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Abstract 

Neuroblastoma (NB) is the most common solid tumour in childhood and accounts for 15% 

of childhood cancer deaths. It is known that high-risk NB is highly correlated with MYCN 

amplification. Overexpressed MYCN induces proliferation and cell growth and suppresses 

apoptosis and differentiation pathways in NB cells. Since RNA interference (RNAi) was first 

described, many research groups have investigated the application of RNAi with the use of 

short interfering RNA (siRNA). Our aim is to induce apoptosis and differentiation using 

RNAi as a novel therapeutic strategy for MYCN-amplified NB. Our hypothesis is that 

MYCN silencing by anti-MYCN siRNA induces apoptosis and differentiation at the mRNA 

and protein level. We are encapsulating siRNA with liposome and integrin-receptor targeting 

peptide to deliver MYCN siRNA into NB cells and optimising cationic and anionic 

polyethylene glycol (PEG)ylated receptor-targeting nanocomplexes (RTNs). In this project, 

we also aimed to optimise the methods to store RTNs for a long time in trehalose, which is 

known as a cryoprotectant. As a result, MYCN was silenced by the siRNA at both the 

mRNA and protein levels, and the siRNA-mediated MYCN reduction induced downstream 

effects, such as a neuronal differentiation marker TrkA upregulation and the morphological 

changes of the cells. The anti-MYCN siRNA delivered using RTNs successfully silenced 

MYCN mRNA in vivo as well. We used an NB cell line with non-functional p53 and 

resistance toward p53-pathway dependent anti-cancer drugs, probably induced by multiple 

sessions of chemotherapy and radiotherapy. Therefore, the results are promising for a novel 

therapy for relapse NB with MYCN amplification. In addition, we successfully demonstrated 

that trehalose maintains the biophysical properties and the function of RTNs, consisting of 

either DNA or siRNA at -80 °C. This allows us to make a large amount of RTN for many 

experiments, store it for the long term, and transport it to a place far from the laboratory. 
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 1. Introduction 

1.1. Neuroblastoma 

1.1.1. Neuroblastoma in clinical presentation 

 Neuroblastoma (NB) is one of the most common solid malignant tumours in childhood, and 

its incidence rate is approximately 6-10 per one million infants (Domingo-Fernandez et al. 

2013). Moreover, NB accounts for more than 7% of malignancies and 15% of cancer-related 

mortality in childhood (Nara et al. 2007; Huang et al. 2011; Maris et al. 2007). The outcomes 

are widely diverse: more than 90% patients with low-risk NB are cured, while high-risk NB 

has a poor outcome with less than a 50% survival rate (Whittle et al. 2017). 

1.1.2. Classification of Neuroblastoma 

There are several classification systems for neuroblastoma used in prior period (Matthay et al. 

2016). The international neuroblastoma pathology classification (the Shimada system) was 

based on morphologic features of neuroblastic tumour, which was establishes in 1999 

(Shimada et al. 1999). This classification distinguishes favourable or unfavourable pathology 

groups according to the age of patient, the ability of tumour to differentiate and mitosis-

karyorrhexis index (MKI): the number of cells undergoing mitosis or karyorrhexis per 5000 

cells (low: <100, intermediate: 100-199, high: ≥200) (Shimada et al. 1999).  

 Favourable group: poorly differentiated or differentiating and low or intermediate 

MKI aged <1.5 years, and differentiating and low MKI aged 1.5-5 years.  

 Unfavourable group are: 1) undifferentiated or 2) high MKI tumour aged < 1.5 years, 

1) undifferentiated or poorly differentiated or 2) intermediate or high MKI tumour 

aged 1.5-5 years, and all tumours aged ≥ 5 years (Shimada et al. 1999). 
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International neuroblastoma staging system (INSS) was established in 1988 and revised in 

1993 and has been most widely used in reporting studies last 30 years (Matthay et al. 2016). 

There are six classes in this system: Stage 1, 2A, 2B, 3, 4 and 4S. They are defined as blow: 

  

The international neuroblastoma risk group staging system (INRGSS) was established to 

develop a new clinical staging system for pretreatment NB tumours in 2008. They also 

established a list of image-defined risk factors (radiographic images). The risk is determined 

Stage Definition 

1 Localised tumour with complete gross excision with or without 

minuscule residual disease. Representative ipsilateral nonadherent 

lymph nodes negative to tumour microscopically (nodes attached to 

and removed with the primary tumour may be positive). 

2A Localised tumour with incomplete gross excision; representative 

ipsilateral nonadherent lymph nodes negative to tumour 

microscopically. 

2B Localised tumour with incomplete gross excision; representative 

ipsilateral nonadherent lymph nodes positive to tumour 

microscopically. Enlarged contralateral regional lymph nodes must 

be negative microscopically. 

3 Unresectable unilateral tumour infiltrating across the midline with or 

without regional lymph node involvement; or localised unilateral 

tumour with bilateral extension by infiltration (unresectable) or by 

lymph node involvement. 

4 Any primary tumour with dissemination to distant lymph nodes, 

bone, bone marrow, liver, skin and/or other organs (except as 

defined for Stage 4S).  

4S Localised primary tumour (as defined for Stage 1, 2A or 2B), with 

dissemination limited to skin, liver, and/or bone marrow (limited to 

infant < 1 year of age) 

 Taken from Brodeur et al. (1993) 
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by the image-defined risk factors, and/or whether tumours are local or metastasis (Matthay et 

al. 2016).  There are 4 classes as blow: 

Stage Definition 

L1 Localised tumour not involving vital structure as defined by the list of 

image-defined risk factors and confined to one body compartment. 

L2 Localised tumour with presence of one or more image-defined risk 

factors. 

M Distant metastatic disease (expect MS). 

MS Metastatic disease in children younger than 18 months with metastases 

confined to skin, liver, and/or one marrow. 

Taken from (Monclair et al. 2008) 

INSS determines the risk of NB by surgical resection, lymph node involvement and 

metastatic disease whereas INRGSS uses image study and bone marrow morphology of 

presurgical disease (Lanzkowsky et al. 2016).  

1.1.3. Origin of neuroblastoma 

Most (65%) primary NBs are diagnosed in the adrenal medulla and are associated with the 

sympathetic ganglia (Maris et al. 2007; Maris 2010). It is well-accepted that the origin cells 

of NB arise from the sympathoadrenal lineage of the neural crest during the development 

stage (Fig. 1.1.) (Buechner & Einvik 2012; Cheung & Dyer 2013; Marshall et al. 2014). 

During embryogenesis, the neural crest gives rise to diverse cells, such as enteric neurons, 

Schwann cells, and adrenal medulla (Pichler & Calin 2014). The rest of the primary tumour 

cases arise in the chest, neck, and pelvis (Maris 2010; Cheung & Dyer 2013). Patients with 

bilateral adrenal NBs are rare, which suggests that they may have a predisposing genetic 

lesion and that two independent genetic lesions in the cells of the left and right 

sympathoadrenal lineage induce bilateral tumours (Cheung & Dyer 2013). 
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 1.1.4. Familial neuroblastoma 

Inherited mutations in the signalling pathways, which are important for the development of 

the sympathoadrenal lineage, are associated with familial genetic syndromes characterised 

by predisposition to NB and defeats in development (Cheung & Dyer 2013) although 

familial NB is rare (< 1%-2%) (Mossé et al. 2008). Significant heterogeneity in the clinical 

presentation of NB is seen even in the same family (Mueller & Matthey 2009). The 

predisposition mutation first described was a paired-like homeobox 2b (PHOX2B), and the 

gene encodes a homeodomain transcription factor, which promotes cell-cycle exit and 
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neuronal differentiation (ibid.). Furthermore, PHOX2B plays a crucial role in the 

development of the neural crest-driven autonomic neurons (ibid.). Therefore, it was 

hypothesised that a mutation in the differentiation pathway regulated by PHOX2B in the 

sympathoadrenal lineage of neural crest may contribute to NB tumorigenesis (Cheung & 

Dyer 2013). However, mutations in PHOX2B can explain only a small subset of familial NB 

(Mossé et al. 2009). 

The most common heritable form of NB is caused by a lesion in the anaplastic lymphoma 

receptor tyrosine kinase (ALK) gene (Mossé et al. 2009). It was reported that six out of eight 

Fig. 1.1. Neural crest and neuroblastoma (NB). Neuroblastoma progenitors migrate 

from around the neural tube and neural crest to a lateral region to the dorsal aorta and 

notochord under MYCN and bone morphogenetic protein (BMPs). Blue cells 

represent normal cells, and purple represents precancer cells. Primary sympathetic 

ganglia (PSG) are induced by nerve growth factor (NGF) to mature into terminal 

ganglion cells or to apoptose. The precancer cells obtain death resistance by the 

mutation on MYCN, PHOX2B or ALK, which leads to NB. Taken from Marshall et 

al. (2014). 
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families with three or more affected members had an ALK mutation in the germline cells, 

while the other two families had PHOX2B mutations (Mueller & Matthey 2009). Knudson's 

two hit hypothesis explains how cancer is induced from a mutation on a single allele in a 

germline cell; ‘two hits’ in the DNA are required for tumorigenesis, and the inherited 

mutation is ‘the first hit’ (Payne & Kemp 2005). However, ‘the second hit’ has not yet been 

identified, which leads to NB with the inherited ALK mutation (Matthay et al. 2016). 

Possibilities include a mutation on another ALK allele, amplification of the inherited 

mutated allele or deletion of the normal allele (Matthay et al. 2016). An ALK mutation is 

expressed in the developing sympathoadrenal lineage in the neural crest, and it may control 

the balance of proliferation and differentiation through multiple cellular pathways, such as 

the mitogen-activated protein kinase (MAPK) and RAS-related protein (RAP1) signal 

transcription pathways (Motegi et al. 2004, Schonherr et al. 2010). Furthermore, it was 

reported that PHOX2B regulates ALK gene expression directly (Bachetti et al. 2010). In 

addition, ALK signalling may be crucial for the proliferation of the sympathoadrenal lineage 

during development (Reiff et al. 2011). 

1.1.5. Sporadic neuroblastoma 

In sporadic NB, approximately 6%-10% are caused by somatic ALK-activating mutations 

and 3%-4% carry a high frequency of ALK gene amplification (Cheung & Dyer 2013). In 

addition, activating ALK mutations or amplifications are associated with high-risk NB 

suggesting that ALK is an oncogene in NB. There are several other hallmark genes 

associated with high-risk NB with a poor outcome, including BARD1, LMO1, and LIN28B 

(Table 1.1). However, MYCN amplification is the most common genetic lesion (Brodeur & 

Bagatell 2014). It is known that high-risk NB is strongly associated with MYCN 
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Chr Gene Gene name Status Predisposition Function References 

1p36.31 CHD5 Chromodomain helicase DNA-
binding protein 

Deletion Sporadic Chromatin remodelling and gene transcription Fujita et al. 2008 

1p36.3–

p36.2 

DFF45 DNA fragmentation factor Mutation Sporadic Apoptosis Abel et al. 2004 

1q23.3 DUSP12 Dual specificity phosphatase 12 SNP Sporadic Negatively regulate members of the mitogen-activated protein 

(MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38) 

le Nguyen et al. 2011 

1p36.3 UBE4B Ubiquitination factor E4B Mutation Sporadic Ubiquitination Korona et al. 2003 

2p23 ALK Anaplastic lymphoma receptor 

tyrosine kinase 

Mutation Hereditable Genesis and differentiation of the nervous system Mosse et al. 2008 

2q35 BARD1 BRCA1-assosiated RING domain SNPs Sporadic Interaction with the N-terminal region of BRCA1 Capasso et al. 2009 

4p12 PHOX2B Paired-like homeobox 2B Germline missense or 

frameshift 

Hereditable 

Sporadic 

Transcription factor Mosse et al. 2004 

5q11.2 DDX4 DEAD box polypeptide 4 isoform SNP  Alteration of RNA secondary structure le Nguyen et al. 2011 

5q11.2 IL31RA Interleukin 31 receptor A 

precursor 

SNP  Signalling via activation of STAT-3 and STAT-5 le Nguyen et al. 2011 

6p22 FLJ4418
0 

Long intergenic non-protein 
coding RNA 340 

SNP  – 
 

Maris et al. 2008 

6p22 FLJ2253

6 

Long intergenic non-protein 

coding RNA 340 

SNP  – 

 

Maris et al. 2008 

9p21 CKDNA Cyclin-dependent kinase inhibitor 

2A 

Mutation, deletion Sporadic Cell-cycle G1 control Ghiorzo et al. 2006 

9p23–

p24.3 

PTPRD Protein tyrosine phosphatase, 
receptor type, D 

Microdeletion  Signalling molecules that regulate a variety of cellular 
processes including cell growth, differentiation, mitotic cycle, 

and oncogenic transformation 

Stallings et al. 2006 

11q13 CCND1 Cyclin D1 Amplification, 
rearrangement 

 Proto-oncogene, control of cell-cycle/cellular proliferation Michels et al. 2007 

11p11.2 HSD17B

12 

Hydroxysteroid (17-beta) 

dehydrogenase 12 

SNP  Converts estrone into oestradiol in ovarian tissue le Nguyen et al. 2011 

6q21 LIN28B Lin-28 homolog B SNP  RNA-binding protein, negatively regulates let-7 processing Molenaar et al. 2012 

11p15.4 LMO1 LIM domain only 1 SNP, amplification Sporadic Cysteine-rich transcriptional regulator Wang et al. 2011 

12q24 PTPN11 Protein tyrosine phosphatase, 
non- receptor type 11 

Mutation Sporadic Regulate a variety of cellular processes including cell growth, 
differentiation, mitotic cycle, and oncogenic 

Martinelli et al. 2006 

17q11.2 NF1 Neurofibromin 1 Deletion  Negative regulator of the RAS signal transduction pathway Origone et al. 2003 

17q13.1 P53 Tumour protein p53, TP53 Mutation Sporadic DNA-binding protein Carr-Wilkinson et al. 
2010 

18q21.3 DCC Netrin 1 receptor 

 

Mutation, deletion Sporadic Member of the immunoglobulin superfamily of cell adhesion 

molecules 

Kong et al. 1997 

20p11 SLC24A3 Solute carrier family 24 SNP Sporadic Plasma membrane sodium/calcium exchangers Maris et al. 2008 

Table. 1.1. Mutations relevant to neuroblastoma incidence. Modified from Domingo-Fernandez et al. (2013). 
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 amplification, and it has a poor prognosis, whereas tumours with low-risk retain the ability 

to differentiate and regress spontaneously (Westermark et al. 2011; Brodeur 2003). MYCN 

amplification occurs in approximately 20%-25% of the primary tumours of NB (Gustafson 

& Weiss 2010, Buechner & Einvik 2012; Huang et al. 2011) and is a marker for prognosis, 

and survival rates, which are low in MYCN-amplified NB (Table 1.2) (Seeger et al. 1985; 

Gustafson & Weiss 2010).  

According to the ‘somatic evolution’ hypothesis, cells with somatic mutations on the proto-

oncogenes are subjected to selective pressures such as intercellular competition for resources 

and immunosurveillance (Crespi & Summers 2005). The surviving cells then display the six 

‘hallmark of cancer’: 

 self-sufficiency in cell growth 

 insensitivity or antigrowth signals 

Risk MYCN 

Amplification 

Stage Age 

at Diagnosis 

Overall 

Survival 

(%) 

Current Treatment 

Approach 

Low-risk No 4S < 12 months > 91 ± 2 Supportive care 

No Locoregional ≤ 21 years > 95 Surgery ± 

Chemotherapy 

Intermediate 

risk 

No 4 > 18 months 89 ± 2 Surgery and moderate 

intensity chemotherapy  

High-risk Yes Locoregional ≤ 21 years 53 ± 4 Dose-intensive 

chemotherapy, surgical 

resection of residual 

primary tumour, 

radiation to primary and 

resistant metastatic sites, 

myeloablative therapy 

with autologous stem 

cell rescue, anti-GD2 

immunotherapy and 

13-cis-retinoic acid 

 

Yes 4 < 18 months 29 ± 4 

Yes or no 4 ≥ 18 months 

and ≤ 21 

years 

31 ± 1 

No 4 ≥ 12 years < 10 

Table 1.2. Correlation of MYCN status and risk in NB High-risk NB is strongly 

correlated with MYCN amplification. Adapted from Cheung and Dyer (2013). 
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 evasion of apoptosis (via loss or mutation of goalkeeper genes) 

 limitless of replication ability 

 sustained angiogenesis and  

 tissue invasion and metastasis (Crespi & Summers 2005). 

1.2. MYCN 

1.2.1. MYCN and c-Myc MYCN was first discovered as amplified DNA homology to viral 

myc (v-myc) in NB cell lines in 1983 (Westermark et al. 2011, Huang & Weiss 2015). 

MYCN is a member of the Myc proto-oncogene family that includes c-Myc and MYCL, 

which are evolutionarily well-conserved transcription factors (Westermark et al. 2011; 

Whitfield & Soucek 2012). MYCN is normally located on chromosome 2p24.3 (Schwab et 

al. 1983; Bell et al. 2010), while c-Myc is on 8q24.21. In addition, c-Myc and MYCN are 

highly homologous and several domains, such as the DNA-binding domain, are shared 

between the two proteins (Fig. 1.2a) (Gherardi at al. 2013). MYCN is strictly expressed in 

certain tissues such as Kidney of the developing embryos in humans and mice but is almost 

completely absent in adults, while c- Myc is expressed in all proliferative tissues in adults 

(Westermark et al. 2011). C-Myc and MYCN are likely to be complementary to each other 

during embryonic development. The c-Myc expression occurs in many tissues, except 

neuroepithelium, while MYCN is expressed in all proliferative tissues at high levels (ibid) 

(Fig. 1.2.b).  
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Mutations in MYCN in humans and mice are involved with birth defects, and mouse 

embryos with null MYCN die around E11.5, whereas mice with null c-Myc die around 

E10.5 (Huang & Weiss 2013). Hence, the role of MYCN in embryonic development seems 

to be essential. Similarly, MYCN is initially expressed in the entire cells during neural crest 

development, promoting migration and differentiation (Wakamatsu et al. 1997). Additionally, 

Olsen et al. (2017) reported that they successfully transformed wild-type neural crest cells to 

NB by enforced expression of MYCN in mice. 

 

Fig. 1.2. c-Myc and MYCN: a) MYC (c-Myc) and MYCN share the sequence. b) 

The levels of MYC (c-Myc) and MYCN protein expression in each organ in new-

borns and adults. Taken from Huang and Weiss (2013). 

a 

b 
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1.2.2. Functions of MYCN 

The protein controls the expression of many genes involved in essential cellular processes, 

such as proliferation, cell growth, protein synthesis, metabolism, apoptosis, and 

differentiation (Huang et al. 2011; Feng et al. 2010; Nara et al. 2007; Westermark et al. 

2011). MYCN consists of a DNA-binding, basic-region, helix-loop-helix/leucine-zipper 

(bHLHZip), MYC box (MB), and transactivation domain (TAD) (Fig. 1.3.a). The C-

terminus bHLHZip domain heterodimerises with its partner protein, Myc-associated factor X 

(MAX), to form a transcriptional activator that binds to the enhancer box (E-box) sequence: 

5’-CACGTG-3’ (Westermark et al. 2011), while c-Myc can also bind non-canonical 5’-

CANNTG-3’ (Bell et al. 2010). 

Recent studies showed that MYC may induce epigenetic changes at target regions by 

relaxing the nucleosomal barrier, which leads to enhanced transcription (He et al. 2013). 

MYC recruits transcription co-factors, such as complexes containing transcription domain-

associated protein (TRRAP), with either tat-interactive protein 60 kDa (TIP60) or GCN5, 

which are histone acetyl transferase (HAT), or acetyltransferase, such as p300/CBP (ibid) 

(Fig. 1.3.B left). HAT or p300/CBP, recruited by MYC via TRRAP, acrylates histone 

components of target loci. The nucleosomal barrier is then relaxed by acetylation making 

DNA more accessible and the nucleosome more permissive for transcription (He et al. 2013). 

It was reported that MYCN binding to GCN5 have similar transcriptional functions in 

neuronal stem cells (Martinez-Cordeno et al. 2012). Furthermore, it has also been shown that 

MYC can bind to TATA-binding protein (TBP: a member of the transcriptional pre-initiation 

complex), which suggests that MYC can recruit RNA Pol II machinery to activate 

transcription (Fig. 1.3.B, left) (He at al. 2012; Westermark et al. 2011).  
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Interestingly, P300/CBP, GCN5 and Tip60 all acetylate MYC and acetylated MYC protein is 

stabilised by prevention of ubiquitin-mediated degradation. Hence HAT is recruited by MYC 

not only for acetylation of target loci but also for stabilisation of MYC function (He et al. 

2013). In addition, it was revealed in neural progenitors that MYC stimulates transcription of 

GCN5, which gives MYC increased transcriptional activity and the protein stability 

(Knoepfler et al. 2006). 

It was shown that MYCN cannot initiate de novo transcription although it is necessary to 

maintain nucleosome permissiveness for transcription (Knoepfler et al. 2006). In NB, it was 

found that MYCN bwas bound to genes which were already transcriptionally activated, and 

MYCN was also not involved with de novo transcription (Cotterman et al. 2008). It is 

consistent with MYC binding at or near transcription start sites (TSS), and MYC’s function 

to amplify transcription of genes activated transcriptionally (Nie et al. 2012; Lin et al. 2012). 

Chipumuro et al. (2014) reported that MYCN-driven global transcription amplification in 

NB was supressed by cyclin-dependent kinase 7 (CDK7) inhibition without systemic toxicity.  

Reversely, the MYC antagonist MAD was shown to recruits a transcription repressor, Sin3, 

which then binds to histone deacethylases (HDACs), leading to histone deacetylation and 

silencing of the target loci. In another model, MYCN binds to other transcriptional factors, 

such as Miz-1 and SP-1, on the initiator element and so repress gene expression (Fig. 1b, 

right). The MYC/MAX dimer recruits HDACs and DNA methylase 3a (Dnmt3a), which 

inhibit transcription induced by Miz-1/SP-1 (Westermark et al. 2011). 
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Fig. 1.3. MYCN structure and function A) the structure of MYCN and the partner protein MAX. B) the function of 

MYCN/MAX. They regulate multiple intracellular processes. Taken from Westermark et al. (2011). 
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Recently, it was found that MYC transcriptionally amplifies epigenetic modifiers with 

repressive activities. For instance, it has been shown that MYC stumulates the polycomb 

repressive complex 2 (PRC2) such as embryotic ectoderm development (Eed), suppressor of 

zeste 12 (Suz12) and histone methyltransferase enhancer of zeste homolog 2 (EZH2) in 

embryotic stem cells (He et al. 2013).  

Corvetta et al. (2013) reported that a repression complex of MYCN and EZH2 on the 

promoter of the tumour suppressor gene CLU leads to tumorigenesis in NB. Wang et al. 

(2012) also showed that high-levels of EZH2, which may be dysregulated by several factors 

including MYCN, increased the copy number of Ch.7 or loss of tumour suppressor miR-101 

located on 1p36 in NB. The loss of miR-101 by co-overexpression of MYC and EZH2 has 

been found in hepatocellular carcinoma (Wang et al. 2014). In addition, Dardenne et al. 

(2016) also reported that interaction of overexpressed MYCN and EZH2 induces 

neuroendocrine prostate cancer. Moreover, MYCN elevates B cell-specific Maloney murine 

leukaemia virus integration site (BMI1) expression in NB cell lines and NB tumours (Ochiai 

et al. 2010). It has shown that BMI1 represses tumour suppressor genes such as p53 via 

stimulation of RING1A/B E3 ligase targeting p53, which leads tumorigenesis.   

1.2.3. Stability and degradation of MYCN 

Tight control of the MYCN function is essential for modulating cellular mechanisms 

(Beltran 2014). There are many mechanisms that regulate MYCN, and one such mechanism 

is to control the MYCN turnover, which is the balance between the cell-cycle rate and 

MYCN degradation (ibid.). The MYCN protein has a half-life of approximately 20 to 30 

minutes in normal cells, while the MAX expression is abundant and consistent in quiescent 

and proliferation cells (Lu et al. 2003). On the other hand, the protein is extremely stable 

(about 100 times more than normal) in some amplified NB tumour cell lines which ensures 
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the cells remain in cell cycles and do not go into the G0 phase (Bonvini et al. 1998; Beltran 

2014). The extraordinary stability of the MYCN protein in NB with MYCN amplification 

may be correlated with co-amplification and co-expression of NCYM (Suenaga et al. 2014) 

and co-amplified AURKA (Otto et al. 2009). 

MYCN protein is degraded by F-box and WD repeat domain-containing 7 (Fbxw7a), 

ubiquitin ligase, via the ubiquitin-proteasome system (Sjostrom et al. 2005; Gustafson & 

Weiss 2010). This occurs during the mitotic phase after the cell-cycle kinase cyclin B/CDK1 

and glycogen synthase kinase 3β (GSK3β) phosphorylate MYCN proteinat serine 62 (S62) 

and threonine 58 (T58), respectively (Sjostrom et al. 2005). Additionally, PP2A 

dephosphorylates the S62 phosphate in the Pin1-mediated process (Gustafson & Weiss 2010). 

Because AKT can inactivate GSK3β, MYCN is stabilised by the PI3K/AKT pathway 

(Barone et al. 2013; Chesler et al. 2006) (Fig. 1.4.). The AKT/PI3K pathway is activated by 

receptor tyrosine kinases (RTKs), such as ALK, Trk, and IGF 1R. The RTKs are activated 

by binding ligands or by mutations, causing continuous activation including activated ALK 

(Gustafson & Weiss 2010). Furthermore, MYCN is normally located on chromosome 2p24.3 

(Schwab et al. 1983; Bell et al. 2010) while ALK is linked to MYCN on chromosome 2p23 

(Gustafson & Weiss 2010). There is no evidence to show the direct connection between 

ALK and MYCN on the transcription level. However, it is likely that activated ALK and 

other RTKs are involved with the stabilisation of MYCN (Barone et al. 2013, Gustafson & 

Weiss 2010). 

AKT can also activate mammalian target of rapamycin (mTOR) indirectly through several 

signalling mechanisms. The mTOR forms a complex called mTORC1, and the complex 

inhibits PP2A by phosphorylation, which contributes to MYCN activation (Gustafson & 

Weiss 2010). Similarly, Aurora A kinase (AURKA), which is a mitosis kinase and is usually  
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Fig. 1.4. Regulators of MYCN After GSK3β phosphorylate MYCN, Fbw7 (ubiquitin 

ligase) degrades the protein via the ubiquitin-proteasome system. However, 

PI3K/AKT pathway and AURKA stabilise MYCN. Taken from Gustafson & Weiss 

(2010). 
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expressed during G1 and mitosis, inhibits Fbxw7-mediated degradation and stabilises 

MYCN. Overexpression and amplification of AURKA often occurs in MYCN-amplified NB. 

The two proteins cooperate to promote tumour proliferation and oncogenic activity (Otto et 

al. 2009). Brockmann et al. (2013) reported that inhibition of AURKA triggers degradation 

of MYCN in NB. Furthermore, when the MAPK pathway is hyperactivated by activation of 

H-RAS through an oncogenic RAS mutation and other oncoproteins, the pathway induces 

MYCN accumulation by accelerating MYCN translation (Kapeli & Hulin 2011). 

Suenaga et al. (2014) reported that NCYM, which is the Cis-antisense gene of MYCN, is co-

expressed and co-amplified with MYCN in some human primary NB and the gene codes a 

protein which inhibits MYCN phosphorylation by GSK3β, and so promotes MYCN protein 

stabilisation (Suenaga et al. 2014). However, Zhao et al. (2016) reported that they could not 

identify the NCYM protein, with either of the two commercially available anti-NCYM 

antibodies. In addition, Duffy et al. (2013) stated that GSK3β inhibitors reduce the MYCN 

mRNA levels and NB cell viability. The MYCN phosphorylation by GSK3β can stabilise 

MYCN (Duffy et al. 2013). 

1.2.4. Transcription of MYCN 

Even though MYCN has been investigated for decades, the main transcription factors and 

underlying essential mechanisms for MYCN expression in NB remain poorly understood 

(Zhao et al. 2016). Despite the findings of transcription factors for MYCN expression in the 

other cancer cells, such as specificity protein 1 (Sp-1) in cervical cancer (Inge et al. 2002), 

they are not sufficient for the activation of MYCN transcription in NB (Kramps et al. 2004). 

Furthermore, Suenaga et al. (2009) reported that the MYCN promoter was activated by the 

MYCN protein through the direct recruitment to intron 1 on the MYCN gene containing two 

putative E-box sites. 
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Recently, evidence has shown that noncoding RNA plays a critical role in pathogenesis in 

NB. Yu et al. (2009), for example, reported that noncoding RNA (ncRNA) expressed in 

aggressive NB (ncRAN), which is mapped on chromosome 17q25.1, is associated with a 

poor clinical outcome. Another example is that the loss of lncRNA NB-associated transcript-

1 (NBT-1) leads to NB progression via increasing proliferation and suppressing 

differentiation of neuronal precursors (Pandey et al. 2014). 

Importantly, Liu et al. (2016) reported that a long noncoding RNA transcribed from -14 kb 

upstream from the MYCN transcription start site (lncUSMycN) is overexpressed in NB 

tissues and cell lines with MYCN amplification, and it upregulates NCYM by activating the 
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Fig. 1.5. MYCN is upregulated by NCYM RNA-binding protein NonO lncUSMycN 

upregulates NCYM RNA expression. Modified from Suenaga et al. (2014) and Liu et 

al. (2016). 
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transcription of the NCYM gene. The NCYM RNA forms a complex with NonO, RNA-

binding protein (Fig. 1.5.), and they upregulate the expression of MYCN mRNA. In addition, 

Suenaga et al. (2014) mentioned that MYCN activate the NCYM transcription. 

1.2.5. MYCN and target genes 

Many genes have been identified as downstream targets of MYCN (Fig. 1.6.), but it is still 

not clear how these genes are regulated directly or indirectly (Valentijn et al. 2012); for 

example:  

 MDM2 (negative regulator of p53, upregulated by MYCN),  

 p53 (tumour suppressor, upregulated) (Slack et al. 2005),  

 the neuronal-leucine rich repeat-1 (NLRR1: transmembrane protein with unknown 

function, upregulated),  

 S-phase associated kinase 2 (SKP2; a component of the ubiquitin ligase complex, 

upregulated),  

 DKK3/Wnt/β-catenin pathway (DKK3, supressing Wnt: downregulated, Wnt/β-

catenin pathway, stimulating expression of target genes: upregulated) (Koppen et al. 

2007), and  

 PI3K/AKT/mTOR pathway (inducing S6 kinase and elF4E, initiation factor of 

eukaryotic translation) (Valentijn et al. 2012; Bell et al. 2010, Beltran 2014). 

 There are studies published by several groups that MYCN expression at higher levels also 

triggers not only proliferation and cell growth, but also apoptosis (Gustafson & Weiss 2010). 

Gustafson and Weiss (2010) pointed out that, if the hypothesis is true, then it contradicts the 
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hypothesis that MYCN amplification is strongly correlated with high-risk NB. The inhibition 

mechanisms of apoptosis as a contributor to MYCN-mediated transformation are complex 

and poorly understood (Gustafson & Weiss 2010). 

Furthermore, many groups have observed the effect of MYCN silencing in MYCN-amplified 

NB using antisense or RNA interference, and the results are various and appear to depend 

upon the experimental condition, such as the cell lines. Overall, the reduction of MYCN 

expression is regarded to induce cell arrest in the G1 phase of the cell cycle, differentiation, 

and/or apoptosis (Kang et al. 2006; Westermark et al. 2011; Bell et al. 2010). Conversely, 

the increase of MYCN expression triggers the re-entry of the quiescent cells into the cell 

Fig. 1.6.  Proteins regulated by MYCN, which control various proteins/pathways 

Taken from Huang and Weiss (2013). 
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cycle, which notably shorten the G1 phase and decrease the cell attachment to the 

extracellular matrix (Bell et al. 2010; Gherardi et al. 2013). 

Additionally, high levels of MYCN help the development of NB in terms of proliferation, 

whereas normal cells can be differentiated. If MYCN is inhibited, then NBs have reduced 

functions of proliferation and cell growth and eventually cannot survive (Soucek & Evan 

2010). Differentiation and apoptosis pathways are important in therapeutics for NB. The 

details are below. 

1.2.5.1. Differentiation 

NB is thought to arise originally from the neural crest cells and thereby can self-renew and 

maintain pluripotency. It is likely that MYCN is associated with the regulation of these stem 

cell-like properties because c-Myc can be replaced with MYCN in reprogramming 

fibroblasts into iPS cells (Nakagawa et al. 2010). Hence, MYCN (and c-Myc) promotes ‘a 

stem-like state’ because it is likely to block differentiation pathways and induce self-renewal 

and pluripotency factors (Huang & Weiss 2013). The pluripotency genes KLF2, KLF4, and 

LIN28B are upregulated by MYCN (Cotterman & Knoepfler 2009). In addition, endosomal 

and mesodermal differentiation markers (BMP4 and GATA6) are upregulated in MYCN 

knockout mice (Varlakhanova et al. 2010). Similarly, differentiation proteins, such as cyclin-

dependent kinase-like 5 (CDKL5) (Valli et al. 2012) and tissue transglutaminase (TG2) (Liu 

et al. 2007), are supressed by MYCN. Valli et al. (2012) mentioned that CDKL5 stops the 

cell cycle and promotes differentiation after MYCN knockdown. 

Similarly, expression of MYCN downregulates cell division control protein 42 (CDC42), a 

G-protein involved in a cytoskeleton remodelling pathway, and upregulates nm23 (the 

nucleotide diphosphate kinase, nm23-H1:NME1 and nm23-H2:NME2), which also 

downregulates CDC42. This interaction inhibits differentiation of MYCN-amplified NB 
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(Valentijn et al. 2005; Bell et al. 2010). Additionally, MYCN upregulates PAX3, which 

encodes a transcription factor that is expressed in active progenitor cells during early 

embryogenesis; the PAX3 expression is subsequently downregulated during neural 

differentiation (Harris et al. 2002). 

Tropomyosin receptor kinase A (TrkA) is a member of the tyrosine receptor kinase family, 

along with TrkB and TrkC (Westermark et al. 2011). Moreover, TrkA is a high affinity NGF 

receptor, while TrkB is a brain-derived neurotropic factor (BDNF), and TrkC is 

neurotrophin-3 (ibid.). In addition, TrkA is predominantly expressed at a later stage in 

development, and it is likely that it plays a crucial role in the complete differentiation of 

sympathetic neurons in normal cells (Dixon & McKinnon 1994). When TrkA is co-

expressed with neurotrophin receptor p75NTR, differentiation is enhanced (Ho et al. 2011). 

Iraci et al. (2011) reported that TrkA and p75NTR are downregulated by MYCN/SP-1/MIZ-

1 repression complex recruiting HDAC1, which affects malignancy of NB by inhibiting the 

cell response to NGF. Hence, the expression level of TrkA and p75NTR is normally low in 

aggressive MYCN-amplified NB (Iraci et al. 2011). 

1.2.5.2. Apoptosis 

The protein p53 is widely known as a proapoptotic protein, but it is rare to find p53 

mutations in primary NB tumours (Westermark et al. 2011; Huang et al. 2011). MYCN 

upregulates both proliferation and apoptosis (Fulda et al. 2000). Hence, the outcome is 

dependent upon the status of apoptotic factors cooperating with MYCN, such as BCL2 (the 

anti-apoptotic protein) (Strasser et al. 1990) or p53 (Chesler et al. 2008). Therefore, MYCN 

is likely to cooperate with suppressors of p53 signalling, such as miRNA-380-5p (Swarbrick 

et al. 2010), CUL7 (Kim et al. 2007), BMI1 (Huang et al. 2011), H-Twist (Valsesia-

Wittmann et al. 2004), and MDM2 (Slack et al. 2005). Interestingly MDM2, an E3 ubiquitin 
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ligase, has an important role in the apoptosis pathway in NB by promoting survival by 

ubiquitination and degradation of p53 (Fig. 1.5.). It is also thought that MDM2 binds the 

AU-rich elements of the 3’UTR of MYCN mRNA, thereby stabilising the mRNA (Gu et al. 

2012). The MYCN can trigger transcription of TP53 and MDM2, and MDM2 is a target of 

p53-mediated transcription (Slack et al. 2005; Chen et al. 2010). 

In contrast, mutations in the p53 pathway are found in NB at relapse, which may occur in 

response to cytotoxic chemotherapy. Chemotherapy initially has efficacy in the treatment of 

MYCN-amplified NB, partly because of MYCN-mediated p53 activation (Huang & Weiss 

2013). Eventually, these tumours may acquire resistance to the therapy as a result of 

mutations that inactivate p53 (ibid.). The MYCN and MDM2 upregulate each other, thereby 

conferring a survival advantage to NB, leading to relapse (ibid.). 

Similarly, several groups found that the promoter of apoptotic initiator caspase-8 is 

methylated (Casciano et al. 2004; Banelli et al. 2005; Lazcoz et al. 2006), and it is likely that 

it is a mechanism of apoptosis evasion in NB with MYCN amplification. Loss of caspase-8 

contributes resistance to tumour necrosis factor-related, apoptosis-inducing, ligand-induced 

apoptosis in NB cells (Eggert et al. 2001).  

Furthermore, prosurvival signalling cascades are constitutively activated in MYCN-

amplified NB, while proapoptotic signalling is supressed. For instance, activation of 

tropomyosin receptor kinase (TrkB), the same group member as TrkA, is frequently seen in 

MYCN-amplified NB, while the expression level is low in non-MYCN-amplified NB 

(Nakagawara et al. 1993). The TrkB activation is associated with resistance to chemotherapy 

and can upregulate MYCN mRNA. This may imply that TrkB activation is associated with 

MYCN-amplified NB (Ho et al. 2002; Dewitt et al. 2013). 
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1.2.6. Current treatment of neuroblastoma with MYCN amplification 

Like other cancers, the treatment methods used for NB therapy include surgery, 

chemotherapy, monoclonal antibody treatment, and radiotherapy (Fig. 1.2.) (Maris et al. 

2007; Macmillan Cancer Support website). The NB tumours vary remarkably based upon 

their stage and biological features (Murphy & Quaglia 2014). Treatment for patients at stage 

L1 (low-risk) is surgery alone, or surgery and chemotherapy. For patients at stage L2 

(intermediate-risk), chemotherapy and surgery are usually necessary, and radiotherapy may 

be needed as well. There are 4 parts of treatment for patients at stage 4; the first part is 

Fig. 1.7. MYCN-p53-MDM2 relationship in MYCN amplified NB. A&B) 

MYCN upregulates MDM2 and p53, while MDM2 downregulates p53. C) 

Chemotherapy has efficacy as a p53-dependent apoptosis inducer at the initial stage 

of the therapy. D) At relapse, p53 or p53 pathways are resistant to chemotherapy 

due to mutation. Taken from Huang and Weiss (2013). 



47 
 

chemotherapy, the second part is surgery to remove the main tumour, followed by 

radiotherapy to the site of the main tumour. The third is high dose chemotherapy with a stem 

cell transplant. The final part is maintenance treatment where patients receive  13-cis retinoic 

acid or immunotherapy (Cancer Research UK website). 

Localised NB generally has favourable biological features, and surgery alone successfully 

treats them (Maris et al. 2007). Even MYCN-amplified NB could achieve remission for a 

long time after surgery alone if it is localised (ibid.). As chemotherapy, 13-cis-retinotic acid 

(RA) has become a standard of therapy in high-risk NB after neuronal differentiation by 

retinoid was shown in vitro (Cheung & Dyer 2013). However, RA resistance can be several 

NB cells have obtained, which leads to relapse (Clark et al. 2013). 

Similarly, anti-GD2 monoclonal antibody has become a standard of care for patients with 

high-risk NB since 2010. The GD2 is expressed in mature neurons and during foetal 

development and across NB cells with high density, membrane proximity, and homogeneity. 

However, the dose is constrained due to the side effects and its efficacy has been observed 

only in minimal residue disease and has hardly been seen in high-risk NB (Cheung & Dyer 

2013). Anti-GD2 monoclonal antibody induces dephosphorylation of protein tyrosine kinase 

2 (PTK2), supresses the PI3K/AKT pathway and triggers apoptosis (Sait & Modak 2017). 

Sait & Modak (2017) reported that the progression free survival rate for 5 years of high-risk 

neuroblastoma patients who received anti-GD2 antibody (3F8) alone was 44%, 3F8 

combined with intravenous granulocyte-macrophage colony-stimulating factor (GM-CSF) 

and 13-cis-retinotic acid (CRA) was 56%, and 3F8 combined with subcutaneous GM-CSF 

CRS was 62%.  

In short, overexpression of MYCN induces proliferation and cell growth and supresses 

apoptosis and differentiation, which contributes to NB tumorigenesis. In addition, there is no 
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therapy that demonstrates efficacy to cure patients with MYCN-amplified NB. Therefore, 

MYCN might be a promising target for treatment against high-risk NB, and gene therapy 

silencing of MYCN by RNA interference (RNAi) can be a novel therapy for NBs. 

1.3. Gene Therapy 

1.3.1. RNA interference 

Fire et al. (1998) first discovered RNAi as double-stranded RNA that enabled gene silencing 

in the nematode worm Caenorhabditis elegans. After that, small interfering RNA (siRNA) 

was identified as 25-nucleotide antisense RNA in plants by Hamilton and Baulcombe (1999). 

Then, Elbashir et al. (2001) reported that 21-nt double-stranded RNA mediates RNAi in 

mammalian cells in vitro. 

RNAi is a naturally occurring mechanism to regulate genes in most eukaryotic cells and uses 

a small double-strand RNA (dsRNA) molecule from endogenous or exogenous origin to 

homology-dependently control gene activity (Aagaad & Rossi 2007; Almeida et al. 2005). In 

addition, siRNA is 21-22 nt long dsRNA that is two nucleotides longer at its 3’ side, 

allowing it to be recognised by the enzymatic machinery of RNAi that evolutionally induces 

homology-independent degradation of the target mRNA (ibid.). The siRNA is generated by 

ribonuclease digest of dsRNA in the Dicer integrative complex (Zhang et al. 2004; Videira et 

al. 2014) (Fig. 1.8.). The siRNA is subsequently integrated into the RNAi-induced silencing 

complex (RISC) consisting of Argonaute 2 (Ago2), Dicer, and dsRBP. It is known that Dicer 

has two partners, double-stranded RNA-binding proteins (dsRBP): transactivation response 

RNA-binding protein (TRBP) and protein activator of PKR (PATC). When Ago2 forms a 

complex with Dicer and TRBP or PATC, the complex can select the predicted strand, while 

Ago2 alone uses the guide and passenger RNAs equally (Noland & Doudna 2013).  
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The RISC complex is activated to recognise homologous mRNA sequences when Dicer 

cleaves the sense strand (the passenger strand), allowing the remaining antisense strand to 

become the guide strand within the RISC complex. The RISC comprising the guide siRNA 

binds the complementary sequence of the target mRNA, allowing the mRNA to be degraded 

or cleaved (Videira et al. 2014; Singh et al. 2009; Aagaad & Rossi 2007). The RISC 

comprising the guide siRNA binds mRNA and degrades or cleaves the mRNA again 

(Whiteheat et al. 2009). 

 

Fig. 1.8. RNAi mechanism mediated by siRNA Taken from Dana et al. (2017) 
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1.3.2. miRNA and siRNA 

During the last 20 years, ncRNA including siRNA and microRNA (miRNA) appears to play 

an important role in regulation of cellular processes (Buechner & Einvik 2012). It is 

observed that dysregulation of ncRNA is associated with several diseases, including cancer 

and cardiovascular and developmental disorders (Esteller 2011; Taft et al. 2010). Moreover, 

miRNA and siRNA have been widely investigated because of the therapeutic potential to 

regulate target genes and proteins, predisposing diseases including cancers and infections 

(Lam et al. 2015). The physicochemical properties of siRNA and miRNA are similar, while 

their functions are distinct (Table 1.3.). 

Synthetic single RNAs (miRNA) can inhibit the activity of the endogenous miRNA (miRNA 

antagonist). In addition, synthetic miRNA can mimic endogenous miRNA functions, which 

leads to mRNA degradation and gene silencing (miRNA mimic) (Bader et al. 2010). The 

main difference between siRNA and miRNA for therapeutic purpose is that siRNA targets 

one mRNA and binds mRNA, whose sequence is fully complementary, while miRNA 

targets several mRNAs. The sequence is partially complementary to the targeted mRNA 

(ibid.). Therefore, siRNA more specifically silences the targeted mRNA.  

1.3.3. Off-target effects of siRNA 

However, siRNA off-target effects have been observed. There are two types of siRNA off-

target effects: miRNA-like off-target effects and innate immune response (Jackson & Linsley 

2010). In miRNA-like off-target effects, the guide strand of siRNA imperfectly matches the  
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region of 3’ UTRs of these transcripts with 5’ of the siRNA, which leads to translation arrest 

or mRNA cleavage (ibid.). It was revealed that siRNA downregulated a set of transcripts 

which are enriched for transcripts with 3’ UTR complementary to the 5’ end of the 

corresponding siRNA guide strand (Jackson et al. 2006; Birmingham et al. 2006). Therefore, 

the sequence of 5’ end of siRNA is important to avoid off-target effect silencing. In addition, 

it is likely that it is correlated to the siRNA concentration; reducing siRNA concentration 

minimises the miRNA-like off-target effects (Dharmacon).  

Chemically modified siRNA is also available in the market (Dharmacon). Broering et al. 

(2013) reported that 2’-O-methylation on the siRNA backbone largely abolishes toll-like 

receptor-mediated activation of the hepatic immune system. It has been shown that 2’-O-

deoxy or 2’-fluoro modifications do not have any effect on TLR7/8 activation (Jung et al. 

2015).  

The other off-target effect is the innate immune response. The siRNA or the vehicles 

delivering siRNA, such as cationic lipids, are sensed by toll-like receptors (TLRs) expressed 

by mammalian immune cells, which detect pathogen-associated molecular patterns (Judge & 

MacLachlan 2008; Schlee et al. 2006). There are several types of TLRs which can detect 

Table. 1.3. Comparison of siRNA and miRNA Taken from Lam et al. 
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RNAs: TLR3, TLR7, and TRL8. They move between the endoplasmic reticulum and 

intracellular compartments. The TLRs stimulate interferons, tumour necrosis factor alpha 

(TNFα), and interlukin-6 (IL-6) and reduce gene expression through the recognition of viral 

infection (Jackson & Linsley 2010). It is likely that siRNA can activate TLR3 signalling, but 

TLR3 is not a major mechanism of siRNA-activated immune cells (Kariko et al. 2004; Sledz 

et al. 2003). The siRNA seems to activate TLR7 and TLR8 and to trigger the production of 

pro-inflammatory cytokines in monocytes and myeloid dendritic cells or the production of 

interferon α (INFα) in plasmacytoid dendritic cells activated by siRNA (Jackson & Linsley 

2010). 

The immune response toward siRNAs is dependent upon the cell types due to the selective 

expression of TLRs (Hornung et al. 2005; Judge et al. 2005; Sioud 2005). Because not all 

sequences are detected by TLRs, the sequence of siRNA may be important to avoid the off-

target effect of the innate immune response as well (Jackson & Linsley 2010). Judge et al. 

(2005) reported that siRNA or single-stranded RNA containing poly(U) or GU- rich 

sequence such ‘-UGUGU-‘ can activate inflammatory response.  They showed U to C 

substitutions on 2 bases reduces activation of inflammation but it is likely that not all 

inflammatory sequences have been identified (Jackson & Linsley 2010).  

1.4. Receptor-targeting Nanoparticles (RTNs) 

1.4.1. The siRNA delivery by RTNs 

Due to its negative charge, naked siRNA cannot be taken into negatively charged cell plasma 

membranes. Xu et al. (2016) mentioned that siRNA delivery using nanoparticles requires: 1) 

protection of siRNA in the blood and no interaction with proteins in the blood for prolonged 

circulation, 2) cellular internalisation, and 3) siRNA release to cytoplasm and protection of 

siRNA from endosomal degradation. 
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In addition, in vivo, there is a size limitation due to the size of the normal endothelial 

structure; therefore, RTNs should be smaller than 150 nm to pass through the vascular 

endothelial barrier (Fig. 1.10. Lower). On the other hand, the structure of blood vessels is 

altered at the inflammation and solid tumour sites; the vasculature and endothelial structure 

become ‘leaky’. Particles less than 500 nm can cross the wall and have enhanced permeation 

and retention (called the EPR effect). This effect permits RTNs delivered into the 

bloodstream to be extravasated into targeted tumour cells (Li & Szoka 2007). 

Previous studies on gene and drug delivery have focused on accumulation and penetration 

via the EPR effects. However, recent studies have revealed that accumulation in the solid 

tumour does not enhance its therapeutic efficacy (Xu et al. 2016) probably because of the 

poor gene and drug release (Zhao et al. 2013). 

We have developed cationic and anionic receptor-targeting nanocomplexes (RTNs) 

consisting of lipids, receptor-targeting peptide, and nucleic acid (i.e. plasmid DNA, mRNA, 

or siRNA) to deliver siRNA into NB cells (Fig. 1.9.). Nanoparticles, consisting of lipids and 

receptor-targeting peptide, allow siRNA to be delivered into targeted cells. 

Fig. 1.9. Structure of receptor-targeting nanocomplexes (RTNs) Modified from Hart 

(2010). 
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Fig. 1.10. Mechanism of gene silencing by siRNA delivered by RTNs  

Upper)      endothelial cell,       RTNs,          siRNA, overexpressed receptor. Taken 

from  Gomes-Da-Silve et al. (2012). Lower) Healthy blood vessel structure and altered 

‘leaky’ endothelial structure in tumour sites. It allows nanocomplexes to pass through the 

blood vessel barrier and to be delivered into tumour cells. Taken from Spencer et al. (2015). 
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Once the targeting peptides of RTNs bind to specific receptors on the targeted cell surface, 

they are internalised via receptor-mediated endocytosis or clathrin-coated pits. The particles 

start to be degraded within the endosome and most lipids of the RTNs fuse with the lipid of 

the endosome. Then, peptide/siRNA complexes are released to the cytoplasm and RNAi by 

siRNA processes (Hart 2010) (Fig. 1.10. Upper). 

Baetlett and Davis (2006) mentioned that the duration of gene silencing by RNAi is 

dependent upon the doubling time of the cells presumably because the siRNA is diluted. 

Hence, gene silencing in non-dividing cells lasts for a month or more both in vitro and vivo 

(Zuckerman & Davis 2015). 

There are several advantages to using non-viral nanoparticles; for instance, a wide variety of 

formulation can be created. Moreover, RTNs can package any type of nucleic acid and drug 

and can deliver several nucleic acids and drugs at the same time (Hart 2010). 

1.4.2. The siRNA for therapeutics for cancers in clinical trials 

Koldehoff et al. (2007) first reported that their research group systemically treated a single 

patient with chronic myeloid leukaemia (CML) with anti-bcr-abl (a fusion gene found in 

most CML) siRNA using anionic lipid nanoparticles. As a result, the siRNA remarkably 

achieved more than 90% gene silencing and induced apoptosis in CML cells; however, after 

the second dose, the silencing efficiency was not as significant as the first dose, even though 

the dose was increased (Koldehoff et al. 2007). Numerous studies using siRNA delivered by 

lipid-based nanocomplexes have been brought to clinical trials. The most advanced study 

using siRNA encapsulated by lipid nanoparticles is inhibiting transthyretin in transthyretin 

amyloidosis, and it is now in Phase III (Zuckerman & Davis 2015). 
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In cancer studies on clinical trials, anti-KRAS siRNA delivered by biodegradable polymer 

matrix (siG12D LODER) for pancreatic cancer is now in phase II, which is the most 

advanced siRNA study for cancer (NCT0676259, not yet recruiting). The siG12D LODER is 

for locally advanced pancreatic cancer and is combined with chemotherapy (Golan et al. 

2015). In systemic therapy using liposomes, the most advanced clinical trials are anti-PLK1 

siRNA for neuroendocrine tumours (TKM 080301) and adrenocortical carcinoma and anti-

PKN3 for advanced or metastasis pancreatic cancer (Atu027) on Phase I/II. Non-targeting 

lipid nanoparticles (Atu027, consisting of three cationic lipids) were employed and have 

been completed in 2016 (Lam et al. 2015). Their silencing efficiency was not published. A 

summary of siRNA-based therapeutics in clinical trials is shown in Table 1.4. 

1.4.3. Toxicity of lipid-based vectors 

The final goal in gene therapy using RNAi is to achieve efficient gene silencing in the 

targeted tissues in clinical use without immune activation and toxicity. Currently, viruses, 

liposomes, and polycationic polythylenimine (PEI)-based nanoparticles are primarily used in 

therapeutic RNAi (van den Boorn et al. 2011). These three vehicles showed some success; 

however, there are issues concerning the safety and toxicity in each type of vector. For 

example, there are many advantages in RNAi using viral vectors, such as long-term silencing 

by integrating small hairpin RNA (shRNA) cassettes into the genome; however, there are 

major drawbacks. Viral vehicles may activate complement or coagulation factors (Waehler 

et al. 2007), and trigger neutralisation of antibody response, which prevents multiple 

administration. The main issue is the dysregulation of gene expression by insertional 

mutagenesis and oncogenesis (van den Boorn et al. 2011). 
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Name Indication siRNA target Phase  Delivery system Route of 

administration 

Trial ID 

ALN-VSP02 Advanced solid tumour 

with liver involvement 

KSP and VEGF I, completed Lipid nanoparticles Intravenous NCT01158079 

NCT00882180 

Atu027 Advanced solid tumour PKN3 I, completed Lipid nanoparticles Intravenous NCT00938574 

 

Atu027 Pancreatic ductal 

carcinoma  

PKN3 I/II, completed Lipid nanoparticles Intravenous NCT0180638 

CALAA-01 Solid tumour RRM2 I, terminated Polymer-based 

targeted 

nanoparticles 

Intravenous NCT00689065 

DCR-MYCN Solid tumour, multiple 

myeloma non-

Hodgkin’s lymphoma 

MYC I, terminated Lipid nanoparticles 

(EnCore) 

Intravenous NCT02110563 

DCR-MYCN Hepatocellular 

carcinoma 

MYC I/II, 

terminated 

Lipid nanoparticles 

(EnCore) 

Intravenous NCT02314052 

siG12D 

LODER 

Advanced pancreatic 

cancer 

Mutated KRAS 

oncogene 

I, completed 

II, not yet 

recruiting 

Biodegradable 

polymer-based 

scaffold 

Local implantation NCT01188785 

NCT01676259 

siRNA-EphA2-

DOPC 

Advanced cancer EphA2 I, recruiting Natural liposomes Intravenous NCT01591356 

TKM-080301 

(TKM-PLK1) 

Primary or secondary 

liver cancer 

PLK1 I, completed Lipid nanoparticles 

 

Intravenous NCT01437007 

TKM-080301 

(TKM-PLK1) 

Neuroendocrine tumour 

and adrenocortical 

carcinoma 

PLK1 I/II, completed Lipid nanoparticles 

 

Intravenous NCT01260035 

Table. 1.4. siRNA-based therapeutics in clinical trials  Modified from Lam et al. (2015) and Zuckerman & Davis (2015). 
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Liposomes seem to be the preferable delivery approach of siRNA; however, there are issues 

regarding the toxicity. Liposomes also can activate complement or coagulation factors by 

adsorbing opsonins, which leads to phagocytosis via the mononuclear phagocyte system due 

to the size and charge. In addition, as mentioned above, cationic lipid nanocomplexes may 

activate TLR7/8, which triggers the innate immune system response when the 

nanocomplexes stay in the endosome. Similarly, Kedmi et al. (2010) showed that positively 

charged lipid-based nanocomplexes significantly increased the levels of liver enzyme alanine 

aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), 

suggesting liver toxicity, and TLR4 was also activated. In a clinical trial of siRNA targeting 

the Zaire Ebola virus (ZEBOV) RNA polymerase L protein-delivered lipid nanoparticles, a 

TLR-mediated immune response probably evoked by the nanoparticles was observed in 

several patients when the dose was escalated (Zatsepin et al. 2016). 

The safety and toxicity of lipid-based nanocomplexes have not been investigated sufficiently, 

while liposomes can be used in broad areas (Winter et al. 2015). Further studies are required 

for safety in clinical use in the future. 

1.4.4. Liposomes 

In siRNA delivery, one of the major challenges is developing the methods to carry the 

nucleic acids to targeted cells efficiently. Liposomes have been widely used for protecting 

nucleic acids against enzymatic degradation in blood and endosomes/lysosomes (Elsabahyer 

al. 2011). Cationic lipids have been traditionally used for siRNA delivery, and lipid 

nanoparticles consisting of cationic liposomes and PEG are now commonly used in siRNA 

delivery, while there are anionic liposomes. One of the advantages of using cationic 

liposomes to carry siRNA is that positively charged RTNs can easily attract the negatively 

charged plasma membrane, and they achieve high transfection efficiency (Elsabashy et al. 
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2011). However, cationic RTNs may be sensed by TLRs, as mentioned above, and interact 

with any cells. Hence, siRNA would be delivered to cells non-specifically. In addition, 

cationic nanoparticles can interact with negatively charged molecules present in serum in 

vivo. This may shield the positive charge on the surface of the nanoparticles (Elsabahy et al. 

2011). The attraction with serum protein in blood could induce premature siRNA release and 

prompt aggregation (Oliveira et al. 2015). 

The use of flexible hydrophilic polymer, such as PEG, can partially solve these problems. 

Furthermore, PEGylation is commonly employed in nanoparticles for nucleic acid delivery. 

The PEG forms a protective hydrophilic layer on the cationic RTN surface and changes the 

surface properties, decreases opsonisation by blood protein, and reduces phagocytosis, called 

the steric stabilisation effects (Allen et al. 2002, Huang et al. 2008). The PEGylated RNAs 

can increase circulation time in the blood, which allows RTNs an opportunity to reach target 

tissues (Hart 2010). On the other hand, PEGylation can prevent RTN cellular uptake (Huang 

et al. 2010, Mishra et al. 2004) and siRNA endosomal escape. Additionally, PEG might not 

sufficiently protect siRNA against enzymatic degradation (Oliveira et al. 2015). 

Anionic RTNs cannot bind to the negatively charged plasma membrane of cells by 

themselves due to the repulsion, and only receptor-targeting peptide can make the RTNs 

bind to cells. That provides the advantages of better targeting specificity and less toxicity and 

interaction with serum components (Balazs & Godbey 2011; Tagalakis et al. 2014). 

However, there are also problems; it is difficult to achieve self-assembly between anionic 

liposomes and negatively charged nucleic acids. In addition, anionic RTNs normally show 

poor transfection efficiency due to the difficulty in approaching the cell membrane 

(Tagalakis et al. 2014). 
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With the flexibility to create new formulations, numerous types of materials have been 

employed to improve the efficiencies of lipid-based nanocomplexes. One of the common 

additives is cholesterol. Cholesterol offers an increase in the packing phospholipid molecule, 

the stability of liposomes, and prevention of aggregation of liposomes (Briuglia et al. 2015), 

and it protects nucleic acids from enzymatic degradation (Schroeder et al. 2009). Despite the 

wide use in nanoparticles, the optimal ratio of lipids and cholesterol has not been clearly 

found (Deniz et al. 2010). 

Another example of the flexibility is liposomes designed for cancer. The stability of 

liposomes by PEGylation is very important in circulation; however, it inhibits the uptake of 

nanocomplexes in cells (Xu et al. 2016). Xu et al. (2016) reported that they produced PEG 

linked with copolymers poly(lactic-co-glycolic acid) with acid degradable amide bond, and 

the PEG was released by the acidity of the tumour when the liposomes approached the 

tumour tissues. However, uptake of the acidity-sensitive tumour lipid nanocomplexes was 

not significantly higher compared with normal PEGylated homologous nanocomplexes.  

One of the keys for successful siRNA delivery is developing optimised lipids that obtain the 

balanced stability to protect nucleic acids and the ability to release nucleic acids into the 

cytoplasm. Further studies are required for clinical use and trials. 

1.4.5. Peptide 

Receptor-targeting peptides incorporated into lipid nanocomplexes are important to deliver 

RTNs to specific tissues and prevent unwanted gene silencing (Hart 2010). Peptide ME27 

has been used for siRNA delivery to cancer cells in our group. The peptide consists of 

nucleic acid binding (K16) and integrin-receptor-targeting sites CRGDCLG, connected by a 

non-cleavable spacer Glycine-Alanine (GA) (Hart 2010) and a cleavable linker RVRR 

(Grosse et al. 2010). 
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The spacer prevents interaction between liposomes and siRNA (Hart 2010), while the 

cleavable linker is degraded by endosomal proteinase furin and cathepsin B and helps siRNA 

escape from the integrin receptor, and released from PEG moiety (Grosse et al. 2010; 

Mustapa et al. 2009). 

Peptide ME27 targets integrin receptors α5β1, αvβ3, and αvβ5 (Fig. 1.11.). The integrin family 

of cell adhesion receptors is expressed by epithelial cells and expression of αvβ3, αvβ5, α5β1, 

α6β4, α4β1, and αvβ6 on the tumour is associated with disease progression. Moreover, αvβ3 

and α5β1 expression levels are low or undetectable in normal adult epithelial cells 

(Desgrosellier & Cheresh 2010). Although integrin promotes epithelial cell adhesion to 

attach the extracellular matrix (ECM), especially integrin receptor αvβ3, called the vitronectin 

receptor, and αvβ5 binds vitronectin (Harmann et al. 1999) and α5β1 is a fibronectin receptor 

(Schaffner et al. 2013). Integrin receptors might stimulate migration, proliferation, and 

survival by activating signalling pathways in tumour cells (ibid.). Young et al. (2013) 

mentioned that integrin subunits α1, α2, α3, α4, α5, α6, α7, αv, β1, β3, and β5 are expressed in 

Fig. 1.11. Integrin receptor family Integrin receptors can be classified according to 

the ligand binding ability; αvβ3, αvβ5, α5β1, α6β4, α4β1, and αvβ6 on the tumour are 

associated with disease progression. Taken from Goswami (2013). 
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NB cells. In addition, integrins are associated with survival, proliferation, and migration in 

NB (Young et al. 2013). Especially α5β1, αvβ3, and αvβ5 have important role in angiogenesis in 

tumours (Schaffner et al. 2013). Furthermore, integrin β1 is critical for receptor-mediated cell 

migration and invasion in NB cells (Lee et al. 2013). 

Other receptors targeted by peptides can be used in siRNA delivery for cancer. Zhu et al. 

(2013) reported that they targeted the folate receptor, which can be expressed 200-fold more 

on cancer cells than those on normal cells. The overexpression of the receptor has been 

observed on several types of cancers, including ovarian cancer, endometrial cancer, and 

myeloid leukaemia. They delivered anti-MYCN siRNA using the RTNs in NB in vivo, and 

successfully silenced more than 50% of MYCN mRNA. Similarly, several research groups 

targeted glucose receptors for gene/drug delivery in cancer (Calvalesi & Hargenrother 2013; 

Li et al. 2014; Venturelli et al. 2016). 

1.4.6. Long-term storage of RTNs at -80 °C 

We have also aimed to develop optimal methods to store RTNs with the original biophysical 

characteristics and sufficient transfection/silencing efficiencies to use the same batch of 

RTNs prepared in large amounts for many experiments and for transport over long distances. 

Various sugars, such as glucose and sucrose, have been used as cryoprotectants for freezing 

and lyophilisation (Date et al. 2010; Anchordoquy et al. 1997; Patist & Zoerb 2005) and have 

been reported to stabilise proteins and phospholipids (Crowe et al. 1987). In addition, Tseng 

et al. (2007a) stated that trehalose enhances DNA transfection efficiency using lipid/DNA 

nanocomplexes and reduces the cellular cytotoxicity; therefore, trehalose was chosen as a 

cryoprotectant in our study. 

Trehalose is a non-reducing disaccharide and naturally exists in certain cells of plants and 

insects. It has been studied for more than one hundred years (Ohtake & Wang 2011). It is 
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widely used in food, cosmetics, and pharmaceutical industries because of its water-retention 

capability, the ability to increase vegetable cell viability and stabilise lipids, and relatively 

high glass transient temperature (Patist & Zoerb 2005; Jain & Roy 2009; Richards et al. 

2002). It is also known as a cryoprotectant. Anchordoquy et al. (1997) reported that trehalose 

maintains transfection efficiency and biophysical characteristics of freeze-dried lipid/DNA 

nanocomplexes after re-suspension in water. Similarly, Ball et al. (2017) mentioned that 

trehalose can protect lipid nanocomplexes containing anti-luciferase siRNA and improve the 

silencing efficiency. Yadava et al. (2008) showed that the lyophilisation process did not 

change siRNA’s biological activity packaged by cationic lipid nanocomplexes. 

1.5. Aim and Hypothesis 

Our hypothesis is that reduction of the MYCN mRNA expression level, mediated by anti-

MYCN siRNA (siMYCN) transfection, triggers apoptosis and differentiation in NB cells 

because MYCN overexpression in MYCN-amplified NB directly or indirectly induces 

proliferation and cell growth, and supresses apoptosis and differentiation. Therefore, 

differentiation and apoptosis induced by MYCN mRNA reduction can be observed in 

different assays, such as the cell morphology and biological marker of differentiation and 

apoptosis as downstream effects. In addition, RTNs deliver siMYCN only into targeted NB 

tumour cells in vivo because of the receptor-targeting peptides and the EPR effects. Even 

though siMYCN was delivered in non-targeted tissues, MYCN is expressed in limited tissues 

and for a certain period; therefore, serious unwanted silencing would not be caused. 

In addition, in the study of long-term storage of RTNs, trehalose can preserve the 

biophysical characters and the transfection and silencing efficiency of RTNs at -80 °C. 

The aims of this study are: 
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1. To investigate the ability of siMYCN to silence MYCN at both mRNA and protein 

level and investigate the downstream effects induced by siRNA-mediated MYCN 

reduction.  

2. To attempt MYCN silencing using siMYCN-containing RTNs in vivo. 

3. To assess the ability of trehalose to maintain the biophysical characteristics and 

function of RTNs stored at -80 °C. 
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2. Materials and Methods 

2.1. Materials  

2.1.1. Equipment 

Name  Supplier 

ABI PRISM 7000 Sequence Detection  Applied Biosystems, Life Technologies  

Bio-Rad 96 CFX Bio-Rad 

Canon Rebel XS DS126191 Digital Camera Canon 

CyAn Beckman Coulter 

FACS Calibur BD Biosciences 

FLUOstar Optima BMG Labtech  

Hamamatsu Orca R2 monochrome camera Hamamatsu Photonics 

IVIS Lumina Series III imaging system  PerkinElmer 

Leica upright fluorescence  Leica DFC310 FX 

NanoDrop ND-1000 Spectrophotometer Thermo Scientific Scientific  

Olympus IX70 microscope Olympus 

Precellys 24 Bead Mill Homogeniser Bertin Technologies 

UVChemi U V Chemistry Co 

Zeiss Axiovert 135 live imaging scope Zeiss 

Zetasizer Nano ZS Malvern 

 

2.1.2. Kits and Reagents 

Name Supplier 

0.05% Trypsin-EDTA Gibco, Thermo Fisher Scientific 

10x PCR buffer  Applied Biosystems, Thermo Fisher 

Scientific 

1M HEPES solution Fisher Scientific 

20x NuPAGE MOPS SDS buffer Invitrogen, Thermo Fisher Scientific 

5x Bradford protein assay reagent Bio-Rad 

5x Reporter Lysis buffer  Promega  
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Bio-Rad ECL Western Blotting Substrate  Bio-Rad 

BlockIt (Alexa Fluor 555) Invitrogen, Thermo Fisher Scientific 

Bovine Serum Albumin (BSA) Sigma-Aldrich 

Cell Counting Kit-8 Sigma-Aldrich 

CellTiter 96 Aqueous One Solution Cell 

Proliferation Assay 

Promega 

D-(+)-trehalose dihydrate Sigma-Aldrich 

DMEM+GlutaMAX 

(Dulbecco’s modified eagle media ) 

Gibco, Thermo Fisher Scientific 

dNTPs Thermo scientific, Thermo Fisher Scientific 

Foetal Bovine Serum (FBS) Sigma-Aldrich  

Heparin Sigma-Aldrich 

L-glutamine (100x) Gibco, Thermo Fisher Scientific 

Lipofectamine 2000 Invitrogen, Thermo Fisher Scientific 

Lipofectamine RNAiMAX Invitrogen, Thermo Fisher Scientific 

Luciferase Assay System  Promega  

Matrigel Matrix Basement Membrane Matrix Corning 

MgCl2 Applied Biosystems, Thermo Fisher 

Scientific 

Minimum Essential Medium Eagle 

(MEME) 

Sigma-Aldrich 

MuLV (Moloney Murine Leukemia Virus) 

Reverse Transcriptase (200U/µL) 

Applied Biosystems, Thermo Fisher 

Scientific 

Non-Essential Amino Acids (NEAA) (100x) Gibco, Thermo Fisher Scientific 

NP40 Cell Extraction Buffer Invitrogen, Thermo Fisher Scientific 

NuPAGE 4-12% Bis-Tris Nupage gel Invitrogen, Thermo Fisher Scientific 

NuPAGE 4x loading dye buffer (for SDS 

PAGE) 

Invitrogen, Thermo Fisher Scientific 

OptiMEM+GlutaMAX Gibco, Thermo Fisher Scientific 

Penicillin/Streptomycin (P/S)  

(10000U/mL) (100x) 

Gibco, Thermo Fisher Scientific 

Phenylmethanesulfonyl Fluoride Sigma-Aldrich 

Phosphate-Buffered Saline (PBS) Gibco, Thermo Fisher Scientific 

Pierce Protein assay BCA kit Thermo Fisher Scientific 

Platinum qPCR SuperMix-UDG with ROX  Invitrogen, Thermo Fisher Scientific 

Polyvinylidene Difluoride (PVDF) 

Membranes 

Millipore 

ProLong® Gold antifade mountant  Thermo Fisher Scientific 
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Propidium Iodide (PI) Sigma-Aldrich 

Protease Inhibitor cocktail (100x) Sigma-Aldrich 

Qiagen RNeasy mini kit Qiagen 

QIAShredder Qiagen 

Quant-iT PicoGreen dsDNA Assay Kit   Invitrogen, Thermo Fisher Scientific  

Random Hexamer Primers  Applied Biosystems, Thermo Fisher 

Scientific 

RNase Inhibitor  Applied Biosystems, Thermo Fisher 

Scientific 

RNase/DNase-free distilled water Gibco, Thermo Fisher Scientific 

RPMI1640+GlutaMAX Gibco, Thermo Fisher Scientific 

SensiFAST Probe Hi-ROX one-step kit BIOLINE 

Sodium Pyruvate (100x) Gibco, Thermo Fisher Scientific 

β-Mercaptoethanol Sigma-Aldrich 

 

 2.1.3. Lipids  

Name  Supplier 

DOPE 1,2-dioleoyl-sn-glycero-3- phosphoethanolamine Avanti Polar Lipids 

DOPG 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) Avanti Polar Lipids 

DOTMA 1,2-di-O-octadecenyl-3-trimethylammonium propane Avanti Polar Lipids 

DOPE-PEG2000 1,2-dioleoyl-sn-glycero- 3-phosphoethanolamine-N-

[methoxy(polyethylene glycol)-2000] 

Avanti Polar Lipids 

DPPE-PEG2000 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine -

N-[methoxy(polyethylene glycol)-2000] 

Avanti Polar Lipids 
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 2.1.3.1. Structure of lipid 

 

DOTMA (C18) 

1,2-Di-((Z)-octadec-9-enyloxy)-N,N,N-

trimethylammonium propane chloride 

Cationic                                       (Hart 2010) 

 

DOPG 

1,2-Dioleoyl-sn-glycero-3-phospho-rac-(1-

glycerol) sodium salt 

Anionic               (Sigma-Aldrich homepage) 

 

DOPE 

1,2-Dioleoyl-sn-glycero-3-

phosphoethanolamine  

Neutral                          (Promega homepage) 

 

 

2.1.3.2. Composition of Lipid nanoparticle 

 

2.1.4. Peptides 

LIPOSOME NAME Lipid1 Lipid 2 Lipid 3 Polarity 

DOTMA:DOPE(DD) DOTMA (50.0%) DOPE(50.0%) - Cationic 

GK25 DOPG (47.5%) DOPE (47.5%) DOPE-PEG2000 

(5%) 

Anionic 

AT1 DOTMA (49.5%) DOPE (49.5%) DPPE-PEG2000 

(1%) 

Cationic 

AT3 DOPG (49.5%) DOPE (49.5%) DPPE-PEG2000 

(1%) 

Anionic 

Name Composition Supplier 

ME27 K16 RVRRGACRGDCLG China Peptides Co. 
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 2.1.5. siRNAs 

Name Sequence Supplier 

siMYCN3 

 

Sense5’-CAGCAGUUGCUAAAGAAAAUU-3’ 

Antisense5’-UUUUCUUUAGCAACUGCUGUU-3’ 

Dharmacon,  

GE Healthcare 

siNCYM* 

 

Sense5'-UGGCAAUUGCUUGUCAUUAAAUU- 3' 

Antisense5'-UUUAAUGACAAGCAAUUGCCAUU- 

3'     

Dharmacon,  

GE Healthcare 

Silencer  

GAPDH 

Sense: 5’-GGUCAUCCAUGACAACUUUTT-3’ 

Antisense5’-AAAAAGUUGUCAUGGAUGACC-3’ 

Invitrogenen,  Thermo 

Fisher Scientific 

Silencer 

Firefly 

Luciferase 

(GL2+GL3) 

Proprietary sequence Invitrogenen,  Thermo 

Fisher Scientific 

siMYCN Sense5’-CGGAGAUGCUGCUUGAGAA- 3’,   

Antisense5’ - UUCUCAAGCAGCAUCUCCG - 3’, 

Dharmacon,  

GE Healthcare 

siMYCN2 Sense5’ -CGGAGUUGGUAAAGAAUGA - 3’ 

Amtisense5’ - UCAUUCUUUACCAACUCCG - 3’ 

Dharmacon,  

GE Healthcare 

siNeg (non-

targeting 

pool) 

Proprietary sequence 

Catalogue # D-001810-10-50  

ON-TARGET plus 

Dharmacon,  

GE Healthcare 

Dy677 

control 

siRNA 

Proprietary sequence 

 

Dharmacon,  

GE Healthcare 

FAM-

labelled 

control 

siRNA 

Proprietary sequence 

 

Invitrogenen,  Thermo 

Fisher Scientific 

 *siNCYM was designed on the basis of the anti-NCYM shRNA in Suenaga et al. (2014)  

ME72 K16 RVRRGA CRGECLG China Peptides Co. 

K16 KKKKKKKKKKKKKKKK(K16) China Peptides Co. 

GA CRGDCLG RVRR KKKKKKKKKKKKKKKK(K16) 

2.1.4.2. Structure of Peptide 

ME27  

Nucleic acid binding 

domain 

Furin and 
cathepsin B 
cleavable 

linker 

Spacer 

Integrin-

targeting 

domain 
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siMYCN and siNCYM were custom siRNAs of ON-TARGET plus (Dharmacon, GE 

Helthcare)  

2.1.6. Taqman Assays (FAM-labelled probes) (Applied Biosystems, Thermo Fisher 

Scientific)  

Name Catalogue # 

Human ACTB Hs01060665_g1 

Human MYCN Hs00232074_m1 

Human MDM2 Hs01066930_m1 

Human GAPDH Hs02758991_g1 

Human MYCNOS (NCYM) Hs01032821_m1 

Human TP53 Hs01034249_m1 

Human NTRK1 Hs01021011_m1 

Mouse ACTB Mm02619580_g1 

Mouse GAPDH Mm99999915_g1 

 

2.1.7. Primary antibodies for immunoblotting 

Name Supplier Catalogue # Dilution 

Anti-MYCN B8.4.B Santa Cruz sc-53993 1:1000 or 1:10000* 

β-Actin (AC-74) Sigma-Aldrich A2228-100µL 1:10000 

Pan Trk (B-3) Santa Cruz sc-7268 1:2000*-5000* 

Pan Trk (C-15) 

(Discontinued) 

Santa Cruz sc-139 1:1000 

For secondary antibody, Horseradish peroxidase-conjugated (HRP-conjugated) secondary 

antibody (Dako, Agilent Technologies) (1:10000) was used. * shows the dilution for 

membranes transferred using Bio-Rad transfer system.  
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2.1.8. Complete culture media 

 

2.1.9. Recipes 

Name  Composition 

TE buffer 10 mM Tris-HCl pH8, 1mM EDTA 

TBST 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.2% Tween-20 

Phosphate-citrate buffer (washing 

buffer of fixed cells) 

0.2 M Na2HPO4:0.1 M Citric acid pH 7.8=192:8 

PI solution 50 μg/ml Propidium iodide in PBS 

Stripping buffer 0.2 M NaOH in water 

 

2.2. Methods 

2.2.1. Cell culture 

Human MYCN-amplified NB cell lines: Kelly, LAN-5, SK-N-BE(2), non MYCN-amplified 

cell line SK-N-SH, and murine neuroblastoma cell line Neuro-2A were used in this study. 

Kelly and SK-N-BE(2) were cultured in RPMI1640+GlutaMAX with 10% FBS, 25 mM 

HEPES buffer and 100 U/mL P/S. LAN-5 and SK-N-SH cells were cultured in MEM with 

10% FBS, 2mM L-glutamine and 100 U/mL P/S. Neuro-2A was in DMEM+GlutaMAX 

supplemented with 10% FBS, 100 U/mL P/S, 1mM sodium pyruvate and NEAA. Recipes of 

all media used are shown in Section 2.1.8. Media in flasks were changed every 2-3 days.  

Cell lines Composition 

Kelly, SK-N-BE(2) RPMI1640+GlutaMAX, 10% FBS, 25 mM HEPES, 100 U/mL 

P/S (optional) 

LAN5, SK-N-SH MEM, 10% FBS, 2mM L-Glutamine, 100 U/mL P/S (optional) 

Neuro-2A DMEM+GlutaMAX, 10% FBS, 1 mM Sodium Pyruvate, NEAA, 

100 U/mL P/S (optional) 
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Cells were passaged when they were 70-80% confluent. Cells were washed with PBS once, 

and 0.05% trypsin-EDTA was added. Cells were incubated in an incubator at 37 ˚C in 5% 

CO2 for 5 minutes. After cells were detached, trypsin was neutralised by adding complete 

media. Cells were centrifuged at 1200 rpm for 5 minutes and one tenth of cells were 

transferred into a new flask with complete media. All cells were incubated in a mycoplasma 

free incubator at 37 ˚C in 5% CO2.   

2.2.2. Receptor targeting nanocomplexes (RTNs) 

RTN formulations consisted of lipids, peptide and siRNA/pDNA at various ratios depending 

on the type of liposome employed as shown in Table 2.2.1. The ratios have been previously 

optimised for anionic formulations as described in Tagalakis et al. (2011) and for anionic 

formulations in Tagalakis et al. (2014) while the manuscript describing optimisation of the 

mixing ratio of the double layered nanocomplex, LPRL3, is in preparation. We used 

lipids/peptide/DNA or siRNA (LPD or LPR) and double layered RTNs, cationic 

lipid/peptide/ siRNA (or DNA) covered with anionic lipid (LPR(or D)L). The LPR 

formulation is binding siRNA with the peptide and enveloped within the bilayer liposome.  

On the other hand, the LPRL3 formulation is DD/ME27/siRNA (cationic RTN) covered with 

anionic lipid AT3. The ratios of cationic and anionic liposomes used in this study (shown in 

Name Ratio (weight) 

DD/P/siRNA or DNA 1:4:1 

AT1/P/siRNA or DNA 1:4:1 

GK25/ME27, ME72 or Y/siRNA or DNA 19:2.7:1 

GK25/K16/siRNA or DNA 19:3:1 

AT3/ME27, ME72 or Y/siRNA or DNA 20:2.7:1 

AT3/K16/siRNA or DNA 20:3:1 

LPRL3(DD/ME27/siRNA/AT3) 0.75:3:1:19 

Table. 2.2.1. Weight ratio of each RTN 
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Section 2.1.3.2), were investigated in order to optimise RTN transfection efficiency. DD is 

cationic non-PEGylated liposome. AT1 are cationic PEGylated liposomes, while GK25 and 

AT3 are PEGylated anionic liposomes. Four peptides were screened, and ME27 was chosen 

as the optimal peptide for transfections for neuroblastoma cells (data not shown). The 

cationic peptide ME27 targets integrin receptors while ME72 and K16 were used as negative 

control peptides (non-targeting). 250 ng pDNA packaged within RTNs in 200 µL OptiMEM 

was added to cells per well in 96 well plates. 75 or 100 nM siRNA were added onto the cells 

per well. siRNA transfections were normally performed in 12 well plates or 24 well plates 

and the final volumes were 1000 µL and 500 µL, respectively. 

OptiMEM is widely used for siRNA transfections (Zhao et al. 2008) and the use of 

OptiMEM is recommended by the company protocol of RNAiMAX. We used OptiMEM in 

all preparations of transfections because cationic, non-PEGylated RTNs aggregate in serum-

containing media (Grosse et al. 2010), while cells can survive in OptiMEM.   

To prepare cationic RTNs, liposome, peptide and nucleic acid were mixed (total 200 µL), 

and were incubated for 30 minutes at RT. For anionic RTNs, peptide and nucleic acid were 

mixed first and were incubated for 15 minutes. Anionic liposome was then added into the 

mixture and they were incubated for 30 minutes at RT. For LPR(D)L3, DD, peptide and 

nucleic acid were mixed and incubated for 30 minutes at RT. AT3 was then mixed with them 

and they were incubated for 20 minutes at RT. All RTNs were prepared in 200 µL OptiMEM 

and were diluted with OptiMEM to appropriate volume after incubation. 

Tagalakis et al. (2014) showed that the order of mixing liposome, peptide and siRNA affects 

the percentage of siRNA packaging in anionic RTNs. Mixing in the order PRL (peptide and 

siRNA are mixed first, and then liposome is added) achieved better packaging than LRP 

(liposome and siRNA are mixed, and then peptide is added). Therefore, all the anionic 

formulations were made with the PRL method of mixing.  
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2.2.3. Luciferase plasmid DNA transfection 

Luciferase pDNA (Grosse et al. 2010) transfections were performed as described in 

Tagalakis et al. (2011). Cells were seeded at 2.5x10
4
 cells for human NB cell lines or at 

2.0x10
4
 cells for Neuro-2A cells per well in 96 well plates in complete media without P/S, 

and were incubated overnight in an incubator at 37 ˚C in 5% CO2. The confluency reached 

60-70% the next day. The weight ratio of each formulation is shown in Table 2.2.1 while all 

RTNs were prepared in OptiMEM with 250 ng Luciferase pDNA (pCI-Luc, GL2+GL3) 

mixed with lipids and peptide added to cells per well in 96-well plates. DNA transfections 

were performed in 5 or 6 repeats per condition. 

For example, for 6 wells of DNA transfection using a cationic formulation in 96 well plates, 

250x8 ng liposome, 1000x8 ng peptide and 250x8 ng pDNA were prepared in 60 µL, 80 µL 

and 60 µL OptiMEM respectively. They were mixed in 15 mL tube and were incubated for 

30 minutes. Then 1400 µL OptiMEM were added in the RTN and 200 µL of the RTN was 

aliquoted into 6 wells.  

After the formation of RTNs, they were diluted with OptiMEM in order to aliquot 200 µL 

per well in 96 well plates. As a positive control, 250 ng pDNA were mixed with 1µL 

Lipofectamine 2000 (L2K) in OptiMEM (4:1=L2K:DNA weight ratio). After more than 10 

minutes incubation, each formulation was topped up to 200 µL with OptiMEM. All 

nanocomplexes were centrifuged at 1500 rpm for 5 minutes immediately after they added 

onto cells. The centrifuge step increases transfection efficiency as described in Grosse et al. 

(2010) and cellular uptake efficiencies of RTNs with or without centrifuge is described in 

section 4.4.7. in Chapter 4. After 4 or 24 hour incubation in the cell culture incubator, cells 

were centrifuged at 1500 rpm and for 5 minutes, and then, OptiMEM was replaced with 

complete culture media. The cells were incubated for 24 hours after transfection in an 

incubator at 37 ˚C in 5% CO2, and were harvested to assess transfection efficiency. 
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2.2.4. siRNA transfection 

siRNA transfections were prepared as described in Tagalakis et al. in (2011) and Tagalakis et 

al (2014). Cells were seeded at 5x10
4
 cells for human NB cell lines or at 3.0x10

4
 cells for 

Neuro-2A cells per well in 24 well plates in complete media without P/S. For 12 well plates, 

cells were seeded at 1.6x10
5
 cells for human NB cell lines or at 1.0x10

5
 cells for Neuro-2A 

cells per well. Cells were incubated overnight in an incubator at 37 ˚C in 5% CO2. The 

confluency reached 30-50% the next day. 75 or 100 nM siRNA was mixed with lipids and 

peptide in 500µL OptiMEM per well for a 24 well plate or 1000 µL for a 12 well plate. 

siRNA transfections were performed in duplicate 

We used the commercially available lipid-based reagent Lipofectamine RNAiMAX, 

according to the supplier’s instruction. RNAiMAX was mixed with 10 µM siRNA at a 1:1 

volume ratio. RNAiMAX and siRNA were mixed in OptiMEM and incubated for more than 

10 minutes and were added to cells in complete culture media at 10 nM.  

RNAiMAX was also used in order to confirm MYCN siRNA silencing ability in Chapter 3, 

and the final concentration of the siRNA was 5, 10, 20 and 50 nM. RNAiMAX was mixed 

with the same volume of 10 µM siRNA. For example, 10 µL of 10 µM siRNA was mixed 

with 10 µL RNAiMAX. As soon as nanocomplexes were added onto cells, they were 

centrifuged at 1500 rpm for 5 minutes and were incubated for 4 hours in an incubator at 37 

˚C in 5% CO2. RTNs in OptiMEM were replaced with complete media at 4 or 24 hours after 

centrifuge at 1500 rpm for 5 minutes. The cells were incubated for 48 hours and were 

harvested for subsequent analysis. 

2.2.5. Biophysical characterisation of RTNs 

Size and charge (zeta potential) of liposomes and nanocomplexes were measured by 

Zetasizer nano ZS (Malvern). The Zetasizer measures size using dynamic light scattering, 
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which measures the diffusion of nanoparticles under the Brownian motion. The software 

converts the data of the diffusion to the size and the size distribution using the Stokes-

Einstein equation (Zetasizer nano series user manual 2009). Charge was measured by Laser 

Doppler micro-electrophoresis. The device applies electric field to the solution of 

nanoparticles, and they move with a velocity related to their zeta potential. The velocity is 

measured by light scattering. The measurement required minimum 1-2 µg DNA/RNA per 

sample. All the size and zeta potential were measured three times at RT.  

All nanocomplexes were prepared in water (RNase and DNase free) at RT because it was 

shown by previous study that cationic non-PEGylated RTNs were aggregated in PBS 

(Grosse et al. 2010). RTNs were prepared in small volume of water (less than 50 µL) and 

were topped up to 900-950 µL with water just before the size and zeta potential were 

measured. The diluted RTNs were transferred into a cuvette for measurement. Biophysical 

characterisation of RTNs in trehalose is described in section 2.2.22. 

2.2.6. Total RNA extraction 

Total RNA was extracted using RNeasy mini kit. A silica-based membrane of the column in 

this kit can selectively bind RNA suspended in a guanidine thiocyanate containing high-salt 

buffer (RLT buffer) mixed with ethanol after cells were lysed in the buffer (Tan & Yiap 

2009; Chirgwin et al. 1979). After the membrane was washed to remove the salt in the 

membrane, RNA was eluted with RNase-free water.  

Total RNA was extracted according to the supplier’s instruction (Qiagen). RLT buffer was 

freshly supplemented with β-mercaptoethanol (100:1 volume ratio= RLT buffer: β-

mercaptoethanol) before used. 350 µL RLT buffer per well in 24 well plates were used. Cell 

lysates were passed through the QIAShredder column (optional step for in vitro) before 

addition to the RNeasey mini kit column. 70% Ethanol was added into cell lysates at 1:1 
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volume ratio. After the cell lysate had passed through the column, the membrane was 

washed with 700 µL RW1 wash buffer, and was centrifuged at 13000 rpm for 1 minute. 

Then they were washed with 500 µL RPE wash buffer, and were centrifuged at 13000 rpm 

for 1 minute. Washing with RPE buffer was repeated. To dry the membrane, the spin column 

was centrifuged at 13000 rpm for 1 minute. 30 µL RNase-free water was dropped directly on 

the membrane in the column, and it was centrifuged at 13000 rpm for 1 minute to elute total 

RNA. The concentration of RNA was quantified by measuring OD260 with the NP1000 

software of Nanodrop. Samples with 260/280: 1.9-2.1 were regarded as having sufficient 

quality RNA.  

2.2.7. Quantitative real-time PCR (qRT-PCR) 

qRT-PCR was performed as previously described in Bustin & Nolan (2004) . 

Two-step qRT-PCR: For complementary DNA (cDNA) synthesis, 0.1-1 µg total RNA was 

mixed with 0.8 µL 2 mM dNTPs and 1µL 50µM Random Hexamers, and the total volume of 

each sample was prepared to 12 µL. It was incubated at 70°C for 10 minutes, and chilled to 

4°C. Then it was mixed with 2 µL 10xPCR buffer, 4 µL 25 mM MgCl2, 1 µL MuLV reverse 

transcriptase (200 U/µL) and 1µL RNase inhibitor (20 U/µL). The sample was incubated at 

42 °C for 90 minutes, at 80 °C for 5 minutes and cooled at 4°C. qRT-PCR was performed 

with 1 µL MYCN TaqMan assay (primer/probe mix) or GAPDH assay in 10 µL 2x Platinum 

qPCR superMix-UDG with ROX. The sample was topped up to 20 µL with water. The 

cDNA was diluted 1 in 5 with water. MYCN mRNA expression level (or GAPDH mRNA 

expression level) was normalised using the housekeeping gene ActB. The qRT-PCR 

conditions were as follows: 50 °C heating for 2 minutes and then at 95 °C for 10 minutes for 

activation, followed by 40 repeats of the PCR cycle: 95 °C for 15 seconds and 60 °C for 1 

minute in the ABI prism or Bio-Rad 96 CFX .  
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One-step qRT-PCR: 10-50 ng total RNA were mixed with 1µL TaqMan assay, 10 µL 2x 

qPCR master mix, 0.2 µL reverse transcriptase and 0.4 µL RNase Inhibitor (all from the 

SensiFAST Probe Hi-ROX one-step kit).The qRT-PCR reactions were preheated at 45 °C 

for 20 minutes and then at 96 °C for 2 minutes, followed by 40 cycles of 95 °C for 10 

seconds and at 60 °C for 30 seconds. The cycles were performed in the Bio-Rad 96 CFX. Ct 

values were obtained on ABI 7000 software or Bio-Rad CFX manager, respectively. The 

silencing efficiency was calculated using Microsoft Excel using the Delta-Delta Ct analysis. 

2.2.8. Statistical Analysis 

The error bars are expressed as the mean ± standard deviation and results were analysed 

using a two-tailed, unpaired Student t-test unless mentioned otherwise (in those cases one-

way ANOVA was performed). Probability values p < 0.05 were indicated as *, p < 0.01 were 

indicated as ** and p < 0.001 were indicated as ***. 

2.2.9. Sub G1 Assay  

Sub G1 assay using PI staining was used as described in Riccardi & Nicoletti (2006). Sub G1 

assay Cells were seeded at 1.6 x 10
5
 cells per well in the wells of a 12 well plate, and were 

incubated overnight. The cells were transfected and the transfection media was changed to 

complete culture media 4 hours after transfection as normal. After 48 hour incubation, media 

were collected into FACS tubes, and cells were harvested from plates using 0.05% trypsin-

EDTA. Cells were neutralised with PBS, and they were transferred to the same FACS tube 

where the media were collected. They were centrifuged at 1500 rpm for 5 minutes at RT. 

Supernatant were discarded by decantation. Cell pellets were vortexed and 500 µL 70% 

Ethanol were added drop-wise into the tubes. Cells were incubated on ice for 30 minutes, 

and were centrifuged at 3000 rpm for 5 minutes at RT. 70% ethanol was removed and the 

pellets were reduced to smaller cell clusters. 1 mL Phosphate-citrate buffer was added, and 
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cells were centrifuged at 3000 rpm for 5 minutes at RT. The supernatant was removed, and 

50 µL RNase solution and 250 µL PI solution were added into the cells and the cells were 

incubated for 15 minutes. Percentages of PI negative cells were measured using a flow 

cytometer (CyAn or Calibur). The data were analysed using the Flow Jo VX32 software 

(FlowJo, LCC).  

2.2.10. Measurement of neurite length and cell area 

The quantification of neurite outgrowth was carried out as described in Clark et al. (2013). 

SK-N-BE(2)  cells were seeded at 5x10
4
 cells per well in 12 well plates, and were incubated 

at 37 °C in 5% CO2 in an incubator. Anti-MYCN siRNA was transfected with Lipofectamine 

RNAiMAX at 50, 20, 10 and 5 nM final concentration in a total volume of 1000 µL 

complete media. The cells were observed for 6 days. The media was changed to fresh 

complete media at day 4. Cell images were taken under bright field using a microscope 

Olympus IX70 with a Canon DS126191 camera attached at day 2 and day 6. 5 images were 

chosen randomly from each condition.  

The data were analysed using software Fiji ImageJ. For measurement of neurite length, 

extended neurites were defined as longer than the cell itself. Neurites were traced using 

Straight>Freehand Line function and the lengths were measured in pixels.  A macro was 

created to run interporate (Edit>Selection>Interporate), interval=10, smooth in order to 

smooth and accurate the freehand line. The macro was run every time when a freehand line 

was drawn. Cell area was measured using the polygon selections function.    

2.2.11. Proliferation assay (CCK-8 assay) 

This experiment was performed as described in Ishiyama et al. (1997). CCK-8 assay reagent 

is highly water-soluble tetrazolium salt: WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-

nitrophenyl)- 5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt]. A water-soluble 
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formazan dye (orange) is produced upon reduction in the presence of an electron mediator 

from WST-8 (colourless). The reduction is occurred when NAD⁺ change to NADH, which 

are coenzymes found in living cells (Blacker et al. 2014), by dehydrogenases in cells. The 

number of living cells is indicated by the amount of the formazan dye generated by 

dehydrogenases in cells. 

Cells were seeded in a 96 well plate at 6x10
3 

in 200 µL complete media per well and 

incubated overnight. 10 µM siRNA were mixed with the same volume of RNAiMAX, and 

incubated for 10 minutes. They were prepared at 20 µL and at 20, 10 or 5 nM final 

concentration, and added into the well. Transfected cells were incubated in an incubator 

under 5% CO2 at 37 °C. 10 µL CCKt-8 reagent were added into each well (n=3), and 

incubated for 3.5 hours. The intensity at 450 nm was measured using the FLUOstar Optima 

plate reader.   

2.2.12. Cell Viability assay 

The CellTiter 96® AQueous One Solution Reagent is a tetrazolium compound [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner 

salt; MTS(a)] and an electron coupling reagent (phenazine ethosulfate; PES). PES is stably 

combined with MTS. The MTS tetrazolium compound (Owen’s reagent) is reduced by cells 

into a coloured formazan product. It is likely that this conversion is carried out by NADPH 

or NADH produced by dehydrogenase enzymes in metabolically active cells (Berridge & 

Tan 1993). The number of living cells is determined by the amount of the formazan dye 

generated by dehydrogenases in cells. 

Cells were seeded at 1.5x10
4 

cells per well in 96 well plates, and were incubated in an 

incubator under 5% CO2 at 37 °C overnight. Cells were transfected with siMYCN and siNeg 

in replications of six. 4 hours after transfection, complete culture media was added following 
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the removal of transfection media. 24 hour after transfection, media were changed, and MTS 

reagent (CellTiter 96 Aqueous One Solution Cell Proliferation Assay) was added into each 

well as described in Nabatiyan & Krude (2004). Cells were incubated for 2 hours at 37 °C. 

The absorbance at 492 mm was measured using the FLUOstar Optima plate reader. 

2.2.13. Immunoblotting 

Approximately 10 µg total proteins was separated by sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) as described in Towbin et al. (1979) and Bunette (1981). 

Cells were harvested at 48 hours after transfections. Cells were washed with cold PBS twice, 

and were re-suspended with cold NP40 Cell Extraction Buffer supplemented with 1 mM 

Phenylmethanesulfonyl fluoride and 1x Protease Inhibitor cocktail. The cells were vortexed 

every 10 minutes and were incubated on ice for 30 minutes. The mixture was centrifuged at 

13000 rpm for 15 minutes at 4 ºC and the supernatant was transferred into new tubes. The 

concentration of protein lysates were quantified using the BCA kit. Up to 10 µg of total 

proteins was mixed with 4x loading dye buffer supplemented with 10x DDT. The sample 

was boiled at 100 ºC for 5 minutes. The sample was then electrophoresed on 4-12% Bis-Tris 

Nupage gel in MOPS buffer at 150 V for 1 hour. The protein bands on the gel were 

transferred to PVDF membranes at 30 V for 1 hour.  Alternatively, the transfer was 

conducted in Bio-Rad transfer tank at 100 V for 1-1.5 hours. PVDF membranes were 

blocked with 5% or 10% dried milk in TBST for 1 hour. They were then probed and 

incubated with anti-MYCN antibody overnight. For anti-β-Actin antibody, the incubation 

time was 1 hour. The concentration of each antibody used in this study is described in 

Section 2.1.7. They were gently shaken and washed three times with TBST, each wash for 

10 minutes. Then, the membranes were incubated in the secondary antibody diluted with 

TBST or 10% dried milk buffer. They were washed tree times with TBST again, and the 

protein bands were detected using the ECL chemiluminescence-based detection kit (Bio 
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Rad), and the bands were visualised in the UVChemi chemiluminescence detection 

apparatus.  

2.2.14. Stripping immunoblotting membranes 

Probed PVDF (immunoblotting) membranes were striped before they were probed with other 

primary antibodies. Immunoblotting membranes were washed with distilled H2O gently on a 

shaker for 10 minutes twice. The membranes were incubated in pre-warmed 0.2 M NaOH at 

37°C for 20 minutes. Membranes in 0.2 M NaOH were gently stirred on a shaker for 10 

minutes. Then membranes were then stirred in TBST buffer for 10 minutes. Membranes 

were blocked in 5 or 10% dried milk-TBST blocking buffer for 1 hour, and were probed with 

a primary antibody overnight as described in 2.2.15.  

2.2.15. Mass Spectrometry analysis for quantitative protein profiling 

The assay was performed by personnel in the UCL Great Ormond Street Institute of Child 

Health proteomic laboratory. Cells transfected with siMYCN, siNCYM, siNeg and 

untransfected were freeze-dried, digested with trypsin and cleaned with a C18 column. Total 

amount of Peptides were quantified and then the samples were diluted to 100 ng/µL. 1 µL of 

sample was injected into a mass spectrometry instrument, and therefore, approximately 100 

ng of the digested peptides were analysed. For quantification, Yeast enolase peptides were 

used. 

2.2.16. Cellular Uptake assay 

Cells were seeded at 5x10
4 

cells per well in a 24 well plate, and incubated overnight. 

Fluorescence (AlexaFluor 555) labelled negative control siRNA, BlockIt was mixed with 

cationic liposome and peptide at a weight ratio of 1:4:1= lipids:peptide:siRNA or a volume 

ratio of 1:1 = RNAiMAX: 10 nM BlockIt as described in Tagalakis et al. in (2017) and Liu 
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et al. (2014). Nanocomplexes were incubated for 30 minutes at RT, and then added onto 

cells without complete media for RTNs or in complete media for RNAiMAX. The cells were 

then centrifuged at 1500 rpm for 5 minutes if it was necessary. For RTNs, the final 

concentration was 100 nM. 4 hour after the transfection, nanocomplexes were removed and 

complete media was replaced if required. The cells were incubated in an incubator at 37 ˚C 

in 5% CO2. When the percentage of cellular uptake was measured, the cells were washed 

with PBS once and 100 µL of 0.05% trypsin-EDTA were added. They were incubated for 5 

minutes in an incubator at 37 ˚C in 5% CO2, and then they were neutralised with 400 µL 

complete culture media. The cells were transferred into FACS tubes. Alexa Fluor 555 

positive population was measured through FL2 in FACS Calibur. Ten thousand cells were 

counted in each sample. The data were analysed using FlowJoVX32. 

2.2.17. Heparin Dissociation assay (siRNA release assay) 

0.2 µg siRNA was mixed with 1.33 µL PicoGreen (Thermo Fisher Scientific) (150 ng:1 µL 

ratio) in TE buffer (10 mM Tris-HCl pH 8, 1 mM EDTA) in 100 µL per well, and were 

incubated in the dark for 10 minutes at RT as described in Tagalakis et al. (2011).  The 

PicoGreen-labelled siRNA was then mixed with 0.2 µg lipids and 0.4 µg peptide in TE 

buffer in 100 µL in a clear 96 well plate. The nanocomplexes were incubated in the dark for 

30 minutes at RT. Several conditions of heparin were prepared. 100 µL Heparin in TE 

buffer was added in 100 µL nanocomplexes at 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 

0.5, 0.75, 1, 2, 5 10 U/mL final concentrations and then 100 µL of TE buffer were added in 

each well. They were incubated in the dark for 30 minutes at RT. Then the fluorescence 

intensity (Excitation: 492mm, Emission 520) was measured using the FLUOstar Optima 

plate leader. As a negative control, 1.33µL PicoGreen was mixed with 98.66 µL TE buffer 

in the dark for 10 minutes at RT. It was then mixed with 100 µL TE buffer, and was 

incubated for 30 minutes in dark at RT. Then, 100 µL TE buffer were added, and incubated 
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for 30 minutes in the dark at RT.  As a positive control, 0.2 µg siRNA was mixed with 1.33 

µL PicoGreen, and was topped up to 100µL with TE buffer, and was incubated in the dark 

for 10 minutes at RT. It was incubated with 100 µL of TE buffer in the dark for 30 minutes 

at RT.  Then, 100 µL TE buffer were added, and it was incubated for 30 minutes in the dark 

for 30 minutes. The fluorescence intensity was measured as above.   

2.2.18. Luciferase assay 

Luciferase activity was measured as described in Tagalakis et al. (2011) and de Wet et al. 

(1987). Cells were washed with PBS twice, and were lysed with 1x Reporter Lysis Buffer 

(Promega). Cells were incubate at 4 °C for 20 minutes, and then, at -80°C for 40 minutes. 

After cell lysates were thawed at RT, they were transferred into white 96 well plates and 50 

µL Luciferase substrate was added into each well. The luminescence was measured to assess 

luciferase activity in transfected cells in a FLUOstar OPTIMA plate reader. The data were 

normalised by the protein concentration of each sample, which was measured by a Bradford 

protein assay, and Relative Luminescence Units per mg of protein were calculated. 

2.2.19. Bradford protein assay   

Protein quantification assay was performed after luciferase assay using Bradford protein 

assay reagent as described in Bradford (1976). 20 µL of sample (lysate + luciferase 

substrate) were mixed with 180 µL of 1x Bradford protein assay reagent in each well of a 

clear 96 well plate, and incubated at least for 5 minutes at RT. The absorbance at 595 mm 

was measured by the FLUOstar OPTIMA plate reader. Then total protein concentration per 

well was calculated using a protein curve obtained from several known concentrations of 

bovine serum albumin (BSA).   
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2.2.20. Storage of RTN in trehalose 

Trehalose was prepared as 50% solution (w/v %) in water. RTNs were prepared in each tube 

at 0.02 µg/µL, and were suspended in 5, 8, 10 or 20% trehalose solutions. RTNs were stored 

at 4°C immediately. For the freezing condition, RTNs were frozen immediately in 100% 

ethanol with dry ice. When RTNs become solid, they were left on dry ice. They were soon 

transferred and kept in a freezer at -80°C for more than one hour. The RTNs were then 

moved at 4°C, and were stored there until they were used for transfection or biophysical 

characterisation.  

For biophysical characterisation, 100 µL RTNs were used for measurement of the size and 

charge using the Zetasizer (Malvern). 100 µL RTN was mixed with 800 µL water and was 

transferred to a cuvette, and therefore, 2 µg of DNA or siRNA were used for the 

measurement. The size and zeta potential were measured three times.  

For transfections, RTNs were diluted with OptiMEM to the appropriate concentration, and 

were added onto cells. Cells were centrifuged at 1500 rpm for 5 minutes and were incubated 

in an incubator at 37 ˚C in 5% CO2. 4 hour after transfections, OptiMEM was replaced with 

complete media. Cells were harvested at 24 hours for luciferase pDNA transfection or at 48 

hours for siRNA transfection analyses.  

2.2.21. Xenografts in mice as a neuroblastoma in vivo model 

Cultured cells were trypsinised (0.05% trypsin-EDTA), and were incubated in an incubator 

for 5 minutes. Cells were re-suspended in media without FBS and supplements to inactivate 

trypsin, and were centrifuged at 1200 rpm for 5 minutes. After the supernatant was removed, 

cells were re-suspended in media without FBS and supplements and centrifuged again. Cells 

(Kelly or SK-N-BE(2)) were re-suspended in small volume of media as above, and were 
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passed through a 40 µm cell strainer. The cell number was then counted, and the cells were 

prepared at 3x10
6 

cells in 100 µL per mouse as previously described in Tagalakis et al. 

(2017). 100 µL matrigel kept on wet ice were mixed with the cells with tips that were kept at 

4 °C overnight. Tips should be cold because matrigel can be liquid at 4 °C. Cells were kept 

on ice till the instillation. 3x10
6
 cells in 200 µL were then injected subcutaneously into 

female NOD-SCID gamma (NSG) mice, 6 to 8 week old (Charles River, Margate, UK). The 

tumour size was checked over the skin every two days. Treatment was performed when the 

tumour size reached at approximately 5x6 mm.  

2.2.22. RTN transfection in vivo     

Neuroblastoma mouse model was prepared (3 mice per condition) as described in 2.2.23. 

RTNs were prepared as described in Section 2.2.2. 25 µg siRNA packaged within RTNs 

were prepared in 100 µL containing 5% dextrose per mouse as described in Tagalakis et al. 

(2017). RTNs were injected into the mice intravenously. After 48 hours, NB tumours were 

extracted and frozen till the appropriate assay. The tumour was thawed in the RTL buffer 

and homogenised using the bead mill homogeniser Precellys 24. Then, total RNA was 

extracted as usual (Section 2.2.6). 

2.2.23. Biodistribution of RTN 

 

Neuroblastoma mouse model was prepared as described in 2.2.23. 0.5 mg/kg siRNA-Dy677 

packaged with AT1 and ME27 were intravenously injected into NSG mice developing a 

tumour (Kelly) (n=3 per each condition) as described in Tagalakis et al. (2017). 4 hours after 

injection, tumours and organs (kidneys, spleen, heart, liver, and lung) were taken from the 

mice and imaged using an IVIS Lumina Series III imaging system. The images were 

processed using the Living Image software (PerkinElnmer).  
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 2.2.24. Tumour uptake image in histology  

Neuroblastoma mouse model was prepared as described in 2.2.23 (n=6 for the siRNA treated 

condition, n=4 for untransfected control). The fluorescence (FAM) signal was investigated in 

cryo sections of tumours isolated from control untreated mice and from mice following tail-

vein injections of nanocomplexes with FAM-labelled siRNA/AT1/ME27 as described in 

Tagalakis et al. (2017). The tumours were removed 24 hours after the injection. Tissue 

sections were rinsed in PBS briefly to remove any media components, and fixed in pre-

cooled (at -20 °C) acetone for 10 to 15 minutes. Tissue sections were rinsed in PBS three 

times, 5 minutes each and then, stained with DAPI for 15 minutes at RT in dark. Then tissue 

sections were washed in PBS (three changes, 5 minutes each). Sections were mounted using 

ProLong Gold antifade mountant. Micrographs were taken using Leica upright fluorescence. 

2.2.25. Caspase -3/7 assay 

As described in Tateishi et al. (2016), caspase-3 and -7 activities were measured using the 

Caspase-Glo® 3/7 Assay. A luminogenic caspase-3/7 substrate interacts with caspase-3/7. 

When the substrate is added into caspase-3/7, the substrate is cleaved and then luminescent 

signal is released. In addition, the reagent also lyses cells. The luminescence signal increases 

according to the amount of caspase present.  

Cells were seeded in 96 well plates at 1.8x10
4 
cells per well and were incubated aver night in 

a TC incubator. The cells were transfected with siMYCN and siNeg using RNAiMAX (1:1 

volume ratio) in 200 µL complete culture media at 10 nM or 50 nM final concentration. 

After 48-hour incubation, 100 µL media was removed from each well and 100 µL of the 

Caspase-Glo® 3/7 Assay reagent was added. After 1 hour incubation at RT, the luciferase 

activity was measured using the FLUOstar Optima plate leader. Protein was also quantified 

using Bradford protein assay reagent (see details in Section 2.2.19). 
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3. MYCN silencing and the downstream effects induced by RNAi targeting MYCN 

3.1. Introduction 

Aggressive neuroblastoma is highly associated with MCYN amplification and it accounts for 

approximately 15% all the neuroblastoma incidents (Gustafson & Weiss 2010). MYCN is a 

transcription factor which belongs to the Myc family and regulates many genes controlling 

essential cellular activities including proliferation, cell cycle, differentiation and apoptosis 

during development. MYCN upregulates p53, and suppresses TrkA, which has an important 

role in differentiation of sympathetic neurons in normal cells during development (Dixon & 

McKinnon 1994). It has been regarded that overexpressed MYCN induces proliferation and 

cell cycle and suppresses differentiation and apoptosis in MYCN amplified NB, which 

promotes tumorigenesis of NB (Westermark et al. 2011). Hence MYCN is a promising target 

for gene therapy in NB with MYCN application.  

p53 mutations are relatively rare, although multiple sessions of chemotherapy may induce 

p53 mutations in NB tumours (Tweddle et al. 2001). NB cells with p53 mutations are often 

resistant to anti-cancer drugs, especially those involving the p53 pathway (Huang & Weiss 

2013). Patients with MYCN-amplified NB are treated with high dose chemotherapy and 

during treatment for residual disease they receive 13-cis-retinoic acid. However 13-cis-

retinoic acid has little or no benefit for these particular patients and recently the residual 

disease therapy has included anti-GD2 antibody-related therapies, combined with the 

cytokines granulocyte macrophage colony stimulating factor and IL2. This has improved the 

survival rate for 2 years by 20%, although the prognosis of MYCN-amplified NB remains 

very poor (Barone et al. 2013; Pleossl et al. 2016). In addition, NB patients can develop 

resistance toward RA (Clark et al. 2013). Therefore, new therapies are required for NB with 

MYCN amplification. 
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We hypothesised that MYCN expression levels in MYCN-amplified NB cells could be 

silenced by RNAi and that MYCN reduction would induce differentiation and apoptosis, 

even in MYCN-amplified NB cells with p53 mutations and drug resistance. In addition, 

genes targeted by MYCN should be up- or down-regulated by MYCN reduction as a 

downstream effect. We chose TP53, MDM2 upregulated by MYCN, and NTRK1 

downregulated by MYCN, as markers of the downstream effects. Furthermore, 

NTRK1/TrkA is a marker of neuronal differentiation that is negatively regulated by MYCN, 

and therefore, it was also expected that MYCN silencing might trigger differentiation of NB 

cells and morphological changes. Differentiated NB calls become more like terminally 

differentiated neurons that eventually senesce and die. Hence, differentiation by RNAi-

mediated MYCN silencing suppresses the NB growth rate.  

3.2. Aims 

In this chapter, we aim:  

1. To silence MYCN using RNAi (siRNA) and investigate silencing efficiency at 

mRNA and protein levels 

2. To observe up/downregulation of TP53, MDM2 and NTRK1 at mRNA and protein 

levels as downstream effects of MYCN silencing 

3. To observe differentiation (morphological changes) and apoptosis induced by 

siRNA-mediated MYCN silencing 

4. To investigate the growth rate of NB cell line after siMYCN transfection of NB  

cells 
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3.3. Results 

3.3.1. MYCN and NCYM expression differences among neuroblastoma cell lines at 

mRNA and protein levels  

We first observed the expression level differences in MYCN mRNA, MYCN protein and 

NCYM RNA among several NB cell lines to understand their expression characteristics (Fig. 

3.3.1). qRT-PCR and immunoblotting were performed. All values were normalised to those 

of SK-N-SH, and therefore SK-N-SH expression is set as 1. SK-N-BE(2) cells expressed 

2000-fold more MYCN mRNA than SK-N-SH (non-MYCN amplified) cells, whereas Kelly 

and LAN-5 cells MYCN mRNA levels when compared to SK-N-SH cells were 1612-fold 

and  510-fold higher, respectively (Fig. 3.3.1.a).  

Then, the MYCN protein level was compared among several NB cell lines (Fig. 3.3.1.b). 

According to the supplier of the anti-MYCN antibody the expected MYCN size was 67 kDa,  

however, protein bands consistently appeared around 55 kDa (between 51 and 64 kDa). The 

55 kDa bands were clear and the intensities agreed with MYCN-amplification or non 

MYCN-amplification in each cell line. Hence, we concluded the bands at approximately 55 

kDa were the MYCN protein bands. SHEP and SK-N-AS are MYCN non-amplified NB cell 

lines, and SHEP-21N and SKNAS-NmycER, which are conditionally-expressing amplified 

MYCN protein, were used as positive controls. SHEP-21N contains a MYCN expression 

cassette that can be switched off by tetracycline exposure. The MYCN protein expression 

level in SHEP-21N was the same as that in LAN-5 and both were 6-fold higher than that in 

SK-N-SH with a single copy of the MYCN gene. SKNAS-NmycER expresses the MYCN-

Estrogen receptor fusion protein, and the fusion protein is activated by the estrogen analogue 

4-hydroxytomoxifen (4-OHT) (Koppen et al 2007). Because it is a fusion protein of an 

estrogen receptor and MYCN, the bands of SKNAS-NmycER 4-OHT +/- were slightly 

larger (approximately 60 kDa) than those of the other cell lines (approximately 55 kDa), and 
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the SKNAS-NmycER 4-OHT +/- were not significantly different from each other (7.7 and 

7.8, respectively).  

The MYCN protein expression level (Fig. 3.3.1.b) in MYCN-amplified cell lines, Kelly, 

LAN-5 and SK-N-BE(2), was significantly higher than that in non MYCN-amplified SK-N-

SH cells by 4-fold, 6-fold and 20-fold, respectively. Interestingly, the MYCN protein 

expression level in LAN-5 was 1.3 times higher than Kelly cells while the MYCN mRNA 

expression level was 3 times higher in Kelly than in LAN-5. bEnd3, a murine endothelial 

cell line, was used as a negative control for MYCN protein expression, and the value relative 

to SK-N-SH was 0.3. The data of MYCN expression at mRNA and protein levels suggests 

that the amount of MYCN mRNA does not always closely correlate with the amount of 

MYCN protein relative to SK-N-SH cells.  

We also investigated the NCYM RNA expression level in SK-N-BE(2), Kelly, LAN-5 and 

SK-N-SH (Fig. 3.3.1.c). NCYM was not expressed as much as MYCN. Although the MYCN 

mRNA level in Kelly cells was lower than that in SK-N-BE(2), the NCYM RNA expression 

level in Kelly was slightly higher than that in SK-N-BE(2). The expression level in LAN-5 

was 5 times lower than that in Kelly.  

This result suggests that the amount of NCYM RNA expression may not have a very linear 

correlation with MYCN mRNA expression while it is likely that MYCN mRNA and NCYM 

RNA are co-overexpressed in MYCN-amplified NB cells. 
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Fig 3.3.1. Differences in MYCN and NCYM expression levels among cell lines.  All 

values were normalised to that of SK-N-SH. i.e. SK-N-SH=1. a) Relative expression level of 

MYCN mRNA quantified by qRT-PCR. The expression levels in MYCN amplified cell 

lines were approximately 500-2000-fold higher than those in SK-N-SH. (n=2) b) 

Immunoblotting analysis of MYCN protein expression level in NB cell lines. The 

expression levels were quantified using ImageJ according to the intensity. The MYCN 

protein expression levels in MYCN amplified NB cells were approximately 4-fold to 20-

fold greater than that of SK-N-SH. c) Relative expression level of NCYM RNA quantified 

by qRT-PCR. NCYM is co-amplified with MYCN mRNA in MYCN amplified NB cells 

while the expression levels of the two are not linearly correlated to each other. (n=2) In all 

the graphs each column represents the mean± SD. 
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3.3.2. Transfection efficiency in a NB cell line by Lipofectamine RNAiMAX 

Although transfection efficiency does not always represent gene silencing efficiency, it 

indicates how many cells can take in siRNA and how much siRNA can get into individual 

cells. To observe the transfection efficiency of Lipofectamine RNAiMAX (RNAiMAX, 

Thermo Fisher Scientific) and the correlation between transfection and silencing efficiencies, 

cellular uptake of fluorescence (AlexaFluor 555) labelled negative control siRNA was 

performed at 50, 20, 10 and 5 nM final concentration at 4, 24 and 48 hour time points in SK-

N-BE(2) cells (Fig. 3.3.2.a). 50 and 20 nM siRNA/RNAiMAX achieved the maximum 

percentage of positive cells at the 4 hour time point with 95.7% and 96.7% uptake 

respectively, while the percentage at 10 nM and 5 nM showed slightly lower maximum 

percentages of labelled cells (both at 88.6%).   

On the other hand, the mean fluorescence intensity (MFI) of cells treated with 50 nM 

showed the highest MFI levels between all different concentrations at the 4 hour (529) and 

24 hour time points (333), but kept decreasing between 4 and 48 hour time points (Fig. 

3.3.2.b). 20 nM was the second highest at 4 and 24 hour time points, and then, was the 

strongest at 48 hours. MFI at 10 and 5 nM increased between 4 and 24 hour time points, 

although they decreased between 24 and 48 hour time points. This result suggests that 20 nM 

siRNA may be the optimal concentration for maximum silencing efficiency at 48 hour time 

point.    

When samples are a cell line, they generally can be sorted to two populations by the size in 

flow cytometry: the smaller is dust or dead cells and the larger is live cells in a cell line. 

Therefore, the percentages of the two populations can be regarded as indication of the cell 

viability. The live cells were selected to analyse the transfection efficiency and MFI in this 

study (Fig. 3.3.2.c). We noticed the changes in the percentage of the live cells during 48 
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hours at the 4 different concentrations of siRNA. The percentage at 50 nM at 4 hours 

(67.1%) was quite low, compared with those of the other conditions.  At the 48 hour time 

point, 50 nM siRNA reduced the live cells to 55.6% and 20 nM to 69.3%, while 10 and 5 nM 

maintained survival at the same level as untransfected cells.  

The data suggest 50 nM was cytotoxic and the MFI was dropped off because the cells were 

dead. On the other hand, 20 nM achieves higher cellular uptake efficiency during the 48 

hours although it was more toxic compared with 10nM and 5 nM. 10 nM and 5 nM siRNA 

can survive transfection for 48 hours without any difference to untransfected cells. Therefore, 

we concluded that silencing efficiency at 10 nM can be regarded as a silencing efficiency 

without cytotoxicity, and 10 nM siRNA is used as a positive control in transfections using 

RTNs. 
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Fig.3.3.2.Cellular uptake of SK-N-BE(2) cells The percentage of AlexaFluor 555-siRNA 

positive cells treated  with 50, 20, 10,and 5 nM siRNA were observed using flow cytometry 

at 4, 24and 48 hour time points. a) All concentrations of siRNA achieved uptakes of over 

95% at 24 hours. b) MFI changes during the 48 hours. c) Percentage changes of live cells at 

the 4 different concentrations during 48 hours. The cells were distributed on the plot 

according to the size and the gated population shown is the live cells. The left panel in each 

graph shows dead cells and dust. (n=1) 
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3.3.3. Comparison of MYCN silencing efficiency of 3 different siMYCNs 

Three candidate siRNAs targeting 3 different regions (Fig. 3.3.3.a) on MYCN gene, were 

compared to investigate MYCN gene silencing efficiency and select the best one for the 

remaining experiments. 10 nM of each siMYCN was used to transfect Kelly cells using 

RNAiMAX, and the cells were harvested at 48 hours (n=6) (Fig. 3.3.3.b). As a result, 

siMYCN 3 achieved the highest silencing efficiency at 55%, followed by siMYCN 2. The 

siMYCN 2 silenced MYCN mRNA at similar levels to siMYCN 3 in one experiment while it 

did not reduce MYCN mRNA levels at all in another experiment. siMYCN 1 did not reduce 

MYCN mRNA in any experiment.  

Therefore, we concluded that siMYCN 3 was the most efficient and was used in all 

subsequent experiments. 
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Fig. 3.3.3. Comparison of MYCN silencing efficiency of 3 different siMYCNs in Kelly 

cells a) the map of MYCN gene and the targeted regions by the 3 different siMYCNs b) 

Three candidate of anti-MYCN siRNAs were transfected at 10 nM into Kelly cells, and 

MYCN mRNAs were quantified using qRT-PCR 48 hours after the transfection (n=6). 3 
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3.3.4. MYCN silencing at mRNA level by siMYCN in NB cell lines 

To observe MYCN silencing efficiency by siMYCN in NB cell lines, siRNA transfection 

using RNAiMAX (1:1 volume ratio) was performed in 4 different NB cell lines: SK-N-

BE(2), Kelly, LAN-5 and SK-N-SH. Silencing efficiency was assessed at the 48 hours later 

using qRT-PCR (Fig.3.3.4.). 

MYCN silencing efficiency by siMYCN at mRNA level achieved 24.8-45.9% in SK-N-

BE(2), depending on the dose. 50 nM siMYCN achieved the highest silencing efficiency 

among the 4 different concentrations, followed by 20 nM siMYCN. The differences between 

siMYCN and siNeg in 50 nM, 20 nM and 10 nM were statistically different (p= 0.00061, 

0.0098 and 0.002, respectively) while those for the 5 nM dose were not significantly 

different (p=0.22).  

In Kelly cells, the silencing was 36.2%-51.2%, with 20 nM siMYCN achieving the highest 

knockdown. Overall, MYCN silencing efficiency in Kelly cells was slightly higher than that 

in SK-N-BE(2) cells by approximately 8% and the difference in the values among the 4 

different concentrations of siMYCN was smaller than that in SK-N-BE(2) cells. At 50 nM, 

20 nM and 5 nM, the differences between siMYCN and siNeg were significantly different 

(p=0.0000016, 0.00014 and 0.009, respectively) while those for 10 nM were not (p=0.09). In 

LAN-5, significant silencing of MYCN mRNA was not seen at any concentration. The 

highest silencing in the cell line was 12.5% at 20 nM siMYCN, although the difference 

between siMYCN and siNeg at 20 nM was not statistically different (p=0.058). The other 

concentrations of siMYCN were not significantly different from the same concentration of 

siNeg (p=0.71 at 50 nM, p=0.14 for 10 nM and p=0.13 for 5 nM).  
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In SK-N-SH cells, 50 nM, 20 nM and 10 nM doses of siMYCN achieved similar silencing 

efficiency at 54.8-58.6% and the efficiency slightly decreased to 47.1% at 5 nM. The p value 

of each condition was 0.00041, 0.0018, 0.000069 and 0.075 respectively.  

This result suggests siMYCN never achieved 100% knockdown even in the SK-N-SH NB 

cell line which has a single copy of MYCN. In addition, LAN-5 might be the most difficult 

cells to be transfected.    
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Fig. 3.3.4. Remaining MYCN mRNA in NB cell lines 48 hours after siMYCN 

transfection quantified using qRT-PCR SK-N-BE(2), Kelly, LAN-5 and SK-N-

SH were transfected with siMYCN and siNeg using RNAiMAX (1:1 volume ratio) 

and were incubated for 48 hours. The MYCN mRNA expression level was 

quantified using qRT-PCR. The values were normalised by the value of siNeg at 

each concentration. siMYCN silenced MYCN up to 45.9% in SK-N-BE(2), 51.2% 

in Kelly, 12.5 in LAN-5 and 67.5% in SK-N-SH. All the concentrations of 

siMYCN significantly reduced MYCN mRNA in the three cell lines except LAN-

5. (n=3) In all the graphs each column represents the mean± SD. 

 *p<0.05, **p<0.01, ***p<0.001   
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3.3.5. TP53, MDM3 and NTRK1 mRNA up/downregulated by MYCN silencing 

MYCN is proposed to regulate many downstream genes including TP53 and MDM3, which 

are essential for cellular activities as a transcription factor. However, it is likely that 

overexpressed MYCN induces proliferation and cell cycle while it suppresses apoptosis and 

differentiation. To determine downstream effects of MYCN silencing by RNAi, we chose 3 

genes to analyse for protein expression: TP53 (Chen et al. 2010) and MDM2 (Slack et al. 

2005) were previously reported to be direct transcriptional targets of MYCN, and NTRK1 

expressing TrkA a neuronal differentiation marker. After siMYCN was transfected into SK-

N-BE(2), Kelly and LAN-5 cells, mRNA of TP53, MDM2 and NTRK1 was quantified by 

qRT-PCR (Fig. 3.3.5., 3.3.6., 3.3.7.).  

In SK-N-BE(2), the trend of siMYCN-mediated downregulation of TP53 and MDM2 was 

similar although there was no clear dose dependent response (Fig. 3.3.5.a,b). siMYCN 

mediated MYCN reduction downregulated TP53 by 1.2-33.0% and MDM2 by 2.2-30.0%. 

NTRK1 was notably upregulated by siMYCN, and the expression level was 2-3-fold higher 

than that of siNeg treatment (Fig. 3.3.5.c). In Kelly cells, TP53 and MDM3 mRNA 

expressions were upregulated following siMYCN silencing at 50 nM, 20 nM and 10 nM, 

except those in 5 nM (Fig. 3.3.6.a,b). The relative mRNA expression level of TP53 was 

increased by 10.0-32.7% and of MDM2 by 4.2-30.0% while 5 nM siMYCN downregulated 

TP53 and MDM2 mRNAs by 22.2-23.4%. Interestingly, NTRK1 was upregulated by all the 

4 different concentrations of siMYCN, and the expression level was1.3-4.4-fold higher than 

those in siNeg (Fig. 3.3.6.c). In LAN-5, no clear trend and no significant up/downregulation 

were seen. siMYCN achieved 4.1-12.8% silencing of TP53 and 0-11.3% of MDM2, 

although 10nM upregulated TP53 by 7.8% (Fig.3.3.7.a,b). In addition, NTRK1 was 

upregulated by siMYCN by 4.0-31.1% (Fig. 3.3.7.c). 
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The data suggest downstream effects caused by siMYCN may not always be the same in 

different cell lines because TP53 and MDM2 were downregulated in SK-N-BE(2) and they 

were upregulated in Kelly, but they were not significant. On the other hand, NTRK1 was 

remarkably upregulated by siMYCN mediated MYCN reduction in both SK-N-BE(2) and 

Kelly. Furthermore, the downstream effect might be affected by the MYCN silencing 

efficiency because the efficiency in LAN-5 was smaller as well as the change in TP53, 

MDM2 and NTRK1.     
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Fig. 3.3.5. TP53, MDM2 and NTRK1 mRNA up/downregulation by siMYCN 

mediated MYCN reduction in SK-N-BE(2) cells After the transfection, mRNA of 

a)TP53, b)MDM2 and c)NTRK1 was quantified by qRT-PCR. TP53 and MDM2 

were downregulated moderately while NTRK1 was significantly upregulated 2-3-fold 

compared to cells treated with siNeg. (n=3) In all the graphs each column represents 

the mean± SD. 
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Fig. 3.3.6. TP53, MDM2 and NTRK1 mRNA up/downregulation by siMYCN 

mediated MYCN reduction in Kelly cells. After the transfection, mRNA of a)TP53, 

b)MDM2 and c)NTRK1 was quantified by qRT-PCR. TP53 and MDM2 were slightly 

upregulated except that at 5 nM siMYCN, while NTRK1 was remarkably upregulated. 

They had 1.3-4.4 times greater mRNA levels compared to cells treated with siNeg. 

(n=3) In all the graphs each column represents the mean± SD. 
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Fig. 3.3.7. TP53, MDM2 and NTRK1 mRNA up/downregulation by siMYCN 

mediated MYCN reduction in LAN-5 cells After the transfection, mRNA of a)TP53, 

b)MDM2 and c)NTRK1 was quantified by qRT-PCR. It did not seem that there is 

up/downregulation by siMYCN transfection as well as siMYCN could not achieve 

significant MYCN knockdown. (n=3) In all the graphs each column represents the mean± 
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3.3.6. MYCN silencing and Trk upregulation at protein level 

We then investigated whether siMYCN mediated MYCN silencing, which reduced mRNA 

levels, also reduced MYCN protein production assessed by Western blot analysis. SK-N-

BE(2) and Kelly cells were transfected with siMYCN or siNeg at 50 nM, 20 nM, 10 nM and 

5 nM final concentrations using RNAiMAX (1:1 volume ratio), and were harvested at 72 

hour after transfection. The samples were probed with anti-MYCN antibody, a neuronal 

differentiation marker anti-pan Trk antibody and anti-beta actin as a house keeping gene (Fig. 

3.3.8.a, b). The intensity of all bands of MYCN, Trk and beta actin was measured using 

Image J, and the intensity of MYCN and Trk was normalised to the β actin. Then the values 

were normalised to the untransfected negative control in order to calculate relative 

expression levels (untransfected negative control = 1). The relative expression level of each 

protein is shown under the respective band. 

siMYCN reduced MYCN protein level by approximately 70-95% in SK-N-BE(2) and 35-

84% in Kelly. There was only a modest decrease in MYCN in SK-N-BE(2) cells with siNeg 

and a consistent increase in Kelly cells. Furthermore, siMYCN-mediated MYCN silencing 

upregulated pan Trk expression level by 1.8-2.4-foldin SK-N-BE(2) and 3.3-6.7-fold in 

Kelly, compared with the respective untransfected cells. siNeg also increased/decreased Trk 

protein expression level, and it seems to be experimental variation. In addition, in SK-N-

BE(2), 10 nM siMYCN silenced approximately 2-fold more  the MYCN compared to 5 µM 

RA. 

These results of SK-N-BE(2) and Kelly transfected with siMYCN suggest that the amount of 

the MYCN protein reduction and pan Trk upregulation are negatively correlated. In addition, 

siMYCN may achieve higher percentage of MYCN knockdown than 5 µM RA in SK-N-

BE(2) cells.  
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3.3.7. Differentiation in SK-N-BE(2) by siMYCN 

Overexpression of MYCN has been regarded to suppress differentiation and apoptosis of 

neuroblastoma cells. This is particularly evident in MYCN-amplified NB cells and is one of 

the tumourigenic mechanisms in NB. In addition, some NB cells such as SK-N-BE(2) cells 

have non-functional p53 and they have resistance towards not only against drugs that depend 

on the p53 pathway (Tweddle et al. 2001) but also on radiotherapy (Gudgov & Komarova, 

2003).  

We hypothesised that siMYCN can reduce MYCN expression and induce differentiation in 

nueroblastoma cells with non-functional p53. We then investigated the ability of siMYCN to 

induce differentiation in SK-N-BE(2), which can be a model of MYCN-amplified NB cells 

with p53-dependent chemotherapy and radiotherapy resistance, and to change the cells 

morphologically by quantifying neurite length and the number of neurites.  

SK-N-BE(2) cells were transfected with siMYCN or siNeg at 50 nM, 20 nM, 10 nM or 5 nM  

using RNAiMAX (1:1 volume ratio), and were incubated for 6 days (Fig. 3.3.9). The 

transfection media was changed to complete media at day 3. siMYCN treatment induced 

notable neurite elongation and morphological differentiation; extended neurites connected 

with each other. In addition, the morphology of cells after siMYCN transfection became 

raised and with a smaller rounder shape, indicative of differentiated cells. Although some 

neurite extension was also seen in cells treated with siNeg, they were not as long and 

numerous as those transfected with siMYCN. To quantify neurites, the total neurite length 

value par image were normalised by the total cell area as it was too difficult to distinguish 

and count single cells of SK-N-BE(2) as they tend to grow in clumps. The total number of 

neurites was calculated from the number of neurites that were longer than cells. The 

experiment was performed twice and 5 images were taken from each experiment.   
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 The neurite extensions appeared from day 2 after transfection, the length induced by 

siMYCN was around 0.015-0.025 µm/µm² cell area (Fig. 3.3.10.a). It was significantly 

longer than the extension by siNeg in all the concentrations. The length of neurites 

transfected with 20 nM, 10 nM and 5 nM siMYCN at day 6 was longer than that at day 2 by 

around 0.03 µm/µm² cell area. However, the neurite length induced by 50 nM siMYCN had 

variation, and therefore, it was not significantly different from the one of 50 nM siNeg at day 

6. The neurite length induced by 5 nM, 10 nM and 20 nM siMYCN at day 6 was 

significantly different from that by siNeg at each concentration (p=0.000085, 0.0000067 and 

0.0000074 respectively) while the length was almost the same among the three different 

concentrations of siMYCN (0.033-0.035 µm/µm² cell area) (Fig. 3.3.10.a).   

The number of the extended neurites were counted as a quantifiable marker of differentiation 

in SK-N-BE(2) cells after siMYCN transfection. The number of the neurites was notably 

different from cells treated with siNeg at all concentrations at day 2 and day 6. The number 

was not different between day 2 and day 6 (Fig. 3.3.10.b).  

These results suggest that siMYCN can dramatically induce differentiation in NB cells, and 

it is likely that the efficiency to induce neurite elongation was not significantly different 

among the 4 different concentrations of siMYCN. 
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Fig. 3.3.9. Cell morphology changes after siMYCN transfection SK-N-BE(2) cells 

transfected with siMYCN/siNeg and incubated for 6 days. The morphology was changed 

by transfection relative to controls with the formation of elongated neurites (arrows) and 

the presence of rounder and smaller cell bodies.  
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Fig. 3.3.10. Quantification of neurites after siMYCN transfection of SK-N-BE(2) 

cells: Fig. 3.3.9. siMYCN significantly induced differentiation in SK-N-BE(2) (n=10), 

and there were significant differences in a) the neurite length and b) the number of the 

neurites between siMYCN and siNeg. The neurite length in day 6 was longer than that in 

day 2 while the number of the neurite were almost the same during the 4 days. In all the 

graphs each column represents the mean± SD.  *p<0.05, **p<0.01, ***p<0.001 
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3.3.8. The sensitivity of NB cell lines toward retinoic acid 

RA is one of the commonly used drugs in chemotherapy for NB. To observe the sensitivity 

of the 4 different cell lines: SK-N-BE(2), Kelly, LAN-5 and SK-N-SH towards RA, the cells 

were treated with 5 and 10 µM RA for 48 hours (Fig. 3.3.11.). As many papers have reported 

previously (Clark et al. 2013; Joshi et al. 2007; Akkuratov et al. 2015), SK-N-SH and LAN-5 

cells responded toward RA treatment, by morphological changes as well as induction of 

neurite elongation. In SK-N-SH cell cultures, there are two types of cells, neuronal-type and 

Schwann-type, and the morphology of the Schwann-type cells were clearly flatter after the 

RA treatment. The extended neurites formed networks and connected cells. In LAN-5, the 

extended neurites also formed the networks among the cells although morphological 

differences in the cells were not seen. On the other hand, SK-N-BE(2) and Kelly did not 

change significantly with regard to their morphology, and neurite networks were not induced 

although a few neurite elongations were seen. This result suggests that Kelly and SK-N-

BE(2) are likely to have resistance towards RA, and therefore, RA cannot be expected to 

display efficacy toward certain types of NBs such as Kelly and SK-N-BE(2).  

 



 116 

 

 

 

  

Fig. 3.3.11. Difference in response towards Retinoic Acid among NB cell lines SK-N-SH, LAN-5, SK-N-BE(2) and Kelly cells were treated 

with 5 or 10 µM RA for 48 hours. RA induced the neurite elongations in SK-N-SH and LAN-5, while SK-N-BE(2) and Kelly did not respond 

significantly in the morphology. 
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3.3.9. Apoptosis induced by MYCN silencing 

As mentioned above, it is hypothesised that overexpression of MYCN suppresses 

differentiation and apoptosis and induces cell proliferation and cell cycle in MYCN-

amplified NB cells, which is one of the tumourigenic mechanisms. It was also reported that 

reduction of MYCN induces apoptosis in MYCN-amplified NB cells (Kang et al. 2006). To 

investigate the ability of siMYCN to trigger apoptosis in MYCN amplified NB cells, the sub 

G1 assay using Propidium Iodide (PI) staining and Caspase-3/7 assay were performed. SK-

N-BE(2) and Kelly cells were treated with siMYCN and siNeg, and the cells were assessed 

at 72 hours after the transfection. The sub G1 population consists of apoptotic and necrotic 

dead cells. However, it is likely that the population in cells transfected with siNeg is only 

necrotic dead cells. Hence, the percentage difference between samples transfected with 

siMYCN and siNeg indicates the approximate percentage of apoptotic dead cells.  

In SK-N-BE(2), apoptosis was induced by siMYCN with a dose dependent manner while the 

percentages of G1 populations are varying among different experiments and therefore, the 

error bars were high (Fig. 3.3.12.a). 50 nM siMYCN treated cells achieved approximately 

15% apoptotic dead cells which was the highest percentage of apoptotic dead cells in the 4 

different concentrations. The population of apoptotic cells at 20 nM siMYCN was 12%, at 

10 nM was 10% and at 5 nM was 2%. None of the cell populations transfected with 

siMYCN was statistically different from those of both siNeg at the same concentration and 

untransfected negative control. 

 In Kelly, siMYCN induced apoptosis in the cell line with a dose independent manner whilst 

the error bars were high at 20 nM, 10 nM and 5 nM, and therefore, they are not statistically 

different between siMYCN and siNeg, and among these 3 concentrations of siMYCN (Fig. 

3.3.12.b). On the other hand, 50 nM siMYCN achieved 9.0% higher apoptosis, compared 
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with 50 nM siNeg. The 50 nM siMYCN-treated cells showed statistical significant 

differences when compared to 50 nM siNeg-treated cells and UT ctrl cells (p= 0.018 and 

0.0019, respectively). 

In addition, Caspase-3/7 assay was performed in SK-N-BE(2) and Kelly transfected with 50 

nM or 10 nM of siMYCN or siNeg using RNAiMAX (Fig.3.3.12.c,d). The cells were 

incubated for 48 hours after t transfections, and luciferase assay was performed to measure 

caspase-3/7 activity (see details in Section 2.2.25.). As a result, there were no significant 

differences between siMYCN and siNeg, and siMYCN and UT ctrl at any concentration in 

SK-N-BE(2) and at 50 nM in Kelly. In Kelly, there was a significant difference between 10 

nM siMYCN and UT control (p=0.0071) but there was also a significant difference between 

10 nM siNeg and UT control (n=0.00016). Therefore, it is not likely that the difference 

between 10 nM siMYCN and UT control in Kelly shows apoptosis induced by siMYCN.  

This results suggests that siMYCN may not be able to induce apoptosis in SK-N-BE(2) cells. 

Kelly cells with a dose of 50 nM or potentially higher needed to obtain significant 

differences, according to the PI staining data, but Caspase-3/7 assay did not show siMYCN-

induced apoptosis at any concentration in either SK-N-BE(2) or  Kelly cells.  
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Fig. 3.3.12. Sub G1 assay using PI staining and Caspase 3/7 assay. Percentage of Sub 

G1 population was observed using PI staining by flow cytometry. a) SK-N-BE(2) and b) 

Kelly cells were treated with siMYCN or siNeg, and were harvested 72 hours later. Both 

siMYCN and siNeg increased the sub G1 population with a dose dependent manner while 

it showed clear difference between siMYCN and siNeg in some comparisons in Kelly 

cells. Caspase3/7 assay was performed using c) SK-N-BE(2) and d) Kelly. There were 

not significant differences among siMYCN, siNeg and UT ctrl. In all the graphs each 

column represents the mean± SD. *p<0.05, **p<0.01, ***p<0.001 
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3.3.10. MYCN and NCYM gene silencing by siNCYM and NCYM RNA silencing by 

siMYCN 

Suenaga et al. (2014) reported that NCYM RNA is co-amplified with MYCN in MYCN 

amplified NB cells, and the two genes enhance the expression levels of each other. 

Furthermore, Suenaga et al (2014) pointed out that NCYM RNA was reduced as much as 

MYCN mRNA by shMYCN in a human neuroblastoma cell line CHP134. Their data 

suggested that a putative E-box is located just 2 base pairs upstream of the transcript start 

site of the NCYM gene and MYCN activates NCYM transcription, and therefore, shMYCN 

can indirectly silence NCYM RNA (Suenaga et al. 2014). 

We investigated the silencing efficiency of NCYM by siMYCN in SK-N-BE(2) and Kelly 

cells and found that siMYCN at 20 nM, 10 nM and 5 nM silenced NCYM RNA in both cell 

lines but not when 50 nM were used. The silencing efficiencies of NCYM achieved were 

4.6-15.4% in SK-N-BE(2) and 7.2-38.8% in Kelly cells (Fig. 3.3.13.a, b).  

To investigate the ability of siNCYM to silence NCYM RNA, and MYCN mRNA and to 

upregulate NTRK1, SK-N-BE(2) cells were transfected with 50 nM, 20 nM, 10 nM and 5nM 

siNCYM and siMYCN using RNAiMAX (1:1 volume ratio), and were incubated for 48 

hours. siNCYM decreased NCYM RNA dramatically and achieved 79-92% silencing (n=4) 

(Fig. 3.3.14.a). The efficiency was significantly different between siNCYM and siNeg 

treated cells at all concentrations (p < 0.0001). On the other hand, MYCN silencing by 

siNCYM was lower; with 20 nM and 5 nM siNCYM achieving 5-8% knock down of MYCN 

mRNA while 50 nM and 10 nM did not show any reduction. Only the 20 nM siNCYM 

silencing of MYCN was statistically different from 20 nM siNeg (p=0.0263) (Fig. 3.3.14.b). 

Interestingly 5 nM siNCYM with 5 nM siMYCN silenced MYCN mRNA as much as 10 nM 
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siMYCN, which was approximately 80% knockdown and 4-fold higher than that of 10 nM 

siNCYM (Fig.3.3.14.c). 

siNCYM did not significantly upregulate NTRK1 (Fig. 3.3.15.a) (n=2). MYCN silencing by 

siNCYM or siMYCN and siNCYM at the protein level was investigated by immunoblotting 

(n=2). siNCYM at 50 nM, 20 nM, 10 nM and 5 nM siNCYM with 5 nM siMYCN reduced 

MYCN protein level and, normalised to the value of siNeg, silencing efficiency was 18% for 

50 nM siNCYM, 3% for 20 nM, 20% for 10 nM and 90% for 5 nM siNCYM with 5 nM 

siMYCN. While the values of siNCYM and siNeg in each concentration were not 

statistically significant, the trend was clear; siNCYM decreased MYCN protein. However, 

siNCYM at 50 nM, 20 nM and 10 nM did not upregulate pan Trk. 5 nM siNCYM seemed to 

upregulate Trk while it did not reduce MYCN protein. Therefore, the upregulation by 5 nM 

seems to be a experimental error. On the other hand, 5 nM siNCYM with 5 nM siMYCN 

upregulated pan Trk 1.7 times compared to untransfected negative control cells, which was 

higher than that achieved by 10 nM siMYCN (Fig. 3.3.15.b).    

These results suggest that siNCYM significantly reduced NCYM RNA and it downregulated 

the MYCN protein level.  In addition, it is likely that siMYCN has the ability to silence 

NCYM RNA in SK-N-BE(2). However, it does not appear to silence MYCN mRNA as 

much as siMYCN does, which agrees with the data which Suenaga et al. (2014) reported.   
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Fig. 3.3.13. NCYM RNA expression levels in SK-N-BE(2) and Kelly treated with 

siMYCN. siMYCN silenced 12.5-14% NCYM RNA in a) SK-N-BE(2) and 7.4-37.4% in 

b) Kelly at 5,10 and 20 nM. 50 nM siMYCN did not decrease NCYM RNA. (n=2)  In all 

the graphs each column represents the mean± SD. 
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Fig. 3.3.14. NCYM/MCYN silencing by siNCYM (anti-NCYM siRNA) in SK-N-BE(2) 

cells. a) siNCYM achieved 78.4-93.0% NCYM RNA silencing (n=4) although b) it 

silenced up to 10% MYCN mRNA at 20 and 5nM. (n=4) c) MYCN silencing by 10 nM 

siMYCN, 5 nM siMYCN+ 5 nM siNCYM and 10 nM siNCYM (n=2) In all the graphs 

each column represents the mean± SD. *p<0.05, ***p<0.001 
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Fig. 3.3.15. NTRK1 mRNA expression and MYCN /pan Trk protein expression levels in 

SK-N-BE(2) treated with siNCYM The number under the band is the relative protein 

expression level calculated from the intensity of the band. a) NTRK1 mRNA expression levels 

in SK-N-BE(2) treated with siNCYM/siNeg for 48 hours as quantified by qRT-PCR. It is 

likely that siNCYM does not affect the mRNA expression. (n=2) b) MYCN and pan Trk 

expression at protein level 72 hours after siNCYM transfection. MCYN were slightly reduced 

while it seems that siNCYM downregulated pan Trk protein level at all the concentrations. 

This experiment was performed two times. In all the graphs each column represents the mean± 

SD. 
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3.3.11.     Differentiation in SK-N-BE(2) by siNCYM 

siNCYM reduced MYCN mRNA and MYCN protein expressions while the efficiency is not 

as high as siMYCN. We hypothesised, therefore, that siNCYM might induce differentiation 

in SK-N-BE(2) cells. These cells were transfected with 50 nM, 20 nM, 10 nM and 5nM 

siNCYM using RNAiMAX (1:1 volume ratio), then incubated for 6 days. At day 3, the 

transfection media was changed to complete media. As a result, siNCYM induced neurite 

elongation in the cell lines. However, the morphology of the neurites was not the same as in 

siMYCN transfected cells. Neurites induced by siNCYM were straighter and thicker and 

shorter than the ones by siMYCN (Fig. 3.3.9). When NB cell lines are exposed to stress such 

as cytotoxic reagents, some of them extend the neurites and the morphology is straight and 

thick as well as the shape of the cells become slightly rounder. The morphology induced by 

siNCYM was slightly similar to the ones induced by stress. On the other hand, the 

morphology of the transfected cells do become raised, smaller and rounder in shape, 

indicating differentiation. The neurite length in the cells transfected with siNCYM was 

significantly longer than those transfected with siNeg at all concentration tested at both days 

2 and 6 (Fig. 3.3.17.a). However, the length difference between day 2 and day 6 were 

approximately 0.001-0.003 µm/µm² cell area and the length became longer between day 2 

and day 6 in cells transfected with 50 nM, 20 nM and 5 nM siNCYM. However, the ones 

transfected with 10 nM siNCYM became shorter from day 2 to day 6. In addition, the 

concentration differences of siNCYM did not make differences in the neurite length.   

The number of the neurites per cell area at day 2 and day 6 was also quantified. While there 

was a significant difference between the one treated with siNCYM and siNeg at all the 

concentrations, the number was the almost the same at 20 and 50 nM between day 2 and day 

6. The number of neurites at day 6 was slightly more than at day 2 by 0.00007 at 5 nM and 

0.00004 at 10 nM.  
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Overall, it is likely that siNCYM can induce modest differentiation in SK-N-BE(2) although 

morphological differences are not as significant as those obtained by siMYCN. However, the 

differences between siNCYM and siNeg were statistically different at all the 4 different 

concentrations. 
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Fig. 3.3.16. Morphology changes of SK-N-BE(2) cells transfected with siNCYM 

siNCYM induced  differentiation in SK-N-BE(2). The morphology of the neurites was 

different from the ones differentiated by siMYCN (white arrows). The number of the 

extended neurites was clearly different from the ones treated with siNeg. Therefore, it 

was concluded that siNCYM induced differentiation. The images of the morphology 

change induced by siMYCN are Fig. 3.3.9. 
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Fig. 3.3.17. The neurite length and the number of the neurites per cell area 

induced by siNCYM at day 2 and day 6  Quantified data of Fig. 3.3.16. a) The total 

neurite length were normalised by the total of the cell area per image. b) the total 

number of the neurites normalised by total cell area. (n=10) In all the graphs each 

column represents the mean± SD.  *p<0.05, **p<0.001, ***p<0.0001  
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3.3.12. Cell viability (cytotoxicity) assay 

To investigate the toxicity of siMYCN and siNeg transfections, we then, performed cell 

viability assays in siMYCN and siNeg transfections using RNAiMAX at 50 and 10 nM in 

SK-N-BE(2) cells (Fig. 3.3.19). As a result, 50 nM siMYCN and siNeg were significantly 

toxic, and the intensities were 0.36 and 0.42, respectively and the value of 50 nM siMYCN 

was significantly different from the ones of 10 nM siMYCN and untransfected control cells, 

and the p values were 0.00181 between 50 nM siMYCN and 10 nM siMYCN, and 0.000442 

between 50 nM siMYCN and untransfected control cells. In addition, the values between 50 

nM siNeg and untransfected control cells were also statistically different with p=0.00154. On 

the other hand, there were no significant differences between 10 nM siMYCN and 

untransfected control cells, and 10 nM siNeg and untransfected control cells.  These results 

suggest that cells treated with 50 nM siMYCN with RNAiMAX decrease the viability due to 

the toxicity of the transfection, rather than MYCN reduction, while cells treated with 10 nM 

siMYCN were as viable as untransfected control cells.  

These results suggest that siRNA transfections at 50 nM using RNAiMAX were significantly 

cytotoxic and decreased cell viability, while siRNA transfections at 10 nM did not affect or 

slightly affected cell viability. There was no significant difference between 10 nM siRNA 

treated and untransfected cells. 
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Fig. 3.3.18. Cell viability (toxicity) assay Cell viability of SK-N-BE(2) cells 

treated with 50 nM or 10 nM siMYCN/siNeg were assessed using MTS assay 

reagent. SiRNA transfection at 50 nM using RNAiMAX was notably toxic 

while the cell viability of the cells treated with 10 nM was almost the same or 

slightly lower (statistically non-significant) to the one of untransfected negative 

control cells. The intensity was normalised to untransfected negative control 

cells. (n=5) In all the graphs each column represents the mean± SD. 
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3.3.13. Suppression of cell proliferation by siMYCN and siNCYM 

In MYCN amplified NB cells, overexpressed MYCN induces proliferation and cell growth. 

To use siMYCN for therapeutics, the ability to suppress proliferation is critical. We 

performed proliferation assays using a cell counting assay kit -8 (CCK-8) after siMYCN and 

siNCYM were transfected into SK-N-BE(2) cells. Firstly, the ability of 20 nM 

siMYCN/siNeg, 5 nM siMYCN/siNeg and untransfected controls were compared at 3 time 

points after transfection: at 24 h, 48 h and 72 h (n=3) (Fig.3.3.20.a). SiRNA transfection 

slowed down the growth rate of the treated cells and 20 nM siMYCN particularly supressed 

proliferation. At 24 hours, there was no significant difference between the different 

concentrations of MYCN siRNA and untransfected controls. At 48 hours, there was a 

difference between 20 nM siMYCN and untransfected control cells. Although 20 nM 

siMYCN supressed the cell growth more than that treated with 20 nM siNeg, it did not reach 

statistical significance. At 72 hours, the number of the cells treated with siMYCN was lower 

than any other condition. 20 nM siNeg slowed down the cell growth at almost the same level 

to the one by 5 nM siMYCN/siNeg. The difference between 20 nM siMYCN and siNeg, and 

20 nM siMYCN and untransfected control cells were statistically significant (p=0.049 and 

0.0062, respectively).  

Secondly, we compared cell growth after transfections with 10 nM siMYCN, siNCYM, 5nM 

MYCN + 5 nM NCYM, 10 nM siNeg and untransfected control cells (n=3) (Fig. 3.3.20.b). 

The growth rate of each condition was measured at days 0, 1, 2 and 3. The values of each 

condition at different time points were normalised by the value of the same condition at day 

0 and therefore, all values at day 0 were set as 1. SiRNA transfections slowed down the 

growth rate in this experiment again. 10 nM siMYCN suppressed the proliferation during the 

3 days, and the cell growth rate was remarkably different, compared with siNeg at day 1 

(p=0.00084), day 2 (p=0.000011) as well as untransfected control cells at day 1 (p=0.00021), 
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day 2 (p=0.0044) and day 3 (p=0.037). 5 nM siMYCN+5 nM NCYM slowed down the 

growth rate at day 1, compared with 10 nM siNCYM, siNeg (p=0.0060) and untransfected 

control (p=0.000069), and the rate, however, became faster after day 2 and it was almost the 

same level as that in siNCYM and siNeg. On the other hand, the growth rate in 10 nM 

siNCYM were almost the same as that in siNeg during the 3 days although it was statistically 

different from siNeg only at day 1 (p=0.0025).   

These results show that 10 nM or higher concentrations of siMYCN are likely to suppress 

proliferation in SK-N-BE(2), while siNeg also can suppress it. However, there is a clear 

difference of growth rate between siMYCN and siNeg, and therefore, we concluded 

siMYCN could be used to decrease cell growth rate. In addition, it seems that siNYCM 

cannot decrease the cell growth rate.  

 

 



133 
 

 

 

 

Fig. 3.3.19. Suppression of proliferation by siMYCN and siNCYM in SK-N-BE(2) 

cells SK-N-BE(2) cells were treated with siMYCN/siNCYM, and the cell growth rates 

were measured using the CCK-8 assay reagent at 3 or 4 time points. a) The cells were 

seeded at 1.5x10⁴ cells per well, and treated with 20 nM or 5 nM siMYCN/siNeg. 20 nM 

siMYCN significantly suppressed the cell growth from 48 hours. b) The cells were 

seeded at 1.0x10⁴ per well, and were treated with 10 nM siMYCN, siNCYM or siNeg or 

5 nM siMYCN+5 nM siNCYM. 10nM siMYCN remarkably reduced the growth rate 

during the 3 days. (n=3) *p<0.05, **p<0.01, ***p<0.001 
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3.4. Discussion 

The aims in this chapter were to investigate the ability of siRNA targeting MYCN and 

NCYM to silence MYCN, and whether the MYCN knockdown induces downstream effects 

such as up/downregulation of genes targeted by MYCN and differentiation of the NB cells.  

Nara et al. (2007) previously showed that MYCN silencing induces apoptosis and 

differentiation including neurite extension, as well as NTRK1 and NTRK3 (TrkC) mRNA 

upregulation in MYCN-amplified NB cell line NB-1. Similarly, Kang et al. (2006) also 

reported that MYCN silencing by siMYCN, induces apoptosis in MYCN-amplified NB cell 

lines (LAN-1 and IMR-32) and differentiation in BE(2)-C, LAN-1 and IMR-32  cells as well 

as upregulation at protein level of a neuronal differentiation marker, neuron specific enolase 

(NSE) . However, the two studies have not quantified the neurite length and the number of 

the neurites induced by siMYCN. Furthermore, these studies have not been shown Trk 

upregulation at protein level and down/upregulation of genes targeted by MYCN. Here, we 

performed experiments to address these shortfalls in NB, MYCN-silenced cells.    

We firstly characterised four different NB cell lines: SK-N-BE(2), Kelly, LAN-5 and SK-N-

SH at mRNA and protein levels in terms of MYCN. Among the 4 cell lines, the MYCN 

expression levels of both mRNA and protein in SK-N-BE(2) were the highest. Interestingly, 

the MYCN protein expression level in Kelly cells was lower than that in LAN5 while the 

mRNA level in Kelly was higher than that in LAN5. The data agree with those in Durbas et 

al. (2016), which showed that MYCN mRNA expression level in Kelly is approximately 2 

times higher than that in LAN-5 while the MYCN protein levels in the two cells lines were 

the same. These results suggest that the MYCN mRNA/protein metabolism in Kelly may be 

different from that in the other cells. For example, MYCN protein in Kelly cells may be 

degraded faster than in SK-N-BE(2) and LAN5 and the proteins that are associated with 
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the degradation of MYCN protein such as GSK3β and Fbw7 are more active, or the ones 

stabilising MYCN protein such as the PL3K/AKT pathway are less active in Kelly than the 

other NB cells (Fig. 3.4.2) 

RNAiMAX is a widely-used, commercially-available, liposome-based transfection reagent. 

The transfection efficiency is consistently high although it is toxic at higher concentrations 

(Fig.3.3.2). The percentages of the dead cells and live cells in each concentration of siRNA, 

which are shown in Fig.3.3.2.c, agreed with those seen under a microscope when cell 

morphology and confluency were checked before harvesting the cells 48 hours after 

transfection. Hence, the cellular uptake efficiency measured using flow cytometry is likely to 

be reliable. Furthermore, the MFI changed during the 48 hour incubation. A possible reason 

is cytotoxicity of higher concentration of siRNA. It can be considered that the cells took 

more siRNA and the intensity was the highest at increasing concentrations, compared with 
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those at lower concentrations. However, too much uptake was toxic for the cells and many 

cells were dying during the 48 hour time period. On the other hand, cells taking up less 

siRNA survived better at the 48 hour time point. Therefore, the cells at 10 nM and 5 nM 

were probably growing and the fluorescent intensity was diluted. 

RA is well-known as a differentiating agent, and it is used for high-risk neuroblastoma for 

controlling minimal residue after high-dose chemotherapy (Hämmerle et al. 2013; American 

Cancer Society website). We treated the 4 NB cell lines SK-N-SH, LAN-5, SK-N-BE(2) and 

Kelly with RA to compare the ability of RA and siMYCN to induce differentiation in the cell 

lines. The 4 NB cell lines reacted differently towards RA treatment: SK-N-SH and LAN-5 

showed morphological characteristics of differentiation by RA while SK-N-BE(2) and Kelly 

did not show a clear response and significant morphology changes were not seen in either of 

these cell lines. SK-N-BE(2) did not appear to respond towards RA. However, a sub-clone 

cell line of SK-N-BE(2) named SK-N-BE(2)-C (Memorial Sloan Kettering Cancer Center), 

and another reported by Andres et al. (2013), BE(2)-M17, are differentiated in morphology 

by RA. These data may suggest that SK-N-BE(2) cells consist of mixed populations and 

there are cells responding towards RA.  

Westmarke et al. (2011) mentioned that RA targets the retinoic acid receptor/retinoic X 

receptor (RAR/RXR) in normal neuronal cells and that RA induces differentiation in both 

MYCN amplified and non-MYCN amplified tumour cells. In addition, MYCN 

downregulation was seen before RA-mediated differentiation. They pointed out that these 

results suggested that RA may directly regulate MYCN expression at transcription level 

(Westmarke et al. 2011). Furthermore, Haskell et al. (1987) reported that RA induced 

morphological differentiation and increased TrkA expression in LAN-1 cells. Iraci et al. 

(2011) found that MYCN downregulates TrkA expression by forming a repression complex 
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with transcription factors SP-1 and MIZ-1 at the core promoters of TrkA, and the complex 

recruits the histone deacetylase HDAC1 to suppress the transcription. 

In SK-N-BE(2), as it was mentioned above, probably only a small percentage of the cells can 

respond towards RA treatment,  which agrees with the data in Joshi et al. (2007), which is 

why we found that RA achieved approximately 10% MYCN silencing only. On the other 

hand, we successfully demonstrated that siMYCN was able to drastically induce 

morphological differentiation in SK-N-BE(2), which has resistance towards RA and anti-

cancer drugs depending on the p53 pathway. Our data showed that siMYCN silenced MYCN 

and upregulated Trk at mRNA and protein levels. Furthermore, the morphology changes in 

the neurites and the cells are another strong evidence which shows the SK-N-BE(2) cells 

were indeed differentiated.   

RA is a powerful chemotherapeutic drug to differentiate NB cells without RA resistance. 

However, the response of NB cells towards RA treatment is not homogeneous as NB is a 

heterogeneous disease. Our data suggest that siMYCN might be promising for a therapy in 

cases of NB with resistance towards RA and drugs relying on the p53 pathway, as observed 

with SK-N-BE(2) cells. 

In addition, SK-N-BE(2) cells treated with siNCYM also showed evidence of differentiation 

although the morphology of the neurites was different from that of cells transfected with 

siMYCN, while  NTRK1 and Trk were not upregulated by siNCYM. We concluded that the 

cells were differentiated because the total length per cell area induced by siNCYM was 

significantly longer than that by siNeg (Section 3.3.11). There is another pathway to induce 

differentiation, the estrogen receptor alpha (ERα) pathway, which is upregulated by MYCN 

reduction. If this pathway was upregulated by siNCYM, it could be a reason why neurite 

elongation was induced by siNCYM transduction in SK-N-BE(2) without Trk upregulation. 
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However, the correlation between siNCYM treatment and the pathway is unknown. 

Therefore, it is necessary to investigate the mechanism of the differentiation pathways and 

the morphological differentiation.  

Interestingly, Kelly cells did not show any significant morphological changes after either RA 

or siMYCN treatments even though NTRK1 and pan Trk were significantly upregulated by 

siMYCN (not assessed though in Kelly cells treated with RA). Henriksen et al. (2011) 

showed that Kelly cells differentiated after retrovirally transduction with MYCN shRNA at 

the 3 day time point and the silencing efficiency was approximately 45%, which is similar to 

our efficiency. Therefore, Kelly has the ability to differentiate and change morphologically 

by siMYCN treatment as well as possibly RA treatment, however, it was not observed in our 

experiments. It is not known whether it is due to the shorter incubation duration after 

siMYCN transfection in our experiments or it is due to other differences in experimental 

conditions or cells, including the passage number. To observe the correlation among MYCN 

downregulation and Trk upregulation by RA or siMYCN and Trk upregulation and 

morphological modifications, further experiments may be required. 

We performed qRT-PCR and immunoblotting to assess TP53 and MDM2 expression levels 

at the mRNA and protein levels, respectively. We expected that p53 would be upregulated 

when amplified MYCN was silenced by siMYCN because p53 is supressed by MDM2, 

which is upregulated by MYCN (Huang & Weiss 2015). qRT-PCR successfully showed that 

TP53 was upregulated by siMYCN-mediated MYCN silencing in Kelly, although it was 

downregulated in SK-N-BE(2). In LAN-5, there were no significant differences in the 

amount of TP53 and MDM2 among the cells treated with the 4 different siMYCN 

concentrations, because the amount of MYCN silencing by siMYCN probably did not reach 

the level which can cause downstream effects. Unfortunately, neither TP53 nor MDM2 
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could be assessed by immunoblotting due to the quality of the antibodies but this should be 

done in the future.  

It was reported that Kelly cells are mutated for TP53 (Gogolin et al. 2013) while other 

researchers claim that it is wild type for TP53 (Afanasyeva et al. 2011, Shahbazi et al. 2014). 

According to van Maerken et al. (2011), TP53 in Kelly cells has a point mutation in codon 

177, which converts proline to threonine. Our qRT-PCR showed TP53 was upregulated by 

siMYCN, while MDM2 was not significantly downregulated. This result may imply that the 

MDM2-p53 pathway is functional.  

SK-N-BE(2) has non-functional p53 (Keshelava et al. 2001) due to a point mutation at codon 

135 on p53 with the consequence that a cysteine is converted to phenylalanine 

(Goldschneuder et al. 2006). Interestingly, the qRT-PCR data showed that MDM2 and p53 

were downregulated by siMYCN, while p53 was supposed to be upregulated by MYCN and 

MDM2 reduction in normal cells. One possible explanation of this result is that siMYCN-

mediated MYCN silencing decreased MDM2 as MYCN upregulates MDM2, however, the 

pathway to upregulate p53 by MDM2 silencing may not have worked because of the DNA 

damage in SK-N-BE(2) by radiotherapy and chemotherapy. Tweddle et al. (2001) also 

reported that p53 and MDM2 in SK-N-BE(2) did not react toward irradiation treatment while 

wild type p53 increased after  DNA damage and MDM2 increased at 4 hours after the 

treatment in SK-N-BE(1), another NB cell line sampled from the same patient before 

chemotherapy sessions. Our data and the results in Tweddle et al. (2001) suggest that SK-N-

BE(2) may not apoptose via the p53-dependent pathway even though it is treated with 

siMYCN. 

Then, we carried out a PI staining assay to assess the ability of siMYCN to induce apoptotic 

death in the NB cell lines. Overall, the results of the PI staining assay did not always agree 
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with the percentage of dead cells seen under a microscope before the cells were harvested. 

That is because it is difficult to collect and not to lose the small fragments of apoptotic cells 

through the procedure of the staining. Especially the data of the subG1 population/PI 

staining in SK-N-BE(2) were underestimated and with high variability leading to large error 

bars. However, more than 50% of the cells treated with 50 nM siMYCN that were checked 

under a microscope and the percentages of dead and live cells counted were similar to the 

percentages in the data measured by flow cytometry in Fig.3.3.3.c. In addition, the 

supernatant was discarded in the data of Fig.3.3.3.c, and therefore, it is likely that the 

percentages in the data are also underestimated. 

Even though the data of PI staining/sub G1 assay may not be accurate, there were consistent 

differences in the percentages between siMYCN and siNeg treated cells in both SK-N-BE(2) 

and Kelly cells and the difference may be regarded as apoptotic dead cells. In SK-N-BE(2), 

they were induced by a p53-independent pathway. However, the pathway to trigger 

apoptosis after siMYCN mediated MYCN reduction is unknown, and further studies are 

required to reveal this pathway. In addition, it may be useful to find another target for 

apoptosis induction via p53-independent for anticancer therapy. 

We conducted siNCYM transfections to assess the ability of the siRNA to reduce MYCN at 

mRNA and protein levels and to upregulate Trk and induce morphological differentiation. 

While Armstrong and Krystal (1992) firstly described NCYM mRNA, it has been unclear 

whether it codes for a functional protein. Suenaga et al. (2014) firstly reported that mRNA of 

NCYM indeed codes for a functional protein and proposed that the protein stabilises MYCN 

protein via inhibition of GSK3β, a kinase promoting MYCN degradation. Therefore, the 

shRNA-mediated silencing of NCYM downregulated MYCN protein although MYCN 

mRNA was not reduced. In addition, MYCN overexpression enhances NCYM promoter 

activity and so siMYCN decrease NCYM mRNA (Suenaga et al. 2014).  
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Our data partially agreed with their data in that siMYCN reduced NCYM mRNA in both 

SK-N-BE(2) and Kelly cells and siNCYM at 50 nM, 20 nM and 10 nM decreased MYCN 

protein although the silencing level was lower than that in Suenaga et al. (2014). One 

possible reason for the disagreement in the silencing level is the use of different cell lines, as 

mentioned in the Results (Section 3.3.10). The Suenega research group used CHP134 cells 

and Durbas et al. (2006) showed that the cell line expresses about 60% of MYCN mRNA 

and 1.1 times less MYCN protein than Kelly cells and therefore, it might be easier to silence 

the MYCN mRNA and protein in CHP134 compared to Kelly cells.  

On the other hand, Liu et al. (2016) recently reported that their NCYM siRNA (purchased 

from Qiagen) silenced MYCN by approximately 50% in SK-N-BE(2)-C. In addition, another 

research group showed MYCN mRNA and protein knockdown by NCYM shRNA in SK-N-

BE(2)-C (Zhao et al. 2016). Importantly, one of the NCYM shRNAs in Zhao et al. (2016) is 

targeting the same region on NCYM mRNA as the one targeted by anti-NCYM shRNA in 

Suenaga et al. (2014) as well as our siNCYM, and therefore, the silencing efficiency of the 

shRNA targeting NCYM in the two groups should be the same. However, MYCN mRNA 

was silenced by the NCYM shRNA in Lui et al. (2016) although it was not in Suenaga et al. 

(2014). There is not publication in which compared SK-N-BE(2) and SK-N-BE(2)-C 

regarding MYCN mRNA expression level, while Huang et al. (2011) reported that the 

MYCN mRNA expression level in SK-N-BE(2)-C was lower than those in the other sub-

clones of SK-N-BE(2), BE(2)-S and BE(2)-N. It may be possible that the differences in the 

response towards NCYM siRNA/shRNA resulted from the differences in the MYCN 

expression level between SK-N-BE(2) and the sub-cloned cell line BE(2)-C.  

Furthermore, the relationship between MYCN and NCYM is still not clear. Zhao et al. 

(2016) mentioned that they were not able to detect the protein of NCYM even though they 

tried two antibodies. We also tried to detect the protein using a commercially available 
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antibody but it did not work and their recommended positive control cell line was a human 

liver cancer cell line Hep G2, which overexpresses c-Myc, rather than MYCN. NCYM co-

expresses with MYCN, and therefore, we concluded the anti-NCYM antibody would not 

work. It is necessary to confirm whether the RNA of NCYM is coding a protein and how it 

stabilises MYCN protein in a further study. Zhao et al. (2016) claimed that CCCTC-binding 

factor (CTCF) binds with NCYM non-coding RNA and the two promote MYCN expression. 

On the other hand, Liu et al. (2016) reported that lncUSMycN, a novel long non-coding 

RNA upstream of MYCN, upregulates NCYM RNA expression and NCYM RNA post-

transcriptionally upregulates MYCN by binding to the RNA binding protein NonO. The 

complex of NonO and NCYM RNA allows MYCN mRNA to translate and increase MYCN 

protein compared, with the mRNA in the normal translation. In addition, the mechanisms 

such as the main promoter of MYCN expression in NB cells are unknown (Zhao et al. 2016), 

even though MYCN is well-recognised as a good target in the therapy. There are still many 

studies required for understanding MYCN and the knowledge will help make gene therapy 

targeting MYCN more efficient and applicable to heterogeneous MYCN amplified NB cells.   

In conclusion, we have successfully demonstrated that siMYCN can silence MYCN at 

mRNA and protein levels and that MYCN silencing induces NTRK1/Trk upregulation in 

SK-N-BE(2) and Kelly cells. Importantly, siMYCN and siNCYM significantly trigger 

morphological differentiation in SK-N-BE(2), a NB cell line that has a p53 mutation and has 

resistance towards RA and drug depending p53-pathway. Therefore, MYCN silencing by 

siRNA may provide a novel therapy for NB with drug resistance.  
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4. MYCN silencing by siRNA delivered using RTNs 

4.1. Introduction 

RNAi induced by siRNA has been studied in various diseases in vitro for many purposes 

including developing gene therapy and investigation of the function of target genes. siRNA 

delivery requires the development of efficient vectors. Lipid nanoparticles have been used 

widely for siRNA delivery owing to their abilities to protect nucleic acids from extra- and 

intracellular enzymatic degradation and deliver siRNA to tissues in vivo (Elsabahy, Nazarali 

& Foldvan 2011). In addition, lipid based vehicles in cancer therapy are required to promote: 

1) longer circulation times in blood without interaction with blood proteins, 2) accumulation 

and penetration within the tumour 3) internalisation to cells within the targeted tissues and 4) 

siRNA release to the cytoplasm (Xu et al. 2016).  

We have developed receptor-targeting nanocomplexes (RTNs) consisting of liposome, 

receptor-targeting peptide and nucleic acids to deliver the RTNs to target tissues specifically. 

We are developing cationic, non-PEGylated RTNs in vitro for in vivo use, as cationic non-

PEGylated RTNs interact with serum proteins in blood and are sensed by immune cells 

(Judge & MacLachlan 2008). Polyethylene glycol (PEG) is now commonly used for lipid 

based nanoparticle to solve these problems, PEG generates a protective hydrophilic layer on 

cationic liposome surface, and it changes the surface properties, decrease opsonisation by 

blood protein. PEG also reduces phagocytosis, called steric stabilisation effects (Allan et al. 

2002; Huang et al. 2008). Those properties allow PEGylated RTNs can increase circulation 

time in blood, and increase opportunity that PEGylated RTNs reach target tissues (Hart 

2010).  On the other hand, PEGylation can prevent RTNs cellular uptake (Huang et al. 2010; 

Mishra et al. 2004) and siRNA endosomal escape (Oliveira et al. 2015). PEG also might not 

sufficiently protect siRNA against enzymatic degradation (ibid).   
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In our group, for the endosomal escape of siRNA, there is a cleavable linker in integrin 

receptor targeting peptide ME27 in our RTNs. The cleavable linker is degraded by the 

endosomal proteinases furin and chathepsin B, and it allows siRNA release to the cytoplasm. 

In addition, the integrin- targeting motif in peptide ME27 enables targeted delivery to 

specific cells.  

We have also developed anionic RTNs consisting anionic liposomes, cationic peptide and 

nucleic acids. Anionic liposomes cannot get into cells because of the repulsion to the plasma 

membrane of the target cells, and only the receptor-target peptide on anionic RTNs can bind 

the targeted receptor. Then the RTNs are internalised via endocytosis. The internalisation of 

anionic RTNs is induced only when the receptor catches the receptor-targeting peptide. 

Therefore, anionic RTNs can specifically deliver siRNA into the target tissues while cationic 

RTNs can bind to unspecific cells and be internalised.  

We hypothesised that the transfection/silencing efficiency (internalisation) of cationic non-

PEGylated RTNs would be predicted to be higher than PEGylated RTNs. On the other hand, 

anionic RTNs would be delivered more specifically, compared with cationic RTNs.   

4.2. Aims 

We aim: 

1. To screen optimal RTNs and to optimise transfection conditions in NB cells in vitro 

2. To investigate MYCN silencing efficiency of RTNs in vitro and in vivo  

3. To observe specific delivery by ME27 into NB cells in vitro and in vivo 
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4.3. Results 

4.3.1. Differences in pDNA transfection efficiency among RTNs 

We first performed DNA transfection of RTNs consisting of liposome, peptide ME27 and 

Luciferase pDNA in Kelly to compare the differences in transfection efficiencies of 4 

different liposomes: DD (cationic, non-PEGylation), AT1 (cationic, 1% PEGylation), AT3 

(anionic, 1% PEGylation) and GK25 (anionic, 5% PEGylation) (the details of the 

components in each liposome, see 2.1.3.2 in Material and Methods chapter). 4 hours after the 

transfections, the transfection media was replaced with complete media. The transfected cells 

were incubated for 24 hours and the lysates were extracted in order to measure the luciferase 

activity.      

The RTN consisting of non-PEGylated DD achieved the highest RLU/mg protein in the four 

RTNs and it was approximately 14-times larger than that of AT1, 1% PEGylated cationic 

(Fig. 4.3.1.a). The efficiencies of the two anionic RTNs were 1/1000 of DD. However, the 

efficiency differences between cationic and anionic RTNs were not consistent in different 

cell lines and experiments (Fig. 4.3.1.b). The transfection efficiency of DD was 

approximately 10-times higher in Neuro-2A and 40-times in Kelly than those of AT3. The 

efficiency of another anionic RTN LPDL3, which consists of DD, ME27 and Luc pDNA 

covered with an outer layer of AT3 liposome was dramatically increased to levels similar to 

those of DD-containing RTNs in both Neuro-2A and Kelly cell lines, while the efficiency of 

AT3-containing RTNs was much lower than that of DD.    

The data may suggest that the cationic RTNs achieve higher transfection efficiencies, 

compared with anionic RTNs, and PEGylation decreases the efficiency even in cationic 

RTNs. The double layered formulation improved the efficiency of anionic RTNs, compared 

with anionic single layered RTNs.    
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We hypothesised that anionic RTNs can specifically bind to the targeting receptors on cells 

because anionic RTNs are negatively charged and cannot bind to negatively charged plasma 

membrane on cells due to the repulsion. Only the receptor-targeting peptide in anionic RTNs 

can bind to the targeted receptor on cells, and the binding to cells is specific while their 

efficiencies are lower than those of cationic. Then we performed an experiment where three 

different peptides: integrin receptor targeting ME27, negative control peptides ME72 and 

K16 (for the details, see 2.1.4. in Materials and Methods chapter), to observe the specificity 

of the three peptides in cationic and anionic RTNs, DD and GK25 (anionic, 5% PEGylation) 

(Fig. 4.3.1.c). As a result, the efficiencies of the cationic RTNs containing DD were not 

significantly different among the three different peptides although they were all 

approximately 4-times higher than that of anionic RTNs. On the other hand, the efficiency of 

the anionic RTNs containing the integrin targeting peptide ME27 was significantly higher 

than those of RTNs with ME72 and K16 in anionic formulations. 

These results may imply that the specificity of the transfections by cationic RTNs is low and 

they bind cells non-specifically, and therefore, their efficiencies look high. On the other hand, 

anionic RTNs bind targeted cells specifically while the efficiencies are lower because they 

can bind cells only via the interaction of the receptor-targeting peptide and the targeted 

receptor. However, the anionic double layered RTN LPDL3 showed higher transfection 

efficiency than the single layered anionic RTNs. 
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Fig. 4.3.1. Luciferase pDNA transfection using RTNs a) Differences in transfection 

efficiencies among RTNs containing AT3 (anionic 1% PEG), AT1 (cationic 1% PEG), 

GK25 (anionic 5% PEG), DD (cationic non-PEG) in Kelly. (n=6) b) Differences in 

transfection efficiencies among three different RTNs in Neuro-2A and Kelly. LPDL3 is a 

double layered formulation consisting of DD/ME27/DNA covered withAT3. (n=6) c) 

Differences in specificity between a cationic and an anionic RTNs. ME72 and K16 are 

negative control peptides. (n=6) In all the graphs each column represents the mean± SD. 

*p<0.05, ***p<0.001 
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4.3.2. MYCN silencing efficiency of siMYCN delivered by RTNs in vitro  

To observe MYCN silencing efficiency using RTNs in vitro, we performed experiments 

where siMYCN were transfected into Kelly and SK-N-BE(2) using DD/ME27 and LPRL3: 

DD/ME27/siRNA/AT3 formulations. The transfected cells were incubated for 48 hours and 

the RNA was extracted. The remaining MYCN mRNA was measured by qRT-PCR. 

As a result, DD achieved 22.1% MYCN silencing in Kelly and 12.7% in SK-N-BE(2) 

Fig.4.3.2.a,b). The efficiency of siMYCN seemed to be different from that in siNeg in only 

Kelly. On the other hand, LPRL3 did not silence MYCN in either Kelly or SK-N-BE(2).   

We also tested the cationic RTN containing AT1/ME27 to compare the MYCN silencing 

efficiencies of cationic non-PEGylated and PEGylated RTNs in SK-N-BE(2) (Fig.4.3.2.c). 

The RTN achieved only approximately 5% MYCN silencing and it was not statistically 

different from the value of the siNeg.  

These results suggest that non-PEGylated, cationic RTNs can silence MYCN mRNA, 

although, PEGylated cationic and anionic RTNs did not significantly reduce the mRNA. 

The MTS assay was performed in transfections of cationic RTNs containing DD in SK-N-

BE(2) to observe the toxicity of RTN transfections in a NB cell line (Fig. 4.3.2.d). The 

transfection media was changed to complete media 4 hours after the transfection and the 

cells were incubated for 24 hours (n=5). The viability of the cells transfected with RTN was 

not significantly different from that of untransfected negative control (p=0.73 for siMYCN 

and 0.23 for siNeg). It seems that transfections of RTNs containing DD are not cytotoxic. 
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Fig. 4.3.2. siMYCN transfections using RTNs and the cell viability iMAX was 

used at 10 nM as a positive control. a) MYCN silencing efficiencies by cationic 

DD and anionic LPRL3 RTNs in Kelly. (n=2) b) MYCN silencing by cationic and 

anionic RTNs in SK-N-BE(2). (n=2) c) MYCN silencing by RTN containing 

cationic AT1 in SK-N-BE(2). (n=2) d) Cell viability (MTS) assay in SK-N-BE(2) 

cells transfected with DD /ME27/siMYCN or siNeg at 24 hour time point (n=5). In 

all the graphs each column represents the mean± SD. *p<0.05 
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4.3.3. MYCN silencing in vivo 

We investigated the MCYN silencing efficiency of siMYCN packaged with cationic 1% 

PEGylated liposome AT1 (composition shown in 2.1.3.2. in the Material and Methods 

chapter) and peptide ME27 in a NB animal model of NOD SCID Gamma (NSG) mice 

xenografted with Kelly and SK-N-BE(2) cell lines. When the size of the tumour was 

approximately 5x6 mm (it took about two weeks after the xenograft), the RTNs were 

injected into the lateral tail vein. After 48 hour incubation, the tumours were taken and total 

RNA were extracted. The qRT-PCR data were normalised to untransfected negative control. 

The experiment was performed in collaboration with a colleague from our group (Dr A 

Tagalakis). 

In Kelly cell xenografts, administered to mice by intravenous, tail vein injection, the relative 

amounts of remaining MYCN mRNA after siMYCN treatment (n=6) was 0.70 and siNeg 

(n=5) was 0.86, normalised to untransfected negative control (n=3). The relative expression 

of siMYCN normalised to siNeg was 0.73 (Fig. 4.3.3.a). Hence, siMYCN achieved 29.3% 

silencing to untransfected negative control and 26.5% to siNeg. In addition, the values of 

siMYCN were significantly different from both untransfected negative control and siNeg 

(p=0.0007 and 0.0005, respectively) while siNeg and untransfected control were not 

different from statistics (p=0.83).  

In SK-N-BE(2) tumours, the relative expression of samples transfected with siMYCN was 

approximately 0.40, siNeg was 0. 66 (all n=3). In addition, the relative expression of 

siMYCN was approximately 0. 61 normalised to siNeg (Fig. 4.3.3.b). Therefore, siMYCN 

achieved 60.0% silencing to untransfected control and 39.1% to siNeg. The values of 

siMYCN were significantly different from those of untransfected control (p=0.02) although 

it was not statistically different from those of siNeg due to the high error bar of siNeg 
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(p=0.83) because this was a pilot study using SK-N-BE(2) and the sample number was 

minimum (n=3). 

These results suggest that the MYCN silencing efficiency in vitro may not agree with that in 

vivo and MYCN silencing efficiency in vivo is higher and that in vitro even in the same 

RTNs. 
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a) 

b) 

Fig. 4.4.3. MYCN silencing using AT1/ME27/siMYCN in vivo siMYCN was transfected 

in NB animal model which is NOD SCID mice xenografted a) with Kelly (n=6 for 

siMYCN, n=5 siNeg, n=3 UT ctrl) and b) with SK-N-BE(2) (n=3 each). 25µg siMYCN or 

siNeg/mouse was injected. After 48 hours, the tumour was taken, and the MYCN mRNA 

in each sample was quantified by qRT-PCR. The qRT-PCR was run in duplicate two 

times. One-way ANOVA with Bonferonni post-test used to assess significance. The bar 

represents mean ±SD. n.s.≥0.05, *p<0.05, ***p<0.001 
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4.3.4. Tumour uptake of a cationic PEGylated RTN and the biodistribution in vivo 

Then we observed how much cationic PEGylated RTN was taken in tumours and where the 

RTN was deliverd in organs in mice. NOD SCID Gamma (NSG) mice were xenografted 

with Kelly cells and when the size of the tumour was approximately 5x6 mm (it took about 

two weeks after the xenograft), the RTN formulation containing fluorescence-labelled 

siRNA was injected intravenously by tail vein. The tumours were removed 24 hours after 

intravenous administation for analysis of tumour uptak of the nanoparticles. The 

biodistribution of the RTN was observed 4 hours after the intravenous administation. This 

experiment was performed with assistance from a colleague, Dr A Tagalakis. 

Fluorescence labelled siRNA was observed in most of the cells in the tumour while the 

untransfected tumours were completely negative for fluorescence (negative control) (Fig. 

4.3.4.a). In terms of the specifity of siRNA delivery by the RTN, only tumours received the 

RTN while other organs including lung, liver and spleen showed no utptake of the RTNs 

(Fig. 4.3.4.a). 

These may imply the RTN delivered siRNA to taget tumour specificly and most of the RTN 

accumulated in the tumours with 4 hours. 
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Fig. 4.3.4. Tumour uptake and the biodistribution of the RTN (AT1/ME27/FAM 

labelled siRNA) a) Histological images of tumours from mice which received the 

cationic RTN or did not injected (negative control). The tumours were taken 24 hours 

after the administration. b) Image of organs (tumour, spleen, liver, heart, lung and kidney) 

in mice which was intravenously injected with the cationic RTN (0.5 mg/kg, 16 

µg/mouse). The image was taken 4 hour after the administration.  
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4.3.5. Cellular uptake of DD with cholesterol in vitro 

We then aimed to investigate whether higher cellular uptake and transfection efficiencies 

might be obtained using DD stabilised with cholesterol. We performed Alexa 555-labelled 

negative control siRNA transfection in SK-N-BE(2) and measured the percentage of 

fluorescent cells using flow cytometry at three different time points: 4, 24 and 48 hours after 

the transfections to observe differences in cellular uptake among DD, DD with 10% and 20% 

cholesterol. The percentage of the fluorescence positive cells transfected by DD without 

cholesterol was the highest in the three different RTNs, which was 67.2% at 4-hour time 

point (Fig. 4.3.5.a). DD with 20% cholesterol was the second highest and was 59.2%. DD 

with 10% cholesterol was 52.6%. At the 24-hour time point, DD with 20% cholesterol 

achieved the highest cellular uptake, which was 80.7%. DD became the second highest and 

was 76.5%. At the 48-hour time point, all formulations showed reduced percentages of 

fluorescent cells by approximately 1/3 while that of DD with 20% cholesterol was still the 

largest of the three. DD was 43.5% and DD with 10% cholesterol was 42.8%.  

In addition, the MFI of DD with 20% cholesterol was the highest at the three time points 

while that of DD was the second largest (Fig. 4.3.5.b). The MFI of DD with 10% cholesterol 

was as low as that of untransfected control at the 48-hour time point.    

We also observed the ability of DD with 30% cholesterol at the 24-hour time point and 

compared it with DD with 20% cholesterol (Fig. 4.3.6.). As a result, DD with 30% 

cholesterol achieved higher cellular uptake, at 89.6%, while DD with 20% cholesterol was 

84.9%. 

These results may imply that 20% and 30% cholesterol in DD improve the cellular uptake in 

SK-N-BE(2) while 10% cholesterol did not. 
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Fig. 4.3.5. Differences in cellular uptake and MFI among DD, DD with 10% and 20% 

cholesterol a) Cellular uptake of RTNs containing DD, DD with 10% cholesterol and DD 

with 20% cholesterol at 4 hour, 24 hour and 48 hour time points. (n=1) b) Changes in the 

MFIs of the RTNs containing DD, DD with 10% cholesterol and DD with 20% cholesterol 

during 48 hours. The values were quantified from a) the cellular uptake experiment. (n=1) 
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Fig. 4.3.6. Difference in cellular uptake of RTNs containing DD with 20% and 

30% cholesterol at 24 hour time point (n=1) The cellular uptake of the RTN 

containing DD with 30% cholesterol was higher than that of DD with 20% 

cholesterol.  
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4.3.6. MYCN silencing efficiency of DD with cholesterol 

To investigate MYCN silencing efficiency of DD with cholesterol, we transfected siMYCN 

packaged with ME27 and DD, DD with 10% or 20% cholesterol in SK-N-BE(2) in vitro, and 

incubated the cells for 48 hours. As a result, siMYCN delivered with DD with 10 and 20% 

did not silence MYCN while DD silenced mRNA levels by 15.2% (Fig. 4.3.7.a). The 

positive control siMYCN transfected with RNAiMAX at 10 nM achieved 40% MYCN 

silencing, and therefore, it seems that the cells and siRNA worked properly. 

Similarly, the silencing efficiency of DD with 30% cholesterol was observed (Fig. 4.3.7.b). 

Surprisingly, siMYCN transfected with DD with 30% cholesterol also did not silence 

MYCN mRNA while fluorescently-labelled siRNA delivered by DD with 30% cholesterol 

achieved 89.6% cellular uptake. 

The data suggest that cholesterol in DD decreased MYCN silencing efficiency in SK-N-

BE(2) although it seems to help the transfection efficiency.  
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Fig. 4.3.7. siMYCN transfections using RTNs containing DD, DD with 10, 20 and 

30% cholesterol. a) The MYCN silencing efficiencies of RTNs containing DD, DD 

with 10% cholesterol and DD with 20% cholesterol. (n=2) b) The RTN containing DD 

with 30% cholesterol did not silence MYCN. (n=2). In all the graphs each column 

represents the mean± SD. 
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4.3.7. siRNA release assay (heparin dissociation assay) 

We then investigated the stability and dissociation properties of RTNs containing DD, DD 

with 20% and 30% cholesterol in heparin because there was disagreement between the 

cellular uptake and the MYCN silencing efficiency. Heparin is a highly negatively-chargerd 

molecule and is widely used to assess the stability of cationic nanocomplexes. The stability 

indicates how easily the nanocomplexes release siRNA in cells because high concentration 

of polyanion such as protein, mRNA and nuleic acids may dissociate cationic 

nanocomplexes in the biological environment. Hence, heparin solusion is a model of the 

environment in a cell (Tagalakis et al. 2013). The siRNA was fluorescence-labelled with 

PicoGreen and the RTNs were exposed to different concentrations of heparin (0-10.0 U/mL). 

The packaging efficiency shows the extent of siRNA protection. A percentage of siRNA 

release was calculated using the value of free siRNA and the heparin concentration of 50% 

siRNA release was compared among the three RTNs.  

At 0 U/mL heparin, the RTN containing DD packaged 98.8%, DD with 20% cholesterol was 

96.0% and DD with 30% cholesterol was 96.7%. The heparin concentration of 50% siRNA 

release (50% dissociation heparin concertation U/mL) in DD with 30% cholesterol was 

lowest, which was 0.374 U/mL, and DD with 20% cholesterol followed it with 0.385 U/mL 

(Fig. 4.3.8.). The RTNs containing DD was more stable than those of DD with 20 and 30% 

cholesterol and the 50% heparin dissociation concentration was 0.417 U/mL. In addition, DD 

with 20 and 30% cholesterol achieved 100% siRNA release while DD was 94% maximum 

(Fig. 4.3.8. black arrow).  

The data may suggest that DD with 20 and 30% cholesterol are less stable to the packaging 

of siRNA compared with DD while the packaging efficiency at 0 U/mL heparin was not 
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different among DD, DD with 20% and 30% heparin. In addition, it seems that RTNs 

containing DD does not release all siRNA. 

 

  

 

 

 

 

Fig. 4.3.8. The stability and dissociation property of RTNs containing DD, DD with 

20 and 30% cholesterol. Heparin dissociation assay (0.01-10 U/mL) was performed to 

investigate the stability of the RTNs (n=3). The range of 0.01-1 U/mL was shown on the 

figure. 
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4.3.8. Differences in cellular uptake efficiency among different conditions of media 

change and centrifuge 

We then observed the differences in cellular uptake efficiencies when cells were transfected 

with different conditions of media. There was disagreement between the cellular uptake and 

the MYCN silencing efficiencies of DD with 20 and 30% cholesterol. One possible reason 

was the difference in the condition of media change. In the cellular uptake assay of Fig. 4.3.5. 

and Fig. 4.3.6., the transfection media (RTNs in OptiMEM) was not changed for 48 hours 

while the transfection media was changed to complete media 4 hours after transfection in our 

standard protocol as well as in the MYCN silencing in Fig.4.3.7. Then we hypothesised that 

the disagreement may be due to the change of the transfection media with RTNs to normal 

culture media and that cellular uptake of RTNs may increase if the transfected cells are 

centrifuged before media change.  

We transfected fluorescently-labelled negative control siRNA (BlockIt) packaged with DD 

with 20% cholesterol and ME27 in SK-N-BE(2) and incubated with different conditions in 

media and centrifuge (Fig. 4.3.9.a). The cellular uptake was measured at 4 and 24 hour time 

points.  

At the 4 hour time point, there was no significant difference in the percentage of the 

fluorescent cells in the samples with and without centrifugation just after the transfection 

(Fig. 4.3.9.b). The MFIs of the two samples were also the same (Fig. 4.3.9.c). At 24 hours, 

the cellular uptake efficiencies in No3 and No4, which were kept in OptiMEM (transfection 

media), were similar to each other at 84.9% and 85.5% respectively, and they were higher 

than those of No4 and No6 with media change (Fig. 4.3.9.b). No4 with media without 

centrifuge achieved only 38.8%, which was less than half of those of No3 and No5, while 

No6 with centrifuge and media change achieved 68.1%. Interestingly, the MFI of No6 was 



165 
 

as high as those of No3 and No5 while the cellular uptake efficiency in No6 was 

approximately20% lower than those of No3 and No5. The MFI of No4 was lower than the 

others (Fig. 4.3.9.c). 

These results suggest that the step of changing transfection media with complete culture 

media generally reduced the cellular uptake efficiency of the RTNs. Especially, transfections 

with changing media without centrifugation such as No4 significantly decreased the cellular 

uptake efficiency and the MFI, compared with the ones with centrifugation and changing 

media.  
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4.3.9. MYCN silencing difference with different conditions of media 

To investigate MYCN silencing efficiency among different conditions in media as well as 

two different time points, we carried out siMYCN transfections with 4 different conditions 

(Fig. 4.3.10.a). The cells were harvested at 24 and 48 hour time points to compare the 

silencing efficiency at different time points because the cellular uptake assay (Fig. 4.3.5.a) 

showed the percentage of the fluorescence positive cells at the 24-hour time point was higher 

than that at the 48-hour time point. As a result, all of the RTNs did not silence MYCN 

mRNA while siMYCN with RNAiMAX reduced it 50-68% (Fig. 4.3.10.b).  

This result implies that the lower silencing efficiency of the RTN containing DD with 20% 

cholesterol resulted from the liposome rather than the transfection conditions. 

Then we performed siMYCN transfection using a RTN containing DD without cholesterol to 

investigate if MYCN silencing efficiency was changed when the media was not replaced at 

the 4 hour time point (Fig. 4.3.11.a). The transfection media was changed at 24 hours after 

the transfection because changing media at 4 hours after transfection reduce the cellular 

uptake efficiency (Fig. 4.3.9.b). The transfection cells were harvested at 24 and 48 hour time 

points to compare the silencing efficiency at two different time points as described above.   

As a result, the MYCN silencing efficiency of the cells kept in transfection media for 24 

hours (Fig. 4.3.11.b) was slightly higher (22.4% and at 24 hour time point and 23.5% at 48 

hour time point) than that with changing media at 4 hour after transfection (Fig.4.3.2.b, 

4.3.6.a) by approximately 7-10%.  

The data suggest that DD without cholesterol silence MYCN mRNA and the efficiency was 

higher than that with 20% cholesterol while the transfection efficiency of DD in flow 

cytometry was lower than that with 20% cholesterol. In addition, the MYCN silencing 
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efficacy by RTNs containing DD was slightly improved by the method that involved 

incubation in the transfection media for 24 hours, although, it was not as high as that by 

RNAiMAX at 10nM. 
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4.3. Discussion 

We observed the transfection efficiency and silencing efficiency of RTNs in NB cells 

because commercially available lipid-based reagents such as Lipofectamine RNAiMAX 

cannot be used in vivo. For gene delivery of therapeutics in clinical use, it is necessary to 

optimise RTNs.  

Feng et al. (2010) and Zhu et al. (2013) group reported that anti-MYCN siRNA delivered by 

liposomes targeting folate receptor was transfected in LAN-5 in vitro and in vivo. The 

liposomes are containing cholesterol and are PEGylated. Their formulation achieved 79.2% 

knockdown at mRNA level and 71.3% at protein level in vitro as well as 53.1% at mRNA 

level and about 60% at protein level in vivo (Feng et al. 2010, Zhu et al. 2013). Interestingly, 

their anti-MYCN siRNA is targeting the same site as that siMYCN1 in chapter 3 (Fig. 

3.3.3.a) in our study is. This may imply that the most efficient site for MYCN knockdown is 

different among NB cells.    

Our RTNs for NB cells normally contain peptide ME27, which target the integrin α5β1, αvβ3 

and αvβ₅ receptors expressed on cancer cells and are binding to fibronectin and vitronectin of 

extracellular matrix, and the expression of the receptors in Kelly and SK-N-BE(2) has been 

confirmed in the previous study by colleges in our group (data not shown). RTNs containing 

DD normally achieves higher transfection and silencing efficiency compared with RTNs 

with PEGylated liposomes in vitro. A possible reason why LPDL3 achieved higher 

transfection efficiency compared with single layered anionic RTNs is that DNA was 

enveloped with non-PEGylated DD, rather than directly packaged by anionic PEGylated 

liposomes, and the structure made DNA released easier from PEG motif.      

On the other hand, non-PEGylated cationic RTNs cannot be used in vivo because negatively 

charged serum in blood shields the cationic RTNs and LPRL3 did not achieve MYCN 
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knockdown. Therefore, AT1 (1% PEGylation, cationic) was chosen for in vivo work in this 

study. RTN consisting of AT1 achieved 26.5% and 29% MYCN silencing to siNeg in Kelly 

and SK-N-BE(2) respectively, and 29.3% and 60% to untransfected negative control 

respectively in vivo although it silenced only 4.2% to siNeg in SK-N-BE(2) in vitro. The in 

vivo study using Kelly successfully showed that MYCN silencing by siMYCN, which was 

significantly different from siNeg and untransfected negative control while there was not 

different between siNeg and untransfected control. On the other hand, the study using SK-N-

BE(2) in vivo was a pilot experiment that 3 samples were prepared per condition. There was 

not a significant difference between siMYCN and siNeg due to the high error bar of siNeg. 

For further study, it will be necessary to increase the sample size in SK-N-BE(2) in vivo 

study and investigate MYCN silencing at the protein level in order to confirm the data at 

mRNA level as well as the downstream effects of MYCN silencing, such as NTRK1/TrkA 

upregulation. In addition, it may be useful for therapy to carry out multiple doses of 

siMYCN and investigate the silencing efficiency and the tumour growth rate in vivo. 

On the other hand, there was a disagreement in the silencing efficiency of AT1 between in 

vitro and in vivo. On possible reason may be that the uptake efficiency of RTNs. The 

experiment of cellular uptake of a RTN (DD with 20% cholesterol/ME27/siRNA) using flow 

cytometry (Fig. 4.3.9.b) revealed that the transfection efficiency in the cells in complete 

media changed 4 hours after the transfection without centrifugation, our standard protocol, 

was only 38.8%, which was almost half of that in the cells in the transfection media for 24 

hours. It may imply that there are RTNs not binding to the cells at the 4 hour time point, and 

they are washed away by changing to fresh complete media because the cellular uptake 

efficacy of the cells in changed media without centrifuge was the same as that of the 

transfected cells at the 4 hour time point. In addition, most of the fluorescence positive cells 

at 4 hour time point were just binding the fluorescent RTN while the ones at 24 hour time 
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point internalised the RTN. For further study, it will be useful to distinguish the two kinds of 

the fluorescent cells by quenching cells just binding fluorescent RTNs using trypan blue.  

On the other hand, the data of the tumour uptake and the biodistribution of the RTN (Fig. 

4.3.4.a,b) may show that the RTN was specifically delivered to the tumours within 4 hours 

and the cells of the tissues took the RTN probably due to the circulation of blood and the 

EPR effect. The EPR effect is a phenomenon that nanoparticles and liposomes are easily 

accumulated in cells in tumours because the vessel veins around tumours are inflammatory 

and there are gaps between the endothelial cells of vessel vein and it allows more than 500 

nm nanoparticles to pass the wall and accumulate in tumours (Li & Szoka 2007). In addition, 

RTNs in vivo are circulating in the bloodstream while the one not taken by cells are 

eventually captured by the liver (Samuelsson et al. 2017). PEGylated liposomes are less 

captured by the liver or the spleen compared with non-PEGylated liposomes, and 

approximately 15% of intravenously injected PEGylated liposome were detected in the liver 

after 24 hours while more than 80% were remaining in plasma in mice (ibid). In addition, Xu 

et al, (2016) reported that the terminal elimination half-life of their nanocomplexes 

consisting of siRNA and liposome with PEGylation and cholesterol was approximately 15 

hours in blood. These data suggest that injected RTNs are stably exposed to NB cells via the 

bloodstream and the dose is not dramatically reduced by capture by the liver or by 

degradation in vivo. Therefore, the transfection efficiency in vivo is higher than that in vitro 

in the same RTNs, which may have made the disagreement in the silencing efficiency 

between in vitro and in vivo.               

We also aimed to improve silencing efficiency by RTNs and used liposomes with cholesterol 

because one possible reason of lower silencing efficiency is instability of liposomes. Many 

researchers have been investigating liposomes with cholesterol and it was reported that 

adding cholesterol at more than 25mol% stabilises liposomes and improves cellular uptake 
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and (Schroeder et al. 2009). DD with 20% and 30% cholesterol improved the transfection 

efficiency in SK-N-BE(2) compared with DD without cholesterol while DD with 10% 

reduced the transfection efficiency. However, the MYCN silencing efficiency of the RTN 

with 20 and 30% cholesterol was lower than that without cholesterol.  

Then we hypothesised from these results from the two experiments that 20 and 30% 

cholesterol in DD may have stabilised RTNs and it may have made siRNA release difficult 

and performed the heparin dissociation assay to compare the stability of the three liposomes. 

As a result, DD was the most stable and can hold siRNA compared with DD with 20 and 

30% cholesterol and the data did not support our hypothesis.  

A possible reason for the disagreement among the three experiments is that the data in the 

heparin dissociation assay is just a model and shows the physical ability to hold siRNA of 

liposomes and did not show the actual stability and the ability to release siRNA the 

liposomes in NB cells. In addition, the transfection and MYCN silencing efficiency of RTNs 

with 20% cholesterol were reproducible in our study (Fig. 4.3.5. a., Fig. 4.3.6. and Fig. 

4.3.9.b. for the cellular uptake efficiency, Fig. 4.3.7. and Fig.4.3.10. for the silencing 

efficiency). However, there is no publication clearly mentioning the accuracy of the heparin 

dissociation assay compared with the actual ability to hold/release siRNA in cells. Therefore, 

the reason of the disagreement is not clear. 

In addition, higher percentage such as 40-50% of cholesterol might improve silencing 

efficiency in vivo. Lin et al. (2014) reviewed that several research groups have delivered 

siRNA by liposomes with 48% cholesterol in vivo. It is necessary for further study in which 

the correlation between silencing efficiency and cholesterol concentration is investigated as 

well as the efficiency of liposomes with higher cholesterol. 
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RTNs consisting of DD achieved approximately 22.1% MYCN silencing in Kelly and 12-

17% in SK-N-BE(2) in vitro with the method in which the transfection media (OptiMEM 

and the RTN) was changed to complete media 4 hours after the transfections (No4 in Fig. 

4.3.9.b). After the cellular uptake experiments revealed the lower transfection efficiency in 

our standard protocol (No4), we performed transfection by changing media at 24 hours after 

transfection (No3). It seemed to improve the MYCN silencing efficiency in SK-N-BE(2) by 

the RTN consisting of DD, which achieved 23.5%  silencing. The silencing efficiency in 

vitro was not significantly different from that of AT1 in vivo. In addition, it was similar to 

that of 5 nM siMYCN with RNAiMAX, which was approximately 25% silencing (Fig. 3.3.4), 

while the cellular uptake of siRNA by DD (Fig. 4.3.5.) and the MFI was lower those of 5 nM 

RNAiMAX (Fig. 3.3.2.a,b). These results may imply that the efficiency of siRNA release by 

DD is higher than that by RNAiMAX and it is possible that siMYCN delivered by DD 

induced differentiation and NTRK1/TrkA upregulation in SK-N-BE(2). On the other hand, 

the cell viability of several cell lines decreases in OptiMEM when the transfection media are 

not changed 4 hours after transfections. That is why we replace transfection media with fresh 

complete culture media 4 hours after transfection in our standard protocol and the viability of 

cells transfected with both siMYCN and siNeg in the standard protocol were not 

significantly different from that of untransfected cells (Fig. 4.3.2.d). Therefore, it is 

necessary to conduct optimisation of the methods and investigation of downstream effects of 

MYCN reduction induced by RTNs for further study. 

Conclusion 

We performed transfections with RTNs containing siMYCN for MYCN silencing in vitro 

and in vivo. As a result, a RTN consisting AT1, ME27 and siMYCN successfully silenced 

approximately 30% MYCN mRNA normalised to siNeg in Kelly xenografted to mice while 

the MYCN silencing efficiency by the same RTN was approximately 5% in SK-N-BE(2) in 
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vitro. In addition, a RTN containing DD achieved about 23.5% MYCN silencing in SK-N-

BE(2) after the optimisation of the protocol (n=2), which is a similar efficiency to that by 5 

nM RNAiMAX. Therefore, differentiation and NTRK1/TrkA upregulation might be induced 

by RTNs and it is necessary to observe them for further study. It is also necessary to increase 

the number of replications in the experiments of siMYCN transfections using DD. 
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5. Long term storage of RTNs in trehalose 

5.1. Introduction 

Lipid nanoparticles can load a wide range of reagents from small molecule drugs to 

biologicals including nucleic acids such as siRNA and mRNA (Hart 2010). Furthermore, 

gene/drug delivery by lipid or polymer-based nanoparticles that target cells is promising and 

will be a novel therapy in the future for cancers and other diseases. Receptor –Targeted 

Nanocomplexes (RTN) are described in this thesis for neuroblastoma therapy but a 

therapeutic product will be required to remain stable for storage and transportation, and that 

maintain their biophysical characteristics and transfection properties. 

Trehalose is a non-reducing disaccharide that has been used as a cryoprotectant in the food, 

cosmetic and pharmaceutical industries. Anchrdoquy, Carpenter & Kroll, (1997) 

demonstrated that trehalose maintained the transfection efficiency and biophysical 

characteristics of freeze-dried lipid/DNA nanocomplexes after re-suspension in water. In 

addition, it was reported that trehalose enhanced DNA transfection efficiency and transgene 

expression levels by stabilising the liposomes (Tseng et al. 2007). Furthermore, Ball et al. 

(2017) showed that siRNA packaged by liposomes in 20% trehalose achieved higher 

silencing compared with those in water or 5% trehalose. 

To assess the ability of trehalose to maintain the biophysical characters and the functions of 

RTNs, we performed DNA and siRNA transfections suspended in several concentrations of 

trehalose and stored at 4 °C or -80 °C overnight or for longer periods, and compared with 

RTNs stored in the same conditions in water. In this study, we carried out the experiment 

only at -80 °C without lyophilisation.  
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We hypothesised that trehalose should enable RTNs to retain their biophysical and 

functional properties after storage at -80 °C while the RTNs stored at -80 °C in water should 

be disrupted by ice crystals.  

5.2. Aims 

In this chapter, we aim: 

1. To confirm the ability of trehalose to maintain the biophysical characters and 

transduction/silencing efficiency of RTNs suspended in different concentrations of 

trehalose at 4 °C  or -80 °C     

2. To investigate the better time to thaw RTNs when they are transfected: one kept at -

80 °C just before transfections or one thawed and kept at 4 °C 

3. To observe the ability of trehalose to enhance transfection/silencing efficiency in NB 

cell line 

4. To investigate if the ability of trehalose can be applied to both cationic and anionic 

RTNs    
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5.3. Results 

5.3.1. Biophysical character and function of the RTNs consisting of DD, ME27 and 

Luciferase plasmid DNA stored at 4 °C or -80 °C in trehalose 

We first observed the ability of trehalose to maintain the biophysical characteristics and the 

functionality of RTNs containing pDNA. RTNs were prepared in 5%, 8%, 10% and 15% 

trehalose stored at 4 °C or -80 °C. The size and the zeta potential of the RTNs were 

measured before storing at 4 °C or -80 °C, and they are called as ‘the original’ in this study.  

The RTNs stored at -80% were first snap-frozen in an ethanol bath with dried ice floating 

before placing into storage at -80 °C, and then stored at -80 °C overnight or more. The RTNs 

were transferred at 4 °C till transfection or measurement of the sizes and the zeta potentials. 

RTNs to be stored under each condition were prepared once a week for 4 weeks, and at day 

29, those RTNs were removed then transfected into Neuro-2A to compare the function of the 

RTNs stored under different conditions with freshly made RTNs as well as their sizes and 

the zeta potentials (Fig. 5.3.1.a).  

The sizes of the 4 original RTNs were between 142.30 nm and 201.63 nm and Batch w4 was 

the biggest (Fig. 5.3.1.b). The polydispersity index (PDI) was almost the same among week 

1, 2 and 3 while after 4 weeks storage the PDI was 0.41, which means it was slightly more 

heterogonous (Fig. 5.3.1.c). In the RTNs stored at 4 °C, the size in water was 130 nm - 140 

nm and so slightly smaller than those of the RTNs in trehalose. In the trehalose solutions, the 

sizes were 150 nm -200 nm and not significantly different among the different 

concentrations (Fig. 5.3.1.d, Fig. 5.3.2.a). In -80 °C, the size of RTNs in water of Batch w1 

and w2 were about 10 times bigger than those of RTNs in trehalose and approximately 2-

fold greater than those in water at Batch w3 and w4. In addition, the population was more 

homogenous after the storage, except the RTN in 15% trehalose at Batch w1 where the PDI 
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was approximately 0.20-0.35. The PDI of Batch w3 and w4 storing in water at -80 °C was 

about 0.75 and was higher than RTNs stored under any other conditions (Fig. 5.3.1.c, Fig. 

5.3.2.a,b). The sizes and PDIs of the RTNs stored at 4 °C or -80 °C were similar to those of 

freshly prepared RTNs, except for the RTN in water, stored frozen at -80 °C. On the other 

hand, the zeta potentials of the 4 original RTNs (Fig. 5.3.1.b) were 23.5 mV - 39.6 mV 

which is lower than the ones stored at both 4 °C and -80 °C (Fig. 5.3.2.b). Those of the 

RTNs stored at both 4 °C and -80 °C did not change among the different conditions 

including water at -80 °C although it tended to be slightly higher when the size was bigger. 

They were around 40-60 mV (Fig. 5.3.2.b). These values were slightly higher than those of 

the freshly prepared RTNs, which were about 41-44 mV. 

These results imply that trehalose protects RTNs stored at -80 °C from ice crystal and 

maintains the biophysical properties. In addition, the storage at 4 °C for more than 1 week 

seems to improve the PDI of the RTNs stored at -80 °C.  In addition, it is likely that 5% or 

10% of trehalose achieves better transfection efficiency.  

We then transfected Luciferase pDNA enveloped with DD and ME27 into the murine 

neuroblastoma cell line, Neuro-2A, and compared them with those of the freshly made RTNs 

(Fig. 5.3.2.d). Lipofectamine 2000 (L2K) was used as a positive control at 2:1 weight ratio 

(=L2K: DNA). Freshly made RTNs achieved approximately 5x10^8 RLU/mg protein, which 

was 83% of the efficiency of the L2K. In RTNs in trehalose stored for 1 week (Batch w1), 

all the RTNs in trehalose at 4 and -80 °C except 10% at 4 °C achieved higher than 5x10^8 

RLU/mg protein of the freshly made RTNs and the positive control. In the RTNs stored for 2 

weeks (Batch w2), the efficiencies of the ones in stored at 4 °C and in 5% at -80 °C were 

greater than that of the positive control, although those of 8, 10, 15 % and water were lower 

than that of positive control. The RTNs stored for 3 and 4 weeks (Batch w3 and w4) did not 

achieve higher efficiency than that of the positive control. RTNs in 5% stored at 4 or -80 °C 
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and in water maintained similar transfection efficiency to those of the freshly made RTNs 

while the others dropped down the values of RLU/mg protein, which is lower than half of the 

value in Batch w4 each condition.  

The data suggest that the transfection efficiency can be improved by up to 2 week storage at 

4 °C and 1 week at -80 °C. However, more than 3 week storage at 4 °C and more than 2 

weeks in -80 °C seems to reduce the transfection efficiency while there are no differences in 

the biophysical properties associated with the duration of storage. It is likely that even the 

size and zeta potential do not change by long term storage at 4 degrees, the junctions may 

have changed. The junction between peptide and DNA or siRNA might have been tighter, 

which induce less DNA/siRNA release.  
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Fig. 5.3.1.Biophysical data of RTNs consisting of DD/ME27/Luc DNA in trehalose or 

water stored at 4 or -80⁰C a) Work flow of this experiment. RTNs were prepared each 

week during 4 weeks and stored at 4 °C or -80 °C in trehalose or water. (n=3) b) the sizes 

and zeta potentials of each nanocomplex before storage (called ‘original’). (n=3) c) the 

size and PDI of the original RTNs. The same data of b). d) the sizes of the RTNs stored at 

4 °C or -80 °C in trehalose or water compared with the freshly prepared RTNs. (n=3) In 

all the graphs each column represents the mean± SD. 
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Fig. 5.3.2. Biophysical data and the function of data of RTNs consisting of 

DD/ME27/Luc DNA in trehalose or water stored at 4 or -80⁰C a) the sizes and the 

PDI of RTNs stored at 4 or -80⁰C in trehalose or water. (n=3) The same data of Fig. 

5.3.1.d. b) the sizes, PDI and the zeta potential of the freshly made RTNs in d). (n=3) c) 

the zeta potential of RTNs stored at 4 or -80⁰C in trehalose or water. (n=3) d) the 

transfection efficiency of RTNs stored at 4 or -80⁰C in trehalose or water compared 

with the freshly prepared RTNs. (n=6). In all the graphs each column represents the 

mean± SD. 
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5.3.2. RTNs in trehalose kept at -80 °C  

The results of 5.3.1. showed that RTNs stored at 4 °C for 3 weeks or more dropped the 

transfection efficiency. We hypothesised that storage at -80 °C can keep the function of 

RTNs compared with 4 °C, and investigated the biophysical character and the function of 

RTNs kept at -80 °C for 1-4 weeks. We prepared RTNs in 5%, 10% and 0.4 M 

(approximately 15.3%) trehalose kept at -80 °C once each week for 4 weeks and thawed 

them just before transfection into Nuero-2A. The sizes, PDIs, zeta potentials were measured, 

and the Luciferase expression was assessed as the transfection efficiency.   

The sizes and PDIs of the RTNs kept at -80 °C were similar to those of the RTNs frozen at -

80 °C and stored at 4 °C (Fig. 5.3.3.a,b,c) while the zeta potentials were higher. The sizes 

were between 100-200 nm in the RTNs in trehalose while RTNs in water became 

significantly larger, which is approximately 1200-1900 nm. Overall, they were not 

significantly different from those of the freshly prepared RTNs, except the RTNs in water. 

The zeta potentials of RTNs in 5% and 10% trehalose and water were around 45-65 mV 

while those of 0.4 M trehalose were about 90-99mV. Except for the RTNs in 0.4 M trehalose, 

the zeta potentials were similar to those of the freshly prepared RTNs. 

The transfection efficiency was compared with that of freshly made RTNs. The transfection 

efficiencies of RTNs in 5% and 10% trehalose stored for 1, 2 and 3 weeks were almost the 

same and were higher than those of the freshly prepared RTNs. RTNs in 15% trehalose did 

not achieve the same levels of transfection efficiency as those in 5% and 10% stored for 1, 2 

and 3 weeks while that in 10% stored for 4 weeks dropped down. RTNs in water did not 

show any trend, and they were inconsistent (Fig. 5.3.3.d).  

These results suggest that storage at -80 °C until transfection kept more stably of the function 

compared with stored at 4 °C.  
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Fig. 5.3.3. the biophysical charactors and the function of RTNs kept at -80 °C a) the 

size of RTNs kept at -80 °C in trehalose or water. b) the size and zeta potentials of the 

freshly prepared RTNs. (n=3) c) the sizes and PDIs of RTNs kept at -80 ⁰C and  freshly 

prepared when they were transfected. (n=3) d) zeta potentials of the RTNs kept at -

80 °C. (n=3) e) the transfection efficiency of the RTNs kept at -80 °C and freshly 

prepared. (n=6). In all the graphs each column represents the mean± SD. 
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5.3.3. Luciferase silencing by siRNA delivered by RTNs in trehalose stored at 4 °C or -

80 °C 

We then performed Luciferase siRNA transfection into Neuro-2A transduced and expressing 

Luciferase to observe the ability of trehalose to retain the biophysical character and the 

function of RTNs containing siRNA. RTNs consisting of DD, ME27 and anti-Luciferase 

siRNA (siLuc)/Negative control siRNA (siNeg) were made and prepared in 5, 10 and 20% 

trehalose. The RTNs were prepared once each week for 2 weeks and were stored at 4 °C or -

80 °C. RTNs stored at -80 °C were transferred to 4 °C until the transfection after stored at -

80 °C overnight, rather than kept at -80 °C until transfection. The biophysical character of 

the RTNs was observed, and the silencing efficiency was measured by luciferase expression 

level. They were compared with those of freshly prepared RTNs. 

The size of the original RTNs in Batch w2 was slightly smaller than that of Batch w1 in both 

siLuc and siNeg, and the PDI was 0.28-0.37 (Fig. 5.3.4.a,b). The zeta potential of RTNs 

containing siLuc was approximately 44 mV, which is higher than that of siNeg by 10 mV 

(Fig. 5.3.4.b). Although the freshly made RTN of siLuc in water was slightly bigger than the 

original RTNs in Batch w1, w2 and the other freshly made RTNs of siLuc and siNeg, they 

were all approximately 100-150 nm and the zeta potential was about 30-50 mV (Fig. 5.3.4.c).  

In the RTNs stored at 4 °C or -80 °C in trehalose, overall they were approximately 100-150 

nm and are similar to those of the freshly prepared RTNs. On the other hand, the RTNs in 

water stored at -80 °C were more than 500 nm. The PDIs of the RTNs in trehalose at 4 °C or 

-80 °C and water at 4 °C did also not significantly change while the PDIs of the RTN in 

water at -80 °C was almost twice that of the others (Fig. 5.3.4.d).  
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The zeta potentials of the RTNs in trehalose at 4 °C or -80 °C and water at 4 °C were similar, 

and those were around 30-50  mV. On the other hand, the zeta potentials of the RTNs in 

water stored at -80 °C were bigger and were about 60-70 mV (data not shown).   

In the silencing efficiency, the RTNs Batch w1 except water at -80 °C achieved 

approximately 5% - 10% silencing while those in water at -80 °C did not show knockdown 

(Fig. 5.3.4.e). On the other hand, the silencing efficiencies of RTNs Batch w1 were various 

among the conditions. The RTN in 10% trehalose stored at 4 °C achieved the highest 

silencing at 25.6% following by 20% at -80 °C, which achieved 19.6% silencing. The other 

RTNs Batch w2 except 20% 4 °C and 10% at -80 °C achieved similar knockdown efficiency 

to those of the ones Batch w1, which was approximately 10% knockdown. In the freshly 

prepared RTNs, 5% and 10% achieved about 9.0% and 1.8% silencing respectively, and the 

others did not. 5% trehalose achieved slightly better silencing efficiency in the freshly 

prepared RTNs. 

The data may imply that trehalose can maintain the biophysical character of RTNs 

containing siRNA and the storage at both 4 °C and -80 °C seems to improve the function 

slightly. In addition, storage at both 4 °C and -80 °C for 1 week gives better silencing 

efficiency than that for 2 weeks. It is likely that storage in around 10% trehalose at 4 °C for a 

week achieves the highest efficiency.  
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e) 

Fig. 5.3.4. the sizes and zeta potentials of RTNs containing siLuc and the silencing 

efficiency a) the size of the original RTNs containing DD, ME27 and siLuc/siNeg. 

(n=3,technical replicates)  b) the PDIs and zeta potentials of the original RTNs. 

(n=3,technical replicates)  c) the sizes of the RTNs stored at 4 °C or -80 °C and the 

freshly prepared RTNs. (n=3,technical replicates) d) the PDIs of the RTNs stored at 4 °C 

or -80 °C and the freshly prepared RTNs. e) Luciferase silencing efficiency of the RTNs. 

(n=6, biological replicates) In all the graphs each column represents the mean± SD. 
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5.3.4. GAPDH silencing by siRNA delivered by RTNs in trehalose stored at 4 °C or -

80 °C  

We then performed GAPDH silencing by anti-GAPDH siRNA (siGAPDH) packaged with 

DD and ME27 in Neuro-2A to investigate the ability of trehalose to retain the biophysical 

character and the function of RTNs containing another siRNA, anti-GAPDH siRNA. The 

RTNs were prepared in 8 or 10% trehalose and were stored at 4 °C overnight, or were frozen 

at -80 °C for 3 hours and then transferred to 4 °C and stored overnight. The size and zeta 

potential of these RTNs were measured as well as their transfection efficiencies, and 

compared with freshly prepared RTNs. The biophysical properties of the RTNs just after the 

storage at -80 °C for 3 hours before transfer to 4 °C were also measured this time.  

The sizes of the original RTNs of siGAPDH and siNeg (: the RTNs before the storage) (Fig. 

5.3.5.a) were slightly larger than those in the siLuc RTNs experiment above (Fig. 5.3.4.b). 

They were approximately 143.0 nm -194.5 nm. The PDIs were more than 0.44, and the 

highest was 0.77 in siNeg in water, which means they were heterogeneous. The zeta 

potentials of the original ones were about 61.2-81.0 mV, which is 1.5-2 times higher than 

those of the siLuc RTNs experiment.  

The sizes of the RTNs containing siGAPDH stored at 4 °C or -80 °C was also overall 

slightly bigger than those of the RTNs containing siLuc experiment above (Fig. 5.3.4.c) at 

150 nm -230 nm: the smallest one of siNeg in 10% trehalose stored at -80 °C was 138.76 nm 

and the largest one of siGAPDH stored at 4 °C in water was 231.53 nm (Fig. 5.3.5.a,b). In 

addition, the size of RTNs stored at -80 °C became slightly smaller after the storage at 4 °C 

overnight in all the conditions. The PDIs were also higher than those of the RTNs in the 

siLuc experiment above, and were approximately 0.40 to 0.87 (Fig. 5.3.5.b). The sizes of the 

freshly prepared RTNs were similar to those of the original RTNs (Fig. 5.3.5.a,d). The PDIs 
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were 0.40-0.62 in both the stored and the fresh RTNs, which suggest there are multiple 

populations in the RTNs (Fig. 5.3.5.b, d).  

The zeta potentials of the RTNs containing siGAPDH and siNeg in this experiment were 

59.4 mV - 87.3 mV, which is almost twice higher than those of the siLuc RTNs experiment 

(Fig. 5.3.5.c). The zeta potentials of the RTNs in water were relatively stable among the 

different storage conditions while the size in water at -80 °C was dramatically changed. On 

the other hand, RTNs in trehalose tended to be more positively charged and to be changed 

among the different storage conditions. Overall, the zeta potentials of the RTNs stored at 

4 °C or -80 °C were similar to those of the freshly prepared RTNs (Fig. 5.3.5.c,d).  

In terms of transfection efficiency, overnight storage at 4 °C in 10% trehalose and at -80 °C 

in water and 8% trehalose improved the silencing efficiency (Fig. 5.3.5.e). The RTN in 10% 

at 4 °C achieved 71.1% and the one in 8% at -80 °C did 54.7%, which is higher than 53.0% 

of the positive control RNAiMAX. Interestingly, the large RTN in water at -80 °C also 

achieved 71.1%, which is the same silencing efficiency as that of in 10% at 4 °C. In addition, 

the overnight storage at 4 °C in water improved the efficiency at approximately 34.7% while 

the fresh one in water did 11.8%. However, the silencing efficiencies of the RTNs in 

trehalose except 10% at 4 °C and 8% at -80 °C were similar among the different storage 

conditions, which were 42.3-27.2%. There were no significant differences between 

siGAPDH and siNeg of the fresh RTN in water and of the RTN in 10% trehalose stored at -

80 °C while there were significant differences between siGAPDH and siNeg of the other 

conditions. 

The data may imply that trehalose and longer incubation could improve the function and the 

8% trehalose at 4 °C seemed to give the best result. The conditions of adding trehalose did 

not show affection to the sizes and PDI, and however, the RTNs in trehalose tended to have 
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higher zeta potentials. That might suggest that higher zeta potential can give better silencing 

efficiency rather than smaller size and PDI in vitro.   
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Fig. 5.3.5. The biophysical character and the function of RTNs consisting of 

siGAPDH/siNeg, DD and ME27 a) the sizes of the original and the stored RTNs. RTNs 

stored at -80 °C were measured twice: just after thawing the RTNs and after transferred 

and stored at 4 °C. (n=3) b) the PDI of the original and the stored RTNs. c) the zeta 

potentials of the original and the stored RTNs. (n=3) d) the sizes, PDI and the zeta 

potentials of the fresh RTNs. (n=3) e) GAPDH silencing efficiency by the stored and the 

freshly prepared RTNs. (n=3) In all the graphs each column represents the mean± SD. 
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5.3.5. MYCN silencing by siMYCN delivered with RTNs stored at 4 
o
C or -80 °C in 

trehalose or water  

To observe the effect of trehalose in MYCN silencing by siRNA, we performed MYCN 

silencing by siMYCN in the MYCN-amplified NB cell line, Kelly. RTNs consisted of DD, 

ME27 and siMYCN or siNeg and were prepared in 8% or 10% trehalose, or water and stored 

at 4
 
°C or -80 °C.  

The sizes of the original RTNs containing siMYCN (the ones not stored at 4 °C or -80 °C 

yet) were overall slightly larger than those of siNeg (Fig. 5.3.6.a). After storage, the RTNs in 

water at -80 °C became dramatically larger than the others while there were no clear trends 

in the size of the other conditions. The PDIs were similar among the RTNs of siMYCN and 

siNeg as well as among the original, the stored and the fresh RTNs (Fig. 5.3.6.b). The 

average zeta potentials of each condition showed the similar trend between siMYCN and 

siNeg; the RTNs in water and 8% trehalose were approximately 50 mV while the ones in 

10% trehalose were around 65 mV (Fig. 5.3.6.c). There were no significant effects of storage 

on zeta potential, and the error bars of the average zeta potentials were small in all the 

conditions. 

 In terms of silencing function, the results of qRT-PCR analysis of MYCN silencing showed 

different trends from those of siGAPDH (Fig. 5.3.6.d). Especially, the freshly prepared 

RTNs showed completely different trends. The freshly RTN in water achieved better 

silencing (p=0.0016) compared with the RTNs in trehalose and that of RNAiMAX which 

silenced only 17.2% MYCN mRNA (p=0.12). The second best was the RTN in 8% trehalose 

at 4°C and achieved 38.2% silencing (0.00047). Similarly, the RTN in 10% trehalose at 4°C 

silenced 25.7% and it was significantly different from the siNeg in the same condition 

(p=0.00047). The RTNs in 10% trehalose at -80°C achieved 37.5%, and however, it was not 
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statistically significant (p=0.099) because it had a larger error bar. Surprisingly, the RTNs in 

water stored at -80 °C achieved 21.1% (p=0.00091), which is higher than those of water at 

4 °C, 8% at -80 °C and fresh 10% and 8%.  

These results suggest that trehalose can enhance the silencing efficiency in RTNs stored at 

4 °C compared with, and can protect the biophysical characters of RTNs containing 

siMYCN even though they are thawed after freezing at -80 °C.   
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Fig. 5.3.6. The biophysical character and the function of RTNs consisting of 

siMYCN/siNeg, DD and ME27 a) the sizes of the original and the stored RTNs.  b) the 

PDI of the original and the stored RTNs. c) the average of the zeta potentials of the 

original and the stored RTNs. d) MYCN silencing efficiency by the stored and the 

freshly prepared RTNs in human NB cell line Kelly. In all the graphs each column 

represents the mean± SD. *p<0.05, ***p<0.0001 
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5.3.6. Anionic RTNs in 8% trehalose stored at 4 °C overnight 

Finally, we observed the ability of trehalose in anionic formulations. We carried out an 

experiment where anionic RTNs consisting of DD (cationic liposome), AT3 (anionic 

liposome), ME27 and siMYCN/siNeg. To prepare the anionic RTNs, DD, ME27 and siRNA 

were mixed and cationic RTNs were formed first. Then anionic liposome was mixed with the 

cationic RTNs and the anionic liposome covers the cationic RTNs. The RTNs were stored at 

4 °C overnight to investigate the efficiency of trehalose under the condition. In this time, the 

RTNs were not stored at -80 °C because the biophysical character and the function of the 

RTNs in trehalose stored at -80 °C were not significantly different from those of the RTNs 

stored at 4 °C in the experiments above.  

In general, cationic formulations were almost half the size of the anionic, double -layered 

formulations (Fig. 5.3.7.a). There were no differences between the sizes of the RTNs stored 

at 4 °C and those prepared freshly, before the transfection, while the RTNs in 8% trehalose 

were slightly larger than those in water. The cationic RTNs were smaller than the cationic 

RTNs containing siLuc or siGAPDH in the experiments above (Fig. 5.3.6.a). The zeta 

potentials of the cationic RTNs were similar to those of the cationic RTNs above (Fig. 

5.3.6.c, Fig. 5.3.7.b) while the cationic RTNs in water had higher zeta potentials than those 

in 8% trehalose. The anionic RTNs in water were more negatively charged than RTNs in 8% 

trehalose. In terms of RTN heterogeneity, the cationic formulations had much higher PDIs 

while the anionic ones were very low at approximately 0.18-0.23 (Fig. 5.3.7.c). However, the 

PDIs of the cationic RTNs were similar to those of the cationic RTNs containing siLuc and 

siGAPDH above (Fig. 5.3.6.b).  

In terms of silencing function, the cationic RTNs in water at 4°C and the fresh cationic and 

anionic RTN in water were able to achieve higher silencing, of 59.9%, 61.4% and 66.4% 
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respectively, than 58.0% of RNAiMAX (Fig. 5.3.7.d). In addition, they were all significantly 

different from that of siNeg in each condition (p=0.013, 0.00062 and 0.00031, respectively). 

The other formulations also successfully silenced MYCN, at 36.5% - 46.5% knockdown. 

The RTNs in the same solution at 4 °C and the freshly prepared showed similar silencing 

efficiency except LPRL3 in water. In addition, there were not significant differences 

between siMYCN and siNeg in the cationic RTN in 8% trehalose at 4 °C, the anionic RTN 

in water at 4 °C and freshly prepared anionic RTN in 8% trehalose. On the other hand, the 

LPRL3 in 8% trehalose at 4 °C, the freshly prepared in 8% trehalose were significant 

(p=0.016 and 0.00036, respectively). 

The data imply that trehalose also maintains the biophysical character and function of 

anionic RTNs on freezing at -80 °C and thawing to 4 °C. 
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Fig. 5.3.7. The biophysical character and the function of RTNs consisting of 

siMYCN/siNeg, DD and ME27 a) the sizes of the RTNs stored at 4 °C and the fresh 

RTNs. (n=3) b) the PDIs of the RTNs stored at 4 °C and the fresh RTNs. (n=3) c) the 

average of the zeta potentials of the RTNs stored at 4 °C and the fresh RTNs. (n=3) d) 

MYCN silencing efficiency by the stored and the freshly prepared RTNs in human NB 

cell line Kelly. (n=3) In all the graphs each column represents the mean± SD. *p<0.05, 

***p<0.0001 
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5.4. Discussion 

We conducted experiments in which RTNs in trehalose were stored at 4 °C or -80 °C. The 

biophysical characteristics and transfection/silencing efficiency were measured in order to 

observe the ability of trehalose to protect the RTNs from destruction by inhibiting formation 

of ice-crystals. 

Trehalose is a non-reducing sugar and disaccharide, consisting of two α-glucose molecules 

bound by an α,α-1,1-glucoside bond (Fig. 5.4.1). Trehalose has high resistance to acid 

hydrolysis, and can exist in a closed-ring form because of the bonding (trehalose: CID 7427, 

PubChem). Because there are no internal hydrogen bonds, trehalose can easily form 

hydrogen bonds with the head groups of lipids. This maintains the space between the head 

groups, and keeps the membrane in the fluid phase (Peraira et al. 2004). Therefore, water is 

replaced by the trehalose molecule, and is located close to the lipid polar head groups (water-

replacement hypothesis) (Jain & Roy, 2008).  

 

Fig. 5.4.1. Structure of trehalose Taken from (PubChem website) 
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In addition, trehalose inhibits the growth of ice-crystals in space between lipids. The melting 

point of a solution containing trehalose is lower than that expected from depression of the 

molecular freezing point because trehalose promotes a disruptive effect on the tetrahedral 

hydrogen-bond network of pure water (Uchida et al. 2012), resulting in smaller ice-crystals 

even after freezing of the trehalose solution (TREHA, Hayashibara website). Furthermore, 

the viscosity of trehalose increases with decreasing temperature, also affecting the growth 

process of ice- crystals (Uchida et al. 2012). 

In our study, trehalose successfully maintained the biophysical properties of the RTNs 

containing DNA or siRNA at -80 °C, at all concentrations. In addition, incubation at 4 °C 

overnight or more tends to improve the PDI. Even the PDI of RTNs containing DNA stored 

at -80 °C in water became smaller when they were incubated at 4 °C for three weeks or more 

(Fig. 5.3.2.a), while the ones kept at -80 °C in water, and thawed just before transfection, 

showed higher PDIs. In general, smaller RTNs showed higher charges in cationic 

formulations.     

In our study, the RTNs were prepared at 0.02 mg/mL at a range of trehalose concentrations 

from 5-20%. We observed that even at the lowest concentration of 5% trehalose, RTNs were 

able to maintain their biophysical characteristics. Date et al. (2010) reported that 20% 

trehalose was able to retain the sizes of nanoparticles packaging antibiotics up to 32 mg/mL 

at -40 °C and -70 °C, and that there was significant increase in size above that concentration. 

Similarly, Ball et al. (2017) pointed out that there was no significant difference in the size of 

lipid nanoparticles containing siLuc, prepared at 0.125 mg/mL in 20% trehalose at -80 °C, 

while the size and PDI became larger in nanoparticles in 1, 5 and 10% trehalose. These 

results suggest that our formulations were diluted, compared to the concentrations in the 

other studies, and that lower concentrations of trehalose were able to maintain the size of the 

RTNs. However, RTNs at concentrations higher than 32 mg/mL might require more than 
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20% trehalose solution to preserve their biophysical character, according to Date et al. 

(2010).   

In terms of function, the RTNs for all trehalose concentrations (one or two weeks storage at 

4 °C) achieved higher transfection efficiencies with Luciferase pDNA than those stored at 

4 °C in either water or trehalose for three or four weeks. In addition, the RTNs stored at -

80 °C for one week (frozen at -80 °C and then stored at 4°C till needed) or just kept at -80 °C 

also achieved high transfection efficiency. Tseng et al. (2007a,b) reported that trehalose at an 

optimal concentration can enhance transfection efficiency of GFP pDNA/polyehylenimine 

(PEI) complexes in vitro, and GFP pDNA/lipid complexes in vivo, although it should be 

noted that the lipids used in this study differ from the ones used in our own work, and 

trehalose was added in transfection media instead of to the RTN suspension. We tested the 

transfection methods in Tseng et al. (2007b) in which the trehalose was added in complete 

media before transfection and the concentration of the trehalose was kept in the transfection 

media too. However, transfection efficiency was not improved compared with the RTNs that 

were prepared in trehalose solution, and were transfected without additional trehalose. 

Therefore, trehalose was not added to transfection media in our experiments. 

Tseng et al. (2007a) explained that a possible reason why trehalose might enhance 

transfection efficiency is that the disaccharide might increase the cellular entry of nucleic 

acid by stabilising the lipid-based liposome. Furthermore, Ball et al. (2017) reported that 

siRNA in liposomes in 20% trehalose achieved higher silencing efficiency, compared with 

those in 1%, 5% and 10% trehalose, which is not in line with our findings where 5-10% 

trehalose showed higher transfection/silencing efficiencies. Tseng et al (2007a) noted that 

the most effective concentration of trehalose is different among cell lines. This is a potential 

explanation for this disagreement between optimal trehalose concentrations. 
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On the other hand, there were no significant differences in efficiency among different 

conditions in the siLuc transfection. The siLuc transfections showed overall lower silencing 

efficiency, compared with the other silencing experiments. A possible reason for this is that 

the Neuro-2A cells used, stably express luciferase by transduction. This may lead them to 

express very high levels of luciferase as they possibly contain many copies of the transduced 

Luciferase gene. However, with RNAiMAX approximately 55% silencing was achieved. 

Hence, the silencing efficiency of the RTNs was not high. The reason for this low silencing 

efficiency is not clear.  

Another possible reason the efficiency may have been affected is the batch of DD used, or 

the RTNs in the experiment had a lower positive charge than the ones in the experiments of 

siGAPDH and siMYCN transfections, which achieved good transfection/silencing 

efficiencies. RTNs with a higher positive charge are more easily attracted to a negatively-

charged cell membrane. The zeta potentials of the RTNs in the siLuc transfections were 

approximately 33 to 46 mV, while those of the RTNs containing siGAPDH were >60 mV, 

achieving higher than 30% silencing overall. The fresh anionic RTNs containing siMYCN, 

however, achieved approximately 65% MYCN silencing, and the same formulations 

containing siMYCN in water stored at 4 °C with similar zeta potentials showed different 

silencing efficiency (Fig. 5.3.7.b and d). Therefore, this is difficult to explain the lower 

efficiency using only zeta potentials.          

Interestingly, RTNs stored at -80 °C in water showed better transfection/silencing 

efficiencies, compared with the other conditions in the Luciferase pDNA and siGAPDH 

transfections. Probably, this is because larger RTNs can sediment faster than the others, and 

thus they stay on the bottom of the plate and can bind cells faster. In addition, Tseng et al. 

(2007a) argued that liposomes larger than 500 nm might enter cells via micropinocytosis. 

However, it would be difficult to deliver large RTNs, such as those >500 nm, to NB tumour 
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cells via the blood stream in vivo because of the blood-brain barrier. Therefore, this is only 

relevant to in vitro transfections. 

Trehalose can maintain the biophysical characteristics of RTNs containing DNA/siRNA, and 

the function of RTNs in trehalose stored at 4 °C or -80 °C for up to two weeks, is not 

significantly different from that of the freshly prepared RTNs in DNA transfection. It may be 

necessary to perform experiments to investigate the function and biophysical characteristics 

of RTNs containing siRNA in trehalose for a longer time because we have not observed the 

function and biophysical character of RTNs stored for longer than 2 weeks. Lyophilisation of 

RTNs has the potential for further study. Although lyophilisation is more expensive than 

deep freezing, it is easier to transport anywhere in the world. In addition, trehalose is an ideal 

cryoprotectant because its glass transient temperature is one of the highest in sugars we 

commonly use, including sucrose, and the moisture absorbency of materials containing 

trehalose become lower through vitrification. 

In conclusion, trehalose is very effective as a cryoprotectant when RTNs are stored at -80 °C. 

The biophysical characteristics of RTNs at 0.02 mg/mL is successfully retained in 5-20% 

trehalose at -80 °C, and it is likely that around 5-10% is the optimal concentration for the 

transfection/silencing efficiencies in the murine NB cell line, Neuro-2A, and a human NB 

cell line, Kelly. Function was maintained when the RTNs were stored at 4 °C for up to 2 

weeks, or were kept at -80 °C and thawed just before transfection, or were thawed and stored 

at 4 °C for a week. This knowledge would be useful to keep RTNs long-term during 

transportation, although it will be necessary to perform further studies. 
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6. General discussion and conclusion 

In this study, we aimed to silence MYCN using siRNA and to induce differentiation and 

apoptosis for a novel therapy for NB. We first performed MYCN silencing by siMYCN 

using RNAiMAX (Thermo Fisher Scientific), a commercial lipid-based reagent to 

investigate MYCN silencing efficiency at mRNA and protein levels as well as downstream 

effects of MYCN reduction, described in Chapter 3. Then, we investigated MYCN silencing 

efficiency of siMYCN delivered by RTNs, described in Chapter 4. Finally, we assessed the 

potential for storage of RTNs at -80 ⁰C using trehalose cryoprotctant and the ability to 

maintain the biophysical characters and the function of the RTNs, described in Chapter 5.  

We successfully demonstrated MYCN silencing by siMYCN, NTRK1/TrkA upregulation as 

a downstream effect of MYCN reduction and slower growth rate of SK-N-BE(2)  transfected 

with siMYCN in vitro. In addition, the morphological changes of SK-N-BE(2) transfected 

with siMYCN confirmed the differentiation in the cells. These results suggest that siMYCN 

silences MYCN at the mRNA and protein levels. In addition, siMYCN can induce 

differentiation in NB cells, such as SK-N-BE(2), with non-functional p53 and developing 

resistance toward RA (Joshi et al. 2007) and drugs dependent on p53 pathway after multiple 

sessions of chemotherapy and radiotherapy (Tweddle et al. 2001; Huang & Weiss 2013). 

siMYCN could be a novel therapy for relapsed NB after the standard therapy.  

siMYCN delivered by cationic PEGylated RTN also successfully silenced MYCN mRNA in 

vivo, although it did not achieve sufficient knockdown in vitro. The achieved level of 

silencing may be induced by MYCN reduction at the protein level and Trk upregulation, 

according to the results in Chapter 3. In addition, the experiments of tumour uptake and 

biodistribution of the RTNs revealed that RTNs in vivo are specifically delivered to NB 

tumours and are internalised by the tumour. For further study, it will be necessary to 
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investigate the downstream effects, including TrkA upregulation triggered by siMYCN 

delivered by RTNs in vitro and in vivo. In addition, it is necessary to observe tumour mass 

changes after multiple doses of RTNs as an assessment of the therapeutic potential and 

inflammation in the tissues that might be induced by the injections by histology.  

In addition, increasing the silencing efficiency is essential. Multiple injections of siMYCN 

may achieve higher knockdown because higher doses of RTNs can accumulate in the NB 

tissue. It may be possible to optimise RTNs for better internalisation into NB cells, for 

instance, using more than one peptide to target multiple receptors such as folate and glucose 

receptors. Silencing another mRNA or non-coding RNA such as NCYM, which are 

associated with MYCN transcription and/or MYCN stabilisation, also might achieve higher 

MYCN silencing.  

Although MYCN has been widely studied, the transcription mechanisms have not been fully 

revealed (Zhao et al. 2016). Lui et al. (2016) reported that MYCN mRNA transcription may 

be unregulated by NCYM RNA binding with NonO, but the effects of NCYM on MYCN 

expression are still poorly understood, and it remains controversial as to whether the 

transcript of NCYM encodes a protein. When the relationships among NCYM, MYCN and 

lncUSMycN are fully revealed, there are potentials that the pathway can be a target to 

silence MYCN and that may enhance the MYCN silencing efficacy.      

Another possible therapeutic approach may be Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9). 

Recently, a CRISPR/Cas9 system has been rapidly spread in gene therapy (Zhang et al. 

2017), and we also used the system to non-MYCN amplified NB cell line SK-N-SH and 

amplified cell line SK-N-BE(2) (the experiments were conducted by a previous master's 

degree student in our group. The data are not shown). As a result, mRNA of CRISPR/Cas9 
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with gRNA was able to cut the target area on MYCN on SK-N-SH, which was confirmed by 

T7 endonuclease assay, and the MYCN protein was reduced by three rounds of transfections, 

while it was not seen in SK-N-BE(2) in either T7 endonuclease assay or immunoblotting. A 

possible reason for this result is SK-N-BE(2) have more than 100 copies of MYCN (Harenza 

et al. 2017). It may be difficult to induce indels using CRISPR/Cas9 as much as the indels 

can be seen in T7 endonuclease assay or MYCN protein reduction can be detected in 

immunoblotting.  

On the other hand, Aguirre et al. (2016) showed that the DNA breaks were induced when 

genes of high copy number were targeted by CRISPR/Cas9, leading to reduction of 

proliferation via G2 cell cycle arrest. Therefore, targeting MYCN by CRISPR/Cas9 in 

MYCN amplified NB cells may eventually induce cell cycle arrest, which could be another 

strategy for therapy in NB. 

Another promising approach might be CRISPR interference (CRISPRi). In this strategy, 

targeted genes are silenced via methylation by dCas9-KRAB (Krüppel-associated box) 

(Gilbert et al. 2014). sgRNA guides dCas9-KRAB to the target region of a gene, and dCas9 

forms a complex with the target region on DNA and the gRNA (Thakore et al. 2015). Then, 

KRAB employs a heterochromatin-forming complex that triggers histone methylation and 

deacetylation, and the transcription of the gene is repressed (ibid.). The effective target 

regions are promoter regions, 5’ untranslated regions and proximal enhancer elements (ibid.). 

The advantages of the strategy are reversible knockdown (Boettcher & McManus 2015) and 

no DNA breaks (Gilbert et al. 2014).  

We also successfully showed that trehalose maintained the biophysical characters and 

function of RTNs at -80 ⁰C.  The data suggest that it is possible to prepare large amounts of 

RTNs, store the aliquots in trehalose at -80 ⁰C and use them in different experiments, which 
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allows consistency in the conditions among experiments as well as transporting them for 

long distance. However, it is still necessary to investigate the maximum concentrations of 

RTNs towards trehalose and the effect in anionic double layered RTNs containing MYCN 

siRNA as well as the effects in RTNs in lyophilisation.    

Transportation and stable storage at -80 ⁰C are not always available, and they are more 

expensive than those at room temperature. On the other hand, freeze-dried reagents have 

longer shelf life and it is easier to transport them everywhere in the world. This method can 

be applied for RTNs consisting of not only siRNA but also drugs nucleus acids including 

pDNA or mRNA of CRISPR/Cas9. It may help to transport gene therapy reagents using 

lipid-based nanoparticles in clinical application in the future.  

In conclusion, siMYCN silenced MYCN at mRNA and protein levels and that induced 

significant differentiation as well as morphological change showing differentiation in the 

transfected NB cell line with MYCN amplified developing drug resistance. These results 

may imply that therapy using siMYCN is promising even for relapse NB with drug 

resistance. siNCYM also silenced differentiation in SK-N-BE(2), although the MYCN 

silencing efficiency at mRNA and protein levels was not as significant as that of siMYCN. 

On the other hand, NCYM may play a crucial role in the mechanisms of MYCN 

transcription. Hence, further investigation of the mechanisms is required for enhancement of 

MYCN silencing.  

In addition, siMYCN delivered by a cationic PEGylated RTN also achieved MYCN 

silencing in NB tumour developed in SCID mice injected with human NB cell lines Kelly 

and SK-N-BE(2). The siMYCN delivered using the RTNs successfully silenced MYCN 

mRNA in both Kelly and SK-N-BE(2) in vivo. The results suggest that it may be the efficacy 

of systemic injection of siMYCN packaged with RTNs for therapy in NB. At the same time, 
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it is necessary to investigate the therapeutic efficacy of siMYCN for longer periods and the 

downstream effects of MYCN reduction that was observed in vitro. In addition, it is essential 

to observe immune responses after the injection and the specificity of the location where the 

RTNs are delivered. 

 Trehalose can maintain the biophysical characteristics and function of RTNs at -80 °C. In 

addition, transfection/silencing efficiency was more stably preserved when RTNs were kept 

at -80 ⁰C. It is necessary to observe function of RTNs in trehalose stored at -80 ⁰C for longer 

time such as 6 months and the ability of trehalose to preserve RTNs at higher concentration.  
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Mass Spectrometry analysis 

Results 

MYCN is a transcription factor and is controlling many genes. To observe thewide range of 

proteins up/downregulated by siMYCN/siNCYM mediated MYCN reduction, we analysed 

siMYCN, siNCYM or siNeg transfected cells using mass spectrometry. This mass 

spectrometry analysis was performed by a mass spectrometry group in Great Ormond Street 

Institute of Child Health, UCL. This was a pilot experiment and only one sample was 

prepared per condition. The analysis here was performed using lysates extracted from whole 

cells, although it would require another method to extract nucleic proteins if this was needed. 

71 proteins were detected in siMYCN treated samples, 78 in siNCYM and 109 in siNeg, 

while 116 were detected in the untransfected negative control cells. Then, the weight 

changes of the detected proteins with more than 95% confidence were calculated, and the 

data were normalised by each value of siNeg. A heatmap was drawn using the data in R. The 

values that were much higher than the others were removed from the heatmap to show the 

small differences on the heatmap. The complete data are in the Appendix section. 

Interestingly, 7 Tubulins were detected and the amount of each Tubulin is different among 

samples transfected with siMYCN, siNCYM, siNeg and untransfected negative control cells 

in the data which are not normalised (Fig. S1.a, the data in appendix). Tubulin beta chain 

was dramatically upregulated by both siMYCN and siNCYM, which were 0.35 and 0.26 ng, 

respectively, although it was detected at very low amounts or was absent in samples treated 

with siNeg and untransfected negative control. Tubulin beta-2A chain was detected in 

untransfected negative control cells and siMYCN although it was absent in siNCYM and 

siNeg. In addition, Tubulin alpha-1A chain in siNeg was particularly high at 0.77 ng while 

the amount of the protein in siMYCN, siNCYM and untransfected negative control cells was 
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0.020, 0.0064 and 0.027, respectively. Furthermore, Tubulin beta-3, beta-4 and another 

isotype of Tubulin beta (gene: TUBB, transcript: TUBB-208, protein ID in UniProt: 

Q5JP53) were detected in siNeg and untransfected negative control, although they were 

absent or at much lower levels in siMYCN and siNCYM. Tubulin alpha-1B in siMYCN and 

untransfected negative control cells was almost at the same level although it was half in 

siNCYM. In addition, the amount of alpha-1A in siNeg was 1/10 of that in untransfected 

negative control.   

Most of the proteins detected were downregulated by siMYCN and siNCYM in the heatmap 

(Fig. S1.b). The highest value in the heatmap is represented as red, which is Histone H1.2 at 

1.09 in siMYCN and 0.67 in siNCYM, and it suggests that siMYCN did not affect the 

expression level of Histone H1.2. On the other hand, Tubulin alpha-1B chain was 

dramatically upregulated by both siMYCN and siNCYM at 8.28 and 5.05, respectively (it is 

not on the heatmap as the values of Histone H1.2 were higher than those of the other 

proteins), although the amount of the protein in the cells treated with 

siMYCN/siNCYM/siNeg were decreased, compared to that in untransfected negative control 

cells.     

Most of the values in siNCYM were lower than siMYCN in this analysis, which is similar to 

the amount of MYCN downregulation and Trk upregulation by siNCYM were lower than 

those by siMYCN. However, the values of heat shock 70 kDa protein 1A and nucleophosmin 

in siNCYM were slightly higher than those in siMYCN by approximately 0.1.    

There were proteins detected in the siMYCN treated sample which were undetectable in the 

siNCYM sample: 14-3-3 protein zeta/delta and glutathione S-transferase P. The two proteins 

were slightly downregulated by siMYCN by 19.7% and 27.2%, respectively. 
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These results suggest that many proteins might be up/downregulated by both MYCN mRNA 

and NCYM RNA as MYCN protein regulates those proteins, and it is likely that it is 

dependent upon the MYCN expression level. However, it may be possible that there are 

proteins which are directly affected by NCYM RNA level or that the protein 

up/downregulation is not linear correlation with MYCN reduction.   

Discussion 

In the mass spectrometry data, seven types of Tubulin were detected. The amount of each 

tubulin was different among the 4 conditions and it may account for the morphological 

differences among the conditions. Tubulin alpha and beta polymerise microtubules, which 

are the main components of cytoskeleton in neurons. Especially Tubulin beta-3 is well-

known as a biomarker of differentiation in neuronal cells and is expressed in neuronal and 

non-neuronal cells in cancer. In addition, it is an essential regulator of survival pathway 

(Karki et al. 2013, MacCaroll et al. 2010). It has been pointed out that it seems that 

overexpressed Tubulin beta-3 is associated with tumour aggressiveness. Furthermore, it is 

likely that the overexpression is a marker of drug resistance such as with taxan, a 

microtubule targeting argent and mitotic inhibitor (Karki et al. 2013). In untransfected and 

siNeg-treated SK-N-BE(2), Tubulin beta 3 was detected while the protein was absent or 

much lower level in the cells treated with siMYCN and siNCYM. This may imply that 

siMYCN and siNCYM downregulate the protein and that this in turn may induce cell growth 

arrest.  

Glutathione S-transferase P was slightly downregulated by siMYCN although it was not 

detected in the cells treated with siNCYM. Glutathione S-transferase P downregulates 

cyclin-dependent kinase 5 (CDK5) activity, which is involved in neuronal differentiation 
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(Guglielmi et al. 2014). The decrease of the protein may suggest that differentiation was 

induced by the transfections. 

However, the sample number of this experiment was only one, and therefore, it is necessary 

to analyse more samples to confirm the data. Furthermore, mass spectrometry analysis of 

nucleus proteins is also essential for further study because MYCN is a transcription factor. It 

should reveal a more wide range of downstream effects of MYCN silencing by siMYCN. 

We observed a widely range of changes in protein in cytoplasm using mass spectrometry 

(Appendix Fig.S1.). Firstly, our study is a first attempt on the use of mass spectrometry and 

therefore, the technical conditions can be optimised further. For example, the number of the 

proteins detected in the assay in siMYCN and siNCYM was smaller than that in 

untransfected negative control which might be due to a small fraction of cells transfected by 

siMYCN and siNCYM. Secondly, analysis of the proteins in nucleus would be ideal for our 

main interests, although the results in cytoplasm are also interesting. It will be necessary to 

confirm the mass spec by immunoblotting eventually. 

  



239 
 

.   

Fig. S1. The change of Tubulin expression and Heatmap representing 

up/downregulation of proteins by siMYCN/siNCYM transfection in SK-N-BE(2) 

cells a) The amount (ng) of each Tubulin by siMYCN, siNCYM, siNeg and Untransfected 

control. n.d. represents non-detectable. b) Proteins downregulated by siMYCN and 

siNCYM. All values were normalised by the value of siNeg. Red represents 1, while blue 

represents 0. (n=1)  

UT ctrl siMYCN siNCYM siNeg

Tubulin beta chain (TBB5) 0.000001 0.3544 0.2636 n.d.

Tubulin beta-2A chain (TBB2A) 0.0189 0.0096 n.d. n.d.

Tubulin alpha-1A chain (TBA1A) 0.0276 0.0208 0.0064 0.7742

Tubulin beta-3 chain (TBB3) 0.0467 0.000001 n.d. 0.0505

Tubulin beta-4B chain (TBB2B) 0.1488 0.000001 0.0066 0.2013

Tubulin beta chain (Q5_JP53) 0.4881 0.000001 n.d. 0.571

Tubulin alpha-1B chain (TBA1B) 0.6253 0.5764 0.3521 0.0696

a) 

b) 
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Supplementary material  

 

 

 

 

The raw data of the mass spectrometry analysis in SK-N-BE(2) 

 

 

The unit of values is ng.  

n.d. represents non-detectable. 

All kinds of tubulin were marked with yellow. 

Non-POU domain-containing octamer-binding protein is RNA binding protein NonO.  

 

  ≥ 95% 

≈ 50% 

≤ 10% 
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Accession Entry Description UT ctrl siMYCN siNCYM siNeg 

A0A087WVQ6 A0A087WVQ6_HUMAN 
A0A087WVQ6 A0A087WVQ6_HUMAN Clathrin heavy chain OS=Homo sapiens 
GN=CLTC PE=1 SV=1 0 0.000001 n.d. n.d. 

A0A087WZV1 A0A087WZV1_HUMAN 
A0A087WZV1 A0A087WZV1_HUMAN Heterogeneous nuclear ribonucleoprotein 
A/B OS=Homo sapiens GN=HNRNPAB PE=1 SV=1 0 0.000001 n.d. 0 

A0A087X0X3 A0A087X0X3_HUMAN 
A0A087X0X3 A0A087X0X3_HUMAN Heterogeneous nuclear ribonucleoprotein M 
OS=Homo sapiens GN=HNRNPM PE=1 SV=1 0 0.000001 n.d. 0 

A0A0A0MTS2 A0A0A0MTS2_HUMAN 
A0A0A0MTS2 A0A0A0MTS2_HUMAN Glucose-6-phosphate isomerase (Fragment) 
OS=Homo sapiens GN=GPI PE=1 SV=1 0 0.000001 n.d. n.d. 

A0A0C4DG17 A0A0C4DG17_HUMAN 
A0A0C4DG17 A0A0C4DG17_HUMAN 40S ribosomal protein SA OS=Homo sapiens 
GN=RPSA PE=1 SV=1 0 0.000001 n.d. 0 

A0A0C4DGL3 A0A0C4DGL3_HUMAN 
A0A0C4DGL3 A0A0C4DGL3_HUMAN DUTP pyrophosphatase, isoform CRA_c 
OS=Homo sapiens GN=DUT PE=1 SV=1 0 0.000001 n.d. n.d. 

A0A0U1RR32 A0A0U1RR32_HUMAN 
A0A0U1RR32 A0A0U1RR32_HUMAN HCG2039566, isoform CRA_b OS=Homo 
sapiens GN=hCG_2039566 PE=4 SV=1 0 0 0.000000 0 

B2R4S9 B2R4S9_HUMAN 
B2R4S9 B2R4S9_HUMAN Histone H2B OS=Homo sapiens GN=HIST1H2BC PE=2 
SV=1 0 0 0.000000 0 

B2R5W2 B2R5W2_HUMAN 
B2R5W2 B2R5W2_HUMAN Heterogeneous nuclear ribonucleoproteins C1/C2 
OS=Homo sapiens GN=HNRNPC PE=1 SV=1 0 0 0.000000 0 

B4DNK4 B4DNK4_HUMAN B4DNK4 B4DNK4_HUMAN Pyruvate kinase OS=Homo sapiens GN=PKM PE=1 SV=1 0 0.000001 n.d. n.d. 

B5MDF5 B5MDF5_HUMAN 
B5MDF5 B5MDF5_HUMAN GTP-binding nuclear protein Ran OS=Homo sapiens 
GN=RAN PE=1 SV=1 0 0.000001 0.000000 0 

C9IZL7 C9IZL7_HUMAN 
C9IZL7 C9IZL7_HUMAN Non-POU domain-containing octamer-binding protein 
(Fragment) OS=Homo sapiens GN=NONO PE=1 SV=1 0 0.0205 n.d. 0.0336 

C9JNW5 C9JNW5_HUMAN 
C9JNW5 C9JNW5_HUMAN 60S ribosomal protein L24 OS=Homo sapiens GN=RPL24 
PE=1 SV=1 0 0.000001 n.d. n.d. 

C9JW96 C9JW96_HUMAN 
C9JW96 C9JW96_HUMAN Prohibitin (Fragment) OS=Homo sapiens GN=PHB PE=1 
SV=2 0 0.000001 0.000000 0 

D6RHH4 D6RHH4_HUMAN 
D6RHH4 D6RHH4_HUMAN Guanine nucleotide-binding protein subunit beta-2-like 
1 OS=Homo sapiens GN=GNB2L1 PE=1 SV=1 0 0.000001 n.d. n.d. 

F5GWF6 F5GWF6_HUMAN 
F5GWF6 F5GWF6_HUMAN T-complex protein 1 subunit beta OS=Homo sapiens 
GN=CCT2 PE=1 SV=2 0 0.000001 n.d. n.d. 

H0Y6E7 H0Y6E7_HUMAN 
H0Y6E7 H0Y6E7_HUMAN RNA-binding motif protein, X chromosome (Fragment) 
OS=Homo sapiens GN=RBMX PE=1 SV=2 0 0.000001 n.d. n.d. 

J3KPD9 J3KPD9_HUMAN 
J3KPD9 J3KPD9_HUMAN Protein NME1-NME2 OS=Homo sapiens GN=NME1-NME2 
PE=1 SV=1 0 0 0.000000 n.d. 
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P14866 HNRPL_HUMAN 
P14866 HNRPL_HUMAN Heterogeneous nuclear ribonucleoprotein L OS=Homo 
sapiens GN=HNRNPL PE=1 SV=2 0 0.000001 n.d. 0 

P23528 COF1_HUMAN P23528 COF1_HUMAN Cofilin-1 OS=Homo sapiens GN=CFL1 PE=1 SV=3 0 0 0.000000 0 

P68104 EF1A1_HUMAN 
P68104 EF1A1_HUMAN Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 
PE=1 SV=1 0 0 0.000000 0 

Q16695 H31T_HUMAN Q16695 H31T_HUMAN Histone H3.1t OS=Homo sapiens GN=HIST3H3 PE=1 SV=3 0 0 0.000000 0 

Q5VVC8 Q5VVC8_HUMAN 
Q5VVC8 Q5VVC8_HUMAN 60S ribosomal protein L11 (Fragment) OS=Homo sapiens 
GN=RPL11 PE=1 SV=1 0 0.000001 n.d. n.d. 

A0A075B7A0 A0A075B7A0_HUMAN 
A0A075B7A0 A0A075B7A0_HUMAN 60S ribosomal protein L18 OS=Homo sapiens 
GN=RPL18 PE=1 SV=1 0.000001 0.000001 0.000000 n.d. 

A0A087WUI2 A0A087WUI2_HUMAN 
A0A087WUI2 A0A087WUI2_HUMAN Heterogeneous nuclear ribonucleoproteins 
A2/B1 OS=Homo sapiens GN=HNRNPA2B1 PE=1 SV=1 0.000001 0.069 0.043200 n.d. 

A0A087WUK2 A0A087WUK2_HUMAN 
A0A087WUK2 A0A087WUK2_HUMAN Heterogeneous nuclear ribonucleoprotein D-
like OS=Homo sapiens GN=HNRNPDL PE=1 SV=1 0.000001 0.000001 0.000000 n.d. 

A0A087WYG8 A0A087WYG8_HUMAN 
A0A087WYG8 A0A087WYG8_HUMAN Alpha-internexin OS=Homo sapiens GN=INA 
PE=1 SV=1 0.000001 0.1091 n.d. n.d. 

A0A087WZD7 A0A087WZD7_HUMAN 
A0A087WZD7 A0A087WZD7_HUMAN F-box only protein 8 OS=Homo sapiens 
GN=FBXO8 PE=4 SV=1 0.000001 0 0.000000 n.d. 

A0A0B4J213 A0A0B4J213_HUMAN 
A0A0B4J213 A0A0B4J213_HUMAN 60S ribosomal protein L30 OS=Homo sapiens 
GN=RPL30 PE=1 SV=1 0.000001 0.000001 0.003500 n.d. 

A8MUD9 A8MUD9_HUMAN 
A8MUD9 A8MUD9_HUMAN 60S ribosomal protein L7 OS=Homo sapiens GN=RPL7 
PE=1 SV=1 0.000001 0.000001 n.d. 0.0843 

A8MX94 A8MX94_HUMAN 
A8MX94 A8MX94_HUMAN Glutathione S-transferase P OS=Homo sapiens 
GN=GSTP1 PE=1 SV=1 0.000001 0.0572 n.d. 0.0712 

B0YJC4 B0YJC4_HUMAN B0YJC4 B0YJC4_HUMAN Vimentin OS=Homo sapiens GN=VIM PE=1 SV=1 0.000001 0.1043 n.d. 0.1361 

B7Z645 B7Z645_HUMAN 
B7Z645 B7Z645_HUMAN Heterogeneous nuclear ribonucleoprotein Q OS=Homo 
sapiens GN=SYNCRIP PE=1 SV=1 0.000001 0.000001 n.d. 0.0576 

C9J0D1 C9J0D1_HUMAN C9J0D1 C9J0D1_HUMAN Histone H2A OS=Homo sapiens GN=H2AFV PE=3 SV=1 0.000001 0.012 n.d. n.d. 

C9J386 C9J386_HUMAN C9J386 C9J386_HUMAN Histone H2A OS=Homo sapiens GN=H2AFV PE=3 SV=1 0.000001 0.000001 n.d. 0.0178 

D6R956 D6R956_HUMAN 
D6R956 D6R956_HUMAN Ubiquitin carboxyl-terminal hydrolase OS=Homo sapiens 
GN=UCHL1 PE=1 SV=1 0.000001 0 0.000000 0 

D6RAC2 D6RAC2_HUMAN 
D6RAC2 D6RAC2_HUMAN Guanine nucleotide-binding protein subunit beta-2-like 1 
OS=Homo sapiens GN=GNB2L1 PE=1 SV=1 0.000001 0.000001 n.d. 0 

E7EQG2 E7EQG2_HUMAN 
E7EQG2 E7EQG2_HUMAN Eukaryotic initiation factor 4A-II OS=Homo sapiens 
GN=EIF4A2 PE=1 SV=1 0.000001 0.000001 n.d. 0.1014 
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E7ERL0 E7ERL0_HUMAN 
E7ERL0 E7ERL0_HUMAN Nucleoside diphosphate kinase A OS=Homo sapiens 
GN=NME1 PE=1 SV=1 0.000001 0.000001 n.d. 0.1114 

E9PL09 E9PL09_HUMAN 
E9PL09 E9PL09_HUMAN 40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 
PE=1 SV=1 0.000001 0.000001 0.000000 0 

E9PQD7 E9PQD7_HUMAN 
E9PQD7 E9PQD7_HUMAN 40S ribosomal protein S2 OS=Homo sapiens GN=RPS2 
PE=1 SV=1 0.000001 0.000001 n.d. 0 

F5GWA7 F5GWA7_HUMAN 
F5GWA7 F5GWA7_HUMAN Prohibitin-2 (Fragment) OS=Homo sapiens GN=PHB2 
PE=1 SV=1 0.000001 0.000001 n.d. 0 

F5H157 F5H157_HUMAN 
F5H157 F5H157_HUMAN Ras-related protein Rab-35 (Fragment) OS=Homo sapiens 
GN=RAB35 PE=1 SV=1 0.000001 0.000001 n.d. 0.0466 

F8VZJ2 F8VZJ2_HUMAN 
F8VZJ2 F8VZJ2_HUMAN Nascent polypeptide-associated complex subunit alpha 
OS=Homo sapiens GN=NACA PE=1 SV=1 0.000001 0.000001 n.d. 0.0105 

G3XAN0 G3XAN0_HUMAN 
G3XAN0 G3XAN0_HUMAN 40S ribosomal protein S20 OS=Homo sapiens GN=RPS20 
PE=1 SV=1 0.000001 0.000001 n.d. 0.0141 

H0YA52 H0YA52_HUMAN 
H0YA52 H0YA52_HUMAN Pterin-4-alpha-carbinolamine dehydratase 2 (Fragment) 
OS=Homo sapiens GN=PCBD2 PE=1 SV=1 0.000001 0.000001 0.257000 n.d. 

P02545 LMNA_HUMAN P02545 LMNA_HUMAN Prelamin-A/C OS=Homo sapiens GN=LMNA PE=1 SV=1 0.000001 0.000001 n.d. 0 

P04264 K2C1_HUMAN 
P04264 K2C1_HUMAN Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 
PE=1 SV=6 0.000001 0.000001 0.000000 n.d. 

P07355 ANXA2_HUMAN P07355 ANXA2_HUMAN Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2 0.000001 0 n.d. 0 

P07437 TBB5_HUMAN P07437 TBB5_HUMAN Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2 0.000001 0.3544 0.263600 n.d. 

P14618 KPYM_HUMAN 
P14618 KPYM_HUMAN Pyruvate kinase PKM OS=Homo sapiens GN=PKM PE=1 
SV=4 0.000001 0.3939 0.274300 0.6476 

P17066 HSP76_HUMAN 
P17066 HSP76_HUMAN Heat shock 70 kDa protein 6 OS=Homo sapiens GN=HSPA6 
PE=1 SV=2 0.000001 0.000001 0.105900 n.d. 

P27348 1433T_HUMAN 
P27348 1433T_HUMAN 14-3-3 protein theta OS=Homo sapiens GN=YWHAQ PE=1 
SV=1 0.000001 0.000001 0.000000 n.d. 

P30050 RL12_HUMAN 
P30050 RL12_HUMAN 60S ribosomal protein L12 OS=Homo sapiens GN=RPL12 
PE=1 SV=1 0.000001 0.000001 n.d. 0.037 

P34897 GLYM_HUMAN 
P34897 GLYM_HUMAN Serine hydroxymethyltransferase, mitochondrial OS=Homo 
sapiens GN=SHMT2 PE=1 SV=3 0.000001 0.000001 n.d. 0.0598 

P49411 EFTU_HUMAN 
P49411 EFTU_HUMAN Elongation factor Tu, mitochondrial OS=Homo sapiens 
GN=TUFM PE=1 SV=2 0.000001 0.000001 n.d. 0.0686 

P62258 1433E_HUMAN 
P62258 1433E_HUMAN 14-3-3 protein epsilon OS=Homo sapiens GN=YWHAE PE=1 
SV=1 0.000001 0.000001 n.d. 0.0697 
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P62701 RS4X_HUMAN 
P62701 RS4X_HUMAN 40S ribosomal protein S4, X isoform OS=Homo sapiens 
GN=RPS4X PE=1 SV=2 0.000001 0.000001 n.d. 0.0592 

P62913 RL11_HUMAN 
P62913 RL11_HUMAN 60S ribosomal protein L11 OS=Homo sapiens GN=RPL11 
PE=1 SV=2 0.000001 0.000001 n.d. 0.0282 

Q4VY20 Q4VY20_HUMAN 
Q4VY20 Q4VY20_HUMAN 14-3-3 protein beta/alpha (Fragment) OS=Homo sapiens 
GN=YWHAB PE=1 SV=1 0.000001 0.000001 n.d. 0.0104 

Q92841 DDX17_HUMAN 
Q92841 DDX17_HUMAN Probable ATP-dependent RNA helicase DDX17 OS=Homo 
sapiens GN=DDX17 PE=1 SV=2 0.000001 0.000001 0.000000 0 

P62318 SMD3_HUMAN 
P62318 SMD3_HUMAN Small nuclear ribonucleoprotein Sm D3 OS=Homo sapiens 
GN=SNRPD3 PE=1 SV=1 0.0102 0.000001 n.d. n.d. 

P62857 RS28_HUMAN 
P62857 RS28_HUMAN 40S ribosomal protein S28 OS=Homo sapiens GN=RPS28 
PE=1 SV=1 0.0135 0.000001 n.d. n.d. 

E9PG15 E9PG15_HUMAN 
E9PG15 E9PG15_HUMAN 14-3-3 protein theta (Fragment) OS=Homo sapiens 
GN=YWHAQ PE=1 SV=1 0.016 0.000001 n.d. n.d. 

B8ZZL8 B8ZZL8_HUMAN 
B8ZZL8 B8ZZL8_HUMAN 10 kDa heat shock protein, mitochondrial OS=Homo 
sapiens GN=HSPE1 PE=1 SV=1 0.0166 0.0092 0.008200 0.0213 

O75531 BAF_HUMAN 
O75531 BAF_HUMAN Barrier-to-autointegration factor OS=Homo sapiens 
GN=BANF1 PE=1 SV=1 0.0166 0.000001 n.d. n.d. 

Q13885 TBB2A_HUMAN 
Q13885 TBB2A_HUMAN Tubulin beta-2A chain OS=Homo sapiens GN=TUBB2A 
PE=1 SV=1 0.0189 0.0096 n.d. n.d. 

F2Z2S8 F2Z2S8_HUMAN 
F2Z2S8 F2Z2S8_HUMAN 40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 
PE=1 SV=1 0.0213 0.0114 n.d. n.d. 

A2A2D0 A2A2D0_HUMAN 
A2A2D0 A2A2D0_HUMAN Stathmin (Fragment) OS=Homo sapiens GN=STMN1 
PE=1 SV=7 0.0242 0.000001 n.d. 0.0173 

P0C0S5 H2AZ_HUMAN P0C0S5 H2AZ_HUMAN Histone H2A.Z OS=Homo sapiens GN=H2AFZ PE=1 SV=2 0.0257 0.000001 0.012800 n.d. 

P0DMV8 HS71A_HUMAN 
P0DMV8 HS71A_HUMAN Heat shock 70 kDa protein 1A OS=Homo sapiens 
GN=HSPA1A PE=1 SV=1 0.0274 0.0185 0.021500 0.0225 

Q71U36 TBA1A_HUMAN 
Q71U36 TBA1A_HUMAN Tubulin alpha-1A chain OS=Homo sapiens GN=TUBA1A 
PE=1 SV=1 0.0276 0.0208 0.006400 0.7742 

P17987 TCPA_HUMAN 
P17987 TCPA_HUMAN T-complex protein 1 subunit alpha OS=Homo sapiens 
GN=TCP1 PE=1 SV=1 0.0315 0.000001 n.d. n.d. 

P24534 EF1B_HUMAN 
P24534 EF1B_HUMAN Elongation factor 1-beta OS=Homo sapiens GN=EEF1B2 PE=1 
SV=3 0.0317 0.000001 n.d. n.d. 

F8VUA6 F8VUA6_HUMAN 
F8VUA6 F8VUA6_HUMAN 60S ribosomal protein L18 (Fragment) OS=Homo sapiens 
GN=RPL18 PE=1 SV=1 0.0326 0.019 n.d. 0.0387 
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P51991 ROA3_HUMAN 
P51991 ROA3_HUMAN Heterogeneous nuclear ribonucleoprotein A3 OS=Homo 
sapiens GN=HNRNPA3 PE=1 SV=2 0.0336 0.000001 n.d. n.d. 

A0A087WWU8 A0A087WWU8_HUMAN 
A0A087WWU8 A0A087WWU8_HUMAN Tropomyosin alpha-3 chain OS=Homo 
sapiens GN=TPM3 PE=1 SV=1 0.039 0.0319 n.d. 0.0471 

P23526 SAHH_HUMAN 
P23526 SAHH_HUMAN Adenosylhomocysteinase OS=Homo sapiens GN=AHCY PE=1 
SV=4 0.0392 0.000001 n.d. 0.0478 

Q5JR95 Q5JR95_HUMAN 
Q5JR95 Q5JR95_HUMAN 40S ribosomal protein S8 OS=Homo sapiens GN=RPS8 
PE=1 SV=1 0.0408 0.000001 n.d. 0.0395 

E7EPB3 E7EPB3_HUMAN 
E7EPB3 E7EPB3_HUMAN 60S ribosomal protein L14 OS=Homo sapiens GN=RPL14 
PE=1 SV=1 0.0425 0.0239 0.022200 0.046 

Q13509 TBB3_HUMAN 
Q13509 TBB3_HUMAN Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 
SV=2 0.0467 0.000001 n.d. 0.0505 

P12004 PCNA_HUMAN 
P12004 PCNA_HUMAN Proliferating cell nuclear antigen OS=Homo sapiens 
GN=PCNA PE=1 SV=1 0.0469 0.0393 0.022200 0.0694 

P30048 PRDX3_HUMAN 
P30048 PRDX3_HUMAN Thioredoxin-dependent peroxide reductase, mitochondrial 
OS=Homo sapiens GN=PRDX3 PE=1 SV=3 0.048 0.0424 0.021000 0.0371 

P07737 PROF1_HUMAN P07737 PROF1_HUMAN Profilin-1 OS=Homo sapiens GN=PFN1 PE=1 SV=2 0.0493 0.0313 0.019100 0.0623 

A0A0G2JJZ9 A0A0G2JJZ9_HUMAN 
A0A0G2JJZ9 A0A0G2JJZ9_HUMAN Spliceosome RNA helicase DDX39B (Fragment) 
OS=Homo sapiens GN=DDX39B PE=1 SV=1 0.0496 0.000001 n.d. 0.0524 

P53396 ACLY_HUMAN P53396 ACLY_HUMAN ATP-citrate synthase OS=Homo sapiens GN=ACLY PE=1 SV=3 0.0545 0.000001 n.d. n.d. 

P18669 PGAM1_HUMAN 
P18669 PGAM1_HUMAN Phosphoglycerate mutase 1 OS=Homo sapiens 
GN=PGAM1 PE=1 SV=2 0.0566 0.000001 n.d. n.d. 

Q5SZU1 Q5SZU1_HUMAN 
Q5SZU1 Q5SZU1_HUMAN D-3-phosphoglycerate dehydrogenase OS=Homo sapiens 
GN=PHGDH PE=1 SV=1 0.0584 0.000001 n.d. 0.0647 

P12236 ADT3_HUMAN 
P12236 ADT3_HUMAN ADP/ATP translocase 3 OS=Homo sapiens GN=SLC25A6 
PE=1 SV=4 0.0603 0.000001 0.032100 0.0601 

D6RE83 D6RE83_HUMAN 
D6RE83 D6RE83_HUMAN Ubiquitin carboxyl-terminal hydrolase OS=Homo sapiens 
GN=UCHL1 PE=1 SV=1 0.0663 0.000001 n.d. n.d. 

P12956 XRCC6_HUMAN 
P12956 XRCC6_HUMAN X-ray repair cross-complementing protein 6 OS=Homo 
sapiens GN=XRCC6 PE=1 SV=2 0.0694 0.000001 n.d. n.d. 

P23284 PPIB_HUMAN 
P23284 PPIB_HUMAN Peptidyl-prolyl cis-trans isomerase B OS=Homo sapiens 
GN=PPIB PE=1 SV=2 0.0716 0.0608 0.027100 0.0852 

F8VU65 F8VU65_HUMAN 
F8VU65 F8VU65_HUMAN 60S acidic ribosomal protein P0 (Fragment) OS=Homo 
sapiens GN=RPLP0 PE=1 SV=1 0.0723 0.041 0.031600 0.0746 



246 
 

Accession Entry Description UT ctrl siMYCN siNCYM siNeg 

A0A087WTT1 A0A087WTT1_HUMAN 
A0A087WTT1 A0A087WTT1_HUMAN Polyadenylate-binding protein OS=Homo 
sapiens GN=PABPC1 PE=1 SV=1 0.0736 0.000001 n.d. 0 

O60506 HNRPQ_HUMAN 
O60506 HNRPQ_HUMAN Heterogeneous nuclear ribonucleoprotein Q OS=Homo 
sapiens GN=SYNCRIP PE=1 SV=2 0.0749 0.000001 n.d. n.d. 

P60174 TPIS_HUMAN 
P60174 TPIS_HUMAN Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 
SV=3 0.0774 0.0543 0.045600 0.0967 

P50990 TCPQ_HUMAN 
P50990 TCPQ_HUMAN T-complex protein 1 subunit theta OS=Homo sapiens 
GN=CCT8 PE=1 SV=4 0.0786 0.000001 n.d. n.d. 

P55072 TERA_HUMAN 
P55072 TERA_HUMAN Transitional endoplasmic reticulum ATPase OS=Homo 
sapiens GN=VCP PE=1 SV=4 0.0787 0.000001 n.d. 0.079 

G3V4N7 G3V4N7_HUMAN 
G3V4N7 G3V4N7_HUMAN Creatine kinase B-type (Fragment) OS=Homo sapiens 
GN=CKB PE=1 SV=1 0.0792 0.0519 0.050500 0.0577 

P05141 ADT2_HUMAN 
P05141 ADT2_HUMAN ADP/ATP translocase 2 OS=Homo sapiens GN=SLC25A5 
PE=1 SV=7 0.0796 0.0875 0.044200 0.0866 

P27797 CALR_HUMAN P27797 CALR_HUMAN Calreticulin OS=Homo sapiens GN=CALR PE=1 SV=1 0.08 0.000001 n.d. 0 

Q15084 PDIA6_HUMAN 
Q15084 PDIA6_HUMAN Protein disulfide-isomerase A6 OS=Homo sapiens 
GN=PDIA6 PE=1 SV=1 0.0839 0.000001 n.d. 0.1254 

P40926 MDHM_HUMAN 
P40926 MDHM_HUMAN Malate dehydrogenase, mitochondrial OS=Homo sapiens 
GN=MDH2 PE=1 SV=3 0.0845 0.057 0.041800 0.0835 

P17844 DDX5_HUMAN 
P17844 DDX5_HUMAN Probable ATP-dependent RNA helicase DDX5 OS=Homo 
sapiens GN=DDX5 PE=1 SV=1 0.0889 0.000001 n.d. n.d. 

F8VTQ5 F8VTQ5_HUMAN 
F8VTQ5 F8VTQ5_HUMAN Heterogeneous nuclear ribonucleoprotein A1 (Fragment) 
OS=Homo sapiens GN=HNRNPA1 PE=1 SV=1 0.0891 0.0811 0.047100 0.0846 

E9PCY7 E9PCY7_HUMAN 
E9PCY7 E9PCY7_HUMAN Heterogeneous nuclear ribonucleoprotein H OS=Homo 
sapiens GN=HNRNPH1 PE=1 SV=1 0.0913 0.000001 n.d. 0 

Q13263 TIF1B_HUMAN 
Q13263 TIF1B_HUMAN Transcription intermediary factor 1-beta OS=Homo sapiens 
GN=TRIM28 PE=1 SV=5 0.0947 0.000001 n.d. n.d. 

P32119 PRDX2_HUMAN P32119 PRDX2_HUMAN Peroxiredoxin-2 OS=Homo sapiens GN=PRDX2 PE=1 SV=5 0.0949 0.0841 0.047700 0.0921 

A0A0A0MSI0 A0A0A0MSI0_HUMAN 
A0A0A0MSI0 A0A0A0MSI0_HUMAN Peroxiredoxin-1 (Fragment) OS=Homo sapiens 
GN=PRDX1 PE=1 SV=1 0.0966 0.0635 0.035600 0.0984 

A0A0A0MR02 A0A0A0MR02_HUMAN 
A0A0A0MR02 A0A0A0MR02_HUMAN Voltage-dependent anion-selective channel 
protein 2 (Fragment) OS=Homo sapiens GN=VDAC2 PE=1 SV=1 0.0999 0.0984 0.055900 0.1572 

P61978 HNRPK_HUMAN 
P61978 HNRPK_HUMAN Heterogeneous nuclear ribonucleoprotein K OS=Homo 
sapiens GN=HNRNPK PE=1 SV=1 0.1024 0.000001 0.000000 0.075 
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Q16555 DPYL2_HUMAN 
Q16555 DPYL2_HUMAN Dihydropyrimidinase-related protein 2 OS=Homo sapiens 
GN=DPYSL2 PE=1 SV=1 0.1031 0.0381 0.000000 0.1088 

P63104 1433Z_HUMAN 
P63104 1433Z_HUMAN 14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ 
PE=1 SV=1 0.1039 0.0723 n.d. 0.0979 

P60842 IF4A1_HUMAN 
P60842 IF4A1_HUMAN Eukaryotic initiation factor 4A-I OS=Homo sapiens 
GN=EIF4A1 PE=1 SV=1 0.1052 0.000001 n.d. n.d. 

P14174 MIF_HUMAN 
P14174 MIF_HUMAN Macrophage migration inhibitory factor OS=Homo sapiens 
GN=MIF PE=1 SV=4 0.1091 0.072 0.054300 0.1026 

P00558 PGK1_HUMAN 
P00558 PGK1_HUMAN Phosphoglycerate kinase 1 OS=Homo sapiens GN=PGK1 
PE=1 SV=3 0.1124 0 0.061900 0 

P04075 ALDOA_HUMAN 
P04075 ALDOA_HUMAN Fructose-bisphosphate aldolase A OS=Homo sapiens 
GN=ALDOA PE=1 SV=2 0.1149 0.0678 0.052300 0.1205 

P08670 VIME_HUMAN P08670 VIME_HUMAN Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 0.116 0.000001 0.066400 n.d. 

P22626 ROA2_HUMAN 
P22626 ROA2_HUMAN Heterogeneous nuclear ribonucleoproteins A2/B1 
OS=Homo sapiens GN=HNRNPA2B1 PE=1 SV=2 0.1196 0.000001 n.d. 0.114 

P09211 GSTP1_HUMAN 
P09211 GSTP1_HUMAN Glutathione S-transferase P OS=Homo sapiens GN=GSTP1 
PE=1 SV=2 0.1221 0.000001 0.044200 n.d. 

P16401 H15_HUMAN P16401 H15_HUMAN Histone H1.5 OS=Homo sapiens GN=HIST1H1B PE=1 SV=3 0.1242 0.0847 0.049200 0.1009 

P30101 PDIA3_HUMAN 
P30101 PDIA3_HUMAN Protein disulfide-isomerase A3 OS=Homo sapiens 
GN=PDIA3 PE=1 SV=4 0.1251 0.000001 0.052900 0.1284 

P06576 ATPB_HUMAN 
P06576 ATPB_HUMAN ATP synthase subunit beta, mitochondrial OS=Homo sapiens 
GN=ATP5B PE=1 SV=3 0.1319 0.0703 0.000000 0 

P21796 VDAC1_HUMAN 
P21796 VDAC1_HUMAN Voltage-dependent anion-selective channel protein 1 
OS=Homo sapiens GN=VDAC1 PE=1 SV=2 0.1341 0.1106 0.064800 0.1297 

Q00839 HNRPU_HUMAN 
Q00839 HNRPU_HUMAN Heterogeneous nuclear ribonucleoprotein U OS=Homo 
sapiens GN=HNRNPU PE=1 SV=6 0.141 0.000001 n.d. 0.1495 

P25705 ATPA_HUMAN 
P25705 ATPA_HUMAN ATP synthase subunit alpha, mitochondrial OS=Homo 
sapiens GN=ATP5A1 PE=1 SV=1 0.1449 0.1217 0.067800 0.1772 

P00761 TRYP_PIG P00761 TRYP_PIG Trypsin OS=Sus scrofa PE=1 SV=1 0.1475 0.1921 0.122500 0.1727 

P68371 TBB4B_HUMAN 
P68371 TBB4B_HUMAN Tubulin beta-4B chain OS=Homo sapiens GN=TUBB4B PE=1 
SV=1 0.1488 0.000001 0.006600 0.2013 

P06733 ENOA_HUMAN P06733 ENOA_HUMAN Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2 0.1493 0.0844 0.083900 0.1925 

P16403 H12_HUMAN P16403 H12_HUMAN Histone H1.2 OS=Homo sapiens GN=HIST1H1C PE=1 SV=2 0.1677 0.1341 0.082800 0.1222 

P19338 NUCL_HUMAN P19338 NUCL_HUMAN Nucleolin OS=Homo sapiens GN=NCL PE=1 SV=3 0.1813 0.099 0.091000 0.2411 

P14625 ENPL_HUMAN P14625 ENPL_HUMAN Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1 0.1841 0.1293 0.048800 0.2073 
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P07195 LDHB_HUMAN 
P07195 LDHB_HUMAN L-lactate dehydrogenase B chain OS=Homo sapiens 
GN=LDHB PE=1 SV=2 0.2041 0.1335 0.108700 0.2519 

A0A0U1RQF0 A0A0U1RQF0_HUMAN 
A0A0U1RQF0 A0A0U1RQF0_HUMAN Fatty acid synthase OS=Homo sapiens 
GN=FASN PE=4 SV=1 0.2128 0.000001 n.d. 0.267 

P10809 CH60_HUMAN 
P10809 CH60_HUMAN 60 kDa heat shock protein, mitochondrial OS=Homo sapiens 
GN=HSPD1 PE=1 SV=2 0.218 0.1258 0.077300 0.2487 

P06748 NPM_HUMAN P06748 NPM_HUMAN Nucleophosmin OS=Homo sapiens GN=NPM1 PE=1 SV=2 0.221 0.1311 0.155800 0.2831 

P62937 PPIA_HUMAN 
P62937 PPIA_HUMAN Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens 
GN=PPIA PE=1 SV=2 0.2232 0.1287 0.080800 0.2072 

I3L1N3 I3L1N3_HUMAN 
I3L1N3 I3L1N3_HUMAN Phosphorylase b kinase regulatory subunit beta (Fragment) 
OS=Homo sapiens GN=PHKB PE=1 SV=1 0.2557 0.261 0.292800 0.1826 

P13639 EF2_HUMAN P13639 EF2_HUMAN Elongation factor 2 OS=Homo sapiens GN=EEF2 PE=1 SV=4 0.2958 0.2038 0.175100 0.4539 

P38646 GRP75_HUMAN 
P38646 GRP75_HUMAN Stress-70 protein, mitochondrial OS=Homo sapiens 
GN=HSPA9 PE=1 SV=2 0.3091 0.2204 0.157900 0.3638 

P11021 GRP78_HUMAN 
P11021 GRP78_HUMAN 78 kDa glucose-regulated protein OS=Homo sapiens 
GN=HSPA5 PE=1 SV=2 0.3266 0.2237 0.075500 0.4135 

P62805 H4_HUMAN P62805 H4_HUMAN Histone H4 OS=Homo sapiens GN=HIST1H4A PE=1 SV=2 0.3435 0.3658 0.226900 0.444 

P07900 HS90A_HUMAN 
P07900 HS90A_HUMAN Heat shock protein HSP 90-alpha OS=Homo sapiens 
GN=HSP90AA1 PE=1 SV=5 0.3703 0.2543 0.237100 0.4776 

Q05639 EF1A2_HUMAN 
Q05639 EF1A2_HUMAN Elongation factor 1-alpha 2 OS=Homo sapiens GN=EEF1A2 
PE=1 SV=1 0.4248 0.356 0.218200 0.5163 

P04406 G3P_HUMAN 
P04406 G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase OS=Homo 
sapiens GN=GAPDH PE=1 SV=3 0.4348 0.3906 0.225100 0.5767 

P13929 ENOB_HUMAN P13929 ENOB_HUMAN Beta-enolase OS=Homo sapiens GN=ENO3 PE=1 SV=5 0.4875 0.000001 n.d. n.d. 

Q5JP53 Q5JP53_HUMAN 
Q5JP53 Q5JP53_HUMAN Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 
SV=1 0.4881 0.000001 n.d. 0.571 

P08238 HS90B_HUMAN 
P08238 HS90B_HUMAN Heat shock protein HSP 90-beta OS=Homo sapiens 
GN=HSP90AB1 PE=1 SV=4 0.4891 0.3644 0.268400 0.57 

E9PKE3 E9PKE3_HUMAN 
E9PKE3 E9PKE3_HUMAN Heat shock cognate 71 kDa protein OS=Homo sapiens 
GN=HSPA8 PE=1 SV=1 0.5542 0.4158 0.234000 0.7359 

P68363 TBA1B_HUMAN 
P68363 TBA1B_HUMAN Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B 
PE=1 SV=1 0.6253 0.5764 0.352100 0.0696 

P60709 ACTB_HUMAN 

P60709 ACTB_HUMAN Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 

0.7829 0.653 0.424500 0.9676 


