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Abstract 

The idea that the utility of research should be secondary to understanding its subject 

delays the extraction of potential value. A parallel translational approach to research was 

applied whereby discovering new findings and testing their validity was performed in 

parallel.  

Research about the face was selected for translation as it provided the 

complexity, diversity, and fidelity necessary for multiple data-driven hypothesis 

exploration while remaining key to social interaction. For example, emotional contagion, 

the tendency for an individual to catch someone else’s emotion has been linked to facial 

contagion: an automatic reaction whereby facial muscles adopt the expression of any 

emotional face.  

Based on the reported exaggerated emotional reactions of patients with upper 

involvement in Motor Neuron Disease (MND) compared to lower involvement, an 

experiment was devised to make the difference through comparisons of facial contagion 

responses with recorded Electromyography (EMG) responses (chapter 3). As these 

patients were expected to have generally weak responses, it became necessary to 

increase the sensitivity of acquired signals to elucidate differences between subtypes. 

An adaptive filtering technique for signal processing was developed based on modelling 

methods and tested with support vector machines (chapter 2).  

The therapeutic intervention (chapter 4) consisted of a series of experiments 

seeking to induce emotional contagion of happiness by presenting images of smiling 

faces through smartphones. This was also gamified in an experiment at the Science 

Museum in London to test whether the effect could be found over the short term. Lastly, 

I parametrised faces from a large population of Tibetan residents and predicted 

haematological and electrocardiographic measures with machine learning methods as 

a way of screening for cardiovascular disease through photographs of the face (chapter 

5).  

The results were analysed in relation to the field of cognitive neuroscience and 

the implications for a parallel translational and high-dimensional approach were 

discussed. 
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1.1 Introduction 

The brain is a system so complex that after decades of dedicated research programs 

worldwide, the scientific community agrees that there is much yet to discover. To close 

the gap between research and application and extract benefit from this knowledge, it is 

therefore necessary to exploit findings prior to reaching full understanding of their 

underlying biological explanations.  

The main goals of the research undertaken below is to add to the body of 

neuroscientific tools and knowledge and develop novel solutions for the diagnosis and 

therapy of patients with brain disorders. These efforts began by building the necessary 

conceptual foundations that guided the selection of research findings in neuroscience 

ripe for translation into practical applications. Ultimately, the face was selected as an 

appropriate concept as there is enough research that provides the necessary complexity, 

diversity, and fidelity for multiple data-driven hypothesis exploration.  

The face is a key component in social interaction because of its informational 

value to emotional communication, perception, and understanding. It is a part of the 

body that is nearly always exposed and an accurate reflection of the intrinsic high 

dimensionality that reflect humans’ complexity as biological social and emotional 

agents. Since it has been a research topic of interest throughout history, vast amounts 

of evidence from many independent methods are available to translate into beneficial 

health applications. Although other variables could be equally appropriate for this 

mission, selecting a single concept will narrow the scope of this thesis. In so doing I can 

ask a clear question: What information from the face can be extracted to generate health 

outcomes? Rather than concentrating on a function or process and changing the topic 

of study I can apply the translational approach to all aspects of human neuropsychology 

with respect to face research including perception, processing, and physiology. 

A prerequisite to empirical study is an understanding of relevant notions of the 

key issues concerned. If we are mistaken in our theoretical foundation, any 

parameterisation of the data will also be wrong, and therefore any inferences may be 

rendered invalid. Since this PhD concerns itself with both elucidating biological 

questions and the construction of experiments attempting to influence positive change, 
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it is important to ensure ensuing manipulations are based on conceptually sound 

foundations.  

Here, there are two distinct reasons to launch in this preamble. The first is that 

the face is intrinsically hard to reduce in its dimensionality, and therefore hard to study 

with the simple, low-dimensional methods most natural to neuroscience. The second is 

the opaque complexity of the psychological concepts surrounding emotion: they are 

difficult to see clearly precisely because we are so familiar with them. But being familiar 

with the use of a concept is not equivalent to having a synoptic view of its relations, 

which is what is needed to accurately characterise its function in human behaviour. 

1.1.1 A new dimensional landscape 

Biological entities vary between each other. Unlike when comparing two hydrogen atoms 

which are identical, one human being is different from another and this principle extends 

to all biological life. Furthermore, two biological entities vary along a large number of 

dimensions. If you were to take one mouse and compare it to another mouse, then there 

would be a great deal of variability between the two as they will differ across many visible 

and invisible features. 

The notion of variability is premised on the scale at which one compares features 

and assumes the idea of parametrisation. To illustrate this, let’s consider that the scale 

of parametrisation that is applied to a set of biological entities is on a species level, for 

example a mouse. If you consider the parameterisation of all individual mice at a spatial 

scale equivalent to the spatial dimensions of the particular species you are studying, you 

will identify all exemplars of the species as mice. The level of variability in the information 

captured in this example is at the species level so individual differences between mice 

will not be parametrised. Therefore, the scale of capturing the variability depends on 

parametrisation. 

Parameterisation is the number and nature of the features chosen to describe an 

entity. These may vary with scale but need not necessarily do so. The choice of features 

is essentially arbitrary because biological entities have impossibly many features (if you 

count atoms, say). So, a level of parameterisation is established that seeks to satisfy 

two complementary criteria: first, to capture the features that matter for the issue of 

interest, and second to avoid capturing features that are irrelevant, simply noise that will 

obscure the exploratory task. For example, if one is interested in parameterising the sex 
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of a mouse all that is required is to look at the genitalia, or whatever feature best 

distinguishes male from female (e.g. chromosomes). But what should be measured if 

interested in parametrising the impulsiveness of the mouse? Evidently, capturing 

features of its brain and behaviour could provide an answer, but at what resolution? Since 

there is no way to know, first all that can be measured (e.g. brain function) is measured, 

and second anything deemed irrelevant is discarded. The first step is limited by the 

capacities and reach of current technology and is not under the researcher’s control. The 

latter step however is a matter of mathematics and computation and can therefore be 

tuned to increase its accuracy.  

Defining a reasonable level of parametrisation requires careful consideration as 

it is highly context-dependent. For the present purposes, reasonable is defined as the 

level necessary to enable a coherent explanation of the behaviour of interest in an 

animal. Whether this is at the tissue, cell, intracellular, or behavioural level, one will 

always find that (say) a mouse differs from another mouse on many dimensions. The 

scale will not be in the tens but likely in the thousands. This is true not only at the whole 

subject level but also for individual organs or tissue. If one takes the forebrain of one 

mouse and compares it to the forebrain of another, overall they might have the same 

shape and number of cortical layers, but the individual structure, the cytoarchitecture, 

will be radically different, just as in humans (Brett et al 2002). The transformation 

between the two cannot be explained in any simple or reductive way.  

Scientific reductionism approaches complex problems by separately identifying, 

investigating, and summing their constituent parts. This idea reduces complex 

processes to more tractable subsets and facilitates scientific investigation. However, 

recognising that biological entities are composed of parts can lead to a misplaced 

tendency to look for a small set of explanatory features. Ultimately all physical entities 

and the universe must be explainable through one unified science of molecular biology 

and physics (Bechtel and Hamilton 2007). For example, a reductionist would consider 

that by researching underlying chemical reactions in the brain, they would be able to 

explain the complexity of the human brain and its functions including emotions, 

intelligence, and other human behaviours. The presumption is that the underlying 

mechanism is simple, and the observed complexity is essentially noise.  

How complex are models of the brain expected to be? Biological organisms 

exhibit complex behaviours and physiology that cannot be fully explained if studied as 
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isolated parts. Can it be that accurate models of the brain are as simple as low-

dimensional models assume? It is not tenable to expect reductionism to accurately 

characterise a complete entity as a reduced model cannot be as good as a full one 

(Bloom 2001; Strange 2005). Within Magnetic Resonance Imaging (MRI) research, the 

brain is crudely parametrised into chunks of brain or voxels that are about 2 mm across 

and contain over a million neurons each (Aguirre 2012). Even at this level comparing one 

brain to another requires a huge number of parameters because the non-linear 

transformation that describes one brain to another is in voxel space and is huge.  

The implication that this holds for the variability in the biological domain is that 

they require many dimensions to specify but also to differentiate between each other, 

and between different states at different times. This is because the separation between 

different entities is not explained by any single variable or by any large or consistent 

agglomeration of variables. To make comparisons across individuals one needs to 

factor all the individual features and the more possibilities there are about where the 

boundary between those features falls the more replications are needed to ensure that 

is the case and the larger that set of features the harder it is to do this empirically.  

If, for example, two samples are completely segregated by 1000 features, a single 

or small number of observations cannot explain differences accurately without knowing 

which set of features are critical. The traditional approach to what is known as the curse 

of dimensionality (Bellman 2015) presumes in biology that the underlying organisation 

is low dimensional. For example, say a researcher is interested in exploring the causes 

of hemispatial neglect, where following a stroke or damage to one hemisphere the 

patient stops attending to stimuli on one side of their body or visual field while retaining 

sensation (McFie et al 1950). The traditional approach would consider there is a network 

in the brain controlling attention and if this network is disturbed, hemispatial neglect 

ensues and this network can be adequately described with a relatively small number of 

parameters (Figure 1.1.A and 1.1.B). In neural network terms, instantiations of this 

problem are presented by computational models that can be composed of as little as 3 

modules, yet are responsible for the whole of attention (Figure 1.1.C).  
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A) B) 

C) 

Figure 1.1 Models of attention. 
Interconnected neuronal network 
mechanistic models of attention 
where disruption may lead to 
hemispatial neglect according to A) 
Mesulam (1999) and B) Mesulam 
(1981). C) The Selective Attention 
for Identification Model composed 
of three modular computational 
components. Here, the Contents 
Network maps contents of the 
visual field onto the Focus of 
Attention while the Selection 
Network determines their location 
in the visual field and the 
Knowledge Network recognises 
these contents (Heinke and 
Humphreys 2003).  

Abbreviations in A) Attentional 
Reticular Activating System (ARAS); 
B) Posterior Gyrus (PG) 
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There are two main problems with this reductive approach. First, it assumes that 

high-dimensional variation across individuals is accidental and what holds informational 

power are the low dimensional factors. Conceptually, it is akin to considering the 

biological entity as a watch mechanism, where the wheels might change slightly in shape 

or the springs might be in different positions, but the mechanism is essentially always 

the same. This is an assumption that considers the world as simple and this position 

discards all the high-dimensional features as noise and constitutes an assumption that 

may not be justified. If complexity is mislabelled as noise, individual variability and 

uniqueness may be lost and the cases could be thought to differ along a fewer set of 

dimensions than that reflected in reality.  

The second problem with assuming that high-dimensional variation across 

individuals is accidental is that it can be empirically shown to be false. To go about 

testing the assumption there are two possibilities. The first is to see if that high-

dimensional variability is indeed noise. If it is noise and one were to try to predict 

something about a system (e.g. will it live or die, is it a man or woman) as we add features 

to the model, the accuracy of prediction should not increase. So, after adding (say) 10 

important features, thereafter adding more should not improve the power of prediction. 

In some domains, this was examined, and increased dimensionality adds predictive 

power provided one uses the right inferential approach.  

For example, Chu et al (2012) found that data driven region of interest (ROI) 

selection of features was no better than using whole brain MRI data to predict which 

patients with mild cognitive impairment were to develop Alzheimer’s Disease (AD), the 

most common type of neurodegenerative dementia associated with ageing. 

Furthermore, correctly predicting which MRI scans belonged to AD patients or healthy 

age-matched controls was more effective using data form the whole brain rather than a 

literature based ROI (Cuingnet et al 2011). Finally, in an explicit challenge to the modular 

notion of brain functional organisation for higher cognitive processes, Nawa and Ando 

(2014) found that whole brain functional MRI scans were superior in classifying activity 

of subjects recalling positive or negative autobiographical memories than ROI specific 

activity. Consequently, this shifts the notion that a particular dataset may contain hardly 

any non-informative features, to only less-informative ones. Thus, although the reductive 

approach was able to make some progress and general observations, high 

dimensionality captures more of the informative variability. 
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Equally, the more cases are added, the better the heterogeneity of feature 

conjunctions will be captured and predictive power increases. To illustrate this point, 

consider the problem of face recognition and classification. When one applies machine 

learning techniques (explored in more detail in section 1.1.3) the predictive power is 

higher as increasing amounts of data are available. This is best exemplified in the battles 

between the big internet companies to optimise face recognition. Whereas Facebook 

trained their algorithms on 4 million photos and achieved 97.25% accuracy (Taigman et 

al 2014), Google used 200 million to achieve 99.96% near perfect classification 

(Simonyan and Zisserman 2014). In other words, when one adds millions of faces to a 

dataset, the performance becomes better and so on until maximum accuracy is 

achieved. Of course, performance will always depend on different algorithms and some 

added features will sometimes inevitably be noise. In general however, whenever a 

biological system is heavily parameterised predictive power increases well beyond the 

level of parameterisation of most mechanistic models which do not go beyond a handful 

of factors. 

The second way to test the assumption is to explore the possibility that the same 

function may be subserved by different mechanisms. At its most basic a biological 

mechanism is an entity with a range of powers allowing it to act upon the world and solve 

problems. In this context different mechanisms could result in the same solution. There 

is no need for a brain to add 2 and 2 the same as another does, the mechanism to 

produce the solution ‘4’ can be different. If sets of mechanisms can be different, then 

looking for a common solution must be wrong because the process of getting there is 

different. The traditional approach to discovering the multiplicity of possible solutions 

would involve averaging and finding what is common across all mechanisms. However, 

this will ignore the heterogeneity in the population as it assumes that the mechanisms 

are all comparable and therefore the same, thus raising the risk of false negatives (not 

finding a mechanism where one exists). 

Multiple solutions in biology are however expected in some domains. This could 

be because the final biological form is not definitively specified in the genes. If there is 

not enough information in the gene, then the final product needs to arise from elsewhere 

and it is here proposed to arise through learning. The term learning is about any input-

output transformation at any level. This could be, for example, how an enzyme performs 

a certain task and the way it is instantiated at a particular level through feedback. So, an 

enzyme will typically be under feedback control from another agent at the molecular level 
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where some would suppress it and another will increase it and the system finds an 

optimum. When a multi-parameter system is finding an optimum, there is no reason why 

the system should yield the same solution and all might be equally good in multiple 

individuals.  

A classic empirical example of this process is found in that of the gastric mill 

motor patterns of the lobster’s gut (Marder and Bucher 2007). Though simple in anatomy 

– about 30 motor neurons – and in behaviour – open and close the muscles to 

mechanically break food – its extensive study has shown that different mechanisms 

may generate similar gastric mill motor patterns and different neuronal connectivity may 

subserve the production of similar motor patterns. It also shows evidence of learning as 

though it may be fully formed early in development, as an adult it will generate different 

motor patterns. If such complexity can be true of the gut, is it not plausible that it is also 

true of the brain? 

There is an emerging trend in the life sciences to embrace complexity and 

diversity in its many forms leading to a higher dimensionality within the field. An 

increasingly established principle finds that biological phenomena can in most cases be 

better explained by taking a systems approach (Kesić 2015). This reflects a movement 

towards considering functionally critical information is not concentrated in single genes 

or specific brain areas, but it is rather distributed across loci in networks, an emergent 

product of their interactions. For example, mirror neurons were a class of cells originally 

discovered in a macaque’s ventral premotor cortex and inferior parietal lobule that were 

thought to become active when the macaque performed an action and when the same 

action was executed by another visible macaque or person (Rizzolatti et al 1996). Over 

two decades of human brain imaging studies later, mirror neurons are now considered 

part of a system where a network of over 20 anatomically interconnected cortical regions 

are coordinated in matching actions and observations (Bonini 2016). Although a lot more 

was learned about the systemic nature of organisms, it is nevertheless unreasonable to 

expect the information contained in a small number of loci to fully account for the 

complexity of the mechanisms studied.  

The intrinsically complex and multi-faceted nature of the biological will require 

amassing large datasets with descriptors of their interactions that are composed of 

multiple attributes. This is a problem that will necessarily require a high-dimensional 

analysis to answer. Across many biological disciplines this anti-reductive approach is 
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accepted and holist and reductionist methods are balanced to yield the most accurate 

representation of phenomena (Romero et al 2006; Anon 2014).  

1.1.2 The quality of data  

Appreciating complexity is accompanied by a recognised need for a different type of 

data that enables useful high-dimensional analyses. This should not be surprising: 

without fully exploring the space that defines a complex system we cannot expect to 

understand it. One of the main consequences of adopting a non-reductionist approach 

in the life sciences, is the incredible amount of data generated.  

Ushered by the development of more affordable and capable technology, copious 

and substantial datasets are now routinely produced across many life science fields. 

The most common experimental solution to dealing with so called big data is to explore 

the average of the behaviour in question. Although this may be enough to superficially 

understand a biological system by powering small effects through better definition of 

the mean, it cannot fully characterise the disease processes or physiological responses 

which can be obscured by random variance that occurs in a biological system. 

Accounting for the presence of inherent stochastic components that govern interactions 

between processes within biological systems are now being recognised as a major step 

towards greater clarity (Quackenbush 2007). These large number of different cases 

allow the capturing of consistencies in variation in the high-dimensional space. By 

gathering enough data to identify the heterogeneities in its complex structure, the 

clusters best illuminating each individual are revealed through a high-dimensional 

approach. 

In the field of neuroimaging for example, a study of patients where sufficient data 

exists to capture the complexity of the lesion distributions using multivariate inference 

based on machine learning has proven quite disruptive. With the largest sample of 

structural imaging post-stroke lesion data published to date (N=581), Mah et al (2014) 

quantified and modelled the mislocalizations found in conventional mass-univariate 

lesion mapping distributions. By showing that co-occurrence of damage across voxels 

leads to systematic biases in this approach to lesion mapping, the authors demonstrated 

the superiority of combining high-dimensional data and analysis. In other words, making 

comparisons across whole brains rather than individual voxels captured the pattern of 

damage in the underlying anatomy contributing to the functional deficit more accurately. 
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Where a reductionist approach would have scientists discard much of the 

features as noise, the high-dimensional model interprets what was redundancy as 

informational and incorporates it towards fuller explanations. The better data is available 

the more likely it is to accurately describe the complexity of the processes and avoid 

mistaking meaning for noise. This effort should not be confused with likelihood of falling 

into type-2 statistical errors, rather it is about discovering the underlying dynamics 

between the variables at play. Indeed, a higher dimensionality in data structures has not 

solely yielded datasets composed of a larger N, this drive has truly pushed towards 

greater quality as evidenced by the use of this data to generate personalised treatment 

models.  

Where conventional clinical trials track single measures among thousands of 

people, personalised approaches require probing many factors - including genetics, 

behaviour, and environment – to develop precise interventions customised to a 

particular person (Schork 2015). These single subject or N-of-1 trials are multi-cycle 

within-patient, randomized, double-blind studies that use copious information on 

individual response to treatments and have proven useful for research studies (Guyatt 

et al 1990; Lillie et al 2011; Woodworth et al 2016) and to optimize the management of 

chronic diseases (Scuffham et al 2010; Mitchell et al 2015; Punja et al 2016). These trials 

consider differences between individuals as informational, and best courses of 

treatments are developed based on data and evidence rather than dismissing variance 

as noise. Although on the surface it may seem oppositional to the idea of big data, it is 

simply a shifting of the space where the high-dimensionality model is applied.  

Consumers today have greater facility to gather data about their health from 

wearables and mobile technology, holding the potential to truly shift healthcare models 

towards patient-driven targeted preventions (Swan 2009). Embracing the advent of such 

technologies to complement the ongoing self-monitoring of many categories and 

variables (see Table 1), led to the generation of massive datasets by people in both good 

and ill health (Swan 2013). This high-dimensionality at the individual level, composed of 

multiple diverse measures, has led to a more comprehensive view of diseases and is 

challenging the one-size-fits-all approach to solving some of the greatest global health 

challenges (Adams 2016). The implications for concentrating on single people as worthy 

of particular study rather than in aggregate renews the dignity of the individual and the 

conception of wellness and healthcare in society. It accepts that people reflect the 
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polymorphic variations found across individual physiology and cannot simply be 

represented as accidental departures from the canonical form. 

 

1.1.3 Following the data  

With more available higher quality datasets key research findings become more reliable, 

disturbing the structure of research and allowing scientists to bridge the gap from 

discovery to implementation. Historically, science involves investigating and recording 

physical phenomena and conducting trial-and-error experiments driven by hypotheses. 

One shouldn’t however presume the existence of how the mechanism works. That is 

what the traditional reductive approach would do: there is a hypothesis and it should be 

tested. However, this introduces a form of bias as it enforces hypotheses that are 

plausible within the current limited understanding of a field, safely embracing the familiar 

and accepted. The task in science is not hypothesis testing but hypothesis comparison 

and if there are no means to define the space of available hypothesis, then this is not a 

possible task. 

Source: http://measuredme.com/2012/10/building-that-perfect-
quantified-self-app-notes-to-developers-and-qs-community-html/ 

 Table 1. Categories and Variables of Self Quantification. 
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Pushing the boundaries of scientific enquiry towards embracing this complexity 

leads to data-driven approaches that require high-dimensional solutions to make these 

tractable. Machine learning methods are algorithms that learn from experience and 

discern information within the variability of the data from which scientists can discover 

the spectrum of possible patterns within the data. In this way, the process of hypothesis 

generation becomes driven by the data and one can undergo a process of hypothesis 

selection. Although this should mean one is less likely to be biased by one’s own 

imagination, it is not because the data fits a particular hypothesis that another 

hypothesis could not fit the data just as well. An independent measure of the quality of 

how good a hypothesis is, can be measured in how useful it is in predicting outcomes 

with machine learning methods.  

There are many artificial intelligence modelling methods falling under the 

umbrella term of machine learning and reviewing these is beyond the present scope as 

these are best treated by specialised textbooks on the subject (Alpaydin 2014). However, 

all problems that will need to be solved by machine learning techniques in this thesis 

share a common goal: to predict whether a data point belongs to a particular group or 

class with the highest accuracy and speed. Since the actual true class or label of the 

data point will also be known at the time of testing, all relevant machine learning 

problems are presently to be considered as supervised learning classification problems. 

This therefore limits the choices of potential relevant techniques to a specific subset by 

way of excluding certain techniques. For example, unsupervised learning algorithms aim 

to cluster data points into groups sharing highest similarities or reduce dimensionalities 

to limit the number of variables under consideration. As these techniques are most 

useful when the labels are unknown or when high dimensional variables are considered 

to be irrelevant, these are not the most appropriate to solve the tasks that will be laid out 

in subsequent chapters.   

Furthermore, within the subset of supervised learning, further requirements 

dictated a preference for speed and accuracy and also, importantly, ease of use. This led 

to steering away from the more complex and resource-heavy artificial neural network 

algorithms which became best at solving unsupervised “deep” problems such as feature 

extraction (Schmidhuber 2015). Similarly, random forest algorithms randomly combine 

data features to create “trees” and compare subset of trees (i.e. forests) to generate 

predictions of actual class belongingness (Breiman 2001). This method was not opted 

for considering random forests are generally best suited for multi-class problems and 
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the solutions in this thesis require simple binary two-class prediction. Finally, one of the 

simplest and seemingly most commonly used machine learning methods1, the support 

vector machine (SVM) was selected as ticking the most requirements for present 

purposes.  

One of the greatest advantages of SVMs is the relatively “out-of-the-box” ability 

to be implemented without requiring delicate and computationally expensive tuning. This 

allows the method to be implemented successfully by non-computer scientists such as 

the author and be applied to other fields outside artificial intelligence. In addition to being 

simple to grasp theoretically and implement within a coding environment, SVMs have 

been established as excellent binary classifiers when benchmarking them with other 

methods where labels are known (Meyer et al 2003) and produced such results across 

a range of disciplines (Statnikov et al 2008; Nitze et al 2012), making them an adequate 

choice to implement in this thesis.  

Specifically, the form of the technique used in this thesis is a binary SVM which, 

at its most basic, is a learning algorithm that classifies data points according to their 

particular group (Cortes and Vapnik 1995). The decision to classify is based on finding 

a separating line or hyperplane that can distinguish between classes with the largest 

margin between instances of both groups closest to the borders (aka the “support 

vectors”). To achieve this, it is necessary to first obtain a dataset which is large enough 

to separate the instances into training and testing sets. Each instance in the training set 

should contain a label that classifies it within a particular group and be described by 

high-dimensional descriptor variables consisting of features. This process of modelling 

the matching of features to labels is called training and is how SVMs “learn”. In cases 

where a clear line is not identifiable between the input data, SVMs will use a set of 

mathematical functions called kernels to re-arrange the objects in high-dimensional 

space based on the degree of similarity between the features describing the data. Rather 

than constructing a complex curve between the data points kernels can map the data so 

that the optimal linear hyperplane can then be used to separate the categories. The 

accuracy of the SVM model produced in training can be tested by predicting the label of 

new points of features that are found in the testing set. Furthermore, the labels of the 

                                                      
1 A rough indication of method adoption can be gained by searching for specific terms in google 

scholar and observing the number of published scientific works for a particular time period. A 
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testing set are used to compare the predicted labelling (ensuing from the SVM) versus 

the expected outcome (the actual labels) to generate a measure of generalisability of 

the SVM model of accurately classifying unknown data.  

SVMs operate in contrast to hypothesis-driven methods such as logistic 

regression which fit the input data to a curve defined by a pre-determined model to 

predict the occurrence of a binary event. Since the SVM generates a model based on the 

data, it is a powerful agnostic classification tool that provides an unbiased alternative to 

elucidate patterns in data where samples sizes are small and a large number of high-

dimensional variables are involved (Yu et al 2010). These machine learning models 

bestow the freedom to enquire along emergences outside of the constraints of 

conventional hypothesis-formation and draw useful conclusions directly from the data 

itself (Anderson 2008). With the greater availability of complex electronic health records 

and surge in computational power, SVM classifiers have gained momentum in health 

research during the past years.  

For example, reframing medical challenges such as seizure detections and 

onsets in epilepsy from electroencephalography (EEG) recordings as a classification 

problem can be very useful to notify caregivers and better manage these episodes 

(Shoeb and Guttag 2010; Fergus et al 2016). Achieving robust seizure detection, avoiding 

false positives, and generating a model with good inter- and intra-patient generalisability 

is difficult considering the high variability in seizure morphology. By treating each 

individual seizure as a separate classification task, Van Esbroeck et al (2016) generated 

a multi-task model that captured seizure-specific characteristics and patterns shared 

across all types of seizures within the same patient. As the results generated a single 

shared hyperplane, this was used to separate specific seizures while optimizing 

performance across the high-dimensional shared seizure types, thereby reducing false 

positives significantly as the more common seizure types are not over-represented in 

the final hyperplane. 

In an exemplary demonstration of the benefits of collaborative science, 

Jongkreangkrai et al (2016) utilised an SVM approach with open-source software and 

open-access repositories of health data, to inform the description of conditions such as 

AD. The authors inputted cortical thickness measurements obtained from MRI scans of 

several brain areas implicated in AD (including the hippocampus, amygdala, and 

entorhinal cortex) into an SVM to explore which of these were most useful to use as 
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markers of degeneration to predict presence (or absence) of the disease. The classifier 

was able to discriminate from as little as 100 healthy controls and 100 AD patients 

whether the scans belonged to a normal individual or an AD patient. Although the study 

suffered from low sample sizes, it holds potential to explore the patterns of degeneration 

that may characterise AD and create an algorithm that can predict whether an individual 

may develop the condition.  

1.1.4 Re-structuring scientific research 

By recognising that accurately parametrising complexity demands large datasets, one 

recognises the priority of considering how large datasets can be assembled. It is always 

hard to do this purely for research purposes, which is why a dual-track parallel system is 

required to apply what is known, and the utility of the result can be used to justify (and 

enable) the collection of large scale data. By following the data where enabled by 

innovative technological developments, scientists re-structure the practice of research 

and blur the gap between the basic and applied domains.  

Most scientific endeavour can be dichotomised into fundamental, purely 

curiosity driven research (sometimes referred to as basic) and applied research, where 

the effort is aimed at solving a real-world problem. Within the corporate and government 

sector, these are unified under an innovation cycle termed Research and Development 

(R&D). Although in these sectors there is usually an emphasis on commercialisation 

which is considered dangerous by many academics due to risks of interference by the 

corporate funders (Olivieri 2003), it can be a useful motivator to explore how research 

may be put into practice for the benefit of the public.  This is where an alternative 

conceptualisation of doing science, a parallel translational approach to research has 

provided a more seamless integration of the classically separate paradigms of basic and 

applied research (Ashburner and Klӧppel 2011).  

Although some consider basic research as “not-yet-applied” (Coward and 

Franklin 1989) it is implicit within such frameworks that it be others who should apply it. 

However even when translating clinical research is considered a national priority and 

responsibility (Zerhouni 2003), it is a difficult endeavour to achieve as there are more 

difficulties to this kind of approach than in traditional scientific research (Zerhouni 

2005). If there is no intent within the field to do so however, it may not necessarily happen 

and if the experts who develop the innovation do not make it easily communicable and 
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accessible beyond their specialty, it will hardly happen at all. Where there is no natural 

connection between the field of study and practical applications of the research, as there 

is in (say) engineering or pharmacology, establishing a parallel translational approach or 

culture within an academic field requires an innovative shift in attitude that embraces 

uncertainty. The parallel element emphasises the dual-track system whereby large 

datasets may be enabled and justified through exploring the contained utility of the 

results which in turn allow for greater data-driven hypothesis explorations. 

The researchers need not shy away from the complexity and time required in 

becoming familiar with the apparatus outside of conventional research methods and 

accepting a high risk of failure for venturing out of the established paradigm within their 

field. It is also a risk that parallel translational research end in a limbo between a well-

established structure of a university department that may further confuse the efforts. In 

the current case, the uncertainty of not sitting precisely within UCL’s Institute of 

Neurology, Institute of Biomedical Engineering, or the recently established Institute of 

Digital Health informed and directed the current projects by providing a flexible network 

of knowledge and opportunities. Ultimately, the crux of the parallel translational 

approach hereby adopted is to progress from efficacy into effectiveness by exploring 

how findings can translate into real-world health solutions and collect larger datasets 

that further research. 

As a pure curiosity-driven exercise the parallel translational approach provides a 

powerful test to the quality and confidence of our knowledge about the phenomena 

being studied. To understand a system, it is argued that one needs to demonstrate 

“fixing” a broken instance (Lazebnik 2002; Jonas and Kording 2016). The parallel 

translational approach puts the knowledge base to the test by applying the accepted 

concepts to generate change in the world. Should such a soundly reasoned and 

developed intervention fail, it could lead to a re-assessment of the extent to which the 

knowledge base truly relies on the mechanisms and processes it purports to define or 

its completeness. As with any innovative approach that aims to impact people’s lives, an 

unwanted consequence of failure could be the potential for negative outcomes. Of 

course, great care should be taken during the conceptualisation stages to ensure that 

these are minimised, and a high ethical standard is ensured throughout. 

The parallel translational approach can demonstrate mastery of phenomena by 

generating clinical impact from the application of findings within a field of specialty. As 
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demonstrated in the examples discussed, the implications of data-driven parallel 

translational science are the predictive power that is generated by the results of such 

research. This model is also being more recently recognised as a way forward to create 

sustainable global health interventions that inform policy (Neufeld et al 2016). One of 

the aims of this thesis is to generate such impact from neuroscience by employing the 

high-dimensional dataforms and methods presented above.  

1.1.5 The face 

To demonstrate clinical and scientific impact, the current approach individuates a high-

dimensional unifying concept that will serve as the central theme from which to apply 

such methods and upon which enough theory and knowledge is available to derive 

concepts of interest and exert influence: the human face.  

The human face is a high-dimensional feature that holds potential to translate 

what is known about it into applications with health outcomes. This is not to mean that 

there are no other variables which could be equally appropriate for this mission, however 

selecting a single concept that is well-established will narrow the scope of this thesis. In 

so doing we can ask a clear question: What information from the face can be extracted 

to generate health outcomes? Doing so also allows the researcher to apply the 

translational approach from all conceivable aspects of human neuropsychology with 

respect to face perception, processing, and physiology rather than concentrating on a 

function or process and changing the topic of study.  

The face is undeniably key to human social interaction because it holds special 

informational value to emotional communication, perception, and understanding. Owing 

to the central role of faces to social, cognitive, and emotional communication in humans, 

extensive research on the face has revealed how information such as identity, age, 

intention, and gender are conveyed within them (see Calder (2011) for a review). As it is 

involved in a wide variety of important human phenomena, there is an equally large scope 

to generate meaningful impact from translating research within the field. Indeed, the 

face is a readily accessible part of the body that is always exposed and may thus be 

accessed non-invasively. As it has been a topic of study for centuries, there are large 

amounts of evidence acquired from independent methods about the way faces are 

processed and identified (Farah et al 1998) and how the muscles  (Moody et al 2007) 

and brain (Lee et al 2006) have selectively specialized  to enable these processes.  
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Due to the highly complex and varied information the face provides on specific 

emotions and behaviour, the face can be considered high-dimensional yet specific. 

When dysregulated, this can hold severe implications for successful social interaction 

and integration within society as demonstrated by associated dysfunctions in patient 

populations. For example, autistic individuals demonstrate atypical visual and neural 

mechanisms to determine facial identity (Mukerji et al 2013) including poorer memory 

for faces (Gelder et al 1991) and marked difficulty at identifying negative emotions 

(Enticott et al 2014), which may contribute to the social deficits presented in autism 

spectrum disorders. In other patient populations such as psychopathic individuals, it is 

possible that their lack of ability of recognising the emotional information transmitted in 

facial expressions may disturb the development of healthy interpersonal relationships 

and social adaptation (Contreras-Rodriguez et al 2014). Deficits in facial responding can 

also occur automatically as in borderline personality patients who demonstrate 

abnormally increased non-voluntary facial responses for negative emotions (Matzke et 

al 2013). 

This contributes to the face as an accurate reflection of the intrinsic high-

dimensionality of biological social and emotional agents. The field could therefore 

contain enough theory and data to derive concepts of interest that can be used to exert 

influence and generate impact. As a field of study, the face has provided copious amount 

of multivariate, independently acquired, evidence of its systems and functions thereby 

requiring the reader familiar themselves with this variable and associated inseparable 

concepts as these are the tools ripe for translation. 

1.1.5.1 Conceptualising emotions 

“We see emotion." As opposed to what? We do not see facial contortions and make 

inferences from them (like a doctor framing a diagnosis) to joy, grief, boredom. We 

describe a face immediately as sad, radiant, bored, even when we are unable to give 

another description of the features.” (Wittgenstein et al 1967) 

It would be difficult if not impossible to better emphasise the intricate role of 

emotions in characterising a face than the quote above. Since faces provide the single 

most informative conduit through which humans perceive emotional states it is 

important to re-evaluate the conceptual aspects surrounding these. 
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Detailed treatises on the conceptual structure of emotions have placed them 

along with agitations and moods, as subtypes of affections, which further fall under the 

umbrella term: feelings (Hacker 2009). Emotions are active and intertwined modes of 

engagement with the world that reflect a people’s beliefs and interpretations (Marks 

1982; Oakley 1992; Hacker 2015). These have a duration and course, stem from a 

specific object and cause, and can be associated with distinct facial expressions and 

somatic sensations. Hacker (2009) further differentiates between internal dispositions 

or emotional attitudes, such as pride for a childhood achievement or love for one’s 

partner which may last a lifetime, and short emotional perturbations or outbursts. 

Distinguishing emotions from moods and agitations is also important. Moods can be 

described as a proneness to feel a particular state of mind during waking hours though 

lacking specific object while agitations are short term affective disturbances caused by 

unanticipated events. The boundaries between these are often blurred as (say) a dog 

barks and begins chasing a person whose initial reaction may be to cry in startlement 

(agitation), which crystallises into a specific fear of the dog (emotion) and once as the 

dog is muzzled and led away, eventually dissipates into objectless anxiety (mood).  

Evidently, emotions cannot be considered as disjointed from a person’s wishes, 

imagination, deliberations, and beliefs about the world (Scherer 2005). Emotions are 

dependent on multidimensional behaviours, beliefs, specific contexts, and prior events 

that compose the complexity of human lives (Bedford 1956; Oakley 1992). For this 

reason, emotions are flexible, as they need to accurately account for people’s actions 

and reactions to our diverse and unpredictable world. This flexibility translates into 

emotions not being reported equally by observers and those experiencing it even when 

it is manifest in the face (Prkachin et al 1994). This reflects a constitutional 

indeterminacy which is central to our concept of emotions (Wittgenstein 1958) and 

presents challenges to establishing a uniform and rigorous criteria to ascribe emotions 

to individuals.  

Although this line of reasoning logically dismisses single simplistic criteria such 

as self-report or non-verbal behaviour measures as incapable of capturing the full range 

of emotional experiences (Cannon 1927) these have been and remain the most popular 

method of enquiry into this subject. One's emotional state in psychology is traditionally 

communicated through verbal self-report: asking the patient to introspect about how 

they feel, and their justifications for feelings. Verbal report is useful because it provides 

specificity of language to differentiate between different emotional states, however it 



 

21 

 

 

ignores non-verbal cues that are also informative. Therefore, it is only partial- though 

important - for report is merely one manifestation of emotion. To address this 

shortcoming, many turned to taking physiological measures such as pulse, heart rate, or 

brain activation as markers for emotions. Although this approach provides a more 

objective measure of the emotional response, it lacks specificity, as it is incapable of 

differentiating in a univariate way between the valences of emotions (Schachter and 

Singer 1962). For example, quantitative differences in heart rate or pupil dilation cannot 

dichotomise between being scared or sexually aroused. Thus, neither can form logical 

criteria to ascertain that someone is feeling an emotion. 

While there is a connection between emotions and their behavioural, 

physical, and verbal manifestations, it is unhelpfully reductive to contextualise 

emotions as only one of these. But how can we combine the sensitivity of the 

physiological with the specificity of the cognitive methods in one high-dimensional 

variable? The answer is: the face. The muscles of the face are capable of minute 

alterations that are immediate, direct, and specifically configured to every emotion 

which humans are naturally sensitive. Unlike the other involuntary physical 

manifestations of emotion, the face has specificity, for the expression of an 

emotion is tightly constrained by its valence (Ekman et al 1972). Studying the face 

thus combines much of the specificity of verbal reporting with the directness of 

physiological measures.  

1.1.5.2 Face processing and neural architecture 

The search for understanding how neural systems are organised to achieve face 

perception has stimulated intense debate. The story of this debate demonstrates 

parallels to the higher dimensionality achieved by models of mirror neurons describing 

action observation and matching (discussed in 1.1.1).   

Originally the neural underpinnings of face processing were thought to rely mainly 

on the fusiform face gyrus (FFA) as it preferentially activates during face perception as 

opposed to in response to other stimuli (Kanwisher et al 1997). A more recent review of 

the neuroimaging data however proposes that face perception relies on a distributed and 

highly interconnected system that can be modelled as a Core and an Extended System 

(Haxby and Gobbini 2011).  
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Both of these systems are composed of anatomically distinct regions, each 

responsible for the distributed and complementary processing of the various aspects 

involved in interacting with faces. The core system is posited as responsible for 

analysing the visual information from faces and recognising facial identity. Within the 

system, the FFA and the occipital face area are considered more responsive to constant 

face features while the posterior superior temporal sulcus is more involved in analysing 

dynamic social information of faces such as eye gaze and expressions (Engell et al 

2006). The extended system on the other hand is more involved in recognising specific 

information from faces including familiarity, facial expressions, speech, and includes 

subcortical areas for emotional association of the faces with episodic information. This 

system is generally accepted as the most accurate representation of our current 

knowledge related to face cognition and is well summarised in Figure 1.2. 

 

 

Figure 1.2. A neural model of face processing (from Engell et al (2006)) 
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It is no surprise that the high-dimensional approach to solving the problem of 

face processing and identification relies on algorithms inspired by neuronal function and 

SVMs that perform almost as well as humans (Taigman et al 2014). Indeed, Nachev 

(2015) suggests that when assessing the individuality of a face, a low-precision high-

dimensional parametrisation (e.g. compressed and pixelated low resolution whole face 

image) will be more superior than a high-precision, low dimensional parametrisation 

(such as interpupillary distance). Importantly, the average of other faces in a similar 

category will, though providing a more immediately recognisable face, be equally of no 

value in assessing identity (see Figure 1.3).   
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Figure 1.3. The superiority of higher dimensions in face processing. 
The bust of the Roman Emperor Hostilian (top left) and the average 
of all Roman Emperor busts (top right). A low precision high-
dimensional parametrisation (bottom left) and a high precision low-
dimensional one (bottom right). From Nachev (2015). 
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1.1.5.3 From faces to emotions or emotions to faces 

Charles Darwin (1965) was a pioneer of research on the effects of the face on 

emotion activation and regulation by proposing that voluntary outward mimicking 

of an emotion may intensify it while repression of a felt emotion may weaken its 

feeling. Shortly after, William James (1884, 1894) and Carl Lange (1885) 

independently affirmed that it is our natural physiological reaction to situations 

which bring about the experience of a specific emotion. Openly admitting to 

contradicting common intuition, which stated that emotion gives rise to a 

congruent physical reaction, they took the inverse position that emotion is derived 

from perceiving one’s own physiological state. They proposed a feedback-loop 

mechanism that began with the initial perception of an emotional situation or 

object with the sensory organs followed by the processing of the content and 

associated visceral sensations in the brain, finally transforming the situation from 

“simply-apprehended” to “emotionally-felt” (James 1884).  

The most famous critique of the James-Lange theory considered that the 

autonomic nervous system would be too slow to account for the speed and lability 

of arising emotions and that visceral sensation lacks valence specificity to account 

for the range of human emotion (Cannon 1927). Subsequent self-attribution 

theories of emotions shifted the sensations from the viscera and re-emphasised 

the importance of the face while adding a cognitive dimension through requiring 

interpretation of others’ and one’s own facial expressions (Schachter and Singer 

1962; Laird 1974). Making visceral changes unnecessary circumvented Cannon’s 

criticisms and lead Tomkins (1962) to propose that the uniquely fast facial muscles 

could communicate one’s emotional state to others and even the self without 

conscious awareness through a feedback mechanism which he coined: the facial 

feedback hypothesis (FFH).  

All versions of the FFH state that facial expressions influence the 

experience of emotion in a positive feedback loop, however there are only two 

versions that survived empirical testing (Schneider 2008). The “weak” version 

considers that already felt emotions can be intensified by proprioceptive feedback 

stemming from the muscles involved in creating the facial expression, while the 

“strong” version considers facial action can, on its own, lead to the feeling of an 
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emotion where there none existed (McIntosh 1996; Rutledge and Hupka, 1985). 

Although there has been extensive research performed and evidence found in 

support of the weak version, the stronger version has not received equal attention 

though it has been identified as “a promising avenue for future research” 

(Schneider 2008) and will therefore be prioritised in this thesis.  

Although the FFH took different forms, facial contagion, or the tendency of 

humans to spontaneously adopt the facial expressions of others, remained central 

to understanding the relation between a facial expression and a feeling. 

Nevertheless, it is perfectly possible for all of these processes and competing 

theories run in parallel and interact at multiple levels. Neither need be secondary to 

the other. 

1.1.5.4 Contagion  

Facial contagion has since been considered as part of a wide array of pervasive 

behaviours defining social interaction whereby people adopt features common to other 

organisms that they are observing or otherwise sensorially aware under the umbrella 

terms of contagion or mimicry. Although the term ‘mimicry’ is prevalently used in the 

literature to describe this process (Hatfield et al. 2014b), the term may presuppose that 

someone is engaging in voluntary action (as in the case of a mime or a parrot repeating 

a sound that we recognise as a word). Thus ‘contagion’ more accurately denotes the 

passivity involved in this process.  

Contagion is found in many behavioural forms as people spontaneously copy 

gestures, postures, mannerisms, and facial expressions unintentionally (Chartrand and 

Bargh 1999). Empirical research established the universality of this phenomenon found 

equally in adult humans (Dimberg et al 2000; Hess and Blairy 2001) as in children (Beall 

et al 2008; Jones 2009; Deschamps et al 2012). These findings were also investigated 

across species with complex social interactions and found in Orang-utans (Ross et al 

2008), Chimpanzees (Davila-Ross et al 2011), and Gelada baboons (Mancini et al 2013a, 

2013b) in different forms. An example of this is contagious yawning, whereby seeing 

someone yawn can trigger a yawn in the observer (Platek et al 2005) and was found in 

several animal species (Paukner and Anderson 2006; Palagi et al 2009) and can even 

occur across-species (Buttner and Strasser 2014). 
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Although contagion appears as a more common feature of the emotional (e.g. 

laughing when another is laughing) than of the cognitive, it is certainly not unique to it. 

There is evidence of contagion at a physiological level, with electrophysiological and 

neuroimaging evidence in humans and monkeys demonstrating that perceiving others’ 

actions activates congruent cortical motor representations in the observer (see 

Rizzolatti et al (2002) for a review). This type of “neural” contagion is seen in the domains 

of action, and it may well be that emotional contagion is a species of this phenomenon. 

Why neural contagion occurs is for the moment mysterious. It may be part of the brain's 

anticipatory mechanisms, preparing the agent for the circumstance that has presumably 

caused the behaviour in the other animal. Or it may just be an artefact of the way the 

brain is organised: we do not know and for the present purposes need not know as I will 

concentrate on the occurrence and the consequences of contagion in the face, or facial 

contagion. 

1.1.5.5 Facial and emotional contagion 

Early critics of the link between facial contagion and emotional contagion called into 

question the extent to which early studies could verify the intensity of the muscles, 

duration and stability of the expression, and the statistical effect size of said effects 

(Matsumoto 1987).  However, these concerns dissipated when facial electromyography 

(EMG) began to be used to elucidate the covert characteristics of facial contagion. 

Indeed, as EMG elucidated the covert characteristics of facial contagion, it became well 

established as an involuntary process that can be imperceptible to both subject and 

observer.  

As a non-invasive technique, EMG involves measuring tiny electrical impulses 

produced by contracting muscles from surface electrodes that track the most subtle 

transient changes (technical details of this technique are provided in the introduction to 

Chapter 2). A seminal study employing facial EMG demonstrated the value of this 

method by differentiating between depressed and non-depressed patients when 

engaging in emotional imagery (Schwartz et al 1976). They found that imagining 

positively valenced thoughts induced higher zygomaticus activity in the normal 

population than the depressed patients while negative valence thoughts increased 

corrugator activity in the depressed patients. The zygomaticus major is mainly 
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responsible for pulling the cheeks into a smile whereas the corrugator supercilii is 

located between the eyebrows and is responsible for frowning (Hjortsjӧ 1969).  

Ulf Dimberg (1982) later showed that spontaneous congruent facial contagion 

could be measured with facial EMG in healthy participants passively looking at pictures 

of happy and angry facial expressions. Subsequently, a series of studies elucidated the 

intricacies of facial contagion and were demonstrably more pronounced in women than 

men (Dimberg and Lundqvist 1990; Vrana and Rollock 1998; Wild et al 2001), higher in 

response to genuine depictions of emotions (Surakka and Hietanen 1998; Krumhuber et 

al 2013, 2014) and though observable also in response to virtually generated faces 

(Weyers et al 2006), dynamic stimuli induced stronger responses of the congruent 

muscles than still images (Weyers et al 2006; Sato and Yoshikawa 2007). For many 

years, researchers believed the muscles of facial expression were subcutaneous 

voluntary muscles (e.g. Waters 1987). Recently, facial contagion was demonstrated with 

facial EMG in response to backwards-masked stimuli presented too briefly to be 

consciously perceived (Neumann et al 2014), emphasising its immediate automaticity in 

humans while it was known early on that it could occur within 1000 milliseconds (Ekman 

et al 1972; Schwartz et al 1976). Perception is thus sufficient for facial contagion to 

occur involuntarily in humans without the requirement to mentally compare our facial 

musculature with resulting mimicked facial expressions.  

Moreover, blocking contagion by manipulations which interfere with certain 

muscles such as biting on a pen (preventing the zygomaticus from responding to happy 

faces congruently), or through Botulinum toxin injections to the frowning muscles 

(preventing facial contagion of the corrugator), was found to selectively interfere with 

the recognition of the corresponding emotional expressions (Oberman et al 2007; Neal 

and Chartrand 2011), the speed of emotional expression recognition (Lydon and Nixon 

2014), as well as decreasing the associated felt emotion (Davis et al 2010). These results 

highlight the important contribution of facial contagion to the emotional experience in 

humans as the contracted emotion appears qualitatively the same as a spontaneous 

one. Indeed, though facial contagion occurs unconsciously and automatically (Dimberg 

et al 2000) it is modulated by higher order cognitive and emotional mechanisms such as 

degree of empathy (Sonnby-Borgstrӧm and Jӧnsson 2003; Dimberg and Thunberg 2012) 

and representation of self and others (Sonnby-Borgstrӧm and Jӧnsson 2003), so that it 

has been suggested it may be a useful mechanism of emotional regulation through 

emotional contagion (Hatfield et al 1994).  
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Primitive emotional contagion refers to the tendency to automatically synchronize 

with another’s emotions as a consequence of non-verbal cues. This could allow humans 

to share and understand others’ emotions during social interaction (Hatfield et al 1994). 

This forms part of the greater umbrella term of emotional contagion which refers to a 

“multiply determined family of cognitive, psychophysiological, behavioural, and social 

phenomena” (Hatfield et al 2014a). This more general definition allows the inclusion of 

a range of its studied aspects including multimodality (e.g. seeing an angry face leads 

to raising once voice in anger), and multiple levels (as more than one individual may be 

affected by the process and to different degrees). For brevity’s sake, the use of the term 

“emotional contagion” in the following thesis will be used as shorthand for “primitive 

emotional contagion” as is commonly employed in the field (Hatfield et al 2014a).     

Many researchers consider that facial contagion is one of the primary 

mechanisms involved in emotional contagion (Bavelas et al 1986; Fischer et al 1990; 

Lundqvist 1995; Chartrand and Bargh 1999). Indeed, it has been described as part of a 

three-step process whereby 1) perceiving an emotional facial expression 2) triggers 

facial contagion in all its form including muscular and neural feedback, leading to the 

emotion felt in the perceiver (emotional contagion; Hatfield et al 1994; Schneider 2008). 

Nevertheless, facial and emotional contagion are not temporally dissociable in the 

process of arising emotional states. When you contract a smile, you seem to also 

contract the emotion that goes with it: facial and emotional contagion go hand in hand. 

However, we do not know what is driving what, and cannot assume that it is one rather 

than the other. Their temporal relationship thus remains indeterminate as facial and 

emotional contagion have not been established to belong to a serial system as is often 

assumed (e.g. Schneider 2008). No experimental manipulation of facial contagion has 

extinguished the ability to perform the emotional tasks in humans. Rather it has only 

attenuated success or ease to perform such tasks. Thus, considering them as 

interacting in a parallel rather than in a sequential system could more easily reconcile 

existing data.  

Contagion can therefore be conceptualised as an anticipatory characteristic of 

the neural affordance action system. Since the brain is a predictive system, tuned to 

automatically generate affordances (potential actions) about every encountered 

situation, object, and individual (Gibson 1977; Cisek 2007), it is possible that contagion 

forms part of the anticipatory mechanism. In this context, facial contagion is to 

perceiving facial expressions what Pavlov’s dog’s salivation was to the bells: an 
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anticipatory reaction that could advantage the subject in integrating into the situation 

and extracting maximum potential benefit from such preparedness.  

Facial contagion has therefore been established as a universal, rapid, and 

automatic motor reaction to the emotional facial display of others, occurring 

spontaneously irrespective of type of stimuli used and with a strong underlying 

physiological basis. It is therefore a good candidate phenomenon to translate into 

practical applications. 

1.1.6 Scope of the thesis 

In this section, I have introduced the general foundational aspects upon which the 

investigations in this thesis are based. Namely, a high-dimensional, data-driven approach 

to scientific research can create original contributions to both expand and test the 

current knowledge base while providing insight into the applications of well-established 

phenomena. The face is justified as the centre of this translational endeavour whereby 

the way it is parametrised, and its associated emotional and facial contagion processes 

will be tapped to exert effects of clinical significance.  

The remainder of the thesis is composed of six experiments organised in the 

following four chapters and followed by concluding remarks. The first chapter proposes 

an innovative signal filtering technique for the detection of facial contagion as measured 

by EMG. The following chapter presents the first investigation of the facial contagion 

response within a sample of patients afflicted by Motor Neuron Disease and explores 

the potential for this to be translated as an early marker diagnostic for a subtype of the 

condition. The chapter that follows explores whether emotional contagion can be 

hijacked and delivered through a smartphone application to enhance positive feelings as 

a freely available public intervention. This section contains three experiments depending 

on the type of feeling being affected (mood vs emotion), duration of the intervention, and 

studies also the potential to gamify these interventions. The last chapter explores 

whether SVMs can be useful in predicting the physiology of a large Tibetan population 

by parametrising the face itself as a high-dimensional predictor variable. All chapters will 

follow a standard scientific journal format whereby every chapter will be introduced by a 

treatise of the specific subject matters, followed by methods, results, and a discussion 

of the implications.  
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Chapter 2: An adaptive filter to better capture the 

physiology of facial expression 
 

 

 

A statue in Pompeii excavated in 1978 where the archaeologists 
followed the expected shape of the statue to remove the ashes.  



 

32 

 

2.1 Introduction 

The surface Electromyography (EMG) signal is widely used to measure facial contagion 

responses in research environments. EMG is utilised in a number of clinical and research 

settings beyond the scope of this PhD, so this chapter will only refer to facial contagion 

research as measured by EMG. Basic clarification of the underlying principles of the EMG 

signal and recording techniques are essential to clarify the logic of the methodological 

innovation presented in this chapter. The overarching goal of this chapter is to explore if 

the physiology of facial expression as captured by EMG can be made more sensitive to 

allow for better prediction.  

2.1.1 Principles of EMG  

The EMG signal measures electrical currents generated by contracting muscles as a 

result of neuromuscular activity over time. It is a complex biological signal that is 

described in terms of amplitude, frequency, and phase as a function of time. This signal 

can be invasively measured by needle electrodes intramuscularly or with minimal 

intrusion with sticky electrode pads on the skin surface over the muscle. When 

mentioned subsequently EMG will refer to the latter method, surface EMG which was 

selected in this study due to its non-invasive and safe qualities.  

2.1.2 The Neurophysiology of EMG 

Facial muscles are striated skeletal muscles that contract as a result of action potentials 

firing from motor neurons. Motor neurons relay messages from the spinal cord to 

innervated muscles to initiate contractions and control relaxations. Activity in these 

muscles originates from the centre of the fibre and propagates down the length of the 

muscle through polarisation and de-polarisation. Specifically, the voltages between the 

extra- and intra- cellular cell environments are different and when a neuron stimulates 

the muscle fibres, it causes depolarisation. This is defined by a movement of ions that 

constitute the signal that propagate along the membrane surface and generate an 

electric field near each fibre that is picked up by the electrodes. This source of 

electrophysiological current is defined as linear quadrupolar (Daube and Rubin 2009) 

consisting of two adjacent current dipoles of opposite orientation placed end-to-end ([-

+] origin [+-]). 



 

33 

 

Prior to amplification by recording devices, the EMG signal ranges in amplitude 

between 0-10 mV (-5 to +5). EMG recordings measure extracellular group currents 

termed motor units - rather than single cell activity - whereby the fibres of different motor 

units are intermingled. When summed across larger parts of the muscle, these motor 

unit action potentials (MUAP) are measured indirectly as waves and constitute the EMG 

signal which can be further subdivided into individual MUAPs through decomposition 

(Fig. 2.1). 

 

 

 

Since MUAPs fire at random intervals, at any point, the measured signal can be 

either positive or negative in voltage. This renders the EMG signal non-stationary in 

nature as minute contractions translate into variations of the frequency content of the 

signal continuously varying over time.  

2.1.3 Recording the EMG signal 

Facial EMG recordings are commonly performed with electrode-pairs placed on the skin 

surface parallel to the fibres of the target muscle. Guidance on the positioning of 

electrodes over the Corrugator Supercilii, Zygomaticus Major, and ground electrodes 

were developed by Fridlund and Cacioppo (1986). Ground or reference electrodes are to 

be placed over electrical inactive tissue where the risk for common mode disturbance 

Figure 2.1. Acquiring the EMG signal and MUAP. Modified from 
http://www.bu.edu/iss/files/2010/12/EMG_signal_decomposition.png 

(MUAP) 
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will be minimal (Hermens et al 1999). Inter-electrode distance in bipolar montages, 

defined as electrode centre-to-centre distance, are to be kept between 1 and 2cm to 

minimise cross-talk and obtain stable recordings (Hermens et al 1999; Konrad 2005). 

This is preferred over single electrode, monopolar montages where one electrode is 

placed on the target muscle and the other is a ground electrode because the signal 

generated by facial muscles is very small.  

Indeed, bipolar recordings were one of the most important developments when 

introduced to EMG research to decrease the level of noise as common signals present 

in both electrodes are eliminated and differences amplified (Basmajian and Stecko 

1962). Additionally, specificity is gained when recording bipolarly as 2 waves are 

measured per MUAP firing while the signal is monitored propagating in both directions. 

Nevertheless, as the EMG signal is acquired after travelling some distance from the 

muscle fibre, through layers of skin and tissue there are many sources of noise that 

require solving. 

2.1.4  The problem of noise 

Investigating the EMG signal is complicated by a multitude of unwanted interference, 

obscuring the underlying facial muscle response. Although EMG has a reputation for 

being “too easy to use” (De Luca 1997), obtaining a useful and clean signal is quite 

difficult as evidenced by studies reporting corrupt data can be responsible of excluding 

upwards of 20% of participants (Ardizzi et al 2014; Hofree et al 2014).  

Contamination of the signal can originate from many sources and electrical 

signals that are not part of the desired signal are defined as artefact or noise. These may 

include power line interference, electrode-to-skin impedance, motion artefacts, 

modulation with muscle contractions, and other instrumentation noise (Chen and Xie 

2004; Reaz et al 2006; Chowdhury et al 2013a). Detecting a signal of interest from 

massive body muscles such as the biceps or quadriceps can be easily performed visually 

once digitally imported and amplified even if noisy (Konrad 2005). However, the face 

musculature requires more meticulous attention and preparation as the muscles here 

are significantly smaller in size and surface area and are thus more susceptible to 

interference. 

Thorough cleaning of the skin, careful placing and securing of electrodes, proper 

isolation of the amplifier and shielding of other electronic equipment are all best practice 

to ensure a cleaner signal is acquired (Hermens et al 1999, 2000; Clancy et al 2002). 
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Despite preparatory measures, some noise always remains in the signal and is best 

tackled by the application of digital offline filtering procedures. The conventional 

approach to increase fidelity of the signal has been to remove the noise and extract the 

data of interest by conducting a series of pre-processing filtering steps.  

2.1.5 Conventional approach to EMG signal processing 

The conventional method to analysing EMG signals was identified from the most 

common steps undertaken by authors in the field2. Most authors applied the steps 

delineated below to identify the facial contagion response: 

1. Import of data: the data is imported into a digital analysis software; 

2. Outlier removal: Incomplete data and outliers are removed by digital or visual 

inspection;  

3. Epoching and filtering: the data is epoched and digitally high- and low-pass 

filtered;  

4. Rectification: the data is converted into positive polarity; 

5. Smoothing: The data is smoothed with a moving average filter;  

6. Averaging: The data is collapsed across left and right muscle channels and 

averaged across trials of the same stimulus presentation; 

7. Binning: The data is binned over 100ms bins during the period of expected facial 

contagion (1-2 seconds after stimulus presentation); 

8. Statistical analysis: t-tests are used to compare responses to emotional stimuli 

at every time point across muscle sites and the best sites are selected.  

Many of these steps are important and practically necessary. Importing the data 

is a requirement to apply modern digital analysis techniques. Analyses of the signals 

post-processing performed on each muscle separately accounts for differences in 

responses due to muscle size variations and inherent differences in the automaticity and 

shape of the reactions (Rinn 1984; Larsen et al 2003).  

Trialling by dividing the time-locked activity in epochs reflecting expected 

response time is also a requirement to individuate responses to the stimuli of interest. 

Subtracting between 100-1000ms of activity before stimulus presentation to account for 

variations in baseline can account for variable changes within participants’ responses 

as the signal studied is non-stationary. Averaging results across the left and right side 

                                                      
2 The criteria for selection of these papers will be discussed in more detail in section 2.2 and are 
summarised in Table 2.2.1 
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of the face in windows of 100ms (binning) for the duration of the expected response 

allows for stronger statistical comparisons.  

Removing outliers (usually defined as being 2 standard deviations away from the 

mean) is also a sound step, because it is necessary to identify the inevitable noise 

contamination that occurs from swallowing, blinking, speaking, and other such 

unwanted artefacts. Smoothing the data in varying degrees can better reveal the 

underlying trend of the activity over time. This step effectively takes the envelope of the 

signal and removes some of the high frequency components and since the response of 

interest is inherently low frequency as it changes over 1-2 seconds, it is also adequate.  
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Full-wave rectification turns negative values in a signal into positive ones, yielding 

only a positive polarity signal (Fig. 2.2). This step is necessary to address the bipolarity 

of the chosen electrode montage and the depolarisation of the signal. In other words, 

signals acquired by the “+” electrode appear as positive voltage and those measured by 

the “-“ electrode appear as negative de-activation which, when averaged, would have 0 

mean by cancelling each other out (Reaz et al 2006). Since polarity of the signal is 

indicative of direction of the firing on the muscle rather than activation or inactivation, 

full-wave rectification is crucial to accurately display the power of the EMG signal. 

Therefore, rectification, or taking the absolute values of the signal, allows for the 

correction of the difference in potentials between the electrodes and constitutes a 

conceptually sound step to address issues of bipolar electrode recording. 

 

Figure 2.2 EMG raw recording (upper trace) and after full-wave rectification (lower trace) 
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Bandpass filtering of the activity is a process that has remained virtually 

unchanged for decades (Kreifeldt 1971) and is performed to increase the signal-to-noise 

ratio (Konrad 2005). The primary energy of the EMG signal is considered to lie between 

10 and 200 Hz (Fridlund and Cacioppo 1986). Filtering is generally set to allow this 

spectrum of frequencies for the signal of interest to pass while removing data falling 

outside. The construction of the filters can take the form of separate low- and high-pass 

filters or a single bandpass filter with the same desired effect (Fig. 2.3). Additionally, a 

notch filter at 50 Hz is sometimes imposed to eliminate power-line noise and can be 

either applied during recording or afterwards (Mewett et al 2001).  

Figure 2.3. Conventional filtering in EMG. A rectified EMG signal (top), a 
Bandpass Equirriple filter set to allow frequencies between 30-500 Hz to pass 
(middle), and the resulting filtered signal (bottom). 
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2.1.6 Issues with the conventional approach to pre-processing EMG  

As the EMG signal is non-stationary and non-linear in nature it is one of the hardest forms 

of time varying signals to study. When studying small facial muscles with EMG, its 

complexity is further complicated since it is not only a muscle responsive to voluntary 

control but also to emotional non-voluntary influence (Dimberg et al 2000). A closer 

inspection of the conventional method for analysis of the EMG signal reveals issues. 

As discussed, most of the steps involved are conceptually sound, however 

filtering as it is conventionally performed when attempting to reveal facial contagion 

responses, is more problematic. By bandpassing a signal one is selecting which 

frequencies to allow through and which to stop. This process effectively defines which 

parts of the signal are most likely to construct the phenomenon of interest that is being 

investigated by discarding data considered to be “noise”.  Of all the steps, this is the 

most invasive one. This reductive approach assumes that noise reflects uninteresting 

data that is not characteristic of the signal of interest. This therefore discards the 

possibility that within that noise lies data that reflects individual variability that could 

inform the facial contagion response.  

Moreover, there is no consensus concerning which exact frequencies truly 

constitute the facial contagion response. Although the majority of studies will extract 

signals between 30 and 500 Hz, some will consider lower or higher thresholds (e.g. Van 

Boxtel (2010) bandpassed between 15 and 400 Hz and Fridlund and Cacioppo (1986) 

suggested looking at 10 to 200 Hz). It is difficult to favour a particular range over another 

since none of these are empirically founded. Most of conventional practices are based 

on pioneering work and so practice is based on convention rather than empirical 

evidence. The small tweaks in values to these filters are generally performed without 

justification, leaving few authors performing studies that will extract informative 

guidelines based directly on the underlying physiology (see Van Boxtel (2001) for a 

unique effort).  

There are therefore some points of contention with this method that would 

benefit from clarification prior to imposing such stringent criteria on data analysis. The 

present chapter cannot address all the issues that affect research attempting to elicit 

the facial contagion response. From inter-trial intervals varying between 500 

milliseconds (Aguado et al 2013; Ardizzi et al 2014) to 34 seconds (Weyers et al 2006) 

and stimuli presentation times above conscious perception threshold ranging from 600 

milliseconds (Künecke et al 2014) to 10 seconds (Matzke et al 2013), there are many 

potential areas for improvement upon the methods and guidelines to investigate the 
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facial contagion response. Therefore, this chapter will rather focus on proposing an 

alternative filtering method which aims to reveal greater differentiation of the signal in 

line with the current high-dimensional translational approach.  

2.1.7 Model-based filtering   

Since the signal of interest is non-stationary and non-linear but consistently 

characterised with EMG in the literature, the novel filtering method exploits a basis 

function that is itself empirically derived, falling within model-based analyses.  

 Model-based analysis has an implicit assumption that each response conforms 

to a certain class of shapes while the individual shape can still vary by a large degree. 

These models can specify how the underlying physiology generates the observed data 

in the form of a template response or Canonical Response Function (CRF). These CRFs 

capture the basic expected shape of the activity and may be useful in describing the 

underlying activity. Statistical inference based on these modelled responses provide 

certain advantages including more power as the models are more informed than 

unconstrained methods (Bach et al 2013). Additionally, since the parameters of the 

model provide a quantitative and explicit description of expected responses, precise 

testing of these assumptions is possible. It is useful to refer to similar fields of 

application in exploring the advantages of contemporary uses of model-based filtering 

methods. 

For example, sympathetic arousal can be quantified by measuring event-related 

skin conductance responses (SCRs). The SCR is generated by perspiration resulting 

from instantaneous burst firing of the sudomotor nerve (Boucsein 2012) with higher 

amplitudes implying higher sympathetic arousal responses. Various methods adopting 

a model-based approach demonstrate increased sensitivity compared to their 

conventional counterparts (Bach et al 2010; Bach and Friston 2013). These methods 

elucidate arousal from SCR by positively relating the CRF to nerve activity and modelling 

ensuing SCR amplitude. The CRF is highly constrained by the well-established literature 

describing the SCR and incorporates a descriptive model of the sudomotor nerve sweat 

response and a model of the short neural bursts occurring immediately after each 

stimulus presentation (Bach et al 2009).  

Similarly, the main inspiration for this type of analysis originates in neuroimaging 

research where changes in cerebral blood flow as measured with functional Magnetic 

Resonance Imaging (fMRI) rely on modelling a canonical Haemodynamic Response 
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Function (HRF). The details underlying biological processes that lead to this signal 

arising and being captured by these methods are beyond the current scope of this thesis 

though there are excellent works on the subject (e.g. see Friston 2005 and Ogawa & Sung 

2007). In brief, the function is assumed to reflect how the system responds to a short, 

intense period of neural stimulation (Friston et al 1995). A Canonical HRF is 

characterised by a fast rise from baseline with a peak around 6 seconds, followed by 

descending activity that continues under the baseline after 12 seconds and readjusts 

slowly (at around 30 seconds; Gitelman et al 2003). Each part of this CRF models 

different but consistently reproduceable shapes of the observed neural activity as 

measured with fMRI over time. It is therefore possible to convolve or smooth a signal 

with such a function and obtain more reliable results that match the shape of underlying 

activity to the CRF and filter out more noise. However, common caveats to modelling 

approaches have been identified (Monti 2011) which assume homogeneity in HRF 

parameters across individuals and may lead to fitting physiologically implausible 

shapes. Nevertheless, once these CRFs are specified for each group-of-interest, these 

approaches best demonstrate their value and are useful in making differences between 

conditions or groups more evident (Steffner et al 2010; Arichi et al 2012).  

Since the facial contagion response as measured by EMG from the Corrugator 

and Zygomaticus muscles also exhibits a stereotyped response across individuals and 

stimulus types and is similarly well-grounded in the literature, using such a CRF-driven 

approach is justified and should provide a more effective way of elucidating the 

response.  

2.1.8 Pompeii adaptive filtering 

The method that I developed is an automated model-based filtering method that is data-

driven and therefore agnostic to where the best frequencies lie. In brief, it deconstructs 

the signal into a set of component functions and assesses all possible combinations to 

overlap them with a CRF derived from the literature in the field. The response most 

correlated with the template signal is then automatically extracted for each trial, thereby 

filtering the data while assuming as little as possible about which frequencies are to be 

discarded.  

Whereas conventional approaches to extracting the facial contagion response 

would discard large parts of the signal a priori, the current filtering technique is informed 

by the evidence available in the field that characterises this response and uses it as a 

guide to explore the data. As the current technique adapts its filtering to follow the 
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constraints imposed by CRFs of the known responses, it is reminiscent of the 

excavations at the archaeological site of Pompeii that follow the guide provided by 

unearthed walls and artefacts to reveal an evident structure buried in volcanic ash rather 

than draw arbitrary limits as to where a structure begins and ends. Thus, if the noise in 

the recording can be considered the volcanic ash, the signal is the structure underneath, 

and the filtering innovation can draw inspiration from the careful methods applied at the 

site of Pompeii. 

Pompeii adaptive filtering (PAF) aims to assess whether it is possible to make 

the detection of the underlying facial contagion response embedded in the ongoing EMG 

signal and blurred by noise more sensitive. Since there are less chances of the 

frequencies of interest to be discarded, PAF should prove more powerful. In this section 

the development of PAF is described in detail, followed by a test of efficacy where the 

PAF and conventional methods are compared in filtering simulated physiologically 

realistic data. 
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2.2 Methods   

Here I specify the development of the PAF in detail. All computations were carried out in 

the MATLAB 2016a computing environment on Windows 10 Professional 64-bit with an 

Intel® Core™ i7 laptop @2.0 GHz with 6.0 GB RAM.  

2.2.1 Meta-analytical CRF creation 

The first step involved creating a biophysically informed model of the typical adult facial 

contagion response to be correlated with actual data. To generate this representative 

CRF for facial contagion, the literature was searched for relevant articles.  

Only peer-reviewed published articles written in the English language were 

included. Google Scholar and the PubMed database were searched by entering the 

following keywords: facial, AND electromyography, AND EMG, AND faces, AND emotion, 

AND Zygomaticus, AND Corrugator. A set of criteria were devised to ensure the literature-

based CRF (henceforth known as Meta-CRF) would be representative of a typical facial 

contagion response while viewing smiling or frowning faces. Minimum inclusion criteria 

included presentation of smiling or frowning faces while simultaneously measuring 

facial-EMG responses from the Corrugator or Zygomaticus and presentation of ensuing 

muscle activity as a graphical or numerical time series. Articles or time-series were 

excluded if 1) EMG measurements were obtained from clinical populations, 2) if no visual 

line graph depiction or values were provided for the mean activity responses per 

condition, 3) if the authors attempted to alter the typical facial contagion response by 

manipulating the visual procedure, timings, or using psychopharmacological substances 

or rewards. Figure 2.4 outlines the process and results of each step of the literature 

search. 

This procedure yielded 15 articles whose mean EMG activity were extracted 

visually and recreated for each muscle and condition for the first two seconds after 

stimulus presentation. When specific values for each time point were not available, the 

values were visually matched by overlaying published line graphs with the estimated 

ones and modifying values accordingly. The values at each time point were averaged for 

each combination of muscle (Zygomaticus and Corrugator) and condition (angry and 

happy) yielding four Meta-CRFs. Table 2.2.1 displays a summary of the main 

characteristics of interest of the final selection of studies. 
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1550 records identified 
through Google Scholar 
keyword searching 

1525 records after duplicates, 
citations only, and patents 
removed 

34 additional records 
identified through PubMed 
searching 

1256 records 
excluded 

56 articles excluded as no 
original data created (i.e. 
reviews, meta-analysis, 
opinion pieces, letters)  

 
114 articles excluded because 
of inappropriate participants 
(e.g. clinical populations) 
 
61 excluded due to contagion 
response being manipulated in 
design (e.g. pairing of faces 
with other stimuli, 
conditioning, 
pharmaceuticals) 
 
19 articles excluded because 
lacking visual time series or 
numerical data-points to 
estimate contagion response 

 
4 articles excluded due to 
time-series unusually distorted   

269 full-text articles 
assessed for eligibility 

15 studies included to 
create Meta-CRF 

1525 titles and abstracts screened 
for relevance to the study of facial 
contagion response and meeting 
minimum criteria 

Fig. 2.4. Flow-chart of selection process to include or excluded studies used to generate the Meta-CRFs 
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Table 2.2.1  

Characteristics of final 15 studies selected to generate Meta-CRFs  

Study Type of stimuli N (females)  
Stimulus presentation 
time in ms** 

Inter-Trial Interval in ms 
Epoch length / baseline 
in ms 

Bandpass filtering 
spectrum in Hz 

Percentage of N 
excluded due to 
EMG corruption 

Achaibou et al (2008) dynamic 15 (10) 1460 2800 - 5200 1400 / 1000 20-400 NA* 
Aguado et al (2013) static 57 (48) 1000 500 3000 / 1000 50-400 NA* 
Ardizzi et al (2014) dynamic 20 (11) 7000 500 5000 / NA* 20-500 22% 
Harrison et al (2010) static 40 (14) NA* 3500 1600 / 1000 10-480 11% 
Heerey and Crossley (2013) dynamic 35 (29) 300 2000 2000 / NA* 10-400 2% 
Hermans et al (2006) dynamic 20 (20) 6000 6000 - 9000 5000 / 1000 30-NA* NA* 
Hofree et al (2014) dynamic 48 (30) 6000 NA* 6000 / 2000 10-500 25% 
Künecke et al (2014) dynamic 269 (140) 600 1000 - 3500 1200 / 200 NA* 17% 
Oberman et al (2009) static 13 (0) 25 or 75 or 1000 NA* 2000 / 1000 10-500 NA* 
Matzke et al (2013) dynamic 28 (28) 10000 NA* 10000 / NA* NA*  NA* 
Moody et al (2007) static 48 (42) 5000 6000 1000 / 500 10-500 NA* 
Neumann et al (2014) static 52 (NA*) 16.67 11250 1100 / NA* NA*  1% 
Rymarczyk et al (2011) both 30 (15) 1500 15000 - 25000 1500 / 1000 30-500 10% 
Weyers et al (2006) both 48 (48) 1000 25000 - 34000 1500 / 1000 30-500 6% 
Weyers et al (2009) dynamic 49 (49) 8000 25000 - 31000  1000 / 1000 30-500 NA* 

*NA = not available, not explicitly stated, or unclear from information provided in study 
** ms = milliseconds 
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2.2.2 Simulated EMG dataset generation  

The four Meta-CRFs were spline smoothed and upsampled to 2 KHz to increase 

comparability with acquired and artificially generated EMG signal simulations. Each 

Meta-CRF was duplicated 48 times yielding 192 total happy and angry trials from each 

muscle group. Random white and pink noise vectors of the same length as the Meta-

CRFs were created separately and added to simulate an authentic muscular signal 

recorded with typical EMG equipment.  

White noise is characterised by constant power at all frequencies and was 

introduced as it is generated by electronic recording equipment employed for EMG signal 

(Chowdhury et al 2013b; Supuk et al 2014). Pink noise was selected as the best type of 

noise to be mixed into the Meta-CRFs to simulate biological noise. Whereas white noise 

has constant power spectral density, pink noise has more power at low frequency than 

at high frequency as it decreases in power per Hz with increasing frequency (Bedard et 

al 2006). Although the origin of such noise is still unclear, it has been measured across 

many living systems (Szendro et al 2001; Ward and Greenwood 2007) and as such, is 

considered a good candidate in creating simulated EMG responses.  

In practical terms, the MATLAB function rand was used to generate 96 noise 

signals and multiplied with the CRF to introduce constant machine noise. The pinknoise 

function (Hristo. 2016) was used to create an additional 96 noise signals. After these 

two vectors of equal length were added, they were multiplied by 12 ascending noise 

factor levels to simulate increasingly noisy conditions whose output with conventional 

filtering would replicate low (where the signal appeared very clean), medium (resulting 

in typical appearance of filtered signals found in the literature), and extreme (where no 

filtering method should differentiate between the conditions) noise levels.  

This resulted in 192 unique noisy simulated EMG responses from both muscle to 

each condition ranging from very clean recordings to extremely noisy (see Figure 2.5 for 

depiction of process). This dataset was used to contrast the effectiveness of de-noising 

the simulated signals and revealing the underlying information between the conventional 

and PAF filtering methods.
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1. Random white noise 2. Random pink noise 

6. This process yields a unique signal with both 
white and pink noise at a specified noise factor 
resembling a single trial raw EMG recording.  

5. The noise is 
added to a 
Meta-CRF 

4. (3) is multiplied by a 
noise factor depending on 
level of noise simulated 

3. (1) and (2) are added, resulting in 
biologically plausible unique noise 

Figure 2.5. Process of generating simulated EMG trials. This figure describes the process by which each EMG simulated trial is generated. Vectors of equal length in 
milliseconds as the Meta-CRFs are generated containing 1) white and 2) pink noise. 3) These are then added, resulting in biologically plausible EMG noise and 4) the 
result is multiplied by a factor depending on the level of noise required to be simulated. 5) The resulting levelled noise is added to the CRF, resulting in 6) a unique 
signal resembling a single noisy EMG trial. This process is repeated 48 times for each of the four CRFs yielding 192 unique noisy trials.  
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2.2.3 Pompeii Adaptive Filtering and statistical analysis 

The simulated trials underwent outlier removal and rectification and were automatically 

filtered with PAF which consists of three main steps: fission, fusion, and comparison 

with the Meta-CRF. 

 Fission, or decomposition of the signal involved the decomposition of the signal 

with variational mode decomposition (VMD). VMD is an adaptive algorithmic method 

that decomposes a signal into an ensemble of sub-signals or principal modes, that can 

reconstruct the given input signal optimally (Dragomiretskiy and Zosso 2014). The first 

step in this framework involves spline interpolating the local minima and maxima of the 

signal to estimate the lower and upper envelopes. The mean of the envelope between 

these extrema is then subtracted from the original signal as a mode where the centre 

frequency acts as the centre of gravity of the mode’s power spectrum and limits its 

bandwidth (Figure 2.6.B). This sifting process is then repeated on the residual until the 

specified number of modes is reached. At this last stage, VMD re-balances the extracted 

modes to capture the full variation of the original signal so that the modes can be 

reconstituted into the original signal (see Figure 2.6.C).  

This concurrent property of the VMD algorithm differentiates it from similar but 

recursive methods such as empirical mode decomposition (EMD). Indeed, VMD was 

selected as it fully captures the intrinsic variability of the signal and is superior to EMD 

which is linear, does not permit specification of the number of extracted modes, does 

not allow for backwards error correction, and may yield modes that do not necessarily 

reflect the principal components (Dragomiretskiy and Zosso 2014). 

After this fission process, the signal pertaining to a particular trial is decomposed 

into 6 individual modes which vary from high frequency to a low frequency trend. To 

reveal which modes most resemble the Meta-CRFs, the first 5 modes are combined into 

all possible combinations, with the trend being added to each combination. By following 

a standard combinatorics formula, a total of 31 combination signals are produced, each 

containing unique information contained in the original signal (Figure 2.6.C). 
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Figure 2.6. Pompeii Adaptive Filtering (PAF). A pre-processed signal (A) is decomposed into its 
component modes with VMD by spline interpolating the local maxima and minima and subtracting 
the mean of the envelop from the original signal (B). This is repeated on the residual until the 
preferred number of modes are extracted, in this case 6, and rebalanced so as capture the full 
variability of the original signal (C).  (D) All mode combinations and the Meta-CRF are normalized 
between 0 and 1 and cross-correlated (Image from http://tinyurl.com/CrossCorrelation). (E) The 
highest cross-correlated combination is indexed and used to select the non-scaled combination as 
the filtered signal for that particular trial. 
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To compare the selected combination and the Meta-CRF, they were first 

normalized between 1 and 0 to allow for maximum comparability between the signals. 

Different methods of statistical dependence between the signals were tested to obtain 

the highest and most accurate degree of similarity between the CRFs and the resulting 

combination. The methods selected in this section were those most commonly used in 

the field and involved iterative testing of the whole process of the PAF with regards to 

different methods and observing the results as noise levels were increased. Initially, a 

very basic and simple method testing whether the signals followed the same absolute 

trajectory was performed using Pearson’s correlation coefficient. This looked, in 

absolute terms, at the linear correlation between the two signals and produced a value 

between +1 and −1 inclusive (where 1 is total positive correlation, 0 is no correlation, and 

−1 is total negative correlation). This method however did not produce results that 

allowed dissociating the signal with enough sensitivity. Therefore, a more complex 

extension of this method was applied to attempt searching for further correlations 

between the combinations of the correlated values. This method, called Canonical 

Correlation Analysis (CCA), finds the optimal linear combination between separate 

interrelated attributes within the signals and relates them to each other, thereby 

respecting the higher complexity within signal variations. Although this method was a 

slight improvement, it did not respect the temporal changes as much as desired as the 

noise introduced could also shift the signal’s property in time.  

Indeed, implementing a method called cross-correlation, allowed measuring the 

degree of similarity between the two signals with a shifting x-axis. After testing different 

lags in temporal shift, a lag of 500 milliseconds was found to consistently select the 

combination that most closely resembled the Meta-CRF as compared to manual 

selection (Figure 2.6.D and E). The key was in shifting the alignment of the signals as 

individuals may differ as to when the facial contagion response could begin. The index 

of that combination was then used to select the unscaled version of the signal and 

extract it as the filtered signal to be used in subsequent analysis.  

Recall that there are two Meta-CRFs for each muscle site corresponding to the 

facial contagion response to congruent and incongruent emotional facial expression 

(Happy and Angry Meta-CRF). All responses underwent PAF to each CRF depending on 

muscle site to ensure the method did not over fit results to simply match noise that fits 

to the Meta-CRF. At the inference stage, this choice of Meta-CRF was modelled in the 

comparisons as a factor. Specifically, a 2x2 ANOVA was used to compare the means 

between the activity in response to happy and angry faces at each muscle site, looking 
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for the main effect of facial contagion related to expression emotion. The effect of CRF 

was also included in each comparison with the hypothesis that if no separation was 

found between the signals depending on Meta-CRF, then any difference between 

responses to angry and happy faces were unbiased by the modelling of the Meta-CRF at 

the filtering stage. All significance thresholds were adjusted for multiple comparisons 

with Bonferroni corrections. 

2.2.4 Conventional Filtering 

Steps 2 to 8 of the conventional approach to EMG signal process detailed in section 2.1.5 

were separately performed on the twelve noisy simulated raw datasets to compare the 

performance of the two filtering methods. Outlier removal was performed by removing 

all values 2 standard deviations away from the mean. High pass and low pass filters 

were designed with MATLAB’s Filter Design and Analysis Tool (FDATool) to limit the 

signal to frequencies of interest between 30Hz and 500Hz. Before applying the 

bandpass filtering, the signals were concatenated and zero-padded to create a single 

signal and avoid common edge distortions and allowed for epoching. The signal was 

then rectified and smoothed with a moving average filter (125ms) and binned in 100ms 

over 2 seconds. Simulated data were then analysed with two samples t-tests at each 

muscle site comparing angry and happy faces responses. All significance thresholds 

were adjusted for multiple comparisons with Bonferroni corrections. 

2.2.5 Additional testing with Support Vector Machines 

For every noise level, each result from the muscle sites were inserted into support vector 

machines (SVMs) to quantify the performance of the approaches given the levels of 

noise. LibSVM was used for developing SVM models (Chang and Lin 2016), with the size 

of the hyperplane margin (parameter C) varied from -5 to 15.  

For both filtering techniques, the binned time-series from both conditions (happy 

and angry) were inserted into a continuous dataset for each muscle site and labelled 

accordingly (-1 for angry and 1 for happy trials). Five-fold cross-validation was performed 

by taking slices of 75% from each condition to train the model and classify features 

based on their labels. This resulted in the hyperplane model that fit the data best. This 

was then selected and used to predict the rest of the dataset over 50 iterations. At each 

iteration, the resulting predicted labels were compared to the actual labels and sensitivity 

(true positive / (true positive + false negative)) and specificity (true negative / (true 

negative + false positive)) were calculated. These assess the model’s ability to correctly 
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identify members that belong to a certain class and quantify how many are falsely 

categorised. By taking the mean of these two measures, the balanced accuracy was 

calculated as a single criterion of the predictive performance of the models. The 

balanced accuracy combination compensates for any potential imbalance in the 

dataset. 

This procedure resulted in 50 balanced accuracy values per noise level that were 

inserted into two-samples t-tests for each muscle site with Bonferroni corrections 

appropriately performed for multiple comparisons.   

2.3 Results 

All results compared the conventional and PAF filtering methods with the same input 

simulated data. Prior to the more exhaustive comparison with the simulated EMG data 

at 12 increasing noise levels, two sanity checks were performed to assure the 

methodology worked as expected. For reporting and presentation purposes, results are 

presented as graphical time-series where the p-values are represented at the time points 

were statistically significant for main effect of emotional expression (muscle response 

to happy vs angry visual facial stimuli).  

For all PAF 2x2 ANOVAs, no main effect of Meta-CRF or interaction between the 

factors reached statistical significance at p<0.00253 and are therefore not reported 

below. 

2.3.1 Sanity checks 

The first sanity check involved running both filtering methods on simulated data with no 

noise added. This was performed by multiplying the noise by a factor of 0 which was 

then added to the data. Since the signals are constituted of clean Meta-CRFs, both 

filtering methods should perform equally well at perfectly dissociating the signals. This 

was confirmed as all main effects of emotion were significant at p<0.001 for both 

methods (Figure 2.7). 

For both the conventional and PAF methods, significant facial contagion was 

found congruent with muscle site. Conventional filtering found higher activation in 

response to angry face stimuli than for happy faces for the Corrugator and vice versa for 

                                                      
3 The threshold was set as p<0.05 with Bonferroni corrections for 20 multiple comparisons. 
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Zygomaticus. The same result was found with PAF independent of Meta-CRF. The first 

sanity check can therefore be considered passed.  

 The second sanity check involved running both filtering methods on low-level 

generated noise. If the PAF was imprinting a signal upon the noise, then this check 

should demonstrate it. In practice, random signals were inserted instead of Meta-CRFs 

to be multiplied by a noise factor of 1. This sanity check was also passed as no test 

reached statistical significance across the two filtering methods and no evidence of 

facial contagion was found (Figure 2.8).   
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Figure 2.7. Sanity check 1 for PAF. This figure shows the facial contagion responses for 0-noise 
simulated data with conventional and PAF filtering methods. The legends provide information 
on different solid line colours for different conditions and dotted lines of the corresponding 
colour for upper and lower standard error margins. Two blue asterisks (**) at specific time points 
indicate statistical significance at p<0.001. For the PAF comparison (right), since no effect of 
Meta-CRF was found, the same legend applies as with conventional methods.  

time (x 0.1s) time (x 0.1s) 

time (x 0.1s) time (x 0.1s) 
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time (x0.1s) time (x 0.1s) 

time (x 0.1s) 

Figure 2.8. Sanity check 2 for PAF. This figure shows the facial contagion responses for 
simulated data with noise only for the conventional and PAF filtering methods. The legends 
provide information on different solid line colours for different conditions and dotted lines of the 
corresponding colour for standard error margins. No test reached statistical significance.  
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2.3.2 Validation across noise level comparisons 

Noise level factor multipliers ranged between 1 and 6.5 rising in increments of 0.5 per 

factor. In the interest of conciseness, 6 of these will be presented as the intermediary 

follow the same linear pattern of signal-to-noise degradation.   

At a noise factor of 1, both filtering techniques performed equally well at 

distinguishing the facial contagion response, with clear responses at each muscle site 

in response to congruent facial visual stimuli (Figure 2.9). Thereafter, with increasing 

noise levels, the facial contagion response began to degrade in both techniques (Figure 

2.10), with the PAF demonstrating more resistance to higher noise levels. Ultimately, 

when the noise levels reached their higher disturbance levels, neither techniques could 

recover the facial contagion responses (Figure 2.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Performance comparison of conventional filtering and PAF at noise factor 1.  
One blue asterisk (*) indicates statistical significance at p<0.05 and two blue asterisks (**) at 
p<0.001.  
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Figure 2.10. Performance comparison of conventional filtering and PAF at noise factors 3 (top) 
and 4 (bottom). One blue asterisk (*) indicates statistical significance at p<0.05 and two blue 
asterisks (**) at p<0.001.  
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Figure 2.11. Performance comparison of conventional filtering and PAF at noise factors 5 (top) 
and 6.5 (bottom). One blue asterisk (*) indicates statistical significance at p<0.05 and two blue 
asterisks (**) at p<0.001.  
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2.3.3 Validation with Support Vector Machines  

As can be seen in Figure 2.12, for both techniques irrespective of muscle sites the best 

predictive performance was at minimal noise levels with consistent decreases in 

performance as the noise increased. At the lowest noise level, predictive performance is 

indistinguishable. At the highest noise levels, predictive performance worsens and both 

methodologies are similarly indistinguishable at extracting the signal from the noise.  

The largest advantage in terms of mean balanced accuracy percentage 

difference was found at noise level 3.5 for the Corrugator, with a maximum difference of 

12.56% and at noise level 3 for the Zygomaticus with a maximum difference of 8.22%. 

Consistent differences were also found in predictive performance between the 

Corrugator and Zygomaticus. Specifically, the PAF demonstrated superiority of noise 

tolerance until level 5.5 for the Corrugator compared to 3.5 for the Zygomaticus.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. Performance comparison of conventional filtering and PAF with SVMs.  
The graphs represent mean balanced accuracy percentage values for predicting the correct 
emotional valence of the signal by each filtering technique based on the simulated data. One blue 
asterisk (*) indicates two-sample t-test statistical significance at p<0.05 and two blue asterisks (**) 
at p<0.001. Thick coloured lines represent different filtering approaches and dotted lines indicate 
standard error.  

Noise level Noise level 



 

 

 

60 

 

 

2.4 Discussion 

2.4.1 Conclusions 

The present chapter demonstrated that the PAF is a useful automated approach to 

extract the facial contagion response to angry and happy facial stimuli as modelled by 

simulated Corrugator and Zygomaticus EMG activity.  

The PAF passed sanity checks indicating that the method was unbiased 

compared to conventional filtering. The comparison of time-series with increasing 

simulated noise demonstrated the PAF to be consistently superior to conventional 

filtering at each muscle site and in response to both conditions. Further testing with 

SVMs demonstrated the higher efficacy at dealing with noise of the PAF mostly during 

the medium and high noise levels while performing equally or non-significantly better 

than conventional filtering at lowest and highest noise simulation levels. This is 

suggestive of realistic performance as when there are unrealistically low levels of noise, 

the facial contagion response should be easily discernible and when noise levels are 

unrealistically high, it is impossible to salvage the signal, irrespective of which filtering 

method is applied.  Overall the results confirm the PAF is a realistic filtering technique; 

rather than being unaffected by noise, it is more robust than conventional filtering.  

Thus, after rigorous and methodologically sound testing the results suggest the 

PAF is superior to the conventional approach in dealing with simulated noise and 

revealing the underlying facial contagion response. This demonstrates the soundness of 

postulating a CRF-driven, model based filtering technique where possible and may 

circumvent certain points of contention posed by the conventional filtering approach.  

2.4.2 Future Directions 

In the current test, the facial contagion response was only modelled in response to two 

stimuli classes, that is, happy and angry faces and modelled recordings from the two 

congruent muscle sites (Zygomaticus/Corrugator). The facial contagion response has 

been established to occur in response to other facial expressions such as disgust (Vrana 

1993; de Jong et al 2002; Wolf et al 2005; Oberman et al 2007) and fear (Dimberg 1986; 

Dimberg and Thell 1988; Oberman et al 2007). Therefore, further investigations could 
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concentrate on creating site- and emotional-valence-specific Meta-CRFs to explore 

whether such analyses could potentially benefit from the application of PAF. In the 

current experiment, other emotions were not parametrised as they are less studied in the 

literature. This translates to less data available to generate a Meta-CRF which would lead 

to lower accuracy compared to happy and angry facial contagion responses.  

Within the greater context of the PhD the PAF approach fits well as its primary 

object of study is a facial response. Additionally, it is data-driven as the Meta-CRF comes 

from historical data and the VMD-based filtering assumes nothing about the data, not 

even the bandwidth of what is important. It can be considered also high-dimensional, in 

that the entire waveform is used at the prediction stage to provide further information 

upon the efficacy of the results. To complete the translational approach in this 

endeavour, the PAF’s demonstrable effectiveness is required.  

Since the same Meta-CRFs were used for creation of the data and testing, it will 

be necessary to test whether the PAF generalises to elucidating a response within data 

acquired from a human population. This double use of the Meta-CRF was originally 

necessary to develop the method and demonstrate its efficacy. Although great care was 

taken in creating a biophysically realistic noisy signal, to demonstrate effectiveness the 

PAF needs to be tested on actual EMG responses elicited spontaneously from a human 

population. Doing so will further cement the validity of the Meta-CRF as a well-informed 

signal, descriptive of the facial contagion response and with potential in model-based 

filtering. This testing is possible and is performed in the next chapter.   
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 Introduction 

3.1.1 Motor Neuron Disease and the problem of diagnosis 

More than 1,700 people in the United Kingdom will be diagnosed with a form of MND 

every year. MND is a term for a range of progressive neurodegenerative disorders whose 

management remains a major challenge. Whether or not there are one or many 

aetiological entities still remains a mystery. A marked aspect of the difficulty is that MND 

is both heterogeneous and diagnosed clinically; it is, properly speaking, a syndrome. In 

some subtypes there is degeneration of cortical neurons that project from the primary 

motor cortex to the brainstem and spinal cord through the corticobulbar tract (so called 

upper motor neuron (UMN) involvement), while in others degeneration may primarily 

affect motor neurons branching outwards to supply muscles in the rest of the peripheral 

musculature (lower motor neuron (LMN) involvement).  

Detection of UMN involvement is important as it tends to carry a substantially 

worse prognosis. Patients with suspected UMN involvement may live only 2-3 years 

compared with those with LMN involvement that may survive indefinitely (Christensen 

et al 1990; Haverkamp et al 1995; Davenport et al 1996; Turner et al 2002; Scotton et al 

2012; Moura et al 2015). As 10-20% of MND patients survive longer than 20-48 months 

(Chiò et al 2009), resolving this problem of diagnosis could help doctors better inform 

their prognosis and tailor treatment accordingly. Differentiating between MND subtypes 

is therefore not a trivial issue. If successful, it would improve categorization which holds 

a range of potential benefits for recruitment in clinical trials as well as for patients, 

including earlier administration of best available treatment drugs. For example, small but 

significant benefits have been demonstrated in MND patients in response to riluzole 

(Bensimon et al 1994; Miller et al 2007). As riluzole has been reported to only lead to a 

modest extension of survival (Georgoulopoulou et al 2013), perhaps targeting MND 

subtypes would lead to improved survival in some subtypes. This differentiation could 

potentially increase costs of running clinical trials as targeting subtypes might translate 

to more patients per subgroup needed.  

Common forms of the disorder may be characterised by degeneration of UMN 

and LMN in the absence of alternative causes according to the El Escorial criteria 

3.1 
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(Brooks 1994). This is complicated to ascertain as when the disease progresses it may 

begin affecting both UMN and LMN pathways. Patients whose clinical presentation is 

deemed to be more characteristic of LMN involvement show evidence of muscle 

atrophy, weakness, decreased reflexes, and fasciculations.  

Patients with primarily UMN involvement generally demonstrate spasticity in the 

affected territories and when the bulb is involved also often emotional lability. The most 

common phenotype of the disorder involves simultaneous degeneration of both UMN 

and LMN and is termed Amyotrophic Lateral Sclerosis (ALS). ALS accounts for over 85% 

of total cases and although the terms ALS and MND are sometimes used synonymously, 

it is incorrect. MND encompasses ALS as well as suspected pure UMN involvement (i.e. 

primary lateral sclerosis), pure LMN signs (aka progressive muscular atrophy), and 

patients with isolated signs of bulbar dysfunction (aka progressive bulbar palsy).  

3.1.2 Diagnosing Motor Neuron Disease  

The first mention of ALS can be traced back to 1865 when Jean-Martin Charcot (de Paris 

1862) described symptoms associated with LMN degeneration in a single patient and 

published a seminal article on ALS (Charcot 1874), linking LMN signs in the arms and 

UMN signs in the legs with loss of motor neurons. More than a century later, he is still 

credited with leading the way towards establishing the modern neurological diagnostic 

examination for ALS widely used today (Rowland 2001). More recently, 

electromyographic (EMG) recordings have been incorporated into the diagnostic 

process. The recommendations require evidence of denervation in a minimum of two 

muscles in at least two separate anatomical regions innervated by different roots and 

nerves as measured with needle EMG (de Carvalho et al 2008). Although these changes 

have resulted in increases in sensitivity to identify LMN involvement in patients with 

suspected MND, it has not proven equally useful for the detection of UMN dysfunction 

and may additionally cause discomfort due to the invasiveness of needle EMG (Carvalho 

and Swash 2009).  

UMN degeneration is theoretically rendered visible by the application of diffusion-

sensitive MR techniques that can image the corticospinal tract (CST). Nonetheless, 

identifying UMN signs based on diffusion tensor imaging (DTI) provided mixed results 

(Ellis et al 1999; Hong et al 2004; Ciccarelli et al 2006; Woo et al 2014) and was most 
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effective in rare cases of pure UMN or LMN dysfunction (Iwata et al 2011). A limitation 

of this technique is that it requires expensive equipment and large datasets to achieve 

sufficient prediction accuracy for individual classification (Mah et al 2014). 

Another potential test for UMN involvement has focussed on using transcranial 

magnetic stimulation (TMS) measures to assess the integrity of the CST. When TMS is 

applied to M1, this leads to cortical conduction down the CST and activates the target 

muscle (Barker et al 1985). When recorded from the surface of the muscle with EMG 

electrodes, the magnitude of the elicited muscle reaction can be measured as a Motor 

Evoked Potential (MEP) while the time between TMS over M1 and the elicited MEP can 

be temporally assessed as Central Motor Conduction Time (CMCT). Delays in CMCT or 

small or absent MEPs have been deemed to be indicatory of UMN involvement (Pringle 

et al 1992). More recently, beta-band (15-30 Hz) coherence between the primary motor 

cortex and contralateral muscles was found to be desynchronised in patients affected 

by a rare form of pure UMN dysfunction (Fisher et al 2012).  TMS-based measures, have 

shown potential in diagnosing pure forms of the disease as well as disease progression 

(Floyd et al 2009) though not in discriminating cases where UMN involvement is unclear 

(Ziemann and Eisen 2004), while still requiring expensive equipment and discomfort in 

an already debilitated clinical population. 

Therefore, there are neither clinical features nor laboratory markers that can help 

us make the distinction between UMN and LMN involvement early on in the course of 

the illness (Munsat et al 1990; Rosenfeld and Strong 2015). The need for a reliable 

physiological assessment of UMN function is evident from the limitations of current 

options. Indeed, though numerous attempts at developing and modifying the formal 

criteria for diagnosing MND have been made, these efforts are recognized as being more 

effective at establishing a degree of diagnostic certainty of MND presence (e.g. possible, 

probable, laboratory-supported, or definite), rather than successfully identifying 

subtypes of the disease or describing a homogeneous group of patients (Rosenfeld and 

Strong 2015). Thus, the primary purpose of this chapter is to lay the foundations for 

developing a novel, non-invasive effective test for detecting UMN involvement in patients 

with suspected MND.  
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3.1.3 Emotional lability  

The facial musculature is directly controlled by corticobulbar nuclei that receive 

innervation from at least two sets of descending projections. These nuclei receive fibres 

from the cortex, responsible for voluntary facial expressions, as well as independent 

fibres from subcortical regions, responsible for largely involuntary, emotional facial 

expressions (see Figure 3.1). In types of MND where there is UMN involvement, the 

corticobulbar tract fibres innervating from the cortex are preferentially disrupted, 

resulting in a pathological predominance of subcortical control (Iwata et al 2011; Floeter 

et al 2014). Patients so affected report a tendency to express emotion even when the 

circumstances do not justify it, in a symptomatic disorder termed emotional lability 

(Ironside 1956; Cacioppo et al 1988; Newsom-Davis et al 1999; Palmieri et al 2009; 

Floeter et al 2014).  

Specifically, lability is characterized by episodes of emotional reactions or facial 

expressions that are out of proportion or unrelated to the eliciting stimuli. Affected 

patients may laugh uncontrollably at something only mildly amusing or cry at something 

trivially sad but may also laugh when feeling sad, while usually maintaining lucidity of 

the inappropriateness or exaggeration of their reaction (Madani et al 2013).  
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Wortzel et al (2008) found over 25 neurological conditions associated with 

reports of emotional lability. Incidence of emotional lability in other conditions such as 

post-traumatic brain injury (Tateno et al 2004), post-stroke (Kim 1997), and Multiple 

Sclerosis (Feinstein et al 1997) tends to range under 20% while it is highest among 

patients with ALS. In these patients, as many as 50% may develop symptoms of 

emotional lability with highest reports in those with bulbar symptoms (Gallagher 1989). 

Patients affected by these other conditions often report single instances of emotional 

lability and these may occur only at the early stages of the condition. On the other hand, 

patients with MND are a large cohort to be likely affected by emotional lability and the 

symptoms are accentuated with time, adding to the justification of studying them to 

characterise this disorder. 

 

 

Figure 3.1. Depiction of facial nerve connectivity through corticobulbar tract to cortical and subcortical 
regions. In UMN involvement the Corticobulbar tract is preferentially damaged leading to subcortical 
dominance of emotional control and lability. Adapted from Patrick J. Lynch, medical illustrator (Patrick J. 
Lynch, medical illustrator) 
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The choice of the term emotional lability was selected as most appropriate to 

refer to this condition although it is not without controversy. Over 20 terms have been 

proposed in the literature to refer to this state with discordance over whether the feeling 

expressed is congruent or not, in valence and intensity, with the emotion displayed by 

the patient (Wortzel et al 2008). These discussions concluded that the original definition 

of Pathological Laughing and Crying (PLC) proposed by Wilson (1924) captured both 

these aspects and was therefore the best descriptor. Employing the term PLC to 

describe this condition however ignores episodes of abnormal smiling which may not 

progress to overt laughter (Newsom-Davis et al 1999). Accordingly, PLC is too narrow to 

characterise the full range of the condition and it is therefore recommended that 

emotional lability be adopted as the preferred diagnostic term for this condition.  

3.1.4 Measuring emotional lability 

The selection of the appropriate diagnostic terminology is not a trivial matter as reflected 

by the state of current methods to assess lability through questionnaires in the clinical 

sector. There are currently two main questionnaires used to diagnose lability in patient 

populations, the Pathological Laughing and Crying Scale (Robinson et al 1993) and the 

Emotional Lability Questionnaire (Newsom-Davis et al 1999). The Emotional Lability 

Scale (ELQ) identified the same limitation (and others) regarding pathological smiling, 

as the name of the PLC Scale suggests. To overcome this, another dimension was added 

assessing pathological smiling and provided a more sensitive characterisation of lability.  

Moreover, these questionnaires limit their assessments of lability to feelings of 

sadness and/or happiness and may be further limiting their representativeness of the 

full breadth of human emotions and ignoring other potential dysregulations (e.g. angry 

outburst). Also, both rely on patients or carers retrospectively assessing whether there 

were extraordinary episodes of exaggerated emotional reactions. In many patients the 

changes are too subtle for their significance to be confidently established on clinical 

grounds alone and may go unreported. When emotional lability is marked, the diagnosis 

of upper involvement is more easily made as these episodes may affect patients' 

everyday life with social anxiety and emotional frailty (Palmieri et al 2009). Since MND is 

a progressive neurodegenerative disease, it is difficult to identify this symptom at early 

stages of the disease through questionnaires.  
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As questionnaires are severely limited in their ability to accurately characterise 

emotional lability and its progression in clinical populations, what is needed is a 

physiological test that allows us to quantify the emotional response to determine 

measurable diagnostically significant boundaries. 

3.1.5 Facial contagion as a physiological test for UMN involvement in MND 

I propose to lay the foundations for developing a simple, non-invasive neurophysiological 

test that can detect the presence of corticobulbar dysfunction as a marker of UMN 

involvement in suspected MND. The test exploits the dual innervation of the 

corticobulbar nuclei that control the facial musculature. 

A simple physiological test can be derived from facial contagion: the propensity 

for a person's facial expression to automatically begin assuming that of any face they 

are viewing. Since it is established that this empathic facial response is not under 

voluntary control but rather occurs even when the face being viewed is made subliminal 

by being presented too briefly to register consciously (Dimberg et al 2000; Neumann et 

al 2014), the response is usually too weak to be externally perceived but the 

characteristic pattern of muscular contraction can be detected using surface EMG 

electrodes. The reviewed literature suggests that people naturally respond with a 

characteristic latency and amplitude that can be estimated reliably with a relatively small 

number of presentations. This is a clear advantage for creating a diagnostic that is 

effective and accurate yet minimally invasive, easily administered, and brief. From the 

perspective of pure scientific enquiry, this will be the first physical characterisation of 

emotional lability in MND patients.  

3.1.6 Scope 

In the pathological state presently explored, two predictions can be made to differentiate 

between UMN and LMN involvement. Since the empathic response is automatic and 

unconscious, it is plausibly mediated by the subcortical mechanisms that pathologically 

dominate due to cortical degeneration; it is therefore expected to be abnormally 

enhanced in patients with MND who have UMN involvement relative to those who do not. 
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Additionally, it is expected that switching from an emotional response of one 

valence (e.g. happy) to another (e.g. angry) would be faster in patients with high lability 

compared to those with low lability. This second prediction is due to the dysregulation 

of the cortical mechanisms that maintain the natural emotional inertia found in patients 

with suspected UMN in MND (Ironside 1956; Pichon et al 2014), and will be referred to 

as emotional momentum. In this context, the strength of the effect of continuity of the 

emotional association with the perceived face is measured exploring the effect of 

preceding trial on ensuing response. If these predictions are correct, they will form the 

foundations of a quantitative test of emotional lability and sentimentality respectively 

that ought to be sensitive to the presence of UMN involvement in MND.  

Lastly, the Pompeii Adaptive Filtering (PAF) technique developed in the previous 

chapter will be tested for the first time on biological signals to uncover the facial 

contagion response. This will provide an external evaluation of the PAF by reproducing 

the same comparative analysis with the conventional method on original data collected 

from a human population. All analyses will be further assessed with machine learning 

techniques.   
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3.2 Methods 

3.2.1 Design 

To explore whether emotional lability could serve as a marker diagnostic for UMN in 

suspected MND, a noninvasive, cross-sectional study of two groups (patients with 

suspected UMN involvement in the context of MND and patients without signs of upper 

motor neuron involvement in the context of suspected MND) was performed in whom 

the facial contagion response to viewing emotional faces was quantified with surface 

EMG. This experiment was approved by the NHS Research Ethics Committee under 

reference 13/LO/1693 in November 2013 and granted an extension of one year by the 

same body in January 2015. 

The following factors were manipulated within participants and comparisons 

were made at the group level: 1) emotional expression of the viewed face (happy or 

angry) and 2) emotional congruity with preceding image (congruent or incongruent). The 

first of these factors was required to elicit a contrast of emotional response on which 

any difference between the groups could depend. The second factor provided a measure 

of emotional momentum or an index of compatibility of emotions of opposite valence: a 

feature of emotional lability as assessed clinically. Both factors were therefore expected 

to increase the sensitivity and specificity of any difference between the groups. 

The hypothesis was that the response of patients with suspected UMN 

involvement and higher ELQ scores would be more pronounced (shorter latency, greater 

amplitude, and longer duration) and that the effect of emotional momentum in this group 

would be greater. 

3.2.2 Participants 

Patients with an established diagnosis of MND were recruited opportunistically from the 

MND clinic at the National Hospital for Neurology and Neurosurgery in London. 

Exclusion criteria consisted of a) evidence of cognitive dysfunction sufficient to make 

either understanding of the task or consent unreliable, b) visual dysfunction sufficient to 

make perception of large stimuli unreliable, c) significant co-existent cortical pathology 
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of another cause, d) significant LMN facial weakness, as clinically determined. This last 

criterion was necessary since the test relied on revealing differences in the input to the 

brainstem nuclei of the facial nerve. If the facial nerve itself was affected by 

degeneration, any difference was likely to be attenuated and it was therefore sensible to 

exclude patients so affected. 

3.2.3 Materials 

3.2.3.1 Electrophysiological recordings  

Facial EMG activity was acquired from ten 24 mm Kendall ARBO disposable electrodes 

corresponding to five distinct bipolar montages. The electrodes were placed over 

zygomaticus major and corrugator supercilii muscle regions on both sides of the face 

with an additional ground montage on the forehead as common reference (Fridlund and 

Cacioppo 1986). Impedance for all electrodes was kept below 10 kΩ. The raw EMG 

signals were acquired through a System Plus Evolution EEG system (Micromed SpA, via 

Giotto, 2 – 31021, Mogliano Veneto, Italy). The raw EMG signals were continuously 

recorded with a sampling rate of 4096Hz and a bandwidth of 0.5 – 1000 Hz, 16-bit 

sampling resolution. No notch filter was used.  

3.2.3.2 Stimuli 

The stimuli were created from validated emotional pictures from the Karolinska Directed 

Emotional Faces (KDEF) dataset (Lundqvist et al 1998). Front-facing images of men and 

women exhibiting happy and angry facial expressions were selected. In MATLAB, the 

images were converted to black and white, aligned, framed, and cropped so that only the 

faces were visible. This process yielded a total of 100 face stimuli consisting of 50 angry 

and 50 happy faces of men and women (see Figure 3.2). 
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3.2.4  Procedure  

Prior to inclusion in the study, patients were approached by their practicing clinician 

during a routine visit at the MND Clinic who explained the study and offered the 

possibility of volunteering in the study by supplying a Participant Information Sheet (PIS) 

depending on their potential group allocation (see Appendix A.1). All patients were 

allowed at least 24 hours to decide and ask further questions prior to inclusion in the 

study. Recruitment of patients was performed by the clinical team directly involved in 

patient care.  

On the day of testing at the NHNN all participants received the PIS again from a 

member of the research team and gave written informed consent. Prior to beginning the 

facial EMG measurements, participants completed the ELQ (Newsom-Davis et al 1999) 

to quantify the potential degree of exaggerated laughing, crying, or smiling (potential 

scores on a scale from 0 to 93). This allowed the subdivision of patients into two 

experimental groups: 1) the high lability group, scoring 8.5 or over on the ELQ and 2) the 

low lability group, scoring under 8.5 on the ELQ. This cut-off was selected based on 

Newsom-Davis et al (1999) original consideration that scores 2 SDs above the control 

1. Selected images        
from KDEF 

2. Framed faces and 
converted to black and 

white  

3. Aligned eyes and cropped 
images  

Figure 3.2. Stimuli creation process. 1) Front facing images were selected from the KDEF 
database, 2) converted into black and white and framed. 3) The images were then aligned by 
measuring intra-ocular distance and cropped. 



Chapter 3: Quantifying emotional dysregulation in Motor Neuron Disease with facial electromyography 

 

 

74 

 

 

group’s mean indicated high ELQ (i.e. ELQ = 8.5+). Since the contrast of interest was 

confined to within the MND population and specific to the question of lability within it, 

no normative dataset was necessary as the purpose was to establish whether this 

measure was indeed useful at differentiating sub-groups rather than compare it to a 

healthy population. 

After being fitted with EMG electrodes, participants, tested individually, sat 

comfortably in front of a laptop where images of different faces appeared in sequence 

(see Figure 3.3). They were tasked with identifying the gender of the subjects in the 

images through button presses to maintain attention on the stream of faces. The 

experiment ran on Presentation® software (Version 0.70, www.neurobs.com). Equal 

number of male and female faces were shown for each emotional expression (happy or 

angry) associated with the muscle responses of interest.   

Participants completed 8 blocks of 24 trials lasting approximately 2.4 minutes 

each and could rest in between.  

Response target 

2 sec 

Figure 3.3 Example stimulus presentation. Participants responded 
to the emotional facial expression by identifying the gender of the 
target image after viewing a fixation cross. 

3-4 sec 

Fixation cross 

Sample trial 5-6 sec 



Chapter 3: Quantifying emotional dysregulation in Motor Neuron Disease with facial electromyography 

 

 

75 

 

 

3.2.5 Analysis   

Analysis of button-press accuracy and reaction times were used to determine whether 

or not participants attended the task. The ELQ data was scored and values used to 

categorise a patient’s data in a particular group. If a patient scored 8.5 or higher on the 

ELQ, they were considered as high-lability patients whereas the rest were considered to 

exhibit low lability and grouped accordingly. Where these preliminaries proved 

satisfactory, event-related EMG responses were compared by parametrising latency, 

amplitude, and duration across conditions and participants.  

The stored EMG raw signals were imported into MATLAB and underwent 

conventional and PAF filtering analyses (see previous chapter for more details on these 

techniques) with comparisons drawn at the group level between the two groups. For the 

conventional analysis, all steps of EMG signal processing detailed in section 2.1.5 were 

performed. Only step 6 was not performed as impedance levels from muscle sites from 

the left and right muscles suggested these differed. Instead, left and right muscle sites 

were analyses separately for each muscle group and for both techniques, the ones with 

the clearest signal-to-noise ratio (where the facial contagion response was most 

evident) were selected for inclusion into the group analysis.   

Facial contagion was measured as activity in the congruent facial muscles as the 

ones flexed by the subjects in the images following the presentation of the stimulus 

(Dimberg and Thunberg 2012). This analysis adhered to standard practice in the field 

(Weyers et al 2006; Achaibou et al 2008; Krumhuber et al 2014). The magnitude of the 

EMG response, or muscular strength activity, was calculated by taking the mean activity 

over 20, 100ms time bins, after the onset of each stimulus and adjusting for baseline at 

each trial by subtracting the activity 1000ms preceding stimulus presentation.   

At the group level, a normalization procedure was followed to allow for 

comparability of signals at a similar scale in a two-step process. The first step required 

baselining the mean responses per patient by subtracting the mean of the first three bins 

(0-300ms) to each individual response across each patient and muscle group. This was 

followed by z-scoring or standardisation involving converting all values to a common 

scale with an average of zero and standard deviation of one. This was calculated by 

subtracting the quotient from the mean and the standard deviation of all values from the 
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actual value, as commonly performed in the field (Moody et al 2007; Hofree et al 2014; 

Harrison et al 2010).  

For conventional filtering methods, two sample t-tests were performed 

comparing the differential muscle response to happy versus angry faces in high and low 

lability patient groups, providing a measure of facial contagion as a function of 

emotional lability. For time series resulting from PAF filtering, 2x2 ANOVAs compared 

the means between the activity in response to happy and angry faces at each muscle 

site, looking for the main effect of facial contagion related to expression emotion. All 

statistical results were Bonferroni corrected for multiple comparisons.  

A secondary analysis termed differential was performed to compare high and low 

lability patient responses for each muscle group by subtracting the mean response of 

the non-congruent emotion to that muscle group (i.e. zygomaticus = happy – angry; 

corrugator = angry – happy). These differential time series were also fed into an SVM 

multivariate model so as to assess the predictability of ELQ scores from the non-

averaged facial contagion responses which were used to further assess the 

performance of the filtering methods. Although the calculations to create these data was 

the same, rather than using mean signals, individual signals from each viable trial were 

used so as to obtain enough data to train the SVMs. Therefore, the subtraction was 

performed on the nearest temporal trial of opposite valence rather than on the means.  

Similar statistical analyses were performed when grouping the data across 

temporally congruent and incongruent emotional trials to test the extent of emotional 

momentum. For this analysis, differential responses were used while the variable of 

contrast consisted of emotional valence congruency of the image in the immediately 

preceding trial. For example, when two trials followed each other of the same emotion 

([a]smiling/[b]frowning face followed by another [a]smiling/[b]frowning face 

respectively) it would be a congruent trial while if these were of different emotional 

valence ([b]frowning/[a]smiling face followed by a [a]smiling/[b]frowning face) it would 

be an incongruent trial. This was performed so as to assess the potential for the facial 

contagion response to act as a marker of sentimentality. 
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3.3 Results 

3.3.1 Participants  

Although close to 100 patients were assessed for eligibility, 25 MND patients 

participated in this experiment; however, 3 were excluded due to machine malfunction. 

The effect size in this group is unknown as previous studies have demonstrated an effect 

with sample sizes from 13 (Oberman et al., 2009) to several hundreds (e.g. Künecke et 

al., 2014). 

A score of 10 or higher on the ELQ denoted high lability which lead to the sub-

division of patients into high lability (n=10) and low lability (n=12). The low lability group 

had an average ELQ score of 2.25, ranged in age between 44 and 76 (M=59) and had 4 

females (8 men). The high lability group had an average ELQ score of 23.9, ranged in age 

between 46 and 78 (M=58) and had 3 females (7 men). The ranges of ELQ scores are 

presented in the histogram in Figure 3.3.1 with the red dotted line denoting the cut-off 

between low and high ELQ scoring patients. None of the patients were excluded as no 

outliers were identified in the data (upper bound = 47.5; lower bound = -28.5). 

 

Figure. 3.3.1 Histogram of ELQ scores per patient. The red dotted line denotes 
the cut-off between high and low lability patients. The scores have been arranged 
in ascending order and do not reflect acquired order or participation. 
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3.3.2 Behavioural Responses 

Overall participants correctly identified the gender of the images in 98% of trials. A two-

sample t-test comparing differences in response times between patient groups revealed 

no significant differences between the high (M=1010ms; SD=316) and low lability 

(M=987ms; SD=317) patients (t(2706)=1.95, p>0.05).  

3.3.3 Facial contagion 

Conventional and PAF filtering were compared in their performance at elucidating a 

facial contagion response from unilateral zygomaticus and corrugator activity in 

response to angry and happy faces at each timepoint (Figure 3.4). Conventional methods 

revealed a stronger effect of contagion in the corrugator for high lability patients only in 

response to angry faces. ANOVAs on PAF-filtered time series showed a strong facial 

contagion response in the zygomaticus for happy faces in low lability patients. PAF 

filtering suggested that high lability patients demonstrated a weak but consistent 

stronger facial contagion response to angry faces irrespective of muscle site. Results of 

the differential analysis echoed these findings (Figure 3.5). No effect of CRF was found 

in any of the PAF analysis. 
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Figure. 3.4 Facial contagion responses with conventional and PAF filtering. The top quadrant is the result of 
conventional filtering while the bottom four is the result of PAF filtering. For each quadrant, the left columns 
represent corrugator activity while the right column shows zygomaticus responses. The top row are the 
aggregate responses of the high lability patients and the low lability patients are in the bottom row while the 
dotted lines represent standard error. The x-axis shows the change of the signal over time and the y-axis 
shows the normalized activity as z-scores. One blue asterisk (*) indicates statistical significance at p<0.05 
and two blue asterisks (**) at p<0.001 Bonferroni corrected. For PAF filtering, there are 4 plotted lines though 
only 2 are visible since the other account for the null effect of CRF, hence the slight discoloration.  

*  **  
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Figure. 3.5 Comparing high and low lability facial contagion responses with conventional and PAF filtering. 
The top row are the results of the conventional filtering while the bottom are those issuing from the PAF. The 
aggregate responses of the high lability patients and the low lability patients are shown with the standard 
error in dotted lines. The left columns represent corrugator activity while the right column shows zygomaticus 
responses. The x-axis shows the change of the signal over time and the y-axis shows the normalized activity 
as z-scores. One blue asterisk (*) indicates statistical significance at p<0.05 and two blue asterisks (**) at 
p<0.001 Bonferroni corrected. 
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Further testing of whether the facial contagion response could be better 

differentiated with the PAF technique was provided by the results of the SVM analysis. 

The SVM sought to predict whether a particular un-averaged but normalized facial 

contagion response was from a low or high lability patient. The results ensuing from the 

binary classification task can be presented by quantifying the performance of the system 

a correctly classifying a test point into one of the following 4 categories: True Positive 

(TP) and True Negative (TN) if the system correctly predicts the label or False Positive 

(FP) if the systems labels it as a positive when it is a negative and False Negative (FN) if 

labelled as a negative while it is a positive (Table 3.1). These values then allow for the 

calculation of sensitivity (true positives / positives) and specificity (true negatives / 

negatives) and may also be used to generate more conservative balanced accuracies 

((sensitivity + specificity)/2; for a discussion on the superiority of using balanced 

accuracies rather than the optimistic accuracy measure see Brodersen et al (2010)). 

 

  

 

 

 

 

 

 

Table 3.1 Confusion Matrices resulting from SVM predictions from Conventional and PAF Filtering  

Conventional filtering 

Corrugator Zygomaticus 

N*= 367 Predicted: No Predicted: Yes N = 372 Predicted: No Predicted: Yes 

Actual: No 93 91 Actual: No 91 95 

Actual: Yes 87 96 Actual: Yes 86 100 

PAF filtering  

Corrugator Zygomaticus 

N = 366 Predicted: No Predicted: Yes N = 376 Predicted: No Predicted: Yes 

Actual: No 90 93 Actual: No 102 86 

Actual: Yes 89 94 Actual: Yes 102 86 

*N is the total number of predictions made. The rest are outputs of the SVMs resulting from prediction 
attempts of classifying patient facial contagion EMG responses into high and low lability.  
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Figure. 3.6 Mean balanced accuracies from SVMs. This shows the success of predicting how each 
filtering method classifies patients into high and low lability groups based on facial contagion 
responses. Anything above the green line is above chance performance. One blue asterisk (*) indicates 
statistical significance at p<0.05 and two blue asterisks (**) at p<0.001.  

* 

   ** 

Based on facial contagion responses from the corrugator muscle, the PAF 

performed at a mean balanced accuracy of 50.4% with 95% confidence intervals (CI) of 

49.75 to 51.05 compared to conventional filtering that performed at 51.5% (95% CI 50.83 

to 52.17). For the Zygomaticus, the PAF performed at 52.7% (95% CI 52.06 to 53.36) and 

conventional filtering at 50.3% (95% CI 49.62 to 50.98). Therefore, the PAF filtering 

performed 2.35% better than conventional methods at correctly classifying high and low 

lability patients based on their zygomaticus facial contagion response (t(98)=4.89, 

p<0.0001) and 1.17% worse if based on corrugator responses (t(98)=2.45, p<0.05; Figure 

3.6). Although the SVM from PAF activity correctly classified patients as high or low 

lability above chance for the zygomaticus, it did not do so significantly for the corrugator. 

In contrast, the SVM from the conventional activity predicted lability in patients above 

chance for the corrugator but not for the zygomaticus. 
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3.3.4 Emotional Momentum 

None of the conventional and PAF filtering EMG responses to congruent or incongruent 

trials reached significance. A weak trend (p<0.05 uncorrected from 1100ms to 1300ms) 

was found with conventional filtering where high lability patients demonstrated stronger 

corrugator facial contagion responses to congruent trials (angry followed by angry). A 

similar weak trend was found with zygomaticus facial contagion responses in low lability 

patients for congruent trials (happy followed by happy) in conventional (p<0.05 

uncorrected from 1700ms to 1800ms) and in high lability patients for PAF filtering 

(p<0.05 uncorrected from 1600ms to 1700ms; see Figure 3.7 for time series). 
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Figure. 3.7 Emotional momentum differential facial contagion responses. The top quadrant is the result of 
conventional filtering while the bottom four is the result of PAF filtering. For each quadrant, the left columns 
represent corrugator activity while the right column shows zygomaticus responses. The top row are the 
aggregate responses of the high lability patients and the low lability patients are in the bottom row while the 
dotted lines represent standard error. The x-axis shows the change of the signal over time and the y-axis 
shows the normalized activity as z-scores. None reached statistical significance. 
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3.4 Discussion  

The goal of this study was to assess whether facial contagion responses measured with 

non-invasive EMG could be used as a diagnostic marker for upper involvement in MND 

subtypes. The congruent automatic face muscle response was measured from MND 

patients while they looked at images of smiling and frowning individuals. Patients also 

reported their level of emotional lability through a self-report questionnaire which 

allowed the division of the patients into two subgroups for statistical comparisons. I 

predicted that patients with upper involvement in MND would be more likely to exhibit an 

exaggerated facial contagion response and emotional momentum response. I also 

predicted these results would be more easily discerned through the PAF filtering method 

developed in the previous chapter. This methodological aspect will first be addressed so 

as to justify interpretation of results with either method. 

3.4.1 Comparison of filtering methods 

This was the first time the novel filtering method developed in the last chapter was tested 

on biological data and contrasted with conventional filtering. For facial contagion 

responses, although conventional filtering worked, the PAF provided more differentiation 

in terms of statistical power. As with the previous chapter, SVMs were used to further 

validate the direction of differences between the two methods to assess which filtered 

signals could best predict high or low lability. The data showed the PAF was better at 

differentiating the facial contagion response in the zygomaticus but worse in the 

corrugator. Although the difference in performance between the PAF and conventional 

filtering reached statistical differentiation, these were too close to chance so neither 

demonstrated accuracies to denote high confidence or clinical significance.  

Since no effect of CRF was found for any condition, echoing the results of testing 

with artificial modelled data, the step of counterbalancing the cross-correlation of the 

Meta-CRF with both valences rather than only the congruent one can be skipped. For 

example, it should be valid to cross-correlate happy facial trials with the Happy Meta-

CRF only and angry trials with the Angry Meta-CRF for that muscle site only. This will 

also allow for faster and more direct comparison of results as the same statistical test 

will then be run on both conventional and PAF time series, namely a two-sample t-test.  
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3.4.2 Facial contagion as a marker for upper involvement in MND 

This study reports original data measuring the facial contagion response in MND 

patients with EMG.  Consistent with the reviewed literature where the facial contagion 

response has been previously measured only in healthy controls, MND patients in both 

groups demonstrated mostly congruent contagion responses. This study was the first 

to measure the facial contagion response on a sample that is affected by a 

neurodegenerative disorder affecting the motor muscles.  

The shape of the facial contagion response in the current study was consistent 

with previous studies that did not show a very strong separation of the signals that 

remained statistically significant (Achaibou et al 2008; Weyers et al 2009; Aguado et al 

2013; Heerey and Crossley 2013). Although the corrugator response can be varied 

between individuals there was no evidence of the so-called ‘startle response’ at the start 

of the facial contagion signal, in contrast to past research (Dimberg and Thunberg 1998, 

2007; Dimberg et al 2000; Hofree et al 2014). While low lability patients demonstrated a 

larger facial contagion response in the post 500ms time period, high lability patients 

demonstrate a delayed response post 1000ms.  

The response in the high lability group was also weaker in general as evidenced 

by the differential comparisons, although significant for both muscle sites. In contrast, 

the low lability group had strong responses - comparable to healthy responses reported 

in the literature - in the zygomaticus but this was very weak in the corrugator. It is 

possible that this was simply due to a difficulty in obtaining a strong signal from the 

corrugator since it is a considerably smaller muscle. 

The corrugator reflected higher contagion to angry than happy faces and the 

zygomaticus reflected higher contagion to happy than angry faces. There was an 

exception to this congruent response with the high lability group which demonstrated 

higher facial contagion responses towards angry faces irrespective of the muscle 

involved as evidenced by the PAF results. This pattern of exaggerated reactivity to angry 

frowning faces is evidence of a negativity bias in this patient sub-sample. It is possible 

that this is due to the generally worse prognosis associated with upper motor neuron 

involvement in MND which may lead to more negative reactivity. This result is also 

consistent with the finding that high lability in these patients is due to the subcortical 

predominance of motor control due to cortical degeneration (Iwata et al 2011; Floeter et 

al 2014). Therefore, this negative bias could be a shifting of the response towards what 

are subcortically more dominant emotions such as anger, which are preferentially 

activated pathways during reduced cortical input (i.e. reduced attention: Vuilleumier et 
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al (2001; 2003)) or biased subcortical priming (i.e. priming or masking: Morris et al (1998; 

2004); Nomura et al 2004). 

3.4.3 Emotional Momentum 

There is a vast array of studies on how humans react to different emotions and the 

characteristic intensity of the contagion response for each over time. However, little is 

known about changing from one emotion to another and how long their effect may last 

over time. For the first time, this study reported the facial contagion response as a 

function of congruency between a trial and the one preceding it in a measure called 

emotional momentum. The analysis revealed no significant differences in congruent and 

incongruent trials between the groups for either filtering method. It is possible that the 

lack of effect is due to the small sample size as weak trends were found but did not 

reach statistical significance, therefore no strong conclusions can be made from the 

current data about this component of the study. 

3.4.4 Limitations 

All of these results presented here suffer from a common pitfall which is the relatively 

small sample size and slight imbalance in the groups n with two more patients in the low 

lability group. All studies finding strong facial contagion responses recruit around 50 

healthy participants in their studies (see Table 2.2.1 in previous chapter for full list of 

studies). The number of recruited patients in each group was expected to be much 

higher (n=24) however due to time constraints and unexpected difficulties in the 

recruitment process, under half the number of participants required to elucidate a proper 

response were obtained.  

This is also the first study to perform these measurements on a sample affected 

by a neuromuscular disorder. Of all tested patients, less than 30% did not report any 

dysregulation in emotion as measured with the ELQ. It is therefore possible that in this 

sample the facial contagion response as measured with EMG was more attenuated than 

in normal controls and would not be distinguished without a larger sample size. Perhaps 

it could even signify that further segmentation of patients between high, low, and 

medium ELQ scores could be informational. 

It is both possible that should recruitment continue, trends become more 

accentuated, however these differences could also disappear. Therefore, it is advisable 

to treat these results with caution and as the basis for future exploration. Importantly, 
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none of the limitations in our experiment could be explained by demographic differences 

in the groups studied as they had an equal range of ages and genders and responded to 

the gender identification with similar reaction times.  

Since the onset of the facial contagion response was found to be slightly delayed, 

it could be that longer ITIs would have permitted a longer timeframe to be studied to 

individuate a facial contagion response. Although some studies adopt ITIs longer than 

20 seconds (Dimberg and Thunberg 1998, 2007, 2012; Dimberg et al 2000; Weyers et al 

2006, 2009; Rymarczyk et al 2011), this was opted against as the aim was to maintain 

the patients engaged in the task and create a short diagnostic test. During testing, the 

only patient that demonstrated overt lability in response to the emotional faces had a 

reaction that lasted several seconds into the next trial. It is possible that longer covert 

reactions were present in other patients and were therefore missed with the current 

setup. 

There were several issues that arose from using the ELQ as a main measure of 

lability. The cut-off performed at a score of 8.5 to separate high from low lability patients 

was taken from the pioneering study. If a similar cut-off method would have been applied 

based on the low lability patients as the “control” sample, it would have resulted in 2 

more patients being considered high lability and contributed to further inequality 

between the groups (as the cut-off with the low lability as control group would have been 

closer to 4.5 than 8.5). Nevertheless, it is possible that such a comparison could be 

performed with a more complete recruited participant population. Strangely  

Although the ELQ is the most valid measure to the author’s knowledge to 

measure lability in this patient sample, it contains several problems. The ELQ measures 

changes “over the past 4 weeks” and some patients who have become labile as a result 

of their condition from before 4 weeks are not classified as labile. Recall that the ELQ is 

composed of three main questions (i.e. “Have you experienced sudden episodes of 

laughter/crying/smiling in the past four weeks?” YES/NO) which define whether the 

patient should answer the questions within the sub-section. In each sub-section there is 

a question that reads “Does this pattern of laughing/crying/smiling represent a change 

from that prior to the onset of MND?”. This is problematic as the ELQ is meant to 

diagnose recent presence of lability rather than overall state which is what this study 

was interested in assessing.  

The wording of the ELQ is also not precise enough as the two main questions 

about laughing and crying ask about “sudden” episodes while for the “smiling” section it 

replaces “sudden” with “unusual”. The use of the word “sudden” created outspoken 
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confusion with patients and the experimenters more than once during the process of the 

experiment. A better way of assessing lability as a result of the condition should have 

been to replace the part that reads “in the past 4 weeks” with the wording of the sub-

question “change from that prior to the onset of MND?” and ensure all questions 

contained the same wording with the word “unusual” (i.e. “Have you experienced unusual 

episodes of laughter/crying/smiling since the onset of MND?” YES/NO). This would have 

perhaps avoided episodes where a patient referred to as highly labile by the clinicians 

did not score above 8.5 because they had no “sudden” lability episodes in the past 4 

weeks but might have had some “unusual” ones instead since they contracted the 

disorder.  

3.4.5 Future Directions 

A possibility to generate a stronger facial contagion response with a small sample size 

would be to use dynamic facial expressions as stimuli. These would consist of faces 

morphing from neutral to a particular emotion over several seconds. There are several 

studies showing the superiority of these stimuli in eliciting a response and it could 

provide a comparable response with less participants (Hermans et al 2006; Weyers et al 

2006; Achaibou et al 2008; Rymarczyk et al 2011; Matzke et al 2013; Ardizzi et al 2014; 

Künecke et al 2014). This was not implemented within the current study as it was 

expected that recruitment would be faster and the facial contagion response would be 

exaggerated (rather than, seemingly, attenuated).  

It is possible that since the Meta-CRF was created from healthy individuals, it may 

not have been applicable to this particular group of patients. Therefore, an Individual 

Response Function (IRF) could be created for each patient to be cross-correlated to their 

own data. In a similar methodological study, Bach et al (2013) showed the superiority of 

modelling an IRF over a CRF to improve predictive validity of skin conductance response. 

This is therefore a viable possibility for future research and echoes previous findings in 

other fields that increase specificity of the CRFs to obtain better results when comparing 

groups with model based filtering methods (e.g. Arichi et al 2012; Steffener et al 2010). 

To properly validate the filtering methods on biological signals the next step would be to 

acquire a dataset of normal facial contagion responses and assess whether the PAF 

method is in fact superior. Although it was interesting to explore the potential of the 

method here, it was tested on a sample whose facial contagion response could be 

severely affected by its disorder, so it may be hard to draw strong conclusions prior to 

testing it on a healthy sample.  
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 In order to test the negativity bias hypothesis about the high lability MND patients, 

a new analysis could be performed whereby the positive and negative ELQ 

measurements would be independently scored and used as grouping variables. This 

would lead to two sets of comparisons between non-labile and positively labile patients 

and another between non-labile and negatively labile patients. This separation of groups 

would perhaps help distinguish an effect of specific emotional valence within the high 

lability group. 

Finally, a better grouping of patients based on the proposed criticisms of the ELQ 

could be devised to accurately categorise patients into MND subgroups for further 

testing. If found to be effective there is potential to expand the validity of this measure 

as a test for other patient populations. Patients affected with Multiple Sclerosis are 

known to also suffer from dysregulated emotional lability (Smith et al 2004). Further 

elucidating of the exact consequences of lability through the facial contagion response 

could perhaps inform prognosis or draw further differentiations between patients when 

self-report is not sensitive enough. 

3.4.6 Conclusions 

Although the effects found were statistically weak, three main differences were found 

between high and low lability facial contagion responses which could form the basis for 

an objective biological marker that differentiates between MND subtypes. This study 

showed that high lability MND patients demonstrate a 1) delayed onset of the facial 

contagion response, 2) a weaker overall signal, and 3) a higher reactivity to angry valence 

stimuli. If it is found that patients with upper involvement in MND consistently express a 

weaker delayed facial contagion response and that the negativity bias extends to other 

negative valence stimuli (e.g. disgust, sadness, fear), it could be translated into a marker 

of clinical utility in informing the diagnostic.  

However, due to the discussed limitations the present results can only be said to 

form the basis for future exploration into the characteristics of the response as a valid 

marker.  The issues discussed exemplify some of the reasons why it is difficult to 

develop such a diagnostic. This data was the first ever measure of an automatic 

emotional reaction in the MND population and holds promise as a biomarker for upper 

involvement in MND.  
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 Introduction 

4.1.1 Depression and the problem of its treatment 

According to the World Health Organisation (WHO) depression is “a common mental 

disorder, characterized by sadness, loss of interest or pleasure, feelings of guilt or low 

self-worth, disturbed sleep or appetite, feelings of tiredness, and poor concentration.” 

(World Health Organisation 2016). This serious and often recurring disorder will affect 

25% of the population at least once by the end of adolescence (Kessler et al 2001) and 

is twice as prevalent in females as in males (Angst et al 2002). It is generally associated 

with diminished functioning and quality of life, medical morbidity, and mortality (Hsu et 

al 2015) and the risk of a recurrence can be as high as 50–90% (American Psychiatric 

Association 2000). Depression is not simply a burden on the afflicted individual but also 

for employers and society who are burdened by their higher absences and less efficient 

work and their need of more than twice as much health benefits than their colleagues 

(Birnbaum et al 2010; Lerner et al 2010; Jain et al 2013; Tomonaga et al 2013). Indeed, 

depression is projected to be the leading cause of global burden of disease in high- and 

middle-income countries in 2030 (WHO 2012). 

The effectiveness of available treatments for patients with major depression in 

the long term is generally weak (Robinson et al 1990; Bower et al 2001; Pampallona et al 

2004; Hind et al 2014; van Straten et al 2015). Even the most widely used 

pharmacological treatments are not considered to be significantly beneficial (Kirsch et 

al 2008) and are sometimes associated with side effects such as weight gain (Vanina et 

al 2002), lower IQ for children of pregnant patients (Nulman et al 2012), and increased 

risk of suicidal thoughts (Nischal et al 2012). It is possible that these issues account for 

the under-usage of available treatments, as only 50% of afflicted individuals are 

estimated to seek help (Angst et al 2002). Nevertheless, barriers to accessing and 

initiating treatment may also include geography, socioeconomic status, national 

healthcare system capacity and waiting times, economic costs, cultural beliefs, lack of 

knowledge about mental health disorders, stigma, and adherence to treatments (Rost et 

al 1998; Wahl 1999; Nutting et al 2002; Cooper et al 2003; Simon et al 2004; Neighbors 

et al 2008; Thomas et al 2009; Mojtabai et al 2011).  
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4.1.2 Digitalising therapies 

The undesired consequences and ineffectiveness of these therapies have led to 

searching for nonpharmacological-based treatments that could function alone or in 

addition to a drug regimen. Interventions administered through the internet or mobile 

phones hold great potential to address many of the issues and close the treatment gap 

for mild depression as well as treat individuals in remote or poor populations where drug 

treatments are unavailable or unaffordable.  

Mood defines dispositions towards one kind of emotion more than another. 

Someone in an irritable mood is predisposed to outbursts of irritation, someone in a 

depressed mood to periods of sadness, and so on. Mood can be induced independently 

of any factual reality in contrast to our rational thinking processes. This is obvious from 

the many forms of theatrical and cinematic entertainment which induce a particular 

emotion and the general mood in the audience. While the change in mood may last for 

several minutes or hours after the event ended, the viewers never rationally believe that 

it is more than special effects and actors. This is because mood is largely set by 

emotional influences: exposure to a particular emotion, induced in whatever way, which 

can change mood, at least for a while. This can be observed in daily interactions where 

fictional jokes can induce transient feelings of joy. The effectiveness of interventions 

that capitalise on this mechanism to combat depression is evidenced by art- and drama-

based therapies (Jeong et al 2005; Slayton et al 2010; Blomdahl et al 2013). Evidently 

these interventions may be more relevant when dealing with ‘reactive’ rather than 

‘endogenous’ depression, the latter being a long lasting deep seated one, that may have 

a different biological basis. By combining these established aspects of how mood works, 

one could theoretically change it by inducing emotions without changing any factual 

aspect of people’s lives (e.g. raising their salary). Thus, delivering therapy via mobile 

devices, in an artificial way, need not make it less potent and is based on a sound 

theoretical foundation. 

Indeed, computer-based psychological treatments for depression are becoming 

more common due to their evidenced effectiveness (Richards and Richardson 2012). 

Mental health interventions that are generally less resource intensive have been found 

to be similarly effective as more intense face-to-face treatments (Bower et al 2001). If 

effective, app-based therapies could be more widely prescribed to reduce load on 

healthcare systems and hold potential for remote interventions and especially in hard-

to-reach populations. There is evidence suggesting that people’s general attitudes 

towards mobile self-help treatments for health problems are positive (Katz and Rice 
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2009). Other advantages common to mobile interventions may include free and 

immediate access to information, assistance and treatment, seemless assimilation with 

patients' everyday lives, reduced costs, and having a direct access to communicate with 

experts. Smartphones are generally close to their owners throughout the day and 

provides continuous access like no other device except perhaps wearable technology 

which may include specialised sensors. Also since people use smartphones to interact 

with many aspects of their lives (e.g. calendar, events, social media, communication) it 

allows researchers to intervene within the stream of life without disturbing the user. This 

transparency to lifestyle is essential for compliance while delivering a relatively high 

dose of treatment throughout the day. For the current purposes, the high degree of 

customizability of mobile applications also provides an unprecedented low-cost means 

to ecologically monitor the temporal dynamics of mood.  

Creative uses of mobile phones and sensors have successfully digitalised 

existing treatments for depression and low mood (such as Cognitive Behavioural 

Therapy (CBT)) and delivered these through apps with promising results (Burns et al 

2011; Kauer et al 2012; Watts et al 2013; Ly et al 2014). Nonetheless, none of these 

innovations proposed a novel treatment but rather implemented existing ones through 

more cost-effective and immediate means enabled by the technology.  

Here I lay the foundations for the development of a series of novel mood and 

emotion-enhancing app-based interventions developing research from established 

findings in neuroscience into a practical intervention, in accordance with the 

translational approach of this PhD.  

4.1.3 Emotional contagion as a solution 

As established in Chapter 1, studies show that people spontaneously mimic a variety of 

behaviours, among them emotional facial expressions. Indeed, facial EMG indicate that 

facial expressions elicit spontaneous facial muscular activity congruent with presented 

emotional expressions. Facial expressions are not just a manifestation of emotion but 

rather activating the appropriate face muscles may lead to a modification of the 

psychological experience of that emotion. Therefore, these series of interventions aim 

to enhance emotional state by inducing facial contagion - smiling - reflective of 

happiness. 

There is evidence suggesting that smiling faces are effective stimuli and good 

candidates to non-invasively induce positive emotion changes in viewers. The functions 
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and characteristics of a smile have been extensively studied (Segerstråle and Molnár 

1997). The ability to recognize a smiling face and produce a smile is long established to 

develop early in infancy (Jones 1926; Bühler 1931). Happy smiling faces have been 

consistently found to be the fastest most easily recognised facial emotional expressions 

(Lydon and Nixon 2014), even at great distances (Smith and Schyns 2009; Du and 

Martinez 2011) and when backwards masked and presented at a subconscious 

temporal level for other emotions (Neumann et al 2014). Further studies have shown 

smiles have important impacts on the behaviour and choices of others (Scharlemann et 

al 2001). Indeed, smiles are powerful for both those that observe the expression and 

those that adopt it. For example, waitresses will receive larger tips from men when 

smiling (Tidd and Lockard 1978), judges will dispense more lenient sentences to people 

who are smiling (LaFrance and Hecht 1995), and if we are smiled at by a stranger we are 

more likely to help another person subsequently (Gueguen and De Gail 2003).  

Importantly, the beneficial effects of exhibiting genuine smiles have also been 

documented. A genuine or Duchenne smile (Ekman 1989) is characterised by the pulling 

upwards of the corner of the lips by the zygomaticus major muscle along with the 

orbicularis oculi muscle flexing around the eyes creating “crow’s feet”. Duchenne (1862) 

wrote that “the [zygomaticus] obeys the will but the [orbicularis oculi] is only put in play 

by the sweet emotions of the soul; the fake joy, the deceitful laugh, cannot provoke the 

contraction of this latter muscle”. For example, Harker and Keltner (2001) found that the 

more intensely a subject smiled in college yearbook photos, the more likely the subjects 

were to be satisfied with their lives and still married after 30 years. This finding was later 

replicated (Hertenstein et al 2009) and the association with smile intensity extended to 

predict longevity as gleaned from 1950’s baseball card pictures (Abel and Kruger 2010) 

and life satisfaction from Facebook profile pictures (Seder and Oishi 2012).  

Moreover, participants passively observing images of a Duchenne smiling face 

experience unconscious congruent facial muscle reaction as measured with EMG (facial 

contagion) and report higher ratings of the felt emotion (emotional contagion; Surakka 

and Hietanen (1998)). The special status of smiles in facial contagion also generalises 

to real-world social interactions whereby people spontaneously mimic smiles more than 

frowns (Hinsz and Tomhave 1991) and is an expression that will be mimicked for both 

in-group and out-group members (Hess and Fischer 2014). Indeed, the beneficial effects 

of simply flexing the congruent muscles involved in smiling have been found to grant 

physiological and psychological benefits (Dimberg 1987; Schhnall and Laird 2003).  
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This is also true when participants are unaware that they are portraying the 

positive expression. For example, Strack et al (1988)4 asked participants to rate the 

humorousness of cartoons while holding a pen in their mouths vertically by the tip 

(inhibiting flexion of the zygomaticus) or horizontally across the lips (flexing the 

zygomaticus and inducing a smile). Participants rated the cartoons as funnier when 

presented under the smiling condition than under the inhibiting condition while being 

unaware of the manipulation. These results were extended by Soussignan (2002) who 

adopted a similar procedure and in addition measured EMG activity from the 

Zygomaticus major and orbicularis oculi to further explore the effect of Duchenne 

smiles. They confirmed that the unconscious facilitation of human smiles reliably 

affected the rating of emotional experience and found that Duchenne smiling (involving 

simultaneous contraction of both zygomaticus and orbicularis oculi muscles) was key 

in reporting increased congruent emotional contagion. 

Similarly, Kraft and Pressman (2012) asked participants to hold chopsticks in 

their mouths in a manner that induced a Duchenne smile, a posed smile, or a neutral 

expression, and induced stress under pretence of a multi-tasking task. They found that 

all smiling participants had lower heart rates during stress recovery than the neutral 

group regardless of their awareness of the induced expression (with a slight advantage 

for the Duchenne condition).  

Furthermore, when people were instructed to frown by lowering their brow 

muscles, Lewis (2012) found that it was sufficient for participants to report significant 

negative changes to their mood. This study also found similar effects with relation to 

raising the eyebrows and feeling more surprised in response to facts and finding odours 

more unpleasant when instructed to wrinkle their nostrils. Another series of studies 

found that Botulinum toxin injections to the frown may reduce depressive symptoms 

(Murry et al 1994; Weber et al 2005; Finzi and Wasserman 2006; Finzi and Rosenthal 

2014). This is an interesting finding suggesting that being unable to make a sad face has 

a direct effect on felt valence of negative emotions.  

As it is established that inducing a smile naturally may increase a happiness 

response and selectively blocking this process (e.g. Botulinum toxin to corrugator) may 

attenuate the corresponding emotion (e.g. anger, sadness, and other negative emotions 

requiring a frowning response), there is a sound theoretical basis for developing a mood-

                                                      
4 Although these findings were recently called into question (Wagenmakers et al 2016), Strack 
(2016) provided a concise critique of this replication report along with 70 studies demonstrating 
the effect generalises in different ways.  
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enhancing intervention based on facial and emotional contagion. Though promising and 

shown to work even without the awareness of participants, existing methods require 

high degrees of invasiveness (e.g. physical injections or holding pens in one’s mouth). 

Therefore, although the effect desired – stimulating the smiling muscles – was a simple 

one, it required the integration of behavioural economics principles to explore best 

practices in modifying behaviour with minimal disruption to daily life. 

4.1.4 Designing the intervention with ‘nudge theory’  

Behavioural economics research has shown that it is possible to induce behavioural 

changes en masse by implementing simple changes to people’s environment. Thaler and 

Sunstein (2008) considered ‘nudges’ as voluntary changes to the environment that can 

influence actions to achieve a desired behaviour more often. In the UK, the Behavioural 

Insights Team (BIT) was created in 2010 within the Cabinet Office to apply such insights 

to help achieve real world policy problems (Halpern 2015). In just a few years, their 

successes included increasing the donor register by 100,000 people (Perry et al 2015), 

encouraging more ethnic minorities to successfully apply to police officer positions 

(Linos et al 2015), and creating programs that increased rates of adherence to 

pharmacological treatments (Behavioural Insights Team 2015). Of course, the literature 

on implementing nudge interventions to increase health outcomes is large (Hollands et 

al 2013; Arno and Thomas 2016; Hansen et al 2016) and reviewing it in its entirety is 

beyond the scope of this section. However, the BIT consolidated decades of behavioural 

economics literature and their own experience into best-practice guidance to implement 

nudge interventions in their EAST framework (Behavioural Insights Team 2014).  

The framework proposes that a nudge that is Easy, Attractive, Social and Timely 

(EAST), will increase the likelihood of a desired behaviour occurring. This acronym 

describes the four principles that should be part of the development process of any 

intervention wishing to enact behavioural change in a population. As the EAST 

framework is very recent, it has not yet been rigorously tested in an academic setting. 

Nevertheless, it provides useful guidance to develop a nudge intervention for the present 

purposes. Making it Easy, requires reducing the effort in performing the desired 

behaviour, making the action simple, and if a choice is required, it should be the default 

option. To make it Attractive the BIT advises designing reward or sanction mechanisms 

for engaging in the behaviour and making it aesthetically appealing so that it leads to a 

pleasant interaction. By making it Social, the intervention should leverage social 

networks, encourage people to make commitments to others or publicly, and show that 
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many are engaging in the desired behaviour. Finally, to make it Timely means to target 

people when they are most likely to be receptive to the nudge and making the time 

between the nudge and the intervention as immediate as possible. 

Some of these points would have been difficult to implement ethically in this 

project (e.g. sanctions for lack of participation and public commitments raise anonymity 

issues) however many of these points were integrated into the development of the 

current affective state modification tool to test its potential as a successful nudge 

intervention. To make it Easy, the intervention ran on mobile devices: either tablets or 

participants own mobile phones. This meant everywhere they went, the nudge (i.e. 

smiling face) was always easily accessible to participants with minimal intrusion in their 

daily life. Indeed, as it masked as an application or a game, it did not require any 

additional effort than participants would generally engage in. This also made it Timely 

as the desired behavioural outcome (smiling) was achieved through the automatic 

effects of facial contagion and participants retained control of when the nudge (the 

smiles) would appear on their screens. The applications were all developed with user 

interface designers to make them Attractive in appearance and when being used. Lastly, 

the nudge itself contained an element of the Social framework since it was a smiling 

human face however a presence on social media was also maintained to encourage 

users to engage with the app. 

4.1.5 Exploring the question in three experiments 

The question of whether seeing smiling faces has a positive effect on emotions and 

mood was explored in three experiments that constitute the next sections of this 

chapter. The first experiment explored the extent to which smiling faces may influence 

mood over a 6-month period. The second experiment explored a similar question but 

operationalised it over a shorter period of 20 days. It also included the addition of a 

control condition where seeing smiling faces versus landscapes was compared over 10 

days in each condition. Both experiments ran on smartphone applications. The third 

experiment compared the effects of seeing smiling faces or landscapes on transient 

emotions in a gamified tablet application where participants were unware that there 

were two viewing conditions.  

While the first two experiments explored the interventional effectiveness of facial 

contagion and emotional contagion as nudge interventions on dispositional mood 

(Hacker 2009), the last operated in the realm of shorter emotional perturbations and 

without awareness of participants. The aim of these experiments was therefore to 
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address the question as fully as possible over different periods of time and different 

stimuli to answer the questions: can facial contagion induced emotional contagion lead 

to lasting positive changes in emotional states? Can these neuroscientific principles be 

translated into useful nudge interventions for low mood in the general population?  
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Experiment 1: A longitudinal pilot of mood 
enhancement through emotional contagion 
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 Scope  

The purpose of this iPhone based research was to pilot a large scale single arm 

observational study assessing whether seeing smiling faces several times a day could 

enhance dispositional mood as measured by standardized self-report questionnaires. 

This was the first presentation of a non-invasive attempt to modify self-reported mood 

over the long term with foundations in neuroscientific evidence that operated at a 

subconscious level and delivered through smartphones. 

 Methods 

4.3.1 Study design 

To assess the efficacy of seeing smiling faces several times a day in raising baseline 

mood in a non-clinical population, a large-scale observational study was performed 

through an iPhone based application (app) named Pocket Smile. The experiment was 

approved by a UCL Research Ethics Committee as study number 4746/001.  

4.3.2 Materials 

4.3.2.1 Mood questionnaires  

Mood questionnaires were presented prior to commencing stimuli presentation (T0), 

after 10 days of viewing the smiling faces (T1), and at 1 month intervals subsequently 

until participants left the study freely (i.e. T2 = T1+1 month; T3 = T1+2 months; T4 = T1+3 

months, etc). In-app assessments of mood were selected largely for their brievity and 

formed a total of 14 questions at each timepoint. These consisted of a negative mood 

measure, a happiness questionnaire, and a control question for potential external 

confounds detailed below. 

The Patient Health Questionnaire 9 (PHQ-9; (Kroenke et al 2001) was 

instrumentalised within Pocket Smile for the self-assessment of low mood severity as 

“Mood Questions” (see Appendix B.4)5. This specific version was selected as it performs 

                                                      
5 Although the term depression score will be used in reference to PHQ scores we do not mean to 
imply that the participant population studied are indeed depressed as no clinical in-person 
assessment was performed. 
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more accurately than ultra-brief versions (Gilbody et al 2007), comparably to longer 

versions such as the Beck Depression Inventory-II (Kung et al 2013), and is generally 

well-validated (Lӧwe et al 2004). In addition, it has been successfully operationalised in 

app-based studies for treating depression (Watts et al 2013) and is potentially more 

sensitive to capture certain aspects of depression than the traditional version of the 

PHQ-9 (Torous et al 2015).  

The Subjective Happiness Scale (SHS; Lyubomirsky and Lepper (1999), a four-

item, global self-assessment of happiness was implemented as “Recent Events” 

(Appendix B.5). The SHS fulfilled similar brevity criteria as those of the PHQ-9 and 

demonstrated cross-cultural validity in the general population (Shimai et al 2004; Swami 

et al 2009). An additional question was added to assess the presence of major life events 

to account for skewed responses. 

For both questionnaires, the timescale of the questions requiring retrospection 

was modified to cover the time periods in between the times of interest.  

4.3.2.2 Stimuli  

A set of 200 genuinely smiling faces was created to ensure participants would not see 

the same face twice before the first mood questionnaires were presented again at T1 

(i.e. T0 + 10 days) should they select the maximum setting of 20 faces a day. 

A general requirement for the face stimuli was ensuring anonymity of the smiling 

subjects to avoid any participant encountering a person they knew. This requirement 

narrowed stimuli possibilities to virtual avatar faces or averages of real faces. Avatars 

are an ideal stimulus because they elicit equivalent facial contagion responses as real 

faces when measured with fEMG (Weyers et al 2006) and can be created rapidly with 

commercially available software such as FaceGen (http://facegen.com/). However, 

participants must find the faces Attractive to keep participating in the experiment and 

not to be disturbed or distracted by the stimuli. To assess preferences to virtual or 

average faces an online poll was conducted comparing virtual and composite sample 

stimuli and found a 92.68% preference for real faces (N=41; Figure 4.1). Therefore, the 

images used in the present experiment were derived from photographs in the public 

domain processed to make them unidentifiable by aligning and merging disparate 

features across the dataset. Though identifiable as a face, each image was therefore not 

the face of anyone real. 

http://facegen.com/
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To construct the stimuli, 110 images of women and men with genuine smiles 

were selected from the internet, representative of a diverse range of adult ages and 

ethnicities, with minimal skin imperfections and face obstructions (e.g. no glasses, no 

hair across forehead, front facing). Both faces depicting genuine “Duchenne” smiles and 

fake smiles elicit similar facial contagion responses as measured with EMG, however 

Duchenne smiles induce stronger facial contagion responses (Krumhuber et al 2013) 

leading us to select images exhibiting Duchenne smiles to form the basis for the stimuli. 

The images were then imported into Abrasoft FaceMixer 3 

(http://www.abrosoft.com/facemixer/) to perform the parametrisation and averaging of 

the faces6. This allowed automatic parametrisation and more meticulous control over 

averaged face composition. All faces were created from 2% of all faces of the same 

gender and 20% from three different faces per iteration. This ensured the creation of 100 

images of each gender with distinct individual differences. A contour of the average of 

each image was created and turned into a short mask in MIPAV 

(http://mipav.cit.nih.gov/). This black-and-white background was then converted to grey 

(RGB: 185,184,180) and multiplied with the average faces in MATLAB after applying a 

0.01 low pass Gaussian blur so that the faces were roughly contoured by a smooth, 

neutral grey background rather than the average of the pictures’ original backgrounds 

which varied immensely at times and could be distracting. These images were imported 

into Photoshop CS6 where the background was blurred further to maximise attention to 

the smiling face and cropped to fit the screens of the iPhone 5 (640 x 960) and previous 

versions (320 x 480). This process yielded 200 images which were presented in a full 

pseudorandom cycle. 

                                                      
6 The reader may find it useful to refer to the visual depiction of the image creation process 
provided in Appendix B.11 to accompany the remainder of the paragraph. 

http://www.abrosoft.com/facemixer/
http://mipav.cit.nih.gov/
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Figure 4.1. Stimulus type selection. This figure shows the online poll used to assess preferences to 
avatar and composites prior to creating the full dataset of face stimuli. Participants were instructed 
to submit a simple aesthetic preference and composite stimuli were widely preferred (N=41).  
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4.3.3 Participants  

Participants were recruited opportunistically by freely downloading the app from the 

iTunes App Store (see Appendix B.8). Though the app was only available in English, the 

description on the App Store was translated into French, Spanish, and Italian for 

increased exposure to international participants. To maximise recruitment, an online 

presence on social media was maintained on Facebook and Twitter (Appendix B.10) that 

redirected participants to a dedicated website with information about the project 

optimized for mobile and desktop devices (Appendix B.9). Following research showing 

that attitudes towards electronic self-help treatment options for mental health are 

subject to the amount and quality of information available to the user (Musiat et al 2014), 

efforts were made to provide participants with sufficient information to make an 

informed choice during sign up and on the website as well as operating a dedicated 

email contact address (contact-pocketsmile@ucl.ac.uk). Significant promotional 

activity was undertaken to promote Pocket Smile including three public engagement 

events on “The Science of Smiles” and networking with mental health charities and the 

press. Social networking platforms also served as sources for the latest information on 

the project and as accessible platforms for contact to current and prospective 

participants which were also embedded into the official website. 

Although other mobile-based studies related to mood have previously 

incentivised participation (e.g. LiKamWa et al (2011), no offer of payment or 

compensation was offered beyond telling participants they would be helping the 

potential development of a drug-free intervention to enhance mood. Since usage of the 

app is not onerous, the incentive of a monetary or other reward could have led to using 

the app as a lottery-style system and not looking at the faces at all. Also, considering 

participants were recruited worldwide, a bank transfer or address would have been 

necessary to award and certify the prize that would have complicated ethics 

significantly. 
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4.3.4 The Pocket Smile infrastructure  

A back-end developer and a designer were hired from Tapparium ltd to create the app 

named Pocket Smile (source code in Appendix B.14). Over a 3-months reiterative 

process with the research team, their work yielded an app compatible with iPhone, iPad, 

and iPod touch running iOS 5.1 or later, a dedicated website and contact email address, 

and a secure storage database running on a local server at the UCL Institute of Cognitive 

Neuroscience.  

Extensive effort was undertaken to develop an 

attractive app with a coherent design and user-friendly 

interface that would perform successfully as a scientific 

experiment. The logo and name were conceived to portray 

the function of the app intuitively, by portraying a smiling 

emoticon in a denim-style pocket (Fig 4.2).  

4.3.4.1 App implementation 

The first time the app was launched, participants landed on a ‘welcome’ menu with the 

first of four steps enabled for completion required for taking part in the study (see 

Appendix B.1). They were presented with a combined PIS and consent form (see 

Appendix B.2), where they self-assessed eligibility to participate and tapped an 'I agree' 

button to give consent. The user also had the option to contact us by email or using other 

contact details provided prior to giving consent. If they did not consent to take part in 

the research, they were unable to use the remaining functionalities of the app and 

participate in the study. Participants who gave consent were asked to provide basic 

demographic information in the subsequent section (Appendix B.3). None of this data 

constituted 'identifying information' as classified by the Data Protection Act 1998. 

Participants were then presented with an initial 14 question assessment of low mood 

and happiness which provided baseline scores for further comparisons. These steps 

completed the registration process. 

Subsequently, participants were automatically taken to the ‘Home’ tab of the in-app 

menus (see Appendix B.6) where a countdown informed them of the time until the next 

face was ready for viewing. Pocket Smile also contained 3 other bottom tabs consisting 

of 1) an ‘About’ section, with a link to the project website, options for contacting the 

team, references to the questionnaires, and credits to Tapparium developers, 2) a 

‘Settings’ section consisting of 3 sliders to regulate the frequency and timing of 

Figure 4.2. The 
Pocket Smile Logo. 
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appearance of the stimuli, and 3) a ‘Help’ section with frequently asked questions, 

access to the PIS, and contact details for the research team. 

Once participants entered their preferred settings, the app sent a push-notification 

when a face was available for viewing accompanied by the text: “a new smile awaits 

you!” (see Appendix B.7 for a sample notification depiction and all stimuli). Participants 

who acknowledged the notification by either sliding the notification or selecting the app 

icon would be presented with one of the created stimuli until they left the study or set 

their settings to ‘0 faces per day’. They could then return to the ‘Home’ tab by tapping a 

black arrow at the bottom right corner of the image and or exit the app by pressing the 

iPhone’s ‘Home’ button.  

4.3.4.2 The server database 

The data from Pocket Smile was sent over an industry standard encrypted secure 

connection (Secure Sockets Layer; SSL) and stored in a firewalled Apache HTTP Server 

at the UCL Institute of Cognitive Neuroscience. The server ran a MySQL database 

management system and used InnoDB as its storage engine. A PHP script created an 

API endpoint reference on the server to which Pocket Smile could send an HTTP POST 

request with the relevant data to upload. The request consisted of an HTTP Content Body 

to be included in a JavaScript Object Notation (JSON). The JSON was then saved to a 

single column in a row that could be browsed through phpMyAdmin and exported in a 

Comma-Separated Value file (CSV) to form a spreadsheet layout. 

The initial demographics, time zone, and mood questionnaire data, were sent to 

the server after sign-up or when participants next had network coverage. Face 

appearances and settings configuration were stored in the app and sent to the server on 

a weekly basis henceforth. Mood questionnaire responses were uploaded after 

participants responded. All uploaded data was fully anonymised by use of unique device 

identifiers, which were never attached to personally identifying data. 

A Countly infrastructure provided online mobile data analytics to the research 

team through a password protected web-interface. This platform was mostly consulted 

for general tracking and monitoring purposes and to have a quick overview of usage 

analytics (Appendix B.12).  
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4.3.5 Data analysis 

The CSV file containing the data was exported from the database into MATLAB where it 

was re-organised to score the questionnaires.  

Since the PHQ-9 scores each of the DSM-IV criteria for depression from "0" (not 

at all) to "3" (nearly every day) and yields a total score of depression severity of: 0-4 none, 

5-9 mild, 10-14 moderate, 15-19 moderately severe, and 20-27 severe, a total score per 

participant at each timepoint was computed. SHS responses were scored as likert type 

scores from 0 to 7 and the last item was reversed score. The total of each score per 

participant were averaged yielding an SHS score indicating 0-2 low, 3-5 average, and 6-7 

high happiness.  

These were then inserted into a large table with one row per participant 

consisting of a randomly generated username and codified responses for gender, age, 

life satsifaction, overall health, relationship status, employment status, and time zone, 

followed by PHQ, SHS, and major life event scores for each timepoint.   

Overall changes in PHQ and SHS scores were then explored with separate mixed 

effects repeated-measures ANOVAs in SPSS with timepoints as within participants 

factors. A mixed-effects model was opted to be more appropriate than classic repeated-

measues ANOVA as it corrects for intra-participant correlation of scores at subsequent 

timepoints. 

The effect of faces seen on participants was explored running linear regressions 

in SPSS comparing changes in scores as defined by test of interest at timepoint of 

interest minus baseline score (e.g. PHQ score at T1 minus PHQ score at T0) with 

regressor variables of interest (i.e. T0 score (baseline), average faces seen between 

timepoints of interest, gender, age, presence of a major life event). Since there was no 

control group, the presence of a dose response was explored between changes in mood 

questionnaire scores and average faces seen. A linear relationship was explored 

whereby higher averages were expected to drive larger changes in scores.  
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 Results  

4.4.1 Descriptive statistics 

Pocket Smile was downloaded 1742 times from 

the App Store and presented over 112,742 smiling 

faces to participants. Complete registration data 

were obtained from 1293 participants mainly from 

English speaking countries (92%; Figure 4.3). 

As can be seen in Table 4.1, at baseline most 

participants were female and around 30 years of 

age, though 47% were between 19 and 25 years. 

Overall, participants reported slightly above 

average life satisfaction (see Appendix B.3 for 

questions), “Good” average health, and most 

reported being ‘Single’ (35%), ‘In a relationship’ 

(32%), or ‘Married’ (34%), and ‘Employed’ (33%) or 

‘Studying’ (50%).  

Attrition analyses at baseline 

demonstrated that individuals who did not respond at follow-up were older, male, no 

longer employed, reported poor overall health at baseline, and tended to be in Africa, 

Australia, India, or the Pacific Islands. It is important to note that the studied population 

is not stationary but rather reflects a snapshot of asynchronous moving windows. Since 

there was no fixed starting date there were participants in earlier timepoints who 

remained active in the study, thus missing data could signify incomplete data because 

the user had recently joined the study or dropout due to earlier improvement. Time 

constraints did not allow this consideration to be included in the attrition analyses but 

can be performed in future work to explore whether those leaving the study are not more 

depressed at baseline and therefore introducing a bias in the sample studied. 

Figure 4.3. Top 10 participant 
nationalities as ranked by Countly 
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Table 4.1 – Demographic Characteristics of Participants in the Pocket Smile Study and Attrition Comparison from Baseline Key Variables   

  Sample (n)    1293     394      169      104      62     39    31   25  

  Timepoint      T0      T1      T2      T3      T4     T5    T6   T7  

Gender, n (%)          

      Male 461 (35.7) 124 (31.5) 56 (33.1) 32 (30.8)  19 (30.6) 11 (28.2) 8 (25) 5 (20)  

      Female 832 (64.3) 270 (68.5) 113 (66.9) 72 (69.2) 43 (69.4) 28 (71.8) 24 (75) 20 (80)  

Age group, n (%)          

      18-34 992 (77) 276 (70) 112 (66.3) 65 (62.5) 35 (56.5) 22 (56.4) 17 (55) 16 (64) 

      35-51 228 (18) 91 (23) 45 (26.6) 31 (29.8) 22 (35.5) 15 (38.4) 12 (39) 8 (32)  

      52-68 69 (5.7) 26 (6.6) 12 (7) 8 (8) 5 (8) 2 (5) 2 (6) 1 (4)  

      69+ 4 (0.3) 1 (0.4) 0  0  0 0 0 0  

Mean age, continuous (SD) 29 (10.7) 31 (11.1) 32 (11.1) 33 (11.4) 34 (11.6) 34 (10.4) 34 (10.0) 33 (9.2)  

Employment, n (%)          

      Studying 651 (50.3) 200 (46.2) 63 (37.3) 38 (36.5) 21 (33.9) 12 (30.8) 9 (29) 8 (32)  

      Employed 432 (33.4) 163 (41.4) 81 (47.9) 51 (49) 39 (62.9) 25 (64.1) 21 (67.7) 16 (64)  

      Retired 10 (0.08) 8 (3) 6 (3.5) 4 (3.8) 0  0 0 0  

      Unemployed 49 (3.8) 22 (0.6) 10 (0.6) 5 (4.8) 1 (1.6) 0 0 0  

      Skipped 28 (2.2) 1 (.2) 9 (0.5) 6 (5.8) 1 (1.6) 2 (5.1) 1 (3.2) 1 (4)  

Life Satisfaction, n (%)          

      Low (0-3) 134 (10.1) 39 (9.9) 17 (10) 10 (9.6) 8 (12.9) 7 (18.0) 7 (21.9) 6 (24)  

      Medium (4-6) 490 (37.3) 142 (36) 68 (40) 48 (47) 31 (50) 17 (43.5) 12 (38.7) 9 (36)  

      High (7-10) 669 (51.7) 208 (52.1) 84 (50) 46 (44.4) 23 (37.1) 15 (38.5) 13 (41.9) 10 (40)  

          

 

 

         

Continued 
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Table 4.1 -  Continued          

   Sample (n) 1293 394 169 104 62 39 31 25  

  Timepoint T0 T1 T2 T3 T4 T5 T6 T7  

Overall Health, n (%)           

      Poor   86 (6.8) 20 (5.2) 12 (0.6) 0  0 0 0 0 

      Fair 226 (17.4) 70 (17.7) 30 (18) 25 (24) 17 (27.4) 12 (30.8) 10 (32.3) 9 (36)  

      Good 621 (48.0) 194 (49.2) 86 (51) 50 (48.1) 29 (46.8) 20 (51.3) 17 (53.1) 11 (44)  

      Very Good 360 (27.8) 110 (27.9) 41 (24.4) 29 (27.9) 16 (25.8) 7 (17.9) 4 (12.9) 5 (20)  

Marital status, n (%)          

      Single  457 (35.3) 126 (32) 39 (23.1) 27 (26) 18 (29) 13 (33.3) 12 (37.5) 11 (44)  

      In a Relationship 425 (32.9) 135 (34.3) 57 (33.7) 30 (28.8) 17 (27.4) 9 (23.1) 7 (21.9) 5 (20)  

      Married 321 (24.8) 112 (28.4) 60 (35.5) 44 (42.3) 26 (41.9) 16 (41) 12 (37.5) 9 (36)  

      Widowed 45 (3.5) 10 (2.5) 8 (4.7) 3 (2.9) 1 (1.6) 1 (2.6) 1 (3.1) 0  

      Divorced 28 (2.2) 7 (1.8) 2 (1.2) 0 0 0 0 0  

      Skipped 17 (1.3) 4 (1.0) 3 (1.8) 0 0 0 0 0  

Geographical location, n (%)          

      Africa 10 (0.8) 0  0 0 0 0 0 0  

      North and South America 252 (19.5) 76 (19.3) 27 (16) 15 (14.4) 10 (16.1) 6 (15.4) 5 (15.6) 5 (20)  

      Asia 53 (4.1) 8 (2) 7 (4.1) 4 (3.8) 3 (4.8) 2 (5.1) 2 (6.3) 1 (4)  

      Australia 36 (2.8) 13 (3.3) 5 (3) 2 (1.9) 1 (1.6) 1 (2.6) 1 (3.1) 0  

      Europe 928 (71.9) 295 (74.9) 129 (76.3) 83 (79.8) 48 (77.4) 30 (76.9) 24 (75) 19 (76)  

      India and Pacific Islands 12 (0.9) 2 (0.5) 1 (0.6) 0  0 0 0 0  
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4.4.2 Mood questionnaire scores 

The mean depression PHQ scores at baseline for the total sample were characteristic of 

mild depression as measured with the PHQ-9 (M = 8.83, SD = 4.92). Mean happiness 

scores were below the median value of 4.75 as measured with the SHS (M = 3.93, SD = 

1.5) and indicative of a state of unhappiness (Lyubomirsky and Lepper 1999). Both 

results are unsurprising since participants self-selected into the study and did so most 

likely because of their low mood. Most participants reported they had not experienced 

any major life event (61%). Participants who experienced a major life event generally 

reported no effect on their mood (26.2%), while a minority reported these events resulting 

in significant negative (7.2%) and positive (5.6%) changes to their mood. These 

individuals were discarded from further analyses.   

Mixed-effects repeated-measures showed that participants reported a quick 

initial improvement in mood followed by a stabilisation of mood that suggested higher 

happiness than at baseline, but no continued improvement subsequently (see Fig. 4.4)7.  

 

 

 

 

 

 

 

 

                                                      
7 see Appendix B.13 for mixed effects repeated measures results 

Figure 4.4. Mean depression and happiness scores at baseline (T0), at 10 days (T1), and at 1 month 
subsequently for the first six months of the study, plotted with standard error bars. Higher PHQ scores 
indicate higher depression and higher SHS scores indicate higher happiness.  
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4.4.3 Evaluating the intervention 

Since no changes in scores were observed following initial improvement after 10 days, 

the intervention was assessed at T1 and at the last timepoint (i.e. T7; 6 months). This 

method therefore limited results to the timepoints of most interest: when there were the 

most participants (T1) and at the last gathered measurement point (T7), ensuring 

conservative analyses and yielding less likelihood of type-2 errors related to multiple 

comparisons.  

Visual inspection of the data at the timepoints of interest showed weak trends in 

line with the hypothesised direction of treatment effectiveness at T1 and stronger trends 

at T7 (Figure 4.5). 

Multiple linear regressions were used to evaluate the effect of average faces seen 

on changes in mood for both mood questionnaires at T1 and T7. Change in mood was 

computed as the mood questionnaire score at baseline subtracted from that at a latter 

timepoint (i.e. T1/7 minus T0) therefore adjusting mood levels prior to enrolment. 

Univariate linear regressions were performed in SPSS to explore which baseline 

characteristics were related to changes in score. The variables consisted of dynamic 

variables (average faces seen during time period and presence of a major life event at 

each timepoint) and unchanging demographic baseline variables (gender, age, life 

satisfaction, overall health, geographical location, marital and employment status).  

At T1, unadjusted linear regressions only returned a significant model for Life 

Satisfaction for PHQ (F (1, 391) = 10.33, p < .001, R2 = .026) and SHS (F (1, 391) = 11.22, 

p < .001, R2 = .028) measures (Figure 4.5). At T7, adjusted linear regressions only 

returned a significant model for Average Faces Seen for the SHS (F (1, 22) = 4.34, p < .05, 

R2 = .165) measure (Figure 4.6). 
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Figure 4.5. Changes in scores for all participants at T1 (10 Days) for depression (top) and 
happiness (bottom) scores plotted with average faces seen and fitted with a logarithmic 
trend line.  
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Figure 4.6. Changes in scores for all participants at T7 (6 months) for depression (top) and 
happiness (bottom) scores plotted with average faces seen and fitted with a logarithmic 
trend line.  
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 Discussion 

4.5.1 Conclusions 

This section presented the analyses of the long-term version of Pocket Smile; the first 

fully anonymised app-based intervention for low mood to demonstrate general 

improvements in mood. The results indicated that Pocket Smile participants reported 

reduced depressive symptoms as measured with the PHQ-9 and SHS when comparing 

pre- to post-intervention scores at baseline and up to 6 months subsequently. Since the 

main goal of this study was to test feasibility of conducting such research with mobile 

devices it was also evidence of support for an intervention founded on facial contagion 

and delivered through smartphones.  

Changes in low-mood and happiness scores indicated a clear improvement in 

mood as demonstrated by independent self-report measures. PHQ-9 scores decreased 

an average of almost 4 points at peak difference, indicative of a 39% decrease in PHQ-9 

assessed depression from ‘moderate’ to ‘mild’. These results show stronger effects of 

change on a participant population with mild depression than other app-based studies 

looking at similar populations as measured by change of PHQ-9 score (Watts et al 2013). 

For example, once participants in the Watts et al (2013) study had reached medium to 

low depression as measured with the PHQ-9 questionnaire, their scores descended an 

average of 2.5 less points compared to Pocket Smile participants. Compared to Ly et al 

(2014), Pocket Smile participants exhibited an improvement of 2 PHQ-9 points less 

however this study also included up to 20 minutes of therapist contact per week and 

CBT delivered through the app. Thus, the strong changes seen in Pocket Smile with the 

comparatively minor requirement of the intervention suggest it was effective 

intervention.  

Accordingly, SHS scores increased on average by 2.3 points at peak difference, 

indicative of a 37% increase in happiness, from ‘below average’ to ‘slightly above 

average’ happiness. Participants reported improvements in mood that were then 

robustly maintained, suggesting that these are promising proof-of-concept 

observations.  

An exploration of the strength of the intervention showed that after continued 

usage of the app, participants who saw more smiling faces between mood 

questionnaires also reported the most benefits. However, this statistical support for the 

effectiveness of Pocket Smile was only found for the Happiness measure at 6 months, 
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while life satisfaction prior to treatment was the best predictor for score changes after 

10 days. These results suggest that Pocket Smile had a beneficial effect on general 

mood though the mechanisms interacting with the treatment may be multifaceted.  

This is the first comparison of the PHQ, an egocentric subjective measure of 

depression, and the SHS, an allocentric measure of happiness, administered within the 

same English-speaking population. It is therefore possible that, though they demonstrate 

negatively correlated results as expected, the aspects of mood they measure are 

differently affected by average faces seen. Thus, Pocket Smile’s positive effect on 

certain aspects of mood may become independent of the high number of faces seen as 

the simple reminder of seeing a few faces every day could be enough to maintain the 

individual at a higher mood level than prior to enrolment. It is also possible that other 

variables such as motivation or expectation that the intervention will work could lead to 

higher adherence to the study. This would be in line with the finding of higher life 

satisfaction predicting improvement in mood at 10 days, as previous studies find 

participants with optimistic expectations to work harder and longer at following the 

instructions of voluntary mood enhancing treatments (Seligman et al 2005; Lyubomirsky 

et al 2011).  

Lastly, a principal goal of this pilot was establishing feasibility and addressing 

concerns that dropout rates might be too high to include a voluntary control condition. It 

was interesting that most people who dropped out were unemployed older than average 

(31+ years of age) males with poor overall health and from non-European or North 

American countries. Perhaps this is due to the smiling faces looking quite young overall 

and could provide reason to not identify easily with these stimuli, an issue addressed in 

the next experiment.    

4.5.2 Limitations  

As a main purpose of this experiment was to establish the feasibility of this approach no 

control condition was included to assess the effect of the faces. A way to circumvent 

this issue would have been to include a group naïve to the experiment in a control viewing 

condition where they would see, for example, landscapes. Nevertheless, it was a general 

impossibility to operationalise a control condition for a publicly listed app-based study 

on mood as participation was anonymous and proper debriefing would not be possible. 

Also, there would be no way to certify participants remained naïve to the manipulation 

after answering questions about their mood on a monthly basis. Still this could mean 
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that the improvement in mood seen represents spontaneous recovery of mood, 

independent of Pocket Smile usage. 

Another shortcoming of the present study is that participants self-selected into 

Pocket Smile. The large studied sample was mostly representative of the general 

population in Europe and was effectively attracted to the free app-based treatment. 

Many participants continued using the intervention voluntarily for an extended period 

(over 6 months). As the app was freely available, the sample population did not 

necessarily engage with the treatment in the same way as a patient population might 

have, had it been recommended by a doctor as a supplementary therapy. In comparison 

to similar studies (Watts et al 2013; Ly et al 2014), the participant population reported 

less severe depressive symptoms at baseline as measured by the PHQ-9 (i.e. up to 6 and 

4 points less respectively on average). To account for this factor and explore the effect 

of the intervention in the target population rather than on casual app users -who might 

particpate out of curiosity rather than need- future analyses will exclude those 

participants that do not exhibit at least mild depression at baseline as defined by the 

measures (e.g. by removing all participants who scored under 5 in the PHQ-9).  

Although the app was available for download worldwide, the study sample is 

more representative of the general population in Europe. This allows comparison of the 

results with Western European and American populations, but no claim can be made as 

to the representativeness of countries with higher cultural heterogeneity as there are 

lower rates of participants located in Africa and Southeast Asia.  

Additionally, the current design did not permit the analysis of change in mood to 

be compared with total faces seen between mood questionnaires. This was due to the 

significant time discrepancy between T0 and T1 (10 Days) and subsequent timepoints 

(1 month). Although utilising average faces seen between the timepoints was 

considered to be a valid measure, changes to the future experimental designs could be 

made to allow this analysis. 

Ideally a measure of empathy should have been administered at baseline, since 

this could affect participants’ reactivity to facial contagion (Sonnby--Borgstrӧm 2002) 

and thus introduces a potential confound on the intervention as it may have been less 

beneficial for those with lower empathy scores. As the shortest validated empathy 

measure requires responding to 16 items (Spreng* et al 2009), this might have proven 

too onerous on the registration process and was therefore opted against.  
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4.5.3 Future directions 

This version of Pocket Smile showed that it was possible to influence changes in mood 

in a large population through an app with results indicating comparable or more potent 

effects for moderate to mildly depressed populations than existing app-based 

depression therapies. It therefore holds potential to be further studied as a candidate 

therapy to help afflicted individuals. If found to be effective only for those with mild 

depression, this would still be beneficial for society as they remain significantly burdened 

as a patient population (Jain et al 2013).  

Since this is the first demonstration of the effect that facial contagion can have 

on mood modification through a smartphone, it is important to take this phenomenon 

into account when designing future app-based mental health treatments. For example, 

the Happy Taps function of the Mood Mint app for iPhone claims to re-direct attentional 

bias from negative to positive valence stimuli and “reduce stress, anxiety and 

depression”. The app requires participants to find and tap a smiling face among a 

mosaic of four faces where one is smiling and the others exhibit negative expressions 

such as anger, sadness, or fear. As the effects of facial contagion occur at a 

subconscious level it is possible that the app is unintentionally inducing negative 

emotions in participants due to the three times higher presentation of negatively 

valenced facial expressions. This is concerning considering the high degree of 

comorbidity between anxiety and depression (Alloy et al 1990; Brady and Kendall 1992) 

which could result in depressed patients accessing this intervention which has not been 

properly validated yet. Indeed, as no peer review or scientific publications are necessary 

to publish an app and label it as a treatment for mental health disorders, I advise 

prospective users to only consider app-based treatments with prior scientific or clinical 

validation. I also encourage colleagues to make their apps available as treatments only 

following rigorous scientific process or have it designated as a medical device where 

appropriate (Medicines and Healthcare products Regulatory Agency 2016).   
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Experiment 2: Assessing the specificity of 
changes in mood to seeing smiling faces  

 

 

 



 

121 

 

 Scope  

The purpose of this experiment was to explore the mechanism behind the effects of the 

first Pocket Smile app experiment while integrating the feedback received by 

participants. Since the goal of the Pocket Smile project remained creating a nudge-based 

intervention that exploits facial contagion to improve low mood, this version tested the 

validity of the face stimuli rather than the theoretical explanations posited beforehand 

as the main driver behind the Pocket Smile effect. The main changes with the previous 

experiment consisted of changes to the 1) stimuli conditions and 2) the timings of the 

questionnaires, to transform Pocket Smile from a feasibility study into a double blinded 

randomized-controlled trial (RCT).   

 Methods 

4.7.1 Study design 

Whereas previously the experiment had only one stimulus condition (smiling faces), this 

version compared the effect of viewing landscapes and smiling faces. Landscapes were 

used as control stimuli to determine whether the effect observed was specific to viewing 

smiling faces and whether seeing smiling faces several times a day could enhance mood 

more than seeing landscapes, a type of neutral non-social valence stimulus. Viewing 

conditions were setup in a Latin-square design whereby participants were randomly 

allocated to view either landscapes or smiling faces for the first 10 days after the initial 

mood assessment. Subsequently, their mood was assessed again, and participants were 

switched to the other image condition for the next 10 days before the final mood 

assessment. For example, a participant would begin the experiment by answering the 

baseline initial questionnaire and randomly allocated to viewing landscapes. After 10 

days of viewing landscapes they were given the questionnaire again, and once 

completed the app showed smiling faces for 10 additional days. After 20 days, the mood 

questionnaire was presented again. These changes allowed for more data points per 

participant to be obtained in less time, thereby improving the reliability of the data. This 

experiment was ethically approved by the UCL REC as an extension from the previous 

experiment with minor amendments.  
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4.7.2 Materials 

4.7.2.1 Mood questionnaires  

Feedback from the first experiment suggested that the questionnaire timings were not 

onerous on participants however the greatest dropout was found after 1 month. 

Therefore, efforts were made to shorten the intervals to 10 days and a maximum of 20 

days total participation was required. The same mood questionnaires (PHQ-9 and SHS) 

were used as those in the first Pocket Smile experiment with the retrospective time 

adapted to cover the 10 days prior to responding. These were administered initally, after 

signing up, to provide a baseline measure and at day 10 of participation, during the 

middle of the experiment and prior to switching viewing conditions, and at day 20, after 

completing the experiment. Since participants were randomly allocated to a stimulus 

condition at baseline and switched to the other after 10 days, after 20 days they would 

have experienced both conditions which is when official data collection ceased.  

4.7.2.2 Stimuli  

A set of 94 genuinely smiling faces of both genders and 94 landscapes were created to 

ensure participants did not see the same image more than once during the experiment. 

The same considerations were taken to create and select these images as in the 

previous experiment. 

A variation in the software used to create the averages was introduced by 

importing the images into a web version of Psychomorph (www.WebMorph.org) where 

189 points were placed on facial features manually. This configuration was used as a 

reference for averaging the faces. To create the composite averages, 3 images were 

averaged and so forth, incrementally, with the aim of yielding maximum genetic variation 

across generations with minimum repetition. The faces were then aligned and imported 

into Photoshop CS6 where each face contour was traced manually to include facial 

expression and leave out hair, ears, and neck. The edge of this contour was feathered at 

a 10-pixels radius and a Gaussian blur at 7-pixels was applied to the inverse selection 

(i.e. the background). The images were then cut and resized, yielding 94 images which 

were each uniquely presented during the 20 days (see Figure 4.7). This created a new 

range of higher quality smiling average faces that responded to previous user feedback 

(less homogenous, more ethnic and age differences, more realistic).  

http://www.webmorph.org/
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For the landscapes, a Google search was performed for scenic landscapes of 

beaches, lakes, mountains, meadows, hills, and deserts. Images free of copyright 

restrictions without social stimuli (i.e. including depictions of people or major human 

constructions) labelled for non-commercial re-use with modifications were selected and 

cropped to the appropriate size (see Figure 4.8). 

 

 

1. Selected images from internet 
2. 189 features delineated 
manually in Psychomorph 

3. Faces averaged 

 

4. Faces aligned and background blurred and 
cropped in Photoshop CS6 

Figure 4.7 Image creation process for face stimuli. 1) Images were selected from the internet exhibiting genuine 
Duchenne smiles. 2) Facial features were delineated through 189 points used for reference during 3) averaging. 4) 
Resulting faces were modified to hide unreferenced artefactual background features and used as images in the 
second app experiment. 
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Figure 4.8 Sample notifications and all stimuli with two example image options. 

image 
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4.7.3 Participants  

Participants were recruited through similar channels as the Pocket Smile experiment 

however a small budget was also allocated to advertise through Facebook. Three digital 

adverts were created to promote downloads of the app targeting iPhone and Android 

users globally (Figure 4.9). This allowed unrestricted global access to 1.79 Billion 

potential participants across the world while maintaining the same social media and 

digital presence as in the previous experiment.  

 

 

 

 

 

 

 

 

4.7.4 The app  

The current app was identical in many ways including in style and design to the first 

version of the app. Milo Creative developers were hired to perform the backend changes 

required to the app infrastructure and release the app on iOS and Android (source code 

in Appendix B.15). This involved several tasks including coding the new landscape 

condition, the new timings and switching after 10 days, randomly allocating participants 

to either conditions at the start, changing the landing page from the home page to the 

settings page, including a new timer about when the next questionnaires were going to 

appear, allowing participants to choose what images to see upon completion of the 

experiment, notification to display a stimulus-neutral message “a new image awaits you” 

rather than “a new smile awaits you”, and all the appropriate changes to the database. 

 The same questions and data were gathered as in the first app except for the 

Countly analytics since these were not compatible with React Native. A new database 

Figure 4.9. Facebook advertisements used to reach users globally in the second Pocket Smile 
experiment. 
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was created to house this new experiment in the Institute of Cognitive Neuroscience at 

UCL.  

4.7.5 Data analysis 

Two samples t-tests were used to compare baseline mood questionnaire scores and 

changes in scores over time, and paired samples t-tests to explore within-subject effects 

in changes in scores. 

For each mood questionnaire, changes in scores were computed by subtracting 

the second score from the previous one so a change was computed for 0 to 10 days and 

10 to 20 days. A repeated measures two-way ANOVA was performed on the changes in 

scores while factoring for the type of image seen and whether this change was after 10 

or 20 days to elucidate general effects. 

Furthermore, a differential mood questionnaire score was computed which 

allowed to parametrise how much of the changes in scores were due to seeing smiling 

faces as attenuated by the effect of seeing landscapes8. To calculate this differential 

score, the change in score after seeing landscapes was subtracted from the change in 

score after seeing smiling faces for each participant, irrespective of when each 

participant saw a particular image type.  

These analyses were performed separately on each questionnaire type with 

multiple robust linear regressions while including baseline static measures as 

confounders variables (device used, geographical location, age, gender, overall life 

satisfaction, relationship status, overall health status, and baseline questionnaire score). 

To discern whether a dose response was associated with changes in scores total images 

seen of each image type were also inputted as regressors. A least squares estimates of 

each model compared the effects of exploring interactions to explore whether this better 

accounted for the data with a likelihood ratio test. An ANOVA further explored the added 

value obtained from adding additional variables to the regression models. 

                                                      
8 Differential Score = (change in score after seeing faces) - (change in score after seeing landscapes) 
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4.8 Results 

4.8.1 Descriptive statistics 

This version of Pocket Smile was downloaded a total of 1,240 times on iOS and about 

2,000 times on Android between the release of the app in December 2016 and data 

analysis on February 10th 2017. In total, 1922 people completed the sign up and first 

mood questionnaire, 509 completed the first 10 days, and 327 completed all 20 days of 

the experiment. Due to different app malfunctions (e.g. database duplicates or upload 

bugs), a total of 67 people were 

removed from the final studied 

sample. The analysis was 

therefore performed on 260 

individuals (see Table 4.2). 

Overall, there were equal 

numbers of males and females 

that started participating in both 

conditions. All users were above 

18 however the vast majority were 

middle aged and based in Europe 

or the USA. Most participants were 

working and were either married or 

had been married at some point in 

their lives (widowed or divorced). 

In general, the majority reported 

being in good health, were just 

satisfied with their lives, and most 

users used iPhones.  

 

 

Table 4.2 Demographics of Pocket Smile 2 participants 
grouped by image seen in first 10 days.  

 

Smiling Faces 
(n= 137) 

  Landscapes (n= 
123) 

Gender   

Male 58 (55%) 47 (45%) 

Female 79 (51%) 76 (49%) 

Age   

Mean years 45 46 

Location   

Europe 82 (53%) 73 (47%) 

Americas 33 (52%) 32 (48%) 

Asia 17 (50%) 17 (50%) 

Australia/Pacific 5 (71%) 2 (29%) 

Africa 0 (0%) 1 (100%) 

Life Satisfaction   

    Mean out of 10 6.7  6.3  

Health   

Very good 26 (52%) 24 (48%) 

Good 72 (53%) 63 (47%) 

Fair 34 (52%) 32 (48%) 

Poor 5 (56%) 4 (44%) 

Relationship Status  

Single 37 (51%) 36 (49%) 

In a relationship 30 (63%) 18 (37%) 

Ever-married 70 (50%) 69 (50%) 

Occupation   

Student 17 (71%) 7 (30%) 

Employed 89 (51%) 87 (49%) 

Retired 11 (46%) 13 (34%) 

Unemployed 16 (59%) 11 (41%) 

Device   

Android 38 (55%) 31 (45%) 

iPhone 92 (51%) 88 (49%) 

iPad 7 (64%) 4 (36%) 
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4.8.2 Overall depression and happiness score changes  

Irrespective of image seen, at the beginning of the experiment participants reported a 

mean baseline PHQ-9 score of 10.2 which decreased by 2.4 points after 10 days (t(258) 

= -9.6, p<0.001) by 0.9 points (t(258) = -3.7, p<0.001) after 20 days on a scale of 27 

(Figure 4.10). Similarly, across all viewing conditions participants reported a mean 

baseline SHS score of 3.2 which increased by 0.2 points after 10 days (t(258) = 3.7, 

p<0.001) and by 0.3 points after 20 days (t(258) = 4.3, p<0.001) on a scale of 7.  

For those who saw smiling faces for the first 10 days, the mean change in PHQ-

9 score was -2.5 compared to -2.4 with those who started seeing landscapes. A two-

sample t-test showed there was no significant difference between the two groups 

(t(2,260) = 0.02, p>0.05). Within those who began seeing smiling faces, the mean change 

in PHQ-9 score from day 10 to day 20 was -0.8 compared to -1.0 with those who started 

seeing landscapes. A two-sample t-test showed there was no significant difference 

between the two groups (t(1,261) = 0.27, p>0.05).  

A repeated measures two-way ANOVA showed changes in PHQ-9 scores to be 

greater during the first 10 days (F(1,271) = 7.94, p<0.05) though there was no effect of 

image type seen (F(1,271) = 0.8, p>0.05) or interactions between these variables 

(F(1,271) = 0.6, p>0.05).  

 

A two-sample t-test showed there was no evidence (t(2, 260) = 0.35, p>0.05) that 

there was a difference between increases in SHS scores between day 0 and 10 of those 

Figure 4.10 Mean PHQ-9 scores plotted with standard error bars showing decreases in time. 
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who began the experiment seeing smiling faces (mean change in SHS score of 0.19) or 

seeing landscapes (0.24). For those who began seeing smiling faces the mean change 

in SHS score from day 10 to day 20 was 0.17 compared to 0.38 with those who started 

seeing landscapes. Although this suggests a higher change in score for seeing smiling 

faces, a two-sample t-test showed there was no difference between these two measures 

(t(1, 261) = 1.56, p>0.05; figure 4.11). 

Paired samples t-tests revealed that participants had greater decreases in PHQ-

9 scores from day 0 to day 10, than day 10 to day 20 irrespective of image type 

(landscapes: t(125) = 2.37, p<0.05; smiling faces:  t(137) = 2.38, p<0.05). This effect of 

time was not found in response to SHS scores where both timepoints demonstrated 

similar increases in happiness level (landscapes: t(125) = 0.8, p=0.42; smiling faces: 

t(138) = 0.1, p=0.91).  

A repeated measures two-way ANOVA showed changes in SHS scores to be 

equally changed after 10 and 20 days (F(1,269) = 0.53, p>0.05) and there was also no 

effect of image type seen (F(1,269) = 0.06, p>0.05) or interactions between these 

variables (F(1,269) = 2.24, p>0.05).  
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Figure 4.11 Mean SHS scores plotted with standard error bars showing changes in time. 



 

130 

 

4.8.3 Effect of seeing smiling faces on depression scores 

A multiple linear regression was fitted to the differential PHQ-9 score adjusting for total 

landscapes seen, total smiling faces seen, and the order in which these images were 

seen (Figure 4.12.A). The model suggested that seeing more smiling faces was 

associated with a significant decrease in PHQ-9 score (F(1,255) = 4.12 p<0.05). 

Specifically, for every 10 smiling faces seen, PHQ-9 score decreased by 0.3 on the 27-

point scale. There was no evidence of interactions between the order that the images 

were seen and the number of faces and landscapes shown (chi2 (1) = 1.41, p= 0.50).   

After controlling for static baseline variables, the model showed that an increase in 

number of smiling faces seen was associated with reductions in differential PHQ-9 

scores, so that PHQ-9 scores decreased -0.18 points for every 10 smiling faces seen. 

However, this result did not reach statistical significance (F(1,220) = 1.08, p=0.30). The 

model also echoed the paired samples t-tests showing a greater decrease in differential 

PHQ-9 scores after 10 days than after 20 days (F(1,248) = 13.76, p<0.05). The model 

also showed that participants with higher PHQ-9 scores at day 0 benefitted less from 

seeing smiling faces than landscapes (F(1,222) = 5.10, p<0.05) overall. None of the other 

covariates reached statistical significance and are therefore not reported. The likelihood 

ratios test comparing the adjusted and unadjusted models showed both equally 

explained the data (chi2 2(27) = 36.71, p=0.10). 

4.8.4 Effect of seeing smiling faces on happiness scores 

Similar unadjusted and adjusted multiple linear regressions were fitted to differential 

SHS scores as with PHQ-9 scores (Figure 4.12.B). The unadjusted model suggested a 

trend that seeing more faces was associated with an increase in SHS score (F(1,256) 

=2.71, p=0.10). Specifically, for every 10 smiling faces seen, SHS scores increased by 

0.06 points on the 7-point SHS scale. There was no evidence of interaction between the 

order of images were seen and the number of faces and landscapes shown (chi2(1) = 

2.07, p=0.36). When adjusting for the static baseline variables a change of 0.06 points 

was associated with seeing a dose of 10 smiling faces however it did not reach 

statistical significance (F(1,221)=2.52, p=0.11). None of the other covariates reached 

statistical significance. The likelihood ratios test comparing the adjusted and unadjusted 

models showed both equally explained the data (chi2(1) = 24.24, p=0.56). 
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Figure. 4.12. Multiple Regression results from Pocket Smile 2 with least squares lines. (A) Top graph 
showing differential PHQ-9 scores changes as a function of smiling faces seen. The negative slope of the 
regression line suggests seeing more smiling faces was associated with decreases in PHQ-9 scores. (B) 
Bottom graph showing differential SHS scores changing as a function of smiling faces seen. The increasing 
slope of the regression line suggests seeing more smiling faces was associated with increases in SHS 
scores. 

A) Differential changes in PHQ-9 scores associated to number of smiling faces seen 

B) Differential changes in SHS scores associated to number of smiling faces seen 
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4.9 Discussion 

4.9.1 Implications 

The last experiment in this chapter studied the effects of seeing landscapes and smiling 

faces on mood via smartphones in alternation over 20 days. An independent measure of 

depression (PHQ-9) and another of happiness (SHS) were obtained at the beginning, 

before switching viewing conditions at 10 days, and at the end of the 20 days. 

Participation in the experiment was associated with a reduction in low mood 

from a state of moderate to mild depression as measured with the PHQ-9 (Kroenke et al 

2001). This decrease was equal for both image types and found to be most effective 

over the first 10 days. When looking at the specific contribution of the amount of each 

image type towards these decreases there was evidence suggesting that smiling faces 

were effective at lowering depression scores. When also considering the many baseline 

measures, the effect was still present but less robust and participants who were most 

depressed reported greater improvements in response to landscapes than smiling 

faces. With respect to the happiness measure, the population demonstrated well below 

average SHS scores at the beginning of the experiment (Lyubomirsky and Lepper 1999) 

and small improvements were recorded. Nevertheless, participation did not influence 

this measure categorically as participants remained generally below the mean for their 

age group. Although there was an effect of seeing smiling faces on increasing happiness 

levels, this was very small and was not robust enough to pass conventional statistical 

thresholds of significance. 

The results therefore suggested that the app was effective at driving positive 

mood changes and these were associated with the total amount of smiling faces seen. 

The beneficial effects of seeing smiling faces were demonstrated to be superior to 

landscapes at decreasing low mood. The scale of the effect was small and statistically 

not significant. A so-called dose response, where there is a clear relationship between 

number of faces seen and changes in score was not found, so the exact process to 

further tailor this as an intervention remains unclear. Nevertheless, these are promising 

results in the development of a nudge-based intervention based on the neuroscience of 

facial and emotional contagion for low mood.  

The finding that those scoring highest on the PHQ-9 did not react in the same 

manner as those who reported most benefits to the smiling faces was suggestive of a 

modulated effect of emotional contagion through facial contagion. It has been shown 
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that patients with major depressive disorder manifest attentional biases whereby they 

will look less at happy faces compared to other emotional expressions (Duque and 

Vázquez 2015). In addition, those scoring higher on depression measures such as Beck’s 

Depression Inventory have been found to demonstrate normal facial contagion for sad 

expressions but none in response to happy expressions (Sloan et al 2002). The present 

results suggest that the studied population reacted in line with the more severe spectrum 

of symptoms. Therefore, those reporting relatively more severe PHQ-9 scores could 

perhaps have also been affected by more serious depressive symptoms which would 

lower their sensitivity to the smiling face stimuli.  

The Pocket Smile app was conceived to improve low mood which is in line with 

a mild to moderate score on the PHQ-9 questionnaire. This specific effect is interpreted 

as further validation for Pocket Smile as a potential intervention for this segment of the 

depressed population. Indeed, inducing emotional contagion in this low-cost manner 

may attract patients suffering from severe depressive symptoms and it will be important 

to ensure targeting of those with mild to moderate scores to ensure safe use of the app. 

This finding could help focus the scope of applicability of the app and inform targeting 

of populations to ensure maximum benefit is gained from usage.  

4.9.2 Limitations 

Having two image viewing conditions made it evident that the landscapes were a control 

condition and should, theoretically have less of a positive effect on participants’ mood. 

This generated a problem in terms of retention as demonstrated by the many emails of 

people complaining to have been allocated to the landscape condition. For example, one 

user reported: “I seem to be in a landscapes control group. I have no interest in being 

excluded from the actual test group.” Potentially, this could have induced a confound 

whereby a person’s mood was modulated, in line with expectations of the effects of the 

type of image seen. This is not a major concern as several people also emailed stating 

a preference for landscape images counter to their own expectations. For example, one 

participant emailed “I love your landscapes - so calming and I feel as though I'm there, 

much better than the faces. They enable me to take a deep breath.”. It is therefore possible 

that landscapes had a calming effect. This would indicate that landscapes were positive 

stimuli as well while not relying on the facial contagion effect to induce mood changes. 

This is suggestive of the mechanism whereby the landscapes induced a positive change 

in mood and accounts for the small effect size found which was necessary to include to 

ensure some retention rates. 
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Despite the many efforts at making the smiling faces more realistic and varied in 

ethnicities and ages, inevitably, there were a few complaints nonetheless. For example, 

one participant simply requested to “please make the photos at least somewhat higher 

quality” while another commented: “So far I've been sent pictures of beautiful people 

with perfect big smiles and perfect white teeth. […] Nice one. How about pictures of real 

people?”. Others were more understanding of the experimental constraints but made 

requests nevertheless: “I know you're trying to get the viewer to focus on the person's 

facial features, but I don't think blurring out their hair is necessary and just makes it a bit 

creepy looking instead. It distracts instead of focusing the attention.” App users are 

generally accustomed to very high standards with this category of products and it should 

be known it is difficult to satisfy large populations of users when embarking on this kind 

of experiment. 

With respect to representativeness of the population studied, it must be noted 

that participants originated largely from the European and North American continents. 

The social media advertising aimed to widen this reach globally and succeeded in 

recruiting participants mainly from the Pakistan region. However, most participants were 

recruited following press coverage in The Telegraph and on German radio which 

contributed to this geographical imbalance.   

There were also a host of technical issues that delayed the project and 

contributed to the smaller sample size than expected within the time frame of the study. 

For example, opting for multi-OS compatibility led to React Native being selected as the 

most cost-effective platform by the developers. Although React Native allows 

developing the application once to be subsequently released on multiple platforms 

across OSs, it also carries more risks of bugs and issues since it is not developed for 

any device in particular. This led to many more bug reports than if developed only on iOS, 

multiple database bugs, and lower completion rates on Android as well as significant 

delays during testing. This could be important in terms of considerations for future app 

experiments as it might be worth sacrificing sample size for a more reliable user 

experience and data quality. 

4.9.3 Future Directions 

The findings that seeing smiling faces can drive positive mood changes was in line with 

hypothesised expectations. The Pocket Smile app was specifically conceived to improve 

low mood and was never pitched as a replacement for conventional therapy or applicable 

to serious cases.  
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The attenuation of the benefits in the most affected population further validated 

the findings and will guide the application of this intervention as a potential therapy. This 

experiment quantified data from peoples’ mood as supporting evidence of the potential 

benefits of this method and in the future, I hope to also be able to assess more qualitative 

reporting of mood as user feedback was highly insightful.  
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4.10 Scope  

This experiment expanded upon the previous two experiments in three main ways. First, 

it tested whether the mechanism that was implemented over the long term could be 

effective within a shorter time frame. Second, rather than attempting to influence mood, 

this experiment operated at the emotional affect level – emotional perturbation -  an 

important temporal distinction to identify generalisability of this effect across emotion 

types. Third, since it was conceived to last under five minutes, debriefing participants 

became possible. This allowed the introduction of deception so that the effect of 

awareness of the stimulus could be studied. In other words, whereas previously 

participants could not be debriefed and were therefore required to know that the 

manipulation of interest would be on mood prior to enrolling into the experiment, in this 

study, a more general approach could be taken, shifting attention away from mood and 

only explaining the particular interest in mood once the experiment concluded.  

4.11 Methods 

4.11.1 Study design 

To assess the efficacy of seeing smiling faces in having a positive effect on emotions, a 

digital video game called Can Playing Video Games Change You? was designed and 

implemented between November 14th 2016 and December 18th 2016 in the Live Science 

area of the Wellcome Trust sponsored Who Am I? gallery of the London Science Museum 

(Exhibition Rd, London SW7 2DD). The experiment was opened every day of the week 

except for Thursdays, between 11:00 and 17:30 with a one-hour break at 13:30. The 

experiment received ethical approval by the UCL Research Ethics Committee under study 

number 4746/002. This study was a single-blind RCT where participants played a simple 

game with either smiling faces or landscapes and reported their positive and negative 

affect before and after playing the game. The experiment was presented as a videogame 

on brain functions so participants were unaware that there were two categories of 

images they could play with and that the experiment was about influencing their 

emotional state.  
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4.11.2 Materials 

4.11.2.1 Emotion Questionnaire 

The questionnaire used to assess emotional state was the International Positive and 

Negative Affect Schedule Shortened Form (I-PANAS-SF; Thompson (2007)). The 

questionnaire was presented as a list of 10 words that described positive (active, 

determined, attentive, inspired, alert) and negative (afraid, nervous, upset, hostile, 

ashamed) affect. Participants were requested to indicate the extent to which each item 

described the way they felt by answering a Likert-type scale consisting of 5 options 

ranging from 1) very slightly or not at all, to 2) a little, 3) moderately, 4) quite a bit, and 5) 

extremely. Since the recruited population at the Science Museum was likely to be 

international, highly varied in age and in English proficiency, and would be short on time, 

the I-PANAS-SF was selected as the best option to measure changes in positive and 

negative affect.  

The I-PANAS-SF has been used as a measure of emotion for over a decade in 

which time it was validated across gender and across 16 countries and different cultures 

(Karim et al 2011; Agbo 2016). Also, the I-PANAS-SF was validated with the question 

“How do you feel this way right now, that is, at the present moment” which was important 

since this experiment lasted only a few minutes. Thus, it is appropriate for brief inter-

assessment-intervals as the one presently required (Thompson 2007; Kuesten et al 

2014; Agbo 2016). To the best of the author’s knowledge this was the first time the I-

PANAS-SF was used to assess affective states in a population that included under 18’s. 

4.11.2.2 Stimuli 

A set of 10 genuinely smiling faces of both genders (20 total) and 20 landscapes were 

selected from the previously created stimuli to ensure participants did not see the same 

image more than once during the experiment. The same considerations were taken to 

create and select these images as in the second experiment with the only variation being 

the cropping and resizing to fit the current experimental parameters.  
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4.11.3 Participants 

Participants were recruited as they walked by the Who Am I? gallery of the Science 

Museum. Advertisements were placed across the Science Museum under the category 

of “Live Science Demonstrations” with the opening days and times (see Appendix C.1). 

A total of 4116 healthy participants voluntarily participated in this experiment. All 

participants were randomly assigned to each of the two stimuli condition (smiling faces 

or landscapes). No upper age limit was imposed and the UCL REC granted permission 

to treat individuals aged 12 and above as adults with regards to giving informed consent 

(i.e. without obtaining prior guardian approval). This was very useful in gathering a large 

amount of responses as teenagers are usually visiting the museum on their own or can 

roam freely within the museum space and participation was not onerous. 

4.11.4 The game infrastructure 

To gather the highest amount of responses the experiment was gamified and ran on 10 

Acer Iconia One tablets using an Android operating system.  

The tablet application was developed and designed by Fillippo Aiello 

(http://www.filippoaiello.it/) over the course of 6 months (source code available in 

Appendix C.3). It was developed as an Adobe Air application using the Starling 

framework (http://gamua.com/starling/). The final product was a clean and well-

designed functional application that stored results in a secure storage database running 

on a local server at the UCL Institute of Cognitive Neuroscience.  

Additionally, a call was made within UCL to recruit volunteers to collect data and 

engage visitors of the Science Museum in the experiment. After receiving over 70 

applications, 11 were interviewed and selected from across post- and under-graduate 

programs at UCL to form the volunteer team. A team leader was also tasked with 

supervising the daily activities, scheduling, and management of the volunteers. All 

members of the experimenter team underwent a Disclosure and Barring Service (DBS) 

http://www.filippoaiello.it/
http://gamua.com/starling/
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check and public engagement training prior to the beginning of the experiment as 

required by all Science Museum staff (see Figure 4.13). 

4.11.5 Procedure9 

Visitors of the Science Museum that looked age-appropriate were approached by a 

member of the volunteer team and asked whether they would like to play an experiment 

that was a short video game. If participants asked more questions, they were told this 

was an opportunity to engage in scientific research while learning about an aspect of 

themselves and their brain functions in line with the theme of the Who am I? gallery. 

Participants were therefore naïve to the manipulation that there were two possible sets 

of images they could be viewing (smiling faces or landscapes) and that the purpose of 

the experiment was to test the effect of viewing these images on their affective state. 

This mild deception was necessary to ensure participants’ potential changes in mood 

were not due to expectations that they were in the “experimental” or “control” condition 

should the manipulation be revealed. If visitors expressed interest in participating, they 

were given a tablet with a joint information sheet and consent form.  

Participants had the opportunity to ask questions and those that wished to 

participate agreed to the consent form by tapping on the ‘I agree’ button. Only visitors 

who confirmed their age to be above 12 completed the joint information sheet and 

consent form. Those aged between 6 and 12 required a guardian or parent to give 

                                                      
9 Appendix C.2 provides a screen-by-screen storyboard of the experiment and may be a useful 
reference for the reader to consult to accompany the next paragraph.  

Figure 4.13 The experimenter team at the Science Museum with a tablet.  
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informed consent in their place. Visitors then provided some basic non-identifiable 

demographic information (gender, age, general health status, relationship status, and 

occupation) and completed a digital version of the I-PANAS-SF to assess their current 

emotional state. This served as the baseline emotional assessment.  

The rules of the game through which participants were to be exposed to either 

smiling faces or landscapes was then explained. It was presented as a card game known 

as “concentration” or “memory” in which a set of cards are placed face down and the 

goal was to find matching pairs by flipping two at a time. Through trial-and-error, players 

flipped cards that tended to not be pairs and were forced to remember where each face 

card is located so that when they find the duplicates, they recalled where the other card 

was located. Once a pair was found, they remained face up and so on, until all pairs were 

matched. Visitors then randomly played either with cards that showed smiling faces or 

landscapes. There were 3 consecutive levels, each increasing in difficulty, from easy (i.e. 

cards set up in a 4 x 2), to medium (4x3) and hard (6x3). After completing the three levels, 

participants completed an identical version of the I-PANAS-SF. 

After completion of the second questionnaire, a debrief was presented revealing 

the manipulation and a verbal debrief was provided. Special care was taken to ensure 

adults were included in a conversation when debriefing children to ensure they 

understood the implications of the research fully and because this was part of a public 

engagement effort to bring visitors closer to research. If any errors were experienced 

during gameplay or participants reported realising the true purpose of the manipulation, 

their data could be identified and removed from the server. 

For both conditions, participants unlocked the possibility to play in a bonus 

round. Although the rules were the same, the cards displayed both faces and landscapes, 

making the game easier to play. This allowed participants to learn about the different 

effects that landscapes and smiling faces could have on their face muscles and try to 

detect the effects of emotional contagion first-hand. Between 2 and 4 volunteer 

experimenters were on-site at all times to answer any questions.  

4.11.6 Server database 

The data from the experiment were saved locally in an XML file on every tablet. In 

addition, the data were sent over a secure internet connection using PHP 5.6 and stored 

in a firewalled Apache HTTP Server at the UCL Institute of Cognitive Neuroscience. This 

solution allowed the data to be saved even when the tablet could not access the internet 
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and update the database in real time. The data collected in the MySQL database was 

accessed through phpMyAdmin.    

4.11.7 Data Analysis 

The XML file containing the data was downloaded from the database into MATLAB 

where it was analysed to quantify any changes in affective state dependent on stimuli 

seen.  

The main experimental effect involved assessing the effect of image type to 

change in emotional state. Scoring of the I-PANAS-SF involved generating a score of all 

positive affect (PA) items and negative affect (NA) items separately by adding each item 

scored. For both affect valences, higher scores represented higher levels of the affect in 

question ranging from 5 to 25 (as there are 5 items for each valence ranging between 1 

and 5). Overall this yielded two separate measures of affect (PA and NA). 

Since recruitment was performed opportunistically, intial assessments explored 

whether certain assumptions were met prior to proceeding. These included whether 

there were equal numbers of participants in both conditions (landscapes and smiling 

faces), any differences in completion time between the conditions, and whether groups 

had similar baseline scores. Where these assumptions were upheld the distribution of 

the data were explored to guide the correct selection of subsequent statistical tests.  

Overall changes in I-PANAS-SF scores were explored with a 6-way ANOVA 

including demographic variables (age, gender, relationship status, health, occupation) 

and image type as covariates. If main effects proved significant, potential interactions 

were studied. As the PA and NA scores have 5 distinct dimensions, the granularity within 

these was explored further with Canonical Correlation Analysis (CCA). CCA finds the 

optimal linear combination of how different but interrelated attributes relate to each 

other and can yield insights into how the population changes throughout the experiment 

(Thompson 2005). All baseline attributes were contrasted to changes in scores and the 

relationship between these attributes was explored. 
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4.12 Results 

4.12.1 Descriptive statistics 

A total of 4116 visitors to the museum completed the experiment. No dropouts were 

tracked since the application only collected data from completed questionnaires, so it is 

possible that the total participation may have been higher. Users who were reported by 

the team to respond randomly were 

removed from the sample (n=12). 

Also, participants who were deemed 

to have responded randomly to the 

questionnaires as evidenced by all 

responses being the same across 

both positive and negative questions 

of I-PANAS-SF were removed (n=112). 

The analysis was therefore performed 

on 3992 individuals (see Table 4.3). 

Overall, there were equal 

numbers of males and females 

(53.6%) that participated in both 

conditions. The majority were 

between 12 and 29 (65%) with most 

participants being over 18 (69%). 

Most participants were either working 

or studying (96%), single or in a 

relationship (82%), and generally in 

good or very good health (91%). 

 

 

 

 

Table 4.3 Demographics of Science Museum Participants 

 Smiling Faces                 Landscapes 

Gender   

Male 975 (49%) 935 (47%) 

Female 1024 (51%) 1058 (53%) 

Age   

6-11 256 (13%) 270 (14%) 

12-17 347 (17%) 353 (18%) 

18-24 597 (30%) 610 (31%) 

25-29 313 (16%) 327 (16%) 

30-34 154 (8%) 144 (7%) 

35-39 108 (5%) 81 (4%) 

40-44 76 (4%) 78 (4%) 

45-49 66 (3%) 61 (3%) 

50-59 42 (2%) 44 (2%) 

60+ 40 (2%) 25 (1%) 

Health   

Very good 919 (46%) 956 (48%) 

Good 887 (44%) 869 (44%) 

Fair 162 (8%) 143 (7%) 

Poor 17 (1%) 14 (1%) 

Prefer not to say 14 (1%) 11 (1%) 
Relationship 
Status   

Single 915 (46%) 926 (46%) 

In a relationship 698 (35%) 723 (36%) 

Married 327 (16%) 276 (14%) 

Widowed 3 (0%) 5 (0%) 

Divorced 12 (1%) 13 (1%) 

Prefer not to say 44 (2%) 50 (3%) 

Occupation   

Student 965 (48%) 991 (50%) 

Employed 895 (45%) 858 (43%) 

Retired 28 (1%) 35 (2%) 

Unemployed 73 (4%) 70 (4%) 

Prefer not to say 38 (2%) 39 (2%) 
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4.12.2    Playing the game 

No differences were found in how quickly participants completed the games irrespective 

of image type as average exposure to images was 2.7 minutes with equal completion 

times for both smiling faces (M = 160.2 seconds; SD = 47.2) and landscapes (M = 160.6 

seconds; SD = 47.8); t(3990)= 0.21, p= 0.83).  

Irrespective of type of image, a two-sample t-test on changes in scores (post 

minus pre) to assess the effect of playing the game showed I-PANAS-SF attributes 

inspired (M = -0.1), afraid (M = -0.1), and nervous (M = -0.1) all decrease significantly 

(p<0.01) after playing the game. The rest of the I-PANAS-SF items all showed positive 

change (ranging in 0 to 0.3 in mean of effect size; p<0.05).  

4.12.3 Changes in Positive Affect (PA) Scores 

Upon inspection, PA scores at baseline appeared normally distributed (Fig 4.14) so a 

two-sample t-test was used to compare if there were any differences between those that 

played with different image types. No difference in baseline PA scores were found 

between participants who played with smiling faces or landscapes, so PA scores were 

deemed valid to explore further (M = 14.9; SD = 4.1; t(3990)=1.54 ,p> 0.05).  

Histogram of baseline PA scores 
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Figure. 4.14 Baseline PA scores of all participants. The scores (x-axis) range from 5 
(lowest PA score possible) to 25 (highest PA score) and are normally distributed. 
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Figure. 4.15 Effect of Gender on changes in PA scores. The images in the bars 
exemplify the image type and the Mars and Venus symbols denote gender. The 
figure shows a greater increase in PA scores generally when playing with 
landscapes and for women. 
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A 6-way ANOVA examining the effect of changes in PA scores (calculated as 

post- experiment minus pre-experiment PA scores) was performed with 6 covariates of 

interest (image type, gender, age, health, occupation, relationship status). This showed 

that playing the game differently affected PA scores only for image type, gender, and age 

(p<0.05; see Table 4.4). Interactions were explored on the covariates that reached 

significance on the ANOVA, but none reached statistical significance (p>0.05). 

 

Exploring significant effects further, showed an increase of 0.93 points on the I-

PANAS-SF scale (ranging from 5 to 25) for landscapes and a 0.73 points increase for 

smiling faces in terms of PA. Further exploration of Gender effects showed female 

participants had higher increase in PA scores to both smiling faces and landscapes than 

men and that landscapes were more effective at driving positive changes in PA score 

(Fig 4.15). 

 

 

 

 

 

 

 

  

Table 4.4          Six-way ANOVA for change in Positive Affect (PA) Scores 

Variables 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F 
Probability 

values 

Image type 39.9 1 39.9 3.92 0.048* 
Gender 51.6 1 51.6 5.07 0.024* 
Age 199 9 22.1 2.17 0.021* 
Health 51.7 4 12.9 1.27 0.27 
Relationship 
status 

48.6 5 9.7 0.95 0.44 

Occupation 39.1 4 9.8 0.96 0.43 
Error 40381.8 3967 10.2   
Total 40878.6 3991    

*significant at p<0.05 
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Segmenting Age further showed a general trend of increased effect of the game 

with older age as bigger changes in scores tended to be associated with increased age 

(Fig. 4.16). This should be interpreted with caution since there is no strong effect and 

over 70% of participants were under 30. The only groups to have responded more 

positively to smiling faces than landscapes were those aged between 25-29 and 50-59. 

 

A targeted exploration of a sub-sample of the population was performed on those 

who might benefit the most from the intervention as defined by a low PA score (<=10). 

This segmentation yielded a sub-sample of 617 individuals with no differences in 

completion time and equal numbers of participants in the two image type conditions 

which allowed for further analysis. A 6-way ANOVA with the same covariates as above 

on changes in PA scores on this sub-sample population showed that none reached 

statistical significance (p>0.05). 

In the interest of elucidating the major effects output from the CCA analysis, only 

the top three components for each linear combination of attributes comparing baseline 

and change PA score values that reached significance (p<0.001) were explored (Fig. 

4.17). Interpreting these highest correlated scores tells of different effects present within 

the data dependent on starting PA scores. For example, component 1 showed that 

beginning the experiment with low determined attribute scores but scoring highly in alert 

Figure. 4.16 Effect of Age on changes in PA scores. This shows a greater increase in PA scores 
generally with age although there is no clear trend since most participants were under 30.  
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and inspired are likely to become more determined, and less inspired and alert. The 

second component showed that those beginning with high scores in attentive but low on 

alert and active are likely to score lower after participating in attentive but higher on alert 

and active. The third most highly correlated and significant component showed 

beginning lowly inspired but very active and attentive will tend to lead to higher inspired 

and determined scores but lower on active. 

 

 

 

 

 

 

 

 

 

Figure. 4.17 Top 3 components of CCA on PA scores. The top three components (from left to right at 
p<0.001) from the CCA analysis comparing baseline to changes in PA scores are plotted in this figure. 
The correlation (r) for each component is included above each plot. The x-axis shows the outcomes 
(change in scores) most likely predicted by the y-axis (baseline) attributes. 
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4.12.4 Changes in Negative Affect (NA) Scores 

Baseline NA scores from the I-PANAS-SF for both conditions were compared prior to 

proceeding with analyses. NA scores at baseline did not appear normally distributed 

upon inspection (Fig 4.18) so a Wilcoxon rank sum test was used. This showed no 

significant difference in baseline scores prior to playing the game between smiling faces 

and landscapes which allowed the data to be further investigated (median = 6; Inter 

Quartile Range = 2); Z = 1.39; p= 0.16.  

 

 

 

 

 

 

 

 

Histogram of baseline NA scores 
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Figure. 4.18 Baseline NA scores of all participants. The scores (x-axis) range from 5 (lowest NA score 
possible) to 25 (highest NA score) and are skewed in distribution towards the lowest values. 
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A 6-way ANOVA examining the effect of changes in NA scores (calculated as 

post- experiment minus pre-experiment NA scores) was performed with the same 6 

covariates of interest as when analysing PA scores (image type, gender, age, health, 

occupation, relationship status). This showed that playing the game did not differently 

affect NA scores (p>0.05; see Table 4.5). Since no covariates reached significance 

during these initial analyses no interaction effects were explored. 

 

 

 

 

As over 60% scored a little or not at all in the overall NA score a targeted 

exploration of those who might benefit the most from the intervention was performed. 

This was defined by a high NA score (>=10) which yielded a sub-sample of 321 

individuals. No differences in scores were found between number of participants in each 

of the two image conditions and between completion time which allowed further 

investigations. Studying this sub-sample with a 6-way ANOVA with the same covariates 

as above on changes in NA scores showed none reached statistical significance 

(p>0.05). 

 

 

 

 

 

 

Table 4.5            Six-way ANOVA for change in Negative Affect (NA) Scores 

Variables 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F 
Probability 

values 

Image type 0 1 0 0 0.99 
Gender 0.6 1 0.55 0.15 0.70 
Age 63.6 9 1.07 1.87 0.08 
Health 30.7 4 7.68 2.03 0.09 
Relationship 
status 

27.7 5 5.4 1.47 0.19 

Occupation 10.3 4 2.6 0.68 0.61 
Error 14978.1 3967 3.8   
Total 15138.7 3991    
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A CCA analysis was performed in a similar fashion as that on PA scores and the 

top three components for each linear combination of attributes comparing baseline and 

changes in NA scores (p<0.001) were explored (Fig. 4.19). Component 1 showed that 

beginning with high scores in afraid and ashamed but low nervous has a good chance 

(r=0.68) of leading to feeling more nervous but less afraid and ashamed. The second 

component showed that those that begin less afraid but feeling more ashamed and 

hostile will likely feel more afraid and a bit less ashamed and nervous. The third 

component of the CCA showed that beginning with high scores on ashamed but very low 

in upset and low in nervous will lead to a significant reduction after playing the game in 

feeling ashamed and afraid but higher levels of upset.  

 

 

Figure. 4.19 Top 3 components of CCA on NA scores. The top three components (from left to right at 
p<0.001) from the CCA analysis comparing baseline to changes in NA scores are plotted in this figure. 
The correlation (r) for each component is included above each plot. The y-axis shows the outcomes 
(change in scores) most likely predicted by the x-axis (baseline) attributes. 
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4.13 Discussion 

4.13.1 Conclusions 

This experiment explored the effects of seeing smiling faces and landscapes on 

affective state while playing a short video-game. Changes in affect measured with the I-

PANAS-SF showed that after playing the game there was an improvement in PA and no 

changes in NA irrespective of image type. This was an original demonstration of a short 

intervention (160 seconds) to have a measurable positive effect on emotional state. 

Contrary to the translational hypothesis based on the literature of facial mimicry and 

emotional contagion landscapes seemed to drive changes in PA scores more than 

smiling faces. The effect itself was very small as the change was less than 4% increase 

in PA on the I-PANAS-SF scale and the differences between conditions was equivalent 

to 0.8% (0.2 on a scale of 25). Therefore, although landscapes were more effective at 

increasing PA than smiling faces this difference is likely not clinically relevant and the 

same can be stated about the overall effect.   

There was also no consensus among anecdotal accounts of experimenters who 

reported participant impressions on difficulty between playing with smiling faces and 

landscapes. Statistically there were no differences in completion times between the 

games and the groups were equally distributed in terms of demographic variables 

including age and gender. Indeed, though the effect sizes of the PA changes were 

statistically significant they were very small which demonstrated the requirement of 

conducting experiments that require big datasets to elucidate small effects. The design 

of the experimental platform and randomised assignment of participants was therefore 

sound and supports the validity of the results.  

Since participants were visiting the Science Museum, one of London’s most 

popular attractions, many unsurprisingly began the experiment with little to no NA as 

measured by the I-PANAS-SF. Considering the small effect sizes there was no room for 

improvement in this population with this scale in terms of NA. Nevertheless, the targeted 

analysis on sub-samples that were profiled as most likely to benefit from this 

intervention (i.e. high NA and low PA) did not produce any significant effects of change. 

It is possible this is due to the small effect size found with thousands of participants to 

not be revealed when reducing the sample to the hundreds. However, it is also possible 

that the intervention was not effective beyond positively affecting individuals in the 

average emotional spectrum of a healthy population. Indeed, as the experiment did not 
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formally exclude or measure the presence of serious mental and emotional disorders 

and some participants did exhibit disabilities it is possible these participants scored 

higher in the I-PANAS-SF and were unaffected by the intervention to the same extent as 

others. 

This was the first time the I-PANAS-SF was used to assess affective states in a 

population that included children. Although very young children required parents, 

guardians, or the experimenter to explain the terms and close supervision older children 

and teens found it very easy to complete. There was no difference between adults and 

children in general and the trend of an increase in PA score with age was also very weak. 

Interestingly, those between 25 and 29 and 50 and 59 responded more positively to 

smiling faces than landscapes and could potentially constitute a target group for future 

research into this intervention. Since on average those between 40 and 49 demonstrated 

a decrease in PA after seeing smiling faces it would be wise explore in more detail the 

differences between such age groups. The exact reasons behind these unclear changes 

linked to the age of participants however remain mysterious and could perhaps best be 

elucidated with a post-experiment qualitative interview. 

Another interesting finding was that female participants tended to respond better 

than men irrespective of image type. In Western culture it is an established and pervasive 

stereotype that women tend to be more emotionally expressive than men in general and 

in particular to happiness (Fischer 1993; Hess et al 2000). Although large differences are 

reported between men and women in the actual amount they are observed to express 

negative emotions (Plant et al 2000; Durik et al 2006), a recent meta-analysis found no 

gender differences in the degree to which men and women report feeling these emotions 

(Else-Quest et al 2012). This finding was supported by research in which participants 

record their emotions in a daily diary and found men and women report feeling the same 

types and amount of emotion as one another (Barrett et al 1998). Another noteworthy 

study measured the degree of facial and emotional contagion experienced by men and 

women in response to watching jubilant sport winners or heartbroken losers and also 

found equal degree of contagion susceptibility between genders (Arakawa 2012). 

Therefore, despite stereotypes, the current literature suggests men and women do not 

differ in the extent they experience emotions but rather just in the extent to which they 

express these outwardly. In other words, if women are more emotionally expressive than 

men it is possible they may also be more likely to change or report more changes in 

affect and could potentially be more receptive to interventions such as the present one. 
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The CCA analysis provided interesting insights into the different changes that 

occurred in PA and NA following playing the game. Some of the results can be 

attributable as reflecting regression to the mean as starting with particularly low or high 

scores at baseline will tend to shift scores towards the opposite direction. This is most 

evident in all changes in attributes in components 1 and 2 for PA and component 1 for 

NA.  

For example, the third component of the PA CCA analysis showed that those 

starting out very attentive and active but with low inspiration would decrease in active 

while having higher inspired and determined scores after playing the game. This could 

be indicative of the different kind of experience that the experiment provided to the rest 

of the exhibit. Compared to the rest of the Who am I? gallery, this was the only one where 

visitors could sit rather than stay standing (linked to a decrease in active) but were 

provided with a game which many people took as a challenge as it progressed in 

difficulty (higher determined) while feeling like they had achieved something when 

completed (higher inspired).  

For the NA CCA analysis the second component suggested that some 

participants started out feeling more hostile and then felt less nervous by the end. This 

is perhaps showing those that were a bit resistant to the game and feared worst perhaps 

than what it was. The third component, showing that low nervousness could lead to 

reductions in afraid is probably due to the removal of uncertainty as the game is finished. 

Overall, this analysis remains speculative, though it would be possible to further 

subdivide the CCA analysis according to image type and explore if and how participants 

differed in changes to their emotional state. In the interest of time and brevity however 

this was opted against as the effects were already very small and strongly speculative.  

4.13.2 Limitations 

Although the experiment showed that smiling faces increased PA state, the fact that 

landscapes were more effective at driving this effect remains surprising. There are two 

potential explanations for this finding, the first related to considerations surrounding 

smiling faces as stimuli to induce emotional contagion and the second involving 

landscapes as neutral stimuli.  

Though facial mimicry may occur automatically and subconsciously (Surakka 

and Hietanen 1998; Dimberg et al 2000; Soussignan 2002) emotional contagion could 

require more prolonged exposure to these images in order to exert an effect on emotions 
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more strongly. Also as static images are known to induce less facial mimicry than 

dynamic images (Weyers et al 2006; Sato and Yoshikawa 2007; Rymarczyk et al 2011), 

perhaps switching the stimuli to images of neutral faces turning into smiles could also 

increase the power of these images.  

It is possible that landscapes were underestimated as a neutral stimulus. 

Evolutionary analyses of environmental aesthetics suggests that landscapes may 

arouse people’s interest and curiosity which could in turn be positively uplifting (Kaplan 

1992; Orians and Heerwagen 1992). Landscapes can also lead to the retrieval of positive 

autobiographical memories and can even influence the extent to which one is 

susceptible to such imagery in adverts (Hartmann et al 2016). Therefore, it is plausible 

that landscapes operated as potent positive stimuli through another automatic 

biological affective path unrelated to emotional contagion.   

Nevertheless, wherever changes with the stimuli could be possible, the effects of 

changes were still relatively small. It is possible that there is little scope for greater 

change in emotions over an average period of 160 seconds. However, the game itself 

may have attenuated this effect. Although the images were consciously perceived, 

participants were unaware of the manipulation of image type. As such the video-game 

was a way of exploring the effect of exposures to different image types and it is possible 

that it was confounded by the distractor task of playing the game which could have been 

too mentally demanding. The game required mental efforts in memory and many people 

have biases as to their expected performance in such games. It is therefore possible this 

could also have affected their emotional state negatively. 

4.13.3 Future Directions 

Overall the experiment was effective at driving positive changes in affect, 

however the translational hypothesis that emotional contagion could be induced 

significantly in this short time period did not hold. Therefore, the potential for this 

technique to be employed in the short term should not be exaggerated.  

There are still some questions that remain unanswered including whether neutral 

faces could have been less effective at driving the change and whether people might 

find this useful as a conscious boost to their mood if the intervention was not 

subconscious. 



Experiment 3: A gamified version of Pocket Smile at the Science Museum 

155 

 

4.14 Chapter discussion 

This chapter presented three experiments undertaken with similar goals: to explore 

whether the established emotional contagion effect could be translated into an applied 

intervention that presented smiling faces to enhance emotional states.  

The first Pocket Smile experiment established that mood can increase over long 

periods of time (up to 6 months) when seeing smiling faces. The second Pocket Smile 

experiment demonstrated that such changes to mood are correlated with the total 

number of smiling faces seen. This experiment also established that smiling faces are 

more effective at driving positive change compared to another positive image type that 

lacked the facial contagion component despite being considered positive stimuli in the 

literature; landscapes. The third experiment found that emotional contagion could not 

be induced effectively at a shorter time scale within a video game and without 

participants’ awareness. This last experiment was informative in determining the 

limitations of the translated effect. It is therefore advisable to attempt to change mood 

rather than short term affect with this method.  

These findings form a series of novel findings that contribute to the field while 

also defining the target of most effectiveness of this method. When summarised, the 

recommendation that could form the basis for a prediction on devising a most effective 

method of enhancing positive state would advise to aim to modify long term mood in a 

consciuos manner rather than short term emotions unconsciously. Although these 

findings limit the scope of this method as a potential intervention, it also specifies it and 

allows the opportunity to test further where it could have higher impact. From a 

theoretical standpoint, this series of experiments could not be considered to support the 

“strong” version of facial feedback10 as emotional contagion was found to increase 

mood but not transform a negative state into a positive one. However, it should be noted 

that it is problematic to conclude in a study that on mood or emotional state that “no 

positive emotional state was present in participants prior to participation in the current 

study”. Indeed, this would be a necessary requirement to make the claim in favour of the 

“strong” version of the FFH albeit although it would be impossible to empirically 

demonstrate a total absence of an emotional state (i.e. “I never felt that emotion in my 

life before”) that is only felt after participation in a scientific study.  

                                                      
10 The reader may recall from Chapter 1, that the “strong” FFH considers it could be possible to 
induce an emotion where none existed while the “weak” version contents itself with positing an 
emotion can be attenuated only when one was already present (Schneider 2008). 
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A main component of this chapter involved leveraging mobile digital technology 

to conduct research. The ubiquity of mobile technology allowed the collection of data 

from a much broader and larger sample than could conceivably be collected in the lab. 

In total,  7,780 participants were engaged in these experiments. Even when only 

considering the Pocket Smile 2 experiment, participants completed over 8,360 days of 

experiment, equivalent to over 22 years of participation. These technologies offer vast 

potential for scientific research and several recommendations have been made 

throughout this chapter that could aid future researchers in utilising it successfully. 

Important recommendations not previously stated but very important include budgeting 

for marketing, embedding desired social media SDKs within the code of the app for 

intelligent tracking of advert effectiveness, careful design of the database for ease of 

analysing the data, creating accurate requirements for the formating of the data 

collected, and having an open channel of communication with users so that an agile 

development process may benefit from feedback to drive participation.  

Overall, the Pocket Smile experiments demonstrated the effectiveness of using 

smiling faces as main components of a nudge-based intervention for low mood. The 

findings of the final experiment suggest it was not possible to generalise this effect in 

the short term. Therefore it is most appropriate to pursue the usefulness of facial 

contagion to improve low mood rather than momentary changes in affect. This consists 

of an original and valuable contribution to those who aim to modify mood positively and 

takes the field one step closer to a better devised intervention.  

Together these experiments addressed the questions posed in the introduction 

as it appears to be possible to translate the neuroscientific principles of facial contagion 

into nudge-based interventions and are associated with lasting positive changes in 

mood. As a nudge-based intervention, Pocket Smile could be conceived as a 

complementary treatment during officially recommended therapy. If this form of 

intervention is found to be effective once validated with a clinically depressed 

population, it could hold potential to reduce the cost of health care, close the treatment 

gap in accessing support, and improve other health outcomes in numerous ways (Kumar 

et al 2013). With further research into implementation and validation with a depressed 

population, Pocket Smile could be administered during referral waiting times for 

individuals for which there is no currently viable alternative to address a national 

healthcare system weakness and priority (NHS England 2015). 

Alternatively, the next steps in the translational process could see these findings 

integrated within a commercialised version of the app. For example, a social network 



Experiment 3: A gamified version of Pocket Smile at the Science Museum 

157 

 

based on sharing smiles from loved ones could be conceived based on these findings, 

inspired by several comments and feedback such as this user’s: “I guess it's not like in 

real life when there is a person you know and care about and it's always good to see them 

smile.”. The Pocket Smile app could be modified into a social network consisting of 

people selecting or creating pictures of themselves smiling and uploading these to 

customisable groups of friends and family members. The app would retain its current 

functionalities of delivering the images throughout the day in a controlled manner and 

could be expanded to include groups based on cities, countries, and general interests. 

This would also have the added benefit of personalising the Social element of the EAST 

framework to a greater extent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Wearing your heart on your face: Predicting physiology from physiognomy 

with machine learning 

158 

 

 

 

 

 

 

Chapter 5: Wearing your heart on your face: 
Predicting physiology from physiognomy with 

machine learning 

 
 

 

 
 

 

 

 

Elevation map of Tibetan plateau where the average height is 5000m. Image from Arizona University 

http://www.geo.arizona.edu/~ozacar/introd~1.htm


Chapter 5: Wearing your heart on your face: Predicting physiology from physiognomy 

with machine learning 

159 

 

5.1 Introduction 

5.1.1 Shifting from function to structure 

In the preceding chapters, the correlations between functional features of the face and 

physiological variables of interest were explored. In one case, the physiology of 

emotional lability in MND patients was studied to assess its potential as a diagnostic 

marker (Chapter 3). In the interventional setting, attempts were made at influencing 

affect and mood through the induction of a functional effect - emotional contagion - 

accompanying a physical change in the face (Chapter 4).  

Here the consequences of structural change to the face secondary to changes in 

function will be explored. The physical parameters of faces will be considered as 

potentially informative variables that might predict underlying physiological markers of 

interest, with translational utility in a clinical setting and beyond. This project is in line 

with the PhD’s overall mission because it consists of the same translational problem: 

the intrinsic high dimensionality of the biological entity that is the face. It is clear that 

people can extract useful information from a face including identity (McKone et al 2009), 

ethnicity (Tanaka et al 2004), gender (O’Toole et al 1998), age (Rhodes and Anastasi 

2012), emotional state (Ekman et al 1972), health (Jones et al 2012), and sexual 

orientation (Rule and Ambady 2008). If there is any connection between the physiology 

of the face and other physical markers, it is suspected that it will not be reducible to a 

specific parameter of any single kind. Rather, in line with the high-dimensional approach, 

capturing the rich patterns of the face by integrating across many variables through 

machine learning methods is expected to enrich outcomes in terms of power and 

generality.  

5.1.2 The structure of the face and clinical outcomes 

The connection between changes in structure of the face and related clinical 

measurements has been an established topic of study in several interesting contexts. 

The way in which the face develops is dependent on the way other parts of the body 

develop (Bjӧrk 1955). The structure of the face has a complex architecture and can be 

informative in many contexts. 

For example, analysing the state of the skin can provide information associated 

with ageing (Rhodes 2009). The surface of the skin has a slightly acidic film, measured 

in terms of pH, that protects from potential contaminants that might penetrate it such 
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as bacteria and viruses. Marrakchi and Maibach (2007) found older people exhibited 

higher pH values on their facial skin surface than younger people. This difference 

however was not present when comparing pH levels on the forearm skin surface, 

suggesting the face skin surface might demonstrate changes associated with ageing.  

Wrinkles are also known to be informative when estimating age, with a greater 

number of wrinkles associated with older age. Since wrinkling the skin is necessary to 

create facial expressions at all ages, over time, these become more pronounced. This is 

attributed to a decrease in elasticity of the skin which gathers sheaves of fibres in the 

points of most contraction, making the skin less homogenous (Wu et al 1995). Other 

skin cues that change with age include a reduction in and greyer hair, thicker eyebrows, 

and changing in the relative size and shape of the lips (George and Hole 2000). 

Additionally, expression of certain genes have been associated with being perceived as 

older (Gao et al 2016; Liu et al 2016). Considering that facial age estimates are 

associated with likelihood of mortality (Gunn et al 2015) it is valid to look at the face as 

a potentially informative clinical measure. 

Insights about the structure of the face paired with machine learning methods 

can predict measures such as age with over 90% accuracy (Jagtap and Kokare 2016). 

For example, in the context of congenital diseases, 30-40% of genetic disorders will be 

associated with a structural facial abnormality (Hart and Hart 2009). By treating the face 

as a high-dimensional set of variables, Ferry et al (2014) trained an algorithm to identify 

patterns of facial dysmorphia with 91 genetic disorders. The model automatically 

extracted facial features from photographs and compared the points for similarity to 

average faces of syndromes. This system provided diagnostic information to identify 

rare genetic disorders in children and could be used to further tailor treatments and 

screening for further research on genome sequencing.  

Furthermore Obafemi-Ajayi et al (2015) compared face images of healthy and 

autistic children and found that their machine learning technique could correctly 

diagnose those with the disorder. Even though the investigation included a relatively 

small clinical sample (N= 62), three sub-clusters were reliably identifiable that were 

associated with diagnostically meaningful behavioural differences. Similarly, Williamson 

et al (2014) parametrised facial and vocal responses of individuals that self-identified as 

depressed and found that the timing of motor movements involved in creating facial 

expressions could be used as information in predicting severity of depression.  
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Thus, applying machine learning methods to facial features can be informative 

when properly parameterised and predict high-level clinical measures.  

5.1.3 The human face at high altitude 

This chapter will establish whether changes in facial structure of humans living at 

altitude can be parameterised from photographs and used to predict biological markers 

of clinical relevance.  

Living in high-altitude regions involves adapting to severe environmental 

challenges for human populations including the low availability of oxygen. It is common 

for residents of towns at elevations exceeding 4000 meters such as in Peru and Tibet to 

experience oxygen concentrations in the air around 40% lower than at sea level. When 

living in such conditions, multigenerational residents develop evolutionary high altitude 

adaptations that allow them to thrive in a hypoxic environment (Yi et al 2010). 

Comparisons of native Tibet populations who have lived at altitude for approximately 

25,000 years compared to Han populations that have entered the Tibetan plateau 

relatively recently (<70 years ago) demonstrate these biological adaptations. Ethnic 

Tibetans exhibit higher arterial oxygen saturation at birth and during the first four months 

of life compared to Han infants (Niermeyer et al 1995) while a comparison of adults 

demonstrates superior oxygen levels while exercising (Zhuang et al 1996).  

For these adaptations to occur it is necessary for the body to carry more oxygen 

which requires producing more haemoglobin and may in turn lead to the blood becoming 

thicker. This can be measured by haematocrit (HCT) levels which reflect red blood cells 

percentage in the blood and are commonly measured in sporting competitions to test 

for doping (Bӧning et al 2011). To produce higher HCT levels more haemoglobin needs 

to be produced. Since haemoglobin is produced in the bone marrow it is expected that 

bones storing bone marrow will expand accordingly to accommodate for the larger 

capacity. This is important because the face is composed of a bone marrow producing 

bone: the maxilla. The maxilla is an upper jaw bone that holds the upper teeth to below 

the eyes and attaches to the zygomatic bone (Figure 5.1). In some areas of the maxilla, 

bone marrow composes up to 40% of the tissue (Lindhe et al 2013). It is hypothesised 

that in populations that adapted to low-oxygen high-altitude environments there will be 

expansion in the volume of this bone marrow.  
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This expansion was documented in patients with major Thalassemia, a genetic 

disorder that severely affects production of haemoglobin. As their condition leads to 

haemolytic anaemia, where red blood cells die prematurely, the cheek bones expand 

under pressure from the bone marrow cavity becoming enlarged in an attempt to 

continuously produce more haemoglobin (Rund et al 1997; Phadke and Agarwal 2003; 

George 2013). It is not expected that living at high altitude can have such an extreme 

effect on physiognomy as Thalassemia; however, the haemoglobin dysregulation being 

similar, the effects may still be present and measurable over the face. The current project 

will explore whether similar facial bone abnormalities due to living in lower oxygen 

environments is measurable through parametrisation of faces and whether it can be 

clinically useful to predict the underlying physiology with machine learning methods. 

Figure 5.1. Depiction of human skull with the maxilla in green. 
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5.1.4 Translational utility 

Although augmenting haemoglobin concentration may improve aerobic performance it 

may also predispose individuals to higher risk of cardiovascular diseases (CVD), 

particularly pulmonary hypertension (Barer et al 1983; Schreier et al 2014) and lead to 

mortality (Sorlie et al 1981; Gagnon et al 1994). It may therefore be useful to have an 

effective way of assessing risk of CVD caused by hypoxic environments based on cheap 

superficial measures such as photographs. If this experiment confirms the hypothesis 

that the effects of maxillary expansion on the face are measurably related to HCT or 

other cardiovascular measures it may hold a range of translational applications.  

If effective, the final product could integrate the functioning algorithm into a 

digital pipeline that would consist of 3 steps to perform a clinical recommendation. First, 

photographs of front-facing faces would be taken and imported into the pipeline. 

Second, the images would be processed according to defined criteria and analysed by 

the SVM algorithm (see Chapter 1 for introduction to SVMs). Finally, this would generate 

an automatic result detailing the likelihoods of different CVD risk. This could guide 

diagnostics and focus attention on individuals at highest risk. Measuring the effects of 

maxillary expansion on the face currently necessitates a computed tomography scan 

which is cumbersome, expensive, and difficult if not impossible to transport, install, and 

maintain in small towns at high altitude. This solution would necessitate only an internet 

connection while the processing would be done offsite. The possibility of associating 

different known biological data with the images would also be useful in expanding the 

training set and increasing the system’s performance.  

If successful, this could be used as a screening tool for researchers and medical 

teams wishing to treat or investigate people at risk of pulmonary hypertension. This 

would be of obvious advantage for native populations, as living at high altitude is a strong 

risk factor for pulmonary hypertension, measurable by echocardiogram. Currently, there 

is no way of screening for individuals who would benefit from receiving an 

echocardiogram and very few medical teams have taken these machines to high altitude 

due to their size and weight. For example, Allemann et al (2000) and Sartori et al (2002) 

separately acquired echocardiographic measures from different individuals in the Italian 

Alps. This required the hiring of mountain guides to lead the scientific teams to the 

location safely as well as assistance from the Swiss Army to transport the machine to 

height. With current technology, it would be very simple to take a quick photograph of 

someone’s face to act as a screening diagnostic for which individuals could benefit from 
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descending to their nearest hospital or for pre-screening purposes for inclusion in clinical 

trials.  

Additionally, it could be used as a developmental tracking measure that would be 

of academic and clinical interest in terms of studying the developmental changes of 

facial morphology over time. It will also be interesting to explore how the expansion of 

the maxilla will force reconfiguration of the rest of the face. This is something that 

remains unknown, however, it is possible that during this investigation other features of 

the face might prove to contribute to biological markers of interest and drive further 

research. 

5.1.5 Scope 

This chapter will explore whether the effects of maxillary expansion on the face can be 

measured by parametrising photographs of front facing individuals from Tibetan and 

Han Chinese populations living at altitude. It will also explore if predictable physiological 

changes with clinical utility can be predicted from face parameters and vice versa. 

Further exploratory questions will include assessing whether machine learning methods 

can be used to predict acquired biological measures that could be predictive of CVD (e.g. 

echocardiographic or haematological measures such as Oxygen Saturation (SaO2) 

levels), whether more expansion is associated with more time spent at altitude, and 

whether relative redness of the face (i.e. blushing) can be an indicative measure of 

abnormal cardiovascular markers. 

5.2 Methods 

5.2.1 Tibetan Dataset 

This dataset was obtained from an ongoing study led by Lan Zhao and Martin Wilkins at 

Imperial College London who travelled to Tibet and collected physiological data on 

9000+ local individuals. They performed this research to explore the effects of living at 

high altitude on CVD and obtained ethics approval from the Imperial College Research 

Ethics Committee. The research team also took front facing photographs from 

participants and 980 of these were obtained for the present study.  

For each participant, the following demographic information was recorded: age, 

gender, height, weight, body mass index (BMI), ethnic origin (Tibetan or Han Chinese), 
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and how many years they had lived at altitude in Tibet. A measure of proportion of Time 

spent at height in Tibet (TiT) was generated by dividing the age by the length of time 

spent at altitude. Several haematological and echocardiographic measures were 

obtained including levels of HCT, oxygen saturation of haemoglobin (SaO2), systolic 

(SBP) and diastolic blood pressure (DBP) and heart rate. 

The echocardiographic measures (in italics below) provided a detailed overview 

of heart function and likelihood to experience CVD, especially pulmonary hypertension 

where the right ventricle (RV), responsible for pumping de-oxygenated blood from the 

heart to the lungs, may fail (Danchin et al 1987; Voelkel et al 2006). Specifically, Tricuspid 

Annular Plane Systolic Excursion (TAPSE) is a measure of overall RV function. As the 

pressure in the pulmonary vascular bed rises, it is propagated back to the right ventricle, 

raising the RV pressure (RVP). The RVP gradient should measure the resistance found 

within the heart chamber. The RV systolic pressure indicates the pressure within the 

pulmonary artery and as the chamber contracts, the RV area measures dilatation of the 

chamber resulting from decompensation in its ability to pump against the raised 

pressure. The RV anterior wall thickness measures the thickness of the muscle which 

hypertrophies as the heart tries to work harder initially to overcome the pressure. Another 

measure of RV function is the RV fractional area change which indicates how well the 

heart is contracting as a function of its overall volume. A dilated heart might not contract 

much as a ratio of its overall size. When the heart becomes enlarged, the tricuspid valve 

starts to leak, yielding a measurable tricuspid regurgitation velocity. 

5.2.2 Whole-face feature extraction and normalisation  

To predict the physiological variables of interest from the faces, the 980 photographs 

underwent different parametrisation procedures that captured the high dimensionality 

of the faces major landmarks coordinates.  

First, all images were loaded into MATLAB and adjusted for quality which 

involved ensuring the images were faces, rotating the images, and equalising the lighting 

and contrast where needed. The images were then cropped to the smallest square pixel 

area possible around the face to minimise the information load required to process each 

image. An automatic feature detection algorithm parametrised 83 points on each face. 

These points were extracted and used to create a rigid transformation of each image by 

using the intraocular distance as anchor to normalise the faces. This led to comparability 

between the faces as they were now equally aligned over the eyes and created a mean 

image to use as template for further processing. To re-align the images with the rest of 
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the face features (size, rotation, tilt), a nonlinear transformation was performed on all 

the rigidly aligned faces again by repeating the face detection and extraction steps to 

the template image. Finally, the face detection step was performed again to extract the 

83 points of the normalised images.  

This procedure yielded 166 X and Y coordinates which were then used as direct 

predictor variables in the SVM (see figure 5.2). Overall this process led to the elimination 

of several images whose pictorial defects or features (e.g. glasses, lighting, blur, 

background) resulted in errors, further reducing the studied population to a total of 663. 

5.2.3 Region-of-interest creation 

To test whether relative redness of the face could be predictive of certain physiological 

markers like SaO2, the luminance channel was extracted and quantified from regions-of-

interest (ROIs) of the face. To achieve this, the luminance channel of the nonrigidly 

aligned images were extracted and segmented into 15 different ROIs of 50 pixels. These 

2) 83 features extracted from all images 1) Raw image cut into a square  

4) Features extracted again 
using mean (3) to re-register 

3) Rigidly aligned mean 

5) Non-rigidly transformed face created 
and 83 features extracted to use in SVM  

6) Nonrigid mean image 

Figure 5.2 Example face parameterisation and feature extraction for SVM. The images were loaded into MATLAB and 
1) cut into a square and quality adjusted, 2) 83 features were detected and extracted in point form and intraocular 
distance was used to 3) create a rigidly aligned mean image which was then 4) used as a template to non-rigidly align 
the faces. 5) The features were extracted once again and used as predictor variables in the SVM. 6) The mean of these 
non-rigidly transformed images exemplified the higher comparability of the outputs of this procedure. 
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Figure 5.3 Example region-of-Interest (ROI) creations and zones. Each processed image was opened and 1) the luminance channel was 
extracted. 2) Each of the 15 ROIs was cropped and 3) extracted into 50 pixels around that particular point of interest and 4) 
downsampled to a manageable size whose 100 top PCA components were then used in the SVM as predictors. The 15 ROIs were the 
following 1) Inner Right Eye, 2) Outer Right Eye, 3) Inner Left Eye, 4) Outer Left Eye, 5) Nasal Root, 6) Right Nostril, 7) Left Nostril, 8) Right 
Maxilla, 9) Left Maxilla, 10) Chin, 11) Right mouth corner, 12) Left mouth corner, 13) Right eyebrow, 14) Left eyebrow, 15) Philtrum. 

1) Extract luminance channel and identify ROI from (2) 

2 1 3 4 

5 

6 7 
8 9 

10 

11 12 

14 13 

15 

4) Downsample to 1024 pixels 3) Extract 50 pixel square ROI 

2) ROI cropping zones superimposed on nonrigid mean 

ROIs were the major landmarks of the face where changes are expected due to regional 

expansion.  

These facial ROIs were further reduced in complexity by downsampling them into 

coarser images (Figure 5.3). To reduce the dimensionality of this massive result, the top 

100 most informative data within the ROIs was selected with Principal Component 

Analysis (PCA) which was used in SVMs as predictor variables. Rather than 

concentrating solely on the red channel, including all light treated each pixel as an 

independent variable which made the system robust to affine changes such as those 

likely induced by variable illumination. 
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5.2.4 SVM-based prediction of variables of interest 

HCT, SaO2, and echocardiographic measures were selected as physiological variables 

plausibly affected by high altitude to be predicted from the photographs of faces. Certain 

demographic variables were also included as covariates and served to conduct sanity 

checks on the validity of the SVM procedure.  

For example, the gender variable should be easily predicted by a working SVM as 

the differences are obvious from photographs of faces. For the ROI analyses, the models 

were tested for predictive validity of gender and where a patch was significantly above 

chance, these were then tested for predictive power of physiological variables. 

 The variables to be predicted were normalized between -1 and 1 and matched to 

the photographs. If a photograph or physiological data was missing, the individual was 

dropped. For physiological variables, the 35% highest and lowest scores were selected, 

creating two separate groups. The 166 points coordinates of each nonrigidly aligned 

face were inputted into the SVM as predictor variables for the physiological variable of 

interest. The SVM model was validated with stratified 10-fold linear cross-validation by 

randomly dividing the data into 10 random parts, in which each class was represented 

in the same proportions as in the full dataset. Each part was used as training for learning 

the labels and informed the subsequent training of the next part which yielded the 

parameters (C: varying from -5 to 15) that yielded highest accuracy to run the classifier 

on the whole dataset. Once the best model was found, the SVMs were run with LibSVM 

(Chang and Lin 2011) on 50 different partitions of randomly selected 75% parts of the 

data, constantly shifting the selection of data to predict the labels with a radial basis 

function (RBF) kernel which estimated similarity of each new data point to the model.  

The results from the binary classification task were presented in confusion 

matrices which show the success of the system at correctly classifying a test point into 

one of the following 4 categories: True Positive (TP) and True Negative (TN) if it predicts 

the label correctly or False Positive (FP) if it predicts a point as a positive when it is a 

negative and False Negative (FN) if predicted as a negative when it is a positive. These 

values then allow for the calculation of sensitivity (true positives / positives) and 

specificity (true negatives / negatives) and are used to generate more conservative 

balanced accuracies (sensitivity + specificity)/2.  

If the aggregate mean of balanced accuracies were above 50% then this 

indicated the variable performed above chance. Specifically, the lowest confidence 



Chapter 5: Wearing your heart on your face: Predicting physiology from physiognomy 

with machine learning 

169 

 

interval (CI) needed to remain above 50%. The CIs were set at 95% and Bonferroni 

corrected by the number of variables predicting the same measure. For example, where 

HCT was predicted by 1) face parameters and 2) gender the alpha was corrected to 

0.025 or 97.5% which was rounded to 98% yielding a z-score of 2.326. For parameters 

predicted by four variables, the alphas were corrected to 0.0125, or 99% (z-score = 

2.575). 

However, the clinical threshold for potential translational utility required the mean 

balanced accuracy for any predictor variable to reach at least 70%. If the aggregate mean 

of balanced accuracies reached this threshold, a two-samples t-test was used to 

compare it to other well-performing predictors. In these cases, the photographs of the 

highest and lowest scoring individuals for the measure would be averaged and 

compared visually for differences to test whether any morphological differences could 

be intuited visually.  
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5.3 Results 

5.3.1 The population 

All population measures are summarised in Table 5.1. Overall there were evenly 

balanced groups of Tibetan and Han Chinese individuals in ethnic origin and of males 

and females. The average individual was middle aged; however, there was great 

variability in years (+-15 years from mean). Physiologically, the population demonstrated 

normal HCT levels but about 5% lower than normal oxygen saturation as measured by 

SaO2 levels, indicative of mild hypoxemia. The average BMI score was within the 

‘healthy’ range (e.g. 20-25; World Health Organization (2000)) as was the average heart 

rate (e.g. 60-100; Shaffer et al (2014)).  

 

Table 5.1 Characteristics of the population (N = 663). 

Other Characteristics Echocardiographic measures 

Description n (SD or percentage) Description measure (SD) 

Ethnic origin  Systolic BP 115 (16.9) 

Tibetan 358 (54%)   

Han Chinese 305 (46%) Diastolic BP 79.4 (11.8) 

Age    

Mean years 32.7 (14.7) Diastolic RV area 14.1 cm² (3.2) 

Gender    

Male  292 (44%) RV fractional area change 49.7% (6) 

Female  371 (56%)   

Proportional TiT  RV anterior wall thickness 3.5 mm (0.5) 

Mean years 24 (16.2)   

Height  RV area  8.9 cm² (2.4) 

   Mean centimetres  161.8 (7.7)   

Weight  RV systolic pressure  23 (7.2) 

Mean kilograms 60.2 (13.2)   

BMI  RV pressure gradient 25.4 (6.2) 

Mean score             22.6 (3.6)   

Haematocrit  
 Tricuspid regurgitation 

velocity 
   2.6 (0.2) 

Mean HCT levels      50% (0.06)   

Oxygen saturation  

 
TAPSE    23.1 (2.3) 

    Mean SaO2 levels      88.9% (4.3)   

Hear Rate  Tricuspid valve stenosis      15.9 (2.2) 

    Mean heart rate      80.4 (12.9)   

  Right atrium pressure     3.9 (1) 

Time in Tibet (TiT) = years of age / years spent at altitude; BP = blood pressure; RV = right 
ventricular; TAPSE = Tricuspid Annular Plane Systolic Excursion.  
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5.3.2 Sanity checks 

The data used in the SVMs were only of the 663 with complete image data. However, it 

is possible that different number of cases appear in the results below for different 

measures as specific physiological measures could be missing from different 

participants. This explains the differences in number of predicted and actual results. 

5.3.2.1 Whole-face parametrisation 

To test system performance, predicting the gender variable from different data was a 

good problem as it is easily identifiable from photographs and can serve as a sanity 

check to explore if the method works. With only face parameters, gender was predicted 

at 85% balanced accuracy while adding age and ethnicity produced a comparable 84% 

(Table 5.2). This validated the system as whole-face parameters accurately predicted 

gender labels above chance and held greater predictive power than age or ethnicity as 

neither inclusion affected results significantly (Figure 5.4).  

Table 5.2 Confusion Matrices for SVM predictions of Gender from whole-face parametrisation 

Predicting Gender 

From face parameters From face parameters, age, and ethnic origin 

BAcc = 85% (98% CI 84.41 to 85.59) BAcc = 84% (98% CI 83.51 to 84.49) 

n=140 Predicted: M Predicted: F n = 197 Predicted: M Predicted: F 

Actual: M 68 10 Actual: M 68 10 

Actual: F 11 51 Actual: F 69 50 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; M = Male; F = Female. 
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Women Men 

7% youngest 7% oldest Han Chinese Tibetans 

Short TiT Long TiT 

7% highest HCT 7% lowest HCT 7% highest BMI 7% lowest BMI 

Figure 5.4 Example mean images from the population were selected to demonstrate differences 
found as assessed by face parameters. These draw differences between (A) women and men 
(B) long and short proportional time spent in Tibet (TiT), (C) highest and lowest haematocrit 
levels, (D) highest and lowest body mass indexes (BMI), (E) ethnic origin, and (F) according to 
age.  
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5.3.2.2 Region-of-Interest parametrisation 

Similarly, to the whole-face parametrisation, the ROI zones were assessed for 

discriminatory capacity of the gender variable. Combining all face ROI parameters 

together did not result in above-chance prediction of gender. Furthermore, including age 

and ethnic origin as test co-variates increased performance by 7% above chance (Table 

5.2). When considering each ROI separately as a predictor of gender, none performed 

significantly above chance (Figure 5.5).  

The SVM results suggest that this ROI parametrisation of the faces would likely 

not hold value as a dimensionality reduction system for face parametrisation. Thus, ROI 

analyses were not performed further, and prediction models were considered only with 

whole face parametrisation. 

 

 

 

 

 

 

 

 

 

 

Table 5.2 Confusion Matrices for SVM predictions of Gender from face ROIs 

Predicting Gender 

From face ROIs  From face ROIs, age, and ethnic origin 

BAcc = 50% (98% CI 50 to 50) BAcc = 57% (98% CI 56.41 to 57.59) 

n=140 Predicted: M Predicted: F n = 140 Predicted: M Predicted: F 

Actual: M 78 0 Actual: M 55 22 

Actual: F 62 0 Actual: F 36  27 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; M = Male; F = Female. 

Figure 5.5 ROI based predictions of gender. Each ROI 
contains the balanced accuracies from predicting gender 
only with the parameters contained in the square. None 
significantly predicted gender above chance. 

52 51 50 50 

51 

52 52 
50 51 

52 

49 50 

50 50 
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5.3.3 Predicting Haematocrit levels 

A SVM predicting HCT levels from face parameters returned a balanced accuracy of 

77%. Although significant, this was 10% worse performance than when predicting HCT 

from gender alone, which yielded a balanced accuracy of 87%. A two-sample t-test 

confirmed this was a significant difference (t (2,98) = 13.3, p<0.001).  

 

Furthermore, a two-sample t-test found HCT levels were significantly different 

between men and women (t(1,917) = 18.3, p<0.001) which is in line with clinical 

methodology, suggesting higher levels in men than in women (Clark and Kruse 1990). 

Further testing was therefore run separately on men and women by binarizing intra-

gender high and low variability in HCT levels and assessing predictability from face 

parameters or gender labels alone. The face parameters performed significantly above 

chance in contrast to gender only labels which performed at chance since any variability 

within this label was removed during segmentation of the groups by gender (Table 5.5). 

 

 

Predictions of HCT from face parameters for men performed an average 7% 

better than for women but 17% worse than if combined with women’s face parameters. 

A two-sample t-test comparing balanced accuracy results of HCT predictions from both 

genders and men only found this 17% performance variation to be significantly different 

(t (2,98) = 12.7, p<0.001). 

Table 5.4 Confusion Matrices for SVM predictions of HCT from whole face parametrisation 

From face parameters From gender  

BAcc = 77% (98% CI 75.98 to 78.02) BAcc = 87% (98% CI 86.17 to 87.83) 

n= 82 Predicted: H Predicted: L n = 82 Predicted: H Predicted: L 

Actual: H 32 9 Actual: H 37 4 

Actual: L 10 31 Actual: L 6 35 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 

Table 5.5 Confusion Matrices for SVM predictions of HCT from whole face 

Predicting HCT for women 

From face parameters From sex  

BAcc = 53% (98% CI 50.7 to 55) BAcc = 50% (98% CI 50 to 50) 

n= 48 Predicted: H Predicted: L n = 46 Predicted: H Predicted: L 

Actual: H 14 10 Actual: H 23 0 

Actual: L 13 11 Actual: L 23 0 

Predicting HCT for men 

From face parameters From sex  

BAcc = 60% (98% CI 56.98 to 63) BAcc = 50% (98% CI 50 to 50) 

n= 38 Predicted: H Predicted: L n = 36 Predicted: H Predicted: L 

Actual: H 10 9 Actual: H 18 0 

Actual: L 7 12 Actual: L 18 0 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 
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A final prediction of HCT was performed with proportional TiT and ethnicity 

separately finding these to both and independently perform equally above chance (t 

(2,98) = 1.87, p>0.05).  

 

5.3.4 Predicting oxygen saturation 

Predictions of SaO2 from face parameters performed 3% above chance though 

compared with a two-sample t-test to covariate predictors, performed the same as 

gender (t (2,98) = 1.3, p>0.05), and significantly worse than ethnicity (t (2,98) = 2.4, 

p<0.05) and proportional TiT (t (2,98) = 7.0, p<0.001).  

 

Table 5.6 Confusion Matrices for SVM predictions of HCT  

From ethnicity  From proportional TiT 

BAcc = 63% (98% CI 61.6 to 64.4) BAcc = 61% (98% CI 59.8 to 62) 

n= 82 Predicted: H Predicted: L n = 84 Predicted: H Predicted: L 

Actual: H 27 14 Actual: H 26 16 

Actual: L 16 25 Actual: L 17 25 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 

Table 5.7 Confusion Matrices for SVM predictions of SaO2  

From face parameters From gender  

BAcc = 53% (99% CI 51.9 to 54.1) BAcc = 52% (99% CI 50.8 to 53.2) 

n=100 Predicted: H Predicted: L n = 98 Predicted: H Predicted: L 

Actual: H 27 23 Actual: H 22 27 

Actual: L 23 27 Actual: L 20 29 

From ethnicity  From proportional TiT 

BAcc = 56% (99% CI 54.8 to 57.2) BAcc = 60% (99% CI 58.8 to 61.2) 

n= 98 Predicted: H Predicted: L n = 99 Predicted: H Predicted: L 

Actual: H 29 20 Actual: H 30 20 

Actual: L 24 25 Actual: L 20 29 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 
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5.3.5 Predicting BMI 

Individual SVMs with either face parameters, gender, ethnicity, or proportional TiT did 

not predict BMI above chance (where BMI was binarized as high (>25) or low (<24.9); 

Table 5.7). 

 

 

5.3.6 Predicting proportional time in Tibet 

When predicting how long people had spent in Tibet (separating those above and under 

the median of 64% of their lives spent in Tibet), HCT, gender, and face parameters did 

not perform above chance while ethnicity performed significantly above chance at 81% 

(Table 5.9). This was unsurprising as it suggested people were more likely to spend time 

in Tibet if they were originally from the geographical area.  

 

Table 5.8 Confusion Matrices for SVM predictions of BMI  

From face parameters From gender  

BAcc = 50% (99% CI 50 to 50) BAcc = 50% (99% CI 50 to 50) 

n=173 Predicted: H Predicted: L n = 174 Predicted: H Predicted: L 

Actual: H 139 0 Actual: H 139 0 

Actual: L 34 0 Actual: L 35 0 

From ethnicity  From proportional TiT 

BAcc = 50% (99% CI 50 to 50) BAcc = 50% (99% CI 50 to 50) 

n= 173 Predicted: H Predicted: L n = 173 Predicted: H Predicted: L 

Actual: H 138 0 Actual: H 137 0 

Actual: L 35 0 Actual: L 36 0 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 

Table 5.9 Confusion Matrices for SVM predictions of proportional TiT  

From face parameters From gender  

BAcc = 50% (99% CI 50 to 50) BAcc = 49% (99% CI 48.14 to 49.86) 

n=172 Predicted: H Predicted: L n = 172 Predicted: H Predicted: L 

Actual: H 86 0 Actual: H 40 46 

Actual: L 86 0 Actual: L 41 45 

From ethnicity  From HCT 

BAcc = 81% (99% CI 80.47 to 81.53) BAcc = 51% (99% CI 50.63 to 51.37) 

n= 172 Predicted: H Predicted: L n = 176 Predicted: H Predicted: L 

Actual: H 66 20 Actual: H 83 5 

Actual: L 13 73 Actual: L 82 6 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 
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5.3.7 Predicting ethnic origin 

When attempting to predict whether individuals were more likely to be Tibetans or Han 

Chinese face parameters, gender labels, and HCT levels only performed at chance, while 

proportional TiT was a significant predictor at 82% (Table 5.10).  

 

 

5.3.8 Predicting echocardiographic measures 

For echocardiographic measurements three additional variables were selected to 

compare predictability performance with whole face information: gender, ethnicity, and 

BMI. These were selected as none required specialist equipment to obtain at altitude 

and therefore provided the most translational benefit. For all these measures, the highest 

and lowest 10% were binarized and used for prediction.  

 

 

 

 

Table 5.10 Confusion Matrices for SVM predictions of ethnic origins 

From face parameters From gender  

BAcc = 50% (99% CI 50 to 50) BAcc = 50% (99% CI 50 to 50) 

n=172 Predicted: H Predicted: T n = 173 Predicted: H Predicted: T 

Actual: H 80 0 Actual: H 0 80 

Actual: T 92 0 Actual: T 0 93 

From proportional TiT From HCT 

BAcc = 82% (99% CI 81.47 to 82.53) BAcc = 51% (99% CI 50. 23 to 51.77) 

n= 172 Predicted: H Predicted: L n = 176 Predicted: H Predicted: L 

Actual: H 67 12 Actual: H 74 5 

Actual: T 19 74 Actual: T 83 9 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = Han; T = Tibetan. 
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5.3.8.1 Systolic blood pressure 

Predicting high and low systolic blood pressure, consisting of arterial pressure during 

contraction of the right ventricle, found only face parameters, gender, and BMI to perform 

significantly above chance. None reached the clinical threshold.  

 

5.3.8.2 Diastolic blood pressure 

Predicting high and low diastolic blood pressure, when the heart muscle rests between 

beats, found all four variables performed above chance though none passed the 

threshold of clinical utility. 

 

 

 

Table 5.11 Confusion Matrices for SVM predictions of systolic blood pressure 

From face parameters From gender  

BAcc = 66% (99% CI 64.8 to 67.2) BAcc = 65% (99% CI 63.9 to 66.1) 

n=100 Predicted: H Predicted: L n = 98 Predicted: H Predicted: L 

Actual: H 36 14 Actual: H 35 14 

Actual: L 20 30 Actual: L 20 29 

From ethnicity  From BMI 

BAcc = 49% (99% CI 47.8 to 50.2) BAcc = 68% (99% CI 67.05 to 68.95) 

n= 100 Predicted: H Predicted: L n = 100 Predicted: H Predicted: L 

Actual: H 24 26 Actual: H 45 5 

Actual: L 24 26 Actual: L 27 23 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 

Table 5.12 Confusion Matrices for SVM predictions of diastolic blood pressure 

From face parameters From gender  

BAcc = 65% (99% CI 63.8 to 66.2) BAcc = 64% (99% CI 62.7 to 65.3) 

n= 99 Predicted: H Predicted: L n = 99 Predicted: H Predicted: L 

Actual: H 34 16 Actual: H 34 15 

Actual: L 19 30 Actual: L 20 30 

From ethnicity  From BMI 

BAcc = 53% (99% CI 51.8 to 54.2) BAcc = 69% (99% CI 67.9 to 70.1) 

n= 100 Predicted: H Predicted: L n = 100 Predicted: H Predicted: L 

Actual: H 29 21 Actual: H 45 5 

Actual: L 26 24 Actual: L 27 23 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 
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5.3.8.3 Right ventricular systolic pressure  

Predicting high and low right ventricular systolic pressure, the peak arterial pressure, 

showed all variables but gender performed above chance though none reached clinical 

threshold significance. 

 

 

5.3.8.4 Right ventricular pressure gradient 

When predicting high and low right ventricular pressure gradient between the right 

ventricle and right atrium, all variables performed above chance though none reached 

the clinical threshold.  

Table 5.13 Confusion Matrices for SVM predictions of right ventricular systolic pressure 

From face parameters From gender  

BAcc = 53% (99% CI 52 to 54) BAcc = 50% (99% CI 49 to 51) 

n=120 Predicted: H Predicted: L n = 120 Predicted: H Predicted: L 

Actual: H 38 22 Actual: H 30 30 

Actual: L 34 26 Actual: L 30 30 

From ethnicity  From BMI 

BAcc = 52% (99% CI 51 to 53) BAcc = 57% (99% CI 56.15 to 57.85) 

n= 118 Predicted: H Predicted: L n = 118 Predicted: H Predicted: L 

Actual: H 32 27 Actual: H 50 9 

Actual: L 30 29 Actual: L 42 17 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 

Table 5.14 Confusion Matrices for SVM predictions of right ventricular pressure gradient 

From face parameters From gender  

BAcc = 51% (99% CI 50.08 to 51.92) BAcc = 51% (99% CI 50.03 to 51.97) 

n=118 Predicted: H Predicted: L n = 118 Predicted: H Predicted: L 

Actual: H 33 26 Actual: H 28 31 

Actual: L 32 27 Actual: L 27 32 

From ethnicity  From BMI 

BAcc = 56% (99% CI 55.1 to 56.9) BAcc = 52% (99% CI 51.17 to 52.83) 

n= 119 Predicted: H Predicted: L n = 118 Predicted: H Predicted: L 

Actual: H 35 25 Actual: H 48 11 

Actual: L 28 31 Actual: L 45 14 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 
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5.3.8.5 Right atrium pressure 

Predicting high and low right atrium pressure reflecting the ability to pump blood back 

into the arterial system from the heart, found all but the face parameter to perform above 

chance though none reached the clinical threshold.  

 

 

 

5.3.8.6 Diastolic right ventricular area 

When predicting high and low diastolic right ventricular area, a known predictor of 

pulmonary hypertension, all variables performed above chance, but none passed the 

threshold of clinical utility.   

 

 

Table 5.15 Confusion Matrices for SVM predictions of right atrium pressure 

From face parameters From gender  

BAcc = 50% (99% CI 48.9 to 51.1) BAcc = 53% (99% CI 52.11 to 53.89) 

n=119 Predicted: H Predicted: L n = 120 Predicted: H Predicted: L 

Actual: H 30 29 Actual: H 29 31 

Actual: L 30 30 Actual: L 25 35 

From ethnicity  From BMI 

BAcc = 57% (99% CI 55.8 to 58.2) BAcc = 51% (99% CI 50.2 to 51.8) 

n= 116 Predicted: H Predicted: L n = 119 Predicted: H Predicted: L 

Actual: H 35 23 Actual: H 13 47 

Actual: L 27 31 Actual: L 11 48 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 

Table 5.16 Confusion Matrices for SVM predictions of diastolic right ventricular area 

From face parameters From gender  

BAcc = 61% (99% CI 60.04 to 61.96) BAcc = 67% (99% CI 66 to 68) 

n=120 Predicted: H Predicted: L n = 120 Predicted: H Predicted: L 

Actual: H 38 22 Actual: H 43 17 

Actual: L 24 36 Actual: L 22 38 

From ethnicity  From BMI 

BAcc = 55% (99% CI 54.01 to 55.99) BAcc = 62% (99% CI 61.1 to 62.9) 

n= 119 Predicted: H Predicted: L n = 117 Predicted: H Predicted: L 

Actual: H 31 29 Actual: H 54 5 

Actual: L 24 35 Actual: L 39 19 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 
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5.3.8.7 Right ventricular area  

When predicting the high and low area of the right ventricle, a measure of expansion of 

the heart chamber, all variables performed above chance though none reached the 

clinical utility threshold.  

 

5.3.8.8 Right ventricular fractional area change 

When predicting high and low right ventricular fractional area change, a measure 

dependent on both diastole and systole function, only face parameters and gender labels 

predicted it above chance. None reached the threshold of clinical utility.   

 

 

 

Table 5.17 Confusion Matrices for SVM predictions of right ventricular area 

From face parameters From gender  

BAcc = 68% (99% CI 67 to 69) BAcc = 62% (99% CI 61 to 63) 

n=118 Predicted: H Predicted: L n = 118 Predicted: H Predicted: L 

Actual: H 42 17 Actual: H 37 22 

Actual: L 21 38 Actual: L 22 37 

From ethnicity  From BMI 

BAcc = 58% (99% CI 57.05 to 58.95) BAcc = 66% (99% CI 65.15 to 66.85) 

n= 118 Predicted: H Predicted: L n = 118 Predicted: H Predicted: L 

Actual: H 31 28 Actual: H 54 5 

Actual: L 22 37 Actual: L 36 23 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 

Table 5.18 Confusion Matrices for SVM predictions of right ventricular fractional area change 

From face parameters From gender  

BAcc = 52% (99% CI 51.01 to 52.99) BAcc = 58% (99% CI 57.06 to 58.94) 

n=120 Predicted: H Predicted: L n = 120 Predicted: H Predicted: L 

Actual: H 30 30 Actual: H 31 29 

Actual: L 27 33 Actual: L 21 39 

From ethnicity  From BMI 

BAcc = 48% (99% CI 47.15 to 48.85) BAcc = 50% (99% CI 49.15 to 50.85) 

n= 120 Predicted: H Predicted: L n = 120 Predicted: H Predicted: L 

Actual: H 31 29 Actual: H 14 46 

Actual: L 33 27 Actual: L 14 46 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 
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5.3.8.9 Right ventricular anterior wall thickness 

Predicting high and low right ventricular wall thickness, a measure of the muscle mass 

required to pump the blood to the lungs, all variables performed above chance. In 

addition, the face parameters and BMI passed the threshold of clinical utility, performing 

equally well (t(2,98) = -1.6, p>0.05).  

 

In accordance with the procedure delineated in section 5.3.8, average faces were 

created post-hoc for the highest and lowest individuals dependent on RVAWT (figure 

5.6). From visually inspecting the images, differences included darker skin tone and 

wider faces in those with higher RVAWT levels. Manual estimation of the intra-cheek 

distance on the mean images confirmed the high RVAWT average face to be 13mm 

longer. Converting the images to grayscale and averaging the pixel intensity provided a 

measure of brightness and confirmed that high RVAWT images were darker by 0.9 pixels 

(px).  

 

Table 5.19 Confusion Matrices for SVM predictions of right ventricular anterior wall thickness 

From face parameters From gender  

BAcc = 72% (99% CI 70.9 to 73.1) BAcc = 56% (99% CI 55.1 to 56.9) 

n=120 Predicted: H Predicted: L n = 118 Predicted: H Predicted: L 

Actual: H 44 16 Actual: H 35 24 

Actual: L 18 42 Actual: L 27 32 

From ethnicity  From BMI 

BAcc = 52% (99% CI 51 to 53) BAcc = 73% (99% CI 72.26 to 73.74) 

n= 118 Predicted: H Predicted: L n = 118 Predicted: H Predicted: L 

Actual: H 28 31 Actual: H 58 1 

Actual: L 25 34 Actual: L 31 28 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 

Figure 5.6. Average faces from individuals exhibiting highest (left) and lowest 
(right) RVAWT with red lines depicting the intra-cheek distance and squares 
showing differing brightness pixel levels. 

609 mm 
596 mm 

105.8 px 106.7 px 
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5.3.8.10 Tricuspid regurgitation velocity 

When measuring high and low tricuspid regurgitation velocity, the ability of the tricuspid 

valve to close during systole, preventing leakages of blood from the right ventricle into 

the right atrium, all variables performed above chance though none reached the 

threshold of clinical utility.  

 

 

5.3.8.11 Tricuspid annular plane systolic excursion (TAPSE) 

When measuring high and low TAPSE, the degree of displacement of the tricuspid 

annular plane, all variables performed above chance though none reached the threshold 

of clinical utility.    

 

 

 

Table 5.20 Confusion Matrices for SVM predictions of tricuspid regurgitation velocity 

From face parameters From gender  

BAcc = 52% (99% CI 51.08 to 52.92) BAcc = 51% (99% CI 50.03 to 51.97) 

n=119 Predicted: H Predicted: L n = 119 Predicted: H Predicted: L 

Actual: H 32 27 Actual: H 28 32 

Actual: L 30 30 Actual: L 26 33 

From ethnicity  From BMI 

BAcc = 55% (99% CI 54 to 56) BAcc = 52% (99% CI 51.24 to 52.76) 

n= 118 Predicted: H Predicted: L n = 119 Predicted: H Predicted: L 

Actual: H 34 25 Actual: H 48 12 

Actual: L 28 31 Actual: L 45 14 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 

Table 5.21 Confusion Matrices for SVM predictions of TAPSE 

From face parameters From gender  

BAcc = 54% (99% CI 53.17 to 54.83) BAcc = 55% (99% CI 54.03 to 55.97) 

n=119 Predicted: H Predicted: L n = 119 Predicted: H Predicted: L 

Actual: H 34 25 Actual: H 35 25 

Actual: L 29 31 Actual: L 28 31 

From ethnicity  From BMI 

BAcc = 60% (99% CI 59.1 to 60.9) BAcc = 58% (99% CI 57.03 to 58.97) 

n= 117 Predicted: H Predicted: L n = 118 Predicted: H Predicted: L 

Actual: H 31 26 Actual: H 50 9 

Actual: L 21 37 Actual: L 40 19 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 
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5.3.9 Tricuspid valve stenosis  

When predicting high and low tricuspid valve stenosis, a measure of morphological 

alterations of the valve, all variables but gender and ethnicity performed above chance 

while none reached statistical significance.  

 

 

5.4 Discussion 

5.4.1 Whole face versus regions of interest 

The initial sanity checks demonstrated the power of the SVM methods in correctly 

predicting gender from whole-face parametrisations at 85% accuracy. As these results 

were not seen for the single ROI analyses this validated the approach for whole-face 

analyses only and ROI luminance analyses were discarded from further steps. The 

whole-face consisted of 83-point X-Y coordinate values while the ROIs were richer pixel 

data of certain regions. This suggests that parametrising the relationship of the 

coordinates of the major landmarks of the face was more informative than reducing it 

to detailed information about single regions. This finding lends support to the high-

dimensional approach adopted in this thesis whereby a low precision high dimensional 

parametrisation proves superior over a high precision, low dimensional one. 

5.4.2 Implications for echocardiographic measures 

The major aim of this chapter was to explore whether it was possible to predict 

echocardiographic measures of clinical utility with facial parameters. Most 

echocardiographic variables were predicted above chance but did not reach the clinical 

utility threshold above 70% for predictive performance. Some variables performed close 

Table 5.22 Confusion Matrices for SVM predictions of tricuspid valve stenosis 

From face parameters From gender  

BAcc = 51% (99% CI 50.08 to 51.92) BAcc = 49% (99% CI 48.06 to 49.94) 

n=118 Predicted: H Predicted: L n = 119 Predicted: H Predicted: L 

Actual: H 31 28 Actual: H 32 28 

Actual: L 30 29 Actual: L 33 26 

From ethnicity  From BMI 

BAcc = 50% (99% CI 49.15 to 50.85) BAcc = 53% (99% CI 52.15 to 53.85) 

n= 120 Predicted: H Predicted: L n = 120 Predicted: H Predicted: L 

Actual: H 32 28 Actual: H 49 11 

Actual: L 32 28 Actual: L 45 15 

Abbreviations: BAcc = Balanced accuracy; n is the total number of predictions made; H = High; L = Low. 
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to this clinical threshold with face parameters predicting right ventricular area and 

diastolic and systolic blood pressure above 65%. A notable exception was predicting 

right ventricular anterior wall thickness (RVAWT) which passed the clinical utility 

threshold significantly for both face parameters and BMI and whose differences could 

not be explained by gender or ethnicity.  

RVAWT is commonly used as a measure of abnormal enlargement of the right 

ventricle to diagnose pulmonary hypertension (Matsukubo et al 1977; Steudel et al 1998; 

Ozaki et al 2001; Wanstall et al 2002; Liu et al 2006). Although both the face and BMI 

predicted RVAWT equally well, these can be considered independent measures as face 

parameters do not predict BMI and are therefore unrelated. Calculating the BMI of a 

person requires the exact values for their age, sex, height, and weight. Obtaining these 

may either require specialist equipment, albeit lighter than an echocardiogram, to obtain 

accurate measures or rely on self-report which is associated with its own set of reliability 

issues. Obtaining a photo of someone’s face is far simpler as most mobile phones have 

integrated cameras. The photograph is also an objective physical measure that can be 

easily transferred remotely via the internet if the researchers cannot reach patients at 

altitude. Therefore, the face holds more potential than BMI for translation into a 

screening measure for pulmonary hypertension.  

It was expected that differences in predictability could be made between 

measures where a clear difference was visually intuitive from average images of 

separate tails of a variable dividing a population. The opposite, where differences in 

physiology based on positive performance from face parameters was also 

hypothesised. Comparison of average faces for the highest and lowest individuals, 

dependent on RVAWT, did find intuitive and measurable differences including darker skin 

tone and wider faces in those with higher RVWAT levels. More precise measurements of 

the faces are required to confirm whether this was due specifically as a result of 

maxillary expansion, however these results echo findings of facial expansion found in 

Thalassaemic patients (Rund et al 1997; Phadke and Agarwal 2003; George 2013).  

Moreover, the darker skin tone found in individuals exhibiting higher RVWAT 

could be due to abnormal oxygen levels in the blood stream, where low oxygen saturation 

levels were found to correlate with darker skin tones (Takiwaki et al 2002). For example, 

a higher concentration of carbon monoxide in blood is associated with “cherry red” skin 

colouration (Hoppe 1857), another symptom of hypoxia (Gorman et al 1992; Simini 1998; 

Goldstein 2008). Indeed, the direction of these differences suggests confirmation for the 

hypothesis that a hypoxic environment may produce measurable changes in facial 
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expansion that are measurable from face photograph and provide clinically significant 

data.  

5.4.3 Other physiological measures 

With regards to the haematological measures, after correcting for gender biases within 

HCT levels, face parameters could predict HCT levels in both men and women above 

chance, with 60% and 53% mean balanced accuracies respectively. This difference 

between genders could be due to the higher HCT levels naturally occurring in male 

populations which could have a more marked effect on face physiology. Indeed, as HCT 

levels were hypothesised to be associated with expansion of the maxilla, it is possible 

that the SVM method was modelling these changes. Although the performance for 

predicting HCT levels for men was encouraging, it is premature to assign clinical utility 

to the results of the current system. Nevertheless, this was a promising and positive 

result in support of continuing research into this approach. 

Face parameters performed poorly – either at chance or just above chance 

without clinical utility – in predicting oxygen saturation, BMI, proportional TiT, and ethnic 

origin. This finding was surprising, as clear differences can be seen by visually inspecting 

the images consisting of the extremes within each group represented in Figure 5.4 and 

were expected to be detected by the SVM. Nevertheless, humans have developed a 

special expertise at discriminating between often similar faces as functioning within a 

society depends on this skill. It is possible that despite the capacity for machine learning 

systems to detect obvious differences such as gender, different approaches may be 

required to detect more subtle differences from face parameters. 

Predicting haematological measures from ethnicity and proportional TiT 

demonstrated similar performances to face parameters for both HCT and oxygen 

saturation. As neither of these measures were predictable by face parameters, it is an 

independent finding that characterises the underlying population and more consistently 

than face parameters as performance was equal for HCT and SaO2 levels. These two 

variables are correlated as individuals of Tibetan origin are more likely to have spent a 

long time in Tibet (at altitude) as a proportion of their lives, explaining the similar 

performance in predictive power. This was further confirmed by the high level of power 

that each variable has in predicting one another (upwards of 80%). It is possible that this 

finding reflects the established observations that living at height has a marked effect on 

these haematological measures (Niermeyer et al 1995; Yi et al 2010). Nevertheless, no 

further extrapolation can be made as it is not possible to distinguish between the relative 
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contribution of the genetic component in ethnicity compared to the environmental effect 

of living at altitude with the present data.  

5.4.4 Limitations and future directions 

Although the face parametrisation procedure generated an accurate high-dimensional 

model of face features, a more sensitive measure that generated more careful feature 

detection or more parameters could potentially yield more informative input predictors. 

Indeed, the current parameterisation method reduced the face to 83-point coordinates 

of the major landmarks. It is therefore possible that when methods are developed that 

increase the dimensionality level of face parametrisation, it might lead to more accurate 

predictions.  

As the face images were taken as a favour to our research team, no strict 

photographic procedure was followed. Employing a rigorous acquisition procedure to 

take the photographs could increase the quality of the data and predictability of the 

output. For example, asking participants to remove eyewear, pose with a neutral 

expression, and ensure even lighting and background could facilitate face 

parametrisation and improve the quality of the data.  

As the dataset originates from an ongoing study, these analyses were run on a 

subset of 980 individuals of the expected 9000+ sample, consisting of about 10% of the 

total population studied. Although positive results were found for a single 

echocardiographic measure, it is possible that once the full dataset is obtained from the 

Imperial College London research team, the system performs significantly better to merit 

further translation into a clinical tool.  
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Vladimir Bartol's (2004) maxim from Amalut: "Nothing is an absolute reality; all is permitted" 
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6.1 Overview 

This thesis adopted a high-dimensional approach to a translational research question 

with the aims of expanding current knowledge and testing whether well-established 

findings can be translated into impactful health outcomes. The biological was 

considered as distributed across multiple variables which required high-dimensional 

parametrisation to capture their full variability. This was suggested to be necessary to 

identify solutions that may work for individuals and successfully implement the 

translational focus of the thesis. 

Before we examine the features of the high-dimensional approach and their 

exemplification in the work of this thesis, it is helpful to be reminded of the 

characteristics and rationale behind the conventional, low-dimensional approach. A 

clinician—and by extension a clinical scientist—is ultimately concerned with modifying 

the properties of a biological system, for that is what is needed when it goes awry. This 

most naturally requires understanding the system, by which is meant knowing the 

relation between its components, or at least a critical subset of them, in a way that allows 

to predict what will happen when these are modified. It is this extension beyond mere 

prediction, that compels the biomedical scientist to seek fully explanatory models.  

The problem this raises is the need for an explanatory, mechanistic model to be 

simple enough to permit this kind of analysis. This may—or may not—be true of any 

biological system. Where the inherent complexity is clearly very high, as is obviously the 

case with the brain, the assumption dramatically narrows the range of systems 

accessible to study. Note this problem is not soluble by empirical means, for an 

inherently complex system cannot have a good simple model, no matter how hard it is 

sought. The ambition to discover a facet of the system simple enough to be given an 

easily manipulatable causal account, may be unfulfillable. 

Instead, in employing high-dimensional models, the solution I advocate here does 

not abandon the ambition of modifying biological systems but rather bypasses the 

requirement for understanding, at least the conventional kind of mechanistic 

understanding. Naturally there still remains a wish to achieve as perspicuous a 

description of the system under study but need not be anchored to it.  

Greater fidelity to biological reality is perhaps the most important reason for 

seeking an enhanced dimensionality. But another proceeds from the fundamental nature 

of individuation on which most clinical action is fundamentally premised. A system with 
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many parameters will tend to have multiple good local solutions, requiring an adequate 

description of any given individual to refer to many of them. Therefore, not only 

understanding biology, but applying it to an individual, theoretically benefits from the 

high-dimensional approach. 

Theory is one thing, its application another. For this, the specific challenges and 

advantages the high-dimensional approach presents in practice should be considered. 

The challenges are largely familiar: the more complex a model, the more independent 

data points it requires to be estimated with any confidence. Assuring data quality scales 

in difficulty and cost with data size: that much is obvious and incontestable. But in the 

realm of cognition and behaviour, data acquisition is facilitated by the societal 

frameworks through which they are naturally communicated. Mobile communications in 

particular have now essentially interposed an interrogable layer between the researcher 

and many of those with whom are engaged in behaviours and cognitions of research 

interest. Moreover, commodity digital devices are now the gateway to synthetic worlds 

with which people voluntarily engage for pleasure—computer gaming—revealing, 

painlessly, a great deal about human cognitive powers and dispositions. Obtaining large 

scale datasets is thus enabled by architecture motivated and funded from elsewhere.  

But it is important also to consider the practical advantages of modelling a 

biological system in a high-dimensional way beyond any biological necessity for it. These 

are often overlooked. Where the biological signal is distributed amongst many 

variables—conveyed in the covariance structure, to put it technically—it becomes 

innately resistant to the most common forms of noise and bias. Where noise affects 

each individual variable independently—as is usual for instrument noise—the covariance 

structure remains essentially unaffected by it.  

As an example, consider the recognisability of a photograph of a human face 

(Figure 6.1.A), with a great deal of white noise superimposed on it (Figure 6.1.B). 

Similarly, a simple bias, such as an affine transform—again a common feature of 

instrument-driven corruption—will also tend to be rejected in the same way. For example, 

a face that has been subjected to shear (Figure 6.1.C). However, recognising someone 

by only looking at a single parameter such as the length of the nose (Figure 6.1.C) will 

require a very high degree of precision and will therefore be more likely to be affected by 

noise (Figure 6.1.D). The parameters lose their informative potential for individuation if 

the metric is low-dimensional and reductive, but not when it is considered as part of a 

high-dimensional whole, as typically the case with human brains. 



Chapter 6: General discussion 

191 

 

This approach to noise-rejection is dependent on the existence of a robust 

covariance structure, as is the case with the human face. Whether it is true of any 

biological system is to be determined case by case. Such determination is necessarily 

data-driven, for the more complex the covariance structure the less likely it is that we 

can plausibly arrive at it a priori. This encourages the use of data-driven modelling 

techniques that are shaped by the data rather than coercing it into conformity with 

themselves.      

6.2 Assessing the high-dimensional translational approach  

The human face was selected as the central high-dimensional entity to unify this 

endeavour as many aspects of its structure and function have been thoroughly studied. 

The high-dimensionality of the face is appreciable to humans as we are experts at 

interpreting meaning from its many configurations and contextual cues. Also, the 

dimensionality of the face is plausibly related to the dimensionality behind the biological 

processes that give it its structure and animate it. This is best demonstrated by the 

relationship between discrete facial configurations and felt emotions and adopting this 

approach revealed a set of advantages when manipulating systems. 

For example, the known effects of seeing a human smiling face on affective state 

were implemented in chapter 4 as a series of experiments. I tested the extent to which 

inducing facial contagion could influence affect through emotional contagion as the 

basis for an intervention for low mood. The results demonstrated its effectiveness in use 

over long periods of time (i.e. weeks) but effects on mood were not found in the short 

term (i.e. minutes). The question was not lead by pure curiosity in the methods, as is 

often the case with neuroimaging, but forced me to implement non-traditional methods 

A B 

1.32 cm 

Figure 6.1. Individuating information in the face. A) The original image, B) with white noise added, C) with 
shear distortion and D) the single metric of the length of the nose. A complex biological system like the 
face is more robust to noise variations than any single precise parameter. 

D C 
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to answer complex questions and generate real-world solutions. The experiments 

demonstrated how leveraging mobile technology can engage the general public in 

scientific experimentation and expand the reach and impact of research. As mobile 

phones are commonly carried by most people in developed and developing countries, 

their proximity to people allowed for delivery of frequent doses of interventions without 

disturbing participants’ life significantly. These small interruptions during the day were 

much less intrusive than say, meditating for a half-hour. It also demonstrated the impact 

of multidisciplinary integration of gamification and behavioural economics “nudge-

theory” to generate large datasets within a translational approach. This was the first time 

that neuroscientific findings were translated into a mood therapy leveraging app mobile 

technology, it led to a series of good practice lessons detailed in the relevant chapter as 

well as interesting results that advanced our knowledge of the extent to which 

established findings can be translated for the greater good. 

These studies highlighted the challenges of the high-dimensional approach. They 

created huge datasets; essential in modelling biological systems from multiple variables 

while becoming harder to handle. Also, it became less practical to deliver the intervention 

high-dimensionally and respect inter-individual differences. This was attempted by 

allowing individuals to control the timing and level of dosages. Although this allowed a 

certain degree of individual control and rate of delivery of the therapy (i.e. dosage), the 

scale and method did not allow for greater detail than was implemented in data 

gathering.  Indeed, the potential to individuate effects was complicated by the necessity 

to keep the questionnaires brief and non-intrusive which also limited the richness of the 

data. Longer questionnaires might have led to lower participation rates and more 

elaborate emotion detection techniques, such as photographs of participants 

complicated the design with a range of ethical considerations which I was unable to 

implement within the constraints of the current PhD. This is a common challenge across 

high-dimensional studies and in this chapter, it was inevitable to ultimately rely on self-

report. 

When a large and rich dataset is available the high-dimensional approach can 

generate interesting insights, as was the case in the last experimental chapter. This 

presented a good opportunity to use changes in the structure of the face to drive 

translational outputs. Structure and function are intertwined, for the body is adaptive, 

changing as input-output transformations drive it hither and thither. Here, the faces of 

Tibetan and Han Chinese participants were parametrised to explore which physiological 

measures could be predicted with machine learning methods. The prediction of certain 
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variables from the whole face compared to certain isolated regions confirmed that a 

high-dimensional parametrisation was superior to single, information-rich areas. In 

addition, an echocardiographic measure of heart function indicative of pulmonary 

hypertension, was found to be well predicted from face parameters. This was an original 

finding that further confirmed the validity of the approach and is a necessary first step 

in creating a screening tool for echocardiographic markers of cardiovascular diseases 

in hard to reach populations based on such measures. As is common in methodology-

driven approaches, a vast number of improvements could be made to this study to 

ensure the robustness of the findings. For example, testing the data with a larger data 

set or one with populations indigenous to other geographies (e.g. Andean mountains) 

and other machine learning methods could further cement and independently verify the 

findings. However, the results remain a powerful demonstration of the potential utility of 

using a data-driven approach coupled with machine learning methods within a 

translational mindset. 

Another advantage of the high-dimensional approach is that it allows for the 

proper consideration of the relation between the variables that define the variance 

between individuals. This could in turn generate data-driven models that are more 

individually translatable. Indeed, complex, multiparameter, adaptive systems are likely to 

have multiple good solutions. This may result in each individual being adequately 

describable only by a relatively large set of parameters. To individuate treatment, one 

therefore has no option but to adopt high-dimensional data-driven modelling, for the 

intrinsic complexity of the biological necessitates it. Moreover, the more complex a 

system, the harder it will be to generate a satisfactory model a priori. Good methods will 

naturally tailor themselves to the data, deriving their properties from the data itself in the 

most flexible way.  

The second chapter perhaps exemplified this best, where I adapted this approach 

to better elucidate the characteristics of the very noisy facial contagion response as 

measured with EMG. I developed the Pompeii Adaptive Filter (PAF), an automated data-

driven filtering method that would overcome many limitations found in conventional 

filtering. The PAF capitalised on the many studies that characterise the facial contagion 

response to generate four Meta-CRFs that were used as templates to extract the 

underlying shape of the signal of interest to each emotional reaction. The process of 

deconstruction through variational mode decomposition captured the full variability 

within the signal while remaining highly flexible and assuming very little about the 

fundamental properties of the data. The resulting signal combinations were tested for 
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highest similarity with the Meta-CRFs through cross-correlation. Therefore, rather than 

selecting the relevant data a priori, it was defined by the literature in the field and 

automatically selected by the method in the most flexible manner. The PAF was 

contrasted to conventional filtering by simulating different EMG noise levels and was 

found to be superior at each muscle site and for all modelled contagion responses. This 

was the first time that facial EMG data underwent such complex filtering as the field was 

quite set in common practice. It also demonstrated the potential of the data-driven 

translational approach as Meta-CRFs were constructed from historical data and the full 

high-dimensionality of the entire waveform was used in SVMs to validate the efficacy of 

the results. This result also exemplified the extrapolative validity of commonly applied 

techniques in neuroimaging statistical analysis which were the foundational inspiration 

for this work due to the author’s background in the subject matter.  

I then moved to explore whether this technique could be successful with 

biologically acquired data gathered in chapter 3. This chapter’s primary goal was to 

measure facial contagion responses with EMG in MND patients and identify differences 

between high and low lability groups. High lability MND patients demonstrated weaker 

and slower starting facial contagion responses with an exaggerated reactivity to 

negative emotions. This demonstrated the value of translating a neuroscientific process 

into one with practical applications which, with further exploration, could hold real 

clinical potential. Indeed, this was the first differential observation made between facial 

reactivities of MND patients. This invites further focus from the field on the emotional 

dysregulation aspects of the condition rather than pure concentration on the motor 

deteriorative symptoms. From a methodological standpoint, this presented an 

opportunity to test the performance of the PAF on biological data. It did not conclusively 

perform better than conventional filtering since performance was not consistently 

superior across muscle sites. Although this could have been due to several factors 

including small sample size and technical issues, if differences would be further 

confirmed, the technique of predicting differences between groups by feeding the 

waveforms into a SVM holds potential as the basis of a differentiator.  

Indeed, the PAF method holds potential beyond the current setting and could be 

used in other signal processing instances. As I took inspiration from previous research 

in neuroscience that models the haemodynamic response to measure brain activity, I 

hope this inspires researchers in other neuroscience fields such as neuroimaging to 

explore whether the PAF can be useful in return. For example, this holds particular 

potential in electroencephalographic recordings where a prototypical response is well 
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established for event related potentials in the field of decision making (e.g. P300 and 

readiness potential). If found to be effective across other domains, it could lead to 

shorter experiments as less trials might be required to be completed by participants to 

generate similar signal-to-noise ratio as with conventional filtering. Ideally, clinical 

practice requires highly individuating tests that can work with few trials otherwise they 

cannot be applied at all, whether they are good or not. This is an important consideration 

as a major barrier to introducing behavioural tests in clinical practice is the “sweat-

factor”: the number of trials needed to get good classification.  

This highlights another advantage of the high-dimensional approach, in that it 

generates models that are more robust. If the individuating information is in the 

covariance between multiple variables they may make determining a biological state 

more resistant to noise and bias. As stated in the previous section, resistance to noise 

comes from distributing the individuating information across many variables enabling 

rejection of noise, which will generally not have the same covariance structure, indeed it 

will usually be random. Resistance to bias comes from the converse: global effects such 

as changes in baseline have too simple a covariance structure that tends to produce an 

affine transform of the data transparent to the biological signal.  

Finally, there are some questions that remain to improve operating within this 

approach. How does one identify a finding that is ready for translation? Once 

individuated, which issue or disorder should it tackle and what are its limits? Should 

ethics be adapted to the growing mobile industry that collects more data than academic 

research with less repercussions and for profit? Should deceit be allowed in mobile 

experiments where debrief cannot be ensured unless participants request it actively and 

if they forfeit this right during the consent process? Solving some of these issues will 

enable the advancement of the field within ethical constraints while providing a needed 

structure to the process that might mitigate some of the risk of not obtaining positive 

results. 

6.3 Lessons on ways-of-working  

Although it is rarely a point of discussion, scientific research is after all a profession and 

has established ways-of-working. Several lessons from this PhD suggest certain 

transformations could enable the development of different ways-of-working, which could 

contribute to advancing the discovery and application process. 
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In the current thesis, the PhD student had to wear many hats including traditional 

responsibilities, such as writing ethics and analysing data, but also as a project manager. 

Indeed, without creating a team of 12 volunteers that were present 6-days a week, for 

over one month it would have been impossible to collect data from 4116 Science 

Museum visitors. Without learning agile methodologies and leading user testing, it would 

not have been possible to publish 4 mobile apps across tablets and smartphones with 

different operating systems. These types of endeavours break away from a traditional 

junior researcher role and provide great growth opportunities and transferable skills, 

useful both inside and outside academia.  

Another technology that was leveraged throughout this PhD to generate results 

were artificial intelligence methods such as support vector machines for classification 

prediction. The potential for machine learning to change daily activities is increasingly 

being recognised and research is one of these sectors as many algorithms draw their 

inspiration from neuronal systems in the brain. It is convenient that in neuroscience large 

datasets are routinely produced as machine learning methods require these to work 

effectively. Learning to capture the high-dimensional variability within this data and 

properly parameterise it has potential to better inform research questions, provide 

independent lines of evidence, and discover practical applications for research. By 

demonstrating the versatility of these techniques, the present work hopes to have 

inspired other neuroscientists to explore their potential in generating new findings 

outside of computational neuroscience.  

Since the goal of clinical practice is to prescribe as well as predict it is important 

to know how to change a system towards a desired goal. This is easiest when 

established models are sufficiently simple to be mechanistically interpretable, so that a 

prediction can be easily made based on the consequences of minor changes. Inevitably 

this has led to a preference towards fitting the simplest possible models, as trying 

complex ones raises concerns over their prescriptive potential. However, this hesitation 

may be misplaced as if prediction requires a complex model then so shall prescription: 

the established notion that the biological must be simple needs to be exceeded. 

Simplicity is here the exception rather than the rule, and this complexity needs to be 

characterised accurately. A solution is found in prescriptive modelling where the models 

generate the likelihood of desired outcomes for each course of action without requiring 

the researcher to understand these at all. In this way, the interventions are modelled high-

dimensionally and match the complexity with which the systems are described, leading 

to more precise and tailored interventions.  
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An emphasis on the importance of the collaborative element in this type of 

research is required. It is impossible to both generate large datasets and demonstrate 

versatility in exploration of different topics without collaborations. For example, the team 

from Imperial College that provided the face photographs were experts at gathering 

haematological and echocardiographic data at altitude, but never considered 

photographing participants’ faces. By asking for a simple extra measure to be recorded 

in a very complex and large study, an unprecedented level of detail was uncovered about 

the relationship between faces and heart function and the potential of this relationship 

to be translated into clinical screening measures.  

If this approach were institutionalised, a new way-of-working might require a 

potential call for “piggybacking” requests at the pre-ethics stage. For example, prior to 

submitting a large-scale study for ethical approval, the researchers could open a call for 

data collection requests based on their measures that another researcher could benefit 

within their ability to deliver. This would lead to greater publications, inter-disciplinary 

collaboration, and better use of financial resources. Indeed, if this call could be 

implemented as a condition to award multidisciplinary or translational grants, it could 

enhance collaborations and provide the foundation for a new way to generate 

discoveries. This collaborative element is usually not preferred at the early career stage 

which is a PhD as the emphasis is on the individual learning to perform scientific 

research independently. However, when in cases such as the present one, where 

expertise is required across a variety of domains and the ambitions of the project can 

perhaps be too daunting to take to commercialisation or publication in the short time 

available, it is important to consider whether one should prioritise completion of single 

projects or breadth of topics. In this case, the latter was clearly preferred in order to 

develop a wide array of skills and provide an interesting basis for further work. If some 

of these experiments may appear “incomplete” as they may seem to end just when the 

interest of the reader is at its peak it was due to time restrictions. I believe that for 

scientific discovery to be successful it should advance the field by answering certain 

questions but also by raising many more. In this way, there will always be a need for 

further discovery and the search for answers never ends.  

6.4 Conclusions 

The largest impact of this thesis was demonstrating the potential of a translational 

approach in cognitive neuroscience. The parallel translational approach forced me to 

exit from the traditional pathway to generating science and simultaneously create and 
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test findings. The experimental uncertainty of this research was justified by weighing the 

potential impact and benefits of outcomes. Few of the chapters contain follow-up 

experiments due to the time involved in pursuing each one and there are of course more 

questions raised than answered in this research.  

As a training exercise to become an independent researcher, this approach 

enabled me to develop innovative solutions across different areas by conducting six 

experiments that exploited different conceptual aspects of its structure, such as 

changes in face bones due to environmental pressures, and function, such as facial and 

emotional contagion. I also applied different data acquisition techniques such as EMG 

and qualitative mood questionnaires, generated big datasets by integrating experiments 

within mobile devices such as iPhones or gamifying them into Android tablets, and 

explored the potential of different analyses techniques and artificial intelligence 

algorithms to understand ensuing effects. 

I believe that collaboration between individuals and institutions will be key to 

demonstrate the utility of these findings and inform further investigation across 

cognitive neuroscience and beyond. Thus, it may be that not all the findings presented 

in this thesis will be published in scientific articles without further work. However, had 

all experiments yielded positive results I might have been accused of being overly 

cautious at best, or obvious, at worst.  

 The impact that mobile technology demonstrated is forcing a multidisciplinary 

reconfiguration of how research is conducted within cognitive neuroscience. When I 

launched the Pocket Smile project, a single app experiment existed as a mobile app in 

the field: The Great Brain Experiment (Brown et al 2014). This app facilitated the 

identification and screening of participants for further neuroimaging studies through 

gamified psychophysics tasks. As this was new territory for the field, the researchers 

were content with replicating canonical research and did not generate new information 

despite the massive population reached (N>20,000).  

More recently however, the apps in the field have become more complex. For 

example, in Sea Hero Quest (Morgan 2016), a sailor tries to re-capture the memories of 

his father in a sea of mazes as he loses them to dementia. This application aims to 

create a normative dataset about people’s spatial navigational skills, instrumental in 

creating an early symptoms diagnostic test for dementia. Although the results are still 

unknown, it is clear the greater understanding of the potential for mobile technology to 

deliver data from millions of participants is being recognised to generate important 

translational advances and explore the potential impact on people’s lives. Conducting 
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these types of projects will require a shift in funding structure and culture. Specifically, 

granting bodies will need to understand the importance of creating a promotional video, 

allocating funds for managing a social media presence, and understanding that 

development costs may increase at different stages to ensure the success of such 

projects. 

In the future, obtaining data from multiple distributed devices from the same 

individual may provide richer and more objective reliable information than currently 

possible. This will become most relevant when delivering therapy at scale through 

distributed interventions as specific information and individualised feedback will be 

possible in this way. This type of progress may redefine the connection between 

knowledge and intervention and close the gap between data gathering and 

implementation. 

 Ultimately, the translational approach to research proved to be impactful and 

testing the uses of research in parallel as producing new findings holds potential to 

speed up the applicability of science. The approach also demonstrated that it was a high-

risk endeavour where generating big effects was difficult and sensitivity to noise was 

high. Translating different aspects of established research about the face was proven to 

be useful in a variety of ways in the context of neuroscience research. The research 

conducted was also of interest to the wider public, with one of the projects being 

featured in a major UK newspaper (www.telegraph.co.uk/science/2016/12/25/smile-

pocket-could-help-ease-depression-anxiety/) and internationally on German radio 

(www.dradiowissen.de/beitrag/pocketsmile-laecheln-als-app-therapie). The aim was to 

test the value of the translational and high-dimensional approach to neuroscientific 

research and the assessment concludes it is valid. I hope other researchers and 

institutions will integrate some of the findings within their work to extend their impact to 

those affected by neurological disorders, the general public, and advance progress in 

scientific research. 
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A.1 Patient Information Sheets (PIS) 
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B.1 User interface screenshots  

 

Loading 

screen 

Welcome 

menu 

Consent (B.2) Demographics 

(B.3) 

Depression survey (B.4) Happiness survey (B.5) 
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B.2 Consent form in app 

The text below is presented after participants selected the sign up welcome page item. It is also available 
at all times from the FAQ section within the app as a participant information sheet. 

Please read the following information carefully. 

Consent 

By tapping "I agree" below, you confirm that: 

• You understand the nature and purpose of this research to your satisfaction 

• You agree to take part in the study 

• You understand that you can withdraw at any time without giving a reason 

• You’re at least 18 years old, and this is your iPhone 

Please scroll down to read the rest of the information. You can find it at any time in the ’Help’ section of 

the app. 

 

7.1.1.1 What’s this research for? 

Just like seeing people yawn makes you feel like yawning, so seeing people smile make you feel like 

smiling. This is a pilot study in which we seek to determine if people’s mood can be improved by seeing 

faces of smiling people. You will be helping to design and test an app that may help improve people's 

mood without the use of drugs or other interventions associated with the risks of side effects. 

 

7.1.1.2 What will I do? 

After providing some basic demographic and health-related information you will be asked to complete 

two short mood questionnaires. You will then start receiving notifications on your phone showing smiling 

faces. This will happen by default 10 times a day. You can change the number of notifications and the 

times of the day you want to receive them in the 'Settings' section of the app. 

Each notification will prompt you to open Pocket Smile and look at a smiling face. If you don't want to 

look at the face when prompted, that is fine, you will be prompted again at the next notification when a 

different face will appear. For the purposes of the experiment, it would be best if you leave the default 

settings so that you can see at least 10 faces a day, but feel free to adjust to whatever frequency suits 

you best. 

After 10 days, you will be asked to complete the short mood questionnaire again. Once completed, 

Pocket Smile will present the questionnaire once a month while continuing to notify you to look at the 

smiling faces. You can keep taking part as long as you want. 

It is important that you try to always keep the app minimized when not using it. The app is not power 

hungry at all, so it will not drain your battery. 
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7.1.1.3 How long will it take? 

The sign-up process should not take more than 10 minutes. The daily viewing of smiling faces is like 

reading a notification; it may last from a couple of seconds to as long as you want. The monthly mood 

questionnaire will take about two minutes at most. 

For your participation to be most useful for the study, it would be good if you could participate at least 3 

months. However, you can keep taking part in the study for as long (or short) a period as you want and 

can leave the study without giving a reason. 

 

7.1.1.4 What data will I be sharing? 

None of the data collected will be personally identifiable. Pocket Smile will keep track of usage statistics, 

including how many images you see, the time spent looking at each image, and responses to the monthly 

mood questionnaires. All data will be safely and anonymously transferred to our secure data store. 

 

7.1.1.5 What will you do with this data? 

All gathered data will be stored securely and accessed only by members of the research team. We will 

use statistical techniques for our academic research. We will be looking at the effect of app usage on 

people’s mood, taking into account other potential influences. 

We’ll be posting results and updates on www.pocketsmile.icn.ucl.ac.uk, so please visit if you’re 

interested in seeing what we find. We also hope to present our findings in academic journals and at 

conferences. 

 

7.1.1.6 Is it confidential? 

Yes. We will keep all information of individuals strictly confidential and never report any responses of 

individual people. Information will only be used and reported at the group level. It will not be possible to 

identify your responses from any reports or publications. We do not collect any personally identifiable 

information such as your name or contact details. 

Your data will not be disclosed to third parties unless (1) we’re required by law to do so, or (2) exclusively 

for the purposes of academic research at a recognised institution, under a strict contractual agreement 

with other academic researchers who also agree on the confidentiality principles outlined here. 

 

7.1.1.7 Is it secure? 

Yes. All communication between Pocket Smile and our data store is over an SSL encrypted connection. 

This is the same kind that is used for online banking and secure shopping transactions. The data is 

stored in a firewalled and fully updated Linux server which can only be accessed over a secure 

connection. 
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7.1.1.8 Is it easy to quit? 

Yes. Participation is completely voluntary. You are free to withdraw at any time, without giving any 

reason. Simply delete this app from your iPhone or take a break from the study by changing notifications 

per day to zero on the 'Settings' screen within the app. 

We can also delete all your data from our data store if you ask us. We won’t be able to remove your data 

from research that we’ve already published, however. 

 

7.1.1.9 How much data does it use? 

Sending your questionnaire responses uses as much data as sending a brief email (around 50KB). 

An unlimited data plan is not necessary to take part. The app itself is approximately 17MB to download. 

 

7.1.1.10 Can I take part if I’m not in the UK? 

Yes. The app is available to download all over the world in English! 

 

7.1.1.11 I have another question… 

If there’s anything else you’d like to know, please visit www.pocketsmile.icn.ucl.ac.uk or contact Javier 

Elkin or Dr Parashkev Nachev: 

To do this right now, tap and hold this address: contact-pocketsmile@ucl.ac.uk 

Or write to us at the Institute of Cognitive Neuroscience, Alexandra House, 17 Queen Square, London 

WC1N 3AR 

Thank you! 
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B.3  Demographics Questionnaire 

 

  

  

This survey spans multiple screens. After responding, the 

Next button is enabled, allowing users to go to the next 

question. This happens automatically where there is no Next 
button.  When completed, users are automatically redirected 

to the welcome page where the next questionnaire is now 

enabled for selection. All questionnaires have a back button 

X

pressed repeatedly, will discontinue the questionnaire. 
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B.4 Depression survey  

 

 

  

The Patient Health Questionnaire-9 (PHQ-9; (Kroenke et al 

2001) was presented on a single scrollable screen after 

selecting the Mood Questions option from the welcome page. 

After selecting one of the multiple choice answers the 

questionnaire automatically scrolls to the top of the next 

question.  
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B.5 Happiness survey 

The Subjective Happiness 

Scale

(SHS; Lyubomirsky and Lepper 

(1999) was presented on a single 

scrollable screen following the 

selection of the Recent Events 
welcome page item. Users 

responded by moving the slider 

and scrolling down the 

questionnaire to the next 

question. If users replied YES to 

question 5 of 5 (bottom left), they 

were prompted to also report the 

effect this had on their mood. 

Once all questions were 

completed, users were 

automatically redirected to the 

Home page where the countdown 

to the next face begins. 
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B.6 In-App Menus 

  

Home About Settings Help 
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B.7 Notification and Stimuli 
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B.8 App Store description 

This is a screenshot of the iTunes page where users can download Pocket Smile. 

Retrieved 16.12.2013 link: https://itunes.apple.com/gb/app/pocket-

smile/id709226955?mt=8 

https://itunes.apple.com/gb/app/pocket-smile/id709226955?mt=8
https://itunes.apple.com/gb/app/pocket-smile/id709226955?mt=8
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B.9 Website 

The following pages show the site as it appeared on 16.12.13: 

www.pocketsmile.icn.ucl.ac.uk  

Home Page 

file:///C:/Users/javie/AppData/Roaming/Microsoft/Word/www.pocketsmile.icn.ucl.ac.uk
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Frequently Asked Questions Page 
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About Page 
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B.10 Social Media Presence 

 

Twitter profile, example screenshot as of 08/12/2014 of Twitter handle 

@PocketSmileApp. 

 

Link: https://twitter.com/PocketSmileApp  

 

    

https://twitter.com/PocketSmileApp


Appendices 

247 

 

Facebook profile, example screenshot as of 08/12/2014.  

 

Link: https://www.facebook.com/pocketsmileapp 

 

 

https://www.facebook.com/pocketsmileapp
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B.11 Sample image creation process 

 

 1. Selected images from internet 

2. Features delineated in 
Abrasoft Facemixer 3 3. Faces averaged 

4. Masks created in MIPAV 

5. Masks multiplied with faces in 
MATLAB 6. Background blurred and cropped 

in Photoshop CS6 
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B.12. Analytics screenshot 
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B.13 Mixed Effects Repeated Measures Results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE B.14 –  Mixed effects repeated measures results for both depression and happiness baseline measures to change in scores at 
every timepoint 

 

 Test Coefficient p 95% CI Test Coefficient p 95% CI  

Timepoints 

PHQ* 
 

 

<0.001 

 

SHS** 
 

 

<0.001 

  

      T1 -1.53 -1.88 to -1.17 .181 .017 to .345  

      T2 -1.88 -2.39 to -1.37 .463 .227 to .698  

      T3 -2.46 -3.09 to -1.83 .591 .301 to .880  

      T4 -2.15 -2.93 to -1.37 .749 .383 to 1.11  

      T5 -1.54 -2.51 to -.584 .545 .098 to .992  

      T6 -1.53 -2.58 to -.484 .398 -.090 to .886  

      T7 -2.00 -3.17 to -.823 .188 -.358 to .734  

  * Higher PHQ score indicates higher depression ** Higher SHS score indicates higher happiness  
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B.14 Source Code for Pocket Smile  
 
The Tapparium developer provided a link to the code repository which is found at the link below: 
 
https://bitbucket.org/arivibes/pocket-smile 
 
Access to the full code can be provided upon request. 

https://bitbucket.org/arivibes/pocket-smile


Appendices 

252 

 

B.15 Source Code for Pocket Smile 2 
 
The codes below were provided by development agency Milo Creative. This is not the full code 
as a React Native application consists of several repositories with multiple sub-folders and 
specific rules that govern them. 
 
'use strict'; 
// Default React imports 
import React, { Component } from 'react'; 
import { StyleSheet, View, Navigator, Text, TouchableHighlight, 
    Linking, AppState, PushNotificationIOS } 
  from 'react-native'; 
 
// import utilites 
import colors from './styles/Colors' 
import moment from 'moment' 
 
// import services / APIs 
import ServerService from './services/server/ServerService' 
import Notifications from './services/notifications' 
 
// import NavBar 
import MyNavBar from './components/nav/MyNavBar' 
 
// Import Stores & Actions 
import {NavActions} from './actions/Actions'; 
import NavStore from './stores/NavStore'; 
import ProfileStore from './stores/ProfileStore'; 
 
// Import Components 
import FormMenu from './components/forms' 
import TabNavigation from './components/TabNavigation' 
import MoodQuestionnaire from './components/forms/MoodQuestionnaire' 
import RecentEvents from './components/forms/RecentEvents' 
import Signup from './components/forms/Signup' 
import AboutBirthYear from './components/forms/AboutBirthYear' 
import AboutSatisfaction from './components/forms/AboutSatisfaction' 
import AboutThanks from './components/forms/AboutThanks' 
import AboutGeneric from './components/forms/AboutGeneric' 
import ImageView from './components/image' 
import Onboarding from './components/onboarding' 
 
 
// Define main class / object 
var App = React.createClass({ 
  getInitialState() { 
    let initialRoute = this._initialRoute() 
    return ({ 
      initialRoute: initialRoute, 
      navBarHidden: initialRoute.navBarHidden, 
    }); 
  }, 
  componentWillMount() { 
    this.aboutJSON = require('./components/forms/json/about.json'); 
    console.log('componentWillMount'); 
  }, 
  componentDidMount() { 
    console.log('componentDidMount'); 
    AppState.addEventListener('change', this._handleAppStateChange); 
    this.unsubscribe  = NavStore.listen(this._buttonPress) 
    Notifications.addListener(this._handleNotification) 
    Notifications.requestPermissionsIfNeeded() 
    this._handleNotification2IfNeeded() 
    console.log('_sendJsonIfNeeded IN componentDidMount'); 
    this._sendJsonIfNeeded() 
  }, 
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  componentWillUnmount() { 
    console.log('componentWillUnmount'); 
    this.unsubscribe() 
    AppState.removeEventListener('change', this._handleAppStateChange) 
    Notifications.removeListener(this.__handleNotification) 
  }, 
  _initialRoute() { 
    let routes = [ 
      {name:'onboarding',title:' ', navBarHidden:true}, 
      {name:'form_menu',title:' ', navBarHidden:true,isForm:true}, 
      {name:'tab_navigation',title:'Settings', navBarHidden:true} 
    ] 
    let route = routes[0] 
    if (ProfileStore.getProperty('seenOnboarding')) { 
      if (!ProfileStore.getProperty('hasCompletedInitialQuestionnaire') || 
          ProfileStore.shouldDisplayQuestionnaire()) { 
        route = routes[1] 
        if (ProfileStore.shouldDisplayQuestionnaire()) { 
          ProfileStore.setProperty('formStep',2) 
        } 
      } else { 
        route = routes[2] 
      } 
    } 
    return {name: route.name, title:route.title} 
  }, 
  _getCurrentRoute() { 
    const routes = this.refs.navigator.getCurrentRoutes() 
    let route = routes[routes.length-1] 
    return route 
  }, 
  // this a callback gets called when notification is pressed or if the user is within the app 
  _handleNotification(notification) { 
    console.log('_handleNotification:\n'+JSON.stringify(notification)); 
    this._handleNotificationInternal(notification) 
  }, 
  // this gets called when app state changes or when app is reloaded (componentDidMount) 
  _handleNotification2IfNeeded() { 
    console.log('_handleNotification2IfNeeded'); 
    Notifications.hasNotification(this,() =>   { 
      this._handleNotificationInternal() 
    }) 
  }, 
  _handleNotificationInternal(notification) { 
    console.log('_handleNotificationInternal '); 
    let isQuestionnaireNotification = notification ? 
      Notifications.isQuestionnaireNotification(notification) : 
      false; 
    if (isQuestionnaireNotification || ProfileStore.shouldDisplayQuestionnaire()) { 
      // Don't display questionnaire if already filling questionnaire 
      // e.g when an image notification comes whilst filling forms 
      if (this._getCurrentRoute().isForm) return 
      this._buttonPress(NavActions.showQuestionnaire) 
    } else { 
      // Don't display image on top of forms (ie not in tab_navigation) 
      let route = this._getCurrentRoute() 
      console.log('_handleNotificationInternal ' + route.isForm + ' ' + route.name); 
      if (route.isForm || route.name === 'image_view') return 
      let imageIndex = ProfileStore.nextImageIndex() 
      this._buttonPress(NavActions.showImage, imageIndex) 
      console.log('- showImage') 
    } 
    Notifications.clearBadges(); 
  }, 
  _handleAppStateChange(currentAppState) { 
    console.log('_handleAppStateChange:\n'+currentAppState); 
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    if (currentAppState == 'active') { 
      this._handleNotification2IfNeeded() 
      console.log('_sendJsonIfNeeded IN _handleAppStateChange'); 
      this._sendJsonIfNeeded() 
    } else { 
      const routes = this.refs.navigator.getCurrentRoutes() 
      let route = routes[routes.length-1] 
      if (route.name == 'image_view') { 
        this._buttonPress(NavActions.leftImage) 
        ProfileStore.imageDisappeared() 
      } 
    } 
  }, 
  _sendJsonIfNeeded() { 
    if (ProfileStore.getProperty('hasCompletedInitialQuestionnaire') && 
        !ProfileStore.getProperty('hasSentInitialQuestionnaire')) { 
          this._sendInitialJson() 
    } 
    if (ProfileStore.getProperty('hasCompletedMidQuestionnaire') && 
        !ProfileStore.getProperty('hasSentMidQuestionnaire')) { 
          this._sendMidJson() 
    } 
    if (ProfileStore.getProperty('hasCompletedFinalQuestionnaire') && 
        !ProfileStore.getProperty('hasSentFinalQuestionnaire')) { 
          this._sendFinalJson() 
    } 
  }, 
  _sendInitialJson() { 
    ServerService.send(ProfileStore.initialServerJson(),this._initialServerSuccess) 
  }, 
  _sendMidJson() { 
    ServerService.send(ProfileStore.midServerJson(),this._midServerSuccess) 
  }, 
  _sendFinalJson() { 
    ServerService.send(ProfileStore.finalServerJson(),this._finalServerSuccess) 
  }, 
  _initialServerSuccess() { 
    ProfileStore.setProperty('hasSentInitialQuestionnaire', true) 
  }, 
  _midServerSuccess() { 
    ProfileStore.setProperty('hasSentMidQuestionnaire', true) 
  }, 
  _finalServerSuccess() { 
    ProfileStore.setProperty('hasSentFinalQuestionnaire', true) 
  }, 
  _buttonPress(action, argObj) { 
    if (action == NavActions.onboardingGetstartedPressed) { 
      this.refs.navigator.resetTo({name:'form_menu', title:' ',isForm:true}) 
      ProfileStore.setProperty('seenOnboarding', true) 
    } else if (action == NavActions.tabItemPressed) { 
      this.refs.navigator._navBar.setTitle(argObj) 
    } else if (action == NavActions.formMenuItemPressed) { 
      this.refs.navigator._navBar.setTitle(undefined) 
      this.setState({navBarHidden:false}) 
      let onPress = () => NavActions.formThanksDonePressed() 
      if (argObj == 'Sign up') { 
        this.refs.navigator.push({name:'sign_up', title:'Sign up', 
        leftButton:'times', isForm:true}) 
      } else if (argObj == 'About you') { 
        this.refs.navigator.push({name:'aboutGender', title:'About you', 
        leftButton:'times',isForm:true}) 
      } else if (argObj == 'Mood questions') { 
        this.setState({rightButtonDisabled:true, animateRightButton:false}) 
        onPress = () => {this.refs.navigator.popToTop(); 
NavActions.formCheckPressed('mood_questionnaire')} 
        this.refs.navigator.push({name:'mood_questionnaire', title:'Mood Questions', 
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        rightButton:'check', onRightPress:onPress,isForm:true}) 
      } else if (argObj == 'Recent events') { 
        this.setState({rightButtonDisabled:true, animateRightButton:false}) 
        onPress = () => NavActions.questionnaireComplete() 
        this.refs.navigator.push({name:'recent_events', title:'Recent Events', 
        rightButton:'check', onRightPress:onPress,isForm:true}) 
      } 
    } else if (action == NavActions.recentFormChanged || 
               action == NavActions.moodFormChanged) { 
      this.setState({animateRightButton:argObj, rightButtonDisabled:!argObj}) 
    } else if (action == NavActions.aboutFormValueEntered) { 
      this.refs.navigator.push({name:argObj, title:'About you', 
      leftButton:'times'}) 
    } else if (action  == NavActions.aboutComplete) { 
      this.refs.navigator.popToTop() 
    } else if (action  == NavActions.questionnaireComplete) { 
      // Fixes bug that would send questionnaireComplete consecutily when pressing on the animated 
button 
      const timeNow = (new Date()).getTime() 
      if (this.questionnaireCompleteTimeCalled && 
          timeNow - this.questionnaireCompleteTimeCalled.getTime() < 60000) return 
      this.setState({navBarHidden:false}) 
      if (!ProfileStore.getProperty('hasCompletedInitialQuestionnaire')) { 
        ProfileStore.setProperty('hasCompletedInitialQuestionnaire', true) 
        ProfileStore.setProperty('timeCompletedInitialQuestionnaire', moment()) 
        this._sendInitialJson() 
        if (!ProfileStore.getProperty('hasCompletedMidQuestionnaire')) { 
          Notifications.removeQuestionnaireNotificationJs(); 
          Notifications.scheduleQuestionnaireNotificationIfNeeded(1) 
        } 
      } else if (!ProfileStore.getProperty('hasCompletedMidQuestionnaire')) { 
        ProfileStore.setProperty('hasCompletedMidQuestionnaire', true) 
        ProfileStore.setProperty('hasToCompleteMidQuestionnaire', false) 
        ProfileStore.setProperty('timeCompletedMidQuestionnaire', moment()) 
        this._sendMidJson() 
        ProfileStore.switchStimulus() 
        if (!ProfileStore.getProperty('hasCompletedFinalQuestionnaire')) { 
          Notifications.removeQuestionnaireNotificationJs(); 
          Notifications.scheduleQuestionnaireNotificationIfNeeded(2) 
        } 
      } else if (!ProfileStore.getProperty('hasCompletedFinalQuestionnaire')) { 
        ProfileStore.setProperty('hasCompletedFinalQuestionnaire', true) 
        ProfileStore.setProperty('hasToCompleteFinalQuestionnaire', false) 
        ProfileStore.setProperty('hasCompletedStudy', true) 
        Notifications.cancelNotifications({type:'questionnaire'}) 
        this._sendFinalJson() 
        console.log("_sendFinalJson"); 
      } 
      this.refs.navigator.resetTo({name: 'tab_navigation',title:'Settings', 
      rightButton:null, leftButton:null}); 
      this.questionnaireCompleteTimeCalled = new Date() 
    } else if (action  == NavActions.showImage) { 
      this.refs.navigator.resetTo({name: 'image_view',title:'Settings', 
      rightButton:null, leftButton:null, imageIndex:argObj}); 
      this.setState({navBarHidden:true}) 
    } else if (action == NavActions.leftImage) { 
      this.setState({navBarHidden:false}) 
      this.refs.navigator.resetTo({name: 'tab_navigation',title:'Settings', 
      rightButton:null, leftButton:null}); 
    } else if (action == NavActions.showQuestionnaire) { 
      ProfileStore.setProperty('formStep',2) 
      if (!ProfileStore.getProperty('hasCompletedMidQuestionnaire')) { 
        ProfileStore.setProperty('hasToCompleteMidQuestionnaire',true) 
      } else if (!ProfileStore.getProperty('hasCompletedFinalQuestionnaire')) { 
        ProfileStore.setProperty('hasToCompleteFinalQuestionnaire',true) 
      } 
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      this.setState({navBarHidden:true}) 
      this.refs.navigator.resetTo({name:'form_menu', title:' ',isForm:true}) 
    } else if (action == NavActions.showAppIcon) { 
      this.refs.navigator._navBar.setShowAppIcon(argObj) 
    } 
  }, 
  _renderScene(route) { 
    switch (route.name) { 
      case 'onboarding': 
        return <Onboarding /> 
      case 'form_menu': 
        return <FormMenu /> 
      case 'tab_navigation': 
        return <TabNavigation /> 
      case 'sign_up': 
        return <Signup fileName='consent' onPress={ 
          () => {this.refs.navigator.pop(); NavActions.formCheckPressed('sign_up')} 
        }/> 
      case 'mood_questionnaire': 
        return <MoodQuestionnaire /> 
      case 'recent_events': 
        return <RecentEvents /> 
      case 'aboutGender': 
        return this._aboutGeneric('gender','aboutBirthYear') 
      case 'aboutBirthYear': 
        return <AboutBirthYear fieldRef='birthYear' label={this.aboutJSON['birthYear'].label} 
          onPress={() => this._buttonPress(NavActions.aboutFormValueEntered, 'aboutSatisfaction')} /> 
      case 'aboutSatisfaction': 
        return <AboutSatisfaction fieldRef='satisfaction' label={this.aboutJSON['satisfaction'].label} 
        onPress={() => this._buttonPress(NavActions.aboutFormValueEntered, 'aboutHealth')} /> 
      case 'aboutHealth': 
        return this._aboutGeneric('health','aboutRelationship') 
      case 'aboutRelationship': 
        return this._aboutGeneric('relationship','aboutEmployment') 
      case 'aboutEmployment': 
        return this._aboutGeneric('employment','aboutUse') 
      case 'aboutUse': 
        return this._aboutGeneric('usedBefore','aboutThanks') 
      case 'aboutThanks': 
        return <AboutThanks /> 
      case 'image_view': 
        return <ImageView imageIndex={route.imageIndex} /> 
      default: 
        console.error('Encountered unexpected route: ' + route.name); 
    } 
  }, 
 
  _aboutGeneric(fieldRef, nextRoute) { 
    return ( 
      <AboutGeneric 
        fieldRef={fieldRef} 
        options={this.aboutJSON[fieldRef].options} 
        label={this.aboutJSON[fieldRef].label} 
        onPress={() => this._buttonPress(NavActions.aboutFormValueEntered, nextRoute)} 
      /> 
    ) 
  }, 
 
  _configureScene : function(route){ 
    // this method calls for transition animation 
    switch (route.name) { 
      case 'webviewer': 
      case 'aboutBirthYear': 
      case 'aboutSatisfaction': 
      case 'aboutHealth': 
      case 'aboutRelationship': 
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      case 'aboutEmployment': 
      case 'aboutUse': 
      case 'aboutThanks': 
      case 'form_menu': 
        return Navigator.SceneConfigs.PushFromRight; 
      default: 
        return Navigator.SceneConfigs.FloatFromBottom; 
 
    } 
  }, 
 
  render() { 
    // let initialRoute = {name: 'tab_navigation', 
    //   title:'Home', rightButton:null, leftButton:null}; 
    return ( 
      <View style={styles.container}> 
        <Navigator 
          ref='navigator' 
          initialRoute={this.state.initialRoute} 
          configureScene={this._configureScene} 
          renderScene={this._renderScene} 
          navigationBar={ 
            <MyNavBar ref='navBar' 
              hidden={this.state.navBarHidden} 
              rightButtonDisabled={this.state.rightButtonDisabled} 
              animateRightButton={this.state.animateRightButton} 
            />} 
          onDidFocus={this._onDidFocus} 
        /> 
      </View> 
    ); 
  }, 
}); 
 
 
 
var styles = StyleSheet.create({ 
  container: { 
    flex: 1, 
  }, 
}); 
module.exports = App; 

 

import jstz from 'jstz' 
import moment from 'moment' 
import NumberService from '../services/number' 
 
// about: gender, birthYear, satisfaction, health, relationship, employment 
// consent, moodQuestionnaire, recentEvents, 
// state: formStep:1,2,3,4 (Signup, About you, Mood questions, Recent Events) 
//        stimulus 
class Profile { 
  constructor() { 
    console.log('Profile::constructor') 
    //this.id = md5('profile') 
    this.id = window.uuid 
    // forms 
    this.about = {} 
    const timezone = jstz.determine() 
    this.about.timeZone = timezone.name() 
    // faces 
    this.faces = [] 
    //stores currently scheduled local notifications in Android (alt : iOS's getScheduledLocalNotifications) 
    this.scheduledLocalNotifications = [] 
    // set app state 
    this.formStep = 0 
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    this.seenOnboarding = false 
    this.imageType = NumberService.randomBoolean() ? 'f' : 'l' 
    this.imageIndex = 0 
 
    this.hasCompletedInitialQuestionnaire = false 
    this.hasCompletedMidQuestionnaire = false 
    this.hasCompletedFinalQuestionnaire = false 
    this.hasCompletedStudy = false 
  } 
 
  setFromObject(obj) { 
    this.setProperty('id', obj.id) 
    // forms values 
    this.setProperty('about', obj.about) 
    this.setProperty('moodQuestionnaire', obj.moodQuestionnaire) 
    this.setProperty('midMoodQuestionnaire', obj.midMoodQuestionnaire) 
    this.setProperty('finalMoodQuestionnaire', obj.finalMoodQuestionnaire) 
    this.setProperty('recentEvents', obj.recentEvents) 
    this.setProperty('midRecentEvents', obj.midRecentEvents) 
    this.setProperty('finalRecentEvents', obj.finalRecentEvents) 
    // Faces 
    this.setProperty('faces', obj.faces) 
    //Notifications 
    this.setProperty('scheduledLocalNotifications', obj.scheduledLocalNotifications) 
    // settings 
    this.setProperty('settings', obj.settings) 
    // app state 
    this.setProperty('formStep', obj.formStep) 
    this.setProperty('seenOnboarding', obj.seenOnboarding) 
    this.setProperty('imageType', obj.imageType) 
    this.setProperty('imageIndex', obj.imageIndex) 
 
    this.setProperty('hasSentInitialQuestionnaire', obj.hasSentInitialQuestionnaire) 
    this.setProperty('hasSentMidQuestionnaire', obj.hasSentMidQuestionnaire) 
    this.setProperty('hasSentFinalQuestionnaire', obj.hasSentFinalQuestionnaire) 
 
    this.setProperty('hasCompletedInitialQuestionnaire', obj.hasCompletedInitialQuestionnaire) 
    this.setProperty('hasToCompleteMidQuestionnaire', obj.hasToCompleteMidQuestionnaire) 
    this.setProperty('hasCompletedMidQuestionnaire', obj.hasCompletedMidQuestionnaire) 
    this.setProperty('hasToCompleteFinalQuestionnaire', obj.hasToCompleteFinalQuestionnaire) 
    this.setProperty('hasCompletedFinalQuestionnaire', obj.hasCompletedFinalQuestionnaire) 
    this.setProperty('hasCompletedStudy', obj.hasCompletedStudy) 
    if (obj.timeCompletedInitialQuestionnaire) 
      this.setProperty('timeCompletedInitialQuestionnaire', moment(obj.timeCompletedInitialQuestionnaire)) 
    if (obj.timeCompletedMidQuestionnaire) 
      this.setProperty('timeCompletedMidQuestionnaire', moment(obj.timeCompletedMidQuestionnaire)) 
  } 
 
  static fromObject(obj) { 
    let profile = new Profile(); 
    profile.setFromObject(obj); 
    return profile; 
  } 
 
  setAboutProperty(prop, value) { 
    this.about[prop] = value 
  } 
 
  getAboutProperty(prop) { 
    return this.about[prop] 
  } 
 
  setProperty(prop, value) { 
    this[prop] = value 
  } 
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  getProperty(prop) { 
    return this[prop] 
  } 
 
  imageAppeared() { 
    let time = moment().format("DD/MM/YYYY [at] HH:mm:ss") 
    this.faces.push({'time':time, action:'appeared', imageType:this.imageType}) 
  } 
 
  imageDisappeared() { 
    let time = moment().format("DD/MM/YYYY [at] HH:mm:ss") 
    this.faces.push({'time':time, action:'disappeared', imageType:this.imageType}) 
  } 
 
  isPastMidStage() { 
    let diff = moment().diff(this.timeCompletedInitialQuestionnaire) 
    let dur = moment.duration(diff) 
 
    //return dur.asHours() >= 1 
    //return dur.asMinutes() >= 5 
    return dur.asDays() >= 10 
  } 
 
  isPastFinalStage() { 
    let diff = moment().diff(this.timeCompletedMidQuestionnaire) 
    let dur = moment.duration(diff) 
 
    //return dur.asHours() >= 1 
    //return dur.asMinutes() >= 5 
    return dur.asDays() >= 10 
  } 
 
} 
 
module.exports = Profile; 

import React, { Component } from 'react'; 
import {AppRegistry} from 'react-native'; 
 
import App from './App' 
import Message from './components/utils/Message' 
import ProfileStore from './stores/ProfileStore' 
import RNUUIDGenerator from 'react-native-uuid-generator'; 
import codePush from "react-native-code-push"; 
import GoogleAnalytics from 'react-native-google-analytics-bridge' 
 
// AppLoader loads store and 
// sets UUID if this has not been set yet 
 
class AppLoader extends Component { 
  constructor(prop) { 
    super(prop) 
    this.state = { 
      loadCompleted:false 
    } 
  } 
 
  async loadStore() { 
    var val = await ProfileStore._load() 
    this.setState({loadCompleted:true}) 
  } 
 
  componentWillMount() { 
    this.loadStore() 
    RNUUIDGenerator.getRandomUUID((uuid) => { 
      this.setState({uuid:uuid}) 
    }); 
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    GoogleAnalytics.setTrackerId('UA-85059618-1'); 
    GoogleAnalytics.setDispatchInterval(30); 
  } 
 
  // componentDidMount() { 
  //   codePush.sync({ 
  //     updateDialog: true, 
  //     installMode: codePush.InstallMode.IMMEDIATE 
  //   }); 
  // } 
 
  render() { 
    if (this.state.loadCompleted && this.state.uuid) { 
      if (!ProfileStore.getProperty('id')) { 
        console.log('PocketSmile::render, uuid:'+this.state.uuid); 
        ProfileStore.setProperty('id', this.state.uuid) 
      } 
      return (<App />) 
    } else { 
      return (<Message label='Loading...' />) 
    } 
  } 
} 
 
let codePushOptions = { checkFrequency: codePush.CheckFrequency.ON_APP_RESUME }; 
 
AppLoader = codePush(codePushOptions)(AppLoader); 
 
module.exports = AppLoader 
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Appendix C – Supporting Material for the Science Museum 

Experiment 
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C.1 Informational adverts  
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C.1 Informational adverts (continued) 

 

 
An advert in front 

of the Live Science 
space in the Who Am 
I? gallery of the 
Science Museum with 
participants in the 
background. 
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C.2 Videogame storyboard 
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Option 1: Landscapes as stimuli 
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Option 2: Smiling faces as stimuli 
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C.3 Source code  

Parts of the source code provided by Filippo Aiello for the Android game experiment.  

package 

{ import flash.display.Sprite; 

 import flash.display.StageDisplayState; 

 import flash.display.StageAlign; 

 import flash.display.StageQuality; 

 import flash.display.StageScaleMode; 

 import flash.events.Event; 

 import com.mesmotronic.ane.AndroidFullScreen; 

 import com.greensock.TweenMax; 

 import org.casalib.util.StageReference; 

 import starling.core.Starling; 

 [SWF(width = "1280", height = "800", frameRate = "60", backgroundColor = "#FFFFFF")] //762 

 public class ScienceMuseum_Mobile extends Sprite 

 { protected var _starling:Starling; 

  public function ScienceMuseum_Mobile() 

  { if (stage) this.onAddedToStage(); 

   else this.addEventListener(flash.events.Event.ADDED_TO_STAGE, 

this.onAddedToStage); 

  }  

  private function onAddedToStage(event:flash.events.Event = null):void { 

   this.removeEventListener(flash.events.Event.ADDED_TO_STAGE, 

this.onAddedToStage); 

   this.stage.displayState = StageDisplayState.NORMAL; 

   StageReference.setStage(this.stage); 

   stage.quality = StageQuality.BEST; 

   stage.align = StageAlign.TOP_LEFT; 

   stage.scaleMode = StageScaleMode.NO_SCALE; 

   this.visible = false; 

   TweenMax.to({}, 0.001, {}); 

   this._starling = new Starling(Game, this.stage, null, null, "auto", "auto"); 

   this._starling.antiAliasing = 2; 

   _starling.start(); 

   setAndroidFullScreen(); 

   } 

   private function setAndroidFullScreen():void 
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  {AndroidFullScreen.stage = stage; 

   // ANE v1.3.x 

   if (!AndroidFullScreen.immersiveMode()) 

   {stage.displayState = StageDisplayState.FULL_SCREEN_INTERACTIVE;} 

   AndroidFullScreen.immersiveMode(); 

   // Properties 

   /* AndroidFullScreen.stage = stage; // Set this to your app's stage 

   AndroidFullScreen.isSupported; // Is this ANE supported? 

   AndroidFullScreen.isImmersiveModeSupported; // Is immersive mode 

supported? 

   AndroidFullScreen.immersiveWidth; // The width of the screen in immersive 

mode 

   AndroidFullScreen.immersiveHeight; // The height of the screen in immersive 

mode 

   AndroidFullScreen.fullScreenWidth; // The width of the screen in the best 

available full screen mode 

   AndroidFullScreen.fullScreenHeight; // The height of the screen in the best 

available full screen mode 

   // Methods 

   AndroidFullScreen.fullScreen(); // Switch your app to the best available full 

screen mode 

   AndroidFullScreen.showSystemUI(); // Show system UI 

   AndroidFullScreen.leanMode(); // Hide system UI until user interacts 

   AndroidFullScreen.showUnderSystemUI(); // Extend your app underneath the 

system UI (Android 4.4+ only) 

   AndroidFullScreen.immersiveMode(); // Hide system UI and keep it hidden 

(Android 4.4+ only) 

   AndroidFullScreen.immersiveMode(false); // Hide system UI until user swipes 

from top (Android 4.4+ only)*/ }}} 

Package 
{ 
  
 import feathers.controls.text.BitmapFontTextRenderer; 
  
 import starling.core.Starling; 
 import starling.utils.AssetManager; 
 import starling.textures.TextureAtlas; 
 import starling.text.BitmapFont; 
 import starling.textures.Texture; 
 
 public class Assets 
 {   
  private static var gameTextureAtlas:Texture 
   
  [Embed(source="../assets/textures/spritesheet.png")] 
  private static const atlas:Class; 
   
  [Embed(source="../assets/textures/spritesheet.xml", mimeType="application/octet-
stream")] 
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  private static const atlas_xml:Class; 
   
  [Embed(source="../assets/textures/people.png")] 
  private static const atlasPeople:Class; 
   
  [Embed(source="../assets/textures/people.xml", mimeType="application/octet-
stream")] 
  private static const atlasPeople_xml:Class; 
   
  [Embed(source="../assets/textures/landscape.png")] 
  private static const atlasLandscape:Class; 
   
  [Embed(source="../assets/textures/landscape.xml", mimeType="application/octet-
stream")] 
  private static const atlasLandscape_xml:Class; 
   
  [Embed(source="../assets/fonts/HelveticaLight.png")] 
  public static const FontTexture:Class; 
   
  [Embed(source="../assets/fonts/HelveticaLight.fnt", mimeType="application/octet-
stream")] 
  public static const FontXML:Class; 
   
  public static var myFont:BitmapFontTextRenderer 
   
  private static var _atlas:TextureAtlas; 
  private static var _atlasPeople:TextureAtlas; 
  private static var _atlasLandscape:TextureAtlas; 
   
  private static var sAssets:AssetManager; 
   
  public function start(assets:AssetManager):void 
  { 
   sAssets = assets; 
  } 
   
  public static function getFont():BitmapFont 
  { 
   var fontTexture: Texture = Texture.fromBitmap(new FontTexture()); 
   var fontXML:XML = XML (new FontXML()); 
   var font: BitmapFont = new BitmapFont(fontTexture, fontXML); 
    
   return font; 
  } 
   
  public static function getTexture(name:String):Texture 
  { 
   init(); 
   return _atlas.getTexture(name); 
  } 
   
  public static function getPeopleTexture(name:String):Texture 
  { 
   init(); 
   return _atlasPeople.getTexture(name);   
    
  } 
   
  public static function getLandscapeTexture(name:String):Texture 
  { 
   init(); 
   return _atlasLandscape.getTexture(name);   
    
  } 
   
  private static function init():void 
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  { 
   if (Starling.current == null) 
    throw new Error("Initialize Starling before accessing 
textures."); 
    
   if (_atlas == null) 
   { 
    var atlasTexture:Texture = 
Texture.fromEmbeddedAsset(atlas, false); 
    var atlasXml:XML = XML(new atlas_xml()); 
     
    _atlas = new TextureAtlas(atlasTexture, atlasXml); 
   } 
    
   if (_atlasPeople == null) 
   { 
    var atlasPeopleTexture:Texture = 
Texture.fromEmbeddedAsset(atlasPeople, false); 
    var atlasPeopleXml:XML = XML(new atlasPeople_xml()); 
    _atlasPeople = new TextureAtlas(atlasPeopleTexture, 
atlasPeopleXml); 
 
   } 
    
   if (_atlasLandscape == null) 
   { 
    var atlasLandscapeTexture:Texture = 
Texture.fromEmbeddedAsset(atlasLandscape, false); 
    var atlasLandscapeXml:XML = XML(new 
atlasLandscape_xml()); 
    _atlasLandscape = new 
TextureAtlas(atlasLandscapeTexture, atlasLandscapeXml); 
     
   } 
  } 
 } 
} 
<?php  
  
/* 
connect to our database 
*/ 
 
$json=$_POST['dataFromApp']; 
(Array)$data = json_decode($json,false); 
 
$output=""; 
 
 
$dbhost = "localhost"; 
$dbuser = ""; 
$dbpass= ""; 
$dbname = "sciencemuseum"; 
 
$conn = mysql_connect($dbhost, $dbuser, $dbpass); 
    
   if(! $conn ) { 
      die('Could not connect: ' . mysql_error()); 
   } 
 
   $output=""; 
       
   mysql_select_db($dbname); 
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   for ($i = 0; $i < count($data); $i++) { 
     
     $id = $data[$i]->id; 
     $idDevice = $data[$i]->idDevice; 
     $photos = $data[$i]->photos; 
  $time= $data[$i]->time; 
  $totTime=$data[$i]->totTime; 
  $sex= $data[$i]->sex; 
  $age= $data[$i]->age; 
  $health= $data[$i]->health; 
  $status= $data[$i]->status; 
  $occupation= $data[$i]->occupation; 
  $upset_0= $data[$i]->upset_0; 
  $hostile_0= $data[$i]->hostile_0; 
  $alert_0= $data[$i]->alert_0; 
  $ashamed_0= $data[$i]->ashamed_0; 
  $inspired_0= $data[$i]->inspired_0; 
  $nervous_0= $data[$i]->nervous_0; 
  $afraid_0= $data[$i]->afraid_0; 
  $determinated_0= $data[$i]->determinated_0; 
  $attentive_0= $data[$i]->attentive_0; 
  $active_0= $data[$i]->active_0; 
 
  $upset_1= $data[$i]->upset_1; 
  $hostile_1= $data[$i]->hostile_1; 
  $alert_1= $data[$i]->alert_1; 
  $ashamed_1= $data[$i]->ashamed_1; 
  $inspired_1= $data[$i]->inspired_1; 
  $nervous_1= $data[$i]->nervous_1; 
  $afraid_1= $data[$i]->afraid_1; 
  $determinated_1= $data[$i]->determinated_1; 
  $attentive_1= $data[$i]->attentive_1; 
  $active_1= $data[$i]->active_1; 
 
 
  $id = $data[$i]->id; 
  $output.=$id; 
 
  //$sql = "SELECT TOP 1 1 FROM users WHERE id=$id ORDER BY num DESC limit 250 
"; 
  //$sql = "SELECT EXISTS (SELECT * FROM users WHERE id=$id ')"; 
 
  $sql = " SELECT * FROM users WHERE id=$id LIMIT 1 "; 
  $result = mysql_query( $sql ); 
  //if(mysql_num_rows(mysqli_query($sql)) > 0) { 
        if (mysql_fetch_row($result)) { 
  //if(mysql_num_rows($result) > 0) { 
   $output.="true"; 
  } 
  else{ 
   $query = "INSERT INTO users (id, idDevice, photos, time, totTime, sex, 
age, health, status, occupation, upset_0, hostile_0, alert_0, ashamed_0, inspired_0, nervous_0, afraid_0, 
determinated_0, attentive_0, active_0, upset_1, hostile_1, alert_1, ashamed_1, inspired_1, nervous_1, 
afraid_1, determinated_1, attentive_1, active_1) VALUES ('$id','$idDevice', $photos,'$time','$totTime', 
$sex,$age,$health,$status,$occupation,$upset_0,$hostile_0,$alert_0,$ashamed_0,$inspired_0,$nervous_0,
$afraid_0,$determinated_0,$attentive_0,$active_0,$upset_1,$hostile_1,$alert_1,$ashamed_1,$inspired_1,$n
ervous_1,$afraid_1,$determinated_1,$attentive_1,$active_1)"; 
 
   mysql_query($query); 
  } 
} 
 
echo "registered=true"."&output=".$output; 
    
   mysql_close($conn); 
?> 
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package 
{ 
 import flash.events.Event; 
 import flash.events.IOErrorEvent; 
 import flash.events.SecurityErrorEvent; 
 import flash.filesystem.File; 
 import flash.filesystem.FileMode; 
 import flash.filesystem.FileStream; 
 import flash.net.URLLoader; 
 import flash.net.URLLoaderDataFormat; 
 import flash.net.URLRequest; 
 import flash.net.URLRequestMethod; 
 import flash.net.URLVariables; 
 
 public class SaveData 
 { 
  private var internetConnectionStatus:Boolean = false; 
   
  private var request:URLRequest = new URLRequest(); 
  private var fileXML:XML; 
  private var lastRecordedNumber: int = 0; 
  private var newRecordedNumber: int = 0; 
  private var i: int; 
  private var fileStream:FileStream; 
  private var message:Array = new Array(); 
  private var ldr:URLLoader = new URLLoader(); 
  private var myVariables:URLVariables = new URLVariables; 
  private var sendToPHPJson:String; 
 
   
   
  public function SaveData() 
  {    
   request.method      = URLRequestMethod.POST; 
   //request.url         = ""; 
   request.url         = ""; 
  } 
  
   
  public function updateXMLfile(value:XML):void{ 
   var file:File = 
File.desktopDirectory.resolvePath("ScienceMuseumsResults"); 
   file.createDirectory(); 
    
   file = file.resolvePath("scienceMuseumResults.xml"); 
   fileStream = new FileStream(); 
   if(!file.exists){ 
    trace("doesn't exist"); 
    fileStream.open(file, FileMode.WRITE); 
    fileStream.writeUTFBytes('<?xml version="1.0" 
encoding="UTF-8"?><users>'); 
    fileStream.writeUTFBytes(value.toXMLString()); 
    fileStream.writeUTFBytes('</users>'); 
   } 
   else{ 
    trace("modify"); 
    fileStream.open(file, FileMode.UPDATE); 
    //8 is the length of </users> to overwrite with the new XML 
block.  
    fileStream.position = fileStream.bytesAvailable-8;  
    fileStream.writeUTFBytes(value.toXMLString()); 
    fileStream.writeUTFBytes('</users>'); 
   } 
   readXML(); 
  } 
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  public function readXML():void{ 
   var file:File = 
File.desktopDirectory.resolvePath("ScienceMuseumsResults"); 
   file = file.resolvePath("scienceMuseumResults.xml"); 
   fileStream = new FileStream(); 
   if(file.exists){ 
    trace("exists"); 
    fileStream.openAsync(file, FileMode.READ); 
    fileStream.addEventListener(Event.COMPLETE, 
processXMLData); 
    fileStream.addEventListener(IOErrorEvent.IO_ERROR, 
errorHandler);  
   }  
  } 
   
  private function processXMLData(event:Event):void   
  {  
   fileXML = XML(fileStream.readUTFBytes(fileStream.bytesAvailable));  
   fileStream.close(); 
   createJsonFile(); 
  } 
   
  private function errorHandler(event:flash.events.IOErrorEvent):void {  
   trace("Error found")//not final. Just for testing 
  } 
 
  private function createJsonFile():void{ 
   message.length = 0; 
   newRecordedNumber+= fileXML.child("user").length(); 
   for( i = lastRecordedNumber ; i < fileXML.child("user").length() ; i++ ){ 
    //trace("id"+": "+String(fileXML.child("user")[i].child("id"))); 
    message.push ({ 
     id:String(fileXML.child("user")[i].child("id")), 
     idDevice: 
String(fileXML.child("user")[i].child("idDevice")), 
    
 photos:String(fileXML.child("user")[i].child("photos")), 
     time:String(fileXML.child("user")[i].child("time")), 
    
 totTime:String(fileXML.child("user")[i].child("totTime")), 
     sex:String(fileXML.child("user")[i].child("sex")), 
     age:String(fileXML.child("user")[i].child("age")), 
    
 health:String(fileXML.child("user")[i].child("health")), 
    
 status:String(fileXML.child("user")[i].child("status")), 
    
 occupation:String(fileXML.child("user")[i].child("occupation")), 
      
    
 upset_0:String(fileXML.child("user")[i].child("upset_0")), 
    
 hostile_0:String(fileXML.child("user")[i].child("hostile_0")), 
    
 alert_0:String(fileXML.child("user")[i].child("alert_0")), 
     ashamed_0: 
String(fileXML.child("user")[i].child("ashamed_0")), 
     inspired_0: 
String(fileXML.child("user")[i].child("inspired_0")), 
     nervous_0: 
String(fileXML.child("user")[i].child("nervous_0")), 
     afraid_0: 
String(fileXML.child("user")[i].child("afraid_0")), 
     determinated_0: 
String(fileXML.child("user")[i].child("determinated_0")), 
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     attentive_0: 
String(fileXML.child("user")[i].child("attentive_0")), 
     active_0: 
String(fileXML.child("user")[i].child("active_0")), 
      
    
 upset_1:String(fileXML.child("user")[i].child("upset_1")), 
    
 hostile_1:String(fileXML.child("user")[i].child("hostile_1")), 
    
 alert_1:String(fileXML.child("user")[i].child("alert_1")), 
     ashamed_1: 
String(fileXML.child("user")[i].child("ashamed_1")), 
     inspired_1: 
String(fileXML.child("user")[i].child("inspired_1")), 
     nervous_1: 
String(fileXML.child("user")[i].child("nervous_1")), 
     afraid_1: 
String(fileXML.child("user")[i].child("afraid_1")), 
     determinated_1: 
String(fileXML.child("user")[i].child("determinated_1")), 
     attentive_1: 
String(fileXML.child("user")[i].child("attentive_1")), 
     active_1: 
String(fileXML.child("user")[i].child("active_1")) 
    }) 
   } 
   trace(JSON.stringify(message)); 
   sendToPHPJson = JSON.stringify(message); 
   //firstProperty name in PHP 
   myVariables.dataFromApp = sendToPHPJson; 
    
   request.data = myVariables; 
    
   ldr.dataFormat = URLLoaderDataFormat.VARIABLES; 
   ldr.addEventListener(Event.COMPLETE,onComplete); 
   ldr.addEventListener(IOErrorEvent.IO_ERROR, onError); 
   ldr.addEventListener(SecurityErrorEvent.SECURITY_ERROR 
,onSecurityErr); 
    
   ldr.load(request); 
  } 
   
  private function onComplete(e:Event):void 
  { 
   trace("onComplete: " +ldr.data); 
   if(ldr.data.registered =="true"){ 
     
    lastRecordedNumber = newRecordedNumber; 
   } 
   if(ldr.data.registered =="false"){ 
    trace("registered - false: "+ldr.data.error); 
   } 
  } 
   
  private function onSecurityErr(e:SecurityErrorEvent):void 
  { 
   trace("error: " + e.text ); 
  } 
   
  private function onError(e:flash.events.IOErrorEvent):void 
  { 
   trace("error: " + e.toString()); 
  } 
 } 
} 


