluntary laughter, 

involuntary crying, and voluntary crying). In involuntary conditions, 10 of  the 

highest authenticity ratings (on a 7-point Likert-Scale) among 20 stimuli in 

laughter (M = 5.97, SD = 0.46) or in crying (M = 4.59, SD = 0.53) were chosen. 

In voluntary conditions, 10 of  the lowest authenticity ratings among 20 stimuli in 

laughter (M = 3.15, SD = 0.46) or in crying (M = 2.59, SD = 0.87) were chosen. 

The 40 stimuli were presented (average duration = 2.51 seconds; SD = 0.38; 

range = 1.74 – 3.14) with MATLAB (version R2010a, Mathworks, Sherborn, 

MA, USA) using the psychophysics toolbox (Brainard, 1997; Pelli, 1997) on one 

of  three desktop PCs or two Windows laptops, and were played on headphones 

(Beyerdynamic DT 770 M) offering approximately 30dB of  sound attenuation. 

Participants were seated approximately 60 cm from the screen and responded by 

using a mouse. 
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4.2.3 Experimental design 

Rating tasks 

All participants rated each stimulus on two different 5-point Likert-scales: 

authenticity and contagion. For the authenticity ratings, participants rated the 

extent to which the emotional sound reflected a genuinely-felt emotion by 

mouse-clicking one of  the five icons on the screen to answer the question, ‘How 

real is the emotion?’ The five icons on the screen were symbols progressing from 

thumbs down to thumbs up, moving left to right (Fig. 4.3). The icons represented 

the judgements of  very fake, fake, neutral, genuine, and very genuine regarding 

the emotional sound. The left two thumb icons, which demonstrated ‘fake’ and 

‘very fake’ were coloured in red; the middle ‘neutral’ icon was coloured in yellow, 

and the two icons demonstrating ‘genuine’ and ‘very genuine’ on the right were 

coloured in green. For the contagion ratings, participants rated the extent to 

which the emotional sound was contagious by mouse-clicking one of  the five 

icons on the screen to answer the question, ‘How much do you want to join in?’ 

To provide a clear visual demonstration of  laughter or crying, laughing faces or 

crying faces respectively displayed on the screen for laughter or crying trials. In 

the laughter trials, the icons on the screen progressed from left to right from an 

animated neutral face to a smiling face through alternations in the shape of  the 

mouth, representing different levels of  willingness that the participants felt to 

laugh along with the sound (Fig. 4.4). In the crying trials, the icons were replaced 

by faces progressing from neutral to crying, representing different levels of  

willingness that the participants felt to cry along with the sounds (Fig. 4.4). 

Experimental design 

There were four blocks in the experiment, and each block targeted either 

authenticity ratings or contagion ratings. The order of  these two rating scales was 

counterbalanced, and each participant was randomly assigned to one of  the 

orders of  rating scales. There were 20 stimuli per block, resulting in 80 trials in 

the whole experiment. Each block consisted of  two mini-blocks of  10 stimuli 

each, pertaining to the two expressions (i.e., one mini-block consisted of  10 

laughter or 10 crying sounds). The 10 stimuli in each expression were randomly 
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selected from 20 laughter or crying stimuli, including involuntary and voluntary 

vocalisations. The order of  mini-blocks was counterbalanced for each rating scale 

(see Fig. 4.5 for an example of  experimental structure). 

At the beginning of  each block, a screen appeared to instruct which type 

of  ratings would follow (i.e., authenticity ratings or contagion ratings). The first 

trial began after participants clicked a start button. There were eight catch trials in 

the experiment to ensure that instruction was comprehended correctly and 

participants paid attention to the stimuli. One catch trial randomly appeared in 

the middle of  each mini-block (i.e., after the first four trials and before the last 

trial), resulting in two catch trials per block. The catch trials, which appeared 

directly after participants responded to a rating trial, required the participants to 

recall whether the last emotional sound they heard was produced by a female or 

male speaker. The participants responded by clicking one of  the figures on the 

screen representing ‘female’ or ‘male’ voices.  After the participants had rated an 

emotional sound or finished a catch trial, the next trial immediately started. 

At the beginning of  the experiment, a video with auditory instructions 

explained the trial procedure including the two rating tasks and catch trials. At the 

end of  the experiment, a screen displayed individualised feedback to each 

participant to report how they performed on differentiating involuntary 

vocalisations from voluntary vocalisations, and which expressions they found 

more contagious. Each experiment lasted approximately 15 minutes. 

Procedure 

Lab members approached visitors of  the Life Science Project at the Science 

Museum in London and introduced the purpose and procedure of  the 

experiment to them. The participants were then given a consent form describing 

the participants’ rights while partaking in the experiment and an information 

sheet of  experimental details. Parents accompanied all minors under the age of  

18, and both parents and minor participants were informed that the experiment 

involved crying sounds that while commonly heard in everyday life, could 

influence the participant. Before entering the experimental program, all 
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participants signed the consent forms, and both children and their parents signed 

a consent form in the case of  minors. 

After signing the consent forms, all participants were introduced to the 

experimental program and guided to fill in their demographic information. 

Before the rating task started, each participant confirmed that he or she 

understood the task and had the opportunity to ask any questions. After they 

finished the experiment, participants received a debrief  card were once again 

allowed to ask questions. 

  

Figure 4.3 Authenticity rating scale 

  

Figure 4.4 Contagion rating scales for laughter (top) and crying (bottom) 

 

Figure 4.5 Counterbalancing in the experimental design  
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4.3 Results 

Although the 1,723 participants were from 72 different countries, the numbers 

of  participants were not equally spread across these countries. Participants from 

countries other than the UK (i.e., the other 71 countries) only accounted for 36% 

of  participants (n = 616). To reduce the possibility that a large variation could 

arise from the wide-spread, unequally distributed populations from the 72 

countries, only participants from the UK (n = 1107) were included in the 

following analyses. 

4.3.1 Rating results 

A 2 x 2 ANOVA was conducted for each authenticity and contagion scale, 

including expression (laughter/crying) and involuntariness (involuntary/voluntary) 

as repeated-measures factors. On the authenticity scale, involuntary laughter (M 

= 4.01; SD = 0.63) and involuntary crying (M = 3.25; SD = 0.69) were rated 

higher (i.e., more authentic) than voluntary laughter (M = 2.57; SD = 0.70) and 

voluntary crying (M = 2.11; SD = 0.61; main effect of  authenticity, F[1,1106] = 

3779.36, MSE = .490, p < .001, ŋp2 = .774). The main effect of  expression was 

also significant, indicating that laughter was generally rated as more authentic 

than crying (F[1, 1106] = 1126.97, MSE = .365, p < .001, ŋp2 =.505). The effect 

of  interaction was also significant (F[1, 1106] = 176.84, MSE = .151, p < .001, ŋ p 

2 = .138) according to paired sample t-tests that showed significant differences 

both in the perceived authenticity of  laughter (involuntary: M = 4.02, SD = 0.63; 

voluntary: M = 2.57, SD = 0.70; t(1106) = 58.00, p < .001, Cohen’s d = 2.18), 

and of  crying (involuntary: M = 3.25, SD = 0.69; voluntary: M = 2.11, SD = 

0.61; t(1106) = 49.26, p < .001, Cohen’s d =1.75). The results indicate that 

involuntary vocalizations are perceived as more genuine than voluntary ones, and 

that laughter is generally rated more authentic than crying. Moreover, the 

perceived difference in authenticity between involuntary and voluntary laughter 

was greater than that between involuntary and voluntary crying (Fig. 4.6). 
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Figure 4.6 Results of authenticity ratings from UK participants 

On the contagion scale, involuntary laughter (M = 3.84; SD = 0.78) and 

involuntary crying (M = 2.63; SD = 0.94) were rated as more contagious (i.e., 

more contagious) than voluntary laughter (M = 2.45; SD = 0.84) and voluntary 

crying (M = 2.06; SD = 0.87; main effect of  involuntariness, F[1,1106] = 

2272.23, MSE = .465, p < .001, ŋp2 = .673). The main effect of  expression was 

significant, indicating that laughter was generally rated as more contagious than 

crying (F[1, 1106] = 970.10, MSE = .729, p < .001, ŋ  p 2 = .467). The effect of  

interaction was also significant (F[1, 1106] = 896.24, MSE = .203, p < .001, ŋp2 = 

.448) according to paired sample t-tests that showed significant differences both 

in the perceived contagiousness of  laughter (involuntary: M = 3.84, SD = 0.78; 

voluntary: M = 2.45, SD = 0.84; t(1106) = 52.18, p < .001, Cohen’s d = 1.71) and 

of  crying (involuntary: M = 2.63, SD = 0.94; voluntary: M = 2.06, SD = 0.87; 

t(1106) = 25.52, p < .001 , Cohen’s d = 0.63). The results support the conclusion 

that involuntary vocalizations are perceived as more contagious than voluntary 

ones, and that laughter is generally rated more contagious than crying (Fig. 4.7). 

However, it is worth mentioning that the difference between the perceived 

contagiousness of  involuntary and voluntary crying was much smaller than the 

difference between involuntary and voluntary laughter, which results in a lower 

Cohen’s d value. 
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Figure 4.7 Results of contagion ratings from UK participants 

The rating results were divided by age group to investigate how the 

perception of  authenticity or contagion changes according to age. The following 

analyses included the participants from ages three to 50 (n=1034, age range= 

3.67-50.92 years, mean age = 20.60 years, SD = 12.62, 622 females). The 

participants were divided into four age groups: 368 children (age range: 

3.67-11.91 years, mean age = 8.66 years, SD = 1.98, 218 females), 148 

adolescents (age range: 12-18.92 years, mean age = 14.68 years, SD = 2.22, 90 

females), 305 young adults (age range: 19- 29.91 years, mean age = 23.37 years, 

SD = 2.88, 184 females), and 213 adults (age range: 30-50.92 years, mean age = 

41.39 years, SD = 6.03, 129 females). 
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4.3.1.1 Interactions between involuntariness, emotions, and age group on each 

rating scale 

A three-way ANOVA was first used to test whether there was any interaction 

between the perception of  authenticity of  emotional vocalizations and age group. 

This resulted in a three-factorial mixed design with the two within-subject factors 

-expressions (laughter and crying) and involuntariness (involuntary and 

voluntary) - and the between-subjects factor group (age). Greenhouse-Geisser 

corrections were used and significance levels for pairwise comparisons were 

Tukey-HSD corrected and reported two-tailed. 

The authenticity scale 

There was a main effect of  expression (F(1,1030) = 949.80, MSE = .357, p < .

001,   = .480), revealing that laughter (M = 3.30, SD = 0.51) was rated more 

authentic than crying (M = 2.68, SD = 0.53). No significant difference was found 

between expressions and age groups (F(3,1030) = .945, MSE = .357, p = .418,   

= .003), indicating that there was no difference in the perception of  authenticity 

between laughter and crying across age groups (Fig. 4.8). 

  

Figure 4.8 Authenticity results of expressions across age groups. 

η2
p

η2
p

  58



There was a main effect of  involuntariness (F(1,1030) = 4857.16, MSE = 

.336, p < .001,   = .825), indicating that involuntary vocalisations (M = 3.62, SD 

= 0.55) were rated more authentic than voluntary vocalisations (M = 2.35, SD = 

0.56). There was also a significant interaction between involuntariness and age 

groups (F(3,1030) = 164.387, MSE = .336, p < .001,   = .324), indicating that 

the difference in the perception of  authenticity between involuntary and 

voluntary vocalisations changed across age groups. 

A one-way ANOVA was then conducted for each condition of  

involuntariness across age groups. There was a main effect of  age group on the 

authenticity perception of  involuntary vocalisations (F(3,1030) = 22.11, p < .

001). Children (M = 3.45, SD = 0.55) rated involuntary vocalisations as less 

authentic than did all other age groups, including adolescents (M = 3.65, SD = 

0.49, p = .001); young adults (M = 3.71, SD = 0.51, p < .001); and adults (M = 

3.78, SD = 0.57, p < .001). No other pairwise comparison was significant, 

including adolescents compared with young adults (p = .656); adolescents 

compared with adults (p = .112); and young adults compared with adults (p = .

504). There was also a main effect of  age group on the authenticity perception 

of  voluntary vocalisations (F(3,1030) = 99.66, p < .001). Children (M = 2.70, SD 

= 0.55) rated voluntary vocalisations as more authentic than did all other age 

groups, including adolescents (M = 2.31, SD = 0.42, p < .001); young adults (M 

= 2.12, SD = 0.44, p < .001); and adults (M = 2.12, SD = 0.51, p < .001). 

Adolescents rated voluntary vocalisations as more authentic than did both young 

adults (p < .001) and adults (p = .001). However, young adults and adults rated 

voluntary vocalisations with no difference (p = 1.00) (Fig. 4.9). 
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Figure 4.9 Authenticity results of involuntariness across age groups. 

There was a significant interaction between involuntariness and 

expressions (F(1,1030) = 161.24, MSE = .152, p < .001,   = .135). Post-hoc 

paired-sample t-tests were conducted to compare the authenticity ratings for the 

involuntary vocalisations to the voluntary vocalisations in each expression. There 

were significant differences in the authenticity ratings for involuntariness in both 

laughter and crying, signalling that involuntary laughter (M = 4.01, SD = 0.63) 

was rated more authentic than voluntary laughter (M = 2.58, SD = 0.70), t(1033) 

=  54.95, p < .001), and that involuntary crying (M = 3.23, SD = 0.69) was rated 

more authentic than voluntary crying (M = 2.13, SD = 0.62), t(1033) = 46.22, p 

< .001) (Fig. 4.10). There was no significant three-way interaction between 

involuntariness, expressions, and age groups (F(3,1030) = 1.209, MSE = .152, p 

= .305,   = .004). 
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Figure 4.10 Authenticity ratings of involuntariness and expressions. 

The contagion scale 

There was a main effect of  expressions (F(1,1030) = 817.553, MSE = .723, p < .

001,   = .443), illustrating that laughter (M = 3.15, SD = 0.68) was rated as more 

contagious than crying (M = 2.35, SD = 0.83). There was also a significant 

interaction between expressions and age group (F(3,1030) = 2.640, MSE = .723, 

p = .048,   = .008), indicating that the difference between contagion ratings of  

laughter and crying significantly differed between age groups (Fig. 4.11). 

η2
p

η2
p

  61



  

 Figure 4.11 Contagion ratings of expressions across age groups. 

Two one-way ANOVAs were separately conducted for laughter and 

crying to test whether the contagion ratings changed significantly across age 

groups for each expression. There was a significant main effect of  age group on 

the contagion ratings of  laughter (F(3,1030) = 26.68, p < .001). Children rated 

laughter as more contagious than did all other groups, including adolescents (M 

= 3.05, SD = 0.60, p < .001); young adults (M = 2.99, SD = 0.64, p < .001); and 

adults (M = 3.01, SD = 0.60, p < .001). No other pairwise comparison was 

significant, including adolescents compared with young adults (p = .766); 

adolescents compared with adults (p = .94); and young adults compared with 

adults (p = .98). There was also a significant main effect of  age group on the 

contagious ratings of  crying (F(3,1030) = 34.084, p <.001). Children (M = 2.67, 

SD = 0.84) rated crying as more contagious than did all other groups, including 

adolescents (M = 2.31, SD = 0.71, p < .001); young adults (M = 2.14, SD = 0.79, 

p < .001); and adults (M = 2.12, SD = 0.76, p < .001). No other pairwise 

comparison was significant, including adolescents compared with young adults (p 

= .13); adolescents compared with adults (p = .11); and young adults compared 

with adults (p = .99). 
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There was a main effect of  involuntariness (F(1,1030) = 2687.334, MSE 

= .361, p < .001,   = .723), demonstrating that involuntary vocalisations (M = 

3.23, SD = 0.70) were rated more contagious than voluntary ones (M = 2.27, SD 

= 0.73). There was also a significant interaction between involuntariness and age 

group (F(3,1030) = 96.023, MSE = .361 , p < .001,   = .219), indicating that the 

difference between involuntary and voluntary vocalisations changed across age 

groups (Fig. 4.12). 

  

Figure 4.12 Contagion results of involuntariness across age groups. 

A follow-up one-way ANOVA was conducted for each condition of  

involuntariness. This test revealed a main effect of  age group on the contagion 

ratings of  involuntary vocalisations (F(3,1030) = 3.059, p = .027). Children (M = 

3.31, SD = 0.69) rated involuntary vocalisations as more contagious than young 

adults (M = 3.14, SD = 0.69, p = .014). No other pairwise comparison was 

significant, including children compared with adolescents (M = 3.23, SD = 0.69, 

p = .661); children compared with adults (M = 3.22, SD = 0.71, p = .463); 

adolescents compared with young adults (p = .614); adolescents compared with 

adults (p = 1.00); and young adults compared with adults (p = .620). The test also 
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found a main effect of  age group on the contagion ratings of  voluntary 

vocalisations (F(3,1030) = 119.261, p < .001. Children (M = 2.76, SD = 0.72) 

rated voluntary vocalisations as more contagious than did all other groups, 

including adolescents (M = 2.13, SD = 0.55, p < .001); young adults (M = 1.98, 

SD = 0.62, p < .001); and adults (M = 1.91, SD = 0.53, p < .001). Furthermore, 

adolescents rated voluntary vocalisations as more contagious than did adults (p 

= .006). No other pairwise comparison was significant, including adolescents 

compared with young adults (p = .077) and young adults compared with adults (p 

= .603). 

There was a significant interaction between expressions and 

involuntariness on the contagion ratings (F(1,1030) = 842.312, MSE = .194, p < .

001,   = .450). Post-hoc paired-sample t-tests were utilized to compare the 

contagion ratings of  the involuntary vocalisations to voluntary vocalisations in 

each expression. There were significant differences in the contagion ratings of  

involuntariness in both laughter and crying, indicating that involuntary laughter 

(M = 3.83, SD = 0.78) was rated more contagious than voluntary laughter (M = 

2.46, SD = 0.84), t(1033) =  49.89, p < .001) , and that involuntary crying (M = 

2.63, SD = 0.94) was rated more contagious than voluntary crying (M = 2.07, SD 

= 0.87), t(1033) = 24.33, p < .001) (Fig. 4.13). 
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Figure 4.13 Contagion results between involuntariness and expressions 

Finally, there was a significant three-way interaction between expressions, 

involuntariness, and age group on the contagion ratings (F(3,1030) = 14.274, 

MSE = .194, p < .001,   = .04). The follow-up two-way ANOVAs were 

separately conducted under each expression to test whether the perceived 

differences in contagiousness between involuntary and voluntary vocalisations 

differs across age groups in laughter or in crying. A 2 x 4 ANOVA was conducted 

for each expression, using involuntariness and age group as within- and between-

subjects repeated-measures factors. 

For the laughter expression (Fig. 4.14), there was a main effect of  

involuntariness (F(1,1030) = 3120.668, MSE = .309, p < .001,   = .752), 

indicating that involuntary laughter (M = 3.83, SD = 0.78) was rated more 

contagious than voluntary laughter (M = 2.46, SD = 0.84).  There was also a 

significant interaction between involuntariness and age group (F(3,1030) = 

91.570, MSE = .309, p < .001,   = .211), showing that the difference between 

involuntary laughter and voluntary laughter in contagion ratings varied across age 

groups. Therefore, the two following one-way ANOVAs were individually 
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conducted for involuntary laughter and for voluntary laughter to test whether the 

contagion ratings of  each condition differed across age groups. 

The results of  the one-way ANOVA performed on the involuntary 

laughter expression revealed that there was no main effect of  age group on the 

perception of  the contagiousness of  involuntary laughter (F(3,1030) = .792, p = .

498; children: M = 3.81, SD = 0.82; adolescents: M = 3.82, SD = 0.78; young 

adults: M = 3.81, SD = 0.77; adults: M = 3.91, SD = 0.74). This finding 

demonstrates there was no age group difference in perceiving the contagious 

level of  involuntary laughter.  However, there was a main effect of  age group on 

the perception of  contagiousness of  voluntary laughter (F(3,1030) = 89.99, p < .

001). Children rated voluntary laughter as more contagious (M = 2.98, SD = 

0.86) than all other age groups, including adolescents (M = 2.29, SD = 0.65, p < .

001); young adults (M = 2.16, SD = 0.72, p < .001); and adults (M = 2.12, SD = 

0.65, p < .001). No other pairwise comparison was significant, including 

adolescents compared with young adults (p = .36); adolescents compared with 

adults (p = .16); and young adults compared with adults (p = .92). 
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Figure 4.14 Contagion results of laughter across age group. 

The additional 2x4 ANOVA with involuntariness and age group as 

repeated measures was conducted for the crying vocalisations. This test found a 

main effect of  involuntariness on the contagion ratings of  crying vocalisations 

(F(1,1030) = 687.18, MSE = .246, p < .001,   = .40), indicating that involuntary 

crying (M = 2.63, SD = 0.94) was rated more contagious than voluntary crying 

(M = 2.07, SD = 0.87). There was also a significant interaction between 

involuntariness and age group (F(3,1030) = 37.162, MSE = .246, p < .001,   = .

098), showing that the difference in contagion ratings between involuntary and 

voluntary crying varied across age group (Fig. 4.15). Following this test, two one-

way ANOVAs were conducted to examine each condition of  crying. 

There was a main effect of  age group on the perception of  contagion for 

involuntary crying (F(3,1030) = 7.809, p <.001). Children (M = 2.80, SD = 0.91) 

rated involuntary crying with no significant difference when compared with 

adolescents (M = 2.64, SD = 0.87, p = .27), but rated it as more contagious than 

did both young adults (M = 2.48, SD = 0.94, p < .001) and adults (M = 2.53, SD 

= 1.00, p = .004). No other pairwise comparison was significant, including 

adolescents compared with young adults (p = .29); adolescents compared with 

adults (p = .71); and young adults compared with adults (p = .90). 
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For voluntary crying, there was also a main effect of  age group on the 

contagion ratings (F(3,1030) = 71.523, p < .001). Children rated voluntary crying 

as more contagious than did every other age group (M = 2.55, SD = 0.91), 

including adolescents (M = 1.98, SD = 0.68, p < .001); young adults (M = 1.80, 

SD = 0.78, p < .001); and adults (M = 1.70, SD = 0.66, p < .001). Adolescents 

rated voluntary crying with no significant difference when compared with young 

adults (p = .10), but rated it as more contagious than did adults (p = .006). No 

significant difference was found between the ratings of  young adults and adults 

(p = .52). 

  

Figure 4.15 Contagion results of crying by age group. 
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Figure 4.16 Contagion ratings of four conditions across age groups 

One-way ANOVA on authenticity ratings 

To better understand how the perception of  authenticity in each condition varied 

from childhood to adulthood, a one-way ANOVA was utilized for condition to 

test whether the perception of  authenticity differed across age groups. Post hoc 

pairwise comparisons (Tukey’s HSD-adjusted alpha levels) were used to compare 

the authenticity ratings between age groups when there was a significant 

interaction effect. 

There was a main effect of  age group on the authenticity perception of  

involuntary laughter (F(3,1030) = 13.097, p < .001). Children rated involuntary 

laughter as less authentic (M = 3.86, SD = 0.70) than did every other age group, 

including adolescents (M = 4.02, SD = 0.57, p = .034); young adults (M = 4.10, 

SD = 0.66, p < .001); and adults (M = 4.15, SD = 0.56, p < .001). No other 

pairwise comparison was significant, including adolescents compared with young 

adults (p = 1.00); adolescents compared with adults (p = .29); and young adults 

compared with adults (p = 1.00) (Fig. 4.17). 
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Figure 4.17 Authenticity results of involuntary laughter across age groups. 

There was also a main effect of  age group on the perception of  

authenticity of  voluntary laughter (F(3,1030) = 61.442, p < .001). Children rated 

the voluntary laughter as more authentic (M = 2.94, SD = 0.38) than did every 

other age group, including adolescents (M = 2.50, SD = 0.53, p < .001); young 

adults (M = 2.33, SD = 0.58, p < .001); and adults (M = 2.37, SD = 0.64, p < .

001). No other pairwise comparison was significant among adolescents compared 

with adults (p = .28) and young adults compared with adults (p = .89). 

Adolescents did rate the voluntary laughter more authentic than did young adults, 

but this result was only marginally significant (p = .052) (Fig. 4.18). 
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Figure 4.18 Authenticity results of voluntary laughter across age group. 

There was a main effect of  age group on the perception of  authenticity 

of  involuntary crying (F(3,1030) = 16.692, p < .001). Children rated the 

involuntary crying as less authentic (M = 3.04, SD = 0.70) than did every other 

age group, including adolescents (M = 3.27, SD = 0.57, p = .002); young adults 

(M = 3.33, SD = 0.64, p < .001); and adults (M = 3.40, SD = 0.74, p < .001). No 

other pairwise comparison was significant, including adolescents compared with 

young adults (p = .89); adolescents compared with adults (p = .31); and young 

adults compared with adults (p = .59) (Fig. 4.19). 
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Figure 4.19 Authenticity results for involuntary crying by age group. 

There was a main effect of  age group on the perception of  authenticity 

of  voluntary crying (F(3,1030) = 76.71, p < .001). Children rated the voluntary 

crying as more authentic (M = 2.46, SD = 0.65) than did every other age group, 

including adolescents (M = 2.13, SD = 0.49, p < .001); young adults (M = 1.90, 

SD = 0.48, p < .001); and adults (M = 1.86, SD = 0.55, p < .001). Adolescents 

rated voluntary crying as more authentic than did young adults (p < .001) and 

adults (p < .001). No significant difference was found between young adults and 

adults (p = .89) (Fig. 4.17). 
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Figure 4.20 Authenticity results for voluntary crying by age group. 

  

Figure 4.21 Authenticity ratings of four conditions across age groups 
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4.3.2 Regression 

To understand the relationship between age and perceptions of  authenticity or 

contagiousness for emotional vocalisations, a regression analysis was used for 

each condition on two rating scales. Because developmental trajectories are better 

described by reciprocally transforming participants’ age as predictors than by 

fitting the trajectories with straight lines (Leech, Aydelott, Symons, Carnevale, & 

Dick, 2007), non-linear regression models were applied to fit the shape of  rating 

results across age groups. 

Authenticity scale 

A non-linear regression analysis was used to test whether age significantly 

predicted participants' authenticity ratings of  involuntary laughter, voluntary 

laughter, involuntary crying, and voluntary crying. For involuntary laughter, the 

results of  the regression indicated that the predictor (age) explained 3.72% of  the 

variance in ratings (F(1,1032) = 39.88, p < .001, R2 = .037, spearman’s rho = .

179). For voluntary laughter, the regression results indicated that age explained 

19.09% of  the variance (F(1,1032) = 243.467, p < .001, R2 = .19, spearman’s rho 

= -.345) (Fig. 4.22). For involuntary crying, age explained 5.22% of  the variance 

in ratings (F(1,1032) = 56.815, p < .001, R2 = .052, spearman’s rho = .213). 

Finally, for involuntary crying, the results indicated that age explained 20% of  the 

variance in ratings (F(1,1032) = 259.250, p < .001, R2 = .20, spearman’s rho = -.

407) (Fig. 4.23). 
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Figure 4.22 Mean ratings on authenticity scale for involuntary laughter 
(above) and voluntary laughter (below) 
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Figure 4.23 Mean ratings on authenticity scale for involuntary crying 
(above) and voluntary crying (below) 

Contagion scale 

For involuntary laughter, the results of  the regression indicated that the predictor 

(age) did not explain any of  the variance in ratings (F(1,1032) = 3.098, p = .078 , 

R2 = .00, spearman’s rho = .025). For voluntary laughter, age explained 22.38% 

of  the variance (F(1,1032) = 298.880, p < .001, R2 = .22, spearman’s rho = -.411) 

(Fig. 4.24). For involuntary crying, age explained 2.04% of  the variance 

(F(1,1032) = 21.491, p < .001, R2 = .020, spearman’s rho = -.132). Finally, for 

involuntary crying, the results indicated that age explained 18.32% of  the 

variance in ratings (F(1,1032) = 231.467, p < .001, R2 = .18, spearman’s rho = -.

401) (Fig. 4.25). 
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In short, age predicted the rating performance of  voluntary vocalisations 

better than that of  involuntary vocalisations. The Spearman's rank correlation 

coefficients using a monotonic function to further assess the relationship 

between age and ratings of  voluntary vocalisations and the relationship between 

age and ratings of  involuntary vocalisations: the former correlation was found 

higher than the later one. 

Figure 4.24 Mean ratings on contagion scale for involuntary laughter 
(above) and voluntary laughter (below) 
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Figure 4.25 Mean ratings on contagion scale for involuntary crying (left) 
and voluntary crying (right) 
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4.4 Discussion 

The results of  this experiment not only reveal age-related changes in the 

perception of  laughter and crying, but also demonstrate that the perception of  

voluntary vocalisations differs from involuntary vocalisations through a slower 

developmental trajectory. These findings derive from the rating results on both 

authenticity and contagion scales. 

The two rating scales to some extent seem to capture very similar 

properties of  these emotional vocalisations. That is, if  the sound is perceived as 

authentic, it can also be perceived as contagious, or vice versa. On both rating 

scales, I found robust main effects of  involuntariness and emotions, and also 

observed significant interactions between these two within-subject factors. When 

comparing laughter to crying, and involuntary vocalisations to voluntary ones, 

laughing and involuntary vocalisations were consistently recognised as more 

authentic and more contagious. The relationship between perceived authenticity 

and contagiousness in laughter has been previously studied by McGettigan et al. 

(2015). In their study, evoked laughter (i.e., involuntary laughter) was rated as 

more authentic and more contagious than emitted laughter (i.e., voluntary 

laughter). The researchers further proposed that the perceived authenticity is 

modulated by sensorimotor areas, which showed greater activations in the 

participants who had better ability to differentiate involuntary laughter from 

voluntary laughter in a post-scanning categorisation task. However, the authors 

clarified that the sensorimotor engagement in the perception of  laughter is not 

merely indicating a readiness to join in with laughter, but rather serves as a 

function to improve understanding of  social signals - in this case, to enhance 

perceivers’ ability to understand laughter by automatically engaging sensorimotor 

activations. The notion of  dissociating the perceived authenticity and 

contagiousness of  laughter is further supported by this experiment. In normal 

adults, the perception of  authenticity and contagion show similar pattern (i.e., 

involuntary vocalisations are perceived as more contagious compared to 

voluntary vocalisations. By including participants of  different ages, we are able to 

demonstrate that age effect has shown distinctively in the perception of  

authenticity and the perception of  contagion. 
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Childhood and the perception of laughter 

The perceived authenticity of  involuntary laughter showed a main effect of  age, 

with children rating involuntary laughter as less authentic than did any other 

group. However, no age effect was found when the participants rated the 

contagiousness of  involuntary laughter, signalling that the readiness to join in 

with involuntary laughter is observed throughout childhood to adulthood. The 

result can support the notion that joining involuntary laughter is an early 

developed ability. In contrast, the perception of  authenticity can develop slower 

in childhood alongside with their cognitive ability is still developing. Children also 

rated voluntary laughter as more authentic than reported by any other group. 

Adolescents also perceived voluntary laughter as more authentic than did young 

adults, but this result was only marginally significant difference (p = .052). 

Children again perceived voluntary laughter as more contagious than did any 

other age groups. No difference was found, however, between participants over 

12 years of  age and those later in adulthood. These findings of  children’s distinct 

performance from other age groups provide supportive evidence to previous 

findings that although children can recognise facial or vocal emotions above 

chance levels (Sauter et al., 2013), their performance improves with age. This 

pertains especially to the ability to recognise vocal emotions, which continues to 

develop after the age of  11 (Chronaki et al., 2014). However, it is worth 

mentioning that according to their perceived contagiousness of  involuntary 

laughter, children between the ages of  three and 11 have already demonstrated 

readiness to join in with laughter, which is no different than any other age group. 

This finding implies that the development of  recognising involuntary laughter 

and responding with laughter can appear relatively early in childhood. 

Adolescents and the perception of voluntary laughter 

As stated above, adolescents, like young adults and adults, exhibited less 

willingness to join in voluntary laughter than children. However, adolescents still 

perceived voluntary laughter as authentic to some extent. These results suggest 

that the ability to judge whether laughter is authentic may develop more slowly 
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than the ability to decide whether it is contagious. The difference between 

perceived authenticity and contagiousness in voluntary laughter may be due to 

the fact that to perceive contagiousness in laughter is a relatively early-developed 

process, as shown by participants of  all ages rating involuntary laughter as 

contagious. On the other hand, to recognise authenticity in voluntary laughter 

involves the ability to infer the possible mental state of  the speaker, which 

requires associated neural circuitry (i.e., medial prefrontal cortex) (McGettigan et 

al., 2015) that is still in development during adolescence (Blakemore & Mills, 

2014; Gogtay et al., 2004; Mills, Lalonde, Clasen, Giedd, & Blakemore, 2014). 

Therefore, by highlighting the distinction between involuntary and voluntary 

laughter, our results provide empirical evidence to signify that the authenticity 

and contagiousness perception of  voluntary laughter continues to develop before 

entering adulthood. 

Crying perceived as distinct from laughter on contagion but on authenticity scale 

The pattern of  perceived authenticity of  crying is similar to that of  laughter. As 

expected, children performed distinctively from the other participants, rating 

involuntary crying as less authentic and voluntary crying as more authentic than 

did others. As in the comparison of  voluntary laughter with involuntary laughter, 

the development of  perceived authenticity in voluntary crying follows a slower 

trajectory when compared to involuntary crying. Adolescents rated voluntary 

crying as more authentic than did young adults and adults. 

However, unlike involuntary laughter, which was highly contagious to 

participants across all ages, willingness to join in involuntary crying decreases 

over time. Children perceived crying, regardless of  involuntariness, as more 

contagious than did young adults and adults. The perceived contagiousness in 

both involuntary crying and voluntary crying therefore continues to develop 

during adolescence. Furthermore, adolescents perceived the contagiousness of  

involuntary crying similarly to children; in other words, adolescents still perceived 

involuntary crying as contagious to some extent. The ability to mirror sadness by 

joining in remains during present adolescence, but this sensitivity to react to 

involuntary crying appears to decrease after adolescence. No difference in the 

perceived contagiousness of  involuntary crying between adolescents, young 
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adults, and adults was found. There is a possible explanation for adolescents 

behaving similarly to children, who felt involuntary crying was contagious, but at 

the same time performing similarly to adults, who showed little readiness to join 

in involuntary crying. Adolescents may be acquiring displayed rules of  expressing 

sadness during this transition time. Indeed, adolescents have been shown to 

develop great ability for regulating experienced sadness and controlling their 

expressions based on what reactions would be expected from the respondent 

(Zeman, Cassano, Perry-Parrish, & Stegall, 2006; Zeman & Shipman, 1997). 

Our results also imply that compared to adults, adolescents remain 

sensitive to voluntary crying, and that the ability to perceive contagiousness from 

voluntary crying could continue to develop in early adulthood. This suggests that 

before the age of  30, the participants are to some extent growing in the capacity 

to mirror the emotion associated with crying sounds, even when they are 

produced voluntarily. This long-lasting developmental trajectory of  perceiving 

voluntary crying has never before been reported. Although there is evidence that 

adult crying is considered to serve as a ‘help-soliciting function’ and that people 

are more willing to help a crying person than a non-crying person (Hendriks et 

al., 2008), there has been relatively little research previously conducted on the 

perception of  adult crying. More empirical evidence is needed in the future, as 

understanding how we perceive adult crying can shed light on how we process 

sadness, which plays an important role throughout the lifetime. 
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Chapter 5 Pupil responses to emotional vocalisations 

5.1 Introduction 

Pupil size variation has been used as an indication of  emotion processing over 

the past 40 years. This methodology provides a window for exploring implicit 

physiological responses during the experience of  different emotions (Darwin, 

Palli, & Sylvester, 1977; Hess, 1965; Hess & Polt, 1960; Leknes et al., 2013). Hess 

(1965) first proposed that pupil dilation may be associated with pleasant stimuli 

and that pupil constriction may be associated with unpleasant stimuli. In 

subsequent years, the relationship between pupillometry and emotion effects has 

been further addressed. One review (Janisse, 1973) argued that the dilation was 

driven by intensity of  the stimulus and not its valence. 

Studies on pupillary responses and emotion perception have further 

supported the notion of  pupillary dilation as related to viewing arousing 

emotional pictures (Bradley, Miccoli, Escrig, & Lang, 2008) or to listening to 

arousing emotional sounds (Partala, Jokinierni, & Surakka, 2000; Partala & 

Surakka, 2003). Bradley et al. (2008) used pleasant, unpleasant, and neutral 

pictures as stimuli to investigate underlying physiological responses while 

perceiving these emotional pictures. The pictures were selected from the 

International Affective Picture System (IAPS: Lang, Bradley, & Cuthbert, 2005) 

and matched with arousal ratings in the pleasant and unpleasant categories. The 

study found that pupils dilated in response to arousing stimuli but showed no 

significant difference between positive and negative pictures. Additionally, the 

pupillary dilation was found to covary with skin conductance changes. Similarly 

to the study summarized above, Partala & Surakka (2003) used pleasant sounds 

(e.g. a baby laughing), unpleasant sounds (e.g. a baby crying or a couple fighting), 
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and neutral sounds (e.g. regular office noise) as stimuli and again found that 

participants’ pupil diameters only increased as a function of  arousal but did not 

change because of  the valence of  stimuli. 

Measuring pupil size has become a powerful method that is not only used 

for investigating emotion processing, but also as a marker in a wide range of  

studies to identify underlying physiological changes in human behaviour. For 

example, pupil dilation was found to be associated with cognitively effortful 

listening tasks and in general to be associated with a high processing load during 

task performance (Alnæs et al., 2014; Granholm & Steinhauer, 2004; Koelewijn, 

de Kluiver, Shinn-Cunningham, Zekveld, & Kramer, 2015; Zekveld, Heslenfeld, 

Johnsrude, Versfeld, & Kramer, 2014). Pupil dilation was also related to decision-

making processes as pupil diameter increased either during decision formation 

process in the choice of  ‘YES’ trials than in ‘NO’ trials (de Gee, Knapen, & 

Donner, 2014), or the pupillary dilation could correctly predict the timing of  

decisions (Einhäuser, Koch, & Carter, 2010). Moreover, in the learning process 

of  decision making, pupil dilation has been found to signal uncertainty and 

surprise effects in gambling learning tasks (Lavín, San Martín, & Rosales Jubal, 

2014; Preuschoff, Hart, & Einhäuser, 2011). In a study that lasted 16 training 

days in order for participants to learn a visual searching task, pupil dilation 

increased at the beginning of  the training days but significantly decreased 

throughout the training process (Takeuchi, Puntous, Tuladhar, Yoshimoto, & 

Shirama, 2011). Pupil dilation, therefore, rather than only being an index of  

arousal perception in emotion studies, has been shown to be evidently associated 

with many other changes in humans’ psychological state. The pupillary response 

indeed sheds light on different facets of  the human mind, but a detailed 

mechanism between pupillary dilation, cognitive function and brain activation 

remains to be explored. 

So far, there is evidence indicating that pupillary activity is closely related 

to the locus coeruleus (LC) embedded in a cortico-subcortical network, which is 

a small nucleus in the dorsal pons. The evidence was first established in monkeys 

and showed that changes of  spiking activity in the LC closely aligned with 

changes of  pupil sizes (Aston-Jones & Cohen, 2005; Costa & Rudebeck, 2016). 

Specifically, the spiking activity in the LC was observed to be greater prior to 

pupil dilation than during constriction (Joshi, Li, Kalwani, & Gold, 2016). 
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Moreover, the neural activities of  some subcortical regions in monkeys, such as 

the colliculus and cingulate cortex – which is interconnected with the LC – were 

also involved in this LC-norepinephrine system (Joshi et al., 2016). An additional 

study directly measured blood-oxygen-level-dependent (BOLD) signals in the LC 

and investigated the relationship between the BOLD signals and pupil diameter 

in the human brain (Murphy, O’Connell, O’Sullivan, Robertson, & Balsters, 

2014). The study identified that the continuous pupil diameter co-varied with 

BOLD activity in the LC while participants were performing an ‘oddball task’. 

The pupil diameter during task performance was also correlated with activity in 

the visual cortex, superior colliculus, bilateral thalamic nuclei, and anterior 

cingulate cortex, although the area did not survive for FDR-corrected multiple 

comparisons (p = 0.08). The relationship between neural activity in the LC and 

pupillary response provided an early foundation for pupillometry studies and 

demonstrated that pupillary changes indeed correlate with brain activity although 

the underlying mechanism needs further investigation. With the advances in the 

temporal resolution of  this technique, we were able to record the physiological 

responses while the participants were listening to emotional vocalisations. 

In the current experiment, we were interested in the underlying pupillary 

responses when participants passively listened to emotional vocalisations without 

being aware of  the differences of  involuntariness among the stimuli. Specifically, 

the behavioural results from the previous experiment showed that the perceived 

authenticity of  involuntary vocalisations was higher than voluntary vocalisations, 

and that crying sounds were also perceived as less authentic than laughter. The 

differences between involuntary and voluntary sounds in each expression was 

also found to be significantly different. To explore whether the differences we 

observed in the behavioural ratings are supported by the underlying physiological 

activity, we conducted a two-stage experiment to first record pupillary responses 

while participants passively listened to emotional vocalisations, and then record 

their behavioural ratings on these stimuli. 

  85



5.2 Methods 

5.2.1 Emotional stimuli 

There were 20 stimuli in each of  the four conditions: involuntary laughter (IL), 

voluntary laughter (VL), involuntary crying (IC), and voluntary crying (VC) (see 

Chapter 2 for more details). 

5.2.2 Participants 

Forty-eight healthy native British English speakers volunteered to participate in 

this experiment (age range = 19-40 years; 28 females). All of  them had normal or 

corrected-to-normal vision and reported no history of  neurological or psychiatric 

illnesses. 

All participants were paid £10 per hour for their time, and the project 

was approved by the UCL Research Committee. 

5.2.3 Procedure 

Pupillometry task 

Participants were first introduced to the testing room and seated on a non-

adjustable chair. They were told that they would be listening to different types of  

emotional sounds and that their pupil diameter would be recorded throughout 

the task. They were not informed that the study was about authenticity 

processing in laughter and crying. The sounds were presented via headphones 

and an adjusted chinrest was used to minimize head movements and to keep 

participants’ eyes at a distance of  65cm from the centre of  the computer screen. 

The task included 80 stimuli in total, which were divided into four blocks. 

Each block consisted of  20 trials using either laughter or crying stimuli. Half  of  

the 20 trials were voluntary vocalisations and the other half  were involuntary 

vocalisations. For the first laughter block, the 10 trials of  each condition (i.e., IL 

and VL) were first randomly selected, and then the other 10 trials of  each 

condition were assigned to the second laughter block. For crying blocks, the 
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procedure was performed as the same as in the laughter blocks. Stimuli were 

presented in a randomized order within blocks, and the order of  the blocks was 

counterbalanced across participants. Short breaks were allowed between blocks 

to minimize fatigue. 

A nine-point calibration for eye movements was performed before each 

block. Participants were then instructed to listen carefully to each sound while 

keeping their eyes open and looking at the fixation point (a cross) on the centre 

of  the screen. In each trial, the fixation point was first presented for one second 

in which no task-related processing occurred, and then the fixation point 

remained on the screen during the sound presentation (average duration = 2.51 

seconds, SD = 0.36) and for four seconds after the offset of  the sound, when it 

was replaced by an asterisk. The trial structure is illustrated in Figure 1. 

Participants were told that they could blink and relax when the asterisk was on 

the screen (three seconds). The inter-trial interval randomly ranged between 0 

and 3 seconds to reduce possible expectation effects regarding the onset of  the 

following trial. The lighting of  the testing room was kept at a constant level for 

all participants. 

Participants’ pupil diameters were recorded using the High-Speed Video 

Eye Tracker Toolbox (HS-VET, Cambridge Research Systems Ltd.). The 

sampling rate was 250Hz. Auditory stimulus presentation was controlled using 

Matlab on a desktop PC computer and delivered through headphones to 

participants using the psychophysics toolbox (version R2010a and R2012b, 

Mathworks, Sherborn, MA, USA). Emotional vocalisations were played through 

high-quality headphones (Sennheiser Porfessional HD 25-II). 

  

Figure 5.1 Trial structure 
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Behavioural task 

After completing the pupillometry task, participants completed a behavioural 

perception task. They rated each vocalisation on two different 7-point Likert 

scales: authenticity and arousal. For the authenticity ratings, participants rated the 

extent to which the emotional sound reflected a genuinely-felt emotion (‘Does 

the sound reflect a genuinely felt emotion?’ One signified posed: the speaker was 

not feeling the emotion, and seven signified genuine: the speaker was genuinely 

feeling the emotion). For arousal ratings, participants rated the level of  arousal of  

the speaker (‘Arousal: does the sound reflect low or high arousal?’ One signified 

low arousal: the person is feeling sleepy and with no energy, and seven signified 

high arousal: the person is feeling alert and energetic). The two rating scales 

corresponded to two separate blocks; the full set of  vocalisations was presented 

in a randomized order in each block and the order of  the blocks was 

counterbalanced over the participants. This task lasted approximately 20 minutes. 

5.2.4 Data analysis 

5.2.4.1 Pupillometry data 

Due to their eye make-up, low eyelid or machine malfunction, eight participants 

recorded less than 70% of  their total data and were therefore excluded. Pupil 

diameter data for each participant were pre-processed using Matlab (R2013b). 

The mean and SD of  the pupil diameter were calculated for each pupil trace, 

during a time period starting one second before the stimulus onset and ending 

three seconds after the stimulus offset (total seven seconds). For each trace, zero 

values and diameter values that were three SD’s below the mean diameters were 

coded as blinks. Traces containing more than 15% of  blinks (1.4 seconds) were 

excluded from the analyses (Koelewijn et al., 2015). The baseline pupil diameter 

was defined as the pupil size in the one-second interval preceding stimulus onset. 

To ensure that we had reliable baseline measures, pupil traces containing more 

than 40% of  blinks during the baseline were excluded. After these quality checks, 

eight additional participants were excluded because after screening they had less 

than half  of  the trials left (i.e., < 10) in one or more of  the conditions (Nuske, 

Vivanti, Hudry, & Dissanayake, 2014). The 32 participants (age 19-35, mean age 
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= 24.87, SD = 4.52, 17 females) included in the analyses had usable data for at 

least 50% of  the trials in each condition (on average 91%; SD = 0.18; range = 

55-100%). To remove extreme sample-to-sample changes in pupil diameter due 

to partial eyelid closures on either side of  blinks, samples deviating more than 

two SD’s from the mean pupil diameter within 350ms were removed, and these 

gaps were linearly interpolated (Nuske et al., 2014). All remaining traces were 

baseline-corrected by using the mean pupil size within the one-second period 

prior to the onset of  the stimuli as a baseline value for each trace, and then 

subtracting the baseline value from the value for each time point within the trace. 

These baseline-corrected pupil diameters were averaged over the trials according 

to the stimulus categories for each participant, and were then analysed with 

repeated-measures analyses of  variance (ANOVA). Greenhouse-Geisser 

corrections were applied when necessary (Mauchly’s sphericity test). 

5.2.4.2 Behavioural data 

Repeated-measures ANOVAs were conducted separately for authenticity and 

arousal responses, with expression (laughter/crying) and involuntariness 

(involuntary/voluntary) as within-subject factors. Significant interactions were 

then analysed by using paired samples t-tests to compare the difference between 

ratings of  involuntary and voluntary vocalisations in laughter or crying 

conditions. 
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5.3 Results 

5.3.1 Behavioural results 

Participants’ authenticity responses to laughter and crying are presented in Figure 

5.1.1. As expected, involuntary vocalisations (M = 5.02, SD = 0.60) were 

perceived as more authentic than voluntary vocalisations (M = 2.77, SD = 0.47; 

main effect of  authenticity (F[1,29] = 233.694, MSE = 0.654, p <. 001,   = .

890). The main effect of  expression was also significant, indicating that laughter 

(M = 4.29, SD = 0.48) was generally rated as more authentic than crying (M = 

3.50, SD = 0.46; F[1, 29] = 47.611, MSE = 0.386, p < .001,   = .621). The 

interaction between expression and involuntariness exhibited a marginally 

significant difference (F[1, 29] = 4.119, MSE = 0.099, p =.052,   = .124) (Fig. 

5.2). 

Regarding arousal, involuntary vocalisations (M = 4.91, SD = 0.58) were 

rated more highly than voluntary vocalisations (M = 3.51, SD = 0.55; main effect 

of  involuntariness, F[1,29] = 150.146, MSE = .393, p <. 001,   = .838), 

indicating that involuntary vocalisations were perceived as sounding more 

aroused than voluntary ones. The main effect of  expression was also significant 

(F[1,29] = 154.341, MSE = .419, p <. 001,   = .842), demonstrating that 

laughter (M = 4.94, SD = 0.57) was generally perceived as sounding more 

aroused than crying (M = 3.48, SD = 0.58). Additionally, the interaction between 

expression and involuntariness was significant (F[1,29] = 52.527, MSE = .141, p 

<. 001,   = .644) (Fig. 5.3). Follow-up paired-sample t-tests showed that the 

effect of  involuntariness on perceived arousal was larger for laughter (involuntary 

laughter: M = 5.89, SD = 0.61; voluntary laughter: M = 3.99, SD = 0.72; t(29) = 

14.89, p < .001 ) than for crying (involuntary crying: M = 3.93, SD = 0.79; 

voluntary crying: M = 3.02, SD = 0.58, t(29) = 6.51, p < .001). Involuntary crying 

and voluntary laughter had similar arousal levels (t(29)=3.48, p = 0.73), whereas 

all the other conditions differed significantly from each other (p < .001). 

η2
p

η2
p

η2
p

η2
p

η2
p

η2
p

  90



  

Figure 5.2 Results of authenticity ratings (on 7-point Likert Scale) from 30 
participants 

  

Figure 5.3 Results of arousal ratings (on 7-point Likert Scale) from 30 
participants 

  91



5.3.2 Pupillometry results 

The average pupil responses for each condition are shown in Figure 5.4 The 

average pupil dilation was 0.076 mm (SD = 0.07), and the average stimulus-

induced pupil dilation during sound presentation (around three seconds) was 

0.102 mm (SD = 0.07). After the stimulus onset (from 1s on the timeline), there 

was no obvious pupil dilation during the first 500ms, followed by a steep increase 

in the pupil size observed across all conditions. Peak dilation was reached at 

around 2-to-3 seconds after stimulus onset (3-to-4 seconds after the onset of  the 

trial), and this was followed by pupil constrictions lasting for 3-to-4 seconds 

depending on conditions: the pupil responses for voluntary vocalisations 

constricted earlier than for involuntary vocalisations. 

A 2x2 ANOVA was conducted with expression (laughter/crying) and 

involuntariness (involuntary/voluntary) on mean pupil dilation during full trials 

(i.e., from the stimulus onset to 3 seconds after the stimulus offset, or 6 seconds 

in total). The ANOVA showed a main effect of  involuntariness (F[1,31] = 

13.686, MSE = .002, p = .001,   = .306), indicating that pupils dilated more for 

involuntary vocalisations (M = 0.089, SD = 0.078) than for voluntary 

vocalisations (M = 0.063, SD = 0.066). There was no significant main effect of  

expression (F[1,31] = 1.363, MSE = .002, p = .252,   = .042), signalling that 

there was no significant difference between pupil dilation for laughter (M = 

0.072, SD = 0.074) and for crying (M = 0.081, SD = 0.070). No significant 

interaction was found between involuntariness and expression (F(1,31) = .910, 

MSE = .001, p = .347,   =.029) (Fig. 5.5). 

Two 2x2 ANOVAs were also conducted on specific indexes: the mean 

pupil diameter during the stimulus presentation (i.e., 3 seconds after the onset of  

stimulus) and the peak dilation (i.e., the maximum diameter throughout the trials) 

(Fig. 5.6, 5.7). The ANOVAs both showed significant main effects of  

involuntariness (mean: F[1,31] = 8.256, MSE = .01, p = .007,   = .210; peak: 

F[1,31] = 12.616, MSE = .002, p = 001.,    = .289) indicating that pupils dilated 

more for involuntary vocalisations than for voluntary ones. There was no 

significant main effect of  expression (mean: F[1,31] = 1.378, MSE = .002, p = .

249,   = .043; peak: F[1,31] = .876, MSE = .003, p = .357,   = .027 ) showing 
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that pupil responses did not differ for laughter and for crying. No significant 

interaction was found (mean: F[1,31] = 1.184, MSE = .001, p = .285,    = .037; 

peak: F[1,31] = 1.392, MSE = .002, p = .247,   = .043) (Fig. 5.7). A 2x2 

ANOVA on pupil baseline showed no significant effect of  expression (F[1,31] 

= .170, MSE = .297, p = .683,   = .005), involuntariness (F[1,31] = .448, MSE = 

.014, p = .508,   = .014), or interaction (F[1,31] = .495, MSE = .006, p = .487, 

  = .016), which indicates that the mean pupil diameters in the baseline 

durations were stable for the four conditions (Fig. 5.8). 

  

Figure 5.4 Average pupil responses for each condition 
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Figure 5.5 Mean pupil dilation over trials for each condition 

The time window over which the mean pupil dilation was computed corresponds 

to the range between 1 s to 7s (i.e., 6 seconds in total). Error bars indicate the 

standard error of  the mean.  
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Figure 5.6 Mean pupil dilation of duration of sound presentation. 

The time window over which the mean pupil dilation was computed corresponds 

to the range between the 1 second and 4 seconds (i.e., duration of  sound 

presentation). Error bars indicate the standard error of  the mean.  

Figure 5.7 Average peak pupil dilation across participants 
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Figure 5.8 Average baseline pupil diameters across participants 

5.4 Discussion 

The main finding in this experiment was that pupillary responses for involuntary 

vocalisations were significantly greater than for voluntary vocalisations regardless 

of  expression. Although participants explicitly rated adults’ crying as less 

authentic than laughter, their pupillary responses were only modulated by the 

difference between involuntary and voluntary vocalisations, and not by 

expression. 

Several previous studies have found that when participants perceive a 

stimulus with a strong affect, their pupil diameters increase with the extent of  

intensity of  the stimulus regardless of  its modality (e.g. visual or auditory stimuli) 

or contents (e.g., male or female) (Bradley et al., 2008; Janisse, 1973; Partala et al., 

2000; Partala & Surakka, 2003). Our results were consistent with these findings 

(Bradley et al., 2008; Partala et al., 2000; Partala & Surakka, 2003). Involuntary 

laughter and involuntary crying, which have higher arousal and authenticity levels, 

induced greater pupil dilation than did voluntary laughter and crying. However, 

the pupillary responses in our experiment were not completely consistent with 

the rating results. Participants rated laughter as more authentic than crying, and 
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rated the speakers who had produced laughter as sounding more aroused than 

those who had produced crying. In addition, we found that the interaction of  

arousal ratings between expression and involuntariness was significant, which 

indicates that the perceived arousal difference between involuntary and voluntary 

laughter was greater than the perceived difference between involuntary and 

voluntary crying. The behavioural results stated above however were not 

reflected in pupillary results. The pupillary results indeed provide physiological 

evidence on the perceived differences between involuntary and voluntary 

vocalisations in arousal and authenticity ratings, but it also demonstrates a 

discrepancy between implicit perception and explicit ratings on these emotional 

vocalisations. 

The size of  the pupil is controlled by two smooth muscles of  the eye, 

which makes it very difficult to control pupillary dilation by voluntary efforts. 

Although it may be possible to dilate pupils by internally picturing highly 

arousing events or pictures, it is impossible to voluntarily inhibit pupil dilation 

(Laeng, Sirois, & Gredeback, 2012). In the current experiment, the greater pupil 

dilation for involuntary vocalisations than for voluntary vocalisations suggests 

that only listening to emotional sounds without consciously knowing anything 

about involuntariness can induce spontaneous information processing in 

response to involuntary vocalisations. Pupillometry has been used in previous 

studies as an indicator to unveil subliminal information processing (Leknes et al., 

2013; Nuske et al., 2014). Nuske et al. (2014) studied emotion processing in two 

groups of  participants – autistic and typically developing (TD) children – by 

subliminally (non-consciously) or supraliminally (consciously) presenting fearful 

or neutral faces while recording their pupil sizes. The study showed that pupillary 

responses were significantly different between the two groups in the non-

conscious conditions, but not different in the conscious conditions. Specifically, 

in the non-conscious condition, the peak amplitude of  pupil sizes of  TD 

children was significantly greater in duration when viewing the fearful faces than 

the neutral faces. Meanwhile, the peak amplitude of  autistic children was greater 

when viewing the neutral faces rather than the fearful faces. The authors 

therefore argued that emotion processing is fundamentally different in autistic 

children, characterized by reduced unconscious emotional reactivity and the 

requirement of  consciousness involvements. In the current experiment, it is 
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possible that pupil dilated significantly greater for involuntary sounds than for 

voluntary sounds implying involuntary vocalisations were processed differently 

from voluntary vocalisations.  

There is converging evidence indicating that pupillary responses are 

effective indices of  ‘hidden’ emotion processing (Laeng et al., 2013, 2012; Leknes 

et al., 2013). In previous studies, ‘hybrid’ faces were created by combining a high-

pass filtered neutral face with a low-pass filtered emotional face. Participants were 

not aware of  that these hybrid faces contained emotional information by judging 

these faces as neutral. On the other hand, hybrid faces were perceived as less 

friendly if  a negative but a positive emotional face was embedded in a neutral 

face. In line with friendliness rating results, pupillary response to the negative 

hybrid faces were greater than to real neutral faces and to the positive hybrid 

faces. These studies showed that pupil diameters changed greatly for invisible 

emotions which participants would not be able to consciously recognise. 

Although in the current experiment participants were aware of  the difference 

between involuntary vocalisations and voluntary vocalisations, they performed 

poorly on recognising authenticity carried in crying sounds. The pupillary 

response showed that the participants perceived the difference between 

involuntary crying from voluntary crying, however their authenticity ratings on 

crying were possibly affected by other reasons, for example, display rules.  

One explanation for the lack of  a main effect of  expression observed in 

the behavioural ratings on pupil dilation is that human pupils do not react 

specifically to different emotions: rather, our pupils simply react to arousing 

stimuli (Partala et al., 2000; Partala & Surakka, 2003). However, this explanation is 

not consistent with that the involuntary crying was sounding no more aroused 

than voluntary laughter, but pupil significantly dilated for perceiving involuntary 

crying sounds than for voluntary laughter. Another possible explanation is that 

our pupils strongly react to involuntary laughter and crying because these two 

kinds of  stimuli carry more ‘intense’ emotional information than do voluntary 

stimuli. However, there is evidence showing that  pupils constrict rather than 

dilate in response to photographs of  sad faces, which are rated as more intense 

than others (Harrison, Singer, Rotshtein, Dolan, & Critchley, 2006; Harrison, 

Wilson, & Critchley, 2007). In these studies, the pupil size of  one face on a 

photograph was photoshopped into 64, 80, 100, and 180% of  the original size 
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without participants’ awareness. Participants were asked to look at photographs 

of  happy, sad, angry, and neutral faces. Only photographs of  sad faces with 

smaller pupils were rated significantly more negative and more intense than those 

with larger pupils. This pupillary contagion of  sad faces was supported by related 

activation in the mid-brain and the right angular gyrus, which are suggested to be 

involved in social cognition (Harrison et al., 2006). The researchers proposed that 

the effect was a specific phenomenon that occurs when perceiving sadness from 

facial expression. This suggests that autonomic activation plays a role in 

perceiving sadness through facial expression. 

The reported pupillary constriction when perceiving sad faces is 

inconsistent with our results, in which participants exhibited greater pupil dilation 

in response to involuntary crying. As there are no other studies investigating 

pupil reactivity to sad stimuli of  both visual and auditory modalities on healthy 

adults, it is still unclear whether perceiving involuntary vocalisations with greater 

pupillary dilation indicates an automatic activation response to the intensity of  

the stimuli. 

  99



Chapter 6 The neural correlates underlying the perception of laughter 

and crying 

6.1 Introduction 

There has been a long history of  investigating pathological laughing and crying 

(PLC) since the 19th century. As reviewed in Chapter 1, lesions along the 

corticobulbar and corticospinal tracts were identified to be associated with PLC, 

showing both cortical and subcortical contributions to the syndrome. However, 

when comparing the impaired cortical and subcortical involvements in the pure 

form of  pathological laughing (PL) and pathological crying (PC), more cortical 

regions seem to be identified in the PL than in the PC. However, PC patients 

with epileptic seizures to some extent exhibited cortical abnormalities in the 

temporal and frontal lobes, and PL patients caused by seizures were found to 

have abnormal neural activity in the cingulate gyri, while PLC epileptic patients 

were found to show abnormal neural activity in the orbito-cingulate region 

(Kahane et al., 2003). The pathological laughter is suggested to occur when the 

two systems of  expressing laughter were partially impaired (Wild, Rodden, 

Grodd, & Ruch, 2003). Specifically, evoked laughter and crying can be triggered 

through the ‘emotionally driven’ system (i.e., involuntary system), and the system 

is modulated by the ‘voluntary’ system which can inhibit emotionally driven 

inappropriate laughter or crying. From this point of  view, pathological laughter 

or crying occurs when the voluntary system release to suppression to the 

expression (Lauterbach et al., 2013; Wild et al., 2003). 

The areas identified in a paper by Lauterbach et al. (2013) on PLC and 

emotional liability research involved several motor- and emotion-associated brain 

regions which were proposed to be underlying neural correlates of  the two 
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systems. For the voluntary system, the majority of  motor related cortical areas 

were identified, such as the primary motor cortex, premotor cortex, 

supplementary motor cortex (SMA), pre-SMA, somatosensory cortex, and 

supramarginal gyrus. For the emotionally driven system, subcortical and cortical 

regions were identified involving the anterior cingulate gyri, orbitofrontal cortex, 

inferior temporal gyri, occipitotemporal gyrus, parahippocampal gyrus, anterior 

insula, and related temporal cortices. The cortical regions in the voluntary system 

then sends signals to the pons, and the emotionally driven system sends signals to 

the amygdala, hypothalamus, and then to the periaqueductal gray (PAG) 

(Lauterbach et al., 2013). The former system is proposed to serve the function of  

intentionally producing laughter and/or crying, and the latter is suggested to be 

responsible for producing laughter and crying triggered by internal or external 

stimulation. 

The extensive review on pathological laughter and crying indeed sheds 

lights on plausible neural circuits underlying the production of  laughter and 

crying, yet only little empirical research has focused on the production of  

laughing and crying with normal participants. One study investigated the 

production of  laughter and revealed involvements of  the lateral sensorimotor 

areas identified in the conditions of  producing voluntary laughter and producing 

tickling laughter, however, the area increased activations when the participants 

were asked to inhibit the tickling laughter (Wattendorf  et al., 2013). It can 

indicate that the role of  the lateral sensorimotor system is not limited to 

supressing uncontrolled laughter, but rather it can also be involved in a general 

underlying neural mechanism of  producing laughter. In accordance with the two 

systems delineated by Lauterbach et al. (2013), the regions identified by 

Wattendorf  et al. (2013) partly overlapping with the emotionally driven system 

(i.e., amygdala, hypothalamus, PAG) can confirm that the system is indeed 

reactive to external physical stimulation and engages in the production of  

involuntary laughter. 

This distinctive pattern of  brain activations identified in perceiving 

involuntary and voluntary laughter was recently investigated in a study by 

McGettigan et al. (2015). By passively listening to these two kinds of  laughter, the 

sensorimotor cortices showed increased involvement positively correlated with 

participants’ ability to discriminate ‘real’ laughter from ‘posed’ laughter according 
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to the perceived authenticity in involuntary and voluntary laughter. In addition, 

neural activation in the anterior medial prefrontal cortex (amPFC) was found to 

be significantly engaged in perceiving voluntary laughter rather than perceiving 

involuntary laughter, which suggested that the listeners might be inferring 

laughers’ intentions while encountering social laughter (McGettigan et al., 2015). 

In line with these findings, a later study further supported this notion by showing 

that activations in the amPFC were negatively correlated with perceived valence 

and authenticity of  laughter. In contrast, activity in bilateral auditory cortices 

were positively correlated with the degree of  valence, arousal, and authenticity 

perceived in laughter. In the same study, the right STG was further identified to 

be strongly associated with the laughter of  the highest authenticity rating (Lavan, 

Rankin, Lorking, Scott, & McGettigan, 2017). So far, the studies stated above 

have successfully provided empirical evidence that brain activation can be 

modulated by affective properties of  voluntary and involuntary laughter. The 

areas identified are potential candidates for understanding the functional neural 

correlates underlying the perception of  other emotional vocalisations, such as 

voluntary and involuntary crying. 

The previous two experiments show that perceived authenticity 

concerning laughter and crying may follow similar developmental trajectories. 

However, the authenticity ratings of  voluntary vocalisations were shown to 

improve through early adulthood regardless of  emotions. I also observed that the 

perceived contagiousness of  laughter and crying showed distinct patterns 

regarding the involuntary vocalisations. Specifically, participants across all ages 

exhibited willingness to join in involuntary laugher, but only children reported 

that perceiving involuntary crying is contagious to some extent, and the 

willingness to join in involuntary crying decreased over time. Regarding the 

perceived contagiousness of  the voluntary vocalisations, a slower developmental 

learning process was observed in crying than in laughter.  

The aim of  the current experiment is to delineate the neural systems 

implicated in the perception of  laugher and crying, and how this is modulated by 

authenticity. This will enable us to determine whether the responses seen to 

voluntary and involuntary laughter in the previous study (McGettigan et al, 2015) 

were specific to laughter, or to the authenticity of  any emotion.  
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6.2 Methods 

6.2.1 Emotional Stimuli 

Twenty tokens were selected for each condition: involuntary laughter, voluntary 

laughter, involuntary crying, voluntary crying (i.e., 80 in total). See Material 

Preparation Section. Another 20 tokens of  emotional vocalisations including 6 

tokens of  disgust sounds, 7 tokens of  contentment sounds, and 7 tokens of  

relief  sounds were included in the experiment as a distractor condition to distract 

the participants from detecting the main experimental manipulations in the 

imaging study. 

6.2.2 Participants 

Twenty-four healthy native English speakers volunteered to participate in this 

experiment (age range = 18-48, Mean age = 24.75 years, SD = 6.95, fourteen 

females). All of  them had normal hearing and vision or corrected-to-normal 

vision. No participants reported a history of  neurological or psychiatric illnesses. 

The study was approved by the UCL Research Ethics Committee. They were 

paid £10 per hour for their time. 

6.2.3 Design and procedure 

Before going into the scanner, the participants were informed that they would be 

passively listening to emotional sounds for four sessions, and each session lasted 

for about 10 minutes. After the first two passive listening sessions, a structural 

scan would be performed, followed by the last two sessions of  listening to 

emotional sounds. After the four sessions of  the auditory phase of  the 

experiment and the structural scan, there would be one session of  emotional 

motor tasks, and the final session would be a theory of  mind task. Participants 

were given clear instructions about the tasks and had time to practice before 

going to the scanner. Participants were not aware that the stimuli varied in terms 

of  authenticity. 
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6.2.4 Auditory sessions 

Functional imaging data were acquired on a Siemens Avanto 1.5-Tesla MRI 

scanner (Siemens AG, Erlangen, Germany). Participants were informed that they 

would hear emotional sounds and some other types of  sound and that they 

should listen carefully to the sounds. 

Auditory presentation of  emotional sounds took place in 4 runs of  65 

echo-planar whole brain volumes (TR = 8.4s, TA = 3.4 s, TE = 50 ms, flip angle 

= 90°, 40 axial slices, 3 mm x 3 mm x 3 mm in-plane resolution). A sparse-

sampling routine (Edmister et al., 1999; Hall et al., 1999) was employed, in which 

the auditory stimuli were presented in the quiet period between scans. Auditory 

onsets occurred 0.5 s (+- 0.5s jitter) before the beginning of  the next whole-brain 

volume acquisition. Auditory stimuli were presented using MATLAB (version 

R2012b, Mathworks, Sherborn, MA, USA) and the psychophysics toolbox 

(Brainard 1997; Pelli 1997) via a Sony STR-DH510 digital AV control center 

(Sony, Basingstoke, UK) and MR-compatible insert earphones (Etymotic 

Research, Inc., Elk Grove Village, IL) worn by the participants. 

All 100 stimuli (20 from each condition: voluntary/involuntary, laughter/

crying; 20 from distract sounds: 6 disgust sounds, 7 relief  sounds, 7 comfort 

sounds) were presented twice in total (once in each functional run). The 

condition order was pseudorandomized, with each auditory condition occurring 

once every 6 trials, including one trial of  a Rest Baseline condition. 

6.2.5 Structural scan 

After the first two sessions of  listening to emotional sounds, high-resolution 

anatomical images were acquired using a  T1-weighted magnetisation prepared 

rapid acquisition gradient echo sequence (repetition time = 2730 ms, echo time = 

3.57 ms, flip angle = 7°, slice thickness = 1 mm, 160 sagittal slices, acquisition 

matrix = 256 × 224 × 160 mm, voxel size = 1 mm3). 

  104



6.2.6 Orofacial movement localizer (motor task) 

After the auditory phase of  the experiment, the listeners were informed that the 

next part would require that they move their facial muscles to mimic a happy face 

and a frowning face. During each trial of  the motor condition, they were 

instructed to either ‘SMILE’ or ‘FROWN’—or to ‘REST’ which required no 

facial movements. In the ‘SMILE’ condition, they were instructed to quickly 

initiate a voluntary smiling movement and then relax, continuing this movement 

until the instruction disappeared from the screen. In the ‘FROWN’ condition, 

they were instructed to move their eyebrows together and then relax, again 

continuing this movement until the instruction disappeared from the screen. 

Each trial lasted for 3.4 seconds. The condition order was pseudorandomized, 

with each condition occurring once every three trials. 

A total of  110 echo-planar whole brain volumes (TR = 3.4s, TA = 3.4s, 

TE = 50 msec, flip angle = 90°, 40 axial slices, 3 mm x 3 mm x 3 mm in-plane 

resolution) were acquired during the task, in which the participants performed 30 

trials in each condition. This session lasted for around five minutes. 

6.2.7 Theory of mind localizer (TOM task) 

Stimuli consisted of  10 stories in each of  two conditions: (1) stories describing 

false belief  (BELIEF) and (2) stories describing outdated (i.e., false) photographs 

and maps (PHOTO) (Saxe & Kanwisher, 2003). Both sets of  stories required 

participants to represent false contents, while the critical difference was in the 

type of  false content represented (i.e., a belief  versus a photograph/map). Stories 

were followed by a true/false question that referred either to the situation in 

reality or to the false representation. There were an equal number of  questions 

that referred to the reality and representation in each condition, and the order of  

conditions was pseudorandomized so that each condition occurred every two 

trials. 

Every trial, a story was presented for 10 seconds followed by a true/false 

question lasting four seconds. Participants were asked to respond as quickly as 

possible. A total of  160 echo-planar whole brain volumes (TR = 3.4s, TA = 3.4s, 
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TE = 50 msec, flip angle = 90°, 40 axial slices, 3 mm x 3 mm x 3 mm in-plane 

resolution) were acquired during the task. This session lasted for around five 

minutes. 

6.2.8 After scan 

6.2.8.1 Behavioural Post-Test 

After the scanning session was complete, the participants were asked to listen to 

each of  the laughter/crying stimuli again and complete three behavioural tasks. 

The first task was to classify the items as ‘real’ or ‘posed’, and the following two 

tasks were to rate these stimuli using 7-point Likert scales on two parameters: 

Authenticity and Contagion. Their rating scales corresponded to separate blocks. 

For the Authenticity ratings, participants rated the extent to which the 

emotional sound reflected a genuinely felt emotion (‘Does the sound reflect a 

genuinely felt emotion?’ 1 - posed, the speaker was not feeling the emotion; 7 - 

genuine, the speaker was genuinely feeling the emotion). Participants were 

informed that half  the sounds were genuine and half  were posed. For the 

Contagion ratings, participants rated the extent to which the sound is contagious 

(’To which extent is the sound contagious?' 1 - not at all, i.e., it does not make me 

feel like mimicking and/or feeling the emotion; 7 - very much, i.e.. it makes me 

feel like mimicking and/or feeling the emotion). 

6.2.8.2 Questionnaire 

In the final part of  the experiment, the participants were self-scored with 

three questionnaires used to see how the personality traits correlated with 

cerebral activity during the auditory phase of  the experiment. These 

questionnaires were The Toronto Alexithymia Scale (TAS-20) (Bagby et al., 

1992), The Emotional Contagion Scale (R. William Doherty, 1997), and The 

Questionnaire of  Cognitive and Affective Empathy (The QCAE) (Reniers et al., 

2010). 
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6.2.9 Data analysis 

6.2.9.1 FMRI data analysis 

Imaging pre-processing and analysis was performed with the SPM8 software 

package (Wellcome Trust Centre for Neuroimaging, London, UK, http://

www.fil.ion.ucl.ac.uk/spm). Image pre-processing involved realignment of  EPI 

images to remove the effect of  head movement between scans, coregistration of  

the T1-weighted structural image to the mean EPI image, normalisation of  EPI 

images into Montreal Neurological Institute (MNI) standard stereotactic space 

using normalization parameters derived from the coregistered T1-weighted 

image, and smoothing of  normalised EPI images using a Gaussian kernel of  

8mm FWHM. Analyses of  imaging data were conducted using a random-effects 

model. 

Auditory Session 

At the single-subject level, event onsets from all 6 conditions (Involuntary 

Laughter (IL), Voluntary Laughter (VL), Involuntary Crying (IC), Voluntary 

Crying (VC), Distract Sounds, and Rest Baseline) were modelled as instantaneous 

and convolved with the canonical hemodynamic response function. Individual 

design matrices were constructed for each subject (All Laughter > Rest, All 

Crying > Rest, IL > VL, VL > IL, IC > VC, VC > IC), modelling each of  the 

four experimental conditions in four scanning runs and including movement 

parameters derived from the realignment step as nuisance variables. These 

contrast images were entered into a second-level, 1-sample t-tests for the group 

analysis. Additional second-level regression models were also run for two of  the 

contrasts (All Laughter > Rest and All Crying > Rest), with individual Cohen’s d 

scores from the behavioural post-test and with individual questionnaire scores as 

covariates in each case. 

  107



Analyses of localizers 

Orofacial movement localizer. At the first level, event onsets from all three 

conditions (Smile, Frown, Rest) were modelled and convolved with a canonical 

hemodynamic response function. Individual design matrices were constructed for 

each subject (Smile+Frown > Rest), and the contrast image was entered into a 

second-level, 1-sample t-test for the group analysis. In the results of  the contrast, 

all clusters (p < .005, uncorrected) were saved as a binary mask and then were 

used to identify the common activations which were also activated within the 

auditory sessions. 

Theory of mind task. At the first level, event onsets from Belief  and Photo 

conditions were modelled and convolved with the canonical hemodynamics 

response function. Individual design matrices were constructed for each subject 

(Belief  > Photo), and the contrast image was entered into a second-level, 1-

sample t-test for the group analysis. In the results of  the contrast, all clusters (p < 

.005, uncorrected) were saved as a binary mask and then were used to identify the 

common activations which were also activated within the auditory sessions. 

All results of  the subtraction contrasts and of  the regression analyses in 

the experiment are reported at an uncorrected voxel height threshold of  p < 

0.005. A cluster extent correction was applied for a whole-brain alpha of  p < 

0.001 using a Monte Carlo simulation with 10,000 iterations implemented in 

MATLAB (Slotnick et al., 2003). This determined that an extent threshold of  68 

voxels (where the probability curve approached 0) could be applied for the voxel 

height thresholds of  p < 0.005. The anatomical locations of  significant clusters 

(at least 8mm apart) were labelled using the SPM Anatomy Toolbox (version 22C; 

Eickhoff  et al., 2005). 

6.2.9.2 Behavioural data analysis 

Repeated-measures ANOVAs were conducted separately for authenticity and 

contagion responses, including expression (laughter/crying) and involuntariness 

(involuntary/voluntary) as within-subject factors. The results of  significant 

interactions were followed by simple t-tests on ratings of  expression and on 
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ratings of  authenticity. Individual performances were calculated as Cohen’s d 

scores for use in analyses of  the functional data. 

6.3 Results 

6.3.1 All auditory emotional vocalisations compared to resting baseline 

In order to explore which areas were involved in the perception of  emotional 

vocalizations, we first compared the activations which were activated in the 

passive listening condition to laughter and crying against silent resting scans. 

Areas activated more for emotional vocalizations (i.e., laughter and crying) than 

for resting baseline included bilateral superior temporal gyri (STG), right superior 

temporal sulcus (STS), left middle frontal gyrus (MFG), left inferior frontal gyrus 

(IFG), bilateral precentral gyri, right cuneus, bilateral putamen, and left 

postcentral gyrus. In the contrast of  listening all laughter against silent rest 

showed activation in the bilateral STG, right STS, left insula, bilateral MFG, 

bilateral IFG, left cuneus, right calcarine gyrus, right lingual gyrus, right 

precentral gyrus, and left postcentral gyrus. Similar areas including the bilateral 

STG, right STS, right putamen, bilateral IFG, bilateral insula lobe, right precentral 

gyrus, left precuneus, left cerebellum, and left postcentral gyrus, were activated in 

the contrast of  listening crying against silent rest. (Fig. 6.1; Table 6.1) 
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Figure 6.1 Activations of perceiving laughter and crying. 

(above) Activations of  perceiving laughter and crying vocalisations against resting 

baseline; (middle) activations of  perceiving laughter against resting baseline; 

(below) activations of  perceiving crying against resting baseline. 
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Table 6.1 Brain regions showing significant activation to the perception of  

laughter and crying against resting baseline. 

  

6.3.2 Flexible Factorial Analysis 

The flexible factorial analysis allowed examination of  main-effects and 

interactions, with factors of  involuntariness (involuntary and voluntary) and 

expressions (laughter and crying). We found that the left superior frontal gyrus 

(SFG; BA 8) showed more activation in the main effect of  expressions (Fig. 6.2; 

Table 6.2). No region was found to be more activated in the main effect of  

authenticity. The left STG, right precuneus, right temporal pole, right insula, 

bilateral middle temporal gyrus (MTG), left IFG, left middle occipital gyrus, right 

lingual gyrus, left MFG, and left postcentral gyrus were more activated in the 

interaction between involuntariness and expressions (Fig. 6.3; Table 6.2). 

Contrast No. of voxels Region x y z T Z 

Laughter and crying over rest 32143 R superior temporal gyrus 56 -22 4 18.62 65535 

 599 L middle frontal gyrus -38 56 20 4.93 4.03 

 245 R precentral gyrus 56 -2 46 5.24 4.21 

 99 L postcentral gyrus -50 -10 50 4.05 3.48 

 163 R cuneus 10 -86 42 4.04 3.48 

 159 L precentral gyrus -44 20 20 4.03 3.47 

 103 R putamen 24 10 8 3.84 3.34 

 72 L putamen -20 14 2 3.75 3.28 

Laughter over rest 17801 R superior temporal gyrus 56 -22 4 18.32 65535 

 9050 L superior temporal gyrus -48 -16 2 14.79 7.29 

 912 L middle frontal gyrus -14 32 2 5.66 4.44 

 193 R precentral gyrus 54 -2 46 5.31 4.24 

 893 L cuneus 2 -98 14 4.41 3.72 

  R calcarine gyrus 18 -76 6 4.01 3.46 

 95 L precentral gyrus -52 -8 50 4.26 3.62 

 259 R inferior frontal gyrus (BA 44) 46 16 24 4.19 3.58 

 434 R inferior frontal gyrus (BA 45) 56 30 4 4.13 3.54 

Crying over rest 10935 R superior temporal gyrus 64 -20 6 18.94 65535 

 8133 L superior temporal gyrus -50 -22 6 15.48 7.42 

 9985 R thalamus 12 -30 -2 10.15 6.20 

  L cerebellum -26 -58 -26 7.31 5.20 

 221 R precentral gyrus 56 -2 46 4.57 3.81 

 136 R inferior frontal gyrus 44 16 22 4.09 3.51 

 303 L putamen -20 14 2 3.53 3.12 

 106 L precuneus 0 -76 54 2.96 2.69 

 70 L postcentral gyrus -50 -12 50 3.73 3.26 

 69 R putamen 24 16 6 3.67 3.22 
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Figure 6.2 Main effect of perceiving expressions 

Left superior frontal gyrus showed more activation in the main effect of  

expressions, shown at x = -8, y = 32, z = 38. 
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Figure 6.3 Interaction of flexible factorial design 

Left STG, right precuneus, right temporal pole, right insula, bilateral middle 

temporal gyrus (MTG), left IFG, left middle occipital gyrus, right lingual gyrus, 

left MFG, and left postcentral gyrus were identified in the interaction between 

involuntariness and expressions. 

Table 6.2 Regions showed significant activities in the flexible factorial analysis 
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6.3.3 Direct comparison of involuntary and voluntary conditions in each 
expression 

6.3.3.1 The perception of  laughter 

In order to examine which areas were more activated during the perception of  

involuntary laughter (IL) compared to voluntary laughter (VL), a direct 

comparison between these two conditions was performed. Areas which were 

activated more for the perception of  involuntary laughter than for voluntary 

laughter were the right STG, right rolandic operculum, right insula lobe, and left 

IFG (Fig. 6.4). Comparing the perception of  voluntary laughter to involuntary 

laughter, the left caudate nucleus and left MTG showed more activations (Fig. 

6.5). 

Figure 6.4 Activations of perceiving involuntary over voluntary laughter 

Right STG, right rolandic operculum, right insula lobe, and left IFG showed 

more activation for hearing involuntary laughter than for voluntary laughter. 
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Figure 6.5 Activations of perceiving voluntary over involuntary laughter 

Left angular gyrus and left caudate were more activated for hearing voluntary 

laughter than for involuntary laughter. Shown at x = -40, y = 20, z =5.6. 

Table 6.3 Regions were identified by the contrast between involuntary laughter 

(IL) and voluntary laughter (VL). 

  

 

 

 

 

Contrast No. of 

voxels 

Region x y z T Z 

IL > VL 1160 R superior temporal gyrus 58 -24 10 4.75 3.96 

  R rolandic operculum 52 2 0 4.56 3.81 

  R primary auditory cortex (BA 41) 34 -26 12 3.85 3.35 

  R insula lobe 50 0 -2   

 303 L superior temporal gyrus -50 -25 -4 5.15 4.16 

  L middle temporal gyrus -46 -20 -2 3.37 3.00 

 132 R fusiform gyrus 42 -50 10 4.16 3.55 

  R superior temporal gyrus 46 -42 14 3.67 3.22 

 75 L inferior frontal gyrus -36 2 24 3.18 2.87 

VL > IL 90 L caudate nucleus -14 20 6 5.19 4.18 

 80 L angular gyrus -40 -56 24 4.14 3.54 
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6.3.3.2  The perception of  crying 

In order to examine which areas were more activated during the perception of  

involuntary crying (IC) compared to voluntary crying (VC), a direct comparison 

between these two conditions was performed. The left posterior MTG (BA 21) 

showed more activation for the perception of  involuntary crying than for 

voluntary crying (Fig. 6.6, Table 6.4). However, several areas showed more 

activations to the reverse contrast, such as bilateral MTG, left Heschl’s gyrus, 

right thalamus, right precentral gyrus, right temporal pole, bilateral STG, bilateral 

MFG, left SFG, left superior parietal lobule (SPL), left precuneus, right lingual 

gyrus, and left middle occipital gyrus showed more activations to voluntary 

crying than to involuntary crying (Fig. 6.7, Table 6.4). 

Figure 6.6 Activations of perceiving involuntary over voluntary crying 

Left posterior middle temporal gyrus showed more activation to the perception 

of  involuntary crying than to voluntary crying. Shown at x = -62, y = -42, z = -6. 
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Figure 6.7 Activations of perceiving voluntary over involuntary crying 

Bilateral MTG, left Heschl’s gyrus, right thalamus, right precentral gyrus, right 

temporal pole, bilateral STG, bilateral MFG, left SFG, left superior parietal lobule 

(SPL), left precuneus, right lingual gyrus, and left middle occipital gyrus showed 

more activations to voluntary crying than to involuntary crying. 

Table 6.4 Regions identified by the contrast between involuntary crying and 

voluntary crying. 

  

   

Contrast No. of voxels Region x y z T Z 

IC > VC 86 L middle temporal gyrus -62 -42 -6 4.81 3.96 

VC > IC 734 L middle temporal gyrus -66 -22 2 6.41 4.81 

  L Heschls gyrus -48 -12 8 6.18 4.70 

 122 R Thalamus 22 -22 20 4.65 3.86 

 166 R precentral 58 4 44 4.62 3.85 

  R middle frontal gyrus 50 -2 52 3.42 3.04 

 397 R temporal pole 64 4 -2 4.36 3.68 

  R superior frontal gyrus 66 -18 0 4.35 3.68 

 238 L middle frontal gyrus -20 38 24 4.22 3.60 

  L superior frontal gyrus -30 56 24 3.72 3.26 

 181 L superior parietal lobule -24 -34 50 4.01 3.46 

  L precuneus -16 -48 54 3.66 3.22 

 84 R middle temporal gyrus 48 -32 0 3.93 3.40 

 76 R lingual gyrus 20 -66 0 3.72 3.26 

 69 L middle occipital gyrus -50 -80 14 3.65 3.21 
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6.3.4 Localizers 

6.3.4.1  Orofacial movement localizer (motor task) 

Participants were instructed in the motor task to move their facial muscles to 

mimic happy and frowning facial expressions. An orofacial movement localizer 

then identified brain regions which were more activated during this orofacial 

movements task against rest. These areas were activated along the upper bank of  

bilateral temporal gyrus including STG and MTG, and also in the sensorimotor 

areas such as the right precentral gyrus and left postcentral gyrus extended to the 

left precuneus, and bilateral cerebellum (Fig. 6.8, Table 6.5). This motor network 

was then saved as a binary motor mask to later illustrate the overlap between 

perceptual responses to emotional vocalisations and brain regions supporting 

orofacial movements. 

Figure 6.8 Regions identified by orofacial movement localizer. 
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Table 6.5 Regions identified by orofacial movement localizer. S, smile; F, frown. 

  

6.3.4.2  Theory of  mind localizers (TOM task) 

In the theory of  mind task, participants answered True or False to the stories 

which were either described with false belief  (BELIEF) or with false 

photographs and maps (PHOTO). The regions which showed more activations 

to stories in the BELIEF condition than to stories in the PHOTO condition 

were identified as theory of  mind localizers. The bilateral angular gyri, bilateral 

MTG, bilateral precuneus, right MFG, left superior frontal gyrus (SFG), left 

superior medial gyrus, bilateral cerebellum, left inferior occipital gyrus, bilateral 

IFG, left anterior cingulate cortex (ACC), and right posterior cingulate cortex 

(PCC) showed more activations in the BELIEF condition than in the PHOTO 

condition (Fig. 6.9, Table 6.6). This theory of  mind network was then saved as a 

binary mask (TOM mask) to later illustrate the overlap between perceptual 

responses to emotional vocalisations and brain regions supporting the 

mentalising network. 
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Figure 6.9 Theory of mind network. 

Brain regions showed more activations in the false belief  condition than in the 

photo condition. 

Table 6.6 Regions identified in the theory of  mind network. 
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6.3.5 Common areas for listening to emotional vocalisations and the motor 
task 

The contrast of  hearing all emotional vocalisations (i.e., laughter and crying) 

against silent rest was masked inclusively by activations during the orofacial 

movement task. Regions which showed activations in both tasks were the 

bilateral STG, bilateral cerebellum, right insula lobe, right rolandic operculum, left 

thalamus, bilateral caudate nucleus, right precentral gyrus, right IFG, left 

postcentral gyrus, and left MTG (Fig. 6.10, Table 6.7). 

Figure 6.10 Common brain regions identified by listening to emotional 
vocalisations (i.e., laughter and crying) and the motor task. 

Table 6.7 Brain regions showing significant activation during the perception of  all 

vocalizations over rest, inclusively masked with the motor task. 
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The contrast of  hearing all laughter conditions over silent rest was 

masked inclusively by activations during the motor task, showed common 

activations of  the bilateral STG, left rolandic operculum, left Heschl’s gyrus, 

bilateral cerebellum, bilateral precentral gyrus, bilateral thalamus, left caudate 

nucleus, bilateral IFG, and right calcarine gyrus (Fig. 6.11, Table 6.8). 

Figure 6.11 Common brain regions identified by the contrast of hearing 
laughter against rest and the motor task over rest. 
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Table 6.8 Brain regions showing significant activation during the contrast of  

hearing laughter over rest, inclusively masked with the contrast of  motor task 

over rest. 

  

 The contrast of  hearing crying over silent rest was masked inclusively by 

activations during the motor task, showing common activation of  the bilateral 

STG, left Heschl's gyrus, bilateral cerebellum, right precentral gyrus, left 

postcentral gyrus, left thalamus, and right IFG (Fig. 6.12, Table 6.9). 
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Figure 6.12 Common brain regions identified by the contrast of hearing 
crying against rest and the motor task. 

Table 6.9 Brain regions showing significant activation during the contrast of  

hearing crying over rest, inclusively masked with the contrast of  motor task over 

rest. 

  

The direct contrast of  hearing involuntary laughter against voluntary 

laughter was masked inclusively by activations during the motor task, showing 

common activations of  the bilateral STG and right rolandic operculum. No 

common activation was found for inverse comparison (i.e., voluntary over 

involuntary laughter) and the orofacial movement task (Fig. 6.13, Table 6.10). 

 

  

 

 

  124



Figure 6.13 Common brain regions identified by the contrast of hearing 
involuntary laughter against voluntary laughter and the motor task over 
rest. 

Table 6.10 Brain regions showing significant activation during the contrast of  

hearing involuntary over voluntary laughter, inclusively masked with the contrast 

of  motor task over rest. 

  

The direct contrast of  hearing involuntary crying over voluntary crying 

showed no common activations inclusively with activations during the motor 

mask. However, the reverse contrast showed common activations of  the left 

Heschl’s gyrus, left STG, right precentral gyrus, right MFG, and right thalamus 

when inclusively masked by the activation of  orofacial movements task over rest 

(Fig. 6.14, Table 6.11). 
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Figure 6.14 Common areas for the contrast of hearing voluntary crying 
against involuntary crying and the motor mask 

(upper, shown at x= 62, y = 0, z =4; lower, shown at x = 22, y = -18, z = 20). 
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Table 6.11 Brain regions showing significant activation during the contrast of  

hearing voluntary over involuntary crying, inclusively masked with the contrast 

of  motor task over rest. 

  

6.3.6 Common areas for listening to emotional vocalizations and the TOM 
task 

The contrast of  hearing all emotional vocalisation conditions (i.e., laughter and 

crying) against rest was masked inclusively by activations during the TOM task 

(BELIEF > PHOTO). Regions which showed activations in both contrasts were 

the bilateral STG, right superior temporal sulcus (STS), bilateral MTG, bilateral 

cerebellum, and right IFG (Fig. 6.15, Table 6.12). 
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Figure 6.15 Common areas for listening to laughter and crying and for 
theory of mind task. 

Table 6.12 Brain regions showing significant activation during the contrast of  

hearing laughter and crying over rest, inclusively masked by the theory of  mind 

task. 
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The contrast of  hearing laughter against rest was masked inclusively by 

activations during the TOM task. Regions which showed activations in both 

contrasts were the bilateral STG, right STS, left MTG, and bilateral cerebellum 

(Fig. 6.16, Table 6.13). 

Figure 6.16 Common areas for the contrast of hearing laughter against rest 
and the TOM task. 

Table 6.13 Brain regions showing significant activation during the contrast of  

hearing laughter over rest, inclusively masked by the TOM task. 
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 The contrast of  hearing crying against rest was masked inclusively by 

activations during the TOM task. Regions which showed activations in both tasks 

were the bilateral STG, right STS, left MTG, right temporal pole, bilateral 

cerebellum, left calcarine gyrus, and right IFG (Fig. 6.17, Table 6.14). 

Figure 6.17 Common areas for the contrast of hearing crying over rest and 
the TOM task. 

Table 6.14 Brain regions showing significant activation during the contrast of  

hearing crying against rest, inclusively masked by the contrast of  TOM task. 
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 The contrast of  hearing involuntary laughter over voluntary laughter, 

masked inclusively with the TOM network, revealed common activation of  the 

right STS (Fig. 6.18, Table 6.15). 

Figure 6.18 Common areas for the contrast of hearing involuntary laughter 
against voluntary laughter and the TOM task 

(shown at x = 46, y = -42, z = 14). 

Table 6.15 Brain regions showing significant activation during the contrast of  

hearing involuntary over voluntary laughter, inclusively masked by the contrast of  

TOM task. 
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 The contrast of  hearing voluntary over involuntary laughter, masked with 

the TOM network, revealed that the left angular gyrus showed significant 

activation in the contrast of  hearing voluntary over involuntary laughter and 

during the TOM task (Fig. 6.19, Table 6.16). 

Figure 6.19 Common areas for the contrast of hearing voluntary laughter 
against involuntary laughter and the TOM task 

(shown at x = -40, y = -56, z = 24) 

Table 6.16 Brain regions showing significant activations during the contrast of  

hearing voluntary laughter over involuntary laughter, inclusively masked by the 

contrast of  TOM task. 
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 The contrast of  hearing voluntary over involuntary crying, masked 

inclusively with the TOM network, revealed that the bilateral MTG and bilateral 

STG showed significant activation in the contrast of  hearing voluntary over 

involuntary crying and during the TOM task (Fig. 6.20, Table 6.17). Nothing 

significant was shown in the opposite contrast. 

Figure 6.20 Common areas for the contrast of hearing voluntary crying 
against involuntary crying and the TOM task 

(shown at x = -62, y = -18, z = 0)  

Table 6.17 Brain regions showed significant activations during the contrast of  

hearing voluntary crying over involuntary crying, inclusively masked by the TOM 

task. 
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6.3.7 Individual differences of the perception of laughter and crying 

6.3.7.1 Authenticity ratings on laughter and crying 

The regression analysis on the contrast Laughter>rest identified activations in the 

left supramarginal gyrus, left angular gyrus, left MTG, and right precentral gyrus 

which were positively correlated with behavioural performance on authenticity 

ratings on laughter. Among these areas, the left supramarginal gyrus and the left 

MTG were both activated by the motor task and by the theory of  mind task. 

However, the right precentral gyrus showing positive correlation between the 

perception of  laughter and individual performance was only activated by the 

motor task, and the left angular gyrus was only activated by the theory of  mind 

task. There was no region in which activation was found to be negatively 

correlated with cerebral activity to laughter and the individual performance on 

the authenticity ratings on laughter (Fig. 6.21, Table 6.18). 

Figure 6.21 Brain activations identified in the contrast of hearing laughter 
against rest positively correlated with the performance on the authenticity 
ratings on laughter 

(shown at x = 60, y = -2, z = 30). 
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Table 6.18 Brain regions showing significant positive correlation between 

performance on the authenticity rating task on laughter and the activations 

during the contrast of  hearing laughter against silent rest. 

  

  

 The regression analysis on the contrast Crying>rest identified activations 

in the left IFG, right temporal pole, and right insula lobe which were positively 

correlated with behavioural performance on authenticity ratings on crying. 

Among these areas, the left IFG was both identified in the motor task and the 

TOM task, and the right insula lobe and the right IFG were only identified in the 

TOM task (Fig. 6.22, Table 6.19). 

  135



Figure 6.22 Brain activations identified in the contract of hearing crying 
against rest positively correlated with the performance on the authenticity 
ratings on crying 

(shown at x = -51, y = 20, z = 2). 

Table 6.19 Brain regions showed significant positive correlation between the 

performance on authenticity ratings on crying and the activations during the 

contrast of  hearing crying against silent rest, with inclusively masked by motor 

and TOM task. 
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 A significant negative correlation between cerebral activity to crying and 

individual performance on authenticity ratings on crying was identified in 

bilateral precuneus, right superior frontal gyrus (BA 6), left MFG, left SFG, right 

IPL, and right middle occipital gyrus. Among these regions, the right SFG was 

found to be both activated by both the motor task and the TOM task, and the 

right IPL was only identified by the orofacial movement mask. On the other 

hand, bilateral precuneus, left MFG, and the L SFG were on other hand only 

identified by the TOM task (Fig. 6.23, Table 6.20). 

Figure 6.23 Brain activations identified in the contract of hearing crying 
against rest negatively correlated with the performance on the authenticity 
ratings on crying 
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Table 6.20 Brain regions showing significant negative correlation between the 

performance on authenticity ratings on crying and the activations during the 

contrast of  crying against silent rest, with inclusively masked by the contrast of  

motor and TOM task. 

  

6.3.7.2 Covariate with contagion scores 

A regression analysis was performed to examine the relation between cerebral 

activity to the perception of  laughter and personal measures on the emotional 

contagion scale. The regression analysis on the contrast Laughter>rest identified 

activations in the bilateral IFG, bilateral MTG, bilateral STG, bilateral SFG, right 

posterior medial frontal gyrus (BA 6), right cuneus, bilateral precuneus, left 

cerebellum, right mid-cingulate cortex (MCC), left MFG, bilateral anterior 

cingulate gyrus (ACC), right fusiform gyrus, and left angular gyrus which were 

positively correlated with emotional contagion scores (Fig. 6.24, Table 6.21). In 

the contrast of  hearing laughter against rest, no activation was found to be 

negatively correlated with emotional contagion scores.  
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Figure 6.24 Brain regions which showed positive correlation between the 
contrast of hearing laughter against rest and emotional contagion 
measures. 

 

  

 

 

  139



Table 6.21 Brain regions showing significant positive correlation between the 

performance on authenticity ratings on laughter and the activations during the 

contrast of  hearing crying against silent rest, inclusively masked by motor and 

TOM task.  

Contrast No. of  

voxels

Region x y z T Z

All laughs > rest 677 R inferior frontal gyrus 30 18 -24 6.71 4.90

179 R superior temporal gyrus 56 -22 -2 5.75 4.45

938 L middle frontal gyrus -36 58 20 5.55 4.34

L inferior frontal gyrus -54 40 2 4.92 4.00

153 L superior temporal gyrus -54 -12 -6 5.18 4.14

93 L superior frontal gyrus -18 42 36 5.04 4.06

259 L superior medial gyrus -6 32 52 4.82 3.94

155 R p-medial frontal cortex (pre-

SMA)

8 4 68 4.67 3.85

408 R middle frontal gyrus 56 -52 12 4.60 3.81

R superior temporal gyrus 44 -44 16 3.92 3.38

361 R cuneus 12 -86 44 4.33 3.64

R precuneus 2 -66 40 3.75 3.26

L precuneus -4 -54 44 3.50 3.09

174 L cerebellum -24 -78 -30 4.28 3.61

316 R middle cingulate cortex 8 -28 36 4.27 3.60

222 L inferior frontal gyrus -36 16 32 4.12 3.51

L middle frontal gyrus -28 18 34 3.63 3.18

188 R anterior cingulate cortex 12 38 20 4.05 3.47

R superior medial gyrus 10 50 24 3.65 3.19

204 L anterior cingulate cortex -4 30 30 3.96 3.41

155 R superior frontal gyrus 16 42 34 3.96 3.40

R middle frontal gyrus 26 48 26 3.02 2.73

93 R fusiform gyrus 42 -46 -22 3.94 3.39

120 L angular gyrus -36 -60 38 3.74 3.26

All laughs > rest 138 R p-medial frontal cortex 8 4 68 4.67 3.85

with motor mask 246 L inferior frontal gyrus -52 26 0 4.33 3.64

L insula lobe -46 6 0 3.06 2.77

L temporal pole -48 10 -2 3.02 2.73

279 R temporal pole 40 20 -24 4.03 3.45

12 R posterior-medial frontal gyrus -50 -6 -2 3.73 3.25

75 R middle temporal gyrus 58 -58 10 3.64 3.18

13 R cerebellum 40 -46 -26 3.54 3.12

All laughs > rest 86 R inferior frontal gyrus 32 18 -24 6.32 4.72

with TOM mask 167 R superior temporal gyrus 56 -22 -2 5.75 4.45
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Another regression analysis was performed to examine the relation 

between cerebral activity to the perception of  crying and personal measures in 

the emotional contagion scale. The regression analysis on the contrast 

Crying>rest identified activations in the bilateral IFG, right insula lobe, right 

STG, left STG, right posterior medial frontal gyrus (BA 6), and right superior 

medial gyrus which were positively correlated with emotional contagion scores 

(Fig. 6.25, Table 6.22). Among these regions, the right STG was further 

inclusively identified by the TOM task, and the right IFG was inclusively 

identified by the motor task. The left inferior occipital gyrus was found in the 

contrast of  hearing crying against silent rest to be negatively correlated with 

emotional contagion score. 

88 L superior temporal gyrus -54 -12 -6 5.18 4.14

91 L superior medial gyrus -6 32 52 4.82 3.94

358 R middle temporal gyrus 56 -52 12 4.60 3.81

R superior temporal gyrus 44 -44 16 3.92 3.38

172 L cerebellum -24 -78 -30 4.28 3.61

37 L inferior frontal gyrus -50 28 0 4.28 3.61

89 R posterior-medial frontal 10 24 58 4.03 3.45

214 R precuneus 2 -66 40 3.75 3.26

L precuneus -4 -54 44 3.50 3.09

L posterior cingulate cortex -4 -48 30 3.09 2.79

39 R superior frontal gyrus 16 46 34 3.72 3.24

47 R superior medial gyrus 10 50 24 3.65 3.19

R anterior cingulate cortex 12 44 22 3.54 3.12

72 L angular gyrus -44 -66 42 3.39 3.01

54 R inferior frontal gyrus 54 28 14 3.35 2.98
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Figure 6.25 Brain regions which showed positive correlation between the 
contrast of hearing crying against rest and emotional contagion measures. 

Table 6.22 Brain regions showing significant positive and negative correlation 

between the performance on authenticity ratings on crying and the activations 

during the contrast of  hearing crying against silent rest. 
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6.4 Discussion 

6.4.1 Perception of laughter and crying 

The network including the bilateral superior temporal gyri (STG), left middle 

frontal gyrus (MFG), left inferior frontal gyrus (IFG), bilateral precentral gyri, 

and left postcentral gyrus which was identified in the contrast of  hearing all 

laughter and crying against resting baseline has been reported in previous studies 

when participants perceived non-verbal emotional vocalisations (Grandjean et al., 

2005; McGettigan et al., 2015; Meyer, Zysset, Von Cramon, & Alter, 2005; 

Warren et al., 2006). It has been suggested that the network can be an auditory-

motor ‘mirror’ system which is recruited in the perception of  emotional 

vocalisations (Warren et al., 2006), and these activations are proposed to be 

simulated in the associated action for understanding others’ emotional states 

(Scott et al., 2009). In the current study, by applying the orofacial movement 

localizers (i.e., the motor mask) and the theory of  mind localizers (i.e., the TOM 

mask), we can further explore the extent to which the two systems contributed to 

the perception of  emotional vocalisations. 

Perceiving laughter and crying recruited highly similar brain regions 

inclusively masked by the motor task, such as the upper bank of  the bilateral STS, 

left Heschl’s gyrus, right IFG, right precentral gyrus, and bilateral cerebellum. 

The upper bank of  the bilateral STS and left Heschl’s gyrus were repeatedly 

reported in previous studies to be activated by a perceived voice. They not only 

contribute to speech perception or to speech comprehension (Binder et al., 2000; 

Meyer, Alter, Friederici, Lohmann, & von Cramon, 2002; Meyer et al., 2005; 

Rodd, Davis, & Johnsrude, 2005) but are also associated with emotional prosody 

processing (Kotz et al., 2003). The STG is further suggested to be involved in 

extracting emotional information from vocal cues regardless of  task demands 

and attention focus (Brück, Kreifelts, & Wildgruber, 2011). For example, the area 

was found to be more activated while listening to sentences during emotional 

compared to grammatical classification tasks (Beaucousin et al., 2007, 2011), and 

the area was also found to be sensitive to different auditory emotional categories 

(i.e., anger, sadness, joy, neutral, and relief) by showing distinct spatial patterns in 

response to each category compared to the others (Ethofer, Van De Ville, 

Scherer, & Vuilleumier, 2009). The right IFG identified in the current network is 
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also consistent with previous findings which suggested this area is highly 

correlated with emotion sensitivity (Kreifelts et al., 2013). This area along with 

the right STG were further suggested to be involved in decoding affective 

prosody and to evaluate emotional information delivered by speech (Brück, 

Kreifelts, Kaza, Lotze, & Wildgruber, 2011). Activation of  the right precentral 

gyrus further replicates previous findings that the area was a common area 

activated by perceiving emotional vocalisations (i.e., triumph, fear, amusement, 

disgust) and an orofacial movement task (Warren et al., 2006), and the area was 

also found to be activated by speech perception and speech production (S. M. 

Wilson, Saygin, Sereno, & Iacoboni, 2004). The current study again suggests an 

existing link between perception and action in the processing of  emotional 

vocalisations. 

While applying the TOM mask, the network of  perceiving laughter and 

crying showed a highly similar profile to the regions mentioned above, including 

the right IFG, the bilateral cerebellum, and the bilateral STG. However, instead 

of  involving sensorimotor regions (i.e., precentral and Heschl’s gyrus), the lower 

bank of  the bilateral STG, right STS, and left MTG were identified in the theory 

of  mind network as common areas while listening to laughter and crying. As 

mentioned earlier, STG has been reported to be sensitive to human voice, and 

right STG was also reported to be involved in decoding, extracting, and 

evaluating emotion information carried by speech. Previous evidence further 

showed that activations in the right STG extending to the right STS can be 

involved in affective theory of  mind network (affective TOM) (Mier et al., 2010). 

In the study conducted by Mier et al. (2010), participants were required to read a 

sentence stating a possible description of  a corresponding photograph of  a facial 

expression, and then the participants responded ‘Yes’ or ’No’ to the photograph 

based on the antecedent description. The sentence was in one of  the three 

conditions: emotion recognition, affective TOM, and control. The participants 

were asked to judge whether the facial expression matched the description of  

emotion, the action described according to each of  the affective states (i.e., joy, 

fear, anger, disgust), or the sex of  the person. Several regions were activated by 

the affective TOM compared to the emotion recognition, including the bilateral 

MTG, right STG, bilateral STS, right inferior parietal lobule, and angular gyrus. 

These brain areas were argued to serve as a simulation mechanism for 
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understanding the emotional intention of  others (Mier et al., 2010). In the 

current experiment and in line with previous findings, we demonstrated that 

passively perceiving laughter and crying can automatically involve several regions 

identified by the TOM network and the motor network, implying that some parts 

of  the two networks can be automatically recruited for emotional auditory 

processing. 

6.4.2 Perceiving involuntary vocalisations over voluntary vocalisations 

Laughter (involuntary > voluntary) 

When comparing involuntary vocalisations over voluntary vocalisations in 

perceiving laughter, activations in bilateral STG and right rolandic operculum 

were identified in the motor mask. The activation in bilateral STG replicated 

previous findings that the regions were more activated by evoked laughter (i.e., 

involuntary laughter) compared to emitted laughter (i.e., voluntary laughter) 

(McGettigan et al., 2015). The right STG was also identified to show greater 

activation for ticklish laughter than for other kinds of  laughter (i.e., joy and taunt) 

(Szameitat et al., 2010). The areas we identified here provides further evidence 

that perceiving involuntary or ticklish laughter compared to voluntary laughter 

can elicit more activations in the STG inclusively masked by the orofacial 

movement task. 

While applying the TOM mask to the contrast of  hearing involuntary 

laughter over voluntary laughter, the posterior part of  the right STS (i.e., x = 46, 

y =-42, z = 14, BA 22) was identified. The posterior part of  the right STS 

towards the middle STS has been suggested to be a voice-selective area 

(Bethmann & Brechmann, 2014), and activation in the right pSTS was further 

reported to be associated with ability to detect perceived authenticity in laughter 

(McGettigan et al., 2015). Additionally, the region was consistently reported to be 

sensitive to visual cues in social perception such as direction of  eye gaze, body 

motions, or lip reading (Allison, Puce, & McCarthy, 2000). Converging with 

previous findings, the right pSTS here showed greater activation while perceiving 

involuntary laughter compared to voluntary laughter under the TOM mask, 
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which may imply that an automatic process of  motion perception was involved 

in perceiving contagious laughter. 

Crying (involuntary > voluntary) 

The left posterior middle temporal gyrus (pMTG) was the only area which 

showed more activation for involuntary crying than for voluntary crying and was 

neither identified during the motor task nor in the TOM task. Although a nearby 

region previously identified by affective TOM task compared to emotion 

recognition task showed more involvements of  mentalising others’ affective 

states (Mier et al., 2010), the region we found in the current contrast relatively 

infrequent to be associated with emotion related studies. In a recent meta-

analysis, the bilateral pMTG were reported to be more involved in affective TOM 

network compared to cognitive network (Molenberghs, Johnson, Henry, & 

Mattingley, 2016). However, the authors concluded that especially the left pMTG 

was mainly reported to be involved in the language comprehension process by 

extracting semantic information from TOM stories, so the activation of  this 

region had only little relation to mentalising ability. Indeed, the left pMTG was 

consistently reported to be a crucial area for storing, selecting, and analysing 

semantic representation (Rapp, Mutschler, & Erb, 2012). Another meta-analysis 

study found that instead of  reappraisal of  emotion engaging the ventromedial 

prefrontal cortex , the lateral middle temporal gyrus played an important role in 

re-evaluating affective information. This region might be recruited to reconstruct 

the negative emotional information for reducing affective impact (Buhle et al., 

2014). In line with these interpretations, the activity in the left pMTG can imply 

that the participants might be engaged in the emotion regulation process while 

perceiving involuntary crying sounds compared to voluntary crying sounds. 

6.4.3 Perceiving voluntary vocalisations over involuntary vocalisations 

Laughter (voluntary > involuntary) 

When comparing voluntary vocalisations over involuntary vocalisations in 

perceiving laughter, the left angular gyrus was identified in the TOM mask and 
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no common area was identified in the motor mask. We identified the left angular 

gyrus to be more activated by voluntary over involuntary laughter located at the 

temporal-parietal junction (TPJ) which was consistently reported in the TOM 

network (Atique, Erb, Gharabaghi, Grodd, & Anders, 2011; Hervé et al., 2013; 

Saxe & Kanwisher, 2003). The area was suggested to be involved in reasoning 

others’ mental states, and the left TPJ compared to the right TPJ was less 

associated with simulating body movements and perceiving photographs of  

human bodies. On the other hand, the left TPJ was proposed to be relatively 

sensitive to ‘verbal descriptions’ of  the context compared to the right TPJ (Saxe 

& Kanwisher, 2003). In another study, although the bilateral TPJ were both 

activated to make inferences of  emotions or intentions of  cartoon characters 

compared to physical reasoning, the left TPJ showed significant spatial distances 

between peak activations of  the two mentalising tasks (Atique et al., 2011). In the 

current contrast, the activation of  the left TPJ can be explained by involving a 

reasoning process while the participants perceived voluntary laughter, however it 

is unclear whether the participants were inferring the intention or the emotion of  

the speakers through our stimuli. McGettigan et al. (2015) examined the same 

cluster and reported that the region showed significant correlation between 

neural activations of  perceiving laughter and the ability to detect authenticity in 

perceived laughter. In line with previous findings, the activation of  the left TPJ 

identified in the current contrast may imply that a mentalising process of  

reasoning others’ emotion or intention while they were producing voluntary 

laughter might be engaged to differentiate voluntary laughter from involuntary 

laughter. 

Crying (voluntary > involuntary) 

When comparing voluntary crying to involuntary crying, the bilateral STG, left 

Heschl’s gyrus, right thalamus, right precentral gyrus, right MFG, and right 

temporal pole were identified in the motor mask, while the bilateral STG and 

bilateral MTG were identified in the TOM mask. Here we demonstrated a highly 

similar profile of  regions which were identified previously by perceiving laughter 

and crying over the resting baseline. However, the right thalamus, the right MFG, 

the right temporal pole, and bilateral MTG were additionally involved in 
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perceiving voluntary crying. Yet, little is known about the brain activations for 

perceiving adult crying, and the regions we identified in this contrast can be 

involved in a general network of  perceiving emotional vocalisations, in which the 

motor and theory of  mind related regions were recruited for the perception of  

crying sounds. Voluntary crying might be relatively infrequently heard in everyday 

life, however the occasion of  hearing it might indicate that someone is sending 

compelling signals that they are in vulnerable and need attentions from others 

(Hendriks et al., 2008). It is possible that extensive regions of  the two networks 

were recruited for the purpose of  trying to understand these crying sounds. 

6.4.4 Individual differences in perceiving emotional vocalisations 

Cohen’s d scores were first calculated for each participant based on the rating 

results of  perceiving authenticity in laughter and crying respectively. The scores 

of  Cohen’s d showed to what extent the participant could differentiate 

involuntary vocalisations from voluntary vocalisations, representing the 

psychological distance of  perceived authenticity between involuntary and 

voluntary vocalisations. In an individual differences approach, whole-brain 

second-level regression analyses explored the relationship between the ability to 

differentiate vocalisations by perceived authenticity on the post-test and neural 

responses to laughter and crying in the passive listening phase of  the fMRI 

experiment. A separate regression model was run for All Laughter (involuntary 

and voluntary) > Rest and All Crying (involuntary and voluntary) > Rest, using 

individual Cohen’s d scores on laughter or on crying as the predictor variables in 

each case respectively. 

Laughter 

The regression analysis on the contrast All Laughter > Rest identified activations 

in the left supramarginal gyrus, left MTG, left angular gyrus, and right precentral 

gyrus which were positively correlated with behavioural performance. The left 

supramarginal gyrus including the posterior part of  the left MTG were 

inclusively masked by both the motor task and the TOM task, while the left 
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angular gyrus was only identified in the TOM task and the right precentral gyrus 

was only identified in the motor mask. 

The left supramarginal gyrus and the precentral gyrus were commonly 

reported in motion-related studies, and since the areas were associated with 

execution of  hand motion, observation of  actions, and processing of  goal-

oriented body-part motion, they were proposed to be part of  the ‘mirror 

system’ (Van Overwalle & Baetens, 2009). By being sensitive to body movements, 

the supramarginal and the precentral gyrus were suggested to together play 

crucial roles in the understanding of  human actions, especially when the action is 

in relation to an antecedent cause or to a subsequent outcome. 

The left supramarginal and the left angular gyrus were both identified in 

the TOM mask, and their activations showed positive correlation with the 

behavioural performance. These two regions were also reported in the study by 

McGettigan et al. (2015), showing significant positive correlation with 

participants’ performance on a post-scan task of  classifying evoked laughter and 

emitted laughter. The reported areas were consistently involved in the affective 

and the cognitive TOM networks, however they were found to be more activated 

during cognitive TOM task (Molenberghs et al., 2016), suggesting that the 

involvements can be associated with mentalising ability to infer intentions, goals, 

or beliefs of  others, rather than being associated with inferring others’ affective 

states. 

The results indicated that the participants with better ability to perceive 

authenticity differences between involuntary and voluntary laughter can be 

associated with these two different neural networks. In addition, the more of  the 

networks were involved, the more competent the participants in understanding 

laughter. 

Crying 

Several regions had greater activations positively correlated with the performance 

on perceived authenticity between involuntary crying and voluntary crying. The 

results showed that the bilateral IFG, right temporal pole, and right insula lobe 
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were positively correlated to the performance. The left IFG was identified in 

both motor and TOM networks, and the right IFG and the right insula were only 

identified in the TOM network. Previous studies frequently found activations in 

the bilateral IFG for observing action as well as emotion-related and mentalising 

processing. The IFG, along with other regions including the dorsal and ventral 

premotor cortex and superior and inferior parietal lobule, were specifically 

suggested to serve as a core network of  mirror properties processing 

(Molenberghs, Cunnington, & Mattingley, 2012). In the mirror system, the 

bilateral or unilateral IFG were further implicated to be involved in emotional 

empathy processing (Baird, Scheffer, & Wilson, 2011). Baird et al. (2011) argued 

that emotional empathy can only be driven by passively perceiving actions or 

expressions, in which the measures of  automatic imitation in perceivers are 

considered to be the pure form of  empathic functioning. 

The ‘imitation effect’ is indeed the core concept of  mirror neuron theory, 

and the effect was further adopted in explaining the perception of  emotional 

expressions to which the perceiver can elicit similar or even identical emotional 

behaviour (e.g., disgust) (Wicker et al., 2003). It has been demonstrated in patient 

studies that the functions of  IFG and the ventromedial prefrontal cortex 

(vmPFC) in empathising with others can be double dissociated. A patient with 

impairments in the IFG showed deficits in emotional empathy, and the other 

patient with lesions in vmPFC showed impaired ability of  cognitive empathy. 

They both showed normal abilities of  emotional or cognitive empathy according 

to the intact IFG and vmPFC respectively (Shamay-Tsoory, Aharon-Peretz, & 

Perry, 2009). Although in the current study we could not know whether the 

participants empathised with the speaker when they heard crying sounds, the 

increased activity of  IFG associated with the ability of  understanding crying 

sounds can suggest that the regions indeed advanced the ability to differentiate 

involuntary crying from voluntary crying. 

Interestingly, a distinct profile of  cerebral activity was found to be 

negatively correlated with the performance on the differences of  perceived 

authenticity between involuntary and voluntary crying. The bilateral precuneus, 

bilateral superior frontal gyrus (SFG, BA 6), left MFG, right IPL, and right 

middle occipital gyrus were identified to show increased activity when the 

participants were less able to distinguish involuntary crying from voluntary crying 
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on the authenticity scale. Among these regions, the right SFG was found to be 

activated in both the motor mask and the TOM mask. The right IPL was only 

identified in the motor mask, while the bilateral precuneus, left MFG, and the left 

SFG were only identified in the TOM mask. Although identified in both or either 

of  the networks, these areas were not the ‘core regions’ previously defined within 

each of  the networks. On the other hand, these regions were identified as a 

network serving functions of  ‘visual imagery’ (Zvyagintsev et al., 2013). In the 

study, activations in the bilateral SFG, the bilateral precuneus, and the bilateral 

MFG were found to be deactivated during auditory imagery tasks but  more 

activated during visual imagery tasks. In the current study, it is possible that the 

poor performance in distinguishing involuntary crying from voluntary crying can 

be attributed to relying on visual imagery processing rather than using the 

mentalising and the orofacial movements network. 
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7. General discussion and conclusion 

I will first summarise the main findings and provide plausible explanations of  the 

current findings and then suggest a few research directions for future studies, 

which may be able to provide empirical corroboration of  the explanations 

offered in the current thesis.  

Authenticity perception of laughter and crying during childhood 

The motivation of  the thesis was to investigate whether the difference in 

perceived authenticity between involuntary laughter and voluntary laughter 

demonstrated in the previous study (McGettigan et al., 2015) could be replicated 

and extended to the perception of  negative emotional vocalisations—involuntary 

and voluntary crying. Using the difference of  perceived authenticity between 

involuntary and voluntary vocalisations allowed me to explore potential 

similarities and differences between the perception of  positive and negative 

emotional vocalisations—laughter and crying—in addition to their distinct 

valences. Previous findings have shown that listeners can accurately classify 

involuntary laughter from voluntary laughter when assessing authenticity. In this 

thesis, I investigated whether crying sounds share similar psychological properties 

with laughter, i.e., whether these involuntary vocalisations were perceived as more 

authentic and more contagious than voluntary vocalisations. 

I first discovered that crying was perceived as more authentic when the 

speakers had less voluntary control. However I found, in the behavioural pilot 

experiments, that the perceived difference of  authenticity between involuntary 

and voluntary crying vocalisations was reduced, relative to the perceived 

authenticity difference between voluntary and involuntary laughter. In addition, 
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crying sounds were perceived as less genuine than laughter. The focus was then 

expended to the developmental learning trajectories of  perceiving these two 

emotional vocalisations, after their initial development early in infancy. Perceived 

authenticity was found to be different between involuntary and voluntary 

vocalisations and that this difference increased with age. On the other hand, 

although laughter was perceived as more authentic than crying, the difference was 

shown to be similar in each age group. 

The findings so far provide a valuable profile of  the perception of  

laughter and crying from a developmental perspective. Firstly, involuntary and 

voluntary vocalisations can be distinguished based on involuntariness regardless 

of  positive or negative emotional expressions throughout a lifetime. Secondly, 

although children rated involuntary vocalisations as less authentic and rated 

voluntary vocalisations as more authentic than did any other age groups, children 

can still perceive authenticity differences between involuntary vocalisations from 

voluntary vocalisations. Together, these findings might indicate that the sense of  

authenticity embedded in these two emotional vocalisations can be acquired quite 

early in life. It is possible that the perception of  authenticity is tightly linked to 

other cognitive/affective abilities, such as verbal or linguistic ability, mentalising 

ability, or the concepts of  understanding self  and others, which develop rapidly 

throughout childhood. Another possibility which might contribute to the 

development of  authenticity perception is that pre-schoolers or schoolers start to 

have more opportunities to interact with others than before, so a social learning 

process can take place to enhance the ability of  differentiating vocalisations with 

distinct social meanings. 

The perception of voluntary vocalisations develops more slowly than that of 
involuntary vocalisations 

Involuntary laughter has a striking contagious influence on the perceivers. 

Contagious laughter has been depicted as an ancient and unique form of  pre-

linguistic auditory communication in humans (Provine, 1992), and my results in 

line with previous research demonstrate that involuntary laughter indeed has a 

robust contagious influence, even from three years of  age observed in this 

experiment. Compared to involuntary laughter, voluntary laughter not only 
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followed a slower developmental trajectory on the perception of  contagiousness, 

but the perceived authenticity of  voluntary laughter also develops later. In line 

with previous findings (Lavan, Scott, & McGettigan, 2016; McGettigan et al., 

2015), this later-developed ability to recognise the perceived authenticity of  

voluntary laughter can be linked to the development of  the anterior medial 

prefrontal cortex, which was demonstrated to mature only during early adulthood 

(Gogtay et al., 2004). Voluntary laughter is also called conversational laughter or 

social laughter, which can convey very different meanings depends on distinct 

social contexts (Provine, 2012). To recognise the meanings of  voluntary laughter 

and to decide whether it is appropriate to join in voluntary laughter may require 

mentalising ability in perceivers (McGettigan et al., 2015). Previous research 

suggests that the mentalising ability involves a complex process, including 

differentiating self  from others, understanding social contextualised information, 

recognising emotions, and inferring others’ cognitive or affective mental states 

(Hillis, 2014). These components may still be developing during adolescence that 

adolescents are accumulating social experience and learning social skills to 

confronting the changing environment (Burnett & Blakemore, 2009).   

It is evident that the perceived contagiousness of  voluntary crying also 

followed a slower developmental trajectory than that of  involuntary crying. 

Although all age groups showed unwillingness to join in crying, this 

unwillingness was significantly demonstrated when they perceived voluntary 

crying across age groups. Children to some degree perceived voluntary crying as 

contagious, but the contagiousness decreased rapidly during adolescence. 

Moreover, the perceived contagiousness of  voluntary crying was found to be 

different between adolescents and adults. It is possible that as we grow older, we 

learn more social rules of  expressing sadness compared to when we were 

younger, so adults rated voluntary crying to be the lowest degree (i.e., 1.7 of  5) 

of  perceived contagiousness among all other emotional vocalisations in the 

experiment. The protracted developmental trajectory followed by the perceived 

contagiousness of  voluntary crying might imply that although crying can be a 

powerful emotional signal to the perceivers showing someone needs attention 

and assistance (Vingerhoets et al., 2000), whoever receives the signal may not 

share intentions of  joining in. Crying behaviour is proposed to be an emotional 

reaction when individuals cannot use effective behaviour to confront a 
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problematic situation (van Hemert et al., 2011). Shedding emotional tears 

although is one way to express distress, it is not a conventional way of  behaving 

in adults. There is a wide variety of  reasons or situations which may cause adult 

crying (Vingerhoets & Bylsma, 2016), but hearing others’ voluntary crying may 

not be one of  the circumstances. That is, voluntary crying in adults is not a 

socially approved emotional expression. When perceiving socially inappropriate 

emotional displays, there can be stronger affective reactions shown in perceivers 

toward the displays (van Kleef, 2009). Therefore, the growing unwillingness 

observed in joining in voluntary crying across lifespan can be caused by aversive 

responses which are learnt from social contexts to this socially disapproval 

behaviour.  

Pupil dilation signals authenticity effect  

In the pupillometry experiment, I found a main effect of  involuntariness on 

pupillary response showing that pupils dilated greater for perceiving involuntary 

emotional vocalisations than for voluntary ones, while pupillary responses 

showed no difference between perceiving laughter and crying. The behavioural 

results showed that participants perceived involuntary vocalisations as more 

authentic than voluntary vocalisations, but perceived crying sounds as less 

authentic than laughter.  

The discrepancy found in our research between pupillometry and the 

conscious ratings of  crying sounds may be caused by display rules prescribing 

appropriate ways of  expressing emotions. Because crying as an intense emotional 

expression may cause receivers to experience a negative emotional state, the 

reaction of  receivers to a crying person may be influenced by social factors which 

are specifically rigid for crying behaviour (Simons, Bruder, van der Löwe, & 

Parkinson, 2012; Vingerhoets et al., 2000). For example, receivers who hear 

crying sound may try to manage an appropriate responsive behaviour toward the 

person who sheds tears or to regulate their own affected emotional states 

cognitively. From perceiving an emotional crying sound to making a cognitive 

judgement on whether the sound reflects a genuine emotion, a series of  

psychological process might be involved (Mitchell & Phillips, 2015). For example, 
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top-down mechanisms based on receivers’ long-term knowledge of  reacting to a 

crying adult can influence their judgements on emotional expressions. It is also 

possible that recognising a person who is genuinely expressing sadness requires 

more information about the person, about the social contexts, or even requires 

visual information such as appearance of  emotional tears. The perception of  

adult crying remains an elusive process that needs more empirical evidence for 

better understanding. 

The perception of involuntary crying and display rules 

For the perceived contagiousness of  involuntary crying, children and adolescents 

showed no difference from each other, but children significantly rated 

involuntary crying as more contagious than did adults and young adults. 

Furthermore, adolescents showed more willingness to join in involuntary crying 

vocalisations than adults did. It has been proposed that adolescence is a time of  

transition from childhood to adulthood by showing hypersensitivity to 

sociocultural information (Blakemore & Mills, 2014). This hypersensitivity found 

in adolescents can be closely related to the ability to empathise others. Sebastian 

et al. (2012) observed an increased activation in ventral medial prefrontal cortex 

(vmPFC) in adolescent group when performing an affective TOM task compared 

to a physical causality task requiring participants to reason the cause and effect of  

events. There was also a negative correlation between brain activation in the 

frontal control region (i.e., ventrolateral PFC) and empathy scores, showing that 

individuals with better ability to reasoning others’ affective mental states may 

have less difficulty to regulate their own emotions induced by others. 

 The unwillingness to join in involuntary crying demonstrated in adults 

provides supportive evidence in line with previous research that although crying 

adults can sufficiently solicit perceivers’ willingness to help (Hendriks et al., 

2008), and tearful faces were seen as warmer than non-tearful sad faces, tearful 

faces were perceived as less competent than non-tearful sad faces (van de Ven et 

al., 2017). It is possible that expressing negative emotions by shedding tears or 

weeping is viewed as a sign of  weakness in personality (Tseng, 2001) which 

caused participants unwillingness to join in. It remains elusive that whether 

  156



participants felt any negative emotions (i.e., sadness or distress) while perceiving 

involuntary crying, and whether they perceived speakers who had produced 

involuntary crying as less competence. There are other explanations of  why 

adults refused to join involuntary crying. It is possible that perceiving sadness can 

be linked to empathy processing and the perceivers regulated this negative 

emotion cognitively (Harrison et al., 2007; Williams & Morris, 1996). Therefore, 

although they perceived involuntary crying as more authentic than voluntary 

crying, they showed less intention to join in.  

Neural correlates of the perception of laughter and crying 

I found a brain network of  perceiving laughter and crying similar to that 

was identified when participants passively listened to laughter (McGettigan et al., 

2015), and also demonstrated the involvement of  bilateral temporal cortices 

during the perception of  involuntary laughter compared to voluntary laughter, in 

line with previous studies (Lavan et al., 2016; McGettigan et al., 2015). Moreover, 

I replicated the involvements of  sensorimotor regions positively correlated with 

authenticity perception on laughter (McGettigan et al., 2015). In addition, I 

demonstrated involvement of  the right precentral gyrus which showed positive 

correlation between the activation of  perceiving laughter against the resting 

baseline and authenticity perception on laughter, which also supports the idea 

that perceiving positive emotional vocalisations induce sensorimotor activations 

(Warren et al., 2006). 

However, I did not observe activations of  the amPFC in the contrast of  

perceiving voluntary laughter against involuntary laughter. Instead, I observed 

greater activation of  the left angular gyrus for perceiving voluntary laughter 

compared to involuntary laughter. Activations of  this area was positively 

correlated with authenticity perception of  laughter. The area has been shown to 

be involved in the theory mind network (Hervé et al., 2013).  

In the analyses of  individual differences of  perceiving crying, I found a 

brain network negatively correlated with authenticity perception of  crying. The 

network can be related to self-perception or visual imagery (Kestemont et al., 

2015; Zvyagintsev et al., 2013), however, it needs following analysis or 
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experiments for further understanding the mechanism of  this network. It is 

possible that the identified network can provide novel insights for why 

participants performed poorer authenticity judgements on the perception of  

crying compared to laughter.  

Limitations for the study and future directions 

In the current study, although laughter and crying are considered as social 

emotional expressions, there is no explicit tasks for pinpointing distinct social 

information processing in perceiving theses emotional vocalisations. It is worth 

conducting further experiments to understand how the perception of  

involuntary/voluntary laughter and crying may influence cognitive or affective 

processing in perceivers’ minds. Perceiving, recognising, interpreting, and 

empathising emotions expressed by others can be distinct processes which can 

also interact with different social contexts in various ways. It would be valuable to 

understand underlying mechanism and to clarify how the perception of  

authenticity and contagiousness changes under different situations or on 

individuals with different types of  personalities.   

 For the developmental perspective of  emotion processing, although the 

current experiment provides cross-sectional results across age groups and shows 

distinct developmental trajectories on the perception of  involuntary and 

voluntary emotional vocalisations, it is worth conducting a longitudinal study 

where the developmental changes are tracked in the perception of  laughter and 

crying as people get older, and see how these scores relate to other measures.  

In the current fMRI experiment, there were two localisers applied (i.e., 

orofacial movement localiser and TOM localiser). However, these two networks 

showed partial overlapping regions which were not distinct enough, and it is also 

failed to include much activation of  medial prefrontal areas in the TOM localiser. 

There is also no evident neural activation found to be differed between valence 

of  emotions (i.e., laughter and crying) and authenticity regardless of  emotions 

(i.e., involuntary and voluntary). This could be due to that emotions processing in 

the brain may not be differentiated by these dimensions. The difference of  

perceived authenticity is shown in the pupil response to laughter and crying, it is 
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worth understanding how this physiological response link to brain activation, and 

how it would enrich our knowledge of  emotion processing from physical level to 

neural level.  
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