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A B S T R AC T

Histological methods have long been used to segment the cerebral cortex into structurally

distinct cortical areas that have served as a basis for research into brain structure and

function and remain in use today. There is great interest in adapting and extending these

methods to be able to use non-invasive imaging, so that tighter structure-function relation-

ships can be measured in living subjects. Whilst diffusion neuroimaging methods have been

widely applied to white matter, the reduced anisotropy in the thin, complexly folded grey

matter of the cortex has so far limited its study. In vivo parcellation pipelines have instead

focussed on T1 and T2 weighted MRI. Recent advances in imaging hardware have reignited

interest in grey matter diffusion MRI as a viable candidate for characterising architectonic do-

mains. This Thesis explores the capabilities of dMRI as a measure of cortical microstructure

using in vivo datasets from healthy adult participants. A cortical parcellation pipeline was de-

veloped in which both unsupervised and supervised algorithms were explored. Results were

presented at both the group level and single subject level across the entire cortical sheet.

The diffusion-based feature space characterised the known variation in cellular composition

and fibre density relative to the local cortical surface normal. Thus they remain invariant to

the confounding orientation changes associated with cortical folding, which usually inhibit

studies of cortical microstructure. The features were compared to the alternative T1w/T2w

myelin mapping methods to demonstrate that the diffusion MRI signal provides a comple-

mentary mode of contrast. A series of classification experiments were used to determine the

most effective methods for utilising diffusion in grey matter applications. Several additional

methods from the dMRI literature were compared to highlight the benefit of higher-order tis-

sue representations. Similarly, classification tasks were used to corroborate the benefits of

sampling multiple b-values in cortical studies. The experimental chapters provide strong evi-

dence in favour of the future use of diffusion MRI as a measure of the varying microstructure

that defines cortical areas.
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Part I

I N T R O D U C T I O N



1
M OT I VAT I O N

Scientific investigation over many centuries has resulted in an in-depth understanding of

many of the systems within the human body. However, our knowledge of the brain and the

exact workings of its various parenchyma remains relatively sparse and inconsistent in com-

parison to other organs. This is particularly true of the cerebral cortex, which is associated

with many highly complex parallel processes, making it an important structure for neurosci-

entific inspection.

Early studies of the microstructure of the human cerebral cortex revealed a laminar

pattern comprising six layers of varying thickness, and cellular and axonal fibre composi-

tions (cytooarchitecture) (Lewis and Clarke 1878; Berlin 1858). The heterogeneous appear-

ance of these layers as well as differences in vertical and horizontal fibre densities (myeloar-

chitecture) in different parts of the cortical sheet suggested that there might be a relation-

ship between microstructural organisation and local functional specificity. Pioneers in this

field (Campbell 1905; Brodmann 1909; Economo and Koskinas 1925; Vogt 1919) published

hemisphere-wide maps based on sectioning and histological staining of cadaver brains, de-

marcating the boundaries of cyto- and myelo-architectonic domains. Those maps divided

the cortical sheet into a complex mosaic based on radial (vertical) and tangential (horizon-

tal) variations in the composition of tissue columns taken perpendicular to the pial and white

matter surfaces. It is reasonable to assume that uncovering the mechanisms behind the

structure-function relationships of the cortex will involve an understanding of this varying

architectural organisation. Yet, these somewhat incompatible parcellations were subject to

many methodological criticisms. Their labour intensive nature limited sample size, which

was problematic given: (1) inter-subject variability of cytoarchitectonic boundaries (Amunts

et al. 1999) but also within-area variation (Sereno et al. 2015), (2) the unavoidable artefacts

of the histological process, such as idiosyncratic plastic deformation and tearing of sections,

(3) observer bias, and (4) limitation to a single tissue contrast per sample. Despite these

2



M OT I VAT I O N 3

limitations, the hypothesis that architectonic borders are related to function has prevailed

and these areas are still widely adopted, for example, to localise activation foci in functional

imaging studies.

In vivo image-based methods for analysis of the grey matter have the potential to al-

leviate or eliminate some of the limitations associated with histological parcellation. These

methods are able to account for inter-subject variability through the comparable ease of

in vivo data collection, can be combined with additional multi-modal data from the same

subject to directly assess structure-function relationships, and lend themselves gracefully

to observer-free algorithmic analyses. Thus far, image-based studies of the cortex have fo-

cussed mainly on the analysis of myelin density via quantitative T1/R1 mapping (Fischl et al.

2004b; Sigalovsky et al. 2006; Geyer et al. 2011; Dinse et al. 2015; Waehnert et al. 2016),

R1 mapping in relation to map structure (Dick et al. 2012; Sereno et al. 2013; Lutti et al.

2014), T2* mapping (Cohen-Adad 2014; Sánchez-Panchuelo et al. 2012), MRT (Sánchez-

Panchuelo et al. 2014) and the T1-weighted over T2-weighted ratio (Glasser and Van Essen

2011; Glasser et al. 2014). However, these measures as a proxy for myelin density, provide

only a single-dimensional description of the multifaceted variations within the cortex. Using

myelin density as a sole marker is less informative in areas with low, relatively uniform myeli-

nation that are found outside primary and secondary sensory and motor cortices (Glasser

et al. 2014). Robust in vivo methods for analysing cytoarchitecture, as opposed to these

well studied myeloarchitecture methods, have yet to be realised.

Diffusion magnetic resonance imaging (dMRI) has become ubiquitous in the study of

white matter (WM) (Le Bihan et al. 2001; Le Bihan 2003) and has been successfully adopted

into a plethora of scientific and clinical applications. By measuring the displacement of water

molecules within tissue compartments, dMRI offers in vivo insight into structural properties

of microenvironments. It is sensitive to many different tissue properties, for example, fibre

orientation (Douek et al. 1991), fibre fanning and dispersion (Sotiropoulos et al. 2012; Zhang

et al. 2011; Zhang et al. 2012), tissue volume fractions (Jeurissen et al. 2014) and axon di-

ameter (Alexander et al. 2010; Assaf et al. 2008). Although dMRI and T1 (or T2, T2* etc.)

are affected by similar structures, e.g., myelinated axons, it is evident that dMRI can provide

a richer, multi-dimensional, feature space that has increased potential to distinguish differ-

ences in local architecture. Two different cortical regions or layers might contain the same
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total amount of myelin, but that myelin might be arrayed differently; for instance, one area

might have more radial than tangential fibres.

Initial grey matter (GM) applications of dMRI focused on the developing brain due to

its increased anisotropy (Gupta et al. 2005; McKinstry et al. 2002; Mukherjee et al. 2002).

Others have used tractography to subdivide the cortex based on the WM connectivity be-

tween regions (Anwander et al. 2006; Johansen-Berg et al. 2004; Beckmann et al. 2009).

Compellingly, several papers have demonstrated a good correspondence between cortical

histology and dMRI of the cortex using high-resolution, ex vivo data (Aggarwal et al. 2015;

Heidemann et al. 2010; Leuze et al. 2014; McNab et al. 2009; Bastiani et al. 2016). Recent

advancements such as simultaneous multi-slice acquisition, improved gradient systems, bet-

ter motion/eddy current correction algorithms, and ultra-high field MRI have facilitated the

use of dMRI in several adult, in vivo, cortical studies. Some papers have combined diffusion

tensor imaging with cortical surface-based analysis to successfully demonstrate differences

between the primary motor (M1) and somatosensory (S1) cortices, and to relate them to his-

tological findings (Anwander et al. 2010; McNab et al. 2013). Others have extended these

findings by applying similar features to the medial surface of the cortex, with the aim of

understanding how the microstructure of the cortex adapts when it folds (Kleinnijenhuis et

al. 2015). Calamante et al. (2017) estimated the apparent fibre density across the cortical

sheet, reporting distributions that correlated with known patterns of myeloarchitecture. How-

ever, there have been very few attempts to characterise the small but detailed changes in the

high angular resolution diffusion imaging (HARDI) signal that would be expected to result

from the different architectonic tissue configurations found in different cortical areas (Haroon

et al. 2010; Nagy et al. 2013). Notably, Nagy et al. (2013) developed a surface-based corti-

cal classification pipeline that used machine learning to distinguish between several cortical

areas based on their dMRI signal, however this study was limited to low resolution data and

a small set of test regions.
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1.1 P R O B L E M S TAT E M E N T

For over a century we have known that the cortex can be divided into a mosaic of distinct

units that are well defined by their microstructural properties. The abilty to accurately map

these areas on live participants has the potential to greatly expand our mechanistic under-

standing of the brain and even reveal the aetiology of complex neurological disorders. Yet,

there are currently no methods that are able to reliably parcellate the whole cortical sheet,

based on its fine-grained cytoarchitectonic properties, and thus reproduce cortical area def-

initions using in vivo data.

Diffusion MRI has emerged as a powerful and versatile tool for examining microstruc-

ture, particualrly within the brain sciences. We ask to what extent can this modality be used

in the field of cortical parcellation? We focus on key aspects, such as, the availability of

area-specific contrast throughout the cortical sheet and how can we best utilise diffusion

data sets to probe grey matter.

1.2 P R O J E C T A I M S

• To thoroughly explore the utility of diffusion MRI for cortical parcellation at in vivo

resolutions by using high-quality datasets.

• To use machine learning experiments to test and optimise aspects of a diffusion-

based cortical pipeline, answering various questions regarding e.g., pre-processing

steps, choice of b-factor, feature representation.

• To determine if a full hemisphere parcellation is plausible using dMRI data and deter-

mine if/where this modality is beneficial to future studies.
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1.3 C O N T R I B U T I O N S

E X P E R I M E N T 1 In Chapter 5 we applied the cortical parcellation pipeline of Nagy et

al. (2013) to state-of-the-art, 3T, Human Connectome Project (HCP) datasets. We refined

several aspects of the pipeline and applied unsupervised clustering to significantly improve

on the full hemisphere parcellation result demonstrated in that paper. This was achieved by

adopting an improved surface reconstruction pipeline, reducing the feature space to a more

compact set, and performing population averaging. Importantly, we compared our results

against a more commonly used myelin mapping technique to demonstrate the advantages

of diffusion MRI and potentially complementary information content that this modality can

provide.

E X P E R I M E N T 2: In Chapter 6 we asked which of the many diffusion-based microstruc-

ture methods is most appropriate for cortical parcellation? This, to our knowledge, was the

first study to compare multiple methods in this domain. We tested the classification frame-

work on several feature sets, including popular WM methods, e.g., diffusion tensor, as well

as higher-order non-parametric approaches, e.g., the spherical harmonic features used in

Experiment 1. In addition we determined which cortical areas can be reliably distinguished

from their neighbours by developing a supervised learning classification framework that

utilised the 180 cortical areas defined by Glasser et al. (2016) as plausible training labels.

By attempting to classify each area against its neighbourhood, we objectively quantify re-

gional differences across the whole cortical surface, whereas previous works have focussed

on a smaller selection of areas. We presented results at both the group level and single

subject level across the entire cortical hemisphere to demonstrate that good to moderate

area-specific contrast is available in diffusion datasets for the majority of the cortex. Classi-

fication performance was evaluated based on the overlap with training labels and a newly

developed searchlight cluster coherence method that provides a quantitative measure of

parcellation quality.
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E X P E R I M E N T 3: In Chapter 7 we considered the most important aspect of a diffusion

MRI acquisition, the b-value. Specifically we explored whether sampling at multiple b-shells

provided better contrast between cortical areas than using a single b-shell. Analysis was

performed on both the 3T HCP data and locally collected 1.5T data, each comprising of

3 evenly spaced b-shells. We assessed how correlated the information content of differ-

ent b-shells were and performed a series of binary classification experiments to reveal that

datasets containing multiple different b-values yielded the higher classification accuracy

than those containing repeated acquisitions of the same b-value.

E X P E R I M E N T 4: An additional experiment, which does not form part of the main body

of this thesis, can be found in Appendix A. Here we applied the cortical parcellation pipeline

to test a new hardware system for eddy current correction. The system uses concurrent field

monitoring to eliminate diffusion imaging artefacts. The data quality was assessed at sev-

eral levels with the final stage involving cortical area classification, where improvements in

classification accuracy were taken as an indication of the efficacy of field camera. However,

the results of this study were deemed inconclusive as the prototype system was unable to

deliver data of adequate quality, resulting in the use of post processing steps that obscured

interpretation of the final result.



Part II

B AC K G R O U N D



2
T H E C O RT E X A N D PA R C E L L AT I O N

The cerebral cortex is a thin sheet, approximately 2-4mm thick, forming the outer surface of

the brain. It is estimated to contain 1011 neurons and around 1014 synaptic connections. It is

associated with the performance of complex cognitive functions, such as speech, and vision.

The human cortex, unlike many in the animal kingdom, is gyrencephalic - becoming highly

convoluted during development. This folding process creates deep crevasses and bulbous

ridges known as sulci and gyri respectively. There is no consensus on the exact mechanism

that drives cortical folding. It has been theorised that evolutionary selection pressures over

time demanded larger surface area to volume ratios and cortical folding is a side effect of

the mechanical instability caused by tangential expansion of grey matter (Smart and McSh-

erry 1986; Xu et al. 2010; Tallinen et al. 2014; Tallinen et al. 2016). This is supported by the

observation that, unlike primates, small mammals such as rats have lissencephalic brains.

Others suspect that mechanical tension between interconnected areas draws spatially dis-

tant regions together to create faster, more compact neural circuitry (Van Essen 1997).

The thin, highly folded geometry of the cortex achieves an efficient neuronal system,

facilitating complex cognitive processes. However, these exact features also inhibit the direct

study of this brain structure. Much of the grey matter is buried deep within the randomly ori-

ented and compact sulci, making it difficult to access. Cortical folding patterns are variable

amongst individuals (Zilles et al. 1997; Fischl 2013), making cross subject comparisons

problematic. Furthermore, with the exception of the Stria of Gennari (Gennari 1782), the

length scales required to resolve architectonic features of the cortex are beyond the capa-

bilities of the human eye.

The following subsections review the study of cortical microstructure, starting with

early histological efforts and ending with the current image based techniques. Some of

the contents of these sections relied on extensive consultation of Geyer and Turner (2015)

which can be referred to for an excellent review of cortical parcellation.

9
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2.1 H I S TO L O G I C A L S T U D I E S O F T H E C O RT E X

Figure 2.1: The cyto- and myeloarchitectonic layers of the human cerebral cortex. Image adapted

from Vogt and Vogt (1919).

Early studies involving brain lesions (Broca 1861; Ferrier 1873; Fritsch and Hitzig 1870) pro-

vided evidence to the theory of functional localisation – the notion that the cortex is divisible

into functionally distinct units. This was further supported using electrical stimulation, which

revealed that neighbouring neurons shared a similar receptive field, e.g., adjacent patches

of skin (Ferrier 1875; Shipp 2007). Anatomical evidence to support this hypothesis wasn’t

provided until the late 19th century when advancements in microscope technology finally

facilitated the study of cortical microstructure. Investigators unveiled a laminar organisation

comprising of six layers of varying appearance (Berlin 1858; Lewis and Clarke 1878).

The nature of the histological process allowed only a single contrast agent to be ap-

plied to a given tissue sample. This resulted in two schools of practice. The first considered

the distribution of cell bodies via Nissl staining and is referred to as cytoarchitecture. The
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second, known as myeloarchitecture, involved the study of tangential and radial fibre popu-

lations using Weigert staining. Illustrations of the six commonly accepted cyto- and myeloar-

chitectonic layers are given in Figure 2.1. Many researchers reported sharp transitions in

the relative appearance of these layers when comparing adjacent radial columns of cortical

tissue samples (Brodmann 1909; Lewis and Clarke 1878; Smith 1907; Vogt 1919; Economo

and Koskinas 1925). This discovery bolstered the hypothesis of functional localisation with

anatomical evidence and motivated efforts to create maps of the neocortex based on its

architectonic variations, i.e., cortical parcellations, in the hope understanding the synergy

between structure and function.
ce
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registrationwasused optimized using a cost function of normalisedmu-
tual information. Fig. 2A depicts in anterior–posterior orientation an in-
flated in-vivo quantitative T1 map (registered to 0.4 mm isotropic MNI
space, 55% cortical depth) of a single subjects left hemisphere. Low T1
values (ms) (blue) are associated with higher myelination. The white

curve drawn on the inflated surface indicates the location of the MRI
slice pictured to the right.

Cortical extraction was performed using the CRUISE algorithm Han
et al., 2004 as integrated in the CBS Tools (Bazin et al., 2013). The sur-
faces between GM andWMand between GMand CSFwere represented

A

B

D

C

Fig. 2.Overview of material used in this work. A) Inflated 0.5mm T1 at 55% cortical depth. TheM1/S1 region, known to bemore highlymyelinated, shows lower T1 values. Variability in T1
values is visible across the surface but also within M1 (encircled) which is related to the location of the motor hand knob. The white doublebow curve outlines the ROIs shown in the in-
vivo T1 mapMRI slice ((A), upper right). BA 4 shows lower T1 values than BA 3b. Striation (arrows) is visible. The image below depicts cortical depth values calculated using a novel vol-
ume-preserving layering approach (Waehnert et al., 2013b). In locations of gyral crowns (white arrowhead), the outer surfaces are compressedwhile the inner surfaces are stretched out.
In locations of sulcal fundi (pink arrowhead), the behaviour of the surfaces changes to the opposite. B) The picture shows the brain sample used to derive ex-vivo data. The red doublebow
curve covers our ROIs. C) Left: The image depicts the ex-vivo T1mapMRI slice indicated as red curve in (B). BA 4 shows lower T1 values than BA3b. Striation is visible in BA1 and2 (arrow).
Right: The layering depicts the cortical depth values. The behaviour of the laminae is the same as in (A) but much more visible due to the higher resolution of the ex-vivo MRI. D) The
images illustrate themyelin stain and enlargements of it in locations of the green lines. The yellow line follows theWM boundary. Red boxes depict the Baillarger banding. As direct com-
parison, Hopf's illustrations Hopf (1967) presented in Fig. 1B are included.
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The study of gene expression with microarrays in different
cortical regions of human and chimpanzee brains revealed
several overall conserved gene co-expression modules between
species, with a greater interspecies module conservation in the
primary sensory cortex than in association cortex and in subcor-
tical structures as compared to cortical (Oldham et al., 2006).
This fits well with the structural differentiation (Smaers et al.,
2010; Zilles, 2005) and cytoarchitectonic gradation streams (Sa-
nides, 1962) of association areas versus hierarchically lower, un-
imodal sensory and primary sensory areas during primate brain
evolution. Chimpanzees hardly show a gene co-expression
module, which is strongly represented in human cerebral cortex
and contains genes involved in energy metabolism. These genes
have similar patterns of connection strengths to other genes of
the electron transport chain in neurons of the human cerebral
cortex (Oldham et al., 2006). They control mitochondrial struc-
tural properties, synapse formation, and vesicle docking as
well as cytoskeleton regulation. Probably, the expansion of the
human neocortex during primate brain evolution, which led to
an enormous increase in processing capacity, was accompa-
nied by an increased energy metabolism required for structural
plasticity of neurons and their synapses (Oldham et al., 2006).
Genetic labeling of cortical cell types with bacterial artificial

chromosome (BAC), transgenic (Heintz, 2001), and knock-in as
well as intersectional strategies enable cell typing in mice
(www.gensat.org). It is also possible to study connectivity and
function of specific cell types. The response to genetic alter-
ations can be studied in any genetically identified cell type using
BAC array translational profiling (Heiman et al., 2008). The de-
gree of molecular similarities and dissimilarities between cell
types could be described with a hierarchical cluster analysis,
and groups of genes were identified that encode cell-type-spe-
cific functions. Furthermore, comparisons can be performed to
study the development of specific cell types (Doyle et al.,
2008). A further progress in genetic labeling to characterize cell
types using high-throughput methods is recently provided by
the MultiColor FlpOut (MCFO) approach, which revealed shape
and position of cells inDrosophila (Nern et al., 2015). A transcrip-
tional driver and stochastic, recombinase-mediated excision of
transcription-terminating cassettes controls the expression of
multiple membrane-targeted and distinct epitope-tagged pro-
teins. Gene targeting by knockin methods considerably
improved the reproducibility and strategic design of cell-type
targeting and identification of novel cell subtypes even within
the family of pyramidal cells (Sorensen et al., 2015). Genetic
dissection of cortical circuits already started in the mouse brain
by systematic targeting of cell types and fate mapping of neural
progenitors (for recent review, see Huang, 2014). This approach
can provide a cortical cell atlas of unprecedented detail and

Figure 5. Correspondence of Areal Borders across Different
Modalities
(A) Section from the Allen Brain Atlas showing parvalbumin gene expression in
neurons of the human primary visual area V1 and secondary visual area V2
(https://www.alleninstitute.org, specimen RP_070313_01_C07). Delineation
between V1 and V2, and laminar labeling by the authors of the present review.
(B–G) Cyto-, myelo-, and receptorarchitecture of human areas V1 and V2 from
a different brain (Institute of Neuroscience and Medicine, INM-1, Research
Centre Jülich). (B) Cell-body-stained section. (C) Myelin-stained section. (D)
Agonistic binding sites of the GABAA receptor labeled with [3H] muscimol. (E)
Antagonistic binding sites of the GABAA receptor labeled with [3H] SR95531.

(F) Benzodiazepine binding sites of the GABAA receptor labeled with [3H] flu-
mazenil. (G) Binding sites of the GABAB receptor labeled with [3H] CGP 54626.
Parvalbumin-positive cortical neurons have their termination field in the sur-
rounding of their cell bodies, where they release the inhibitory transmitter
GABA. Notably, the laminar density distribution of parvalbumin-positive neu-
rons and GABA receptor binding sites are similar in both V1 and V2, with the
exception of GABAB receptors, which are also present at intermediate den-
sities in layers V and VI of V1. Roman numerals indicate cortical layers. The
scale bars code receptor densities in fmol/mg protein.
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Figure 2.2: Cell body and myelin stains for the sensorimotor areas of the central sulcus and the

visual areas of the calcarine. (A) Nissl (cell body) stain in which areas 4, 3a and 3b are

visible. (B) Nissl stain showing the transition between V1 and V2. Both A and B were

adapted from the Allen Human Brain Atlas (Ding et al. 2017). (C) Myelin stain of the

sensorimotor areas 4, 3a, 3b, 1 and 2 adapted from Dinse et al. (2015). (D) Myelin stain

showing the transition between V1 and V2 adapted from Amunts and Zilles (2015). The

Stria of Gennari (SoG) clearly visible in V1 but absent in V2.
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Figure 2.2 shows examples of laminar transitions for the sensorimotor areas in the

central sulcus and the visual areas of the calcarine - both sets of areas will be discussed

routinely throughout this Thesis.

2.1.1 Classical cortical parcellation

In 1909 Korbinian Brodmann published his monograph detailing a full hemisphere cytoar-

chitectonic map of the human cerebral cortex (Brodmann 1909). His work was so influential

that the Broadmann Areas remain a standard and are still used to navigate and interpret

studies, over a century later. Whilst many researchers were studying microstructural vari-

ation of the cortex around the same time (Campbell 1905; Betz 1874; Hammarberg 1895;

Lewis and Clarke 1878; Cajal 1900; Smith 1907), Brodmann surpassed the efforts of his

peers by incorporating the theory of evolution to produce a detailed coherent, cross species

framework (Zilles and Amunts 2010). Brodmann identified 43 regions (see Figure 2.3) in the

human cerebral hemisphere by searching for cellular and laminar variation in a small sample

of cadaver brains. He described the location, extent and appearance of the areas in detail,

and specified which transitions were easy or difficult to distinguish. By keeping homologous

regions consistently named across different species he was able to identify several areas

that were present in non-human primates, such as insular cortical areas 14-16, but absent

in humans. The thoroughness of his work led to it becoming widely adopted and popularised

the notion of anatomical specificity as a driving force behind functional localisation.

Despite their notoriety, the Brodmann Areas cannot be considered a definitive and

final delineation of the cortical mosaic. Several of his peers pointed to inaccuracies and dis-

crepancies in his findings compared to their own investigations of cortical architecture. For

example, Economo and Koskinas (1925) reported 107 cytoarchtectonic areas using their

modified method. Crucially, their work addressed the confounding effects of varying gyral/-

sulcul orientation by ensuring that tissue samples were taken in columns perpendicular to

the local cortical surface. Their atlas is considered by some to be even more comprehensive

than Brodmann’s work (Triarhou 2012).
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Figure 2.3: The classical cytoarchitectonic maps of Brodmann (1909) and Economo and Koskinas

(1925).

Another notable departure from the Brodmann map comes from the myeloarchitec-

tonic delineations of Oskar and Cécile Vogt (1903; 1919). By examining variations in the

tangential and radial myelin distributions the Vogts determined as many as 200 histological

units in the cortex. Over their lifetime, they and their numerous students performed further

comprehensive studies of laminar variation to build an understanding of the different mi-

crocircuitry within this organ. Some of the boundaries exhibited good correspondence with

Brodmann’s cytoarchitectonic areas, however in general the results suggested that the cor-

tical sheet could be much more finely partitioned.

When considering classical cortical parcellation studies it is evident that there is no

clear consensus on the number of areas, or the placement of the cortical subdivisions. Some

of the inconsistencies between these works can be explained by limitations of their method-

ologies. All of the above results were subject to observer biases and human error. The

onerous and time-consuming processes allowed only a small sample of brains to be exam-
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ined. As such, they fail to account for the large degree of inter-subject variability of cortical

boundaries (Amunts et al. 1999; Fischl et al. 2008) and within-area variation (Sereno et al.

2015). Furthermore, these methods were purely qualitative and the resulting illustrations

are difficult to accurately adopt in subsequent studies.

2.1.2 Probabilistic atlases

Modern histological works have alleviated the limitations of classical parcellation methods

by using observer independent, probabilistic approaches (Schleicher et al. 2005; Zilles et

al. 2002). These methods perform histological sectioning and subsequent observer-free in-

tensity/density analysis to define boundaries of areas on multiple subjects. The extent and

locations of areas are then translated into stereotaxic space providing probabilistic labels

(Geyer et al. 1996; Geyer et al. 1997; Amunts et al. 1999; Amunts et al. 2000; Morosan et al.

2005; Eickhoff et al. 2006a; Eickhoff et al. 2006b). These works have provided valuable at-

lases that have been widely adopted in modern imaging studies for localisation of activation

foci. Contemporary histological studies have even revealed inaccuracies in the Brodmann

map, suggesting that certain areas can be subdivided into smaller units (Geyer et al. 2000;

Orban et al. 2004; Wandell et al. 2007). They generally accommodate a modest sample

size (usually 10 brains) over a limited set of brain areas. The Big Brain initiative has more

recently achieved full brain coverage for a single subject (Amunts et al. 2013).

These methods benefit from high spatial resolutions but are subject to artefacts of the

histological process, such as idiosyncratic plastic deformation and tearing of sections. They

are also limited to a single tissue contrast per sample and inaccuracies may be incurred

when translating to 3D image space. Histological methods are invaluable for validation pur-

posed but lack the flexibility that modern in vivo imaging could bring to the study of cortical

structure and function.

2.2 M R I S T U D I E S O F T H E C O RT E X

Magnetic resonance imaging (MRI) provides powerful and versatile machinery for non-

invasive investigations of otherwise inaccessible tissues and structures. It is a flourishing
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area of research and development that has countless, wide spread clinical and scientific

applications, particularly in the neuroscientific domain, where ethical in vivo investigations

are otherwise limited.

2.2.1 Basic principals of MRI

MRI relies on the physical phenomenon of nuclear magnetic resonance (NMR) in which

certain nuclei absorb and re-emit electromagnetic radiation when exposed to an external

magnetic field. For this interaction to occur, a nucleus must posses an odd number of pro-

tons or neutrons, resulting in a non-zero spin and magnetic moment. In biological tissue,

such nuclei are abundant in the form of hydrogen atoms held within water and fat. When

the hydrogen nuclei are placed within and external magnetic field (referred to as B0) they

precess at a resonance frequency, the Larmor frequency, which depends on the specific gy-

romagnetic ratio of the nucleus as well as the strength of the B0 field. The spins align either

parallel or anti-parallel to the external magnetic field with slightly larger number of spins in

either orientation resulting in a net magnetisation which can be manipulated to infer details

about the tissue domain. Radio frequency (RF) pulses are applied to tip the tip the spins

(and by extension, the net magnetisation) into the transverse plane where their precession

induces a voltage in a receiver coil, thus creating a measurable signal. In MRI this informa-

tion is spatially encoded into a set of image slices that delineate different tissue types.

Many different types of contrast are available, for example, structural information can

be encoded by measuring T1 relaxation time. T1 measures how long it takes for magnetic

spins to recover approximately 63% of their longitudinal magnetization after being flipped

into the transverse plane i.e., the time it takes for spins to realign with the external mag-

netic field (Bloch 1946). This is known as spin-lattice relaxation and is dependent on the

strength of the external field and the molecular properties of the local microenvironment.

At 3T, the nominal value for T1 in white matter is approximately 1300ms, whereas, in grey

matter T1 is typically 800ms (Wansapura et al. 1999); therefore the two tissue types can be

differentiated in T1-weighted images (Figure 2.4). Similarly, T2 relaxation time relates to the

transverse magnetization. It measures the time taken for spins to de-phase due to spin-spin
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Figure 2.4: Example T1w and T2w image slices from the same subject. WM, GM and CSF have

different nominal signal intensities for both contrasts.

interaction and also varies by tissue type (Bloch 1946). In a real experimental system the

transverse magnetisation decays faster than predicted from spin-spin interactions due to

inhomogeneities in the B0 field, the effective relaxation time, T2*, can also be measured.

Other structural modalities include: R1 which is the rate of longitudinal recovery i.e. 1/T1;

and proton density imaging which measures the concentration of hydrogen atoms within a

tissue (Nitz and Reimer 1999). Brain function in live participants can also be studied using

MRI by measuring the blood oxygenation level-dependent (BOLD) technique (Ogawa et al.

1990), which is sensitive to the high iron content of haemoglobin in oxygenated blood.

Whilst MRI cannot match the spatial resolution of histological methods, it is extremely

versatile and posses the potential to further our understanding of the functional and struc-

tural organisation within the cortex. The following subsections review the in vivo estimation

of Brodmann areas using MRI, the subsequent development of cortical surface based anal-

ysis, and finally, the tools specifically designed to quantify myeloarchitecture.

2.2.2 Surface based analysis

One of the primary applications of Brodmann areas has been to locate activation foci, for

example, to investigate topographic organisation in functional MRI studies. However, as

discussed above, the descriptions and illustrations posited by Brodmann and his contem-
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poraries are not easily adapted into modern imaging frameworks. Furthermore, the highly

folded geometry of the cortex and its thin sheet-like structure make it very difficult accurately

study using 3D image volumes. The earliest attempt to deal with this difficulty came in the

form of a common coordinate system, the Talairach atlas (Talairach and Tournoux 1988).

This provided researchers with a reference frame to which they could register their own

MRI data to and then estimate the location of cortical effects with relation to a reference

brain. The Talairach coordinate system allows for more robust comparison across different

subjects but several groups have shown that it does not accurately estimate the location of

Brodmann areas (Rademacher et al. 1993; Amunts et al. 2000; Grefkes et al. 2001). Others

have settled for using qualitative comparison of cortical folding patterns on image volumes

to compare fMRI results across individuals and assign them to prospective cortical areas.

Both methods are marred in concerns regarding their accuracy and subsequent hypothesis

testing.

The break through moment for image-based study of the cerebral cortex was the

development of surface based analysis pipelines (Dale et al. 1999; Fischl et al. 1999a; Fis-

chl et al. 2001). These methods perform automated and robust reconstruction of subject

specific cortical surfaces from a single structural 3D volume e.g., a T1w image. Pipelines,

such as those in the FreeSurfer analysis suite, perform automatic grey/white matter seg-

mentation and offer multiple additional functions including surface unfolding, flattening and

inflation. Data can be sampled from the image voxels onto the vertices of the cortical sur-

face. Sampling can be performed at single or multiple depths allowing laminar-like analysis,

depending on the resolution of the 3D volume. Once the initial surface tessellation is gen-

erated, it is trivial to sample additional datasets of the same subject, e.g., fMRI time-series,

by aligning the new data to the original T1w image. Researchers circumvent the difficulties

associated with cortical folding, by moving from volumetric to surface-based analysis, which

instead scrutinizes data in a way that reflects the intrinsic 2D organisation of the cortical

sheet.

One important development that arouse from surface based analysis was the advent

of surface based averaging (Fischl et al. 1999b). This method uses the cortical folding pat-

terns to better align data across individuals and improve the precision of any subsequent

analyses including the estimation of Brodmann areas. Fischl et al. (2008) compared cortical
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Figure 2.5: (A) Examples of probabilistic Brodmann area maps after translation into cortical surface

representation. (B) Freesurfer automatic cortical parcellation based on cortical folding

patterns.

folding patterns across 435 brains to confirm that variance across individuals is not uniformly

distributed throughout the brain. They verified the hypothesis that the early-forming deeper

folds, such as the sylvian fissure, are more stable than secondary and tertiary folds which

form later in development (Chi et al. 1977; Yu et al. 2007). Using this information they de-

veloped a procedure that accurately aligns cortical surfaces by assigning higher weighting

factors to the more stable folding patterns. Prior to this development, researchers relied on

intensity based averaging of 3D image volumes, which was problematic because T1w image

intensities are not expected to generally correlate with architectonic or functional properties

of the cortex. The variance in T1w measures across cortical regions are vanishingly small

compared to the variance between the different tissue types, or the myelin rich WM regions,

making it unlikely for a registration algorithm to align brains using cortical reference points.

Surface-based analysis facilitates more robust hypothesis testing in cortical studies,

allowing activations to be reported using surface coordinates and more reliable mapping to

Brodmann areas. For example, users can automatically segment the cortex based on sulcul

and gyral landmarks allowing activations to be accurately reported in relation macroscopic

features (Fischl et al. 2004a). Alternatively, results can be related to Brodmann areas using

the probabilistic atlases discussed in section 2.1.2, which have been translated into the cor-
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tical coordinate system (Fischl et al. 2008), as shown in Figure 2.5. However architectonic

boundaries are not generally closely correlated with cortical folding patterns. Methods for

direct in vivo Brodmann mapping, using surface-based analyses, may provide the next leap

in our understanding of cortical machinery and more robust analysis and interpretation of

fMRI studies.

2.2.3 Image based myeloarchitectonics

Excluding deep brain structures that have high iron content, MRI contrast across the brain

is dominated by myelin content (Geyer and Turner 2015). When attempting investigations of

cortical microstructure using MRI, it makes sense to first target myeloarchitectonic features.

The most salient of these is the Stria of Gennari (SoG), a highly myelinated tangential band

along layer IV of the primary visual cortex, which is visible to the naked eye in ex vivo sam-

ples (Gennari 1782). Several studies have observed the presence of the SoG using in vivo

proton density imaging (Clark et al. 1992), or T1 contrast (Barbier et al. 2002; Bridge et al.

2005; Carmichael et al. 2006; Walters et al. 2003) and ex vivo T2* contrast (Hinds et al.,

2008). Many of the earlier contributions were performed at low field strength and low spatial

resolutions using anisotropic voxels, and thus don’t meet the necessary requirements to con-

sistently observe the SoG, as outlined by Turner et al. (2008). But these findings have been

validated at 7T, using high-resolution (0.5 - 0.4mm3) voxels (Trampel et al. 2011) in com-

bination with independent retinotopic mapping of the same subjects (Sánchez-Panchuelo

et al. 2012).

In addition to the SoG, investigations of in vivo myeloarchitectonics have revealed sev-

eral other cortical features. Fischl et al. (2004b) measured myelin density via quantitative T1-

mapping across the cortical surface, showing relative differences between different regions,

such as significantly longer T1 in limbic and association cortices. Importantly, they demon-

strated that mapping MR parameters is more useful than taking single weighted images,

which cannot be reliably compared across different scanners and sequences. T2-weighted

imaging (Yoshiura et al. 2000) and R1-mapping (Sigalovsky et al. 2006; Dick et al. 2012)

have been used to observe intensity peaks, in Herschl’s gyrus, associated with the high

myelin content of the auditory core. Others have related R1-mapping to fMRI map structure,
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observing correlations between myelin density and retinotopic maps of several areas(Lutti

et al. 2014; Sereno et al. 2013).

The efficacy of these methods has also been tested using ex vivo MRI and histological

samples. For example, Augustinack et al. (2005) revealed islands in layer II of the entorhi-

nal cortex using proton density imaging and subsequent histological analysis of the same

ex vivo samples. Bock et al. (2009) compared T1 mapping and T1-weighted imaging with

myelin stains in the same marmoset brains to confirm that findings correspond to histology

in several regions, e.g., MT, S1, M1, A1, and V1. Similar validation came from Geyer et al.

(2011), who used ex vivo human samples to show correspondences between the borders

of area 4 and 3b and T1 mapping data. Quantitative T1 mapping has also been combined

with ex vivo T2*-weighted images to study the laminar structure of primary somatosensory,

motor and visual areas (Waehnert et al. 2016).

Glasser and Van Essen (2011) and Glasser et al. (2014) proposed using the T1-

weighted over T2-weight ratio as a proxy for myelin density. This method removes the MR

intensity bias field artefacts that are associated with single T1w or T2w images and improves

contrast between heavily and lightly myelinated regions. They produced group average and

single subject maps of the full cortical hemisphere. The gradients of these maps were shown

to correlate well with probabilistic atlas labels (Fischl et al. 2008) and other functional and

anatomical evidence from the surrounding literature (Eickhoff et al. 2005). This was recently

extended into a multi-modal cortical parcellation pipeline (Glasser et al. 2016) that lever-

ages T1w/T2w ratio, resting-state and task-based fMRI, and supervised learning algorithms

to segment the cortical surface into 180 areas (Figure 2.6). This is an important contribution

to the field that somewhat mimics the results of the classical cortical parcellation frameworks

discussed above (Vogt 1919). However, these in vivo measures of myeloarchitectonic gradi-

ents have limited scope across the entire cortex. Figure 2.6 gives an example group average

myelin density map, as calculated from T1w/T2w ratio. It is clear here that training data may

lack microstructurally driven contrast in areas of low myelin density, such as the prefrontal

cortex, relying more heavily on fMRI data and the user-driven annotations that were also

inputs to the supervised learning framework. A technique for in vivo, subject specific par-

cellation of the entire cortex, driven only by fine-grain cyto and myeloarchitectonic features,

has yet to be accomplished. Furthermore, as Glasser et al. (2016) used the myelin density
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Figure 2.6: (A) Example of group average myelin density map generated from T1w/T2w ratio.

T1w/T2w data was surface averaged for 17 HCP subjects, white arrows point to areas

of low myelin density.(B) The 180 area definitions of the HCP multi-modal parcellation

defined in Glasser et al. (2016). Areas belonging to similar functional networks are dis-

played in similar colours.

maps to both align and segment the data; the results might be confounded by this circular

reasoning. A comparison of this new registration method to the old surface based method,

which used only gyral and sulcal landmarks (Fischl et al. 1999b) to align surfaces across

different subjects, could determine the extent of this effect.

This chapter reviewed the background of cortical parcellation, from its inception to state-of-

the-art multi-modal results. In vivo investigations of cortical microstructure have focussed on

myeloarchitectonics, using structural modalities e.g., T1 mapping. Whilst these techniques

have successfully delineated many cortical areas, they are generally limited to myelin rich re-

gions, and do not provide sufficient architectonic contrast to parcellate the entire cortex. This

is partly because myelin density is a one dimensional measurement that cannot adequately
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describe the numerous properties that define architectonic areas in traditional histological

parcellations. In the next chapter, we will discuss diffusion MRI and its potential to provide

a much richer, set of features that could better characterise the cyto- and myeloarchitecture

of the cortex.



3
D I F F U S I O N M R I

Diffusion MRI measures the displacement of water molecules within tissue structures to infer

microstructural tissue properties. It has a wide range of clinical and research applications

and has become ubiquitous in the study of brain microstructure. In this chapter we overview

the principals of diffusion MRI, and its use in neuroimaging studies. Some of these topics

are covered in more detail in Jones (2010). We end with an overview of the cortical grey

matter pipeline (Nagy et al. 2013) upon which the work of this Thesis was built.

3.1 P R I N C I PA L S O F D I F F U S I O N M R I

Brownian motion describes the random motion of molecules resulting from heat dissipation

within a medium. It was first described by Robert Brown (1828) who observed that pollen

molecules suspended in water randomly gryrated and migrated across the medium in a man-

ner that could not be explained by fluid currents or any other known physical phenomenon.

In an unrestricted medium the molecules are free to move in any direction with equal prob-

ability. Thus, Einstien formulated the mean displacement of molecules, in 3-dimensional

space, as:

< R >=
√
6DTd (3.1)

where Td is the diffusion time, D is the diffusion coefficient, and R = r− r0 is the average

displacement of a molecule from its start position r0 to its end position r after Td has passed.

In biological tissues unrestricted diffusion processes are rare. Instead water popu-

lations are bound by tissue structures, such as cell walls or myelin sheaths, that restrict

diffusion along certain directions. Therefore, the diffusion pattern is different to the isotropic

behaviour described by 3.1 and can be used to characterise the underlying microstructure.

For example, diffusion in WM fibres is restricted in the plane perpendicular to the axon, but

molecules can move more freely along the length of the axon. This creates an anisotropic

23
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diffusion profile. Another example is the water trapped in the extra-axonal space, these

molecules are not restricted to a confined space, but their movement is hindered by the

presence of cells. This is known as hindered diffusion and again alters the observed diffu-

sion profile.

3.1.1 PGSE sequence

In an MRI experiment a diffusion weighted image (DWI) can be acquired by applying diffu-

sion sensitising gradients (Hahn 1950). The most common method for achieving this is the

Stejskal-Tanner pulsed gradient spin echo (PGSE) sequence (Stejskal and Tanner 1965)

(Figure 3.1).

hindered diffusion free diffusion

restricted diffusion

(a)

free diffusion
hindered diffusion

restricted diffusion

diffusion time

RM
S

(b)

Figure 2.5: Free, hindered and restricted, diffusion patterns and root-mean-squared dis-
placement over different diffusion times.
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Figure 2.6: Pulse sequence diagram of PGSE sequence. Image encoding gradients are
omitted for clarity.
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Figure 3.1: Pulsed gradient spin echo (PGSE) sequence. A 90o RF pluse is used to flip the spins into

the transverse plane. This is followed by a diffusion sensitising gradient that produces a

offset in the spin frequencies, and a 180o RF pulse. A second diffusion gradient, iden-

tical to the first, is then applied. The 180o should ensure that the two gradients cancel,

however the random motion of the molecules, i.e., diffusion, will result in an offset that

attenuates the signal.

This method places two identical gradient pulses on either side of a 180o radio fre-

quency (RF) pulse. In the absence of diffusion, the effects of the first gradient pulse should

be cancelled by the second gradient pulse. In reality, the molecules diffuse from their origi-

nal position in the time between the two pulses, consequently, the phase offset induced by
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the first pulse is not fully negated. As the offset encoded by the gradient is spatially depen-

dant, the displacement of the molecules leads to reduction in the total phase accumulation

and thus a reduced signal amplitude. The signal attenuation can be controlled by adjusting

parameters of the PGSE sequence i.e., the gradient strength, G, the gradient direction, g,

the pulse duration, δ, and the pulse separation, ∆. These variables are usually combined

into a single term known as the diffusion weighting factor or b-value:

b = γ2G2δ2(∆−
δ

3
) (3.2)

where γ is the gyromagnetic ratio of the medium and ∆− δ
3 is the diffusion time, Td, which

defines the length scales probed by the experiment. Higher b-values correspond to higher

diffusion-weighting. The limiting factor is generally imposed by the gradient system, whereby

higher gradient strengths allow for faster diffusion encoding, shorter diffusion times and thus

shorter length scales to be probed, whilst maintaining adequate SNR. The b-value is related

to the signal attenuation according to:

S(b,D) = S0e
−bD (3.3)

where S0 is the signal without diffusion weighting i.e., the T2w signal, and D is the diffusion

coefficient. In biological tissues the diffusion coefficient is affected by characteristics of the

tissue environment, and not just the diffusivity of the medium, as in 3.1, and is usually

referred to as the apparent diffusion coefficient (ADC).

S H O RT G R A D I E N T P U L S E A S S U M P T I O N : in the PGSE experiment it is assumed that

δ << ∆, this is known as the short gradient pulse (SGP) approximation. Under the SGP as-

sumption, diffusion that occurs during the gradient pulse can be ignored. In real systems it

is not possible to achieve the rectangular gradient depicted in Figure 3.1. Instead, gradients

are trapezoidal and the resultant slew rate needs to be considered. To achieve adequate dif-

fusion contrast using typical clinical gradient systems, capable of maximal gradient strengths

of 40-60mT/m, it is often necessary to use longer pulse durations, again violating the SGP

assumption. This may lead to significant underestimation of diffusion distances (Mitra and

Halperin 1995). These effects can be minimized by adopting high performing gradient coils,

such as the 300mT/m system used in the Human Connectome Project.
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E D DY C U R R E N T S : diffusion weighted images often suffer from geometric distortions

caused by eddy currents. The diffusion sensitising gradients induce eddy currents, which

in turn induce magnetic fields that remain beyond the duration of the gradient pulse. These

field inhomogeneities alter the reconstructed image. Eddy currents can be minimized within

the pulse sequence, e.g., the double refocused PGSE (Reese et al. 2003). Alternatively,

they can be corrected using post processing algorithms (Andersson and Sotiropoulos 2016;

Andersson and Skare 2002; Jenkinson and Smith 2001).

3.2 E S T I M AT I N G T H E A D C

3.2.1 The Diffusion Tensor

The most common method for estimating the ADC within a voxel is to model it as a three-

dimensional, second-order tensor, the diffusion tensor (DT) (Basser et al. 1994). Under this

formulation the signal attenuation is given by:

S(b, D, g) = S0e−bgTDg (3.4)

where g is the gradient vector and D is now the diffusion tensor which can be expressed as

a positive, definite, symmetric matrix:

D =




dxx dxy dxz

dxy dyy dyz

dxz dyz dzz




(3.5)

D has six degrees of freedom. The parameters, dxx etc, can be estimated using a least

squares approach, after acquiring a minimum of six DWIs using non-coplanar, equally

spaced gradients.

After estimating D from the DWIs, many characteristics of the tissue environment can

be deduced via eigen-decomposition (Le Bihan et al. 2001; Le Bihan 2003). For instance,

the mean diffusivity (MD), describes the average amount of diffusion within a voxel, and

is defined as Tr(D)/3. Another commonly used metric is fractional anisotropy (FA) which

encodes the degree of anisotropy within a voxel. CSF voxels exhibit low FA whilst a voxel
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containing a single WM fibre population would have high FA. The principal eigenvector is

aligned with the dominant diffusion direction, i.e., parallel to the axons in a fibre population.

This makes it possible to infer tissue orientation in anisotropic voxels.

This DT has been used in many clinical applications including the identification lesions

in Multiple Sclerosis (Poonawalla et al. 2008). It is generally favourable on account of its very

modest acquisition requirements. However, for many applications the DT model provides an

overly simplified description of diffusion processes. For instance, the DT assumes Gaussian

diffusion which is not an accurate description for complex tissue structures particularly at

high b-values (Clark and Le Bihan 2000). The single compartment model is not sensitive

enough to characterise the tissue environment for the majority of brain voxels in which fibre

crossings are present (Jeurissen et al. 2010), and the various metrics lack specificity and

sensitivity to the acute pathological changes that occur with many diseases.

3.2.2 Beyond the Diffusion Tensor

It is now common-place to acquire a large number of DWIs- often 60 or more gradient direc-

tions are applied, sometimes using multiple b-values. Such data is known as high angular

resolution diffusion imaging (HARDI) data (Tuch et al. 2002). HARDI protocols facilitate

more precise descriptions of diffusion behaviours in biological and have been utilised to de-

velop numerous, more complex, methods for estimating the ADC in brain tissue.

One school of practice aims to develop biophysical models to estimate the expected

ADC using a-priori information about tissue composition. Models usually contain multiple

compartments with associated volume fractions, e.g., extra-cellular and inter-cellular com-

partments. Many geometric representations have been proposed such as the Ball-Stick

(Behrens et al. 2003) which describes restricted diffusion as a stick running parallel to the

axon direction and free diffusion as a ball. Other similar models include CHARMED (Assaf

and Basser 2005), DIAMOND (Scherrer et al. 2013) and multiple-stick models (Hosey et al.

2005), to name a few. With such a wide variety of options, model selection can be an issue,

especially given that accurate a-priori knowledge is not available for the majority of brain

voxels. Numerous models have been compared in fixed rat corpus callosum (Panagiotaki

et al. 2012) and in vivo human corpus callosum (Ferizi et al. 2015). The rat study suggested
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three compartment models best explained the data, but even two compartment models that

incorporate restriction perform better than the DT. The human study indicated an upper limit,

of 4-5, on the number of free parameters that can be accurately estimated using standard

scanning hardware.

Multi-compartment models are often favoured because they can be designed to es-

timate specific neural tissue properties. For instance AxCaliber (Assaf et al. 2008) and Ac-

tiveAx (Alexander et al. 2010) map axon diameter distributions within voxels. The NODDI

model (Zhang et al. 2012) and its Bingham extension (Tariq et al. 2016) provide estimates of

neurite orientation and dispersion, as does Ball-and-Rackets (Sotiropoulos et al. 2012). The

specificity offered by such methods may be beneficial in some applications. However, model

assumptions may afflict their accuracy across the full range of widely varying neural tissue

environments, rendering them difficult to generalise to more complex tissue types, such as

GM. Moreover, the biophysical assumptions are inherently difficult to validate, particularly in

pathological conditions.

Non-parametric approaches have been proposed for estimating more complex dif-

fusion profiles. The high-order terms of the HARDI signal have been characterised using

spherical harmonic (SH) expansion (Alexander et al. 2002), where a fourth order SH series

was fit to the ADC and voxels were classified as isotropic, Gaussian or non-Gaussian. Diffu-

sion kurtosis imaging (DKI) (Jensen et al. 2005) also characterises non-Gaussian diffusion

via cumulant expansion. Spherical deconvolution (Tournier et al. 2004; Tournier et al. 2008)

estimates the fibre orientation distribution, allowing fibre crossings to be identified. Higher-

order methods are particularly useful for increasing the accuracy of tractography algorithms

(Parker and Alexander 2005; Conturo et al. 1999; Parker et al. 2003). These methods pro-

vide more generalised instruments for imaging studies than the compartment models above,

whilst also mitigating the short-comings of the diffusion tensor.

3.3 D I F F U S I O N B A S E D C O RT I C A L I M AG I N G

The methods discussed above were designed and tested with WM in mind, but diffusion MRI

is less well explored in GM. As discussed in Chapter 2, the cerebral cortex is a very thin

structure containing complex microcircuitry. This results in low anisotropy values, even com-
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pared to complex WM fibre crossings, and issues with partial volume contamination when

the spatial resolution of the data is larger than cortical thickness values. Thus microstructure

imaging in the cortex has been historically limited.

Initial GM applications focussed on the developing brain (McKinstry et al. 2002; Mukher-

jee et al. 2002) where cortical anisotropy values increase with gestation age up to 28 weeks

and decreases thereafter (Gupta et al. 2005). Others have used tractography to parcellate

the cortex based on the WM connectivity between regions, building rich structural networks

(Johansen-Berg et al. 2004; Sporns et al. 2005; Anwander et al. 2006; Beckmann et al.

2009). Connectivity mapping provides valuable insight into brain organisation that is com-

plementary to Brodmann mapping techniques. Although the accuracy of tracking algorithms

should be carefully considered.Descoteaux et al. (2016) developed a realistic phantom to

test numerous tractography approaches and reported a high false positive rate with all meth-

ods. Furthermore, a gyral bias has been observed, wherein tracts preferentially terminate at

gyral crowns - a trend that does not align with histological findings (Van Essen et al. 2013a).

Architectonic properties of the cortex have been directly measured using ultra high

field MRI and ex vivo, fixed tissue (McNab et al. 2009; Heidemann et al. 2010; Bastiani et al.

2016). These studies benefit from high resolution datasets in which anisotropic diffusion can

be observed even in adult cortical tissue. For example, Leuze et al. (2014) observed layer

specific changes to diffusion orientation, including the Stria of Gennari, using fixed human

tissue scanned at 242µm isotropic resolution. Aggarwal et al. (2015) used spherical decon-

volution at 90µm resolution to show layer specific changes in diffusion orientation between

different functional areas. Their comparison to histological stains of the same tissue sam-

ples revealed good agreement between the diffusion tensor orientations and cortical fibre

orientations. Again, they observed a coherent tangential band in V1 (the SoG) and were

able to identify the boundary between V1 and its neighbouring region, marked by the abrupt

absence of this band. They report similar findings when comparing the prefrontal cortex

to the primary motor cortex where tangential bands corresponding to the inner and outer

stripes of Baillarger were visible in the former but not the latter across multiple subjects.

In an early in vivo adult study Vestergaard-Poulsen et al. (2007) developed a two com-

partment model to estimate a diverse set of biomarkers and describe changes that occur in

brain ischemia. However, imaging of the microscopic details that define cortical areas has
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only recently become plausible through advancements such as simultaneous multi-slice ac-

quisition, improved gradient systems, better motion/eddy current correction algorithms. For

example, Haroon et al. (2010) showed consistent changes between cortical regions across

subjects by using HARDI acquisitions to assign a complexity value to each voxel based on

the number of dominant diffusion directions that were present. Anwander et al. (2010) devel-

oped a measure of radiality to quantify the dominant diffusion direction with respect to the

local tissue orientation, at much coarser in vivo resolutions than the above ex vivo studies.

They revealed an association between functionally distinct regions and the radiality index in

1.5mm3 isotropic voxels. Specifically, they found that the motor cortex and prefrontal cortex

exhibit higher fractional anisotropy (FA) values and are dominated by radial diffusion pro-

cesses, while the somatosensory and parietal cortices have lower FA and mostly tangential

diffusion. This observation was supported by McNab et al. (2013) who again reported large

changes in the dominant diffusion orientation between the primary somatosensory (S1) and

motor (M1) cortices using surface-based analysis of the diffusion tensor and radiality index

with 3T 1mm3 isotropic data. Their additional partial volume analysis confirmed that these

differences were not merely partial volume artefacts attributed to lower cortical thickness

in S1. Kleinnijenhuis et al. (2015) used similar surface adapted DT metrics on 1mm3 7T

images of the medial wall to investigate the relationship between cortical folding and diffu-

sion. Moving away from the DT, Calamante et al. (2017) used spherical deconvolution to

estimate the apparent fibre density (AFD) across the cortical sheet. They reported region

specific changes that correlate with known patterns of myeloarchitecture and importantly

demonstrated that variance in the AFD cannot be fully explained by variance in myelin con-

tent or cortical thickness.

These works demonstrate that HARDI techniques can effectively capture microstruc-

tural changes between cortical regions, potentially making in vivo cortical parcellation pos-

sible. Crucially, they all relied on surface-based analysis to circumvent the difficulties of

cortical folding, and in some cases, to provide laminar-like analysis. Yet very few attempts

have been made to characterise the small but detailed changes in signal expected to re-

sult from the different architectonic tissue textures found in different cortical areas. Neither

have there been any attempts to compare the multitudinous WM techniques using datasets

containing high quality cortical signal.
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3.4 H A R D I M O D E L F O R D I S C R I M I N AT I N G C O RT I C A L A R E A S

The following is an overview of the approach presented by Nagy et al. (2013), which char-

acterises the dMRI specifically for the purpose of cortical area classification. Deoni and

Jones (2006) demonstrated that the shape of the diffusion signal varies between regions in

thalamic grey matter when interpreted as a time-series-like object (see Figure 3.2A). Nagy

et al. (2013), expanded this to cortical grey matter by modelling the 3D shape of the diffu-

sion profile as a per-voxel “fingerprint”. They acquired two HARDI datasets on different days

from the same subject, with 61 diffusion weighted images at b = 1000s/mm2 to measure

effectiveness and reproducibility of this method.

To capture the increased complexity, and reduced anisotropy of cortical grey matter

compared to WM, the ADC was estimated using sixth-order spherical harmonic expansion.

Laplace’s spherical harmonics form a set of orthogonal basis functions which can be linearly

combined to represent any complex spherical function:

f(θ,φ) =
∞∑
l=0

l∑
m=−l

cml Y
m
l (θ,φ) (3.6)

where Yml are the spherical harmonics and cml are the coefficients. The HARDI signal is

sampled using a set of diffusion sensitising gradients described by the polar and azimuthal

angles of a sphere, θ and φ. Therefore, the signal attenuation in a voxel is a function of

these two parameters and can be represented using the spherical harmonic series. The

ADC must be real valued and have antipodal symmetry; these physical constraints make

the problem more tractable, requiring only even orders of l to be estimated. The fitting pro-

cedure is formulated as a least squares problem that can be efficiently computed.

Following the estimation of the ADC a total of 27 cortical features were extracted and

used as descriptors for classification. These features, or subsets of these features appear

throughout the experimental chapters of this Thesis and are given below.

1. The mean of the ADC (f).

f̄ =
1

4π

∫
f(x)dx (3.7)
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2-10. The kth moments of the ADC for k = 2, 3, ..., 10.

Mk =

∫
S

[f(x)]kdx (3.8)

11. The value of f(n), i.e the value of f along the local cortical surface normal n.

12. The mean ADC in the plane perpendicular to n.

f̄⊥ =
1

2π

∫
C(n)

f(x)dx (3.9)

13-21. The kth moments of f in the plane perpendicular to n for k = 2, 3, ..., 10.

Mk,⊥ =

∫
C(n)

[f(x)]kdx (3.10)

22-23. The two eigenvalues of the Hessian matrix of f evaluated at n.

24-27. Simple rotationally invariant combinations of the SH coefficients across all in-

decies m = −l, ..., l for each of the orders, l = 0, 2, 4, 6.

Il =

l∑
m=−l

|cml | (3.11)

Features 1-10 are fully rotationally invariant descriptors of the ADC. 11-21 are similar de-

scriptors of the ADC but are invariant in the local tangent plane and should characterise

radial and tangential diffusion processes relative to the local surface normal. In 22-23 the

Hessian matrix describes the curvature of the ADC profile which is sensitive to fibre dis-

persion. Features 24-27 represent simple additional invariant combinations of the spherical

harmonic coefficients.

A support vector machine (SVM) was used to differentiate between several spatially

separated regions of interest using the above feature space. A mean classification accuracy
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When the classifier was trained with data from 3 distinct clusters of
the 1st acquisition the classification of the 2nd dataset resulted in
largely connected sets, which correctly identified the actual cortical
area (Figure 3 Top), even though the algorithm did not require this
contiguity. In this Subject the classification results were erroneous
only near the edges of each of the ROIs. This however, may not be
a failure of the method. It could indicate that the ROI selected
actually included tissue that was truly histologically different or
reflect partial volume effects due to the lower (2.3 mm) DWI
resolution. The inset at the top of Figure 3 shows that the area
anterior to the MT+ region seems to be distinct as identified by the
natural border beyond which the classification results drop.

When the classifier was used in a similar fashion on pairwise
comparisons of the data from the 10 or 12 distinct cortical regions
not every area could be distinguished from every other one
(Figure 3 middle). The ability of the classifier to tell the two regions
apart could be taken as a measure of similarity (i.e. discrimina-
bility) of the underlying tissue. For example for Subject 1 the data
from IPS1, VIP and IPS 2,3 in the 2nd acquisition are difficult to
tell apart after data from the same regions in the 1st acquisition was
used to train the classifier. This result supports the idea that
cortical tissue is similar in these functionally related areas, which
are often co–activated in neuroimaging studies [54]. Another
example is MT+, which the classifier easily distinguishes from most
other regions in all three subjects. Based on the fact that,
histologically, MT+ is distinct in having particularly dense
myelination as well as very high levels of cytochrome oxidase it
may be expected that it is easily identifiable. Note that the current
implementation takes a single measure of the GM signal in the
DWIs midway through the cortex, which is unlikely to capture a
full histological specialization of the local GM (see below). The
classifier may perform better on higher resolution DWI data: at
higher resolution several samples could be taken from different
depths to increase the size of the feature vector or a single cortical
layer could be more specifically targeted.

Our principal aim with this work was to demonstrate and
establish that the voxel–wise HARDI signal is reliably reproduc-
ible and is discriminative of distinct GM areas. In a practical
situation, rather than a test/re–test scenario, the aim would be to
directly parcellate the cortex in an unsupervised manner, based on
a single acquisition or to classify an individual’s data using
supervised training on a larger cohort. As an example of
unsupervised classification, simple k–means clustering produces
reproducible results on a single data set without the need for a
training data set (Figure 4). It seems likely that including some
spatial information in the feature vector to allow spatially
separated regions with similar HARDI signal to form separate
clusters would further improve the performance. A maximally
effective parcellation technique based on MRI would probably

Figure 3. Classification results of the test/re–test data. (Top)
Classification results displayed on the map of cortical curvature. After
being trained on data from ROIs of the 1st acquisition data from the
same ROIs of the 2nd acquisition are classified as MT+ (blue), Ang
(green) and STS ROI (red). The reliability of the classification process is
supported by the fact that data from each cortical area is classified
correctly in a large connected set of vertices and only the edges are
classified erroneously as one of the other tissue types. (Inset) When the
area just anterior to MT+, which was unseen while training the classifier

is, is included in the classification an approximate border can be
identified where success of the classifier drops sharply. (Middle) The
ability of the support vector machine (SVM) to distinguish pairwise data
from 12 distinct cortical regions. The color code indicates percent of
correct classification of data in repeat 2 after the SVM was trained on
data from repeat 1. Most regions are classifiable above chance though
the SVM struggles with classifying V1 (primary visual cortex) correctly.
Another internal check shows that the IPS1 and IPS2,3 (IPS = lateral
intraparietal sulcus), which are neighboring, functionally related parietal
visual areas, are hard to distinguish. For the definitions of the
abbreviations please see Methods. (Bottom) Depiction of all regions
where data were extracted from one or all three of the subjects. The
short descriptive names are defined in the text. M-I was used only for
Subjects 2 and 3, hence it is designated (not used) to indicate that it is
not included in the 12612 matrix of Subject 1 (middle).
doi:10.1371/journal.pone.0063842.g003

Discriminating Cortical Regions with DWIs

PLOS ONE | www.plosone.org 7 May 2013 | Volume 8 | Issue 5 | e63842

need to include complementary information in the form of
(population–based) architectonic maps as well as data with
different MRI contrast(s) from the same individual.

Significant further improvements could come from a richer
acquisition protocol including multiple HARDI shells with
different b–values, as in, for example in [55] or [35], as the
different shells generate sensitivity to different features of tissue
microstructure. With our b–value of 1000 s/mm2, the dominant
tissue feature likely to contribute to signal variation is the
orientation distribution of neurites [56,57]. Including additional
shells at higher b–values and varying diffusion times could provide
sensitivity to other features, such as fibre size and density [36].

Limitations and Future Directions
One critical issue is precisely and accurately detecting the GM/

WM and pial surface boundaries in image–based methods. This is
not a limitation of the software used. Rather, the reduction of
myelin is gradual as the WM fibers enter the deeper layers of the
cortex and hence the GM/WM boundary is difficult to define.
The pial surface can also be difficult to locate where it approaches
itself closely. We attempted to minimize the effect of GM/WM
boundary detection by sampling the DWI signal halfway between
these two surfaces along the local normal. A related limitation is
that the layers vary in thickness among the cortical areas.
Therefore, even if the GM/WM boundary detection was perfect,
a fixed fraction along the local normal may sample different
cortical layers at different vertex points. The resolution (2.3 mm)
and b–value (1000 s/mm2) used here were chosen to ensure high
signal level and to minimize eddy current and susceptibility
induced distortions. Improving the resolution and diffusion–
encoding strength is recommended but it is important to maintain
good image quality. For example, due to susceptibility–induced
distortions of the EPI images, parts of the frontal and temporal

lobes are distorted in single–shot EPI. As a result the exact co–
registration of the T1–weighted anatomical and HARDI data was
difficult even at 2.3 mm resolution. More advanced acquisition
and correction methods [58–61] could help reduce these
distortions. Also, at the 2.3 mm isotropic resolution it is likely
that partial volume effects can occur between the grey and white
matter leading to classification that is not solely dependent on the
grey matter signal. While this, in principle, is not a limitation, the
interpretation is different because the cortical areas are not
discriminated on signal from the grey matter alone. We mention
here that a different and larger set of regions were used in the
SVM classification for Subject 1 simply because more fMRI data
was available for that subject to define ROIs. However, we do not
consider this a limitation because the method presented here is
expected to work irrespective of the cortical area from which the
data was extracted.

We demonstrated that the minimal condition of reproducibility
is satisfied. This is a necessary but not sufficient condition for
reliable cortical parcellation. Future extensions of this study are
required for full validation. Consistency across subjects was
demonstrated here but need to be established on larger cohorts.
Next, cross–validation of parcellation results with other imaging
and histological modalities will help establishing its construct
validity. The relevance of the DWI based parcellation can also be
further evaluated by correlation with behavioral and other
individual measures such as ageing.
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redundant set to capture as much information as possible. A more
compact set may be identified, to improve the computational
efficiency without compromising classification/segmentation per-
formance. We note recent work on complete sets of orientationally
invariant features of spherical functions (e.g. [53]), which may be
able to compact the same information into smaller sets of features.

SVM Classification
We emphasize that the classifier used no regional spatial

information (aside from the feature reliance on the local surface
normal), but only voxel–wise feature vectors. This suggests the
data contain information on which to base a cortical parcellation.

Figure 2. Test/re–test DWI signal intensity. The top two rows display the raw diffusion weighted image (DWI) signal intensity after the mean
signal of all the 61 DWIs (see bottom right) has been subtracted from each. Three diffusion–encoding directions of both repetitions (top = Rep1,
middle = Rep2) are shown. The white outlines indicate the ROIs from Figure 1. The bottom right displays the mean of the 61 DWIs. The color bar
represents MRI image pixel intensity from yellow = low to orange = high. Note the different ranges between the individual images and the mean. On
the bottom left gyrification of the cortex is indicated (red = sulci, green = gyri). The inset signal time–courses in the centre of the figure depict how the
pixel intensity varies over the entire experiment of 61 diffusion–encoding directions within the 3 ROIs (Rep 1 = thick grey line, Rep 2 = thin black line).
The scale for all images is 1 cm.
doi:10.1371/journal.pone.0063842.g002
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When the classifier was trained with data from 3 distinct clusters of
the 1st acquisition the classification of the 2nd dataset resulted in
largely connected sets, which correctly identified the actual cortical
area (Figure 3 Top), even though the algorithm did not require this
contiguity. In this Subject the classification results were erroneous
only near the edges of each of the ROIs. This however, may not be
a failure of the method. It could indicate that the ROI selected
actually included tissue that was truly histologically different or
reflect partial volume effects due to the lower (2.3 mm) DWI
resolution. The inset at the top of Figure 3 shows that the area
anterior to the MT+ region seems to be distinct as identified by the
natural border beyond which the classification results drop.

When the classifier was used in a similar fashion on pairwise
comparisons of the data from the 10 or 12 distinct cortical regions
not every area could be distinguished from every other one
(Figure 3 middle). The ability of the classifier to tell the two regions
apart could be taken as a measure of similarity (i.e. discrimina-
bility) of the underlying tissue. For example for Subject 1 the data
from IPS1, VIP and IPS 2,3 in the 2nd acquisition are difficult to
tell apart after data from the same regions in the 1st acquisition was
used to train the classifier. This result supports the idea that
cortical tissue is similar in these functionally related areas, which
are often co–activated in neuroimaging studies [54]. Another
example is MT+, which the classifier easily distinguishes from most
other regions in all three subjects. Based on the fact that,
histologically, MT+ is distinct in having particularly dense
myelination as well as very high levels of cytochrome oxidase it
may be expected that it is easily identifiable. Note that the current
implementation takes a single measure of the GM signal in the
DWIs midway through the cortex, which is unlikely to capture a
full histological specialization of the local GM (see below). The
classifier may perform better on higher resolution DWI data: at
higher resolution several samples could be taken from different
depths to increase the size of the feature vector or a single cortical
layer could be more specifically targeted.

Our principal aim with this work was to demonstrate and
establish that the voxel–wise HARDI signal is reliably reproduc-
ible and is discriminative of distinct GM areas. In a practical
situation, rather than a test/re–test scenario, the aim would be to
directly parcellate the cortex in an unsupervised manner, based on
a single acquisition or to classify an individual’s data using
supervised training on a larger cohort. As an example of
unsupervised classification, simple k–means clustering produces
reproducible results on a single data set without the need for a
training data set (Figure 4). It seems likely that including some
spatial information in the feature vector to allow spatially
separated regions with similar HARDI signal to form separate
clusters would further improve the performance. A maximally
effective parcellation technique based on MRI would probably

Figure 3. Classification results of the test/re–test data. (Top)
Classification results displayed on the map of cortical curvature. After
being trained on data from ROIs of the 1st acquisition data from the
same ROIs of the 2nd acquisition are classified as MT+ (blue), Ang
(green) and STS ROI (red). The reliability of the classification process is
supported by the fact that data from each cortical area is classified
correctly in a large connected set of vertices and only the edges are
classified erroneously as one of the other tissue types. (Inset) When the
area just anterior to MT+, which was unseen while training the classifier

is, is included in the classification an approximate border can be
identified where success of the classifier drops sharply. (Middle) The
ability of the support vector machine (SVM) to distinguish pairwise data
from 12 distinct cortical regions. The color code indicates percent of
correct classification of data in repeat 2 after the SVM was trained on
data from repeat 1. Most regions are classifiable above chance though
the SVM struggles with classifying V1 (primary visual cortex) correctly.
Another internal check shows that the IPS1 and IPS2,3 (IPS = lateral
intraparietal sulcus), which are neighboring, functionally related parietal
visual areas, are hard to distinguish. For the definitions of the
abbreviations please see Methods. (Bottom) Depiction of all regions
where data were extracted from one or all three of the subjects. The
short descriptive names are defined in the text. M-I was used only for
Subjects 2 and 3, hence it is designated (not used) to indicate that it is
not included in the 12612 matrix of Subject 1 (middle).
doi:10.1371/journal.pone.0063842.g003
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Figure 3.2: Diffusion-based cortical imaging methodology and results of Nagy et al. (2013). (A) The

mean DWI data of three ROIs, plotted as a "time-series" across the diffusion encoding

directions. The left panel shows the ROIs in relation to cortical folding, whilst the right

displays the mean diffusion signal at a single diffusion encoding direction. This signal is

clearly correlated with cortical curvature values; therefore, a rotationally invariant repre-

sentation of the signal is necessary for cortical area parcellation that is not confounded

by curvature effects. When comparing the "time-series" objects in the centre panel, the

differences between the three ROIs are much larger than the differences between test

(black lines) and re-test (grey lines) of the same ROI. This supported the hypothesis that

the differences between ROIs are not simply noise related. (B) Classification accuracies

for all binary SVM tests. (C) Boundary detection for MT+. The dashed white line repre-

sents the outline of the ROI. (D) Full hemisphere parcellation result using k-means on

the SH feature set of a single participant.

of 75% (Figure 3.2B) and high reproducibility between the separately acquired datasets

was reported. In addition, they were able to locate the boundary of the MT+ region when

attempting to classify two neighbouring cortical areas (Figure 3.2C). The results suggest

that microstructural changes associated with the different regions are characterised in the
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estimated ADC. Figure 3.2D shows the hemisphere-wide k-means clustering for a single

subject. Whilst the results do not resemble the Brodmann map (see Chapter 2), some struc-

ture is visible in the central sulcus.

The methods presented by Nagy et al. (2013) serve as a proof of concept that diffu-

sion MRI can be harnessed for cortical parcellation applications. However, the low spatial

resolution of the data, 2.3mm3, may have resulted in substantial partial volume effects, as

such, these methods need to undergo more rigorous testing and validation using more reli-

able datasets. The full hemisphere parcellation result demonstrates that the method needs

considerable refinement if it is to be used for in vivo Brodmann mapping.

In this Chapter we introduced the principals of diffusion MRI and how it can be exploited to in-

vestigate microstructure. We discussed how myelinated axons restrict the diffusion of water

in the direction perpedicular to their long axis, thus there is an implicit correlation between

measures of anisotropy and myelin content in neural tissue. However, as discussed above,

dMRI can be sensitised to many different aspects of neural tissue environments, including

neurite density, axon diameter, orientation dispersion, to name a few. Diffusion anisotropy

has even been measured in nonmyelinated axons (Beaulieu 2011), and investigators believe

that cortical anisotropy is more heavily influenced by the density of intact cell membranes

than it is by myelin density (Beaulieu 2002). The evidence presented in this Chapter alludes

to the notion that diffusion MRI can provide a much richer, multi-dimensional, feature space

for cortical parcellation than the one-dimensional proxies for myelin density which were

presented in Chapter 2. Compellingly, some of the studies discussed above have already

successfully measured changes in cortical microstructure in between different regions of

the cortex by using dMRI. In this Thesis we will focus on expanding on these findings using

objective machine learning approaches to further explore the capabilities of diffusion MRI in

cortical parcellation applications.
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M AC H I N E L E A R N I N G

Machine learning (ML) is a branch of artificial intelligence (AI) in which generalised al-

gorithms are constructed to recognise, learn from and predict important patterns within

datasets. ML methods are popular in a variety of applications and represent the leading

edge of data analytics. The appeal of these techniques lies in their scalability to large,

complex and multi-dimensional datasets that are readily available in the information age.

Amongst the recent slew of extraordinary accomplishments is the AlphaGo project in which

neural networks were trained in Go, the complex turn-based strategy game, earning land-

mark victories against professional human players (Silver et al. 2016). Powerful ML algo-

rithms hold enormous potential to improve our understanding and diagnostic capabilities

within the brain sciences, where rich image-based datasets are abundant. For instance,

graphical models and hierarchical clustering have been utilized to identify functional con-

nectivity networks (Blumensath et al. 2013; Rajapakse and Zhou 2007). Pattern recognition

algorithms have been proposed to improve objectivity and accuracy in MR "fingerprinting"

by providing more quantitative analysis (Ma et al. 2013). ML methods are particularly ap-

pealing because they allow objective and data driven analysis of MRI data.

Broadly speaking, ML algorithms fall into one of two categories, ’unsupervised’ or

’supervised’ learning. Unsupervised learning techniques are designed to cluster unlabelled

datasets based on their hidden structures. Contrastingly, supervised learning approaches

implement a training stage designed to inform the algorithm on the type of partitioning that

the user is interested in. For example, if a user wishes to generate a face recognition model,

the training data could consist of a selection of patches of images for which the user has

manually associated a label: (1) containing a face or (2) background. The algorithm can

then determine the characteristics that are common in face patches and uncommon in

background patches and subsequently be used to predict the likelihood that a new unseen

patch contains a face. In this thesis we adopt both unsupervised and supervised learning

35
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approaches and the specific algorithms that were implemented are detailed below. For an

excellent introduction to machine learning techniques, including those outlined below, the

reader is advised to consult Bishop (2006). A more focussed discussion of random forests

can be found in Criminisi and Shotton (2013).

4.1 K - M E A N S

K-means is an unsupervised clustering algorithm. It is computationally efficient and there-

fore a popular choice for initialising more expensive algorithms but also produces sufficient

results for many applications.

Given a dataset {x1, x2...xN} of N observations, each described by a D dimensional

feature vector x, k-means aims to partition the observations into K clusters, where K < N.

A cluster is considered a set of data points which exhibit low variance between their re-

spective feature vectors compared to other data points outside the cluster. The initial stage

initialises K cluster centres, µk as representative data points for each cluster. The cluster

centres can be randomly initialized with arbitrary but sensible values or chosen randomly

from the dataset. A two steps procedure is repeated until the sum of the squared distances

between each data point and its closest cluster centre is minimised or a maximum number

of iterations has passed. The objective function is:

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||
2 (4.1)

where rnk ∈ {0, 1} defines which of the K clusters the data point is assigned to.

rnk =

 1 if k = argminj||xn − µk||
2

0 otherwise

(4.2)

First, each data point is assigned to the cluster centre, µk that it is closest to, thus

minimizing J with respect to rnk with fixed µk. In the second step, the cluster centres are

recalculated as the mean of all data points within each cluster. Figure 4.1 depicts the two-

step procedure.
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Due to the random initialisation step, there is no guarantee the J will converge at the

global minimum (MacQueen 1967), therefore, it is general practice to repeated the algorithm

several times and select the solution that achieved the lowest sum of squared differences.

(1)# (2)# (3)#

(4)# (5)# (6)#

Figure 4.1: Illustration of the k-means algorithm. (1) the input data, (2) the cluster centres, depicted

as coloured rings, are randomly initialised, (3) the data points are assigned to the cluster

centre they are closest to, (4) the cluster centres are recalculated from the data points

within each cluster,(5) data points are re-assigned to the cluster centre they are closest

to, (6) the cluster centres are recalculated. At the next iteration, moving any of the data

points will not reduce the sum of squared distances, therefore, this is the final solution.

The k-means algorithm is a data driven approach that is simple to compute and easy

to interpret. As a consequence of this simplicity, it has some limitations. The algorithm re-

quires a-priori estimates of K which are not always available. It does not scale very efficiently

for very large datasets as the distance needs to be computed for each data point at each it-

eration. The similarity between data points and cluster centres is measured using Euclidean

distance, which is generally appropriate for continuous variables, but cannot be used with

categorical labels. Furthermore, measures of Euclidean distance are also affected by out-

liers. More general similarity measures are sometimes adopted, such implementations are

usually referred to as k-medoids, and may be more computationally demanding depending

on the chosen similarity metric. Finally, as it is a non-probabilistic approach, it does not pro-

vide uncertainty measures which may be preferable in some applications.
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In this Thesis we use the k-means algorithm in Chapter 5 to perform unsupervised

clustering of cortical diffusion data. The goal of the experiment was to determine if regionally

specific information is organically available in the data without the introduction of any user

defined priors. Thus, k-means clustering emerged as the fairest way to partition the data

without the influence of a-prior information.

4.2 R A N D O M F O R E S T S

Random forests are an ensemble learning method in which multiple randomly trained deci-

sion trees are combined to perform classification or regression tasks (Breiman 2001). Whilst

singular decision trees are prone to overfitting to the training data, a randomised ensemble

of trees overcomes this limitation to provide greater accuracy on unseen data. In this thesis

we used only binary trees to perform supervised classification, the discussion below has

been focused accordingly.

Decision trees

Decision trees are a type of directed graph that contain no loops and have a hierarchical

structure. Each node has exactly one input edge and, in binary trees, internal nodes split

the data between their two output edges. Terminal (leaf) nodes determine the final classi-

fication outcome of the data. The process can be interpreted as a series of tests at each

node which are used to split a complex problem into a series of simpler ones.

The tree structure is dependant on a set of training data, S = {v1...vN}, where each

data point, vn, is a multidimensional feature vector, that is accompanied by a known train-

ing label. An energy function is optimised at each node to minimize the heterogeneity within

each of the two subsets, Si, Sj, that are sent to its child nodes. At the child node a new en-

ergy function is optimised and the data split again. The process is repeated until a stopping

criteria is met (Figure 4.2). The parameters of the tree structure are learned automatically

from the training data.

Following the training phase, a new unseen data point traverses the tree via the opti-
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mized splitting functions until it lands at a leaf node, where its class label is predicted.

100%#blue#

100%#red#

v1 

v2 

S 

S1 S2 

S3 S4 

S5 S6 

S7 S8 

Figure 4.2: Example of a decision tree for a simple 2-D clustering problem that contained two classes

of equal size. At each node (excluding leaf nodes) the data is split into subsets Si and Sj

by finding splitting planes that lower the heterogeneity of data arriving at the child nodes.

Node colour indicates the distribution of class labels that have arrived at that node. Edge

colours correspond to the splitting lines shown on the left. The number of datapoints

existing along each edge is indicated by edge thickness.

S P L I T N O D E O P T I M I S AT I O N When considering the optimisation of internal nodes it is

useful to begin with a discussion of entropy. In the context of probability theory, entropy can

be interpreted as a measure of uncertainty. Shannon entropy can be defined as:

H(S) = −
∑
c∈C

p(c)log(p(c)) (4.3)

where c refers to the class labels of the training data. Information gain, in classification

problems, can be formulated as:

I = H(S) −
∑
i∈{1,2}

|Si|

|S|
H(Si) (4.4)

where Si are subsets of S after splitting. The example given in Figure 4.3 demonstrates

how splitting data can lead to a reduction in the combined entropy of the child nodes and
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a corresponding information gain. In the first instance (a) we find clusters of equal size,

such that a posterior distribution would estimate that a new data point would have equal

probability (p=0.25) of belonging to any of the four classes. In other words, there is a very

large level of uncertainty associated with the problem. In (b) we split the data horizontally,

resulting in subsets that no longer have equally distributed points. The entropy in each

subset, and the combined entropy of the child nodes is less than that of the parent node. In

(c) we perform an alternative, vertical split, on the data. In this instance, data within each

child node only belongs to two classes, compared to the three in (b). The entropy in each

child node is lower than in (b) and the information gain is higher. Therefore, this vertical

split would be a more optimal split when considering the data in this feature space. In this

manner, information gain can be used to optimise the splitting planes and corresponding

thresholds at each node of a decision tree.

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

Figure 4.3: Illustration of information gain within a decision tree. (a) Input data containing 4 equally

distributed classes, (b) class distribution after horizontal split,(c) class distribution after

vertical split. Figure from Criminisi and Shotton (2013)

L E A F N O D E P R E D I C T I O N In the case of classification, the leaf nodes are defined by

the probability distribution of the training classes that arrived at that node. This distribution is

used to predict the class assignment of any unseen data that terminates at the node during
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the test phase.

Classification forests

In a forest, multiple trees are independently optimised. Forests are able to provide more

accurate classification outcomes by introducing randomness into the training process. This

helps to overcome the overfitting that is associated with single decision trees, thus creating

a more generalised classifier. Below we discuss the ways in which randomness can be

introduced, and other properties that affect the performance of a classification forest.

DATA B AG G I N G One method is to randomly sub-sample the training data that is sent to

each tree. This is referred to as "bagging". This approach can be very efficient however it is

not always guaranteed to find the surface that best separates the data.

F E AT U R E S E L E C T I O N Another option is to randomly sub-sample the features that are

optimised at each node. If the entire feature vector were used at each node then all trees in

the forest would be identical and the predictive outcome of test data would depend heavily

on how well it is described by the training data. This limits the accuracy of the classifier for

most applications. In many implementations the number of features that are selected at the

nodes is the square root of the full dimensionality of the training data. Another advantage of

feature sub-sampling is that the efficiency of each node optimisation is improved. This is a

consequence of reducing a very high dimensional problem into a much lower dimensional

one for which the maximal-margin can found more accurately using less calculations.

F O R E S T S I Z E Increasing the number of trees improves the accuracy of classification

results. Figure 4.4 demonstrates how a single tree provides a rigid distribution of class labels

in the parameter space. This may not extend well to the test data. Increasing the number of

trees smooths the posterior distribution by introducing uncertainty in areas of the parameter

space where the training data was sparse. This greatly reduces overfitting when compared

to a single tree and increases the confidence we can place in the classification outcome.
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26 Classification forests

Fig. 3.3: A first classification forest and the e↵ect of forest size

T . (a) Training points belonging to two classes. (b) Di↵erent training

trees produce di↵erent partitions and thus di↵erent leaf predictors. The

colour of tree nodes and edges indicates the class probability of training

points going through them. (c) In testing, increasing the forest size

T produces smoother class posteriors. All experiments were run with

D = 2 and axis-aligned weak learners. See text for details.

data which is “di↵erent” than the training data. The larger the di↵er-

ence, the larger the uncertainty. Thanks to all trees being di↵erent from

one another, increasing the forest size from T = 1 to T = 200 produces

much smoother posteriors (fig. 3.3c3). Now we observe higher confi-

dence near the training points and lower confidence away from training

regions of space; an indication of good generalization behaviour.

For few trees (e.g. T = 8) the forest posterior shows clear box-

like artifacts. This is due to the use of an axis-aligned weak learner

model. Such artifacts yield low quality confidence estimates (especially

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-

butions. (a) Dataset S before a split. (b) After a horizontal split. (c)

After a vertical split.

fig. 2.4.

Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the

distribution over classes is uniform because we have exactly the same

number of points in each class. If we split the data horizontally (as

shown in fig. 2.3b) this produces two sets of data. Each set is asso-

ciated with a lower entropy (higher information, peakier histograms).

The gain of information achieved by splitting the data is computed as

I = H(S) �
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =

�Pc2C p(c) log(p(c)). In our example a horizontal split does not sep-

arate the data well, and yields an information gain of I = 0.4. When

using a vertical split (such as the one in fig. 2.3c) we achieve better

class separation, corresponding to lower entropy of the two resulting

sets and a higher information gain (I = 0.69). This simple example

shows how we can use information gain to select the split which pro-

duces the highest information (or confidence) in the final distributions.

This concept is at the basis of the forest training algorithm.

v2 

v1 

Figure 4.4: Example of how forest size effects prediction confidence and overfitting (Criminisi and

Shotton 2013).(a) Training data. (b) example training trees with fixed depth. Each tree

finds a slightly different partition line. (c) Posterior distributions for different forest sizes.

T R E E D E P T H Varying the maximal depth of the trees can also increase prediction con-

fidence. This is particularly true for noisy training data that is not linearly separable. In such

cases, finding the optimal separation surface between classes will require several partitions.

However, using trees that are too deep can result in overfitting. The complexity of the clas-

sification task should be considered when optimising tree depth.

Several classification experiments were performed in chapters 6, 7, A of this Thesis.

We chose random forest classification over other approaches, such as SVM, because it

scales well to large, high-dimensional datasets, can perform multilabel classification without

adaptation, and has greater generalisability. This final point was particularly important to

reduce overfitting in our cortical area classifications where the training labels cannot be

considered to be as accurate as the ground truth labels that are commonly adopted in other

machine vision tasks.
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5
U N S U P E RV I S E D G R O U P AV E R AG E PA R C E L L AT I O N

In this chapter we aim to assess whether diffusion MRI provides area-specific information

content that can be used to distinguish cortical areas. We applied and refined the frame-

work initially developed by Nagy et al. (2013) to a large group of subjects using high quality

diffusion datasets. By performing group-level analysis using surface-based averaging of the

dMRI data, we improve between area contrast and obtain a hemisphere-wide map using

high resolution, 3T data. As the dMRI signal is sensitive to several microstructural features,

including axon diameter, neurite density, and dominant fibre direction, it potentially offers

additional structural information beyond bulk myelination density. We substantiate this hy-

pothesis by comparing the parcellation result to myelin density maps from the same set of

subjects.

Some of this work has previously been presented in:

Ganepola, T. et al. (2016a). "An unsupervised group average cortical parcellation using dif-

fusion MRI to probe cytoarchitecture." In: Computational Diffusion MRI: MICCAI Work-

shop, Athens, Greece, October 2016, Springer, pp. 145-156.

Ganepola, T. et al. (2015). "An unsupervised group average cortical parcellation using

HARDI data." In: Proceedings of 21st Annual Meeting of the Organization of Human

Brain Mapping, Honolulu, 2015, p. 221.

44
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5.1 M E T H O D S

5.1.1 Human Connectome Project data

The data in this Chapter and subsequent experimental chapters of this Thesis were ac-

quired, in part, from the Human Connectome Project (HCP) 500-subject public data release.

These datasets represent the state-of-the-art for in vivo, 3T diffusion imaging. Full descrip-

tions of the pipeline and pre-processing steps are available in (Van Essen et al. 2013b;

Sotiropoulos et al. 2013; Glasser et al. 2013; Uğurbil et al. 2013). In summary, data were

collected on a 3T Siemens Skyra system with a custom, Gmax = 100mT/m, gradient coil.

The use of this high performing gradient system and multi-band (MB) acceleration (MB factor

= 3) allowed the spatial resolution of the data to be pushed to 1.25mm3 without compromis-

ing greatly on SNR. This high spatial resolution lends itself to investigations of grey matter

diffusion where partial volume effects and low anisotropy values are limiting factors. A total

of 270 gradient directions were collected across three interleaved b-shells, b=1000, 2000,

and 3000 s/mm2. An additional 18 b=0s/mm2 images were evenly interspersed throughout

the acquisition. The b-values were modulated by varying Gd with matched diffusion times

of ∆ =43.1ms and δ =10.6ms and echo and repetition times of TE=89ms, TR=5.5s. Gradi-

ent directions were sampled uniquely in each shell to maximize q-space coverage (Caruyer

et al. 2013).

P R E - P R O C E S S I N G Images arrived subsequent to pre-processing using Eddy (Anders-

son and Sotiropoulos 2016) which corrects DWI artefacts, including, susceptibility and eddy

current distortions, whilst simultaneously co-registering the images. The HCP data suffer

from subject specific spatial gradient non-linearities, resulting from irregular subject position-

ing in the customised hardware system (Sotiropoulos et al. 2013). B-values are estimated

to deviate up to 15% from their nominal values across the brain. Voxel-specific corrections

were provided to compensate for this, and were used accordingly throughout this Thesis to

ensure accurate model fitting in all experimental chapters (see Appendix B.1).
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C O M P L I M E N TA RY DATA Diffusion datasets were accompanied by several other imag-

ing modalities and behavioural information. Importantly, all subject datasets included high,

0.7mm3 isotropic, resolution T1-weighted (T1w) and T2-weighted (T2w) structural volumes

which can be used for accurate cortical surface reconstruction and myelin density estimates.

S U B J E C T S In the parcellation experiment described below, diffusion, T1w and T2w

data for 17 HCP subjects (10m, 7f aged 22-35) were randomly selected from a pool of

100-unrelated subjects.

5.1.2 Surface reconstruction

To utilise the high resolution of the available structural data we chose the HCP FreeSurfer

pipeline over the standard recon-all pipeline to generate cortical surface reconstructions

for each subject. This improved pipeline is deemed more accurate because it does not

down-sample the T1w images to 1mm3, instead utilising the added precision of the higher

resolution data. It also takes advantage of the additional information available in the T2w

scans to reduce surface placement errors (Glasser et al. 2013). A comparison of the two

methods is provided in Appendix B.2.

DATA S A M P L I N G the HARDI datasets of each subject were sampled onto their cortical

surfaces. To achieve this, the average b0 image was registered to the T1w volume using an

affine transformation matrix. The same transformation matrix was then applied to the DWIs.

The signal intensity for each DWI image was nearest-neighbour sampled at the midpoint

between the GM/WM boundary surface and the pial surface (i.e., cortical depth = 0.5). This

depth was chosen to minimise the likelihood of either WM or CSF contamination (McNab

et al. 2013; Nagy et al. 2013). Similarly, we opted for equidistant sampling to, again, min-

imise partial volume contamination from either the subarachnoid space or the white matter.

Recent papers have argued in favour of equivolume sampling (Waehnert et al. 2014) to take

into account the differential expansion/compression of cortical layers at gyral crowns/sulcal
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floors (Bok 1929). We tested an approximation of the more anatomically realistic equivol-

ume sampling, but as a consequence of the relatively low spatial resolution (compared to

histology and 7T data), nearest-neighbour sampling and single depth analysis, we observed

little difference between the two approaches and deemed equidistant sampling to be best

practice for reducing systematic biases at crowns and fundi.

5.1.3 Feature space

A sixth order spherical harmonic series (SHS) was fit to the dMRI signal in order to charac-

terise the apparent diffusion coefficient (ADC) of the cortical tissue. A SHS was fit separately

in each b-shell at each surface vertex of the right hemisphere of each subject. The Nagy et

al. (2013) paper proposed 27 cortical features (3.4), however their principal component anal-

ysis suggested only 9-10 degrees of freedom in the feature set. Therefore, we performed

several ad-hoc parcellation tests (see Appendix B.3) to reduce the feature set to a subset

containing only 5 features per b-shell. The chosen features, listed below, characterise the

ADC in relation to the local surface normal, and therefore describe the GM tissue irrespec-

tive of the orientation differences that result from cortical folding.

1. The value of the ADC along the surface normal.

2. The mean of the ADC in the plane perpendicular to the surface normal, i.e. parallel

to the cortical sheet.

3-5. The k=2,3 and 4 moments, respectively, of the ADC in the plane perpendicular to

the surface normal. These features correspond to the variance, skew and kurtosis of

the ADC.

The group average of each of the features was computed in turn using sulcus-based

surface averaging (Fischl et al. 1999b). With this method, any given fsaverage vertex will
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combine data from individual subject vertices that have surface normals in different direc-

tions. This makes it possible to detect local-surface-geometry-dependent diffusion signa-

tures of cortical areas even though their local normal directions might differ from subject

to subject. This information would be compromised if the diffusion data were to be directly

averaged in 3D (folded) space. The transformation between each subject’s cortical surface

and the target brain space was applied to each of the diffusion features in turn. The mean

across all subjects of each feature was then calculated at each vertex of the fsaverage

surface. Finally, the averaged features were recombined into a [nx15] group average feature

space, where n is the number of vertices in the fsaverage surface tessellation. An alterna-

tive averaging approach in which the mode class was selected after clustering each subject

was also implemented without success (Appendix B.5).

M Y E L I N M A P S We applied the same middle-depth, equivolume surface sampling pro-

cess to the 0.7mm3 T1w/T2w data that was also provided in the HCP datasets. As in the

diffusion data we used surface-based averaging to create a group average map for the same

set of subjects.

5.1.4 Classification

The unsupervised clustering algorithm, k-means, was implemented to parcellate the group

average feature set. Several values of k were tested on a trial and error basis, starting

with k=40, approximately the number of Brodmann areas. At lower values, the parcellation

produced large smooth clusters, and did not provide additional structural information to the

myelin density map (Appendix B.6). Results are shown for a value of k=150. At this value the

parcellation displayed many more area-like clusters than for lower values, whereas, increas-

ing beyond this value did not provide additional information in initial qualitative assessments.

Furthermore, k=150 was the value after which decreases in the sum of total distances for

the clustering solution began to plateau, and the total runtime began to increase rapidly

(Figure. 5.1).
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Figure 5.1: The optimisation of k, in k-means classification, using the trade-off between the best sum

of total distances for each clustering solution (blue) and the total runtime of the algorithm

in seconds (orange).

Since the resulting clusters are numbered arbitrarily by the algorithm, we included an

additional ordering step whereby clusters were reordered according the similarity of their

cluster centres, starting with the pairing which had the highest affinity. Here, similarity was

defined as the Euclidean distance between the mean feature vector of each cluster. This

additional ordering stage acts to smooth the results when viewed on the surface, compared

to a completely randomised cluster order by painting similar clusters in similar colours.

The resulting group average cortical parcellation was qualitatively compared to the

group average myelin map, estimated from the T1w/T2w ratio of the same set of HCP sub-

jects.
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Figure 5.2: The lateral view of the group average diffusion-based parcellation (right) and the group

average myelin map (left). Several areas of interest that are discussed in the results have

been labelled. The clusters in the parcellation result are ordered by similarity of their

cluster centres, such that similar clusters are painted in alike colours.

5.2 R E S U LT S

5.2.1 Central sulcus

Figure 5.2 shows the lateral view of the group average diffusion MRI based parcellation

(right) alongside the group average myelin map (T1w/T2w) for the same set of subjects

(left) on the inflated surface.The most salient feature of the parcellation is the emergence of

distinct and spatially coherent clusters along the anterior (white cluster) and posterior (red

cluster) banks of the central sulcus. These have been provisionally labelled 3b and 4 due to

their consistency with the location and extent of Brodmann areas 3b and 4. These cortical

areas correspond to part of primary somatosensory cortex (S-I) and to primary motor cortex

(M-I), respectively. Comparison with the myelin map (left) indicates that the white cluster

ID correlates with an area of high myelination, whereas, the red cluster correlates with a

drop in myelination. Figure 5.3 confirms that both the myelin and diffusion measurements

discriminate these regions. However, the independently derived diffusion based parcellation

produces a more spatially coherent area along the posterior bank of the central sulcus, when

compared to the variability of the myelin map in Figure 5.2.
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A D

CB

myelination

Figure 5.3: The distributions of myelin measurements corresponding to regions of interest from the

dMRI parcellation result. The histograms on the left show T1w/T2w distribution from re-

gions A and B within the central sulcus and are distinct in both modalities. The histograms

on the right correspond to regions C and D which appear distinct in the parcellation but

have closely overlapping myelin distributions. The outlines of the regions of interest from

which the histogram data were extracted are shown in the centre image.

5.2.2 Broca’s region

Areas 44 and 45 are collectively referred to as Broca’s region, which has long been impli-

cated in the production and recognition of speech. We note that both the parcellation and

myelin map exhibit a distinct region that is consistent with the location of area 44. This area

emerged as a coherent patch despite it not having a consistent relation to macroscopic

landmarks in the majority of subjects (Amunts et al. 1999).

In addition, anterior to area 44, we note the presence of a spatially coherent pur-

ple/blue cluster, provisionally labelled area 45. It seems that area 45 has no counterpart in

the myelin map, supporting the notion that diffusion based cortical imaging may be able to

provide additional information to myelin mapping, particularly in areas of lower myelination

such as the premotor and prefrontal cortex. This notion is further supported in Figure 5.3

where it is clear that the distribution of myelin values between area 45 and the adjacent

ROI are very similar. In contrast, these two regions could be differentiated in the diffusion

based feature set. The frontal lobe of the diffusion-based parcellation appears more like a

patchwork of distinct clusters, whereas, the myelin map in this region appears more homo-
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geneous.

5.2.3 Auditory areas

On the temporal lobe we note that both the myelin map and diffusion-based parcellation ex-

hibited distinct patches that roughly coincide with primary auditory core and belt areas (BA

41 and 42). This suggests that some structural information in the dataset is maintained de-

spite Heschl’s gyrus exhibiting a markedly variable folding pattern across subjects (Leonard

et al. 1998).

1.1 2.3

T1/T2

1 150

cluster ID

18 18
17 17

Figure 5.4: The medial view of the diffusion-based parcellation (right) and the group average myelin

map (left). Again, areas of interest that are discussed in the results have been highlighted

with labels, contours and arrows and similar clusters are painted in alike colours in the

parcellation result.

5.2.4 Occipital areas

On the right hand side of Figure 5.4 the posterior occipital lobe contained prominent purple,

blue, and red clusters, giving it a distinct appearance compared to much of the rest of the

medial cortical sheet, which was assigned predominantly to green and white clusters. This

generally correlates with the higher myelination of this region, seen in the T1w/T2w data at

the left of Fig. 3; however it is worth noting that the region of apparent heavy myelination in
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V2 just below the tip of the "18" arrowhead projected further in the superior direction than

the purple region in the diffusion-based result.

The black contours outline the inner and outer extents of area 18 from the FreeSurfer

probabilistic atlas, i.e the secondary visual area V2. The inner boundary of this contour

corresponds to the neighbouring primary visual cortex, V1 (area 17), within the calcarine

sulcus. Despite V1 possessing a prominent tangential band in layer 4B that is lacking in

extrastriate area V2 (Aggarwal et al. 2015; Amunts et al. 2000), we did not observe distinct

coherent clusters corresponding to the full extent of these two areas in either the T1/T2

data or the diffusion data. Instead the most salient feature of this region was the red cluster,

which is located near the upper vertical meridian of V1.

Finally, returning to the lateral surface (see Figure 5.2) in the middle of the myelin-

dense region of MT+ it is possible to distinguish a border between a posterior orange clus-

ter and an anterior white/tan cluster. A study examining the relation between quantitative

T1 and retinotopy (Sereno et al. 2013) surprisingly showed that the heavily myelinated oval

in the lateral occipital cortex does not directly correspond to MT; instead, MT proper only

accounts for the posterior part of that oval. The anterior part may correspond to FST, which

represents parts of the visual field already mapped in MT, and which responds to the ipsilat-

eral visual field unlike MT. Once again, this suggests that diffusion data may help distinguish

regions not easily separated by using myelin density alone.

5.2.5 Gyrification

The unlabelled black arrows on the right of Figure 5.4 indicate curvature-like features in

the parcellation. These lines follow the fundus and crown of the cingulate sulcus and gyrus

respectively.
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Figure 5.5: Plots of diffusion MRI features against myelin density for regions of high and low myeli-

nation. Diffusion features are the 5 features detailed in methods taken from the b=1000

s/mm2 shell. The top two rows take data from heavily myelinated area 4p within the cen-

tral sulcus; the bottom two rows take data from an arbitrary region of low myelination

in the prefrontal cortex. Both axes display arbitrary units and the pearson correlation

coefficient between each feature and the myelin density is given as r.

5.3 D I S C U S S I O N

We employed group averaging and several refinements to a cortical parcellation pipeline in-

cluding improved surface reconstruction, and a refined feature set. The resulting parcellation
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exhibits several clusters which correspond to well known Brodmann areas. Importantly, we

found that regionally specific information in the diffusion-based feature set was not limited

to areas of high myelin density. Diffusion MRI signal attenuation is expected to correlated

with myelin content because myelinated axons restrict and trap water, creating anisotropic

diffusion patterns; however other factors such as membrane density have been suggested

to have a larger contribution to the dMRI signal than myelin density (Beaulieu 2002). Our

results, as in (Calamante et al. 2017), support the hypothesis that diffusion data is not

solely modulated by myelin density but is also characterised by other aspects of cortical

cyto and myeloarchitecture. Infact our dMRI features demonstrate only moderate correla-

tion with myelination, even in areas of high myelin density such as area 4p (see Figure 5.5).

The results strongly indicate that diffusion MRI provides microstructural contrast in the cor-

tex which is complementary to the traditionally used myelin mapping methods.

C E N T R A L S U L C U S : We found particularly close agreement between the group aver-

age parcellation and the Brodmann areas within the central sulcus. This may arise from

several factors, for example, the boundary between S-I and M-I represents one of the most

prominent transitions within the cortex. The input layers of S-I possess many small cell

bodies giving it a granular appearance. In contrast, long cortico-spinal projections in M-I

result in large pyramidal cell bodies known (in the foot representation) as Betz Cells, giving

an agranular appearance. S-I also exhibits highly myelinated tangential bands of Baillarger,

which are less prominent in M-I. Furthermore, in vivo studies support the hypothesis that

differences in the laminar composition between these two regions are manifested in dMRI

signal (McNab et al. 2013) . Another factor which may have improved the detection of these

areas is that they demonstrate relatively low intersubject variability. S-I occupies the poste-

rior bank of the central sulcus and extends back into the postcentral gyrus and M-I occupies

anterior bank of the central sulcus, extending forwards into the precentral gyrus, with their

transition consistently located at the fundus of the central sulcus (White et al. 1997; Amunts

et al. 2000) near the location of area 3a, which receives predominant input from muscle

receptors. This is consistent with the location and extent of the red and white clusters in the

parcellation. Therefore, it is likely that architectural differences between these regions, as
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characterised by their feature vectors, are reinforced by averaging across multiple subjects.

P R I M A RY V I S UA L C O RT E X : The parcellation did not exhibit a cluster that corresponds

to the full extent of the primary visual cortex, despite the prominent architectural properties

which distinguish this area from its surroundings. Instead we found that the boundary be-

tween V1 and V2 was characterised uniquely by the dMRI feature set. The myelin map also

showed a significant decrease in myelination in the same location which is not consistent

with the underlying anatomy. This suggests the presence of a systematic surface placement

error that my have resulted in CSF partial voluming in both data sets, causing a region near

the upper and lower vertical meridian border between V1 and V2 to stand out.

G Y R I F I C AT I O N : Clusters that closely matched cortical folding patterns were also ob-

served. The emergence of these macroscopic landmarks could be associated with sam-

pling errors at areas of high curvature, where partial volume is more prevalent. Alternatively,

it may reflect a relationship between gyrification and diffusion anisotropy, as suggested by

other groups – e.g., (Kleinnijenhuis et al. 2015). Deeper cortical layers appear to thin in sulci,

which has been suggested to be a way of maintaining equal local volume by folding-induced

tangential stretching (Bok 1929; Waehnert et al. 2014). By contrast, upper cortical layers ap-

pear to puff out and become more myelinated on gyri. These systematic folding-correlated

effects may give rise to detectable differences in grey matter diffusion patterns. The initial

detection of a correlation between gyrification and T1 was similarly initially dismissed as a

depth-sampling artifact, but then subsequently suggested to be partly due to real myelina-

tion differences between sulcal and gyral cortex. An additional complication is that partial

volume errors may be detecting systematic differences in fiber direction near the grey/white

matter border; for example, the dominant diffusion direction is expected to be highly radial

in areas of high curvature, such as gyral crowns, and more tangential in along the banks of

gyri due to the angle at which u-fibres project into the cortex (McNab et al. 2013; Kleinnijen-

huis et al. 2015).
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Limitations and future work

In the above, we implemented a global, unconstrained segmentation algorithm, k-means.

The aim was to determine what degree area specific information was present in the dMRI

signal of the high resolution HCP data sets; as such, unsupervised classification was deemed

the most appropriate for this exploratory study. In reality, segmenting the cortex is not a

global problem, but rather a set of spatially constrained classification tasks, i.e., each area

needs only be recognised against its neighbouring areas. Moreover, it is plausible that many

spatially distant areas of the cortex share similar architectonic properties, such as lightly

myelinated, higher-order non-primate areas; an ideal parcellation pipeline would identify

these as separate clusters despite their microstructural similarities. The next obvious step

for improving the classification result would be to introduce spatial constraints to the system.

This could be achieved implicitly by including either spatial information or neighbourhood

information in the feature vector at each vertex (see Figure 5.6 in the supplementary mate-

rial). Alternatively, constraints could be explicitly enforced in the segmentation algorithm. An

example of this is shown in the supplementary material, Figure 5.7, where the same group

average diffusion feature set was parcellated using a spatially constrained hierarchical clus-

tering algorithm (Blumensath et al. 2013). Such methods use a region growing approach to

provide noise free cluster definitions. Another approach would be to use supervised learn-

ing methods with the aid of a set of training labels. This is explored in Chapter 6.



5.3 D I S C U S S I O N 58

features#+#xzy#coordinates#

features#+#mean#neighbourhood#features#

Figure 5.6: Unsupervised cortical parcellations using dMRI features combined with spatial or neigh-

bourhood information. Top row shows k-means results using the 5 diffusion-based fea-

tures plus the x,y,z surface coordinates at each vertex. The variance in spatial coordi-

nates dominate the feature vector, creating a voronoi effect for much of the cortex. How-

ever, a cluster which follows the posterior bank of the central sulcus is clearly visible,

suggesting that the dMRI information in this region is particularly distinct. The bottom

row shows the k-means result after combining the 5 dMRI features at each vertex with

the mean feature vector of the immediately neighbouring vertices. The results look simi-

lar to those presented in Figures 5.2 and 5.4. It is possible that a larger set of neighbours

could produce a more spatially coherent clustering as many neighbouring vertices are

likely to sample from the same image voxel, therefore the neighbourhood information in

the nearest neighbours is likely to be somewhat redundant.
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Figure 5.7: Cortical parcellation results using a spatially constrained hierarchical clustering algorithm

(Blumensath et al. 2013). The top row shows the result for 80 clusters and the bot-

tom for 150 clusters. This region growing approach, adapted from a resting-state fMRI

pipeline, produces spatially coherent clusters across the cortex. The resultant clusters

do not seem to seem to adhere closely to the known architectonic areas of the cortex.

They suggest that the diffusion data is sensitive to fine grained within area fluctuations

of densely myelinated, primary areas. For example we note several sub-divisions along

the expected locations of M1 and S1 which may reflect the varying microstructure within

these areas, for example the hand, foot and face subdivisions. Similar sets of small clus-

ters are observed in the insular cortex and visual cortex.
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F E AT U R E S E T S A N D S U P E RV I S E D PA R C E L L AT I O N

Although a large variety of diffusion imaging methods have been developed in white matter

studies, the efficacy of these methods have not been compared in grey matter. In the in vivo

diffusion-based grey matter literature, investigators have either adapted the simple diffusion

tensor for surface-based analysis (Anwander et al. 2010; McNab et al. 2013; Kleinnijenhuis

et al. 2015) or opted for higher-order decomposition methods (Nagy et al. 2013; Calamante

et al. 2017). The higher-order approaches may better characterize the subtle changes in

diffusion that are associated with microscopic architectonic properties of cortical areas. In

this chapter we aimed to test this hypothesis.

Several different dMRI methods were compared in a cortical parcellation pipeline that

employed random forest classification (RFC) (Breiman 2001). Initially we focussed on the

sensorimotor areas (cf. (McNab et al. 2013)) but then extended the analysis to the entire

cortical surface by utilising the HCP multi-modal parcellation labels (Glasser et al. 2016).

In the previous chapter we saw that our surface-based diffusion pipeline produced area-

like clusters in both areas of high and low myelin density. Here, we expand on this finding

by developing a neighbourhood-based supervised learning approach, which allowed us to

test dMRI more robustly across the cortical sheet to quantify the degree of area specific

contrast that is available within the 3T HCP data. We performed both individual and group-

level analyses.

Some of the work in this chapter has been previously published in:

Ganepola, T. et al. (2018). "Using diffusion MRI to discriminate areas of cortical grey matter."

In: Neuroimage, (In Press).

Ganepola, T. et al. (2016b). "Evaluation of diffusion MRI based feature sets for the classifi-

cation of primary motor and somatosensory cortical areas." In: Proceedings of the 24th

Annual Meeting of International Society for Magnetic Resonance Imaging, Singapore,

2016.
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6.1 M E T H O D S

6.1.1 Data and pre-processing:

All data sets were obtained from Human Connectome Project (HCP) Q3 500-Subjects re-

lease (Van Essen et al. 2013b; Sotiropoulos et al. 2013; Glasser et al. 2013; Uğurbil et al.

2013). Refer to Section 5.1.1 for in depth descriptions of these data. In summary, the 3T dif-

fusion datasets comprised of 270 gradient direction spread across three b-shells, b=1000,

2000 and 3000 s/mm2, and acquired at an isotropic spatial resolution of 1.25mm3

As in Chapter 5, we utilized the improved HCP Freesurfer Pipeline for surface re-

construction. Data were processed for total of 40 subjects. The same surface-based pipeline

(5.1.2) as in the previous Chapter was applied to sample the diffusion data at the midpoint

between the GM/WM boundary surface and the pial surface.

6.1.2 Feature sets

Four different diffusion MRI analysis techniques were used to generate six feature sets

that were tested in the classification experiments below. The feature sets were chosen to

address: (a) whether projecting the HARDI signal characteristics into the local frame of ref-

erence (indexed by the local surface normal) is beneficial when differentiating cortical areas,

and (b) whether an increase in model complexity is beneficial when differentiating cortical

areas. The four techniques are described below, Table 6.1 provides the names and details

of all the feature sets that were generated from the different techniques.

1. The diffusion tensor (DT) (Basser et al. 1994; Basser and Pierpaoli 2011) provides

two scalar metrics, mean diffusivity (MD) and fractional anisotropy (FA), as well as

directional information stored in its 3 eigenvectors. One simple way to incorporate

surface information is to measure the dot product of the primary eigenvector and the

local surface normal (the radiality index, RI, (McNab et al. 2013)), to generate another
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scalar metric that indicates the extent to which diffusion is radial (e.g., along apical

dendrites of pyramidal cells).

2. The neurite orientation, dispersion and density imaging (NODDI) (Zhang et al. 2012)

is a popular WM model which aims to increase specificity to microstructural proper-

ties. It disentangles FA into the possibly more anatomically relevant neurite density

index (NDI), and orientation dispersion index (ODI). In addition, NODDI provides the

isotropic volume fraction (Viso), representing free-water content.

3. In the third approach, we use the spherical harmonic model of the previous chapter to

more finely characterise the shape of the local diffusion surface. A total of 9 features

were generated for each b-shell. Features 1-4 were the k=1,2,3,4th moments of the

ADC and fully rotationally invariant. The 5th feature was the mean of the ADC in the

direction of the surface normal, and the remaining 4 features were the k=1,2,3,4th mo-

ments of the ADC in the plane that is parallel to the cortical surface and are invariant

in the local tangent plane.

4. A final approach used a 4th order tensor representation of the ADC and all its infor-

matically (or functionally) complete and irreducible invariants. These invariants fully

describe the geometric characteristics of the ADC up to any orientation or pose in 3D.

Higher order tensors were introduced as an alternative (and bijective) mathematical

basis to spherical harmonics in Özarslan and Mareci (2003). The tensors were esti-

mated using the ternary quartic (TQ) framework to ensure positive ADC (Barmpoutis

et al. 2009; Barmpoutis and Vemuri 2010; Ghosh et al. 2012), while the invariants

were computed following the method proposed in Papadopoulo et al. (2014). The in-

variants were found by progressively projecting the TQ coefficients via an orthogonal

transform and a rotation transform to a canonical representation with 12 degrees of

freedom. Unlike the spherical harmonic approach, this 4-tensor method does not at-

tempt to explicitly describe the radial and tangential diffusion processes within the
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cortex; however, such information may be implicitly encoded in the 4-tensor.

The latter two approaches better characterise the precise shape of the HARDI sig-

nal due to their sensitivity to higher-order details. Because GM regions have much lower

anisotropy than WM, which often consists of coherently organised WM fascicles, we hy-

pothesised that the higher-order feature sets will be better suited to capturing the varying

dendritic arborization patterns and axonal mesh patterns that are known to distinguish differ-

ent cortical areas. Furthermore, much of the information content captured in the lower order

features should also be encoded in the higher order feature sets alongside the additional

degrees of freedom that they offer.

Feature Sets Description

DT3 [MD, FA, RI], calculated after fitting the diffusion tensor to the b=1000s/mm2 data.

DT9 [MD, FA, RI] x 3, after fitting the DT to each b-shell separately and concatenating the 3 metrics from each shell

DT6 [MD, FA] x 3, same as DT9 with the surface specific component (RI) omitted.

ND3 [NDI, ODI, Viso ], after fitting the NODDI model to the full multi-shell dataset.

SH27 9 features per b-shell calculated from the SH series, which characterise properties of the ADC that are either fully

rotationally invariant or invariant in the plane perpendicular to the local surface normal.

4T36 12 features per b-shell, calculated from the 4-tensor, which together provide a functionally complete set of invariants.

Table 6.1: The names and descriptions of each of the diffusion-based cortical feature sets tested in

the classification experiments. The prefix signifies which method was used to estimate the

ADC and the number at the end of each name signifies the total dimensionality (length) of

each feature set.

6.1.3 Classification Experiments

B I N A RY C L A S S I F I C AT I O N O F M 1 A N D S 1 The S1 and M1 areas are very distinct

from each other and consistently located across subjects. Therefore, classification between

these two regions was chosen as a robust initial test-bed. Training labels were defined for

each subject using the HCP multi-modal parcellation (HCP-MMP) atlas (Glasser et al. 2016),
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see Figure 6.1A. Specifically, the labels 3b, and 4 were registered from the fsaverage sur-

face to each subject’s surface tessellation (Fischl et al. 1999b).

Random forest classification (RFC) (Breiman 2001) was implemented in sk-learn (for-

est size=20, tree depth=7, other parameters at default values) to distinguish the two areas

using a pool of 20 subjects. Data under the two regions were extracted for each feature set in

each subject. The classifier was trained on a set of subjects for several training group sizes

(TS), to help determine the lower limits on group size for future experiments. TS ranged

from 1-19 subjects, and the classifier was then tested on an unseen subject. The same

training group was maintained until all feature sets were tested. A leave-one-out approach

was implemented to ensure that all of the available subjects were tested in turn for each TS.

We hypothesised that the low-order features would dominate the classification be-

cause they have previously been shown to be very distinct between S1 and M1 (Anwander

et al. 2010; McNab et al. 2009).

V1#

V2#

A B

V1#

V2#

A B

V1#

V2#

A BB"

A"

C"

Figure 6.1: (A) The classification training labels generated from the Human Connectome Project

multi-modal parcellation.(B) An example of a neighbourhood of areas, in this case, for

the classification of V1. (C) An example of a classification result where instead of the

neighbourhood approach, a 180 area multiclass classification is attempted. The result

was generated using the DT9 feature set, and shows very little structure.
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G R O U P AV E R AG E W H O L E H E M I S P H E R E PA R C E L L AT I O N A hemisphere-wide par-

cellation pipeline was developed to test the DT6, DT9 and SH27 feature sets across a

broader range of cortical areas. These three feature sets were prioritised because they en-

compass the differences we intended to test, i.e., DT9 includes surface specific features

where DT6 does not, and SH27 is a higher-order method compared to DT9 and DT6. We

also employed population averaging for these classification tests to increase the contrast-to-

noise ratio between cortical areas.

Of the 40 HCP subjects, 30 subjects were selected as the training pool and the re-

maining 10 were assigned as the test pool. 6 of the 30 training subjects were randomly

selected at a time, to generate a total of 20 group average training sets. As in Chapter 5,

surface-based averaging (Fischl et al. 1999b) was performed on each dimension (column)

of the feature sets. We chose a reduced group size for these experiments as initial testing

suggested that 6 subjects provides sufficient between area contrast (B.4). The same pro-

cess was repeated to create test datasets from the test subject pool, also consisting of data

from 6 subjects each.

The 180 areas of the HCP-MMP were utilised as a set of prospective hemisphere-

wide, training labels. Given a test average, the cortical area marked by each of the training

labels was tested in turn, using a multi-label RFC, against its neighbouring cortical areas.

For example, when trying to predict the class of the data marked by the V1 label, the clas-

sifier was trained on data taken from 3 labels in the training averages: ProS (prostriata), V1

and V2 (Figure 6.1B). This neighbourhood approach mimicked traditional parcellation tech-

niques that define areas based on local transitions in laminar appearance, and also reduced

the number of classes within a single test to a relevant set. Figure 6.1C demonstrates the

ineffectiveness of implementing a global 180-label classification experiment.

S I N G L E S U B J E C T W H O L E H E M I S P H E R E PA R C E L L AT I O N A major goal of cortical

parcellation applications is to generate subject-specific maps. Therefore, single subject,

whole hemisphere parcellation was performed to assess whether between-area contrasts

can be detected without population averaging.

The two methods presented above were combined to produce a whole hemisphere
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parcellation on an individual subject. The neighbourhood multi-label RFC approach was

used to classify the data marked by each of the 180 HCP-MMP areas for a single unseen

subject. The training data was generated by concatenating the data for each of the neigh-

bourhood labels from a group of training subjects, as in the binary classification test. In

this instance the training group was reduced to 10 subjects in order to reduce runtime and

memory requirements of the classifier. Note, when the fsaverage HCP-MMP labels are

surface-registered to each subject’s surface tessellation there is no guarantee that some

neighbouring regions will share some overlapping vertices. During registration of the train-

ing labels, a small number of vertices (1-5%) were assigned to multiple classes. In such

cases, the vertex was assigned to its mode class label across all of the classification tasks

in which it appeared; in the absence of a mode class, the vertex assignment was selected

randomly from its predicted classes.

6.1.4 Searchlight Cluster Count

A quantitative vertex-wise comparison method was developed to evaluate the quality of

different full hemisphere parcellation results. This tool was used to bolster the qualitative

analysis of the parcellation maps. Here, quality was defined as the local spatial coherence

of the parcellation. Given two corresponding parcellation results, A and B, the number of

unique cluster IDs within a 90-nearest neighbour surface searchlight surrounding each ver-

tex were counted, and the resulting cluster counts were subtracted from each other (A - B).

A positive value (A<B, orange in Figures 6.4, 6.7, C.2) denotes that A did better (i.e., local

regions had fewer different cluster IDs) while a negative value (A>B, blue) indicates that B

did better. The searchlight diameter was chosen to be somewhat smaller than the width of

a typical cortical area.
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6.2 R E S U LT S

6.2.1 Binary classification of M1 vs S1

DT3#

DT6#

DT9#

NOD3#

SH27#

4T36#

Figure 6.2: Results for binary classification between M1 and S1 using different feature sets.(A) The

mean classification accuracy for each feature set, at each training group size (TS). Er-

ror bars are the standard deviation in classification accuracy across the repeated tests

for each TS. (B) M1 vs S1 classification results for a typical subject are shown on the

cortical surface for TS=19. Accuracy scores were defined as the percentage of correctly

classified vertices. Red corresponds to the S1 class label and blue to the M1 class label.

The results for binary classification between S1 and M1 using different training group

sizes are shown in Figure 6.2A. The feature sets DT6, DT9, SH27 and 4T36 demonstrate

a similar trend with steep improvement in accuracy from TS=1 to TS=3 followed by more

gradual, improvement up to TS=19. The DT3 and ND3 feature sets exhibit a more modest

rate of improvement in accuracy between TS=1 and TS=3, and significantly lower plateaus.

It is evident that using fewer than 3 training subjects does not provide a broad enough set of

training examples to account for inter-subject variability; incorporating at least 10 subjects

is beneficial.

The DT9 feature set performs best in the classification between M1 and S1 for all val-

ues of TS larger than 2, achieving a mean classification accuracy of 80.36% at TS=19.

SH27, 4T36, DT6, DT3, and ND3 gave mean accuracies of 77.94%, 77.51%, 77.87%,
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73.98%, and 71.87% respectively, for the same TS. A Wilcoxon signed rank test between

each set of results found the differences between DT9 and all other feature sets to be sig-

nificant (p<0.02), whereas the performances of SH27, 4T36 and DT6 were not significantly

different from each other. ND3 and DT3 were also found to be significantly different from

each other and all of the other feature sets (p<0.001). Aside from the reasons given in the

methods, we chose not to include DT3 and ND3 in subsequent experiments because they

performed comparatively poorly here. 4T36 was also omitted because its performance was

highly correlated with that of SH27.

In Figure 6.2B it is evident that DT9 provides the most spatially coherent result, par-

ticularly within area S1.

6.2.2 Group average whole hemisphere classifier

Q UA L I TAT I V E A S S E S S M E N T The lateral and medial views of the parcellation result for

the DT6, DT9, and SH27 feature sets are displayed in Figure 6.3. In general, early sensory

and motor areas showed a strong resemblance to the training labels, exhibiting spatially

locally coherent clusters. Moving away from those easy-to-distinguish areas, the spatial co-

herence of the classification results was reduced, and a number of training areas contained

a speckling of multiple cluster IDs. One can also observe several coherent clusters that con-

tain several training regions (black brackets).

The overall trend comparing DT6, DT9, and SH27 (left to right) is an observable de-

crease in the granularity of the parcellation in some areas (e.g., area 3b). This suggests that

inclusion of a surface normal component (DT9 & SH27 compared to DT6) and the use of

higher order features (SH27 compared to DT6 & DT9) both provide useful additional infor-

mation to the training and classification process.

Qualitative assessment of the lateral surface indicates that area 3b (part of S1) has

the most distinct HARDI signal profile compared to its neighbouring areas, as all of the

feature sets achieve a reasonable correspondence to the training label for this area. Some

regions show markedly different classification outcomes between the different feature sets

(dotted arrows). For example, the MT region is subdivided by SH27, but recovered more
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Figure 6.3: Maps of the group average whole hemisphere parcellation result for feature sets DT6,

DT9, and SH27 (left to right).(A) Shows the original colour scheme from the HCP-MMP.

(B) Shows the same results as A but with the colour scheme shuffled to achieve better

contrast between neighbouring areas. In addition, the boundaries of the training areas

are overlayed in white. The solid white arrows signify areas that have a large overlap with

the training labels. The dotted white arrows indicate that an area is subdivided or not as

well classified as it was for another feature set. The black arrows point to the V1 area

that did not classify as well, despite its distinct architecture. The black brackets point out

regions in which one cluster expands over several training labels.

completely by DT6 and DT9. The SH27 subdivision may reflect inter-subject variability in

the location of MT proper (Bridge et al. 2014).

Inspection of the medial surface surprisingly reveals that none of the feature vec-
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tors strongly differentiated the primary (V1) and secondary (V2) visual areas (black arrows).

Areas close to the medial surface interface with the corpus callosum, e.g., retrosplenial com-

plex and hippocampus, can be accurately classified by all feature sets and are known to be

architectonically distinct from most other medial and lateral cortical areas.

pre"c.g"

pre"c.g"
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post"c.g"

a.c$

a.c$

Figure 6.4: Group average searchlight cluster coherence comparisons. (A) DT9 vs DT6: orange in-

dicates that the parcellation was more spatially coherent in DT9 and blue indicates the

reverse effect. (B) SH27 vs DT9: orange indicates that the parcellation was more spatially

coherent in SH27 and blue indicates the reverse. Bar charts to the right show the number

of vertices satifying each condition across the whole hemisphere. The dotted contours

highlight the position of the pre-central gyrus (pre c.g) and post-central gyrus (post c.g),

and the black arrow points to the auditory core (a.c).

Q UA N T I TAT I V E A S S E S S M E N T The searchlight comparison of the results is shown in

Figure 6.4. Overall, DT6 and DT9 are similar to each other in terms of cluster coherence,

as a large number of vertices (over 70000) had equal cluster counts for both feature sets.

Where they differ, DT9 tends to out-perform DT6, with 60000 wins for DT9 (orange) com-

pared to 30000. The local cluster counts of DT9 and SH27 are equal for a smaller portion of

the cortex (just under 60,000 vertices). The number of vertices in which SH27 outperforms

(orange) or underperforms (blue) DT9 are relatively even. However, the distribution of these

results indicate that SH27 provides more spatially coherent clusters in the central sulcus,
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auditory core, MT, cingulate sulcus and the temporal lobe. In contrast, DT9 performs better

in the inferior parietal lobe and posterior default mode network areas.

1"
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Figure 6.5: Bar charts comparing classification accuracy across all labels in the group average whole

hemisphere parcellation. As in Figure 6.6, the bars correspond to the proportion of cor-

rectly classified vertices in each ROI for feature sets DT6 (red), DT9 (green) and SH27

(blue). The ROIs have been ordered according to the overall highest classification accu-

racy across any of the feature sets. A comprehensive legend containing area names and

descriptions can be found in the supplementary material of Glasser et al. (2016).
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The bar plots in Figure 6.5 of the supplementary material display the classification

accuracy of each feature set in each of the 180 areas. 125 of the 180 areas were reproduced

with a greater than chance accuracy for all three feature sets. Many areas were highly

reproducible, for example, the Hippocampus, area 33pr and MT to name a few. Areas such

as LIPv and MIP could not be distinguished from their neighbours.

1"
Number"of"
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The study of gene expression with microarrays in different
cortical regions of human and chimpanzee brains revealed
several overall conserved gene co-expression modules between
species, with a greater interspecies module conservation in the
primary sensory cortex than in association cortex and in subcor-
tical structures as compared to cortical (Oldham et al., 2006).
This fits well with the structural differentiation (Smaers et al.,
2010; Zilles, 2005) and cytoarchitectonic gradation streams (Sa-
nides, 1962) of association areas versus hierarchically lower, un-
imodal sensory and primary sensory areas during primate brain
evolution. Chimpanzees hardly show a gene co-expression
module, which is strongly represented in human cerebral cortex
and contains genes involved in energy metabolism. These genes
have similar patterns of connection strengths to other genes of
the electron transport chain in neurons of the human cerebral
cortex (Oldham et al., 2006). They control mitochondrial struc-
tural properties, synapse formation, and vesicle docking as
well as cytoskeleton regulation. Probably, the expansion of the
human neocortex during primate brain evolution, which led to
an enormous increase in processing capacity, was accompa-
nied by an increased energy metabolism required for structural
plasticity of neurons and their synapses (Oldham et al., 2006).
Genetic labeling of cortical cell types with bacterial artificial

chromosome (BAC), transgenic (Heintz, 2001), and knock-in as
well as intersectional strategies enable cell typing in mice
(www.gensat.org). It is also possible to study connectivity and
function of specific cell types. The response to genetic alter-
ations can be studied in any genetically identified cell type using
BAC array translational profiling (Heiman et al., 2008). The de-
gree of molecular similarities and dissimilarities between cell
types could be described with a hierarchical cluster analysis,
and groups of genes were identified that encode cell-type-spe-
cific functions. Furthermore, comparisons can be performed to
study the development of specific cell types (Doyle et al.,
2008). A further progress in genetic labeling to characterize cell
types using high-throughput methods is recently provided by
the MultiColor FlpOut (MCFO) approach, which revealed shape
and position of cells inDrosophila (Nern et al., 2015). A transcrip-
tional driver and stochastic, recombinase-mediated excision of
transcription-terminating cassettes controls the expression of
multiple membrane-targeted and distinct epitope-tagged pro-
teins. Gene targeting by knockin methods considerably
improved the reproducibility and strategic design of cell-type
targeting and identification of novel cell subtypes even within
the family of pyramidal cells (Sorensen et al., 2015). Genetic
dissection of cortical circuits already started in the mouse brain
by systematic targeting of cell types and fate mapping of neural
progenitors (for recent review, see Huang, 2014). This approach
can provide a cortical cell atlas of unprecedented detail and

Figure 5. Correspondence of Areal Borders across Different
Modalities
(A) Section from the Allen Brain Atlas showing parvalbumin gene expression in
neurons of the human primary visual area V1 and secondary visual area V2
(https://www.alleninstitute.org, specimen RP_070313_01_C07). Delineation
between V1 and V2, and laminar labeling by the authors of the present review.
(B–G) Cyto-, myelo-, and receptorarchitecture of human areas V1 and V2 from
a different brain (Institute of Neuroscience and Medicine, INM-1, Research
Centre Jülich). (B) Cell-body-stained section. (C) Myelin-stained section. (D)
Agonistic binding sites of the GABAA receptor labeled with [3H] muscimol. (E)
Antagonistic binding sites of the GABAA receptor labeled with [3H] SR95531.

(F) Benzodiazepine binding sites of the GABAA receptor labeled with [3H] flu-
mazenil. (G) Binding sites of the GABAB receptor labeled with [3H] CGP 54626.
Parvalbumin-positive cortical neurons have their termination field in the sur-
rounding of their cell bodies, where they release the inhibitory transmitter
GABA. Notably, the laminar density distribution of parvalbumin-positive neu-
rons and GABA receptor binding sites are similar in both V1 and V2, with the
exception of GABAB receptors, which are also present at intermediate den-
sities in layers V and VI of V1. Roman numerals indicate cortical layers. The
scale bars code receptor densities in fmol/mg protein.
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Figure 6.6: Bar chart comparing classification performances in auditory areas. The bar heights in-

dicate the proportion of correctly classified vertices in each ROI for the DT6 (red), DT9

(green) and SH27 (blue) feature sets. The black lines indicate the chance outcome for

each ROI, i.e., 1/the number of neighbours for each ROI.

Figure 6.6 takes a closer look at performance for a subgroup of areas belonging to

the auditory network in the insular cortex. Many of the areas in the auditory subgroup are

classified with a much higher than chance accuracy. SH27 is the winning feature set for

just over half of the areas, whereas DT9 wins in the remaining portion. The performance

of SH27 is better within the auditory core (A1, RI) and surrounding belt areas (LBelt, PBelt,

MBelt), which have previously been shown to have extremely distinct myelin characteristics

(Sereno et al. 2013). In contrast, DT9 yields higher accuracy in areas that are generally

more architectonically uniform (areas outside of primary, secondary, and tertiary visual, au-

ditory, somatosensory, and motor areas).
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6.2.3 Single subject whole hemisphere classifier

pre"c.g"post"c.g"

calcarine"sulcus"

Figure 6.7: Single subject full hemisphere parcellation results. A) Medial and lateral views of the par-

cellation for DT9 (top) and SH27 (bottom). The white arrows highlight areas that exhibit

a good correspondence to the training labels. The right panel provides a close up view

of the primary visual cortex. (B) Maps comparing searchlight cluster coherency between

the single subject DT9 and SH27 parcellations. Orange indicates that the parcellation

was more spatially coherent in SH27 and blue indicates the reverse. Bars on the right

show the number of vertices belonging to each condition across the whole hemisphere.

The dotted contours mark out the pre-central gyrus (pre c.g.), post- central gyrus (post

c.g.) and calcarine sulcus.

Figure 6.7A shows single subject whole hemisphere classification results for DT9 and SH27.

The results for DT6 are not shown but the trends were similar to the group average result

with DT6 giving the most granular, least accurate classifications. The overall spatial coher-

ence is lower for both feature sets than the group average results (see Figure 6.3). However,

area-like clusters can still be observed in both (white arrows). The map for SH27 is qual-
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itatively smoother than that of DT9. In particular, SH27 provides a much more coherent

definition of V1 than does DT9, or indeed any of the group average results above. But again,

neither of the feature sets manages to properly differentiate V1 from V2.

The quality of each parcellation was scrutinised more rigorously using the searchlight

cluster counting method (Figure 6.7B). Again, as in the group average findings, SH27 pro-

vides a quantitatively smoother parcellation overall. The distribution of these results is also

similar to the group average result, i.e., SH27 is more consistent in regions such as the

sensorimotor areas of the central sulcus and the primary visual areas.

6.3 D I S C U S S I O N

Areas of high reproducibility

This work provides evidence that diffusion MRI is a sensitive and anatomically meaningful

contrast for identifying differences between cortical areas at 3T resolutions. We demon-

strated that the M1 and S1 cortices can be reliably distinguished from each other using

a simple white matter model, the diffusion tensor, as previously suggested (McNab et al.

2013). The transition between S1 and M1, within the central sulcus, is one of the most

distinct in the cortical sheet (Brodmann 1909; Geyer et al. 1997; White et al. 1997), Fur-

thermore, the associated Brodmann Areas, 3b (part of S1) and 4 (M1), are consistently

located along the posterior and anterior banks of the central sulcus respectively. Thus, it is

understandable that these areas were easy to reliably distinguish. However, accurate clas-

sification outcomes were not limited to these two regions. We found that 3b and several

other areas can be reliably differentiated from their surrounding cortical tissue using group

average data. For example, A1 and auditory belt areas demonstrated a large overlap with

their corresponding training labels. High reproducibility in these areas suggests the ability

of the classification method and feature sets to overcome the confounding effects of inter-

subject variations in idiosyncratic cortical folding patterns within Heschl’s gyrus (Leonard

et al. 1998).

Areas of high reproducibility are not limited to myelin rich areas; for example, 78%
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of the vertices in the inferior frontal sulcus area, IFJa, were correctly assigned using the

SH27 feature set despite this area having six neighbours (see Figure 6.5). Such examples

indicate that dMRI provides useful contrast in regions where myelin density is not as infor-

mative. However, as the fidelity of the training labels is questionable in these areas, further

investigation will be required to illuminate what is driving classification outcomes in these

regions. Nevertheless, the results suggests that dMRI could be a useful modality to incor-

porate in future studies that aim to non-invasively fingerprint the differing microstructure in

cortical units. This hypothesis was further supported by the analysis of the single subject,

whole hemisphere parcellation in which area-like clusters were demonstrated in similar re-

gions to the group average results.
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Figure 6.8: The mean DWI signal intensity in areas 3b and 4 (left) and V1 and V2 (right) for a single

subject. The subject is the same as the one for which results were shown in Figure 6.7.

The signal intensities have been normalised by the mean b=0s/mm3 and the shaded

regions indicate the standard deviation within each ROI. σarea is the mean std across

the DWIs. ρ is the Pearson correlation coefficient between the mean signals for each pair

of areas.

Areas of low reproducibility

All feature sets failed to clearly distinguish the V1 and V2 areas in the group average clas-

sifier, despite the marked differences between these areas (Amunts et al. 2000; Hinds et

al. 2008; Mountcastle 1997). It is possible that inter-subject variability regarding the exact
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boundary between these two regions causes mixing of data when the averaging is per-

formed which in turn obscures the contrast between these regions in both the training and

test data. Although the horizontal meridian of V1 always resides within the calcarine sul-

cus, V1’s extension onto the surrounding gyrus, and therefore its boundary with V2, shows

considerable variation across subjects (Amunts et al. 2000). It is also likely that the rela-

tively low resolution of the HCP data is insufficient to delineate defining characteristics in

the extremely thin V1 region. Turner et al. (2008) have suggested that an isotropic resolu-

tion below 0.6mm3 is required at 3T to consistently image Stria of Gennari. It may also be

that the interacting effects of orientation dispersion and microstructural composition (Kaden

et al. 2016; Reisert et al. 2017) diminishes differences in the dMRI signal between these

two regions. Figure 6.8 indicates that the signal intensity across different gradient directions

is more correlated between V1 and V2 compared to S1 and M1.

In some regions, multiple training areas were classified as the same cluster. It is pos-

sible that the dMRI signal is not sensitive to subtle differences between these regions or that

the multi-modal training labels do not correspond to their architectonic subdivisions.

Cluster coherence

It should be noted that no smoothing steps were implemented to enforce spatial coherence

in any of the cortical maps illustrated so far. Of course, a much cleaner result can be ob-

tained by adding additional post-processing steps. For example, a winner-take-all approach

(Figure 6.9) results in a significantly less noisy parcellation and closer correspondence to

the training atlas. Though this may be beneficial in some applications, we felt that it was

critical to illustrate the unaltered, vertex-wise results that will eventually form the basis for

more complex, knowledge-based pipelines. Furthermore, the unsmoothed results allowed

us to use cluster coherence as a measure of performance (Figures 6.4 and 6.7B). Impor-

tantly, this analysis suggested that the higher-order SH27 method provides a more spatially

coherent result in areas where the training labels were defined using architectonic informa-

tion, such as heavily myelinated primary cortices.
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Figure 6.9: Winner takes all group average parcellation results for DT6, DT9 and SH27 and the single

subject winner takes all results for SH27. For each feature set, the results were generated

by calculating the most frequent class under each training label and assigning the entire

region to that class ID. The resulting labels match the training labels for 106, 113, 105,

and 99 (from left to right) out of the 180 areas.

Traning labels

The HCP-MMP labels were generated from the simultaneous analysis of myelin density, rest-

ing state fMRI, and task fMRI. As such, the boundaries found by combining these modalities

are not necessarily correlated with the cortical features that are captured by the dMRI sig-

nal attenuation. These provisional labels cannot be expected to exactly correspond to the

underlying cortical areas, as defined by their architectonic properties alone. In addition, the

uniform parcels of our training labels are themselves an abstraction from the real neocortex.

For example, many of the best-defined cortical areas (e.g., MT, S1, M1) contain internal ar-

chitectonic boundaries that are just as striking as any between-area boundary (Kuehn et al.

(2017) on M1/S1; Sereno et al. (2015) on MT). This is particularly important to consider

when interpreting the results, especially given the supervised nature of the classification

methods. Care should be taken not to over interpret the above results in regions where

the training labels were heavily influenced by functional MRI modalities, such as prefrontal

areas. Whilst the boundaries in such regions may not be congruent with architectonic do-

mains, they were still useful in demonstrating that regional variance can be observed across

the cortex using dMRI. Further analysis, involving high-resolution architectonic mapping is
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needed to shed light on what is driving the contrast in these areas. Such studies may also

provide better training labels that can minimise the circular reasoning associated with su-

pervised classification.

It should also be considered that we used only one of the many competing atlases. We

remain some distance from being able to generate a definitive in vivo, cyto- and myeloar-

chitectonic reference map of the entire cortical surface. However, the method adequately

demonstrated that diffusion MRI represents a complementary modality for future studies of

cortical microstructure.

Feature sets

The classification efficacy of several diffusion-based feature sets were assessed. In particu-

lar, we wanted to determine whether either (a) the explicit inclusion of radial and tangential

diffusion properties (via the local surface normal) or (b) the use of higher-order feature sets,

improves between-area contrast compared to commonly used scalar metrics, such as FA.

B I N A RY M 1 / S 1 C L A S S I F I C AT I O N Initial tests on S1/M1 classification found relatively

poor performance in lower order feature sets that only used a single b-shell or combined

b-shells before classification (DT3, ND3). The consistently poor performance of DT3 com-

pared to DT6 and DT9 supports the notion that different b-values can probe different as-

pects of cortical microstructure (Nagy et al. 2013). The relatively weak performance of ND3

suggests that the three-shell data contains more useful information than is captured by

the NODDI model, which imposes biophysical assumptions regarding the underlying tissue

composition. Crucially, the improvement in classification when adopting the second-order

diffusion tensor (DT9), compared to the higher-order 4-tensor (4T36) or spherical harmon-

ics (SH27), relies on the inclusion of surface specific metric, i.e., the radiality index, which

was omitted from DT6.

The DT-based feature sets perform well despite diffusion at higher b-values (b>1000)

not respecting the Gaussian assumptions of this model (Alexander et al. 2002; Le Bihan et
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Figure 6.10: Confirmation that misclassification by the 4T36 feature set is driven by heterogeneity in

myelin density within area 3b. The binary classification result for 4T36 is shown (right)

with the outlines of the two ROIs that were selected. The myelin distribution within each

ROI is also show (left), where myelin density is measured from the T1w/T2w ratio pro-

vided with the HCP structual images.

al. 2006). One possible interpretation is that the higher-order features may be driven more

by noise and inter-subject variation than intrinsic features of distinct grey-matter regions,

at least at our current resolution. Alternatively, we hypothesised that the low-order features

are so distinct between these regions that they dominate the classification. The DT-based

features also create a smoothing effect that results from the coarser description of the mi-

crostructure that they provide. As such, it is possible that DT model is insensitive to real,

within area, microstructural variation. For example, there are myelin density changes corre-

sponding to the boundaries of individual digits in 3b (Sereno and Tootell 2005), or the hand,

foot, and face subdivisions of areas 3b and 4 (Kuehn et al. 2017). Figure 6.10 indicates that

areas of misclassification by 4T36 correspond to large variations in the underlying myelin

density (and thus architecture) within the tissue. These variations are not reflected in the DT

results.

F U L L H E M I S P H E R E PA R C E L L AT I O N The full hemisphere, group average, and single

subject results provide evidence in favour of using the more generalised, higher-order spher-

ical harmonic feature sets. In contrast to the trend observed in the binary experiment, we
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found that in this multi-class problem SH27, not DT9, obtains the most accurate definition of

3b. It is possible that the DT-based features are not sensitive enough to describe differences

between the larger set of classes. S1 has 3 neighbours in this 4-way classification meaning

the three times as many features that SH27 provides are beneficial.

The more generalized features of SH27 provide a more coherent clustering result

across the cortex, particularly for the single subject result. This again suggests that these

features describe cortical tissue domains more effectively. Perhaps the higher order feature

sets are less influenced by confounding effects, such as changes in global diffusivity be-

tween subjects (Veenith et al. 2013), than the DT feature set as a result of their increased

dimensionality. Support for the higher order feature sets is again evidenced in the distribu-

tion of areas in which SH27 out performs DT6 and DT9. It achieves better results for areas

of high myelination, primary areas, or areas for which the training labels can be considered

more reliable. On the other hand, it is possible that the SH27 feature set is more susceptible

to overfitting in regions where the diffusion signatures of neighbouring areas are less dis-

tinct from each other. The combination of DT9 and SH27 can also be used as a feature set

to maximise performance across the cortex (see Figure A2). A few regions are still better

classified with either of the reduced sets (DT9 or SH27) than with the combined feature set

(SH27+DT9). For example, area 3b is better classified using SH27 alone, suggesting that

combining it with DT9, which performed comparatively poorly in this area (see Figure 6.3B),

adds noise to the RFC.

I N C L U S I O N O F S U R F AC E S P E C I F I C F E AT U R E S The inclusion of features that take

the orientation of the local cortical surface into account (i.e., the radiality index in DT9, sev-

eral features in the SH27 set), consistently offered an advantage over the scalar DT6. This

is clear when comparing DT6 to DT9 in both the binary classification and group average

experiments. However, we cannot conclusively say that such features are always necessary.

Comparing the results of SH27 to 4T36 indicates that explicit reference to the local tissue

orientation might not be required if the feature set provides a functionally complete descrip-

tion of the ADC. Further testing of 4T36 across a broader set of areas is required to confirm
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this.

Ultimately, deciding which feature set to use requires a nuanced approach that considers the

specific aims of future studies. If attempting to delineate architectonic domains, the above

results indicate that high order decomposition approaches might be more appropriate when

describing the texture of the ’fabric’ of the neuropil at an intermediate scale. On the other

hand, an advantage of biophysical models is that they provide features that are more read-

ily interpreted. For example, they are more useful if one wishes to understand the specific

microstructural changes at the level of single fibres that can affect abnormal brain function.

The above works omit a set of recently emerging techniques, which aim to separate

the contribution of microstructural tissue composition from the mesoscopic orientation dis-

tribution within the dMRI signal (Kaden et al. 2016; Reisert et al. 2017). These methods

remain to be tested in a cortical parcellation framework and may be particularly beneficial in

extrastriate or other non-primary areas that do not exhibit distinct tangential or radial laminar

properties.

Limitations and future work

One of the limiting factors of the above work was the relatively coarse resolution of the

diffusion data compared to the thickness of cortical laminae. This only allowed data to be

sampled at a single cortical depth, which may have led to a failure to sufficiently capture

variations in laminar structure, particularly for thicker areas of the cortex i.e., gyral crowns or

area 4 (M1). It was also insufficient for reliably characterising the properties of V1. The rela-

tively large voxels may have introduced noise by differential mixing of signals from different

laminae in different locations. A finer sampling of different depths in each cortical column

has the potential to provide a closer approach to the classical histological analysis of the

cortex. The low resolution is also likely to incur partial volume effects, which we aimed to

minimise by sampling at the middle cortical depth. However, further analysis in needed to

determine the extent to which partial voluming from WM and CSF impact the results. The

higher spatial resolutions that can be obtained at 7T have great potential for resolving these
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issues and validating the above findings.

The HCP presents a unique opportunity to validate the above findings at higher reso-

lution using the recently released 7T datasets. 184 of the 3T participants were also scanned

at 7T with an increased isotropic spatial resolution of 1.05mm3. Analysis of the 7T data has

revealed that several additional voxels are present between the GM/WM boundary and pial

surface compared to the 3T counterparts (Vu et al. 2015). In addition, the 7T data shows im-

proved contrast in cortical areas with extremely low FA, and the authors were able to resolve

details such as WM fibres changing in orientation as they entered the cortical sheet along

gyral walls (ibid.). The first step would involve repeating the 3T pipeline that we presented

to see if the the trends we obsererved are maintained in the better quality data. An interest-

ing next step would be to extend our method to a more laminar-like analysis pipeline. For

instance, the feature vectors of several voxels, sampled at different depths along the local

surface normal, could be concatenated to represent the diffusion within a cortical column.

Although, given that cortical thickness can be as little as 2mm, it is possible that even the

HCP 7T data have insufficient spatial resolution for this type of analysis in very thin cortical

areas.

There are several additional avenues that could be explored in more depth in future

studies. For example, the labels were back-projected from a reference brain, but it would be

interesting to investigate whether generating labels on individual HCP subjects can improve

accuracy. Furthermore, we found that the feature ranking information provided by the RFC

was highly variable between different regions – additional analysis could shed light on which

features are more discriminative for which areas.
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M U LT I P L E B - VA L U E S F O R C O RT I C A L I M AG I N G

So far we have utilized the HCP multi-shell HARDI datasets in our classification experiments.

These datasets benefit from very rich q-space sampling, high spatial resolution and use of

multiple diffusion weightings. In the previous chapter, we saw that features based on a sin-

gle b-shell were less effective than their triple shell counter-parts. In this chapter we build on

this to explicitly demonstrate that multi-shell HARDI protocols are advantageous in cortical

grey matter applications.

Previous investigators have optimized b-values for a single or a range of diffusion

constants (Le Bihan and Warach 1995; Papadakis et al. 1999; Kingsley and Monahan 2004;

Armitage and Bastin 2001; Alexander and Barker 2005). However, a single b-value will not

be optimal for the specific tissue in all voxels and all orientations of that tissue relative to the

diffusion-encoding directions (Skare et al. 2000). Furthermore, a given b-value will probe

different aspects of the tissue microstructure depending on the timing and amplitude of the

gradient pulses. These factors may be particularly relevant in cortical grey matter applica-

tions, where local tissue orientation is highly variable due to cortical folding.

We investigated whether repeated measurements at a single b-value or multiple dif-

ferent b-values perform better in cortical area classification tasks. We hypothesized that,

analogously to multi-echo fMRI methods (Posse et al. 1999; Poser et al. 2006), collecting

data at additional b-values would improve classification accuracy due to the fact that there is

a higher probability of reaching the optimal b-value within each voxel. We tested this hypoth-

esis on the HCP data and an additional local dataset acquired at 1.5T, first comparing the

correlation coefficients across data from different shells and then testing different b-value

combinations in a series of binary classification experiments.

Some of the ideas in this chapter have been previously presented in:

83
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Nagy, Z. et al. (2014). "Combining HARDI datasets with more than one b-value improves

diffusion MRI-based cortical parcellation." In: Proceedings of the 22nd Annual Meeting

of International Society for Magnetic Resonance Imaging, Milan, 2014, p. 800.

7.1 M E T H O D S

7.1.1 Data and processing

H C P 3 T DATA Data from three HCP participants were used in the below experiments,

detailed descriptions of these datasets are provided in Section 5.1.1 and the relevant HCP

publications (Van Essen et al. 2013b; Sotiropoulos et al. 2013; Glasser et al. 2013; Uğurbil

et al. 2013). In brief, the datasets have a spatial resolution of 1.25mm3 and contain three

b-shells, b=1000, 2000 and 3000 s/mm2, collected with matched diffusion and echo times.

To facilitate fair comparison between the repeated and multiple b-value combinations

we created size-matched datasets by sub-sampling the gradient directions from each b-

shell. Shells were split into three evenly spaced subsets, containing 30 directions each,

using an electrostatic repulsion algorithm (Cook et al. 2007). This provided a mixed b-value

dataset containing one 30-direction sub-volume each from the b=1000, 2000, and 3000

s/mm2 shells, and a repeated b-value dataset containing the full set of 90 b=2000 s/mm2

DWIs. The middle b-value was selected for the repeated b-value combination to minimize

signal-to-noise ratio (SNR) differences between the two datasets.

L O C A L 1 .5 T DATA Additional data were collected for three healthy adult volunteers in

accordance with local ethics approval. A 1.5T Siemens Avanto scanner with a 32-channel

head coil was used. Three b-values were sampled, with the middle b-value repeated 3 times.

The order of acquisition was b=1400, 800, 1400, 2000, 1400 s/mm2 and each image set

was collected in both the blip-up and blip-down phase encode directions, resulting in a total

of ten DWI volumes per subject. A multiband factor=2 was used with TE=86, 94, 101ms and

TR=5647, 5980, 6224ms in the b=800, 1400 and 2000s/mm2 shells, respectively. The local

data had spatial a resolution of 1.7mm3.
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All 10 volumes were simultaneously pre-processed using the Eddy (Andersson and

Sotiropoulos 2016) pipeline to remove susceptibility and eddy current distortions whilst

ensuring that all volumes were co-registered. Subsequent to pre-processing two diffusion

datasets were generated for each subject. The first containing a mixture of b-values, com-

prised of b=800, 1400, and 2000 s/mm2 image volumes. The second contained all three

b=1400 s/mm2 volumes, again ensuring that the datasets were size matched and roughly

SNR matched.

S A M P L I N G A N D F E AT U R E R E P R E S E N TAT I O N The surface-based pipeline of the pre-

vious chapters was again adopted to sample the diffusion-weighted data at the middle cor-

tical depth for each dataset. To perform classification experiments nine spherical harmonic

features were calculated per b-shell (same as Chapter 6), resulting in a 1x27 feature vector

at each vertex for each dataset.

7.1.2 Correlation analysis

We examined the correlation coefficients between the feature sets generated from each b-

value to determine whether the different b-values provide additional information content. At

each surface vertex the squared correlation coefficient was calculated between the different

b-shells for both the HCP and local data. Features sets generated using repeated b-values

were expected to be highly correlated with each other, whereas feature sets from different

b-values should exhibit lower correlation coefficients.

7.1.3 Classification

R E G I O N S O F I N T E R E S T For the 1.5T local datasets seven regions of interest were

defined on the lateral surface. Three ROIs were defined using the FreeSurfer Brodmann

Atlas labels (Fischl et al. 2008; Zilles et al. 2002) for areas 3b, 4p, and 45, corresponding

to the primary somatosensory and motor regions and Broca’s language area, respectively.
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The remaining four ROIs: MT, VIP, AnG and Insular, were defined in a previous study using

multimodal data (Nagy et al. 2013), and correspond to the middle temporal area, ventral

intraparietal area, a section of the angular gyrus belonging to the default mode network and

a small region in the auditory core within the insular. The regions were selected to cover a

wide range of cortical tissues and are displayed for a single subject in Figure 7.1.

3b# 3b#4p#

VIP#

AnG#

MT# Broca#

Insular#

4#
V1#

V2#

A1#

LBelt#

MT#
FST#

local#data#ROIs# HCP#data#ROIs#

Figure 7.1: Regions of interest used in classification experiments to test different b-value combina-

tions. Left shows the ROI for the local 1.5T data, generated using the probabilistic Brod-

mann Atlas labels, and fMRI data. Right shows the ROI for the HCP data, generated from

the HCP multi-modal parcellation labels.

Regions of interest for the HCP data were defined using the HCP Multi-Modal Par-

cellation (HCP-MMP) (Glasser et al. 2016). A total of eight area labels were selected and

registered from the fsaverage surface to the subject specific surface tessellations using sur-

face based registration (Fischl et al. 1999b). Some of the ROIs were equivalent to those

above, i.e., 3b, 4, MT and A1. The remaining regions were V1, V2, FST, and Lbelt corre-

sponding to the primary and secondary visual areas, the fundus of superior temporal sulcus

and the lateral auditory belt region, respectively. The regions were selected to encompass a

range of cortical functions and also include some neighbouring regions (V1/V2 and A1/Lbelt)

to assess the performance of the feature sets in boundary detection (see Figure 7.1). How-

ever, we limited analysis to a small subset, of the full 180 areas, choosing specifically ROIs

that were well supported by the surrounding anatomical literature, therefore, increasing the
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reliability of the training labels.

C L A S S I F I C AT I O N T E S T S The appropriate set of ROIs for each dataset (local or HCP)

were tested against each other using random forest classification (Breiman 2001). Within

each binary classification experiment, test/train datasets were generated using leave-one-

out cross validation, in which the classifier is trained on all by one of the data-points and

then tested on the unseen data-point, this process is repeated until all data-points have been

tested. It is possible for geographically distant areas to have similar architecture, which may

confound the classifier, making if difficult to find an optimal splitting plane in a multi-class

problem. Using, instead, a series of binary classifications, limits this confounding effect to

a small subset of the classification tests, allowing one to easily identify which regions are

most similar.

Apart from comparing the performance of the data with three different b-values against

the data with three identical b-values, further comparisons were made on partial data sets

that contained only two acquisitions: either different or repeated b-values. Namely, binary

classification experiments were performed on features extracted from a) the lowest and mid-

dle b-values, b) the two middle b-values and c) the middle and high b-values. For example,

in the local data this would result in dataset1: b=800, 1400b; dataset2: b=1400a, 1400b;

dataset3: b=1400b, 2000 s/mm2. The middle b-value volume was kept constant for all three

datasets. These double b-value datasets were tested using the same classification experi-

ments as the triple b-value datasets, described in the previous paragraph. These additional

pairings helped to determine if the inclusion of a higher of lower b-value was more beneficial.

P E R F O R M A N C E M E T R I C S Two performance metrics were used to assess the quality

and accuracy of the classification experiments. First, the proportion of correctly classified

vertices from the two ROIs in a binary experiment was taken to indicate overall performance

accuracy (as in Chapter 6. Secondly, an aggregated F1-score was used as a measure of

accuracy within each region of interest. The F1-score provides the harmonic mean between

precision and recall, and is commonly used to measure the accuracy in binary classification.
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It quantifies the proportion of true positives in relation to both false positives and false neg-

atives, giving a value ranging from 0-1, where 1 means the classification result was 100%

accurate (Powers 2011). A high, F1 score across all tests would indicate that the region is

particularly distinct, compared to the others, and well characterised by the feature set.

7.2 R E S U LT S
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Figure 7.2: The squared correlation coefficients between different feature sets from different b-values.

The top two rows show the correlations across the medial and lateral surfaces of a local

1.5T subject. The bottom rows show the equivalent results for a HCP subject. In each

case the first column displays the correlation between two repeated b-values, and the

rest of the columns display the correlation between two differing b-values.

7.2.1 Correlation maps

Both datasets show a similar trend in Figure 7.2. The correlation drops as the difference in

b-values increases. The effect is less pronounced in the local data, however it is still clear
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that the first column, showing the correlations between two b=1400s/mm2 shells, has a

higher proportion of red, highly correlated vertices, than the other columns, particularly with

comparison to the correlation map on the far right which is calculated between the lowest

(b=800s/mm2) and highest (b=2000s/mm2) b-value datasets. Analysis of these correlation

maps suggests that the varying information captured by the differing b-values does indeed

manifest in the spherical harmonic features used for classification and that using multiple

different b-values may provide a richer feature vector for classification between cortical tis-

sue domains.

7.2.2 Classification

T R I P L E B - VA L U E E X P E R I M E N T S The mean performance of the classification exper-

iments in data that contained either three different b-values or a single b-value repeated

three times is provided in Figure 7.3. For both the local and the HCP data, the feature set

obtained from the mixed b-values (pink) outperforms that of the repeated b-values (blue) in

all of the tests. This supports the hypothesis that measuring diffusion MRI data with multiple

b-values will contain more discriminative power to differentiate the cortical areas. There was

an average difference of 5.6%±2.6% between the mixed and repeated feature sets across

tests for the local data and 4.6%±4.2% for the HCP data. In both cases, the differences

were found to be significant, with p < 0.001, according to the Wilcoxon signed rank test.

An aggregated F1-score was obtained for each ROI by taking the average F1 value

across all binary classification tests in which that region was used (Figure 7.4B). For all re-

gions, in both the local and HCP datasets, the mixed b-values result in better classification.

For the local 1.5T data the differences were consistent with a 4-10 point difference between

the two b-value conditions, across all the regions. However, for the HCP data the effect is

stronger for the smaller areas i.e., MT, FST, A1, and LBelt, which in general are classified

with less accuracy than the larger, primary regions of V1, V2, 3b and 4. The dataset with

mixed b-values provides a much larger increase in accuracy when classifying the smaller

regions i.e., a 10-20 point difference over the repeated b-values datasets. This suggests

that multiple b-values are particularly beneficial at characterizing small cortical areas.
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Figure 7.3: Comparison of the performance of each dataset in the binary classification experiments

for the triple b-value combinations. Results for the local data are displayed at the top

and results for the HCP data are displayed at the bottom. In both bar charts, the dataset

that combined three different b-values is shown in pink bars, whereas the dataset that

combined repeated acquisitions of a single b-value correspond to blue bars. Bar height

corresponds to the mean classification accuracy, i.e., the fraction of correctly classified

vertices after averaging across the volunteers.

The result of classification between areas 3b (S1 region) and 4/4p (M1 region) are

shown in 7.4A for a single subject from the local (top) and HCP (bottom) data sources.

These two regions are known to have widely differing cytoarchitecture (Brodmann 1909;

White et al. 1997) and we demonstrated that these differences can be reliably detected us-

ing our feature set in the previous chapters. Therefore, this pair of ROIs is likely to be the

most reliable test-bed amongst the available regions. For the local data we found that the
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Figure 7.4: (A) Maps of the binary classification result between areas 3b and 4/4p using mixed or re-

peated b-value combinations. Vertices that have been coloured red have been assigned

to area 4/4p by the classifier. Blue vertices have been identified as belonging to area 3b

by the classifier. (B) The mean F1 score for each ROI using mixed or repeated b-value

combinations. The mean was taken across all binary experiments in which the ROI was

tested.

mixed b-values condition out performed the repeated b-value condition with an average im-

provement of 4.0%±1.1% across subjects. Similarly, for the HCP data, the mixed b-values

condition performed 11.6%±3.6% better than the repeated b-values (see Figure 7.3). Qual-

itative assessment of these results on the cortical surface of the example subject reveals

that the mixed b-value data produces more spatially continuous areas that bare the closest

resemblance to the training labels.

Additional classification maps are displayed for the HCP binary experiments that

tested immediately neighbouring ROIs against each other (Figure7.5). We find that the

mixed b-values data adheres much more closely to the training boundary compared to the

repeated b-values for the classification between A1 and the LBelt. The effect is far less obvi-

ous in the classification between V1 and V2. Here, we find that for the mixed b-value dataset

the majority of misclassification within the V1 area is more central in the region and there

is a more consistent transition from blue to red across the border. In contrast, the repeated

b-value result is generally far more noisy, displaying seemingly more random patches of
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misclassification across the full extent of the ROIs.

Mixed#bLvalues# Repeated#bLvalues#

V1# V2#

A1# A1#

V1# V1#

A1# LBelt#

Figure 7.5: Maps of the binary classification results using mixed or repeated b-value combinations

for A1 vs LBelt and V1 vs V2, shown for a single HCP subject. The grey contours show

the boundaries of the A1 and V1 training labels to help compare the quality of boundary

detection between the two b-value combinations.

PA I R E D B - VA L U E E X P E R I M E N T S The classification performances of the feature sets

derived from the paired b-value combinations are compared in Figure 7.6. The mean dif-

ferences between the various feature sets are discussed in the text below, but are also

summarised in Table 7.1

For the HCP data, a mix of two different b-values outperforms two repeated b-values

in the majority of tests. The repeated (2 x b=2000s/mm2) data (dark blue) produced greater

classification accuracy than the combination of a low and middle b-value (b=1000,2000

s/mm2), only when differentiating area 3b from the LBelt region. On average, the combina-

tion of b=1000s/mm2 and b=2000s/mm2 shells (light blue) performed 3.2%±3.1% (p<0.001)

better than the repeated b=2000s/mm2 data. The combination of b=2000s/mm2 and b=3000s/mm2

shells (green) also outperformed the repeatedly measured b=2000s/mm2 for the majority of

tests (excluding MT vs. FST, V1 vs. A1, V1 vs. LBelt, V2 vs. LBelt, and 3b vs. LBelt). Here, a

mean improvement of 3.4%±4.2% (p<0.001) was observed. Combining the lowest and high-
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est b-value (yellow) produced a mean classification improvement of 4.6%±3.9%, (p<0.001)

over the repeated set.
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Figure 7.6: Comparison of the performance of each dataset in the binary classification experiments

for the paired b-value combinations. The colours correspond to the following b-value com-

binations: dark blue - a pair of middle b-values ; light blue - a pair containing 1 middle and

1 low b-value; green - a pair containing 1 middle and 1 high b-value; yellow - a pair con-

taining 1 low and 1 high b-value and pink - the combination of all three different b-values

(as shown in Figure 7.3). Bar height corresponds to the mean classification accuracy, i.e.,

the fraction of correctly classified vertices after averaging across the volunteers.

The performance of the three mixed b-value pairs was also compared against each

other. The differences between these feature sets were much smaller than when comparing
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to the repeated feature set. There was a small mean improvement of 1.4%±1.8% when

comparing the accuracy for b=1000+3000 s/mm2 (yellow) against that for b=1000+2000

s/mm2 (green). Similarly, the combination b=1000+3000s/mm2 was 1.2%±1.6% better than

b=1000+2000s/mm2 (light blue). We found no significant differences between the two com-

binations that used the middle b-values, i.e., b=1000+2000s/mm2 and b=2000+3000s/mm2.

HCP data

paired middle+low middle+high low+high triple

paired 3.2±3.1 3.4±4.2 4.6±3.9 5.6±4.6

middle+low 0.2±2.6 1.4±1.8 2.4±2.4

middle+high 1.2±1.6 2.2±1.5

low+high 1.0±1.4

triple

Local data

paired 0.9±2.5 1.1±3.1 2.4±3.6 5.7±2.6

middle+low 0.1±3.1 1.4±2.6 4.7±2.4

middle+high 1.3±2.6 4.6±2.0

low+high 3.3±2.2

triple

Table 7.1: The average percentage differences between the feature sets that are compared in the

paired b-value experiments. The values indicate the mean differences across all of the

binary tests in Figure 7.6 ± the standard deviation in differences. The winning feature

vector corresponds to the column heading. Differences that were statistically significant

according to the Wilcoxon rank test (α = 0.0125 to correct for multiple comparisons) are

displayed in red.

The results for the triple mixed b-value combination from Figure 7.3 are also displayed

in Figure 7.6 (pink) to reinforce that they provide highest classification accuracy overall. This

three b-value combination outperforms all of the paired combinations for twenty-one out of

twenty-eight tests, with a mean improvement of 5.6%±4.5% over the repeated pair and 1-

2% over the mixed pairs combinations.

The results for the local, lower resolution, data exhibit similar trends to the HCP
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data when considering pairs of b-values against the repeated b-value. However the im-

provement gained from including different b-values was only significant when using the

two furthest apart b-values, at 2.4%±3.6%, and the combination of all three b-values, at

5.7%±2.6%. There were no significant differences between the mixed paired combinations

i.e., b=800+1400, b=1400+2000 and b=800+2000s/mm2. The inclusion of a third b-value

was more beneficial at this lower field strength and resolution with accuracy improvements

ranging from 5.7-3.3% and proportionately smaller standard deviations ranging from 2.6%-

2.0%. Again, the third shell provided the least improvement when compared to the pair that

combined the shells that were furthest apart.

7.3 D I S C U S S I O N

C O R R E L AT I O N M A P S A N D S N R We confirmed that the feature sets of different b-

values are far less correlated across the cortical surface than those generated from indepen-

dent acquisitions of the same b-value. This supports our hypothesis that different b-values

provide a richer description of the cortical tissue.

Despite the directions being uniquely sampled in the HCP data, the features sets

from two b=2000s/mm2 subsets are highly correlated through most of the cortical surface.

Spots of lower correlation are confined to areas that are prone to sampling errors i.e., gyral

ridges and sulcul fundi. We can therefore be more confident that the electrostatic repulsion

method, used to sub-sample the gradient directions, worked adequately without introducing

significant biases. This in turn, increases our confidence that the effects observed in the

HCP datasets are driven predominantly by differences in b-value rather than differences in

the uniquely sampled gradient directions.

The local data exhibits relatively large patches of lower correlation (green) between

the two repeated b-values (first column). This may be a result of the reduced SNR available

at 1.5T compared to 3T. The SNR of the local data should be considered when interpreting

the classification results (below). We attempted to minimize the SNR differences between

mixed and repeated b-value feature sets by equally spacing the different b-values and re-

peating the middle b-value to ensure that the total amount of data was identical. But, as TE
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was different for each shell, the increase in transverse relaxation will inevitably result in lower

SNR in the higher shells. Comparison of the first and second column of the correlation maps

suggests that differences in local data are not solely caused by SNR issues as the combi-

nation of b=800,1400b s/mm2 has higher total SNR than that of b=1400a,1400bs/mm2 but

the former still exhibits lower correlation coefficients across the cortical sheet. Furthermore,

in their simulation study, Alexander and Barker (2005) found that the optimal b-value was

largely independent of the noise level at WM crossings.

OV E R A L L B E N E F I T S O F M U LT I - S H E L L We demonstrated that sampling at different

b-values provides a consistent improvement in cortical area classification experiments. The

effect was found to be small, 5.6-4.6% depending on the field strength and resolution, but

statistically significant. This finding further supports our hypothesis that multi-shell acquisi-

tions better characterise cortical areas and should be considered when acquiring data for

future cortical applications.

The F1 scores of each ROI exhibited a small but consistent improvement for all of the

tested areas. Although the training labels cannot be considered the perfect ground truth, we

limited ourselves to regions that are myelin rich, and well reported in the architectonic liter-

ature. Therefore, this universal improvement in accuracy when employing multiple b-values

supports our hypothesis that multi-shell data has increased potential to probe the optimal

b-value over the range of complex tissue structures and varying orientations in the cortical

sheet. For the HCP data, the effect was far more pronounced for the smaller ROIs. We at-

tribute this to the fact that the larger regions are inherently more heterogeneous and hence

harder to classify.

Boundary detection is the ultimate goal of a parcellation pipeline which aims to repli-

cate the delineations discovered by histological methods such as Brodmann (Brodmann

1909). In the experiment in which we attempted to differentiate the neighbouring A1 and

LBelt areas (Figure 7.5) we found that the mixed b-value feature set produced spatially

continuous clusters that closely aligned with the expected positions of these two regions.

Vertices that were identified as belonging to A1 (blue) are almost exclusively found in a

patch that is superior to the large red patch corresponding to the LBelt class. In contrast



7.3 D I S C U S S I O N 97

the repeated b-value features produced a much grainier classification result. As in previous

experiments, we found relatively low classification accuracy between V1 and V2, suggesting

once again that the resolution of the HCP dataset is insufficient in these areas. Neverthe-

less, there appears to be a small improvement in the boundary detection between the two

areas.

PA I R E D B - VA L U E E X P E R I M E N T S By repeating our classification experiments using

pairs of b-values we were able to demonstrate that including a third b-value at 3T HCP

resolution is only marginally beneficial, and might not warrant the increase in acquisition

time. The improvement earned by the third b-value was greater for the lower resolution 1.5T

data, where the additional data might be compensating for lower SNR. In both datasets we

found that the best way to maximise classification accuracy was to combine the two most

distant b-values. This is reflected in the correlation maps which confirmed, as expected, that

these are the least correlated feature sets. It may be best practice in future cortical studies

to acquire 2 b-shells that have larger separation, whilst ensuring that the SNR of the higher

shell is sufficient.

Limitations and future work

We did not attempt to find a specific range of optimal b-values for cortical grey matter, as

has been achieved in the WM literature (Le Bihan and Warach 1995; Papadakis et al. 1999;

Kingsley and Monahan 2004; Armitage and Bastin 2001; Alexander and Barker 2005). In-

stead, we focussed on demonstrating that using more than one b-shell is beneficial for

discriminating cortical areas. Having an optimal range of b-values may be particularly im-

portant in future clinical applications of cortical parcellation where scan times need to be

minimized to ensure patient comfort. As such, this would be an interesting future direction

that could determine the best practice for grey matter diffusion imaging. Such studies are

best initiated using simulations to better control the many variables and more robustly test

the specific hypothesis. This will require careful consideration of the structure of the simu-
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lated data, and how best to reflect the full range of cortical microenvironments.



8
C O N C L U S I O N

Architectonically driven cortical parcellation remains in avid pursuit in the field of neuro-

science. Such tools will eventually facilitate our burgeoning understanding of the structure-

function relations that drive complex brain processes. In vivo Brodmann mapping could

even provide insight into the aetiology of developmental disorders, such as Autism, which

are currently poorly understood but suspected to relate, in part, to cortical organisation (Blatt

2012). This Thesis aimed to establish the extent to which diffusion MRI can be utilised in

cortical parcellation applications and what the best practices are in this domain. We hoped

to achieve this by using machine learning techniques to evaluate several aspects of a corti-

cal parcellation pipeline with high quality, 3T datasets, at in vivo resolutions.

In Chapter 5 we demonstrated that diffusion-based measurements provide area-specific

contrast that could potentially improve the performance of future parcellation studies. We

adopted unsupervised learning, via the k-means algorithm, and several refinements to a

parcellation pipeline, including population averaging, and generated a cortical map. The re-

sults exhibited several spatially coherent clusters in regions corresponding to well known

functional anatomical areas. The feature set was most discriminative in primary areas that

were consistently located across subjects, such as S1 and M1. This supported previous

findings that have also demonstrated structural difference between these two regions using

diffusion MRI (Anwander et al. 2010; McNab et al. 2013; Calamante et al. 2017). However,

we additionally observed clusters that may correspond to non-primary areas, such as area

44 and 45, and the several clusters in the myelin poor prefrontal cortex. We reported moder-

ately low correlation between the dMRI features and myelin density measurements derived

from the T1w/T2w ratio. These findings lead us to conclude that the dMRI features provided

rich information content and could be useful in future cortical studies.

In Chapter 6 we introduced supervised learning and further demonstrated the util-

ity of diffusion MRI in cortical parcellation applications. By developing a neighbourhood
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specific classification pipeline, that employed random forest classification, we attempted to

distinguish a full range of cortical areas against their neighbours. We were able to clas-

sify the majority of areas (125/180) with a higher than chance outcome. As in Chapter 5,

the diffusion-based features were highly effective in primary sensorimotor areas. We also

observed high classification accuracy in many additional areas including the auditory core,

middle temporal area (MT), and several other secondary and tertiary functional regions.

However, we found only moderately good reproducibility of area V1, again, this was also

reflected in the results of Chapter 5; suggesting the spatial resolution of the data was insuffi-

cient in this particularly thin region. Overall the results indicated that while diffusion MRI can

characterise a broad range of cortical areas, it cannot currently be used to reliably parcellate

the entire cortex at in vivo 3T resolutions.

Aside from generally establishing the utility of dMRI as a measure of cortical mi-

crostructure, we also set out to investigate more specific methodological questions. For

example, given that there are copious different ways in which diffusion can be used to

probe microstructure, what is the most appropriate technique for grey matter? To answer

this question, our classification experiments in Chapter 6 were used to compare several

different methods. Feature sets were derived from the diffusion tensor (DT), a more specific

compartment model, NODDI, our higher-order spherical harmonic (SH) technique and a

set of 4-tensor (4T) invariants. The results demonstrated that higher-order decomposition

methods provide a more consistent characterisation of grey matter microenvironments in re-

gions for which the training labels could be considered most reliable. However, even simple

lower order models such as the diffusion tensor provide contrast between cortical areas; in

particular, combining the traditional diffusion tensor metrics of FA and MD with the surface

specific radiality index was very powerful in binary classification between M1 and S1. This

suggests that using surface-specific features that describe tissue properties within the local

frame of reference, as indexed by the surface normal, are likely to provide the most discrim-

inative feature sets.

In Chapter 7 we investigated b-values, a very important parameter of diffusion MRI

experiments. Again by using objective classification tasks, we were able to demonstrate that

acquiring multiple b-values is beneficial for cortical imaging. The improvement in classifica-

tion accuracy was consistent in both the 3T HCP data, and 1.5T local data, which more
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closely resembles what is currently tenable in clinical applications. These results should be

considered when acquiring data for future cortical applications.

In this work we robustly demonstrated the utility of diffusion in cortical MRI studies by

employing objective machine learning approaches. Our findings motivate further investiga-

tion of this modality and encourage future investigators to include diffusion measurements

alongside myelin mapping or other imaging modalities. It is unlikely that a single set of ar-

eas will ever emerge as the definitive and final parcellation of the cerebral cortex. Instead,

as the study of this complex system continues, the community is likely to land on various

different maps, each reflecting different contrasts, e.g., cytoarchitecture, myeloarchitecture,

functional or structural connectivity. There is even potential for disagreement on what consti-

tutes a cortical transition. In fact, we have already witnessed several Brodmann areas being

further subdivided as new methods of observation were developed (Geyer et al. 1996; Geyer

et al. 1997; Geyer et al. 2000; Orban et al. 2004; Sereno and Tootell 2005; Wandell et al.

2007), as well as the definition of new regions, such as the fusiform face area - defined by

its BOLD activity rather than its architecture (Kanwisher et al. 1997). We expect that with

advances in data acquisition methods, surface-based analysis of grey matter diffusion will

become a new powerful tool in the large and varied arsenal that will help eventually uncover

the synergy between structure and function in the human neocortex.

8.1 F U T U R E W O R K

We presented findings using exemplar 3T HCP datasets; however, even this data offers low

spatial resolution in relation to the thickness of the cortical ribbon. This is major limiting

factor of the above work. Further work at higher resolutions and improved SNR will likely

enhance the performance of these methods. For example, one could utilize the 7T HCP

datasets, as discussed in Chapter 6, or even higher resolution, fixed tissue datasets. Such

data could provide a valuable platform for validating the methods proposed in this Thesis

and reveal, with more certainty, which of the cortical areas contain architectonic features that

manifest in the dMRI signal. Futhermore, We only sampled data at the middle cortical depth

using equidistant sampling. This decision was taken to minimize partial volume effects. With

high resolution 7T data it may be possible to extend our methods to a laminar-like analysis
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pipeline, and possibly even adhere to the more anatomically realistic equivolume sampling

(Waehnert et al. 2016). Such an approach would more closely mimic the traditional histo-

logical approaches of Brodmann etc., (Brodmann 1909; Vogt 1919). It would be interesting

to see if the trends we report, such as higher-order models performing more reliably, are

maintained when using a higher resolution laminar approach.

We did not attempt to provide a transferable set of area definitions which could be

adopted into future studies, such as the 180 HCP multi-modal parcellation areas. Given that

diffusion imaging of grey matter is still in its infancy, this was beyond the scope of this project,

which instead focussed on exploring the capabilities of this modality. Although we chose to

present our unmodified, noisy, parcellation results we did discuss a method for adapting our

neighbourhood based parcellation scheme to generate coherent area definitions by using

a winner-takes-all approach. However, the accuracy of the training labels must be care-

fully considered when performing such post-processing steps. Alternatively, future studies

could combine increasingly powerful machine learning approaches such as deep learning,

with the surface-based pipeline that we have presented. Again the limitations of the train-

ing labels should be carefully considered, as unlike in most machine vision applications,

accurately annotated training data is not readily available. Nevertheless, deep learning has

produced remarkable results in a wide range of applications and could potentially improve

in vivo parcelltion prospects.

The results we presented concentrated on one hemisphere, but there are many in-

teresting questions that will be able to be addressed in future studies where homologous

regions are compared across hemispheres, given the well-documented differences in func-

tion between them. Similarly, future cortical parcellation pipelines could assess group level

differences between healthy and diseased populations. It remains to be seen if differences

can be observed, for example, when comparing two group average parcellations ( similar to

chapter 5, or 6) from different cohorts. We only reported reliable contrast in a few cortical

areas using this approach, so it is very unlikely that clinically available data, acquired at

much lower gradient strengths and scan times, would have sufficient contrast and resolu-

tion to perform such analyses. One future approach could be to employ sophisticated super

resolution, methods, such as image quality transfer (Alexander et al. 2017), to enhance low

quality diffusion datasets and test clinical hypotheses. Once established, in vivo cortical par-
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cellation pipelines will hold enormous potential diagnostic potential in neurological disorders.

This should be the ultimate goal of future pipelines.



Part IV

A P P E N D I X



A
E VA L UAT I O N O F C O N C U R R E N T F I E L D M O N I TO R

In the main body of this thesis we explored several aspects of diffusion-based cortical par-

cellation. However diffusion data could not be utilized in this domain without the recent

advancements in hardware and pre-processing that have led to increased image quality.

Diffusion weighted data acquisitions are notoriously susceptible to artifacts due to the long

lasting eddy currents that are introduced by the diffusion encoding gradients . These eddy

currents effect the imaging gradients of the EPI readout train causing spatial distortions

in the DWIs.These artefacts are commonly dealt with using complex post processing algo-

rithms (Jenkinson and Smith 2001; Andersson and Skare 2002), which may also produced

unwanted smoothing effects on the underlying data (Graham et al. 2016) or have time con-

suming aquisition requirements such as the reverse phase encoding requirements of eddy

(Andersson and Sotiropoulos 2016).

An alternative way to eliminate eddy current distortions is to use magnetic field probes

(De Zanche et al. 2008)to measure the dynamic field variations and incorporate this infor-

mation into the image reconstruction pipeline (Barmet et al. 2008; Wilm et al. 2015). In this

work we investigated the effects of a concurrent field monitoring system on HARDI data and

applied the improved HARDI data to cortical parcellation. We showed that the field monitor-

ing improved the HARDI data quality especially in anterior/posterior poles of the brain and

air tissue interfaces. This regional improvement was also clear in the cortical classification

results, where the field monitoring improved the accuracy of the V1/V2 classification by 3%,

compared to 0.5% in the motorstrip.

My contributions to this work were the analysis of the diffusion tensor model residuals

using Explore DTI and performing the cortical parcellation pipeline with binary classification

tests between V1/V2 and M1/S1. Data acquisition, reconstruction, motion correction, DWI

analysis and DT model fitting were conducted by the co-authors.

This work has been previously presented in:
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Lee, Y. et al. (2017). "Investigating the effects of concurrent magnetic field monitoring on

high angular resolution diffusion imaging: application to cortical parcellation." In: Proceed-

ings of the 25th Annual Meeting of International Society for Magnetic Resonance Imaging,

Honolulu, 2017.

M E T H O D S

Data Type
TE

(ms)

TR

(ms)
Flip Angle

Acquisition

Resolution

(mm3)

Reconstructed

Resolution

(mm3)

SENSE/

GRAPPA

HARDI 65 7500 90 2.0x2.0x2.0 1.3x1.3x2.0 3

MPRAGE 3.57 8.4 7 1.0 1.0 none

Table A.1: Acquisition parameters for HARDI and high-resolution MPRAGE image volumes.

DATA A N D P R O C E S S I N G

DATA AC Q U I S I T I O N Using a 3T Philips Achieva scanner and 8 channel receive only

head coil we collected HARDI data with 1 b=0 s/mm2 image and 61 DWIs (b=1000 s/mm2)

on a healthy adult male volunteer under local ethics approval. Full Acquisition parameters

are given in Table A.1. Concurrently, the imaging gradient fields were measured by 16 mag-

netic field probes distributed around the head.

I M AG E R E C O N S T RU C T I O N The HARDI data were reconstructed offline in two different

ways:

1. The 0th and 1st order trajectory from the first slice of b0 image was estimated from

the field probe data and used to reconstruct the b0 and HARDI data (HARDI1st).
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2. Trajectories up to 3rd order were individually estimated for each slice of the b0 image

and DWIs and used to correct for the higher order field fluctuations and eddy currents

from diffusion gradients (HARDI3rd).

The prototype field monitor system resulted in a long acquisition time, leading to un-

avoidable subject head motion between DWIs. As such, the two HARDI datasets were re-

aligned for subject motion separately within Explore DTI.

DATA A N A LY S I S Three different processing pipelines were used to investigate the im-

provement in the HARDI3rd data quality as compared to HARDI1st:

1. We calculated the standard deviation (SD) across the diffusion encoding direction and

compared the signal intensities across the DWIs for individual voxels.

2. We calculated the voxel-wise residuals after fitting the diffusion tensor model to the

data.

3. We carried out cortical area classification. Here, the DT parameters from each HARDI

dataset were sampled onto an existing FreeSurfer surface tessellation of the same vol-

unteer, resulting in a feature vector at each vertex comprised of FA, MD, RI. We then

extracted regions of interest, corresponding to the primary motor (M1) , somatosen-

sory (S1) and visual (V1) areas and secondary (V2) visual area using the Freesurfer

Brodmann Atlas labels. In addition, two ROI corresponding to the M1 and S1 hand

subdivisions, were generated from the group average somatotopic data of 20 sub-

jects. To assess whether improvements in data quality provide higher classification

accuracies, binary classification experiments of the above regions were performed,

using random forest classification with leave one out cross validation.

R E S U LT S

Figure A.1 shows the percentage difference map calculated between the HARDI1st and

HARDI3rd datasets for (a) a b= 0s/mm2 image slice and (b) a b=1000s/mm2 image slice.

The signal intensity across the changing diffusion encoding directions of a voxel near the

subcortical gray/white matter boundary is also shown in (c). We observe differences of
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±10% across the b=1000s/mm2 image slice and differences between the signal intensi-

ties of the two datasets at several diffusion directions for the elected voxel.

Figure A.2 shows the difference between HARDI1st and HARDI3rd standard devia-

tion maps for 6 different slices and the intensity variations from example voxels with large

difference, e.g., edge of the brain and air-tissue interface. The differences in signal intensity

between the two datasets for these voxels is markedly more pronounced than that of the

subcortical voxel in Figure A.1. *
Table*1.&Acquisition&parameters&for&HARDI&and&highOresolution&MPRAGE.&
*
*

*
Figure* 1.&The&percentage&difference&between&HARDI1st&and&HARDI3rd& for&b&=&0&(a)&
and&1000& s/mm2& images&with& diffusion&direction& vector& (0.87,O0.38,O0.33)& (b).& (c)&
The& voxel& signal& intensity& variations& along& the& diffusion& directions& for& HARDI1st&
(red)&and&HARDI3rd&(blue).*
*

Figure A.1: The percentage difference between HARDI1st and HARDI3rd for (a) b = 0 and (b)

b=1000 s/mm2 images at diffusion direction vector (0.87,O0.38,O0.33). (c) The voxel

signal intensity across all diffusion directions for HARDI1st (red) and HARDI3rd (blue)

datasets.

The median ± interquartile ranges of voxel-wise absolute residuals for voxels contain-

ing brain tissue are shown in Figure A.3 for each diffusion direction. HARDI1st has larger

mean residuals than HARDI3rd for 45 of the 60 diffusion directions. The accuracies of the

binary classification experiments are given in Table A.2 as the percentage of correctly clas-
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*
Figure* 2.& The&difference& in& the& SD&maps&of&HARDI1st& and&HARDI3rd& for&6&different&
slices.& Below& each& difference& map& the& signal& intensity& variations& are& given& for& a&
representative&voxels.&
&

Figure A.2: The difference in the SD maps of the HARDI1st and HARDI3rd datasets at 6 different im-

age slices. Below each difference map the signal intensity across all diffusion directions

is displayed for a representative voxel.

sified vertices. HARDI3rd provides an approximate improvement of only 0.5% in the clas-

sification of M1 and S1, for both hemispheres, even within the smaller, less variable hand

subdivisions. The improvement in classification between V1 and V2 is larger, between 2-3%.

This reflects the results of the SD maps (Figure A.2) which show that the largest differences

between the two datasets is within anterior and posterior voxels.
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*
Figure* 3.& Median& ±& interquartiles& range& of& voxelOwise& absolute& residuals& inside&
whole&brain&region.&
&
*

*
Table*2.&The&percentage&of&correctly&classified&vertices,&i.e.,&same&as&ground&truth,&is&
given& for& each& random& forest& binary& classification& test.& M1& and& S1& ground& truth&
labels&were&generated&from&the&FreeSurfer&Brodmann&Atlas&labels&BA3b,&and&BA4a&
respectively.&Similarly,&ground&truth&labels&for&V1&and&V2&were&generated&from&the&
same& atlas& with& threshold& values& of& 0.9& and& 0.7& respectively,& to& create& nonO
overlapping& regions.& Finally,& smaller& regions& for& the&M1& and& S1& hand& areas& were&
defined& in& a& group&average& somatotopic&dataset,&where&data&was&only&available& in&
the&right&hemisphere.*

Figure A.3: Median ± interquartile range of voxel-wise absolute diffusion tensor model residuals

across the whole brain.

ROI
Left Hemisphere Right Hemisphere

HARDI1st HARDI3rd HARDI1st HARDI3rd

M1/S1 88.96 89.47 81.00 81.58

V1/V2 66.83 68.01 64.21 67.21

M1 hand/ S1 hand n/a n/a 67.96 67.25

Table A.2: The percentage of correctly classified vertices in each binary classification test for the

HARDI1st and HARDI3rd datasets.

D I S C U S S I O N

Using higher order image reconstruction, as afforded by the data collected with magnetic

field probes, has benefits for HARDI data quality. The benefits are regionally specific with

the anterior/posterior poles of the brain and air-tissue interface regions benefiting the most.

This regional effect is again clear in the cortical classification results, where the use of the

field probe improves the accuracy of V1/V2 classification by 3%, compared to 0.5% in the
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motor strip.

In voxels containing white matter, the changing diffusion directions modulate the sig-

nal extensively, therefore, calculating the SD may not be a good measure of data quality.

The individually subtracted DWIs between HARDI1st and HARDI3rd highlight this aspect

(Figure A.1). For some diffusion directions the error can be up to 8%.

Note that image artifacts not related to the diffusion-encoding gradients are already

corrected in all images through the use of 0th and 1st order trajectory. This step was taken

to correct for a significant amount of head motion during the long scan time. One corollary of

this processing step may have been a reduction in eddy artefacts; therefore further testing

of the final hardware system, which does not require excessive scan times, will be neces-

sary to confirm the true extent of data quality improvement that the field monitor provides

without additional post processing.

Future work will also need to compare concurrent field monitoring against the current

state-of-the-art processing pipelines, such as Eddy. In addition the effects of the data quality

improvement in other applications, such as tractography and group-level analyses needs to

be investigated. Both of these additional avenues will help determine if the upfront cost of

field monitoring systems is a worthy investment for imaging centres.
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correspondence to the gradient deviation 
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maps show that the majority of the corrections 
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Figure B.1: HCP diffusion data gradient deviation: analysis and correction. (A) 9-component gradi-

ent deviation data, shown for a single image slice. The offsets range from +15% (white)

to -15% (black), and vary spatially. A corrective function was implemented in camino to

modify the gradient information at each voxel by applying the 3-dimensional adjustment

encoded in the 9-components. (B) Demonstration that the gradient deviation data is cor-

rectly sampled onto the cortical surface. As the cortical parcellation pipeline performs

model fitting after surface sampling, the gradient deviation data needed to be sampled

accurately to the surface vertices. (C) Sum of squared differences (SSD) between a diffu-

sion tensor component fit with and without the gradient correction applied. Cortical voxels

are the generally the most severely effected. (D) SSD between the a spherical harmonic

feature calculated with and without the gradient correction.
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Figure B.2: Comparison of the normal FreeSurfer recon-all surface estimation (left) to the HCP

surface estimation (right). The HCP version is reported to provide better surface estima-

tion due to two improvements. (1) It makes use of the high resolution datasets, whereas

the traditional recon-all algorithm down samples data to 1mm3 isotropic. (2) The HCP

version leveraged information in both the T1w and T2w images. (A) Shows the bounding

lines of the white matter (yellow) and pial (green) surface estimations. In general, the

HCP version makes a more conservative estimate of the WM surface, (e.g., red arrow)

and a less conservative estimate of the pial surface (e.g., blue arrow). (B) shows the

cortical thickness estimates for both algorithms, painted using the same scale. Overall,

the HCP algorithm estimates a thicker cortical ribbon.
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all#27#features#

features#1521#

features#154#&#11515#

features#5510#&#16521#

features#22527#

Figure B.3: Group average cortical parcellations using different combinations of spherical harmonic

features. Clusters are ordered within each parcellation such that similar clusters are dis-

played in alike colours. The difference in cluster colours between the different parcella-

tions is arbitrary. Features numbers match those given in chapter 3. Qualitative assess-

ment of these parcellation results demonstrate that none of the combinations provide

as coherent delineations of the areas 3b and 4 as the feature set presented in Chapter

5. The results for features 22-27 are particularly noisy and contain very little area-like

clusters, suggesting that these features are unlikely to add useful information for cortical

area classification.
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c.f# c.s#

14#subjects#

10#subjects#

6#subjects#

1#subject#

3#subjects#

Figure B.4: Unsupervised cortical parcellations using different group sizes. All results were gener-

ated using the five features presented in Chapter 5. Contours show the borders of the

central sulcus (c.s) and the calcarine fissure (c.f). Clusters corresponding to M-I can be

observed by using as few as six subjects. All the results show a distinct cluster at the

upper vertical meridian of V1.
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Figure B.5: Alternative averaging method in which the mode cluster is selected after classification,

rather than surface based averaging of the feature vectors prior to classification. The

result was generated using the 27 spherical harmonic features, and k-means clustering

with k=150.

k#=#40#

k#=#80#

k#=#150#

c.s#

c.f#

Figure B.6: K-means clustering results using different values of k. Results all generated with a 6-

subject average and the full spherical harmonic feature set, containing 27 features. c.s

points to the central sulcus and c.f. points to the calcarine fissure.
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Figure C.1: Optimisation of random forest parameters for whole hemisphere parcellation experi-

ments. The left shows the change in accuracy as the number of trees are increased

with a fixed tree depth. Accuracy improvements are generally small and plateau after

10-20 trees for all of the tested areas, as such 20 trees was deemed more than sufficient

for subsequent classifications. The right shows the change in accuracy as the tree depth

is increased at fixed forest size. A1 vs LBelt was the only test that showed larger differ-

ences, with accuracy dropping off as depth increase, suggesting that overfitting may be

an issue for some areas. a tree depth of 5 was selected for subsequent classifications
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V1"

3b"

V1"

3b"

Figure C.2: Group average classification results for the combination of SH27 and DT9 feature sets.

(A) The parcellation result with the same colour assignment as Figure 6.3B. Again, the

HCP training labels have been overlaid in white. (B) The searchlight cluster coherency

comparison between the combined feature set and the DT9 feature set. (C) The same

as B but with comparison to the SH27 feature set. In both B and C, a lower cluster

count indicates a more spatially coherent parcellation, therefore orange (lower value in

SH27+DT9) indicates that the combined feature set performed better.
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