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Abstract

In many empirical situations, modelling simultaneously three or more outcomes
as well as their dependence structure can be of considerable relevance. Trivariate
modelling is continually gaining in popularity (e.g., Genest et al., 2013; Krdl et al.,
2016; Zhong et al., 2012) because of the appealing property to account for the endo-
geneity issue and non-random sample selection bias, two issues that commonly arise
in empirical studies (e.g., Zhang et al., 2015; Radice et al., 2013; Marra et al., 2017;
Béarnighausen et al., 2011). The applied and methodological interest in trivariate
modelling motivates the current thesis and the aim is to develop and estimate a
generalized trivariate binary regression model, which accounts for several types of
covariate effects (such as linear, nonlinear, random and spatial effects), as well as
error correlations.

In particular, the thesis focuses on the following targets. First, we address the
issue in estimating accurately the correlation coefficients, which characterize the
dependence of the binary responses conditional on regressors. We found that this
is not an unusual occurrence for trivariate binary models and as far as we know
such a limitation is neither discussed nor dealt with. Based on this framework,
we develop models for dealing with data suffering from endogeneity and/or non-
random sample selection. Moreover, we propose trivariate Gaussian copula models
where the link functions can in principle be derived from any parametric distribu-
tion and the parameters describing the association between the responses can be
made dependent on several types of covariate effects. All the coefficients of the
model are estimated simultaneously within a penalized likelihood framework based
on a carefully structured trust region algorithm with integrated automatic multiple
smoothing parameter selection. The developments have been incorporated in the
function SemiParTRIV() /gjrm() in the R package GJRM (Marra & Radice, 2017).
The extensive use of simulated data as well as real datasets illustrates each devel-

opment in detail and completes the analysis.

Key Words: Trivariate system of equations; Binary responses; Correlation-based



vii

penalty; Penalized regression splines; Unobservables.



Contents

1 Introduction 1
1.1 Objectives of thesis . . . . . . . . .. ... 1
1.2 Outline. . . . . . . 2

2 Penalized likelihood estimation of a trivariate additive probit model 5

2.1 Introduction . . . . . . . ... )
2.2 Trivariate probit model with flexible covariate effects . . . . . . . .. 7
2.2.1 Smooth function representation . . . . . . ... ... ... .. 9
2.2.2 Compact formulation of the model . . . . . .. ... ... .. 14

2.3 Parameter estimation . . . . .. ... Lo Lo 15
2.3.1 Step 1: Estimating 6 given smoothing parameters . . . . . . . 19
2.3.2  Step 2: Estimating A . . .. ... 23
2.3.3 Simulation study I . . . .. ... oo 26

2.4 Discussion . . . . ... 31
3 Correlation-based penalty approach to trivariate probit models 32
3.1 Introduction . . . . . . .. ... 32
3.2 Correlation-based penalty . . . . ... .. ... ... ... ... ... 34
3.2.1 Computational aspects . . . . . . ... ... ... 36
3.2.2 Simulation study IT . . . . ... ... ... ... 39

3.3 Theoretical aspects of the PMLE . . . . ... ... ... . ...... 43
3.4 Analysis of North Carolinadata . . . . . ... ... ... .. ..... 45
3.4.1 Model specifications and results . . . . . .. ... ... .... 45

viil



ix Contents
3.5 Concluding remarks . . . . . ... ... Lo 49

4 Modelling unobserved confounding through additive trivariate pro-
bit models 51
4.1 Introduction . . . . . . . .. . 51
4.2  The endogenous trivariate probit model . . . . . . . . . ... ... 56
4.2.1 Model specification . . . . . ... ... L. 56
4.2.2 ldentification of treatment effects . . . . . . ... .. ... .. o7
4.2.3 Parameter estimation . . . . . . ... ..o 58
4.2.4  Average treatment effect . . . . ... o000 59
4.3 The double sample selection model . . . . . . .. ... ... .. ... 60
4.3.1 Model specification . . . . .. ... 60
4.3.2 Parameter estimation . . . . . . ... ..o 61
4.3.3 Estimating the overall mean . . . . . . . ... ... ... ... 63
4.3.4 Reducing the computational burden . . . . . . . . .. ... .. 63
4.4 The endogenous-sample selection model . . . . . . .. . ... ... .. 64
4.4.1 Model specification . . . . . .. ... 64
4.4.2 Parameter estimation . . . . . .. ... o000 66
4.4.3 Reducing the computational burden . . . . . . . . . . ... .. 68
4.5 Simulations and real data illustration . . . . . . . .. ... ... ... 69
4.5.1 Simulation study . . . .. . ... ... L 69
4.5.2 Labor force data analysis . . . . . .. ... ... ... ... .. 70
4.6 Conclusions . . . . . . . .. 7

5 Extending the additive trivariate binary model to non-probit mar-
gins 79
5.1 Introduction . . . . . . . ... 79
5.2 Gaussian copula with arbitray margins . . . . . . ... .. ... ... 82
5.3 Simulation study . . . . .. ... 88
5.4 Conclusions . . . . . . . .. 90

6 A trivariate additive regression model with varying correlation ma-



Contents

trix
6.1
6.2

6.3
6.4
6.5
6.6

Introduction . . . . . . ..o
Model specification . . . . . . . . ...
6.2.1 Unconstrained parametrization for the correlation matrix . . .
Estimation details . . . . . . . . . ..o
Simulation Study . . . . .. ... oo
Empirical illustration . . . . . . . ... ... oo

Discussion . . . . . . ..

Non-Gaussian Distributions

7.1
7.2

7.3

Introduction . . . . . . ...
Copulae for trivariate binary models . . . . . . . ... ... ... ..
7.2.1 Trivariate Archimedean copulae . . . . . . . . ... ... ...

7.2.2 Mixtures of powers . . . . . . ... ...

7.2.3 Pair-copulae constructions in 3 dimensions . . . . . .. .. ..
7.2.4  The trivariate Student-t distribution . . . .. ... ... ...
7.2.5 Composite likelihood . . . . . .. .. ... ... ... . ....
Discussion . . . . . . . . . e

Final remarks

8.1
8.2

Summary of the thesis . . . . . . ... ... ... ... ... .....

Topics for future research . . . . . . . . ... ... L.

Complements to Chapter 2

Al
A2

A3
A4

Proof of Lemma 2.3.1 . . . . . . .. ... o
Computation of trivariate normal integrals . . . . . . . .. .. .. ..
A.2.1 Numerical computation of multivariate normal integrals . . .
A.2.2 Bivariate conditioning approximation for trivariate normal in-

tegrals . . . . ..
Geometric proof of the restriction on a correlation matrix . . . . . . .
Proof of Propositions 2.3.2 and 2.3.3 . . . . . ... ... ... ....
A.4.1 Proof of Proposition 2.3.2 . . . . ... ... ... ... ...

92
92
93
94
96
100
101
107

108
108
109
109
110
112
113
115
116

117
117
118

120
120
122

. 122



xi Contents
A.4.2 Proof of Proposition 2.3.3 . . . . .. ... ... 137

A5 Correlation matrices Y™ and Y35 . . . . ... 142
A.6 Derivation of results in Section 2.3.2 . . . . .. ... ... ... ... 144
A.6.1 Derivation of (2.11) . . . . .. .. ... 144

A.6.2 Derivation of (2.12) . . . . . . . ..o 145

A.6.3 Equivalence of V(A) and AIC . . . .. ... ... .. ... . 146

A.7 Data generating processes used in the simulation study I . . . . . .. 149
A71 DGP1&DGP2 . ... . .. 149

B Complements to Chapter 3 155
B.1 Correlation-based penalty . . . .. .. .. ... ... ... ...... 155
B.1.1 The penalty functions . . . .. ... ... ... .. ... ... 155

B.1.2 LQA of the penalty function 73,\919* (6) ... 157

B.1.3 Derivation of Ay and A" .. ... 158

B.2 Data generating process used in the simulation study IT . . . . . . .. 161
B.2.1 DGP3 . . . . 161

B.3 Some theoretical aspects . . . . . . ... ... ... ... 164
B.3.1 Proof of Theorem 3.3.1 . . . . . ... ... ... .. ...... 164

B.3.2 Proof of Theorem 3.3.2 . . . . . ... ... ... ... .. ... 165

B.3.3 Asymptotic order of § — 8, Cov(d) and Bias(d) . . . . .. . 168

B.3.4 Proof of Theorem 3.3.3 . . . . . . .. ... .. ... ...... 169

B.3.5 Proof of Theorem 3.3.4 . . . . . ... ... ... ... ..... 170

C Complements to Chapter 5 171
C.1 Proof of Lemma 5.2.1 . . . . . . .. .. ... 171
C.2 Proof of Propositions 5.2.2 and 5.2.3 . . . .. ... . ... ... ... 173
C.2.1 Proof of Proposition 5.2.2 . . . . . ... .. ... ... ..., 175

C.2.2 Proof of Proposition 5.2.3 . . . . .. ... ... ... ... 177

D Complements to Chapter 6 182
D.1 Proof of Lemma 6.3.1 . . . . . . . . .. ... ... ... ... ... 182
D.2 Matrices Ty and 37 . . . . . ... 184



D.3 Proof of Proposition 6.3.3 . . . . . ... ... ... ... ... ...
D.4 Data generating process used in the simulation study . . . .. .. ..

D41 DGP4 . . ..



List of Figures

2.1

2.2

2.3

3.1

3.2

Boxplots of parameter estimates obtained applying mvprobit() and
SemiParTRIV() /gjrm() to 250 datasets simulated using the settings
described in Appendix A.7.1. The sample size was equal to 1000 and

the true parameter values are represented by horizontal gray dotted

Boxplots of parameter estimates obtained applying mvprobit () and
SemiParTRIV() /gjrm() on 250 datasets simulated using the settings
described in Appendix A.7.1. The sample size was equal to 10000 and

the true parameter values are represented by horizontal gray dotted

Profile log-likelihood function of the trivariate probit model for cor-
relation parameter 155, for 10 data sets of sample size 1000 generated
using DGP2 settings. The true value is represented by the vertical

grey line. . . . . ..o

Shape of penalty functions for Ridge (—), Lasso (——) and Adaptive
Lasso (—) for Mg« =3. . . . . ...
Graphical representation for the approximation of the L; norm (left
panel) and its derivatives (right panel) with respect to &,. The blue

lines refer to the exact norms and derivatives based on sub-derivatives

at £ = 0, while the red lines correspond to the related approximations. 38

xlil



Xiv

List of Figures

3.3

3.4

3.5

3.6

3.7

4.1

Profile penalized log-likelihood function of the trivariate probit model
for correlation parameter 55, for 10 data sets of sample size 1000
generated using DGP2 settings. The true value is represented by the
vertical grey line and the penalty used is Ridge. . . . . . .. ... ..
Estimated smooth functions for s;(z1), s2(z1) and s3(z1) obtained
applying SemiParTRIV() /gjrm() on 250 simulated datasets. The
first row shows the estimated curves obtained from samples of 1000
observations, whereas those in the second row correspond to samples
of 10000 observations. The black lines represent the estimated smooth
functions over all replicates and the red solid lines show the true
functions. . . . ...
Joint probabilities (in %) that mb is multiple, 1bw is > 2500 grams
and ptb is > 37 weeks by county in North Carolina, obtained using
SemiParTRIV() /gjrm() and mvprobit(). . . . .. . ... ... ...
Joint prediction for singleton birth, infant’s birth weight < 2500
grams and baby born before completing the 37 gestational week, strat-
ified by race, using the semi-parametric trivariate probit model.
Smooth effects of gained and mage on 1bw and associated 95% point-
wise confidence intervals. The jittered rug plot, at the bottom of each
graph, shows the covariate values. The numbers in brackets in the
y-axis captions specify the edf of the smooth curve with edf = 1
corresponding to a straight line estimate; the higher the value the
more complex the estimated curve. The map on the right hand side
shows the magnitude of the estimates for the regional variable in each

of the 100 counties in North Carolina. . . . . . . . . . . .. .. . ...

Diagram describing data affected by double sample selection rules.
y1; and yg; correspond to the first and second selection mechanisms,

while ys3; refers to the outcome of interest. . . . . .. ... ... ...

48



XV

List of Figures

4.2

4.3

4.4

4.5

4.6

5.1

Diagram describing data affected by non-random sample selection and
endogenity of a treatment. y;; corresponds to the selection mecha-
nism, ¥»; denotes the binary endogenous variable and ys; is the binary
outcome. Variable yo; is not available for non-participants. . . . . . .
Diagram describing data affected by non-random sample selection and
endogenity of a treatment. yy; corresponds to the selection mecha-
nism, ¥»; denotes the binary endogenous variable and ys; is the binary
outcome. Variable ys; is available for non-participants. . . . . . . ..
Estimated smooth functions for s;1(z1), s2(z1) and s3(z;) obtained
applying SemiParTRIV() /gjrm() on 250 simulated datasets. The
first row shows the estimated curves obtained from samples of 5000
observations, whereas those in the second row correspond to samples
of 15000 observations. The black lines represent the estimated smooth
functions over all replicates and the red solid lines show the true

functions. . . . . . ..

Boxplots corresponding to the prevalence estimates of the semi-parametric

double sample selection model for sample sizes equal to 5000 and
15000. Results are obtained from 250 replications of DGP3 and the
horizontal red lines represent the true prevalence. . . . . . .. .. ..

Function estimates obtained applying the endogenous trivariate model

using the proposed fitting method. Dashed lines represent 95% Bayesian

point-wise CIs. The first two curves correspond to the smooth term
of age in the equations describing diab (eq. 1) and heartd (eq. 2),
while the last one to the equation describing empl (eq. 3). The ef-
fective degrees of freedom are reported into brackets in the y-axis

caption. . . . . . .. e e

Probit ( ) and complementary log-log ( ) func-

), logit (
tions. The y-axis corresponds to the probability of success P(y,,; = 1)

and the x-axis denotes the generic m' linear predictor n,;. . . . . . .



Xvi

List of Figures

5.2

2.3

6.1

6.2

6.3

6.4

Boxplots of parameter estimates obtained applying the trivariate Gaus-
sian copula model on 250 simulated datasets with complementary log-

log, logit and probit links for sample sizes equal to 1000 and 10000.

True parameter values are represented by horizontal gray dotted lines.

Estimated smooth functions for s1(z1), s2(z1) and s3(z;) obtained ap-
plying the trivariate Gaussian copula model on 250 simulated datasets
with complementary log-log, logit and probit links. The first row
shows the estimated curves obtained from samples of 1000 observa-
tions, whereas those in the second row correspond to samples of 10000

observations. The black lines represent the estimated smooth func-

89

tions over all replicates and the red solid lines show the true functions. 90

Linear coefficient estimates obtained by applying the proposed model
to data simulated from a trivariate Gaussian copula model with lo-
gistic, Gumbel and normal margins. Circles indicate mean estimates
while bars represent the estimates’ ranges resulting from 5% and 95%
quantiles. True values are indicated by gray horizontal lines. . . . . .
Smooth function estimates obtained by applying the proposed model
to data simulated from a trivariate Gaussian copula model with lo-
gistic, Gumbel and normal margins. True functions are represented
by black solid lines, mean estimates by dashed lines and point-wise
ranges resulting from 5% and 95% quantiles by shaded areas. . . . . .
Spatially varying estimates of correlations 15 113 and v53 obtained
by applying the proposed approach to North Carolina data. . . . . .
Estimates of correlations 5 ¥13 and 123 by gained obtained by ap-
plying the proposed approach to North Carolina data. Point-wise
95% confidence intervals were obtained using the posterior simula-

tion approach described in Section 2.3.2. . . . . . .. ... ... ...



XVvil

List of Figures

7.1

Al

Boxplots of parameter estimates obtained by applying the trivariate
Gaussian and Student-t copula models to 250 simulated datasets with
sample size equal to 1000. The first two rows refer to the regression
coefficient estimates and the last row to the estimated correlations.

The true parameter values are represented by horizontal gray dotted

Spherical representation of intercorrelations among the error terms

él, éQ and ég. ............................... 132



List of Tables

2.1

3.1

3.2

3.3

4.1

Percentage biases and root mean squared errors (RMSEs) of the cor-
relation estimates obtained applying SemiParTRIV() /gjrm() to 250
datasets simulated according to DGP2. . . . . . ... ... ... ... 30

Percentage biases and root mean squared errors (RMSEs) of the cor-
relation estimates obtained applying SemiParTRIV() /gjrm() to 250
datasets simulated according to DGP2 when the unpenalized ap-
proach and Ridge, Lasso and Adaptive Lasso correlation-based penal-

ties are employed. . . . . ... 40
Coverage probability results for §;(z1), $2(2z1) and §3(z;) at two sam-

ple sizes, for the nominal level 95% when the Lasso-type penalty is
employed. . . . . .. 43
Correlation parameter estimates obtained using SemiParTRIV() /gjrm()
and mvprobit (). Corresponding 95% intervals (Cls) are reported in
parentheses. The execution time (in seconds) for each method is re-

ported at the bottom of the table. . . . . . . ... .. ... ... ... 47

Percentage biases and root mean squared errors (RMSEs) of the corre-
lation estimates and prevalence estimate obtained applying the double
sample selection model to 250 datasets simulated according to DGP3,

where the correlation parameters are penalized via the Lasso penalty. 71

xviii



Xix

List of Tables

4.2

4.3

4.4

4.5

4.6

7.1

7.2

Percentage biases and root mean squared errors (RMSEs) of the corre-
lation estimates and prevalence estimate obtained applying the double
sample selection model to 250 datasets simulated according to DGP3,
where the correlation parameters are not penalized. . . . . . . . . ..
Empirical density for diabetes and employment status. The propor-
tions in brackets show the corresponding proportions in the sample.

Observed density for heart disease and employment status. The pro-

73

portions in brackets show the corresponding proportions in the sample. 74

Description of the variables obtained in Round 4 of Panel 16 and
Round 2 of Panel 17 in the MEPS dataset. . . . . . . ... .. .. ..
Estimates of the correlation coefficients and ATEs (in %) obtained ap-
plying the semi-parametric recursive bivariate probit (SRBP) model
and the semi-parametric recursive trivariate probit (SRTP) model on
the MEPS data. SﬁEzk corresponds to the estimated average treat-
ment effect obtained using the 2" equation as the treatment equation
and the k' equation as the outcome equation, Vz = 1,2,k = 2,3,z #

k. 95% Bayesian Cls were obtained using 100 coefficient vectors simu-

lated from the posterior distribution of the estimated model parameters. 77

Definition of trivariate Archimedean copulae, with corresponding pa-
rameter range of association parameter . . . . . .. ... ... ..
Definition of trivariate copulae obtained from the mixtures of powers
approach. The association parameters 9, and 15 denote the associa-
tion between [0, 2] and 3, and ¥; and vs, respectively, while param-

P

eters 9 and U are equal to 1 — eVt and 1 — e™¥2. The parameter

ranges of ¥, and 1J5 are the same as those in Table 7.1. . . . . . . ..



Chapter 1

Introduction

1.1 Objectives of thesis

In statistical analysis, researchers are often interested in modelling binary responses.
When the dependent variable of a regression model is dichotomous instead of con-
tinuous, standard estimation techniques like Ordinary Least Squares (OLS) are in-
efficient and may yield predicted probabilities for y, the response, being equal to
1 lying outside the [0, 1] interval (Aldrich & Nelson, 1984). A popular solution is
to redefine the problem by using, for instance, the cumulative distribution function
(cdf) of a standard Gaussian ® : R — [0, 1], in which case the model takes the form
P(y = 1]x) = ®(x'3), where x denotes a vector of covariates and 3 is a vector of
regression parameters. This is a probit model which belongs to the class of Gener-
alized Linear Models (GLMs, McCullagh & Nelder, 1989). This model can also be
written as y* = x' 3 + ¢, where y* is a latent continuous variable and ¢ ~ A(0, 1).
In this case, y can be viewed as an indicator variable which is equal to 1 when y* > 0
(or —e < x"3) and 0 otherwise.

While most regression models focus on explaining dependencies between covari-
ates and one single response variable alone, interest in modern statistical applica-
tions has recently shifted towards simultaneously studying multiple response vari-
ables. The joint modelling is an active area of statistics research that has received

a lot of attention in the recent years. The reason for increased interest is that joint
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models can be used when we wish to either investigate the role of unobserved vari-
ables that may have on an outcome of interest or correct for non-random sample
section bias or when we wish to account for the effect of an endogenous covariate.
Although these models are used in a wide range of applications in many statistical
fields, computational tools for fitting such models are limited due to the fact that
are computationally intensive to fit.

This thesis focuses on the development and estimation of flexible trivariate binary
models. This is achieved by specifying a trivariate system of non-linear equations
where the residual dependence between the responses is characterized through un-
observed variables. This representation extends the class of Generalized Additive
Models (GAMs, Hastie & Tibshirani, 1990; Wood, 2006) to the multivariate di-
mension where the functional form of the covariate effects is represented through
penalized regression splines.

In particular, the methodology introduced in this thesis is motivated by the mod-
elling of several ways in which unobserved explanatory variables may affect the out-
come of interest. Specifically this thesis deals with the omission of common variables
in the joint analysis of three responses, unmeasured confounding and non-random
sample selection of individuals into (or out) a sample. Several models which build
around an extension of this approach are discussed and are demonstrated through
simulation studies and/or relevant empirical applications. The proceeding work in-
cludes a computationally stable and efficient estimation approach that accurately
estimates all the coefficients of the model. All the necessary computational routines

are available through the function SemiParTRIV() /gjrm() in the R package GIJRM.

1.2 Outline

The current thesis is organized in the following way. In Chapter 2 we set up some of
the notation that is used throughout the thesis and introduce the trivariate probit
model with additive predictors which is our starting point for the development of

the proposed methodology. We review some common examples for representing
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different types of covariate effects, while a detailed description of the algorithm
that is used for fitting trivariate probit models is described. Further, based on
some simulation results we acknowledge the difficulty in estimating accurately the
correlation coefficients, a problem that commonly arises in trivariate binary models
at small or moderate samples. To the best of our knowledge, no research exists
discussing or addressing such a limitation. In Chapter 3 we propose a new approach
via penalized likelihood for addressing this difficulty, where we provide inferential
tools for this framework and illustrate the approach using simulated data. The
proposal is illustrated by jointly analysing multiple births, premature birth and low
birth weight in North Carolina.

In Chapter 4 we develop several models for dealing with data suffering from en-
dogeneity and/or non-random sample selection. In particular, we deal with these
issues by developing three models: (i) the endogenous trivariate model that accounts
for two sources of endogeneity; (ii) the double sample selection model which accounts
for two layers of sample selection; and (iii) the endogenous-sample selection model
that controls for both endogeneity and sample selection simultaneously. An appli-
cation concerning the effect of two chronic diseases on labour force participation in
United States (U.S.) is also discussed.

Chapter 5 extends the models of Chapters 2, 3 and 4 by allowing the link func-
tions to be virtually derived from any parametric distribution. That is, we allow for
the use of link functions other than probit. The additional links implemented for
this work are the logit and complementary log-log. The representation and estima-
tion of the model is discussed, while a simulation study assessing the performance
of the model is also provided.

In Chapter 6, we extend and therefore enhance the trivariate additive binary re-
gression model by allowing the model’s association parameters to depend on several
types of covariate effects. This extension is of some relevance since it can help to
gain insights into the way the residual association between the responses is modified
by the presence of covariates. The performance of the method is evaluated in sim-

ulations. Furthermore, the flexibility of the model is illustrated in an application
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that uses birth data in North Carolina.

Chapter 7 reviews several copula approaches for modelling non-Gaussian error
dependence in trivariate additive binary models and outlines the advantages and
disadvantages of each method.

A summary of the main results is given in Chapter 8, where we also present some

related open topics for further work in the area.

The developments contained in the thesis have been collected in the following

papers:

e Filippou P, Kneib T, Marra G, Radice R, A trivarite additive regression model

with arbitrary link functions and varying correlation matrix. (submitted).

e Filippou P, Marra G, Radice R (2017), Penalized likelihood estimation of a
trivariate additive probit model. Biostatistics, 18(3), 569-585.



Chapter 2

Penalized likelihood estimation of

a trivariate additive probit model

This chapter proposes a penalized likelihood method to estimate a trivariate probit
model, which accounts for several types of covariate effects (such as linear, nonlinear,
random and spatial effects), as well as error correlations. The parameters of the
model are estimated within a penalized likelihood framework based on a carefully
structured trust region algorithm with integrated automatic multiple smoothing

parameter selection.

2.1 Introduction

Regression models usually involve one response variable and a set of covariates.
However, modelling simultaneously more responses in a regression setting can be
of considerable empirical relevance. The particular case of trivariate models has
been addressed in the literature in various applied and methodological contexts.
For example, counties with high rates of pre-term births are more likely to ex-
hibit high rates of low birth weight and this dependence may not be attributed
entirely to observed covariates; joint modelling of these responses will yield bet-
ter calibrated outcome probabilities (Neelon et al., 2014). Loureiro et al. (2010)

assessed the effect of parental smoking habits on their children’s smoking habits
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by estimating a three-equation probit regression model, whereas Kasteridis et al.
(2010) employed a trivariate binary-ordered probit model to analyse the demand for
cigarettes that identifies non-smokers, potential smokers, quitters and actual smok-
ers. Using a trivariate probit-like approach, Zhong et al. (2012) evaluated the safety
of a treatment and identified an optimal dose by jointly modelling the probabilities
of toxicity, efficacy, and surrogate efficacy given a specific dose. Krdl et al. (2016)
examined the response to a treatment on patients with metastatic colorectal cancer
by analysing simultaneously three types of data: a longitudinal marker, recurrent
events, and a terminal event. Rous et al. (2004) discussed a full-information MLE
technique, the discrete factor method, to estimate the birth-weight-prenatal care
relationship and at the same time to control for the potential biases arising from the
selection of the pregnancy-resolution decision and the endogeneity of prenatal care.
Zimmer & Trivedi (2006) employed a mixture of powers copula-based approach to
model jointly three binary and discrete outcomes. Zhang et al. (2015) developed a
Bayesian algorithm to estimate trivariate probit-ordered models affected by double
sample selection. Nikoloulopoulos (2015) employed a trivariate copula model for
allowing bivariate meta-analysis of diagnostic test accuracy studies to account for
disease prevalence.

This chapter is about trivariate probit models which can be traced back to the
seminal article by Ashford & Sowden (1970) on multivariate probit models. Chib &
Greenberg (1998) later proposed a Bayesian approach for estimating such models.
In these works, non-parametric covariates effects are not allowed for. We address
this issue by considering trivariate probit models with additive or semi-parametric
predictors, hence allowing for several types of covariate effects (such as linear, non-
linear, random and spatial effects). This may help uncover interesting structures in
the data and reduce the risk and consequences of mis-specifying covariate-response
relationships (e.g., Donat & Marra, 2017, and references therein). To implement
this advance a reliable estimation algorithm needs to be developed. To this end,
we extend to this context the penalized likelihood framework based on a trust re-

gion method with automatic smoothing parameter selection developed by Marra
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et al. (2017). Such extension relies on the availability of the analytical score and
Hessian components of the model’s log-likelihood, which are derived in this chapter
and represent a contribution in itself. While the analytical score vectors and Hes-
sian matrices are readily available for bivariate binary models, they are not in the
multivariate binary context.

This chapter also illustrates the use of SemiParTRIV() /gjrm() in the package
GJRM (Marra & Radice, 2017) for the R environment (Team, 2017), which imple-
ments the advances discussed in this chapter. Current functions for fitting trivari-
ate probit models are triprobit() (Terracol, 2002) or mvprobit() (Cappellari &
Jenkins, 2003) in STATA (LP, 2017), and mvProbit() in the R mvProbit package
(Henningsen, 2015). These implementations do not deal with the problems that
this chapter addresses. Moreover, mvProbit () may be unusably slow (as the author
points out) and it requires all equations to have the same set of covariates. Note that
we have focused on trivariate binary models, however the formulation in Section 2.2
can in principle be extended to the multivariate case as is the proposed estimation
framework (see, for instance, the lemma and propositions in Section 2.3).

The remainder of the chapter is organised as follows. Section 2.2 discusses the
trivariate probit model with additive or semi-parametric predictors. Section 2.3
provides details on the penalized likelihood estimation algorithm and presents some
simulation results whereas the last section concludes the chapter with some discus-

sion.

2.2 Trivariate probit model with flexible covariate

effects

Suppose the data consists of n observations on (y;, X;)i=1
denoting three correlated binary responses on a single subject i and x; = diag(x];,
Xg;,Xs;) denoting the 3 x P design matrix, where x . = (1, 224, - - -, Tmp,, i), P =
Zf’nzl P,, and P,, denotes the number of covariates in each x,,;, Vm = 1,2,3. Given

the set of explanatory variables x;, the model assumes that the three responses
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are observed indicators determined by Gaussian latent continuous variables (as for
the univariate case mentioned in the previous chapter). Then, we can define the
marginal probability that y,,; = 1 as P(yni = 1{Xmi) = ®(1)n:), where in the classic
case, Nmi = X, Bm, Bm = (Bt Bmas - - - ,Bmpm)T is a P,, x 1 vector of parameters
and ® (1) = E(Ymi) = fmi is the mean response for each y,;.

Predictor n,,; can be extended to allow for several types of covariate effects. This
can be achieved by introducing in 7,,, some unspecified smooth functions s,,,, :
R — R, v, =1,..., N, where N,, is the number of smooth components in the m*

equation. As in GAMs, we can therefore write

i = O (ftmi) = Vi Ym + m1 (Zm1s) + Sm2(Zm2i) + - -+ Spm (Zngni)s

where ®~! is the quantile function of the standard Gaussian and z,,,, ; is a continuous
covariate, Yv,,,i. This is essentially a GLM-like linear predictor involving some
smooth functions covariates where x,,; is partitioned into two parts: the parametric
component which is specified via v,,;, with coefficient vector -,,, and the non-
parametric part which is made up of smooth functions. The combination of these
two parts gives raise to an additive or semi-parametric predictor.

Based on the above and using the latent variable formulation of the binary model,
we specify the regressions for the responses as

Nm
Y = VAt Z Stmm (Zmumi) + Emis Ym =1,2,3,

vm=1

where (81i,€2i,€3z‘)—r = &; Zfz\gl./\/’g(o, 2) and

1 Yo i3
OIS Yor 1 g3
U3 U3 1

The error variances in 3 are normalized to unity (e.g., Greene, 2003, pp. 728),

while the off-diagonal elements represent the correlations between the error terms
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and Vg, =V, , V2 =1,2, k=2,3,2 # k.

2.2.1 Smooth function representation

Smooth functions can be specified in several ways; see Ruppert et al. (2003) for
details. We opted for the regression spline approach popularized by Eilers & Marx
(1996) because of its computational efficiency, theoretical properties and flexibility
in representing several types of covariate effects (e.g., Wood, 2006; Yoshida & Naito,
2014). Using this approach, s, (Zm,.:) 1S approximated by a linear combination

of known basis functions by,,,, j(#ms,,;) and regression parameters oy, ;. That is,

S (Zmuvmi) Z Wi Omvm,j (Zmvmi) = Limu, (Zmvi) Otmy, (2.1)

where Ly, (Zm,,:) i a vector containing the J,, basis functions evaluated at z,,, ;,

i-e- Lmum (Zmymi> == {bmum,1<zmumi); bmum,2(2mumi)7 ceey bml/m,Jm (Zmumi)}7 and amum iS
: T
the corresponding parameter vector defined as @, = (Qmun, 15 Vi, 25 - - + s Cn, )

)
VYm, Vy,. Moreover, each o, has an associated quadratic penalty A, a;VWSmym o,
which enforces specific properties on the my!* function, such as smoothness. Smooth-

ing parameter )\, € [0,00) controls the trade-off between fit and smoothness.

i T — T AT —

The overall penalty can be written as o' Sy, where o = (o, 0, 003) , @, =
T T _

(aml,...,amﬁm> Vm, Sy = Zm 121/ " Ay S, and Sy, are positive defi-

nite or semi-definite symmetric known square matrices. Centering constraint

> i Smum (Zmuni) = 0 is imposed on all smooth terms in the model for identification
purposes; such an approach is applied automatically in estimation via the method
discussed in Wood (2006, pp. 165-166). The above formulation allows us to repre-
sent many types of covariate effects. This will depend on the nature of the covari-
ate(s) considered and some common examples are described in the next paragraphs.

In what follows subscript m is omitted to avoid cluttering the notation.

Non-linear effects For continuous variables the smooth functions are represented

using the regression spline approach popularized by Eilers & Marx (1996). B-splines
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can be used for this purpose. In general, a spline is a function that is piecewise-
defined by polynomial functions which are joint together. The points at which the
functions join are known as the knots of the spline. Assume that J denotes the
number of spline bases, and thus regression coefficients used to represent s,(z,). To
define a J parameter B-spline basis, we first introduce a sequence of J + D + 1
knots 2, < 27, <... <2z ;. p41, where the spline function is evaluated within the
interval [z} 5, 2, ;. The B-basis is strictly local as each basis function is non-zero
over the intervals between D41 adjacent knots, where D+ 1 denotes the order of the
basis (e.g., D = 2 corresponds to the cubic spline). The (D + 1) order spline can
be represented as ijl aV7jb£j(zy), where the B-spline basis functions are defined

recursively as

b _ =% D1 Zj4Dy2 ~ % pP—1
V,j(zu> = X — o+ v (z) + " " z/,j+1(zl/i)7
Ry j+D+1 T R Ry D42 T FuRu i+l

and b, i (z,) = 1if 2 ; < z, < 2 ;,, and 0 otherwise.

Eilers & Marx (1996) developed the penalized B-splines (P-splines) which com-
bine B-spline bases (usually defined on evenly spaced knots) with a difference penalty
that is applied to the parameters o, ; to control for function’s roughness. For ex-
ample, if one decides to penalize the squared difference between adjacent oy, ; then

the penalty would look like

<

-1

2 2 2 2
A Y (ajrr —a )" =\ {aml — 20,100 + 205, 5 — 20,0003+ ... + aVJ} ,
1

[
Il

where )\, is defined as above. The penalty can equivalently be written as A\, S, .,

where S, is defined as
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Thin-plate splines (Duchon, 1977) are an alternative to P-splines. Suppose we wish

to estimate s,(z,;) from n observations (y,;, z,;) such that

Yvi = Sy(zui)+€yi

where z,; is a d-vector with d < n. Thin plate smoothing estimates $,(z,;) can be

obtained by finding a function f,(z,;) that minimizes

D! P 2
2 v
||yl/_f]/|| +)\y/--./Rd Z ’U1!...Ud! <8Zflazsd> le...dZd, (22)

v1+...4+vg=D

where y, = (Y1, - . - ,y,m)T, o= (201),-- -, f,,(zl,n))T and the d-variate integrals
correspond to a penalty function that measures the wiggliness of f,. For the case of
a smooth function of one predictor (d = 1) with wiggliness measured using second

order derivatives (D = 2), expression (2.2) becomes

21\
_ 2 ZJv
I~ gl [ (55) da

By assuming that 2D > d, then the function that minimizes (2.2) is

n Q
Folz) = ) ik (lze = zul) + ) Cuabualzo), (2.3)
i=1 g=1
where o, = (a1, - .. ,a%n)T and ¢, = ((ua,--- ,nyn)T are coefficient vectors to be

estimated. The former is subject to the constraint Tja,, = 0 for Ty,q,i = @u.q(Zui)-
Function ¢, ;(2,;) spans the space of functions for which the penalty function is zero,
i.e. the null space of the penalty, Vq. The exact expression for the basis functions
K(-) can be found in Wood (2006, pp. 154). Introducing matrix E, defined by

E,q: =k (|2, — zuil|), the fitting problem becomes
minimizeq, ¢, ||y, — Evor, — TVC,,HQ +Ma,E,a,, subject to Tja,, =0. (24)

The knots” positions as well as the basis functions do not have to be selected, as
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both are defined via the mathematical statement of the smoothing problem. More-
over, thin plate splines can smooth with respect to any number of covariates. A
disadvantage of thin-plate splines, however, is computational cost as they require
O(n?) operations. Wood (2003) addressed this issue by proposing low rank approx-
imations to thin-plate splines. The main idea of Wood’s method is to truncate the
space of the wiggly components «,,, while leaving the zero-wiggliness components
¢, unchanged. Suppose that E, = CVP,,C: is the eigen-decomposition of E,, P,
is a diagonal matrix of eigenvalues of E, arranged such that |P,;;| > [P,;—1,-1]
and the columns of C,, correspond to the eigen-vectors of E,. Let (le,,g be a matrix
consisting of the first § columns of CV and P, ; denotes the left § x § sub-matrix of
P,. By expressing o, = C,,,ga,,g, i.e. restricting «, to the column space of é,,,g,

then (2.4) becomes

minimizeq, ; ¢, |y — CusPusons — TGP + )\yalgPy,gay,ga

)

subject to Tjémgal,’g =0.

The above constrained problem can be transformed into an unconstrained problem

by finding an orthogonal column basis 2,45 such that TICV7§ZV’§ = 0 (which can be
~T ~

done by taking the QR decomposition of C,;T,) and then restricting a5 to this

space, i.e. oy, 3 = Z, ;0. That is,
. . . —~ ~ ~ e 2 ~T ~
MINIMIZEs,, 5.¢, HyV - CV,§PV,§ZV,§aV - TVCV” + )\l/ay SVC\C,/,

which has a computational cost of O(3%), for S, = ZISPISZ” After fitting the
model, the spline can be evaluated via (2.3) using o, = é,,,gz,,,gd,,. The choice
of (NJ,,7§ plays a key role in the approximation method as it makes the minimum
possible perturbation to the fitted values of the spline and at the same time makes
the minimum possible change to the shape of the fitted spline (Wood, 2003). For

more details about splines we refer the reader to Wood (2006, Ch. 4) and references

therein.
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Linear and Random Effects In general, no penalty is assigned to the parametric
part of the model. That is, when v,,; is composed of binary and categorical variables,
the entries in the penalty matrix that correspond to these variables are equal to zero.
However, if the coefficients of, for instance, some factor variables in the model are
weakly or not identified by the data then some penalization on the effects of these
variables may be required. This can be achieved by employing, for instance, a Ridge-
type penalty (which is made up of a smoothing parameter and an identity penalty
matrix). This is equivalent to the assumption that the coefficients of the factor

variable are i.i.d. normal random effects with unknown variance (e.g., Ruppert

et al., 2003; Wood, 2006).

Spatial Effects To allow the probabilities of the responses to co-vary smoothly
across, say, the regions of a country we can include in the model a variable that can
exploit the spatial dependence of observations in neighbouring areas. For instance,
pre-term births and low birth weights may co-vary smoothly over a country because
of environmental influences such as poor air quality and neighbourhood poverty
(e.g., Neelon et al., 2014, and references therein). Spatially adjacent regions are also
more likely to share similar effects. When a geographic area is divided into discrete
contiguous geographic units, the spatial information can be modelled via a Markov
random field smoother. In this case, the spatial regional effects can be represented
as $,(z,;) = Ly(2,i)0, where o, = (a1, ... ,al,pq)T denotes the vector of spatial
effects, R is the total number of regions and L,(z,;) is a set of area labels. The
[i,t]"" entry of the corresponding design matrix, that links observation i with the
corresponding spatial effect, is equal to 1 if the observation belongs to region v and 0

otherwise, Vr = 1,..., 3. Following the assumption that spatially adjacent regions

share similar effects, we form the smoothing penalty based on the neighbourhood
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structure of the geographic units as

—1 if tv# gqArand q are adjacent neighbors
S,lv,q] = 0 if tv# qArtand q are not adjacent neighbors ,

K., if v=qAr~q

where K. is the total number of neighbours for region t. In a stochastic interpreta-
tion, this penalty is equivalent to the assumption that «, follows a Gaussian Markov

random field (e.g., Rue & Held, 2005).

2.2.2 Compact formulation of the model

Using regression spline representation (2.1), we can re-express the model in a more

compact way as

* T T
Ymi = Vi Tm + Lmzam + Emi = Mmi + Emis

where 1,,; = V;ﬁm‘FLrTmam = (V;w LrTm) (Y am)T = X?Iuﬂm and LrTu' = {Lml(zmli)Tv
s Lg (2, Nmi)T}, VYm, v,,. After gathering all observations, we define Y3,,%1=(y1,
- - T T
Yo, ... >yn) ) Y3n><1 = (yla Yoo - >yn) > V3n><13’:(V1; V... Vn) ) L3n><N = (L17 L27
o Ln)T and X3, p=(X71; Xo; ... ;Xn)T. Thus, the trivariate system of equations

can be expressed in matrix notation as follows
-
Y*:V7+La+€=[v L] [7 a] te—XB+e, (2.5)

where X = [V L} is a block matrix, with corresponding parameter vector B =

[»y a}T, the error term is defined as e = (ey,...,&,)", and P and N denote
the total number of parametric and non-parametric components respectively. For
each observation, variable y; is distributed as N3(X;3,X) or equivalently as Y* ~
N3, (X3, f]) where X3 is a 3n x 1 vector and 3 denotes the 3n x 3n covariance
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block diagonal matrix

3 -0 3 0
S| | ,
[ D I N
0 1...1 %0 0 ...
where X1, = ... = X,,, = X as all observations are assumed to follow the same

covariance structure. This means that the n components of € are mutually indepen-
dent, which in turn means that the off-diagonals 3, = 33 = ... = %,_,, = 0.
It could be the case that 31 # ... # X, and X9 # X3 # ... # X1, # 0,
for instance. This is beyond the scope of this work and the feasibility of such an

extension will be addressed in future research.

2.3 Parameter estimation

Because of the presence of flexible additive predictors in model (2.5), classical MLE is
not appropriate for parameter estimation as over-fitting is likely to occur in practical
situations. This issue is overcome by adopting a penalized approach where a penalty
term, controlling for the model’s smoothness, is added to the original objective
function. Simultaneous estimation of all parameters of the trivariate additive probit

model is therefore achieved by penalized MLE (PMLE) through problem
A 1
0 = argrr%in —0,(0) = argméin—{log/i(Y; 0) — §aTS)\a}, (2.6)

where 6 = (B7,97)7, 9 = (Y12, V13, 1923)T, S, is defined in Section 2.2.1, a'Syax =
578,68 with S = diag (0},1, AirSions - A Sigy 0% A2wSouas - Agg, Says OF
3055305 -+ 5 A3y S350 05 0, 0), 01T5 = (Oml, e ,Omlam) and P,, denotes the number

of parametric components in the m** equation, ¥m. For a 3-D binary response vector

we have 23 trivariate probabilities expressed via the cdf of the trivariate normal
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distribution. The likelihood is given by the joint density of observed outcomes

n 23 n 23
£(¥;8) = [T 11 catws o) = TTT] w5
i=1 k=1 =1 f=1

where Lz, is derived from Lemma 2.3.1 for M = 3. Term },; denotes an indicator
variable for the k™ combination of the three possible events yy; = €1, Yo; = €2, Y3; =
es with e, € {0,1} Vm and ¥ is the corresponding trivariate normal cdf. For

instance, if k=3 corresponds to events y;; = y3; = 1 and y9; = 0 then Vi3 =

yh(l o y2i)y3i and ‘IJB = P(yll = 17y2i = Oa Y3 = 1)

Lemma 2.3.1. Quantity L ;. evaluated at the vector (B;n;); is equal to the cdf of a

multivariate standardized normal vector with correlation matriz (B;XB;);, that is
Vi ~ ~
L (yi:8) = Uh = {Dare, (B 0, (BEB)p) 1+ = {Pase, (wi); 0, (Ti)p) 17

where w; = Bmi = (wl,iawlia e 7wM,i>T; Y, = B,XB,, Wm,i = Ymimi s for Ymi =
(2Ymi — 1), Mo = T B, M = (N1i,Moiy - -, Muri) | and By denotes a diagonal M x M
matriz with main diagonal elements ¥ = (2ym: — 1), that is B; = diag(2y;; —

1,2y0; — 1, ..., 2ypps — 1)
Proof. See Appendix A.1. O
We can therefore express the log-likelihood function for model (2.5) as

n 23 n 4
log £(Y;8) = ((d) = Z Zfi,;(é) = Z Z {yil} log Wi + Vi(ys iy log ‘I’i(4+1%)} ,
i=1 k=1 =1 k=1
where Wi = Oy, ((wi);; 0, (Xi)p), Wiy = Pse(—(wi)g;0,(Yo);), Pse, corre-
sponds to trivariate normal integrals, and w; and Y; are defined in Lemma 2.3.1.
Note that for each k the form of w; and Y; is different as their structure depends
on the &™ combination of the three possible events. In general, there are no ex-
act methods for calculating the multivariate normal (MVN) probabilities @y ,,

for M > 2. Accurate approximations, however, can be obtained via ghkvec()
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in bayesm (Rossi, 2015), pCopula() in copula (Marius Hofert & Yan, 2017) and
pmnorm() in mnormt (Azzalini, 2016), all implemented in the R environment. We
adopted the latter approach as it was found to be more efficient than the former
ones. Function pmnorm() evaluates the multivariate integrals by making a suitable
call to function sadmvn(), a subroutine in Fortran-77. The problem is first de-
fined in its general form and then a multivariate integration technique (based on
a sequence of three transformations) is applied which simplifies the problem and
places it into a form that allows for efficient calculation using standard numerical
multiple integration algorithms (Genz, 1992). Appendix A.2.1 provides a detailed
description of the algorithm for the reader’s convenience. Although accurate re-
sults can be obtained via pmnorm(), computing time can become burdensome as
n increases. As pointed out by Connors et al. (2014), who compared several ap-
proximation techniques, there is interest in lower-cost approximation approaches for
computing MVN integrals. A possibility would be to employ the method by Trinh
& Genz (2015) which consists of writing the MVN probabilities as the product of
bivariate conditional probabilities. As compared to pmnorm(), this approach gains
computational speed but becomes less accurate for highly correlated responses. The
full description of the algorithm can be found in Appendix A.2.2; this has been
implemented in SemiParTRIV() /gjrm(). Once P(y1; = 1,99 = 1,y3; = 1) has been
obtained for all observations, the remaining probabilities can be efficiently calculated
using relationship Y7 | {p111: + Pr10i + Pro1i +Po11i + Poooi + Poori + Potoi + Prooi} =
> iy Ap1ii + proi + pori + pooit = Doy AP+ poi} = 1, where peeye = Plyu =
€1,Y2i = €2,Y3i = €3), Dereri = P(Y1i = €1,Y2 = €) and pg; = Py = €1). For
example, P(y;; = 1,y2; = 1,y3; = 0) can be computed as piijo; = p11; — P111; and

P(yli =1,y =0,y3 = 0) as Pi1oo; = P1i — P11i — P101i-

Restrictions on the correlation parameters The model requires the inclusion
of two types of restrictions on the correlation parameters. First, because 9., €
[—1,1] we use Fisher transformation 9%, = tanh™'(9,;) and redefine parameter

vector § as (37,9*")". This is convenient as it ensures that in optimization § € R?,
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where 9* = (9%,, 0%, 035) | and Q is the total number of parameters in 8. Second,
when dealing with correlation matrices, the inclusion of range restrictions on their
parameters is needed in order to ensure positive-definiteness. Such constraints have
been discussed in the previous literature: a proof on this was first given by Stanley
& Wang (1969), while novel geometric proofs were provided by Glass & Collins
(1970) and Leung & Lam (1975). Based on the property of positive-definiteness
of correlation matrices, Hubert (1972) also provided a proof for the bounds. For a
trivariate distribution if two correlations are fixed then the remaining one should be

restricted. That is, if ;3 and 193 are known then 115 is restricted as follows

Y1303 — \/(1 — 19%3)(1 — 19%3) < Vg < V133 + \/(1 — 19%3)(1 — 19%3) (27)

By doing so, the correlation matrix space is a subset of the hyper-cube [—1,1]3. The
geometric proof of (2.7) is provided in Appendix A.3 for the reader’s convenience.
We impose the above restriction using the eigenvalue method. Specifically, assume
that a positive-definite correlation matrix (Y;); is expressed as (¥;); = PDP ', Vi,
where D is a diagonal matrix containing the eigenvalues of (Y;); and P is an or-
thogonal matrix of corresponding eigenvectors. When (Y;); is not positive-definite,
some eigenvalues are negative and typically not large in absolute sense. Accord-
ing to Rousseeuw & Molenberghs (1993), a common approach for transforming a
non-positive-definite matrix into a positive-definite one is to replace the negative
eigenvalues by their absolute values; that is re-express (Y;); as (Tl)}c = PD'P'
where D’ contains positive eigenvalues. The diagonal elements of (Tl);f will not

necessarily be equal to 1. To this end, we transform (T,);; to () = f),(Ti);;D/T

!

where D' is the diagonal matrix with diagonal elements equal to 1/4/r and r

i
mm,i mm,i

denotes the diagonal element of (Ti);;, Yk, m. For more details see Rousseeuw &

Molenberghs (1993).

Joint estimation of § and A via (2.6) would clearly lead to severe over-fitting as the
optimal value of ¢,(8) would be reached when A = 0 (e.g., Ruppert et al., 2003).
Following Gu (2002), Marra et al. (2017) and Wood (2004), we estimate the model
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and smoothing parameters using a two stage approach; one step concerns estimation
of § conditional on A and the other estimation of A conditional on §. Note that
such an approach is philosophically very similar to the Bayesian estimation method
discussed, for instance, by Klein & Kneib (2016a) where Bayesian sampling is used

to estimate & and A\ conditional on each other.

2.3.1 Step 1: Estimating é given smoothing parameters

Holding A fixed at a vector of values, we seek to minimize —¢,(d). This is achieved
via a trust-region algorithm which has generally proved to be more stable and faster
than standard numerical optimization procedures when fitting simultaneous systems
of equations (e.g., Donat & Marra, 2017; Radice et al., 2016). Each iteration s of

the trust-region algorithm solves the sub-problem

1
min Q,(6M) = — {ep (6") + sTg,(6") + §swp(5[’4)s} (2.8)
subject to ||s|| < A,

s = argmin Q,(6%) + 6,
S

where Q,(6%) is a quadratic approximation of £, at 6, g,(6) denotes the pe-
nalized score function defined as g(61) — S8, #,(8%), the penalized Hessian
matrix, is given by H(8) — Sj, || - || denotes the Euclidean norm and Al is the
radius of the trust region. The analytical score function, g;(6) = Vs/; (5 [”]), and
Hessian matrix, H;(6) = VsV ], (6[’4), required to implement the trust region
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approach are computed using

o (om\ " ae(8)  [om\ [ 1 0%
Vali(9) = (aa) on;  \ 96 W on | (29)
o6,(8) 0%, om\ | 0°0;(8) Om;
T . pu—
VsV5i9) on, 96067\ 95 ) omons 06
_ [ 10wy P (om T 0wy (0w +
~ v, on, o608 T\ s Wi o \ on)
1w, T (om (2.10)
W On;0n; 96 )’ ‘

where, for each i, 91; /08 = diag (0n1;/ 0B, Onai/ 0B, Onsi/OBs, 0V5y /007y, 053/ 005s,
053/ 0053) = diag (9n1i/ 0B, On2i/ OB, Onzi/0Bs, 1,1, 1) and 9L(8) /Oni=(0L(d) /O,
DU(8) )i, DU(B) O, DU(8) DUy, DU(S) [DV%,, DU(8)/DY%s) . Predictor @; is func-
tionally dependent on the @Q-vector 4, that is 7; = 1;(d), and is defined as n; =
(nli,ngi,ngi,774i,775i,776i)T, where (14, M5:,M6i) = (U39, V53, U53). The difficulty with
deriving analytical expressions for the derivative components in (2.9) and (2.10) is
that they require working with trivariate integrals, which is not straightforward.
This is addressed using the decomposition approach which consists of breaking the
trivariate integrals into lower-order integrals which are then solved separately, and a
method by Plackett (1954) which is based on the reduction formula which progres-
sively simplifies the integrals until they can be evaluated. Using these techniques,
we derive propositions 2.3.2 and 2.3.3 which show that the derivatives of a multi-
variate normal cdf, ®,;, with respect to the model parameters require the evaluation
of M — 1 integrals, VM > 3. Specifically, we provide the key derivatives for the log-
likelihood function of a generic multivariate probit model with correlation matrix

structured as

* * *
1 Tos Tizg -+ Timg

* * *
v T12, 1 Tosi -+ Tom

* * *
Tivs Tomi T3mg - - 1
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where 73, ; = tanh(J7,)(2y.; — 1)(2yr: — 1), V2, k,i. The propositions below have
been used to implement expressions (2.9) and (2.10) after setting M = 3.

Proposition 2.3.2. Assume that w; is a multivariate standardized normal vector
with correlation matrixz equal to X7. Then the first-order derivative of the M-variate

normal cdf ®p(w;; 0, YY) with respect to By, Vm =1,..., M, can be expressed as

0,6 = qb(wm,zv 07 1)(I>M—1(w—m,i|wm,i; Mi*m7 Q:m)(zymz - ]-)mT

me)

where M denotes the total number of equations under a multivariate probit frame-
work, w,,; denotes the linear predictor of the m™ equation and is equal to (2ym; —
D! B, Bm denotes the parameter vector of covariate vector @n,; and the vector
of linear predictors w_,,; is defined as (w1, Was, ..., Wn—1i, Wmtl,--- ,wMVZ-)T.

The mean M;™ and variance-covariance matriz O™ s equal to O3 w,,; and

K3
5, — OO0, respectively, with O35, O, and O3, defined by re-ordering

Y7 as follows

1x1 1x(M—-1)
*m | *m
~rm 11,0 612,2
e o T T
*m *m
@21 i ! 922,1

(M—=1)x1 (M—1)x(M-1)
The element O1Y; is equal to 1, the off-diagonal blocks ©1y; and O%"; consist of the
correlations 17, . = tanh(V0, _)(2ym — 1)(2yw — 1), Vw € {1: M} \'m, form # w

muwo,i

and the symmetric sub-matriz ©33; has main diagonal elements equal to 1 and off-
diagonals equal to 17 ; = tanh(97% )2y — 1)(2yw — 1), Vo, € {1 : M} \ m, for

¢ # w.
Proof. See Appendix A.4.1. n

Proposition 2.3.3. Assume that w; is a multivariate standardized normal vector
with correlation matrixz equal to X7. Then the first-order derivative of the M-variate

normal cdf ®pr(wy;0,YT) with respect to 9%, Vz2=1,...,. M —1,k=2+1,... M,
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can be expressed as

oV,

k 2k 2k
= ¢2(wzk,i;oa@fz )®M72(w7zk,i wzk,i;Mi* e ) X
4692k

(Qyzi - 1)(2%@' -

where M denotes the total number of equations under a multivariate probit frame-
work, w,i,; = (wm,wk,i)T, w,; and wy; refer to the linear predictors of the 2t and
k™ equations respectively and are equal to (2ymi — 1)x) B, Vm = 2, k, and B,
denotes the parameter vector of covariate vector x,,;. The vector of linear predic-
tors w_,k; is defined as (Wi, Waiy ..o, Wariy Wailyy -y Wh—1,is Wht14y - - .wMyi)T,
while parameter V%, = tanh_l(ﬁzk) where 49, denotes the correlation coefficient
between the 2" and k'™ responses. The variance-covariance matriz ©;** is equal
to ©3%, while the mean M; % and variance-covariance matriz ©~** is equal to
(St (@’{fﬁ-)_l w, and O33% — O3 (@’{fffi)_l ©73%, respectively. The sub-matrices

@ﬁﬁ, @T;ﬁ, @;sz and @;g’g are defined by re-ordering X} as follows

2x2 2x(M~-2)
~ =
xzk | xzk
yrek 611#’ | 81272
v @*zk ! @*zk
214 ! 224

(M—-2)x2 (M—-2)x(M-2)

The sub-matriz ©33% has unit diagonals and off-diagonals defined as 71 = tanh(d7,)
(2y: — 1)(2yr — 1). The first row (column) of ©73% (©37%) contains the correlations
1350 Jor 0 € {1: M}\ 2, while the second row (column) of ©33% (©%%) contains the
correlations 7% ;, for v € {1: M}\k. The diagonal block ©33% is a symmetric matriz
with unit diagonals and off-diagonal elements equal to ;. V X, Y e{l: M}\{z k}
for X # .

Proof. See Appendix A.4.2. ]

The analytical derivatives have been verified via numerical differentiation using
the R package numDeriv (Gilbert & Varadhan, 2016). Full matrices Y™ and Y }**

can be found in Appendix A.5.
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Line-search methods compute s by minimising the unconstrained problem
(2.8). The current solution §**U is then updated by scaling the step s by a
factor 71 that approximately minimizes —(,(6) along the line that passes through
0 in the direction of s, ¥+l = §l4 4 7¥sl If the function is non-convex
then the optimizer may search far away from 6% but still chooses 6% to be close
to 6. In some cases the function will be evaluated so far away from 8 that it
will not be finite and the algorithm will fail. On the contrary, trust-region methods
use a maximum distance for the move from 6™ to 6+ based on a region R
around the current iterate 6 in which the algorithm ‘trusts’ that model function
Q,(8%) behaves like objective function ¢,(8§). Current iteration 8% is updated
with sV if this step produces an improvement over the objective function 0,(6),
o+l = g4 4 s, Since points outside R are not considered, the algorithm
never runs too far from the current iteration. The trust-region is shrunken if the
proposed point in the region is not better than the current point, in which case the
new problem is solved with smaller region. If the quadratic model is a good repre-
sentation of the original objective function, then trial point 6! becomes the new
iterate and the trust-region is enlarged, i.e. the iteration is successful. A detailed
description of trust-region and line search techniques can be found in Nocedal &
Wright (2006, Chap. 3, 4). The trust-region algorithm is summarised in Algorithm
1.

2.3.2 Step 2: Estimating A

There are several ways for estimating automatically multiple smoothing parameters
(e.g., Wood, 2004, 2008, 2011; Radice et al., 2016; Marra et al., 2017). One way
is to minimise a mean squared error criterion which can be shown to be equivalent
to an approximate Akaike Information Criterion (AIC). In this work, we adopt this
idea as well as a parametrization of the smoothing criterion discussed by Marra et al.
(2017) which makes estimation more stable and efficient.

Suppose that 6+ is the ‘true’ parameter value, and thus gp((s[”“]) = 0. By
using a Taylor expansion for g,(6+!) at 6 it follows that 0 = g,(6+Y) ~
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Algorithm 1 (Trust Region Algorithm)
Require:

Amax > 0, 01, s Al € (0, Anax)
Ensure:

|sPFU)| > 1.490116 x 1078 or 3¢ < 100

for »=0,1,2,... do
g1l .— arg ming Qp((s[%]), subject to [|s]| < Al

Fletl] — {fp((s[%]) — 4, (5[%} + s["])} / {gp (5[%]) -9, (s[k%+1])}
if 7%l < 1/4 then
Al = AlA /4
else if 71 > 3/4 and ||s1|| = A then
Al = min (QA["], Amax)
else
Al — Al#
end if
if 74 > 1/4 then
ol = gbetl] o gl
else
Sl — gl
end if
end for

g,(67) + 2, (8) (61 — §14). Solving for §*+1 yields, after some manipulation,
N
st — <IM X Sx) THZA, (2.11)

where T = —HP and zM = VZH§H + e with e = I[”]ilg[”}. From
standard likelihood theory € ~ AN(0,I) and Z ~ N (uz,I), where I is an identity
matrix, p; = VI, and J is the true parameter vector. The above representation
allows us to estimate the smoothing parameters based on a parametrization of z
that uses g and H as a whole instead of the n components that make them up. As
argued by Marra et al. (2017), this is advantageous in estimation problems involving
simultaneous systems of equations.

Now let fi; be the predicted value vector for z defined as p1; = C;z where
Cs = VI <I +8 5\) - VI, the influence matrix or hat matrix of the fitting problem

which depends on the smoothing parameter vector. An appealing way of estimating
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A is to minimise the distance between f1; and the truth pz. This can be achieved

using
E(llpz — f1zl*) = E(|z — Cxz||*) — 7 + 2tr(Cx), (2.12)

where 7 = 6n and tr(C,) is the number of estimated degrees of freedom (edf) of the
penalized model which measures the flexibility of the fitted model. The edf of the
model is defined as the sum of the edf of the smooth functions. Note that the RHS
of (2.12) depends on the smoothing parameter through Cj,, while z is associated
with the un-penalized part of the model. In practice, smoothing parameters are

selected by minimizing an estimate of (2.12), that is

V(A) = [|pz — f1z]* = |1z — Cxzl]* — i+ 2tr(Cy),

which is approximately equivalent to the AIC, defined as 2tr(Cy) — 2¢(8), where

—2/((8) can be approximated as ~ —2/(8) — H\/f_lgH2 +||z— VI Given s+,

the estimation problem can be expressed as
A = argmin V(A) = 2 — Lzl — 7 4 2t (Y,

which is solved by adapting the approach by Wood (2004) to the current context.
This method implements a stable and efficient Newton method for estimating log(\).
Working with the logarithm of A ensures that the smoothing parameter estimates
are positive. The derivation of the above results can be found in Appendices A.6.1,

A.6.2 and A.6.3.

The two steps are iterated until the algorithm satisfies the criterion

{1e(8+1y — ¢(8t)|} / {0.1 + [€(8T)[} < 1077. At convergence, well founded
point-wise confidence intervals (Cls) for linear and non-linear functions of the model
coefficients can be obtained using result §~N (3 , —?:L; 1). The rationale for using
this result is provided in Marra & Wood (2012) for GAMs, whereas some examples

of interval construction are given in Radice et al. (2016). For general smooth mod-
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els, such as the one considered in this chapter, this result can be justified using the
distribution of z discussed in Marra et al. (2017), making the large sample assump-
tion that Z can be treated as fixed, and making the usual Bayesian assumption on
the prior of § for smooth models (e.g., Wood, 2006). Note that this result neglects
smoothing parameter uncertainty. However, as argued by Marra & Wood (2012)
this is not problematic provided that heavy oversmoothing is avoided (so that the
bias is not too large a proportion of the sampling variability) and in our experience
we found that this result works well in practice. The problem of testing smooth
components for equality to zero is approached using the results discussed in Wood

(2013a) and Wood (2013b).

2.3.3 Simulation study I

A simulation study was conducted to investigate the practical performance of the
proposed approach as compared to the alternative routine mvprobit () available in

STATA.

DGP1

In order to compare the results obtained from SemiParTRIV() /gjrm() and mvprobit (),
we employed a Data Generating Process (DGP) based on the fully parametric model
Y* = Vv + ¢, with V containing binary and continuous variables with parametric
effects. Exact simulation settings and the code used to generate the data can be

found in Appendix A.7.1. The syntax used to fit trivariate probit models is
out <- SemiParTRIV(formula = f.1l, data = dat)
where f.1 consists of a list of three equations

eqnl <- y1 " vl + z1; eqn2 <- y2 7 vl + z1; eqn3 <- y3 7 vl + z1
f.1 <- list(eqnl, eqn2, eqn3)

and v1 and z1 denote the binary and continuous covariates, respectively. Argument

data refers to the data frame containing the variables in the model.



27 2.3. Parameter estimation

Figures 2.1 and 2.2 summarise the results. The regression coefficient estimates
of both methods are satisfactory and converge to their true values as n increases.
As expected, the variability of the estimates decreases as the sample size grows
large. As for the correlation parameters, SemiParTRIV() /gjrm() considerably out-
performs mvprobit () whose estimates do not improve as n increases. This may have
important inferential implications; for instance, obtaining unbiased joint outcome
probabilities requires accurate estimation of the correlation coefficient (e.g., Neelon
et al., 2014). The STATA and R codes used to run the models for the above study

are given in Appendix A.7.1.

Method Comparison - DGP1 - n = 1000
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Figure 2.1: Boxplots of parameter estimates obtained applying mvprobit() and
SemiParTRIV() /gjrm() to 250 datasets simulated using the settings described in
Appendix A.7.1. The sample size was equal to 1000 and the true parameter values
are represented by horizontal gray dotted lines.
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Method Comparison — DGP1 — n = 10000
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Figure 2.2: Boxplots of parameter estimates obtained applying mvprobit() and
SemiParTRIV() /gjrm() on 250 datasets simulated using the settings described in
Appendix A.7.1. The sample size was equal to 10000 and the true parameter values
are represented by horizontal gray dotted lines.

Remark The unsatisfactory performance of mvprobit() in estimating the cor-
relation parameters may be attributed to the method used for evaluating normal
trivariate integrals, namely the Geweke-Hadjivassiliou-Keane (GHK) smooth re-
cursive simulator (Geweke, 1991; Hajivassiliou & McFadden, 1991; Keane, 1990).
Broadly speaking, the GHK approach first applies a Cholesky decomposition on the
model’s correlation matrix and then expresses the trivariate integrals as a product
of three univariate probabilities defined in terms of truncated standard normal vari-
ables; Trinh & Genz (2015) introduced similar approximations which were found not
to yield satisfactory results for highly correlated responses. Furthermore, Cappel-

lari & Jenkins (2003) pointed out that if the correlation matrix obtained at a given
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iteration of the optimization is not positive-definite then the GHK method uses the
most recent positive-definite estimate of the correlation matrix; this runs the risk of
delivering estimates that are far from the optimal values. When we tried different
scenarios with higher and lower values for the correlation coefficients, we found that

the stronger the magnitude of the correlations the worse the estimation results.

DGP2

The proposed approach does have some limitations, however. On occasion, the algo-
rithm does not satisfy the first and second order necessary conditions for convergence
(that is zero gradient and positive definite Hessian matrix). When this occurs, we
observed that the non-zero gradient components and/or negative eigenvalues of the
Hessian matrix are typically associated with the correlation parameters. To shed
light on this issue, we conducted more simulation studies based on different config-
urations of the correlation matrix. We refer to the simulation settings of one such
study as DGP2 whose description is given in Appendix A.7.1. Table 2.1 displays

the percentage biases and root mean squared errors (RMSEs) for the estimates of

~

the ¥, (calculated as RMSE(9,;) = \/ﬁ Z?i?{@zm — U,k0 }2 where T§zk,¢ denotes
the (-th estimated value and 9,5 is the true one). The results show that the esti-
mation performance improves as n grows large, however at n = 1000 the method
is not deemed to perform satisfactorily. Although not shown here, the estimated
regression coefficients were similar to those of the previous study at both sample
sizes. The R code used for this study is given in Appendix A.7.1.

To gain more insights into the above mentioned issue, we looked at the log-
likelihood behaviour over the correlation parameters. For instance, we produced
univariate transects through ¢ by evaluating ¢(§) at the optimal MLE values for 3,
U3, and 074, for a grid of ¥%; values. Figure 2.3 shows the corresponding ¢(§) versus
V34, based on 10 replicates, from which we observe a minimum that tends to be very
shallow. This suggests that at small sample sizes the log-likelihood (and thus the
model) may provide little information with which one can make inferences. Greater

uncertainty is also expected. When this happens the parameter is weakly or not
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DGP2
n = 1000 n = 10000
Estimator Bias (%) RMSE Bias (%) RMSE
D1s 11.36  0.0935 -0.79  0.0262
1§‘13 13.53  0.1204 1.86  0.0320
a3 -2.02  0.0567 0.16 0.0129

Table 2.1: Percentage biases and root mean squared errors (RMSEs) of the correla-
tion estimates obtained applying SemiParTRIV() /gjrm() to 250 datasets simulated
according to DGP2.

identified. The methodology described in the next chapter addresses this issue.

Log-Likelihood Function

1400 1600

Log-Likelihood
1200

1000

Figure 2.3: Profile log-likelihood function of the trivariate probit model for corre-

*

lation parameter 34, for 10 data sets of sample size 1000 generated using DGP2
settings. The true value is represented by the vertical grey line.
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2.4 Discussion

We have introduced a penalized likelihood method to estimate a trivariate system
of probit regressions that incorporate additive or semi-parametric effects. Previous
implementations of trivariate probit models are limited in many respects and we
proposed a more general approach where several types of covariate effects are allowed
for via the use of the regression spline methodology. The proposed development is
backed by a reliable estimation method which requires analytical information on the
score vector and Hessian matrix of the model’s log-likelihood. Such information is
not readily available in the literature and has been provided in this chapter. We have
also developed the necessary computational tools which have been incorporated in
the R package GJRM through function SemiParTRIV() /gjrm().

Our simulations showed that the MLE results in some situations are unsatisfac-
tory, a problem that commonly arises when the sample size is small or moderate.

Next chapter proposes penalized MLE to deal with this difficulty.



Chapter 3

Correlation-based penalty
approach to trivariate probit

models

A penalized likelihood estimation approach is developed to address the difficulty
in estimating accurately the correlation coefficients, which characterize the depen-
dence of binary responses conditional on covariates. In this way, the issue with
problematic flat likelihood functions is dealt and more efficient estimates are ob-
tained. Issues related to practical implementation of the proposed approach are also
discussed. The relevant numerical computation can be easily carried out using the
SemiParTRIV() /gjrm() function in the R package GIJRM. The proposed method is
illustrated through a case study whose aim is to model jointly adverse birth binary

outcomes in North Carolina.

3.1 Introduction

As discussed in Chapter 2, an issue with trivariate binary models is that the MLEs
for the parameters in the correlation matrix may have large variance because the
likelihood function near the optimum is flat. We propose a penalized likelihood ap-

proach for estimating accurately trivariate binary models when classical ML estima-

32
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tion results are unsatisfactory. Penalization of log-likelihood functions is employed
in various contexts for correcting the undesirable behaviour of regular MLE. This
has been and still is an intensive research area in the statistical literature and has
a large number of applications. An example is given in Section 2.3.2 where penal-
ties are required to avoid over-fitting in curve estimation. Other examples include
the development of penalized algorithms for high-dimensional problems (e.g, Kim
et al., 2006; Park & Hastie, 2007), and the introduction of regularised regression ap-
proaches such as Ridge regression (Hoerl & Kennard, 1970), Bridge regression (Frank
& Friedman, 1993), the Lasso approach (Tibshirani, 1996), the Smoothly Clipped
Absolute Deviation (SCAD), Elastic-Net and Adaptive Lasso methods (Fan & Li,
2001; Zou & Hastie, 2005; Zou, 2006).

This chapter extends the semi-parametric trivariate probit model presented in
Chapter 2 by addressing the difficulty in estimating the correlation coefficients that
characterize the dependence of the binary responses conditional on regressors. We
found that this is not an unusual occurrence for trivariate binary models and as far
as we know such a limitation is neither discussed nor dealt with. Estimating such
parameters accurately is crucial to obtain unbiased joint outcome probabilities, for
instance. Moreover, to solve the issue with not continuously differentiable optimiza-
tion problems we employ a local quadratic approximation (LQA) approach that is
based on algorithms of Fan & Li (2001) and Ulbricht (2010). Asymptotic arguments
of the proposed estimator are also provided. Note that in the bivariate binary case
(see, for instance, Radice et al., 2016, and references therein) it is not necessary to
penalize the correlation coefficient since the behavior of the respective log-likelihood
function suggests that there is enough information that can be exploited in estima-
tion. Parameter estimation is achieved within the penalized likelihood framework
discussed in Chapter 2 using the trust region algorithm with integrated automatic
multiple smoothing parameter selection. All the necessary computational routines
are incorporated in the R function SemiParTRIV() /gjrm() that accompanies this
chapter.

The chapter is organised as follows. Section 3.2 addresses the difficulty in esti-
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mating the correlation coefficients of the trivariate model. Section 3.3 provides some
asymptotic arguments and Section 3.4 applies the proposed approach to a case study
that uses data from North Carolina whose aim is to model jointly plural births, low

birth weight and premature birth. Conclusions are drawn in Section 3.5.

3.2 Correlation-based penalty

The aim of this section is to further augment the penalized log-likelihood function
by introducing a penalty which addresses the difficulty in estimating the correlation

parameters. The PMLE problem (2.6) then becomes
. 1 =
0 = arg mﬁin—{ﬁ(d) — EJTSA(s — Py, (0)}, (3.1)

where P,,.(8) is a penalty acting on the correlations that depends on Ay which
determines the amount of shrinkage required for 9%, , Vz, k. In this work, we employ
the Ridge, Lasso and Adaptive Lasso approaches.

Suppose that R, = diag (0,0,...,0,1,0,...,0) where the value of 1 on the (¢, ¢)™"
entry of the matrix corresponds to the ¢'* parameter in 8, Vg = 1,...,Q, where @
denotes the total number of model parameters. Then, the penalties can be expressed

as follows

Lasso: Py (8) =Py . (

[Rgdl11) = o= ([95a] + [955] + 9351, (3:2)
. 1 * * *
Ridge: Py, (8) = Px,. (IR43[13) = S Ao (913 + 035 +953) , (3.3)

e I G R 1 )

GRUER R o3

(3.4)

Ad. Lasso: P,QL* (6) = Pﬁgj(

[R40l1) = Ao (

Vg=0Q—2,Q—1,0Q, where superscripts L, R, and AL refer to the Lasso, Ridge and
Adaptive Lasso penalties, respectively. The expression for the Adaptive Lasso is
obtained as follows. Suppose that d is a root-n-consistent estimator for & , in which

case we can use 0MLE. Then by picking a 5 > 0 it is possible to define adaptive
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weights as w, = 1/|Rg0M“E[7 (Zou, 2006). Thus, we have that wg_, = 1/|07)E[7,
Wo_1 = 1/|0E and wo = 1/|933F|7. Based on simulation studies, we found
that 4 = 1 works well in most situations, however a sensitivity analysis trying
different values for this parameter could be carried out. Note that when using
Adaptive Lasso different amounts of shrinkage for each correlation are used and thus
cach coefficient is weighted differently. The derivation of expressions (3.2)-(3.4) can
be found in Appendix B.1.1.

The main idea behind all penalties is similar: they shrink the correlation param-
eters towards zero as Ay« increases. Simplified examples for the shapes of the three
penalty functions are shown in Figure 3.1. As it can be seen from Figure 3.1, Lasso
penalizes more than Ridge for instance. Using all penalty definitions and assessing

the sensitivity of results to the different approaches is generally advisable.

Penalties
o
—
w —
@ —
>
T
C
[)]
o
q p—
N —
e I I I I I
-4 -2 0 2 4
312

Figure 3.1: Shape of penalty functions for Ridge (—), Lasso (——) and Adaptive
Lasso (——) for Ay« = 3.
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3.2.1 Computational aspects

As pointed out by Ulbricht (2010), a penalty function should satisfy the following

properties:

(P.1) Py, i RY — R, Py .(0) =0,

(P.2) P,. is continuous and strictly monotone in R, 6,

(P.3) Py,. is continuously differentiable, VR,6 # 0, such that 0P,,./0R,6 > 0.

The Ridge penalty is a quadratic function and satisfies (P.1)-(P.3). By contrast, the
Lasso and Adaptive Lasso penalties are singular at d = 0 (and thus not differentiable
at this point) and non-concave with respect to 8. This can also be seen in Figure
3.1, where the curves of Lasso and Adaptive Lasso create a sharp point at the origin.
In these cases, it would be unfeasible to maximize the penalized likelihood function
using the approach described in Section 2.3.2. We therefore elect to approximate
these two non-differentiable penalties by differentiable ones. Such approximations
are available in the literature. For instance, Fan & Li (2001) approximated quadrati-
cally the non-convex SCAD penalty, while Ulbricht (2010) applied this idea to Lasso
penalties. Rippe et al. (2012) approximated quadratically the Lo-type penalty by
employing a weighted Ridge penalty. In this work, we employ the LQA approach.

Approximations of non-differentiable norms

The non-differentiability of L;-type penalties such as Lasso and Adaptive Lasso can
be avoided by approximating a norm at the critical point | R,éd]|; = 0. Let [|R 6] =
|&111- As in Koch (1996), norm ||&,]/; in a penalty function can be approximated by
(EqT £+ E) Y 2, where ¢ is a small positive real number which controls how close the
approximation and the exact function are; Oelker & Tutz (2013) argue that ¢ ~ 1078
works well in most cases. Similarly as in Oelker & Tutz (2013), we combine this
approximation with a trick by Fan & Li (2001) as well as an idea introduced by
Ulbricht (2010).
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We assume that an approximation to each norm |[|§,||, exists such that

HﬁCIHl = ]Cl(£Q7C) = éLHéICl(gq,é),

where C represents a set of possible tuning parameters, C is the set of boundary values
for [|&,]|, and K;(&,.C) should be at least twice differentiable VI > 1. Additionally,
for all &, for which the derivative 0 ||&,]|, /0, is defined, we assume that

O|&ll, — . >
agq - é_lirépl(gfbc)a

where Dy(&,,C) = 0K;(&,,C)/0€, VI. We further assume that D;(0,C) = 0. As
mentioned above, the L; norm is approximated by K1(&,,C) = (€] &, + ©)"/?. The
first derivative D;(&,,C) = (EJE(] + E)_l/ 2 &, is a continuous approximation for the
first-order derivative of the L; norm. In general, K;(&,,C) deviates only slightly from
K1(¢&,,C). That is, for & = 0 the deviation is y/¢, while for any other value of &,
the deviation is < v/¢. Figure 3.2 shows approximation K;(&,, C) and its derivative
Dy (&,,C). Since the pictorial representation of vectorial norms requires plotting in
more than two dimensions, we keep things simple and use a scalar argument in the
Ly norm which is approximated in the same way as a vector, that is ||€||; = [§| =
()2 ~ (&2 + E)I/ ? where £ can be any correlation parameter in 8. For illustrative
purposes we used ¢ = 0.1.

Penalty Pfﬁ* (8), for G = {L, AL}, can be locally approximated by a quadratic

function as follows. Suppose that & is an initial value close to 8. Then we approxi-

mate ’PAQM (8) by a Taylor expansion of order 1 at B , l.e.,

As proved in Appendix B.1.2, 77)%9* (8) can be approximated as

1 - Di(R,0 1
Pgﬁ* () ~ v v||Rq5||1P>%9* (8) - MR(]R; 5~ §6TAQ 5,

: (R,5) N
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L; norm Derivative of the L; norm
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Figure 3.2: Graphical representation for the approximation of the L; norm (left
panel) and its derivatives (right panel) with respect to £,. The blue lines refer to
the exact norms and derivatives based on sub-derivatives at §, = 0, while the red
lines correspond to the related approximations.

where V) 5, PY,.(8) = OPF, (6)/0|R,0]11, Di(Ry0) = IR0l /0R,8, AT, has

the following form

0oxq Ogxs

g
AA,&* g
05 A3,

and Agﬁ* is a 3 x 3 diagonal matrix that corresponds to the correlation parameters
that have to be penalized, VG. The expressions for the penalty matrices of Lasso

and Adaptive Lasso are

VIG+e VIB+e g +e
W G VA Uil 1/|19§§“EW> a7

. 1 1 1
Aﬁﬂ* - >\19* dlag (Opl X P1 0P2><P27 OP3><P37 ) ) (36)

VOZ+e Jo24e JUP+e

AL .
A)\ﬂ* = )\’19* dla’g (Opl X P1s 0P2 X Py OP3 X P35

Note that Afw needs to be updated at each iteration of the algorithm as it depends

on the estimated coefficients. In the Ridge penalty case, we simply have A?ﬂ* =

Ao+ diag (0p,xp,, 0p,xp,, 0pyx Py, 1, 1,1). The derivations of (3.6) and (3.7) are given
in Appendix B.1.3.
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It follows that the penalized log-likelihood, score and Hessian matrix can be

expressed as
1
((0) = £(8) = 50'T58, g,(8) = g(d) —Txd, H,(8) = H(8) — T,

where T', = Sy + Aig* or T's = Sx+ Aig* and A includes both A and Ag-. Problem
(3.1) can now be solved using the approach described in Section 2.3 where matrix

Sa is replaced by T'x. If Py,. (d) = 0 then T’ clearly reduces to Si.

3.2.2 Simulation study II

The aim of this simulation study is to assess the performance of the correlation-
based penalty approach described above. We will use DGP2 from Section 2.3.3.
Finally, the effectiveness of the method in estimating smooth function components

will be explored.

DGP2

Recall from Simulation Study I in Section 2.3.3 that the correlation parameter esti-
mates were not deemed satisfactory at n = 1000. Here, we re-examine this case by

employing trivariate probit models with penalized correlations, using

outR <- SemiParTRIV(f.1l, data

dat, penCor = "ridge" )

outlL <- SemiParTRIV(f.l, data

dat, penCor = "lasso" )

outAL <- SemiParTRIV(f.1l, data

dat, w.alasso = w.alasso,

penCor = "alasso")

where £.1 and data are defined in Section 2.3.3. Argument penCor specifies the
type of penalty used for the correlation parameters (ridge, lasso or alasso) and

w.alasso denotes a 3 x 1 vector including the adaptive weights chosen as
w.alasso = c(thetal2.ML, thetal3.ML, theta23.ML)

with thetal2.ML, thetal3.ML and theta23.ML corresponding to %LE, 1911\%LE and

ﬁ%LE. Table 3.1 shows substantial gains in accuracy and precision when penalizing
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the correlation parameters. Compared to the unpenalized approach, the bias is
negligible and the RMSE small. In this case, using lasso produced better overall
performances as compared to alasso and ridge, although such differences may be

judged as negligible.

DGP2, n=1000
Estimator Correlation-based penalty Bias (%) RMSE
Unpenalized 11.36  0.0935
1912 Ridge 0.10 0.0903
Lasso 0.02 0.0835
Adaptive Lasso -0.31  0.0862
Unpenalized 13.53 0.1204
s Ridge 0.13 0.1158
Lasso 0.07 0.1092
Adaptive Lasso 0.03 0.1142
Unpenalized -2.02  0.0567
Jos Ridge -0.03  0.0551
Lasso -0.02  0.0475
Adaptive Lasso 0.01 0.0428

Table 3.1: Percentage biases and root mean squared errors (RMSEs) of the correla-
tion estimates obtained applying SemiParTRIV() /gjrm() to 250 datasets simulated
according to DGP2 when the unpenalized approach and Ridge, Lasso and Adaptive
Lasso correlation-based penalties are employed.

The good performance of the proposed approach can be justified visually by
Figure 3.3 which shows that, in contrast to the unpenalized approach, penalizing the
correlation parameters leads to a more pronounced optimum, hence less parameter

variability and a reduced tendency to multiple minima.

DGP3

To assess the ability of SemiParTRIV() /gjrm() in estimating smooth function com-
ponents, we modified slightly DGP2 by introducing non-linear effects for the con-
tinuous variable in the model. Estimation was achieved using the same syntax as

that shown in the previous section but with equations specified as
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Penalized Log-Likelihood
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Figure 3.3: Profile penalized log-likelihood function of the trivariate probit model
for correlation parameter 93,, for 10 data sets of sample size 1000 generated using
DGP2 settings. The true value is represented by the vertical grey line and the
penalty used is Ridge.

eqnl ~ vl + s(zl); eqn2 ~ vl + s(zl); eqn3 ~ vl + s(zl)

where s(z1) defines a smooth function of the continuous covariate z1. A detailed
description of DGP3 as well as the corresponding R code can be found in Appendix
B.2.1. In this case, the coefficients of the spline bases and the correlations were
penalized. The Lasso-type correlation-based penalty was employed (using Ridge
and Adaptive Lasso produced virtually identical results). The estimates for the
correlations and parametric part of the model were very similar to those of the
previous study.

The estimated curves recover the true functions reasonably well (results are re-
ported in Figure 3.4). For n = 1000, the estimates are rather variable and there are

cases where the estimated functions are either wigglier or smoother than they should
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be. This does not come as a surprise recalling that we are dealing with simultaneous

binary models and as the sample size grows large the results improve considerably.

n =1000
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Figure 3.4: Estimated smooth functions for si(z1), s2(21) and s3(z1) obtained ap-
plying SemiParTRIV() /gjrm() on 250 simulated datasets. The first row shows the
estimated curves obtained from samples of 1000 observations, whereas those in the
second row correspond to samples of 10000 observations. The black lines represent
the estimated smooth functions over all replicates and the red solid lines show the
true functions.

By using the result given in Section 2.3.2, that is d~N (5, —7:L;1>, we quantify
the uncertainty in the estimated smooth curves §1(z1), $2(z1) and S3(21) by con-
structing CIs in order to obtain coverage probabilities for the non-linear terms in
the model. Table 3.2 shows coverage probability results for the estimated curves at
sample size equal to 1000 and 10000, when employing the Lasso-type penalty (sim-
ilar results were obtained when using the Ridge and the Adaptive Lasso penalty).
The coverage probabilities appear to be fairly close to their nominal values for all

smooth functions, even at small sample sizes.
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Coverage Probabilities (%)

n = 1000 n = 10000
51(21) 97.01 95.67
35(21) 96.65 97.97

Table 3.2: Coverage probability results for $1(z1), $2(z1) and $3(z1) at two sample
sizes, for the nominal level 95% when the Lasso-type penalty is employed.

The proposed approach generally proved effective. However, one should bear in
mind that if the observed proportions of some trivariate binary events are very low

then estimation may become challenging if not infeasible in some cases.

3.3 Theoretical aspects of the PMLE

In the following we assume that $,,,,, (2mu,.i) s approximated by a spline basis
with fixed high dimension, ¥Ym, v,,,7. Although this may be regarded as a strong
assumption, in practice estimation is achieved with finite bases which, if rich enough,
will allow one to assume that, compared to estimation variability, the modelling
bias resulting from this approximation may be ignored (Kauermann, 2005). We also
assume that both Sy and A, o« (superscripts G and R have been suppressed to avoid

clutter) are employed and denote the MLE as 6ME and the PMLE as 4.

Theorem 3.3.1. Under certain regularity conditions, it can be proved that

JAEME 5 Dy N <0, {%z(&o)}_l> ,

where L(dy) = —EH () and dy denotes the true value vector of 8.

Proof. See Appendix B.3.1. O]

Note that although OMLE ig unbiased, when Z () is near singular then OMLE as a
large covariance matrix.

In what follows we consider the following assumptions (Cox & Barndorff-Nielsen,

1994, Ch. 3, pp. 82-83): (i) g(dy) = /ng(dy) = Op(n'/?); (ii) EH(8y) = —Z(dy) =
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—nZ;(8y) = O(n); (iii) H(6) — EH () = Op(n'/?); (iv) A = o(n'/?), where
g(d0) = Op(1), Z;(dy) = O(1), g(dp) is a normalized score function defined as
g(d0) = 1/ng(do) — Eg(do) = 1/ng(do) for Eg(dy) ~ 0, and Z;(do) and H;(do)
denote the expected and the observed Fisher information for a single observation,
respectively, for Z(8y) = nZ;(dy) and H(dy) = nH;(dy). Assumption (iii) results
by decomposing H(dp) in its mean and stochastic part, that is H(dg) = EH () + €
where we assume that € = Op(n'/?) (Kauermann, 2005). Assumptions (i) - (iii) are
the classical conditions for the consistency of the MLE, while assumption (iv) ensures

that the smoothing parameter increases with the sample size; this is equivalent to

I‘;\ = 0(711/2).

Theorem 3.3.2. Under certain reqularity conditions, the PMLE has the following

asymptotic distribution

D

Vi {Z(80) + T} |6 — 8o+ {Z(d0) + T5} ' Txdo| — N (0,nZ(d)),
and thus the asymptotic covariance of § is equal to {T(8y) + T3} " Z(80) {T () + 5} "
while its asymptotic bias is — {L(8o) + 5} " T5do.
Proof. See Appendix B.3.2. ]

Under assumptions (i)-(iv) we have that & — 8, = Op(n~'/?), while assumptions
(ii) and (iv) imply that Cov(d) = O(n~') and Bias(d) = o(n~'/2). The derivation
of these results can be found in Appendix B.3.3. Note that when Z(dy) is near
singular then Cov(6ME) — 0o and Cov(d) — 0. This verifies that asymptotically

the PMLE has smaller variance than the MLE and thus may perform better.

Theorem 3.3.3. If max|T'5dy| = o(n'/?) and max|T'y| = o(n'/?), then

NG (3 _ 50) ~N (o, {%z(&o)}_l> .

Proof. See Appendix B.3.4. O
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Theorem 3.3.4. Suppose that X € [0, 00) is fived. Then the PMLE § that minimizes
—0,(8) is consistent, that is lim,, . P([|6 — &||? > &) = 0, V& > 0.

Proof. See Appendix B.3.5. O]

The above theorems have mainly been adapted from Fan & Li (2001), Li &
Sudjianto (2005) and Oelker et al. (2014).

Theorem 3.3.3 shows that as the sample size grows large, under certain condi-
tions, the asymptotic distribution of the PMLE coincides with that of MLE. This is
a desirable property as it is well-known that the MLE is the most efficient estimator.
The above theorem also suggests that PMLE is essentially needed when the sample
size is small. This is in line with the results obtained in the simulation studies in

Sections 2.3.3 and 3.2.2.

3.4 Analysis of North Carolina data

Birth weight and gestational age are strongly related with infant morbidity and
mortality (Paneth, 1995; Butler et al., 2007). Infant’s low birth weight (LBW) is
commonly defined as weight less than 2500 grams, whereas preterm birth (PTB) is
typically defined as number of gestation weeks less than 37. Kiely (1998) and Martin
et al. (1999) argued that multiple births (MB) such as twins and triplets are strongly
related with PTB and LBW. These variables are typically influenced by geographic,
demographic and behavioural characteristics (Blondel et al., 2002; Neelon et al.,
2014; Miranda et al., 2009; South et al., 2012; Meng, 2010, e.g.,). This section
illustrates the proposed modelling framework using 2007-2008 birth data from the
North Carolina Center for Health Statistics (http://www.schs.state.nc.us/). In
particular, the goal is to analyse jointly LBW, PTB and MB conditional on flexible

functions of covariates and to account for residual dependence between the responses.

3.4.1 Model specifications and results

The data set consists of 61,426 female newborns (similar results were obtained for

male infants) which provides details on infant and maternal health, and parental
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characteristics. The choice of variables included in the model was mainly driven by
previous work on the subject (e.g., Miranda et al., 2009; South et al., 2012; Neelon
et al., 2014). The responses are plurality (mb), a binary variable that takes value 1 for
singleton birth and 0 for twins, triplets, quadruplets and quintuplets, infant’s birth
weight (1bw), an indicator variable with value 1 if infant’s birth weight is < 2500
and 0 otherwise, and preemie (ptb), a dummy variable that takes value 1 if the
infant was born before completing the 37" week of gestation and 0 otherwise. The
covariates are maternal race categorised as non-white and white (nwhite), smoking
status with 1 indicating a mother reported smoking during pregnancy (smoker),
weight gained by mother during pregnancy in pounds (gained), age of mother in
years (mage) and the county in which the birth occurred (county).
We employed STATA’s function mvprobit () and the proposed SemiParTRIV() /gjrm().

The model equations are

mb; = [11 + fionwhite; + [fizsmoker; + gained, + mage, + county, + 1,
1bw; = [a1 + fPoonwhite; + [azsmoker; + gained, + mage, + county, + £,
ptb; = [(31 + Psonwhite; + [33smoker; + gained, + mage,; + county, + €3;.

In this case, parameter estimation of the proposed approach was carried out without
the need of imposing a penalty on the correlation coefficients since no convergence
issue signaling a possible issue with the identifiability of the correlations was en-
countered. In fact, using correlation-based penalties did not lead to different re-
sults. The regression coefficient estimates for the two competing methods were very
similar. However, as shown in Table 3.3, the estimated correlations are different.
Moreover, the proposed approach was faster and produced narrower intervals as
compared to those of STATA’s routine. Figure 3.5 depicts the joint probabilities (av-
eraged by county) that birth is multiple, infant’s birth weight is normal and the baby
is born full term when using the two approaches. The probabilities obtained using
mvprobit () are overall higher than those obtained using SemiParTRIV() /gjrm().

This can be attributed to the different correlation estimates of the two methods. Our
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simulations showed that STATA’s routine produces biased correlation coefficients,

hence we would be reluctant to trust such results.

SemiParTRIV() mvprobit ()
Y12 (95% CI) —0.7617 (—0.7612, —-0.7622) —0.5191 (—0.5027, —0.5351)
13 (95% CI) —0.6397 (—0.6390, —0.6402) —0.4277 (—0.4107, —0.4443)
Vs (95% CI) 0.7853 ( 0.7850, 0.7856)  0.6796 ( 0.6692, 0.6897)
Execution Time 296.26 349.41

Table 3.3: Correlation parameter estimates obtained using SemiParTRIV() /gjrm()
and mvprobit (). Corresponding 95% intervals (CIs) are reported in parentheses.
The execution time (in seconds) for each method is reported at the bottom of the
table.

SemiParTRIV mvprobit

15
15

1.0
1.0

0.5
0.5

Figure 3.5: Joint probabilities (in %) that mb is multiple, lbw is > 2500
grams and ptb is > 37 weeks by county in North Carolina, obtained using
SemiParTRIV() /gjrm() and mvprobit().

Our approach allows for flexible functional dependence of the responses on the

covariates. We therefore re-specify the model using the following equations

mb; = [1 + Sionwhite; + Sizsmoker; + s11(gained;) + s12(mage;) +
S1spatial(COUNtY;) + €14,

lbw; = [ + Ponwhite; + fPozsmoker; + So1(gained,) + sqo(mage;) +
Sospatia1(COUNtY,) + €9y,

ptb] = (31 + Psonwhite; + f33smoker; + s31(gained,) + s3a(mage;) +

33spatia1 (Countyz‘) + E34

where s,,1 and S,,2, Ym = 1,2, 3, are smooth functions of gained; and mage; rep-
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resented using penalized thin plate regression splines with twenty bases and second
order penalties, and spspatia1, for all m, models spatial regional effects using a
Markov random field approach. Below we report and discuss some of the model
results.

Predicted probability that birth is singleton,
infant’s birth weight is low and baby born prematurely

o

am o

Joint Probabilities

White Non-white
Race

Figure 3.6: Joint prediction for singleton birth, infant’s birth weight < 2500 grams
and baby born before completing the 37 gestational week, stratified by race, using
the semi-parametric trivariate probit model.

Figure 3.6 presents a box plot for the predicted probability of singleton birth,
birth weight < 2500 grams and baby born before 37 weeks, stratified by race. It
shows that the predicted probability of joint occurrence of babies born to non-
white mothers is roughly twice than that of babies of white mothers. An example
of estimated regression effects is shown in Figure 3.7 for the 1bw equation. This
suggests that the probability of low birth weight decreases with weight gained by
the mother during pregnancy (with a pick at around 40 pounds) and then increases
(although with quite some uncertainty). The effect of mother’s age on the probability
of lower infant’s birth weight appears to be almost steady up to 30 years with a
dramatic increase for women older than 40 years. Note that the estimated smooths
are centered around zero because of centering identifiability constraints (see Section
2.2.2), however this does not affect interpretation. The point-wise Cls do not contain

the zero line in most of the ranges of the gained and mage values. This suggests
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that these two variables are important factors in determining 1bw. The spatial
map shows the effects of the county variable on the outcome, where darker colours
correspond to decreased probability of low birth weight. P-values for testing smooth
components for equality to zero were obtained by adapting the results discussed in
Wood (2013a) and Wood (2013b) to the current context. These showed that the

covariate effects are significant at least at the 5% level.
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Figure 3.7: Smooth effects of gained and mage on 1bw and associated 95% point-
wise confidence intervals. The jittered rug plot, at the bottom of each graph, shows
the covariate values. The numbers in brackets in the y-axis captions specify the
edf of the smooth curve with edf = 1 corresponding to a straight line estimate; the
higher the value the more complex the estimated curve. The map on the right hand
side shows the magnitude of the estimates for the regional variable in each of the
100 counties in North Carolina.

3.5 Concluding remarks

In this chapter we have extended the penalized likelihood method introduced in
Chapter 2 by penalizing the model’s correlation coefficients via differentiable and
approximations of non-differentiable penalties. This addresses the difficulty in es-
timating accurately the correlation parameters at small or modest sample sizes, an
issue that has been neglected in the literature and that is likely to have a detri-
mental impact on the empirical performance of simultaneous binary models with
more than two responses. Some asymptotic properties of the proposed estima-

tor have also been discussed. The proposed model can be easily fitted using the
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SemiParTRIV() /gjrm() function in the R package GJRM. The proposed method has
been illustrated through simulations as well as a case study whose aim was to esti-
mate a simultaneous model for three binary outcomes of newborn infants in North
Carolina. Our results showed that joint outcome probabilities are affected by the
way the model’s parameters are estimated, especially the correlation coefficients.
The next chapter will look into the feasibility of modelling unobserved confound-
ing through the trivariate probit model, where the aim is to correct for the presence

of the endogeneity issue and non-random sample selection.



Chapter 4

Modelling unobserved
confounding through additive

trivariate probit models

This chapter discusses several models which can be obtained as byproduct of the
framework developed in the previous chapters. These models deal with a problem
which arises in observational studies when confounders (i.e., explanatory variables
that are associated with treatment, or selection, and response) are unobserved (Heck-
man, 1978, 1979; Maddala, 1983; Van de Ven & Van Praag, 1981; Greene, 2003).
This issue is known in the econometric literature as endogeneity and we will look
at two cases: (I) endogeneity of a treatment variable and (II) endogenus or non-
random sample selection of individuals into (or out) a sample. Several alternative
approaches (not discussed here) are available in the literature to deal with (I) and
(IT) and the reader is referred to Clarke & Windmeijer (2012), Marra et al. (2017)

and references therein for more details.

4.1 Introduction

In what follows we define problems (I) and (II), present some practical examples

and review some existing literature on these issues.

51
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(I) Endogeneity of Treatment In many statistical studies it is often of interest
to examine the effect of a predictor, often referred to as treatment, on a particular
response variable within a regression framework. To obtain an unbiased or consistent
estimate of the treatment-response relationship, all confounders should be included
in the model. Confounders can be observed and unobserved. Observed confounders
can be measured and hence accounted for in the analysis. Such variables may be
gender, race and educational background, for instance. However, there might be
confounders such as motivation, ability and intelligence that cannot be observed
and/or are difficulty to quantify. If we could include all confounders (observed and
unobserved) in the model then standard estimation techniques, such as OLS regres-
sion, could be employed. If all relevant regressors can not be included in the model
then confounding bias is expected (Cameron & Trivedi, 2005, Chapter 1.2.5, pp. 8).
This problem is typically referred to as endogeneity of the treatment. This type of
bias usually arises in observational studies, but even randomised controlled trials
can be affected by this. For instance, in an observational study the treatment that
each individual receives can not be randomly allocated (instead individuals typi-
cally assign themselves into a particular group) while randomised controlled trials
may be affected by partial non-compliance. In both cases, observed and unobserved
confounders need to be accounted for. In fact, conventional statistical methods
controlling only for an observed source of confounding are likely to be of little use
(Clarke & Windmeijer, 2012).

A wide range of applications discussing and addressing this issue are available
in the literature. For example, Radice et al. (2013) studied the effect of obesity
on the probability of employment in Italy accounting for the potential presence of
observed and unobserved covariates (e.g., ability and motivation). Buscha & Conte
(2014) examined the relationship between educational attainment in compulsory
schooling and truancy. Here, truancy was considered to be endogenous because
of the presence of unobserved covariates such as motivation and satisfaction that
are likely to affect both truancy and educational outcomes. Colchero & Sosa-Rubi

(2012) estimated the relationship between houschold income and lifestyle choices
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with women’s body mass index (BMI) controlling for the potential endogeneity of
income arising from unobserved variables (e.g., productivity and self-control) that
were deemed to be related with both income and BMI. Since depression may be
both an antecedent and a consequence of smoking, Lie & Gardner (2016) analysed
the reciprocal relationship between smoking and depression in Indonesia using a
simultaneous equation estimation approach where both smoking and depression were

treated as endogenous.

(IT) Non-random Sample Selection When analysing data, it is typically as-
sumed that a random sample from some underlying population is available and that
if an outcome of interest is missing for some individuals it is common practice to
assume that data are missing at random. That is, the probability that an outcome is
missing depends only on observed variables and not unobserved ones (e.g., Heitjan &
Basu, 1996). However, this is not always the case as there may be some individuals
which are systematically less (or more) likely to be part of the sample. In this case
a proportion of the whole population is not represented in the survey; the sample
will include only the responders, hence the dependent variable of interest will be
observed only for a restricted sample. If non-responders refuse to participate, for
instance, in a survey because of some unobserved confounders (i.e., variables that
are associated with both decision to participate and outcome), then non-random
selection arises. If the responding and non-responding sub-samples share similar
features then sample selection is not an issue. Thus, standard estimation methods
can be employed. On the other hand, if the two sub-samples differ in some unob-
served characteristics then selection bias will arise. Failure to account for sample
selection may lead to inconsistent estimation results.

Sample selection bias can be viewed as a special case of endogeneity bias which
occurs when the selection process generates endogeneity in the selected sub-sample.
Practically, sample selection bias may manifest in two ways. First, the individuals
or data units being investigated may have selected themselves out of the sample;

for example individuals may feel that they do not want to participate in a survey.
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Second, data analysts may have made sample selection decisions; that is analysts
may have imposed some requirements for the entry of an individual in a study. In
both cases there are two groups of individuals: those who participate and those who
do not participate in the study. Non-random sample selection arises if the sample of
individuals that participate differ in some characteristics from the sample consisting
of non-participants.

A classic sample selection example is a model for the wages and employment
of women, studied in the seminal works by Gronau (1973) and Heckman (1976),
where hours worked are observed only for women who decide to participate in the
labor force. Since then, many researchers have been focusing on modelling non-
random samples. Sharma et al. (2013) examine the waiting time-socioeconomic
status relationship within publicly-funded systems accounting for selection bias as
richer patients are more likely to opt for private care when they expect high waiting
times in public hospitals, thus leaving poor patients in public hospitals waiting
longer. Marra et al. (2017) use sample selection models to correct for HIV prevalence
estimates in Sub-Saharan African countries, where the data are affected by non-

participation since some individuals choose not to participate in HIV testing.

The most common method to model data that are affected by unobserved con-
founders is the two-stage approach, which removes the bias by including an ad-
ditional explanatory variable in the model representing an omitted variable (e.g.
Wooldridge, 2002; Beck et al., 2003; Leigh & Schembr, 2004; Lindenl & Adams,
2006; Heckman, 1979). Many researchers, however, have argued that simultaneous
likelihood estimation methods may be superior to conventional two-stage proce-
dures in some cases (e.g., Wooldridge, 2002; Bhattacharya et al., 2006; Freedman
& Sekhon, 2010). MLE methods address the issue of endogeneity of the treatment
by setting up a bivariate recursive system of equations, for example similar to the
model developed in Marra & Radice (2011). Recent approaches for tackling selec-
tion bias include the works by Chib et al. (2009) and Wiesenfarth & Kneib (2010),

who introduce Bayesian frameworks allowing for flexible estimation of the covariate
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effects, with a frequentist counterpart proposed by Marra et al. (2013). Compu-
tational routines for estimation of recursive and selection models are available in
STATA’s routines biprobit() (using MLE methods) and heckprobit() (based on
two-stage methods) respectively, whereas SemiParBIVProbit() (Marra & Radice,
2017) employs penalized MLE to fit models that allow for flexible estimation of
the covariate effects and several shapes for the dependence structure of the model’s
equations.

If dealing separately with endogeneity and non-random sample selection then the
above methods are adequate for accounting for these problems. In practice, however,
there may be situations in which the two issues arise simultaneously. For example,
the employment of a worker may depend on both the worker’s decision to work and
employment’s decision to hire (e.g., Mohanty, 2001). Moreover, inferior endowments
may cause problematic pregnancies (e.g., lower birth-weight) and therefore more
prenatal care visits may be required; women’s decision may positively affect birth-
weight and prenatal care use if women who practice healthier behaviour during
pregnancy are also more likely to give birth (e.g., Rous et al., 2004).

In this chapter, we develop three models: the endogenous trivariate probit model
controlling for two sources of endogeneity, the double sample selection model where
there are two layers of selection, and the endogenous-sample selection model con-
trolling for both endogeneity of the treatment and non-random sample selection.
Estimation of the above models has been discussed in the literature. Keay (2016)
introduced a partial copula approach for models with multiple discrete endogenous
variables, and models dealing with both endogeneity of the treatment and sam-
ple selection bias. Rous et al. (2004) employ a full-information MLE technique,
the discrete factor method, controlling for potential biases arising from non-random
sample selection and endogeneity of the treatment. Li (2011) extends the estimation
technique of Chib et al. (2009) (which involves one selection mechanism) and pro-
poses a Markov chain Monte Carlo estimation algorithm accounting for two layers of
selection, whereas Zhang et al. (2015) develop a Bayesian sampling algorithm for es-

timating trivariate probit-ordered models with double rules of sample selection. The
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proposed framework allows for flexible predictors’ specifications through the inclu-
sion of non-parametric and spatial covariate effects, making the models more flexible
than the aforementioned approaches. The techniques implemented in this chapter
are based on the framework described in the previous chapter. All the necessary
computational routines are incorporated in the R function SemiParTRIV() /gjrm().

The rest of the chapter is organised as follows. Sections 4.2, 4.3 and 4.4 discuss
the endogenous trivariate probit model, the double sample selection model and the
endogenous-sample selection model, respectively, and provide details on estimation
and inference. Section 4.5 studies the performance of the double sample selection
model using simulated data, whereas the endogenous trivariate probit model is ap-
plied to a case study whose aim is to jointly estimate the effect of two chronic
diseases on labour force participation accounting for the potential endogeneity of

the two diseases. The final section provides a discussion.

4.2 The endogenous trivariate probit model

4.2.1 Model specification

In economics, the endogeneity issue is commonly structured in terms of a regres-
sion model from which important regressors have been omitted and hence become
a part of the model’s error terms. Here we are interested in studying the effect of
two endogenous treatments on the outcome variable accounting for unobserved con-
founding and flexible covariate effects. This extends the model proposed by Marra
& Radice (2011) which can only deal with one endogenous variable at a time. The
model structure builds on a first reduced form or treatment equation for the po-
tentially endogenous dummy variable, a second treatment equation that describes
the second potential endogenous dummy variable, and the outcome equation which

determines the response variable. The model can be expressed in terms of latent
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respomnses as

v, = vim + Ljan + ey, (4.1)
ysi = Uiy + Vorye + Lyon + e, (4.2)

Vs, = Vayii + Vsye + Vng)’?, + L;a:’, + €34,

where latent variables yj; and y3; denote the two endogenous treatments, 3, char-
acterizes the outcome variable, 11 is the effect of the first treatment on the second
treatment on the scale of the linear predictor, and v, and 13 denote the effect of
the first and second treatments, respectively, on the outcome. The components in
v, Am + L.} .o, are the same for all m, and all exogenous and the three error terms
are assumed to follow a standard trivariate normal distribution with zero mean and
variance-covariance matrix equal to X, where 3 is defined in Section 2.2; v, # 0,
Vz, k, suggests that unobserved confounding is present and thus joint estimation of
the three equations is required. Since the model includes only unidirectional effects
(the treatment variables affect the outcome but the outcome does not affect the
treatments), we refer to this system as ‘recursive model’. The model is indeed a
special case of the simultaneous equation system described in the previous chapter,
while the recursive structure follows from the condition of logical consistency which
states that only two observed endogenous variables are allowed on the right-hand
side of the model. This is because the probabilities for the different combinations of

the three binary variables have to sum to one (e.g., Maddala, 1983, pp. 118).

4.2.2 Identification of treatment effects

Although the recursive trivariate probit model is in principle capable at delivering
consistent estimates of the treatment effects, their identification relies on functional
form assumptions. This has been discussed extensively in the literature. Heckman
(1978) states that in simultaneous equation models with endogenous dummy vari-
ables, only the full rank condition of the regressor matrix is needed for identification

of the model parameters. On the other hand Maddala (1983, pp. 122) reports that
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the parameters of the outcome equation in an endogenous binary probit model are
not identified in the absence of an exclusion restriction (ER, an extra covariate in the
model that is associated with the treatment, is not directly related to the outcome,
and is independent of the unobserved confounders), while Wilde (2000) argues that
Maddala’s argument is only valid when the linear predictors of the two equations
are both constants and demonstrates that as long as there exists at least one vary-
ing exogenous regressor in each equation the identification problem does not arise.
As Wilde (2000) clearly states, however, if the model assumptions are met then
identification is theoretically achieved (even if ERs are not included in the model)
and the treatment effects will be consistently estimated. In practice, basing iden-
tification only on the assumed model’s functional form may be problematic as the
model is likely to be misspesified to some degree. Therefore, empirical identification
is better achieved in the presence of ERs (e.g., Little, 1985; Sajaia, 2008; Buscha &
Conte, 2014). This has also been confirmed by the recent works of Li et al. (2016)
and Marra et al. (2017), where it has been shown that in the absence of valid ERs

parameter estimates may be biased when the model is misspecified.

4.2.3 Parameter estimation

Since the error terms of the three equations are assumed to be correlated, simulta-
neous estimation is desirable. Let the linear predictor in equation (4.1) be defined
as ny; = xlTiﬁl, where xi; includes VlTi and Ly;, while B; contains ~; and a;. The
quantities for the predictor in (4.2) are the same as those in (4.1) with the exception
that x,, and By also include y;; and parameter 1);, respectively. Similarly, x;j;, and
B3 also include yy; and yy;, and ¥y and 15 respectively. The joint distribution of the
three responses conditional on xy;, X9; and Xs;, Pezyesi = P(Y1; = €1, Y2i = €2, Y3 =

€3|X1;, X2;, X3;), has therefore eight elements: p111i, p110i, Pro14, Po11i, Poooi, Pooti, Po10s
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and p1go; and thus the log-likelihood function can be expressed as

t = Z {y1:y2iy3ip111i + Y1:y2i (1 — ysi)prioi + yui(1 — yoi)yaiproni+
i=1

(1 — y13)y2iyziporni + (1 — y1i) (1 — y2i) (1 — yss)Poooi+
(1 — y1:) (1 — i) ysipoori + (1 — y13)y2i (1 — ysi)poroi+

Y1i(1 — y2:) (1 — ysi)P100i } »

which is essentially the log-likelihood function of the classic trivariate probit model
described in Section 2.3. Consequently, its respective gradient and Hessian com-
ponents have the same expressions which means that parameter estimation of the
endogenous trivariate probit model is achieved using the PMLE method discussed
in Section 3.2.

In this context, function SemiParTRIV() /gjrm() can be used as follows

eqnl <- y1 " z1l + vl + v2 + v3
eqn2 <- y2 Tyl + zl + vl + v2
eqn3d <- y3 Tyl + y2 + z1 + vl
f.1 <- list(eqnl, eqn2, eqn3)

out <- SemiParTRIV(formula = f.1, data = dat)

where v2 and v3 denote the ERs.

4.2.4 Average treatment effect

In empirical applications the causal effect of a treatment variable, say y;;, on the
response probability P(ys; = 1|y, yoi, Va;, Lis;) is of primary interest. For given

values of yy;, v4; and Lj;, this can be calculated using the following expression

P(ysi|yr = 1,y2z'7V3T¢; L;z) — P(ysilyi: = 0, y2z',V;;7 L;-),
where P(ys; = 1|yu = 1,92, v3;, Lg;) = ‘I)(TI%M:D)7 P(ysi = 1lyu = 0,2, v3;, Lg;) =
@(nég”zo)), and ng-/”:él) denotes the linear predictor in the outcome equation eval-

7

uated at y; = ey, Ve; = {0,1}. Similarly, the impact of y;; on ys; is equal to
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P(y2i|y1s = 1, Vo, Lig;) — P(yas|y1i = 0, v, Lg,) and the effect of yo; on ys; equals to
P(ysi|y2 = 1, Y14, Vi, L) — P(y3i|y2i = 0,914, vy, La;). This is known as the causal
treatment effect (TE; e.g., Angrist et al., 1996) in the literature. It measures the
causal difference in outcomes between individuals that receive the treatment (y;; = 1
or yp; = 1) and individuals who do not receive it (y;; = 0 or yo; = 0). For each indi-
vidual only one of the two potential outcomes can be observed; the other outcome is
the counterfactual. To measure the average TE (ATE) in a specific sample, we use
1/n3"" | TE; where TE; denotes the TE of individual 7 (e.g., Abadie et al., 2004).

ClIs for ATE can be obtained by simulation from the posterior distribution
d~N (5, —’f-[;l> described in Section 3.2.2.

The ATE with corresponding CI can be computed using function AT() in GJRM.
For example, the effect of yo; on ys; (in %) with corresponding 95% CI can be

obtained as
AT(out, nm.end = "y2", eq = 3)

where nm.end denotes the endogenous variable and eq indicates the equation that

contains the endogenous variable.

4.3 The double sample selection model

4.3.1 Model specification

The target here is to fit a regression model when some observations for the outcome
variable are missing not at random. We consider three responses (yi;, y2:,Ysi) €
{0,1}, where y;; and yo; characterize whether or not an observation of the outcome
variable ys; is observed; unobserved values for the outcome are coded as 0. The
situation considered is shown in Figure 4.1. The second selection mechanism ; is
observed only if the individual passes the first selection mechanism (i.e., ;; = 1) and
the outcome ys; is observed only if the individual passes both stages (i.e., y1; = 1

and yy; = 1). To address the double sample selection bias problem we first write the
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model in terms of three latent variables as

v, = vim Lo +ey (4.3)
Vs = {Vare + Ly +eai} X g (4.4)
Yy = {V;’)’:a + L;;Oéa + 531‘} X Y1i X Yai, (4.5)

where yy; is a binary variable taking value 0 or 1, and yo; and ys3; are determined as

L if (v, >0 & p;=1)
Yo =940 if (y3, <0 & y1;=1),

— ity =0

and
ysi=4q 0 if  (y5, <0 & yu=1 & yoy =1)-
— lf yllZO or (yllzl & QQZ:O)

We assume that the selection equations (4.3) and (4.4) are linked with the outcome
equation (4.5) through unobservables and this link is formalized through a trivariate
normal distribution with zero mean and variance-covariance matrix equal to 3. The

same identification arguments discussed in Section 4.2.2 apply here as well.

4.3.2 Parameter estimation

Since the availability of the responses is determined according to yi; and ys;, it
follows that the data identify the following possible events: (i) individuals who do
not pass the first selection mechanism and thus ys; and ys; are not observed; (ii)
individuals who pass the first selection mechanism but do not pass the second one
and thus ys; is not observed; (iii) individuals who pass both selection mechanisms

and y3; = 0; and (iv) individuals who pass both selection mechanisms and y3; = 1.



62 4.3. The double sample selection model

The log-likelihood can therefore be expressed as

t = Z {(1 = 1) log(poi) + y1i (1 — y2i)log(pioi) + yriy2i(1 — yai) log(prioi)+

i=1
Y1iY2iysi log(piini) } (4.6)

where pg,, Peye, and pe ez, for €, € {0,1}, ¥Vm, are defined in Section 2.3. Since
(4.6) is structured differently from the function of the trivariate model discussed in
the previous chapter, it follows that its respective score and Hessian components
need to be modified accordingly. Analytical derivative information can be obtained
via expressions (2.9) and (2.10) and Propositions 2.3.2 and 2.3.3 in Section 2.3.1.
Nevertheless, the estimation framework proposed in the previous chapter will be

unaffected by such changes.

Figure 4.1: Diagram describing data affected by double sample selection rules. yy;
and y9; correspond to the first and second selection mechanisms, while ys; refers to
the outcome of interest.

The model can be fitted using SemiParTRIV() /gjrm(), that is
out <- SemiParTRIV(formula = f.1l, data = dat, Model = "TSS")

where TSS stands for the trivariate probit model with double sample selection, and

f.1 and dat have been previously defined.
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4.3.3 Estimating the overall mean

An important quantity to estimate in this context is the prevalence or overall mean
of the outcome. In surveys, prevalence estimates can be computed as a weighted

average of individual predicted values with survey weights w;:
o > it {sz(ysz = 1lvy;, L;—pri)}

Plys=1) = S G : (4.7)

where P(ys3; = 1|va;, L. y2;) = ®(f)3;). A corresponding CI can be derived using
posterior simulation using the distributional result given in Section 4.2.4. Expression

(4.7) with corresponding 95% CI can be computed using

prev(out)

4.3.4 Reducing the computational burden

In a double selection context, gains in speed can be obtained by reducing the compu-
tational time needed to evaluate ¢, g and H during the optimization process. This
can be achieved by using three main indexes in the algorithm: (a) the first index
indicates whether an individual passes the first selection mechanism; (b) the second
index represents whether an individual passes the second selection mechanism; and
(c) the third index relates only to the participants. By doing so, the log-likelihood
in (4.6) can be re-expressed as a sum over three disjoint subsets of a sample: one
for the observations who do not pass the first selection mechanism, one for the ob-
servations who pass the first selection mechanism but do not pass the second one,

and the other for the remaining observations. That is,
ni n2
t = Z {(1 = yu) log(poi) } + Z {y1:(1 — y2i) log(proi) } +
=1 i=ni1+1

Z {y1:92i (1 — y3:) log(p110i) + y1:Y2iysi log(pi11i) }
i=nos+1
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where n; denotes the number of observations that do not pass the first stage, ny —n;
indicates the number of observations who pass the first stage but not the second,
n — (ny + n2) is the number of observed outcomes and n the total number of obser-
vations. Therefore instead of computing each component in ¢ for each 7, we evaluate
each component according to the individual’s indexes. This is practically more effi-
cient and hence the computation of the log-likelihood and related quantities is less

expensive.

4.4 The endogenous-sample selection model

4.4.1 Model specification

Let (y1i, y2i, y3i) € {0, 1}, where y;; characterizes whether or not an observation for
the outcome variable ys; is observed and ys; is endogenous to y3;. The target is to
estimate a model controlling for the potential biases surrounding both non-random
sample selection and endogeneity of the treatment. The situations considered are
depicted in Figures 4.2 and 4.3. In the former, outcome y3; and treatment y; are
observed only if the individual passes the selection stage (i.e., y1; = 1), otherwise
both y9; and ys3; are labeled as missing. In the latter, outcome ys; is observed only
if the individual passes the selection stage while information on ys; is available even
if the individual does not pass the first stage. Note that the diagrams depict situa-
tions in which an endogenous-sample selection model can be employed; importantly,
the availability of yo; for non-participants depends on the study at hand. In both
cases, endogeneity of the treatment and non-random sample selection can be ad-
dressed using a trivariate model with partial observability. The model consists of
the selection equation that indicates whether the individual takes part in the study,
an equation controlling for the endogenous nature of the binary treatment and the

outcome equation for the binary outcome. Using the latent variable representation,
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the model for which ys; is not always observed can be expressed as

yi, = vim + Lo + ey
Yo = {VQTi’)’2 + Lyas + 522'} X Y1
Yz, = {¢y2z‘ +vyvs 4+ Lyas + €3i} X Ytis

where 1,; and ys3; are determined as

— it yy =0

VYm = 1,2, if data follow the process shown in Figure 4.2. The model for which ys;

is always observed can be expressed as

vi; = vim + Ljan + ey
Ysi = Varve + Lo + e
Yy = {?/fyzz' + Vs + L;-Oé?) + €3i} X Y14,
where
1 if  (y3;, >0 & (yi;, =1o0ry,; =0))
e 0 if (y5,<0 & (yu:loryuzo))’
and

1oif (y3,>0 & yi=1)
Yysi=4q 0 if  (y3, <0 & y=1),
—if yu=0
when data follow the process shown in Figure 4.3. Parameter v indicates the effect
of the treatment on the outcome. The errors are assumed to follow a trivariate

normal distribution with zero mean and variance-covariance equal to 3. The same

identification arguments discussed in Section 4.2.2 apply here as well.
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Figure 4.2: Diagram describing data affected by non-random sample selection and
endogenity of a treatment. y;; corresponds to the selection mechanism, y,; denotes
the binary endogenous variable and ys; is the binary outcome. Variable ys; is not
available for non-participants.

Figure 4.3: Diagram describing data affected by non-random sample selection and
endogenity of a treatment. y;; corresponds to the selection mechanism, y,; denotes
the binary endogenous variable and y3; is the binary outcome. Variable ys; is avail-
able for non-participants.

4.4.2 Parameter estimation

As a consequence of the missing outcomes, the construction of the log-likelihood
function is analogous to the one presented in Section 4.3. In this case we deal only

with single selectivity and since the availability of y9; depends on the study at hand,
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the data identify either five or six possible events. In the first case, we have: (i) indi-
vidual does not pass the selection mechanism and thus y; and ys; are not observed;
(ii) individual participates in the survey and (yo;,y3;) = (1,1); (iii) individual par-
ticipates and (y2;, y3;) = (1,0); (iv) individual participates and (y;, y3;) = (0,0); (v)
individual participates and (y2;,y3;) = (0,1). In the second case, (i) individual does
not pass the selection step, yo; = 1 and ys; is not observed; (ii) individual does not
pass the first stage, yo; = 0 and ys; is not observed; (iii) individual participates and
(y2i,y3:) = (1,1); (iv) individual participates and (ye;,v3;) = (1,0); (v) individual
participates and (ya;, y3:) = (0,0); (vi) individual participates and (ya;,ys;) = (0, 1).

The log-likelihood function can be expressed for the former case as

Co= > {1 =) log(poi) + yrivaiysi log(pinns) + yravei (1 — ys:) log(pros) +

=1

Y1i(1 — y2:) (1 — ysi) log(prooi) + y1i(1 — i) yzi log(prori) } (4.8)

and for the latter case as

t = Z {(1 = y13)y2i log(pors) + (1 — y1i) (1 — y2:) log(pooi) + Y1iyaiysi log(prin)+
i=1

yliy2i<1 - ySi) 10g<p110i) + yu(l - y2i)(1 - y3i) lOg(plooi)+

Y1i(1 — yai)yzi log(prowi) } - (4.9)

In particular, ¢ is equal to (4.8) if the endogenous variable yy; is not available after
individual’s non-participation and ¢ is equal to (4.9) if y; is observed under non-
participation. Similar to the double sample selection model, ¢ (and thus g and H)
has a different structure from the log-likelihood function of trivariate model with
fully observed responses. Analytical derivative information for the models can be
obtained using the expressions (2.9) and (2.10) and Propositions 2.3.2 and 2.3.3
given in Section 2.3.1, while the model can be fitted using the PMLE approach
discussed in the previous chapters.

Using SemiParTRIV() /gjrm(), the model can be used as follows

out <- SemiParTRIV(formula = f.1l, data = dat, Model = ESS)



68 4.4. The endogenous-sample selection model

where ESS stands for the endogenous-sample selection model, and .1 and dat have
been previously defined. The function uses by default log-likelihood function (4.8).
The ATEs and prevalence estimates with corresponding Cls can be computed as

already discussed in Sections 4.2.4 and 4.3.3.

4.4.3 Reducing the computational burden

The computational time required for estimating the model can be reduced by em-
ploying the technique discussed in Section 4.3.4. Since we deal with single selectivity
here, we re-express ¢, g and H based only on an index which in this case indicates
whether an individual participates in the study. The log-likelihood function of the

model presented in Figures 4.2 and 4.3 can therefore be written as

= > {l—y)logpe)} + D {yrivaiysilog(pinn) + yaiyei(1 — ys:) log(paor) +

i=1 i=ni+1
?Ju(l - y2i)<1 - y3i> lOg<p100i) + yu(l - y2i>y3i 10g(p101i)} )

and

t = Zl {(1 = y11)y2i log(pors) + (1 — y1:) (1 — o) log(pooi) } +

Z {y1:y2:y3i log(p111:) + Y1iy2i (1 — ysi) log(prio:)+
i=n1+1

yu(l - y2i)<1 - y3i> 10g<p100i) + Z/u(l - y2i)y3i 10g(P101i)} .

The first subset in both expressions corresponds to non-participants and the second
one to participants; n; denotes the number of individuals in the former subset,
while the number of participants is n — n;. In a similar way, this also applies to the

components in g and H.
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4.5 Simulations and real data illustration

This secton has two aims: assessing the empirical effectiveness of the double sample
selection model via simulation, and applying the recursive trivariate model to a case

study.

4.5.1 Simulation study

The simulation study employs the DGP3 settings described in Appendix B.2.1,
where the model specification used to generate the data includes two ERs, v,; and

v3;. The equations, in R notation, are specified as
eqnl ~ vl + s(zl) + v2 + v3; eqn2 ~ vl + s(zl) + v2; eqn3 ~ vl + s(zl)

where v1 is a binary variable, v2 and v3 denote the binary ERs and s(z1) defines a
smooth function of the continuous covariate z1. We employed the PMLE approach
discussed in the previous chapter, where the coefficients of the spline bases are
penalized and the correlations are also penalized using a Lasso approach.

Figure 4.4 shows the estimated smooth curves obtained from 250 replicates using
sample sizes of 5000 and 15000. In general, the method appears to be effective in
recovering the true functions. The variability that characterizes the curve estimates
for n = 5000 does not come as a surprise given the considerable loss of information
in a double selection context. Table 4.1 shows the percentage biases and RMSEs of
the correlation coefficients and prevalence estimates. The experiment shows that the
estimated correlation coefficients are affected by some bias, especially at n = 5000.
This is not unexpected given the complexity of the model and substantial loss of
information that a double selection process implies. Overall, biases and RMSEs
reduce as n increases. As for the prevalence estimates, both bias and RMSE become
negligible as n grows (see also Figure 4.5 which shows that, as the sample size
increases, the prevalence estimates approach their true value). For model comparison
purposes, we also present the percentage biases and RMSEs of the correlations and

prevalence estimates obtained using the unpenalized approach (i.e., no penalization
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on the correlation parameters was imposed). The results presented in Table 4.2
show overall that the bias and RMSE of the estimates are higher, compared to the
corresponding quantities in Table 4.1. This suggests that the parameters can better
be estimated when they are penalized.
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Figure 4.4: Estimated smooth functions for s;(21), $2(z1) and s3(z;) obtained ap-
plying SemiParTRIV() /gjrm() on 250 simulated datasets. The first row shows the
estimated curves obtained from samples of 5000 observations, whereas those in the
second row correspond to samples of 15000 observations. The black lines represent
the estimated smooth functions over all replicates and the red solid lines show the
true functions.

4.5.2 Labor force data analysis

Chronic diseases are considered to be important conditions in the developing and
developed countries. In 1997, 124 million people worldwide were estimated to have
diabetes (Amos et al., 1997), while one in five adults in the U.S. were found to
have multiple chronic diseases (e.g., Ward & Schiller, 2013; Ward et al., 2014).



71 4.5. Simulations and real data illustration

n = 5000 n = 15000

Estimator Bias (%) RMSE Bias (%) RMSE
D1a 20.08 0.0875 9.16  0.0612
D1s 15.39  0.1179 14.86  0.0892
Das -11.28  0.1499 674 0.0990
P(y; = 1) 6.29 0.0151 0.93  0.0066

Table 4.1: Percentage biases and root mean squared errors (RMSEs) of the cor-
relation estimates and prevalence estimate obtained applying the double sample
selection model to 250 datasets simulated according to DGP3, where the correlation
parameters are penalized via the Lasso penalty.

n = 5000 n = 15000

Estimator Bias (%) RMSE Bias (%) RMSE
V1 25.23  0.0989 17.10 0.0705
V13 21.19 0.1284 16.39  0.0921
U3 14.27 0.1783 -7.80 0.1115
P(ys = 1) 6.97 0.0166 0.32  0.0064

Table 4.2: Percentage biases and root mean squared errors (RMSEs) of the cor-
relation estimates and prevalence estimate obtained applying the double sample
selection model to 250 datasets simulated according to DGP3, where the correlation
parameters are not penalized.

The prevalence of multiple chronic diseases has been increasing over the past decade
(Ward & Schiller, 2013). Whiting et al. (2011) suggest that, worldwide, people living
with diabetes will increase by 50.7% by the year 2030.

Chronic health problems do not only affect the health care system, but have also
a negative impact on labour force participation. Among U.S. adults, having multiple
(> 2) chronic conditions reduces the employment probability by 11 — 29% (Ward,
2015). Individual chronic diseases, such as diabetes (Bastida & Pagén, 2002; Tunceli
et al., 2005; Minor, 2011) and rheumatoid arthritis (Kessler et al., 2008), were found
to be associated with work-related outcomes. Treating the incidence of chronic
illness as exogenous may lead to imprecise estimates. For instance, diseases such as
diabetes and heart disease may be correlated through unobserved covariates that are
also related to labour force participation. That is, personal motivation is positively

associated with labour force participation, motivation may influence lifestyle choices
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Prevalence Estimates

n=5000 n=15000

0.22
!
0.22
!

0.20
!
0.20
!

0.18
!
0.18
!

ﬁ.ﬁ

0.16
!
0.16
!

Figure 4.5: Boxplots corresponding to the prevalence estimates of the semi-
parametric double sample selection model for sample sizes equal to 5000 and 15000.
Results are obtained from 250 replications of DGP3 and the horizontal red lines
represent the true prevalence.

and a healthy lifestyle may decrease the probability of having diabetes (Latif, 2009).
Moreover if only one chronic disease is accounted for, say diabetes, then this means
that we assume that other illnesses do not affect the decision to participate in the
labour force and are uncorrelated with diabetes; studies have shown that people
with diabetes are at an increased risk of having heart disease (e.g., Harris, 1998;
Black et al., 1999; ATHW, 2006). Thus, joint estimation of multiple chronic diseases
and work outcomes can lead to improved estimation results and inference.

In this section we jointly analyse diabetes, heart disease and labour force partic-
ipation conditional on flexible functions on covariates and account for the potential
endogeneity of diabetes and heart disease for the decision to work, and the po-
tential endogeneity of diabetes. The empirical analysis was carried out using the

endogenous trivariate probit model described in Section 4.2.
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Data and Empirical Analysis

The study examines data from the 2012 Medical Expenditure Panel Survey (MEPS),
which are collected by the Agency for Healthcare Research and Quality (AHRQ).
The survey considered a sample of 38,974 individuals containing a nationally repre-
sentative sample of the U.S. civilian non-institutionalized population and providing
information of individuals health status, demographic and socio-economic charac-
teristics, employment and satisfaction with health care. Individuals were part of one
of the two MEPS panels: Rounds 3, 4, and 5 of Panel 16 or Rounds 1, 2, and 3 of
Panel 17. Here we focus on Rounds 4 and 2 (R4/2) and we aim at estimating the
effect of two major chronic diseases on the probability of labour force participation.
Individuals who did not have a complete set of the variables or aged < 17 were ex-
cluded from the original sample. After exclusions, the final sample includes 23,295
observations.

Tables 4.3 and 4.4 report empirical bivariate densities of the dependent variables
of interest. Employment status refers to whether the person was employed during
the round. As shown in the tables, the majority of those who are employed have
not been diagnosed with diabetes and/or heart disease, while only few of them have

been diagnosed with the disease(s).

Diabetes

Employment Status 0 1 Total

Employed 13648 916 14564
(58.59%)  (3.93%) (62.52%)

Non-employed 7290 1441 8731
(31.29%)  (6.19%) (37.48%)

20938 2357 23295

Total

(89.88%) (10.12%) || (100.00%)

Table 4.3: Empirical density for diabetes and employment status. The proportions
in brackets show the corresponding proportions in the sample.

Our model specification follows the studies of Harris (2009) and Zhang et al.
(2009) who estimate recursive simultaneous probit models accounting for the poten-

tial endogeneity of the incidence of chronic conditions. The exact definition of the
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Heart Disease

Employment Status 0 1 Total

Employed 13377 1187 14564
(57.42%)  (5.10%) || (62.52%)

Non-employed 6669 2062 8731
(28.63%)  (8.85%) || (37.48%)

20046 3249 23295

Total

(86.05%) (13.95%) || (100.00%)

Table 4.4: Observed density for heart disease and employment status. The propor-
tions in brackets show the corresponding proportions in the sample.

variables used in the analysis is given in Table 4.5. Note that other chronic diseases

are excluded from our analysis due to the fact that diabetes and heart disease are

the most common physical chronic diseases and share common factors that are not

clearly related to other chronic diseases such as cancer or asthma.

Variable Explanation

diab whether individual has been diagnosed with diabetes

heartd  whether individual has been diagnosed as having heart disease

empl whether individual is currently employed

age age In years

educ classification of education (0: less than 1st Grade, ..., 16: Master,
Doctorate or Other Professional Degree)

usborn  whether individual was born in US

marital marital status (1: married, ..., 10: separated in round)

engspk  whether individual is comfortable conversing in English

region region the respondent was living (1: north-east, ..., 4: west)

health  perceived health status (1: excellent, ..., 5: poor)

hyper whether individual has been diagnosed as having high blood pressure

cholest whether individual has been diagnosed as having high cholesterol

smok whether individual currently smokes

Table 4.5: Description of the variables obtained in Round 4 of Panel 16 and Round
2 of Panel 17 in the MEPS dataset.

Our approach allows for the semi-parametric estimation of the covariate-response
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relationships; thus we define the model as

diab; = [ + Pizeduc; + Pizusborn; + [iymarital; + [sengspk, + Sigregion; +
fizhealth; + s1;1(age;) + Sishyper; + [igsmok; + [ jpcholest;
heartd; = [ + ¢1diab; 4 fyeduc; + [agusborn; + foymarital; + Posengspk, +
Pasregion,; + [arhealth; + so1(age;) + [aghyper; + Pagsmok; +
B2,10cholest;
empl! =[5 + ¢1diab; + oheartd; + [Bszeduc; + fssusborn; + fyymarital; +
Pssengspk; + [ssregion; + P3rhealthd?2; + s31(age;) + fsshyper; +

+ 339smok; + 53,10Cholesti,

where s,,,; are smooth functions of age; represented using thin plate regression splines
with twenty bases and second order penalties, Vm = 1,2, 3. Note that since the avail-
able data do not provide any valid ERs, the model specification does not include any
of these variables. As described previously, however, identification and estimation
of the model could be significantly improved using suitable ERs; thus one should be
cautious when interpreting the results of this study. Next paragraph presents the

most important results.

Results and Inference

Figure 4.6 shows the non-linear effects of age for the treatment and outcome equa-
tions. The incidence of chronic diseases is positively related to age indicating greater
risk as individuals become older. However, the effect of age on the incidence of dia-
betes decreases after 70 years of age; a similar result was found in Zhang et al. (2009)
where individuals in younger age bands (50 — 64 years of age) were more likely to
have mental illnesses than those in the oldest band of 60 — 64. As expected, labor
force participation increases rabidly with age up to 28 — 30 years after which the
effect is almost steady up to around 50 — 55 years and it decreases for people older

than 60 years. The zero flat line is not contained within the Cls of the smooths,
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indicating that age is a significant predictor for the responses. Table 4.6 presents
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Figure 4.6: Function estimates obtained applying the endogenous trivariate model
using the proposed fitting method. Dashed lines represent 95% Bayesian point-wise
CIs. The first two curves correspond to the smooth term of age in the equations
describing diab (eq. 1) and heartd (eq. 2), while the last one to the equation
describing empl (eq. 3). The effective degrees of freedom are reported into brackets
in the y-axis caption.

the correlation parameter estimates obtained when applying the semi-parametric re-
cursive bivariate probit (SRBP) model and the semi-parametric recursive trivariate
probit (SRTP) model with their corresponding 95% Cls. The estimated correlation
between the two diseases (1912) and between labor force participation and heart dis-
ease (1923) is moderate, while the low value for 1913 indicates that diabetes may not
have a strong impact of labor force participation. The estimated ATEs for SRTP can
be interpreted as follows. The probability of having been diagnosed as having heart
disease increases by 6.40% for individuals who have been diagnosed with diabetes,
while the probability that individual is currently employed decreases by 2.38% and
30% for people who have diabetes and heart disease, respectively. Although the
estimates obtained from the two models are close to each other, there appears to be
a slight overestimation of the parameters 15 (SATE1) and ¥o3 (SATEs3) while the
inconsistency in ¥13 (SATE;3) is more noticeable. This suggests that a trivariate
system may better account for the dependencies between the treatment and outcome

variables, hence providing more accurate results.
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Estimator SRBP SRTP

D1a —0.144 (—0.284,0.032) —0.119 (—0.258, 0.067)
D13 0.147 (0.032,0.288)  0.005 (—0.133,0.140)
D3 0.409 (0.280,0.514) 0.403 (0.293,0.514)
SATE, 7.39 (2.21,13.63) 6.40 (2.22,13.34)
SATE;;  —11.34 (—21.44,-1.23) —2.38 (—10.33,6.41)
SATE,;  —30.3 (—37.1,-24.3)  —30.0 (—35.3, —23.4)

Table 4.6: Estimates of the correlation coefficients and ATEs (in %) obtained ap-
plying the semi-parametric recursive bivariate probit (SRBP) model and the semi-

parametric recursive trivariate probit (SRTP) model on the MEPS data. S/Aﬁlzk
corresponds to the estimated average treatment effect obtained using the 2! equa-
tion as the treatment equation and the k* equation as the outcome equation,
Ve =12,k = 2,3,z # k. 95% Bayesian Cls were obtained using 100 coefficient
vectors simulated from the posterior distribution of the estimated model parame-
ters.

4.6 Conclusions

In this chapter, we have discussed several models that can be derived from the
general framework introduced in the previous chapter. These can deal with data
suffering from endogeneity and/or non-random sample selection. The models include
parametric and non-parametric components, allowing researchers to achieve a higher
degree of flexibility in empirical modelling. We have provided inferential tools and
discussed briefly model’s identification. A technique for reducing computing time
was also discussed. Parameter estimation of all models is achieved using the generic
PMLE approach discussed in Chapter 3. We have also developed the necessary
computational procedures which are incorporated in the R package GJRM.

A Monte Carlo experiment for the double sample selection model was conducted,
showing the promising performance of the model. Using the endogenous trivariate
model, we examined the effect of two chronic diseases on labor force participa-
tion using the 2012 MEPS dataset. The results have shown that both diseases
affect negatively individual’s employment status, while having diabetes increases
the probability of having been diagnosed as having heart disease.

In the next chapter we aim at accommodating link functions other than probit.
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That is, instead of specifying the marginal distributions of the three responses using

the standard normal distribution we could use the logistic distribution for instance.



Chapter 5

Extending the additive trivariate
binary model to non-probit

margins

In this chapter, we consider the simultaneous estimation of three binary regressions
using a three-equation system in which the trivariate distribution is defined by the
Gaussian copula with arbitrary margins. In particular, we extend the trivariate ad-
ditive probit model of Chapters 2, 3 and 4 to allow for arbitrary link functions. The
estimation framework (and hence SemiParTRIV() /gjrm()) is extended accordingly

to incorporate such a feature.

5.1 Introduction

All models considered so far use the probit transformation for the probabilities, but
other choices are also possible. In fact, any transformation that maps probabili-
ties into the real line could be used to produce a trivariate model, as long as the
transformation is one-to-one, continuous and differentiable. This chapter extends
the material presented in the previous chapters to allow for the flexible specification
of the marginal links. Specifically, we employ the logistic and Gumbel distributions

which give rise to the logit and complementary log-log links, respectively. Together

79
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with the probit link, they are the most commonly used links in GLMs/GAMs for
binary responses. These additional links are used extensively in numerous disci-
plines, including the medical and social sciences. In clinical research logit models
are widely used as they provide direct information about which treatment has the
best odds of benefiting a patient, for instance. Complementary log-log models have
important applications in survival analysis where they can, for example, provide a
clear insight into the relative reduction of risk for death or progression.

In general, the expected value of a response of interest, y,,;, conditioned to a
set of explanatory variables (contained in linear predictor 7,,;) can be represented
through a generalized model using the so-called link function g, : [0,1] — R which
links the random (y,,;) and systematic (7,,;) components of the model (McCullagh &
Nelder, 1989, Ch. 2.2), ¥m = 1,..., M. In the univariate case, this can be expressed

as

E(Ymi) = tmi = Gy (T )

OF G (fmi) = Nmi, Where n,,,; is an additive predictor (made up of regression coeffi-
cients and covariates as described in Section 2.2). The link function specifies a non-
linear transformation between the linear predictor and the mean of the distribution
function. In Chapters 2, 3 and 4, we employed the probit link g, (ftmi) = D~ (i),
Vm =1,2,3.

By using the fact that the inverse of any continuous univariate cdf can be used

for the link g,,, we re-express the link function as

i = Fp (fmi), (5.1)

Or fimi = Fpm(Mmi), where F,,, : R — [0,1] is any univariate cdf. The logit and

complementary log-log links can be specified as

Nmi = log (1 P ) and 7y = log (—1log(1 — pmi))
— Htmi
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where ft,,; corresponds to the cdf of the logistic and Gumbel distribution defined

VYm as

exp(Nmi)
Hmi =

=———"—""— and |, =1 —exp(—exp(nmi)),
1+ exp(nmi) : P(=exp(mi))

respectively.

The probit, logit and complementary log-log functions share the feature of map-
ping the unit interval onto the real line. Looking at Figure 5.1, which depicts
the three links, we observe that all functions are increasing, continuous and dif-
ferentiable over 0 < P(y,; = 1) < 1 and they are almost linearly related over
0.1 < P(ymi = 1) < 0.9. However, when the probability of a successful outcome
is extremely small or large, the linear relationship does not hold. In contrast to
the complementary log-log function, the logit and probit links are both symmetric

around 0.

Link Functions

Pr(ymi=1)
0.0 02 04 06 08 1.0

-4 -2 0 2 4
Nmi
Figure 5.1: Probit ( ), logit ( ) and complementary log-log ( ) func-

tions. The y-axis corresponds to the probability of success P(y,,; = 1) and the x-axis
denotes the generic m*™ linear predictor ,,;.

In what follows, we allow for the logit and complementary log-log links into the
trivariate models described in Chapters 2, 3 and 4, discuss some fitting details and

present a simulation study examining the performance of the models. Conclusions
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are drawn in Section 5.4.

5.2 (Gaussian copula with arbitray margins

In order to employ arbitrary link functions in the model we need to re-express the
univariate, bivariate and trivariate cdfs in such a way that each of the three mar-
gins belongs to a different distributional family. The univariate cdf has already
been re-defined in (5.1), while the bivariate and trivariate cdfs can be re-expressed
via a Gaussian copula. In general, a copula function can be described as a mul-
tivariate distribution function in which the marginal distributions may come from
different families (Joe, 1997). This construction allows one to consider the marginal
distributions and the dependence between them as two separate but related issues.

Suppose that C denotes a joint cdf whose support is contained in [0, 1]* and whose
one-dimensional margins are uniform (Dall’Aglio et al., 2012). Let F(ny;, n2;, n3:) =
P(y;; > 0,45 > 0,y5 > 0) be a joint cdf and U,;' : (0,1) — R a quantile func-
tion. Then there exists a three-dimensional copula function C : [0,1]*> — [0, 1] that

represents the joint distribution function in terms of margins such that

Cluis pair pzi) = C(F1(mi), Fa(n2:), Fa(nsi))
= F(mi, 121, m3:)
= F (U (i), Uy (i), Us (i)
= F (U (Fi(mi), Uy ' (Fa(n2)), Us  (Fa(nzi)) . (5:2)

which satisfies the following conditions (Sklar, 1959)

(C.1) C(Fi(n)), 1,1) = Fi(nu), C(1,Fa(nz)),1) = Falne), C(1,1,Fs(ns))) =
F3(n3:), VEm(Mmi) € [0,1] and m < 3;

(C.2) é(Fl(nli)a Fa(n2:), Fs(nsi)) = 0 if Fppy(0ims) = 0 for any m < 3;
(C.3) C is 3-increasing.

Condition (C.1) states that if the realizations of two variables are known each with



83 5.2. Gaussian copula with arbitray margins

marginal probability one, then the joint probability of the three outcomes is the
same as the probability of the remaining uncertain outcome. Condition (C.2) is
sometimes referred to as the grounded property of a copula and states that the
joint probability of all outcomes is zero if the marginal probability of any outcome
is zero. Condition (C.3) means that the copula volume of any 3-dimensional inter-
val is non-negative; in the bivariate setting, for instance, the volume between two
points [F1(n1:), Fo(19;)] and [F‘l(nli), F2(772i):| , where F, (i) > F‘m(nmi), Vm =1, 2,
takes the form C (Fl(mi),mngi)) -C (E(nu),Fz(ngi)> -¢ <F1(7711-),F2(772@-)> +
C (F1(n1), Fa(n2:)). A copula C is unique on the cartesian product of the ranges
of the marginal cdfs Ran(F;(n;)) x Ran(Fa(n2)) x Ran(Fa(ns;)). The copula is
unique if the margins F,,(n,,;) are continuous, Vm. Any copula lies always in the

interval
3 ~
max {Z Eon (0mi) — 2, 0} < C(Fi(mi), Fa(n2i), Fa(nsi)) < min {F1(m1;), Fa (i), Fs(n3) }
m=1

the so-called Fréchet-Hoeffding bounds. A desirable feature of a copula is that it
should cover the sample space between the lower and upper bounds, and that as the
correlation parameters approach the lower (upper) bound of its permissible ranges,
the copula approaches the Fréchet-Hoeffding lower (upper) bound. Knowledge of
the Fréchet-Hoeffding bounds is therefore important in selecting an appropriate
copula. Depending on the copula one wishes to employ, the copula dependence
parameters (which represent the dependence between the margins) can sometimes
be difficult to interpret because they are not necessarily in the customary [—1, 1]
interval. Therefore, it is common to convert the dependence parameter to a familiar
measure of association such as Kendall’s tau or Spearman’s rho. In this chapter we
employ the trivariate Gaussian copula with dependence structure characterized by
coefficients 15, 113 and 153 which form the model’s correlation matrix 3. For full
details on copulae see, for instance, Trivedi & Zimmer (2007, Ch. 2) and references

therein. Note that the properties discussed above also apply to bivariate copulae,

which can be formed as F (U; ' (F1(n1:)), Uy ' (F2(n2))).
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Although several copula functions can be used (e.g., Student-t, Frank), our in-
terest in this chapter lies in making the marginals’ specification flexible. Chapter 7
will look at alternative representations of trivariate dependence. Based on (5.2), we
express the trivariate Gaussian copula as @3 ¢, (W;; 0, Y7), while the bivariate Gaus-
sian copula is structured as ®go, (W, i, Wh.i; (2y.; — 1) tanh (9%, ) (2yx; — 1)), where
W, = Wii,Waiy Wis), Wini = 2Umi — 1)@ H(Fr(Mmi))s Fm(nmi) can be either
the normal, logistic or Gumbel univariate cdf and Y} is defined in Section 2.3.1,

Ve=1,2k=23,2#km=1,2,3.

Parameter estimation

The estimation and inferential framework introduced in Chapters 2, 3 and 4 can be
employed for trivariate models with non-probit link functions after some necessary
amendments. These are described below.

Allowing for different marginal distributions requires the modification of quantity
L; given in Lemma 2.3.1 in Section 2.3. That is, £;; needs to be re-written in a
more general way using the copula representation described above. Lemma 5.2.1
derives such expression, where the specification of the cdf F,,(7,,;) depends on the
marginal distribution one wishes to employ. In the case of probit margins, Lemma

5.2.1 reduces to Lemma 2.3.1.

Lemma 5.2.1. Quantity L, evaluated at the vector (B;H,); is equal to the cdf of

a multivariate standardized normal vector with correlation matriz (B;XB;);., that is

Li(yi;0) = ‘I’Z),ik = {Qure, (BiHY); 0, (B;SB)) 1 = {Pure, (W05 0, (X)) P

where W; = BH; = Wi, ..., War) T, Hy = (@71 (Fi (), -, @ (Far(mn))

Y =BXBi, Wi = Gmi®  (Fon(0mi)), Jor Gmi = (2Umi — 1), Fi(nmi) denotes the
univariate cdf, Ny = w;liﬁm and B; denotes a diagonal M x M matriz with main
diagonal elements Ym; = (2ymi — 1), that is B; = diag(2y1; — 1,2y — 1, ..., 2ypi — 1).

Proof. See Appendix C.1. O

Estimation of the model parameters can be achieved by extending the efficient
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and stable trust region algorithm with integrated automatic multiple smoothing
parameter selection described in Chapter 3 to allow for the specification of virtually
any parametric link function. This requires to amend the results presented in the
previous chapters. Specifically, we compute the analytical score function Vs/;(9)

and Hessian matrix VVgs7¢;(8) as

) n

on; )8F‘
8F on;
.
1 0¥, OF,
0% ; OF, (5.3)
\Il OF,; 0n;
Oy OF\ Pni (0] 1 0%, 0F,
. OF; 01, | 069867 '\ 06 WUl OF; On;
2 o\ 2 - O2F. A
amzk) 1 | 0w (aR) oW, O°F, }(%)7(5'4)

OF; F on; OF; onon’
where F; = (Fy1(n1:), Fa(n2:), F3(m3:), Fa(nai), F5(n54), F6(776i))—r with (Fa(n), F5(15:),

Fo(nei)) = (074, 014, 935) and 7 is defined in Section 2.3.1. The above expressions are

Vsli(8) = (

VVsstli(6) =

(5
(5
{
(

similar to (2.9) and (2.10) in Section 2.3.1, except for the extra part corresponding
to the derivatives of F;. In the trivariate probit model, (5.3) and (5.4) reduce to
(2.9) and (2.10), respectively, as OF;/0n; = 1 and §°F;/0non" = 0. Computation
of (5.3) and (5.4) was achieved via Propositions 5.2.2 and 5.2.3 which generalize
Propositions 2.3.2 and 2.3.3.

Proposition 5.2.2. Assume that WW; is a multivariate standardized normal vector
with correlation matrix equal to X7. Then the first-order deriwative of the M -variate

normal cdf @y (W;0, XF) with respect to By, Ym =1,..., M, can be expressed as

@(I)M(WZ‘; 0, T:)
B

= ¢(Wm,27 07 1)®M71(W7m,i|wm,i; Mi*ma Gjm) X

fm(nmz)
¢ (B (Fn (i)

(2ymi — Dz,

mi

where M denotes the total number of equations under a multivariate binary frame-
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work, Wi, denotes the linear predictor of the m' equation and is equal to (2ymi —
1@ Y (F . (nmi)), Bm denotes the parameter vector of covariate vector @,;, the vec-
tor of linear predictors W_,,; is defined as Wi, ..., Win-1i, Win+1,is - - - ,WM,i)T
and fu(Mmi) and Fo(nm:) denote the univariate pdf and cdf respectively which can
be specified via the normal, logistic and Gumbel distributions. The mean M;™ and
variance-covariance matriz ;™ is equal to O3, Wy, ; and O3y, — O3, Oy, respec-

twely, with Oy, O3, and ©33"; defined by re-ordering X7 as follows

1x1 Ix(M-1)
*Mm | *Mm
11,i 12,i
*mo 7777777\ 77777 I
"= \
*m *Mm
214 ! 22,4

(M=1)x1  (M—1)x(M—1)

The element O17; is equal to 1, the off-diagonal blocks ©1y'; and O3, consist of the
correlations ), ; = tanh(J;, ) (2Ym — 1)(2yw — 1), Vw € {1: M} \'m, for m # @
and the symmetric sub-matriz @3y has main diagonal elements equal to 1 and off-
diagonals equal to 17 ; = tanh(97%,)(2yp — 1)(2yw — 1), Vo, € {1 : M} \ m, for
pF w.

Proof. See Appendix C.2.1. n

Proposition 5.2.3. Assume that WW; is a multivariate standardized normal vector
with correlation matrix equal to X7. Then the first-order derivative of the M -variate
normal cdf ®p (W;; 0, YY) with respect to 0%, Vz=1,.... M -1 k=z+1,... M,

can be expressed as

8<I>M(W,, 0, T?:)
ov%,

G2 (Wik,i;0,077%) @y o(W_pp i [ Wpis M*2F,©577F) x

4621921@

2oi — 1) (2ups — 1) —oe
(y )( Yk )(ezﬁzk_{_l)g

where M denotes the total number of equations under a multivariate binary frame-
T

work, Wi = Weiy Whi) s Weski = Wiy oo o War1,i Waaiay oo s Wi, Wi,

. ,WMJ-)T, W... and Wi refer to the linear predictors of the 2" and k™ equations

respectively and are equal to (2ym; — 1)@ Y (Fp(hmi)), Vm = z,k, By, denotes the
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parameter vector of covariate vector ®y; and fu,(Mmi) and Fp,(nm:) denote the uni-
variate pdf and cdf respectively which can be specified via the normal, logistic and
Gumbel distributions. Parameter 9%, = tanh_l(ﬁzk) where 9, denotes the correla-
tion coefficient between the 2" and k' responses. The variance-covariance matriz
O:** is equal to @’ﬁﬁ, while the mean M;~** and variance-covariance matriz @} =
s equal to @;f’j (@ﬁﬁ»)_l Wi and @;5’2 — @;f’i (@’{ff‘;)_l @’{5{2, respectively. The

sub-matrices @13 @13k ©3% and O3k are defined by re-ordering X as follows

2x2 2x(M—-2)
o | g
ek _ [ O o Oy
2 |

ey 1 O3

‘ N——

(M-2)x2  (M-2)x(M~-2)
The sub-matriz ©33% has unit diagonals and off-diagonals defined as 3, ; = tanh(d7,)

(2y. — 1)(2yx — 1). The first row (column) of ©73% (©37%) contains the correlations
i for 0 € {1: M}\ z, while the second row (column) of ©33% (©%%) contains the

z0,87

correlations 5. ;, forv € {1 : M}\k. The diagonal block @’5;’2 s a symmetric matric

Ok,i’

with unit diagonals and off-diagonal elements equal to g VX, € {1: M}\{zk}
for x # 9.
Proof. See Appendix C.2.2. n

All derivatives have been verified as in Chapter 2.

In this case, SemiParTRIV() /gjrm() can be used as follows

out <- SemiParTRIV(formula = f.l, data dat, margins = margins,

Model = mod, penCor = PenFun)

where arguments f .1, dat, PenFun and mod have the same definitions as in Chapter
3, while margins specifies the link functions used for the three margins. Possible

choices for margins are "probit", "logit" and "cloglog".
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5.3 Simulation study

In this section, we conduct a simulation study to assess the practical performance
of the trivariate Gaussian copula model when employing a mixture of three link
functions using the DGP3 settings presented in Appendix B.2.1. The chosen link
functions were complementary log-log, logit and probit for the first, second and
third outcome, respectively. Parameter estimation was carried out using the PMLE
approach discussed in Chapter 3, where the correlations were penalized via the
Lasso penalty (the Ridge and the Adaptive Lasso provide similar results). The
model specification and settings are the same as those employed in Sections 3.2.2
(DGP3) and 4.5.1.

The results are summarized in Figures 5.2 and 5.3, which depict the parametric
and smooth component estimates obtained over 250 replicates for two different sam-
ple sizes. On average, the regression coefficient estimates approach their true values
as n increases and their variability decreases as the sample size grows large. The
study shows that the method is effective in recovering the true functions, although
occasionally (especially when n = 1000) the estimated curves appear to be wigglier

than they should be. This behaviour has been commented in Chapter 3.
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Figure 5.2: Boxplots of parameter estimates obtained applying the trivariate Gaus-
sian copula model on 250 simulated datasets with complementary log-log, logit and
probit links for sample sizes equal to 1000 and 10000. True parameter values are
represented by horizontal gray dotted lines.
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Figure 5.3: Estimated smooth functions for s;(21), s2(21) and s3(z1) obtained ap-
plying the trivariate Gaussian copula model on 250 simulated datasets with com-
plementary log-log, logit and probit links. The first row shows the estimated curves
obtained from samples of 1000 observations, whereas those in the second row cor-
respond to samples of 10000 observations. The black lines represent the estimated
smooth functions over all replicates and the red solid lines show the true functions.

5.4 Conclusions

In this chapter, we have discussed the simultaneous estimation of three binary re-
gressions where the trivariate distribution is specified by the Gaussian copula which
allows for virtually any parametric link function. The functions considered were
the probit, logit and complementary log-log links. Parameter estimation is car-
ried out within a PMLE framework with integrated automatic multiple smooth-
ing parameter selection, and the proposed models can be easily used via function
SemiParTRIV() /gjrm().

As mentioned in the introduction, the Gaussian trivariate copula binary model
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with arbitrary margins can offer advantages in empirical modelling as compared to
the fully Gaussian version. The next section will discuss another extension where
the correlation coefficients of the trivariate Gaussian are modelled as functions of

semi-parametric predictors.



Chapter 6

A trivariate additive regression
model with varying correlation

matrix

In this chapter, we propose a generalisation of a trivariate additive binary model
where the parameters describing the association between the responses can be made
dependent on several types of covariate effects (such as linear, nonlinear, random,
and spatial effects). All necessary amendments made in estimation framework have
been incorporated in SemiParTRIV() /gjrm(). The effectiveness of the model is
assessed in simulation as well as empirically by modelling jointly three adverse birth

binary outcomes in North Carolina.

6.1 Introduction

In the previous chapters, we assumed that the correlation structure that accounts
for the dependence between the three response variables is fixed. However, it may be
the case that the strength or direction of the dependence is modified by covariates.
To reduce the risk of misspecification, therefore, we extend the material presented
in the previous chapters to allow the model’s association parameters to depend on

several types of covariate effects. Within this framework, the systematic part of the

92
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model is expanded to allow each correlation parameter to be modelled as a function
of the available data. This can help to gain insights into the way the residual
association between the responses is modified by the presence of covariates.

It is worth noting that our proposal can also be regarded as an extension of the
bivariate regression approaches introduced by Marra et al. (2017), Klein & Kneib
(2016b) and Radice et al. (2016) as well as of the popular GAMs and GAMs for
location, scale and shape of Wood (2006) and Rigby & Stasinopoulos (2005). Func-
tion SemiParTRIV() /gjrm() in the R package GJRM (Marra & Radice, 2017) includes
the developments in this chapter.

The remainder of the chapter is organized as follows. Section 6.2 introduces the
proposed model and Section 6.3 provides the key estimation details. The proposal
is empirically evaluated in a simulation study, presented in Section 6.4, and then

applied to a case study in Section 6.5. Section 6.6 concludes the chapter.

6.2 Model specification

This section introduces an extension of the trivariate binary model that is based on
a modified Cholesky decomposition of the model’s correlation matrix.
To allow each association parameter to be expressed as function of an additive

predictor, we re-express the correlation matrix as

1 Y2 Vs
3 = 7912,1’ 1 ’5)23,1 )
Vg Vaz; 1

where 9, ; is the correlation coefficient between the 2" and k" responses for subject
1, Vz,k,i. The challenge to address here is that the range of each correlation’s
additive predictor has to be unbounded to avoid constrained optimization and that
the correlation matrix 3J; must be positive definite with each of its coefficients taking
values in [—1,1]. This makes the parameter space of ¥; somewhat complex with

restrictions for each parameter depending on the values of the others. To this end,
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we propose using a modified Cholesky decomposition approach which is described

below.

6.2.1 Unconstrained parametrization for the correlation ma-

trix

The standard Cholesky decomposition of a positive-definite correlation matrix 3 is
of the form ¥ = CCT, where C is a unique lower-triangular matrix with positive di-
agonal entries. Modifications of the standard Cholesky decomposition can be found
in the literature. For example, Pourahmadi (1999, 2000) shows that the modified
Cholesky decomposition of £~! offers a simple unconstrained reparametrization of
the covariance matrix, while Chen & Dunson (2003) propose an alternative modified
Cholesky decomposition to factorize the covariance matrix. As shown by Pourah-
madi (2007), who provides an overview of the two methods, estimation of the new
parameters in the latter decomposition may be more demanding computationally.
In this chapter, we employ a modification of the work by Pourahmadi (1999, 2000),
where we employ the modified Cholesky approach with unit variance constraints to
deal with correlation matrices.

Let 3* denote a symmetric positive-definite correlation matrix, Vi, defined as

1 M2, M3,
* 2 tTatil
X =CC = | oy L+ 07y, M2,:Ms: + M2s,i | >
T3 Theiths +M2si L4 0isM5s,

where 7.1; is a function of parametric components and smooth functions defined as

T T T
Neki = Vzk;szk + sz,iaZk = sz,i/gzk € R, (61)
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Vz, k,i, and C! is equal to

1 0 0
C; = Mme; 10
M3 Mesq 1

Terms Vi, Yok, Lizkiys Ok, Xopi and By in (6.1) are defined similarly as v, Y,
Lui, @, Ximi and 3, in Section 2.2. Formulation (6.1) allows us to represent many
types of covariate effects depending on the nature of the covariate(s) considered.
These include linear, non-linear, random and spatial effects. By using the variance-
correlation decomposition ; = T; 3 T; with T; = diag <1, (1 + n%Qﬂ-)_l/Q ; (1 + Nyt

nggﬂ-)*l/z), we have that the correlation matrix ¥, can be expressed as

1 12,4 M13,i
2 2 2
V 1+n7s vV 1+n75 ;M35 5
> — 712,4 1 M12,iM13,i 1723,
T > 2 2 2
AVASKICY \/(1+7712,i)(1+7712,i+7723,i)
713,i 112,iM13,i 1723, 1

\/1+77%3,i+77%3,i \/(1+77%2,z‘)(1+’7%2,i+77§3,¢)

The correlation parameters can therefore be defined as U12; = 2,/ 1—1—7}%272-,

Vi3, = 7713,@'/\/1 + 77%3,1' + 77%3,1' and a3 = (7712,1'7713,1“"7723,1')/\/(1 + 77%2,@)(1 + 77%2,1' + 77%3,2')-
It follows that

A
S Vi —_— s (1 + —1,A) - A
12,4 1 — 19%27/ 13,2 1 — 79%377; ) 23,1 1 — AJ

2

23,07/ 14025, —M12,i013,5 .

where A = ( ‘ \/112;;2 — ) . Therefore, by construction we have that 9., €
—V13,i

[—1,1], n.ks € R, Vz, k,i and the resulting correlation matrix is positive definite, as

required.
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6.3 Estimation details

Simultaneous estimation of all parameters of the trivariate additive binary model is

achieved by solving

A~

0 1= arg m(sin —0,(0) = arg main —{log L(Y;9d) — %5T§)\6}, (6.2)

where 6 = (B87,85)7, B is defined as in Section 2.2, By = (512,613,623)T, B.i. de-

. . . . ~ . . T - -
notes the coefficients in additive predictor 7,;;, Sx = diag (0151, Moy Sy ey )\llelNl,
T Q. 0T Q. 0T N N
01527 A2y S20s5 -+ Ao, o, 01537 3053055+ - 5 A3y D3Ny 01512, A120155120105 -+ 5 Mo, D198,
T ; 5 T N N .
015137 >‘13V13813V137 T )‘13N13813N137 01523a )\23@38231/23’ s 7>‘23N23823N23>? SZszk’ is de-

fined following a similar construction as S,,,,., Ak, is defined similarly as A,
and sz denotes the number of parametric components in 7, ,. Likelihood L is

derived from Lemma 6.3.1 for M = 3.

Lemma 6.3.1. Quantity L., evaluated at the vector (B;H,); is equal to the cdf of
a multivariate standardized normal vector with correlation matriz (B;3;8;);., that

18
Loy 8) = Wk = { @, (BH) 0, (BZB)) P = {@are, (W) 0, (X))

where W; = BH; = Wy, ..., War) T, Hy = (@ YFy (1)), -, @ (Fos(mard)))
Y= B.XBi, Wi = Umni® " Emn(Mmi))s fr Gmi = (2Umi — 1), Fin(nmi) denotes the
univariate cdf, Ny = a::niﬁm and B; denotes a diagonal M x M matriz with main

diagonal elements Ym; = (2ymi — 1), that is B; = diag(2y1; — 1,2y — 1, ..., 2ypi — 1).
Proof. See Appendix D.1. O

To minimize (6.2), we have extended the algorithm presented in Chapter 5 to
allow for the correlation matrix to depend on covariate effects as described earlier.
The practical success of this extension depends on the availability of the analytical
score and Hessian matrix of the model which are fundamental for a reliable, stable

and efficient implementation of the above mentioned algorithm. This requires to
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amend and generalize the results presented in Chapter 5. In particular, we derive

the analytical score function Vs¢;(8) and Hessian matrix VV574;(8) as

o - (2) %

on; )8F
3F on;
.
1 0%, JF, 63)
\Il oF; 0n;
ROF:\ Oni (0n, "1 0w, 0F,
v, aF o, | 96087  \ 96 @, UL OF,; On;
2y - O2F.
axpzk) 1 | 2w (ap) oW, O°F, }(ZZZ) 6.4

OF; F on; OF; onon’
where 7; = (015, 21, M3i5 T2,i> 3,45 7723,@')T7 Fi = (F1(n1), Fa(2:), Fa(m3:), Fa(nai), Fs(ns:),
FG(U&'))T with (Fa(n4i), F5(15:), Fe(16:)) = (D12, V13, Va3), On; /08 = diag (On;/I0PB4,
5772i/352> 87731'/353, a7712,1'/3512, a771371'/8/613, 6)7723,1'/8,323) and 85(5)/8771' = (35(5)/87711',
88(5)/8772“ 86(6)/87]3@, 86(5)/87]127“ (%(6)/87713,“ 85(5)/37723’1)1— Implementatlon Of

(6.3) and (6.4) has been a tedious and non-trivial task. This extension required, for

VVsstli(6) =

(3
(5
o
(

instance, the use of the multivariate chain rule which was employed as follows. As
shown in Section 6.2.1, ¥,;; may depend on 7,;; and n_,;, where n_.x; € 7; \ Nak.i,
for 7; = (7]12,2‘,7]13,2‘,7]2371)T. Hence, term OF;"/0n;, for Ff = (1912,1-,1913,1-,15‘2371)T7 is a
3 x 3 Jacobian matrix containing all the derivatives of F* with respect to ;. That

is,

0912, O0V12; 0V12;

6F* 12,4 113, 723,
[ 2 013, O0v13; O0V13;
a'fh M2, ma3,i 123,i
0235 0V¥235 023

12,4 13,4 723,

The above accounts for the dependencies between ¥.x,; and n.;; as well as n_; ;.
Second-order derivatives were derived in a similar way. More generically, implemen-
tation of the score function and Hessian matrix was achieved via Propositions 6.3.2

and 6.3.3 by setting M = 3.
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Proposition 6.3.2. Assume that WW; is a multivariate standardized normal vector
with correlation matrix equal to XF. Then the first-order derivative of the M -variate

normal cdf ®p (W50, XF) with respect to By, Ym =1,..., M, can be expressed as

0Py (W;;0,Y7)
9Bm

fm(nmz)
¢ (P~ (Frm (11mi))

= ¢Wni; 0, 1)@y—1 W_p il Whnis M™, ©1™)

(Qymi - 1)93;1

where M denotes the total number of equations under a multivariate binary frame-
work, Wi denotes the linear predictor of the m'™ equation and is equal to (2ymi —
DO (F(nmi)), Bm denotes the parameter vector of covariate vector @, the vec-
tor of linear predictors W_p,; is defined as Wi, ..., Win—1i Wint1,is - - - ,WM,i)T
and fm(Mmi) and Fp,(nm:) denote the univariate pdf and cdf respectively which can
be specified via the normal, logistic and Gumbel distributions. The mean M;™ and
variance-covariance matriz ©;™ is equal to O3, W, ; and O3y, — O3, O3, respec-

tively, with Oy, O3, and ©33"; defined by re-ordering Y} as follows

1x1 1x(M-1)
*M | @*m
. 11,6 12,i
2N o T
*m *m
621,i ! @22,1
—~—

(M—1)x1 (M—1)x(M—1)

The element ©1Y"; is equal to 1, the off-diagonal blocks ©71y'; and O3, consist of
the correlations 1y, i = tmm,itow,iOme i(2Ymi — 1)(2ywi — 1), where tym; and too,

denote the (m, m)™ and (w, @)™ element of matriz T;, respectively, V @ € {1 : M }\

*
mw,i

m, m # w, and & is the (m, @)™ element of matriz X} (matrices T; and X} are

defined Appendiz D.2). The symmetric sub-matriz O35 has main diagonal elements

equal to 1 and off-diagonals equal to 1% = topitwwi0hm i (2Ypi — 1)(2Ywi — 1),
Vo, e {l: M} \m, for g #w.

Proof. See Appendix C.2.1. O]

Proposition 6.3.3. Assume that WW; is a multivariate standardized normal vector

with correlation matrixz equal to X7. Then the first-order derivative of the M-variate
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normal cdf ®p (W;; 0, X5) with respect to B, Vz=1,... M -1 k=z+1,... M,

can be expressed as

aﬂzk

= (¢2(W12,z‘; 0, @:IQ)QM—z(W—m,JWu,i; Mi*_12, 93_12)7 ceey
P2(Whi—1,m4; 0, ®:M717M>¢M72(Wfol,M,i‘WMfl,M,i;

* * T
MFM-LM g M-1M a7"12,1’ aerl,M,i T
i » ) X B) ) mzk,i?
T2k, Nz2k,i

where M denotes the total number of equations under a multivariate binary frame-
work, B3 denotes the parameter vector of covariate vector i i, Wi = (Wi, W;w-)T,
W ki = Wiy oo o Wati Weitis o oo s Wieris Weati - Wara) | Va2, ke, W, and
Wiy refer to the linear predictors of the 2" and k'™ equations respectively and
are equal to (2Ymi — )P N Fr(Mmi)), Ym = 2.k, and fr(Nmi) and Fp, () de-
note the univariate pdf and cdf respectively which can be specified via the normal,
logistic and Gumbel distributions. The variance-covariance matriz O3 is equal
to ©3i%, while the mean M~ and variance-covariance matriz ©;** is equal to
e (@’{‘fﬁ)fl W.i and O3 — @57 (@ﬁﬁ)fl ©73%, respectively, Vz, k. The sub-

; xzk xzk xzk xzk ; *
matrices ©17;, O3, O35 and O35 are defined by re-ordering Y as follows

2x2 2% (M—2)
~ = A~
@*zk I @*zk
T*Zk 11 12,2
¢ @*zk ! @*zk
214 ! 22
S~~~ ~—~—

(M=2)x2  (M—2)x(M—2)

The sub-matriz ©5% has unit diagonals and off-diagonals defined as Toi = Yoz

k0o (2020 — 1)(2yri — 1), where ty,; denotes the (m,m)™" element of matriz
T, Vm = zk, and 7%, is the (z,k)™ element of matriz X} (matrices T; and X
are defined in Appendiz D.2). The first row (column) of ©33% (©%%) contains the

correlations 5, for o € {1: M} \ z, while the second row (column) of ©73% (©33%

z0,87

contains the correlations 15, ;, for © € {1 : M} \ k. The diagonal block ©33% is

a symmetric matriz with unit diagonals and off-diagonal elements equal to r* . ., V

X,i’
X € {1 M}\ {2k} for x # 0.
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Proof. See Appendix D.3. m

All derivatives have been verified as in Chapter 2.

6.4 Simulation Study

To gain some insights into the practical performance of the proposed approach, we
conducted a simulation study. We considered three binary outcomes, one binary
covariate and one continuous regressor. The chosen link functions were logit, com-
plementary log-log and probit. Exact simulation settings are given in the Appendix

D.4. The syntax to fit the proposed trivariate binary model is

out <- SemiParTRIV(formula f.1, data = dat, Chol = TRUE,

margins = c("logit", "cloglog", "probit"))
where f.1 consists of a list of six equations

eqnl <- y1 7 vl + s(zl)
eqn2 <- y2 7 vl + s(zl)
eqn3 <- y3 7 vl + s(zl)
eqnl2 <- 7 vl + s(zl)
eqnl3 <- 7 v1 + s(z1)
eqn23 <- ~ vl + s(z1)

f.1 <- list(eqnl, eqn2, eqn3, eqnl2, eqnl3, eqn23)

vl and z1 denote the binary and continuous covariates, respectively, s() represents
a smooth function that is set up using a penalized thin plate regression spline with 10
bases and penalty based on second order derivatives, the last three equations in f.1
refer to the additive predictors for the correlation parameters 919, 13 and 1,3, dat
is a data frame containing the variables in the model, Chol = TRUE indicates that
the modified Cholesky decomposition approach has to be employed and margins
denotes the three link functions.

Figures 6.1 and 6.2 depict linear and non-linear estimates obtained when applying

the proposed approach. Overall, the mean estimates are close to the true values and,



101 6.5. Empirical illustration

as expected, their variability decreases as the sample size grows large. The main
exception is perhaps the parametric component of the additive predictor related to
¥o3, where at n = 1000 the estimate exhibits some bias and a larger variability as
compared to the other parameters. Also note that the uncertainty of the estimates
for all the components in the correlations’ additive predictors is higher than that of
the estimates for the three marginal equations. This is not so surprising given the
complexity of the proposed model and the fact that the correlation parameters are
usually more difficult to estimate in a flexible regression setting when the outcomes

are binary. Overall, the results improve considerably as n increases.

6.5 Empirical illustration

We illustrate the potential of the proposed model using 2007-2008 birth data from
the North Carolina Center for Health Statistics. The data contain information on
64,690 male newborns and build upon the analysis conducted in Chapter 3. As
before, the choice of variables included in the model was mainly driven by previous
work on the subject (e.g., South et al., 2012; Neelon et al., 2014). The responses
are plurality (mb), infant’s birth weight (1bw) and preterm birth (ptb), while the
covariates are maternal race (nwhite), smoking status (smoker), weight gained by
mother during pregnancy in pounds (gained), age of mother in years (mage) and
county in which the birth occurred (county). For full description of the variables
we refer the reader to Section 3.4.

In Section 3.4 we built a model for the joint analysis of mb, 1bw and ptb, and
showed the impacts that the model’s covariates have on the responses as well as
some joint probabilities of interest. Here, the focus is on alternative specifications
for the link functions and on understanding how the association between the three
outcomes is modified by the presence of covariates. We started off with the specifi-
cation adopted in Section 3.4 where all model’s additive predictors contained all the
covariates available in the data. That is, all additive predictors included nwhite;,

smoker;, s(gained,), s(mage;) and Sgparia1 (county;), where the smooth functions of
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n = 1000

T T T
Y12 Y22 Y32 0122 6132 6,3,

n = 3000

T T T T T
Y12 Y22 Y32 0122 0132 6232

Figure 6.1: Linear coefficient estimates obtained by applying the proposed model to
data simulated from a trivariate Gaussian copula model with logistic, Gumbel and
normal margins. Circles indicate mean estimates while bars represent the estimates’
ranges resulting from 5% and 95% quantiles. True values are indicated by gray
horizontal lines.
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Figure 6.2: Smooth function estimates obtained by applying the proposed model to
data simulated from a trivariate Gaussian copula model with logistic, Gumbel and
normal margins. True functions are represented by black solid lines, mean estimates
by dashed lines and point-wise ranges resulting from 5% and 95% quantiles by
shaded areas.
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gained, and mage; were represented using penalized thin plate regression splines,
and the spatial smooth for the regional effects was set up using a Markov random
field approach (Wood, 2006). To simplify the model building process we used the
fact that the specification for the marginal models and their dependence can be
addressed separately. For each margin we fitted three univariate GAMs based on
the probit, logit and cloglog links. For each margin and link the covariate effects
were always all significant. The links chosen were logit, logit and cloglog for mb, 1bw
and ptb, respectively. We then focused on the correlations’ additive predictors and
viewed all of their covariates effects as being part of a unique equation. We employed
the classic backward selection procedure and also looked at the significance of the
effects to favor more parsimonious specifications. The additive predictors for the six

equations of the final model are:

mi = "1+ Yi20white; + yigsmoker; + si1(gained,;) + sia(mage;) + Sispasial (Ccounty,),

Toi = o1 + Yeonwhite; + yozsmoker; + so1(gained,) + Soo(mage;) + Sospatial (county;),

N3 = 731 + Ys2nwhite; + ysgsmoker; + s31(gained,;) + ssa(mage;) + Ssspatiar(county,),

Toi = 2,1 + Yizonwhite; + s12(gained;) + Siagpatia1 (county;),

Msi = 7131 + 7132nwhite; + 13 3smoker; + $131(gained;) + s132(mage;) +
S13spatial(CoOunty,),

Nosi = 7231 + S23.1(gained;) + s232(mage;),

Some results are presented below.

Figure 6.3 shows the estimated model’s correlations by county in North Carolina.
Here, the effects for two binary predictors in the model were set to zero (since the
majority of individuals are white and non smokers) while the continuous regressors
were set at their average values. Figure 6.4 displays the estimated correlations by
gained where the two binary predictors were set at 0, mage at its average value and
county was randomly chosen (although results were very similar across counties).

Generally, the three binary outcomes are strongly correlated with each other even

after accounting for covariates at marginal level. Interestingly, as shown in Figure
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Figure 6.3: Spatially varying estimates of correlations ;5 913 and 53 obtained by
applying the proposed approach to North Carolina data.



106 6.5. Empirical illustration

-0.85

gained

-0.70

-0.80

0.86
1

0.82
1

0.78

gained

Figure 6.4: Estimates of correlations 1,5 115 and 953 by gained obtained by applying
the proposed approach to North Carolina data. Point-wise 95% confidence intervals
were obtained using the posterior simulation approach described in Section 2.3.2.
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6.3, there is a good deal of spatial variation in the strength of the correlations.
Specifically, the three responses seem to be more strongly related in the west and
central areas of North Carolina than they are otherwise. Figure 6.4 suggests that
the absolute association between mb and 1bw increases for values of gained up to 50
and then decreases, the correlation between mb and ptb overall increases, and the
dependence between lbw and ptb decreases for values of gained between 50 and
60 and then increases. These are new findings which open up questions for further

research to elucidate the nature of such dependencies in North Carolina.

6.6 Discussion

This chapter proposed a generalisation of the trivariate additive binary model which
allows for the model’s correlation coefficients to depend on flexible additive predic-
tors. The flexibility of the approach allows us to gain detailed insights into the un-
measured covariates accounting for a variety of regression effects. In this way, general
forms of dependency (related with the correlation parameters) can be captured. The
parameters of the model can be estimated simultaneously within a penalized likeli-
hood framework based on a trust region algorithm with automatic smoothing param-
eter selection, and the model can be easily employed via the SemiParTRIV() /gjrm()
in the R package GJRM. The potential of the approach has been demonstrated using
simulated and real data.

To further enhance the flexibility of the model, an interesting extension is to allow
for trivariate dependence structures other than Gaussian. This may be beneficial for
obtaining a more accurate representation of the dependence between the responses

which may lead to improved estimation. This will be addressed in the next chapter.



Chapter 7

Non-Gaussian Distributions

This chapter considers non-Gaussian dependencies between three binary responses.
The model is described in terms of a copula-based extension where several methods

are discussed.

7.1 Introduction

As shown in the previous chapters, modelling trivariate binary data based on the
assumption of normality makes estimation feasible. The case of non-normal depen-
dencies, however, is more cumbersome. This chapter discusses some copula-based
possible extensions that allow for non-normal dependencies. Copula-based mod-
els allow one to form a joint multivariate distribution by specifying separately the
marginal distributions and the dependence structure linking the marginals.

We consider several ways of modelling non-Gaussian error dependence by re-
viewing the growing literature on copula-based models for trivariate binary data. In
general, this may be advantageous in empirical studies as such an extension would
allow one to assume a dependence beyond that implied by the classical Gaussian
distribution and at the same time to employ different marginals irrespective of the
association linking them. This would consequently allow for a greater degree of
flexibility in specifying and estimating the model.

In what follows, we discuss five different ways of modelling dependence for the

108
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trivariate case: (i) Archimedean copulae; (ii) mixtures of powers; (iii) pair-copulae
construction; (iv) trivariate Student t-distribution; and (v) composite likelihood
approach. The advantages and disadvantages of each method are discussed, whereas

some conclusions are drawn in the last section.

7.2 Copulae for trivariate binary models

For the sake of simplicity but without loss of generality, in what follows we assume

that additive predictor 7., is a function of an intercept.

7.2.1 Trivariate Archimedean copulae

Any continuous multivariate cdf can be decomposed into univariate marginal cdfs
that are connected by a copula function, which accounts for the dependence between
the marginals and allows for a great deal of flexibility in specifying the joint distri-
bution of the response variables. A class of multivariate copulae is the Archimedean
copula (e.g., McNeil & Neslehova, 2009; Noh et al., 2013; Nikoloulopoulos, 2016),
which includes several popular families. Focusing on the trivariate case, we define

the Archimedean copula C as

C(F1(ms), Fo(n2:), Fs(nsi);9) = C(€ " (Fi(mi)) + € (Fo(nz)) + € (Fa(ns:)): ),
(7.1)

for some generator function € : [0 : 1] — RT with €(0) = 1 and € (c0) = 0. McNeil
& Neslehové (2009) provide necessary and sufficient conditions for € to generate a
feasible Archimedean copula. The generator % is required to be 3-monotone, that
is differentiable up to the first order with (=1)*¢@(L) > 0, Vd = 0,1, for any
L € [0, 00) and with (—1)%¢Y(L) being non-decreasing and convex on [0, c0). There
are many families of Archimedean copulae; among the best known are the Clayton
(Clayton, 1978), Frank (Frank, 1979) and Gumbel (Gumbel, 1960), whose form is
presented in Table 7.1.
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Copula C(T)l, Vg, U3; 1) Range of v
T

Clayton (07" +0," +057 —2) 7 ¥ € (0,00)

Frank _% log {1 + (e™ 19111—1)(( _1:)2;)13)(6191}3_1)} 9 eR \ {0}

1

Gumbel exp {— ((—log1)” + (—log B2)” + (— log 173)19)5} ¥ € [1,00)

Table 7.1: Definition of trivariate Archimedean copulae, with corresponding param-
eter range of association parameter J.

In general, Archimedean copulae have the advantage of producing closed form
expressions and also of yielding different kinds of asymmetries. The specifications
in Table 7.1, however, can be rather restrictive in practical situations as they imply
a symmetric dependence between the three pairs (Fi(n1;), Fa(n2:)), (F1(n1:), F3(n3:))
and (Fa(n2;),F3(ns)). That is, the association parameters that characterize the
dependence between the three responses are assumed to be equal. This means that
Y12 = Y13 = Y93 = ¢ and thus a single dependence parameter can be estimated from
the model. This assumption can rarely be satisfied in practice. The next section

shows how trivariate copulae can be constructed in a less restrictive structure.

7.2.2 Mixtures of powers

Joe (1993) extended multivariate Archimedean copulae to a more flexible class using
the mixtures of powers. This approach produces two dependence parameters for
a trivariate copula. Based on bivariate Archimedean copulae and using Laplace

transformations, the trivariate mixtures of powers representation is

C(F1 (i), Fa(ai), F(1s0)) / / Q% (F (1)) G (F (s dtly(@05; 1)
“(F3(ns:))dAr(0n), (7.2)

where G(F1(n1:)) = exp (=%~ (F1(n1:))), G(F2(n2:)) = exp (=€ (Fa(n24))),
G(F3(n3;)) = exp (=¥ ' (Fs(n3:))) and ¥ is a Laplace transformation. Distri-
bution .#; has Laplace transformation ¢'(-) and .#, has Laplace transformation

((%_1 o))" (—ayt log(-))) . In this formulation, &; can be thought of as the
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unobserved variables that affect Fy (1), Fo(n;) and F3(ns;) while ay affects Fy(ny;)
and Fa(n2;), Vai, s > 0. When € = 7, expression (7.2) simplifies to (7.1). When

€ # V', the trivariate Archimedean copula corresponding to (7.2) can be formed as

C(F1(nui), Fa(nai), Fs(ns:)) = ¥ (7 1o % (€ (Fi(nu)) + € (Fa(na))) +

The derivation of the above expression can be found in Marshall & Olkin (1988).
Table 7.2 reports the expressions for some trivariate copulae when applying the
mixtures of powers approach. We refer the reader to Joe (1993) for details on

deriving these expressions.

Copula C (01, 0o, V3391, 72)

T

91

91
Cl&ytOl’l (17;192 + @;192 _ 1) J2 4 175191 _ 1:|

91 _
Frank — —g-log {1 — oy (1= 1= 05" (1 — e2™)(1 — e7V2%2)] ﬂ) (1— e—”m)}

1

91 91
Gumbel exp {— ([(— log 171)792 + (—log 172)792} 72 4 (—log 1;3)791) }

Table 7.2: Definition of trivariate copulae obtained from the mixtures of powers
approach. The association parameters 97 and 15 denote the association between
[01, U2] and 03, and 07 and 0y, respectively, while parameters ¢ and 7y are equal to
1 —e % and 1 — e 2. The parameter ranges of ¥; and ¥, are the same as those in
Table 7.1.

Although the specifications in Table 7.2 are not as restrictive as the specifica-
tions in Table 7.1, they are still not capable of modelling separately the dependence
between all pairs. Instead, they are symmetric with respect to (Fy(n:;), F2(n2))
which is often not the case in empirical applications. The partially symmetric
formulation of (7.3) also requires the constraint 9, < @5, where ¥ = 115 and
Y1 = th3 = ta3. Moreover, the ordering of the marginals in (7.3) can change. For
instance, instead of using the grouping ([F1(m1;), Fa(n9:); V2] , F3(n3;); ¥1), one could
employ ([F1(n1:), F3(n3:); 2] , Fa(n2:); ¥1) which provides a different interpretation

for ¥ and ¥5. Presumably each grouping is justified by some set of assumptions
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about dependence. This constitutes a potential weakness as it may be difficult to
choose a priori the ordering of the marginals in empirical studies. For a more de-
tailed description of the method we refer the reader to Joe (1997, Ch.5), Zimmer &
Trivedi (2006) and Trivedi & Zimmer (2007, Ch.3).

7.2.3 Pair-copulae constructions in 3 dimensions

An alternative approach to model multivariate data is the pair-copulae construction
(PCC), originally proposed by Joe (1996), which can be defined as a multivariate
copula that is constructed from a cascade of bivariate copulae. That is, the joint
distribution is obtained from using bivariate pair-copulae that may be conditional on
a specific set of variables, allowing to model the dependence among the marginals.
Due to their high flexibility and their simple structure, PCCs are becoming increas-
ingly popular for constructing continuous multivariate distributions (e.g., Aas et al.,
2009; Czado, 2010; Panagiotelis et al., 2012).

A PCC in 3 dimensions can be obtained by computing the trivariate cdf (Joe,
1996)

~ n2i
C(Fl(nli)aF2(772i)7F3(773i)) Z/ 013\2(F1\2(771¢|12i;§12)7F3|2(773i’l2i;1923);1913\2)

—0o0

Fo(la;)dly;, (7.4)

where C~13|2 is a conditional bivariate copula, 132 denotes the partial correlation co-
efficient defined as (913 — ¥12023) / <\/1 —92,/1 — 1933> and Fyjo and Fy)o are con-
ditional cdfs obtained from the bivariate cdfs C~(F1(771i), Fa(n2;); ¥12) and CN(FQ(UQZ-),

F3(n3:); ¥23). Note that the above representation is based on the assumption that
the conditional copula 513|2 depends on the conditioning variables only indirectly
through the conditional distribution functions that constitute its arguments. This
leads to the so-called simplified PCC. Here, the potentially complex dependence be-
tween variables that are conditioned on and the copula functions can be neglected,
thus making PCCs tractable for inference. Further, the PCC is order dependent.

That is, in (7.4) there are three possible ways of permuting Fq(n:;), Fa(n2;) and
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F3(ns;). A different choice of the variables’ order leads to a different PCC and to a
different factorisation of the joint trivariate distribution. This consequently implies
a different interpretation of the correlation parameters. Therefore, selection of an
appropriate PCC depends crucially on the study at hand; failure in selecting an ap-
propriate construction may yield misleading results. This may make the approach
inconvenient for practitioners as choosing an appropriate conditioning may not be
straightforward in practical studies. Moreover the evaluation of (7.4) remains a

challenging computational problem.

7.2.4 The trivariate Student-t distribution

The dependence of three responses can be characterized through a trivariate Student-
t distribution, which shares similar features to the Gaussian. In this work we ex-
plored the benefits of using the trivariate Student-t copula C (Fy(n1;), Fa(n2:), F3(n3:))
T35(W;;0,Y), where © denotes the degrees of freedom.

The trivariate Student-t copula has the appealing ability to allow for tail depen-
dence. Similarly to the Gaussian case, the difficulty with this distribution is that
the derivation of the analytical score vector and Hessian matrix requires working
with trivariate integrals, which is not straightforward. As mentioned in Section 6.3,
analytical derivative information is essential for the algorithm to work properly in a
complex regression setting; preliminary work confirmed that the use of classic opti-
mization techniques, implemented using the R functions nlm() and optim(), can be
inefficient and unstable when compared to a trust-region algorithm using analytical
first and second order derivatives.

Before attempting a full and proper implementation of this distribution, we ex-
perimented with it using a very simple simulation set up. Specifically, we employed

a DGP based on the following system of equations

yfl = —0.04 + 0.51)” + €14y
y; = —0.20 + 0.41)11' + €9,

y;z = 0.05 — 0.27}11 + €3i,
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where (8“,622-,531-)T ~ T35 (0,%) with o = 3, and v,,; denotes a binary regressor.
The correlation parameters were set as th2 = 0.2, Y43 = 0.4 and 93 = 0.8. We
generated 250 datasets with sample size equal to 1000.

Figure 7.1 compares the parameter estimates obtained when using the trivariate
Gaussian and Student-t copula models. The latter was implemented via the R routine
optim() where numerical derivative information was used. The results are very
similar across the two approaches, hence suggesting that there is no much to be

gained by relaxing the Gaussian assumption in the current context.
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Figure 7.1: Boxplots of parameter estimates obtained by applying the trivariate
Gaussian and Student-t copula models to 250 simulated datasets with sample size
equal to 1000. The first two rows refer to the regression coefficient estimates and the
last row to the estimated correlations. The true parameter values are represented
by horizontal gray dotted lines.
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7.2.5 Composite likelihood

The difficulty with evaluating high-dimensional integrals can be overcome by em-
ploying the composite likelihood (CL) technique by Zhao & Joe (2005), which is
based on a two-stage method. In our case, estimates ﬁl, BQ and Bg are first ob-

tained by maximizing the CL function of univariate margins
L(B) = Z {01 (y13: Br) + Ci(yois Ba) + L1(yais B3)
i=1

where (1 (Yni; Bm) corresponds to it contribution to the m univariate log-likelihood
function. Next, with 3, fixed at the estimate of ¢1(3), we estimate .4, Vz, k, by
maximizing the CL function of bivariate margins which is the summation of the

log-likelihoods of pairs (y.;, yx;). That is,

n

fz(B% ) = Z {W12,i€2(y1i7 Y2i5 /éb BQ, V12) + Wis il (Y1is Ysi; Bl, 63, Vh3)+

=1

Was il2(Yai, Ysi Ba, Bs, ?923)} ,

where w, ; are positive weights and £o(y.;, Yx:; Bz, Bk, ¥.1) corresponds to the it con-
tribution to the bivariate log-likelihood of (y.;, yx;). The choice of optimal weights,
such that the loss of efficiency is as small as possible, is addressed in the works by
Kuk & Nott (2000), Andersen (2004), Zhao & Joe (2005) and Joe & Lee (2009).
The CL method is a relatively simple approach that can deliver reasonable re-
sults when the log-likelihood function is computationally too difficult to implement.
Hence the motivation for the use of this method is usually computational tractabil-
ity and is commonly employed in the context of joint modelling of high-dimensional
responses. In the trivariate context, however, tractability is not a big concern. A
potential drawback of this approach is that the information in the data may not be
fully exploited as parameter estimation is carried out in two steps, hence making

the CL approach less efficient than the simultaneous parameter estimator.
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7.3 Discussion

We have discussed the use of copula-based models for trivariate binary data and
derived some results. The aim was to model dependence structure beyond the clas-
sical Gaussian distribution. Although the approaches discussed in this chapter allow
for non-Gaussian structures, the majority of them make certain strong assumptions
which may be regarded as acceptable only in specific applied contexts. In fact,
such methods would limit the generality as well as applicability of the modelling
approach presented here. The only suitable alternative would appear to be the
trivariate Student-t distribution, however, as shown, there is not much to be gained
by using such distribution in our context. In conclusion, the Gaussian copula seems

to be a sensible and tractable modelling choice for the case of trivariate binary data.



Chapter 8

Final remarks

8.1 Summary of the thesis

The current thesis has been mainly motivated by the recent applied and method-
ological interest in modelling simultaneously more responses in a regression setting
and we aimed to widen the applicability of the method by introducing a flexible
modelling framework for trivariate Gaussian copula additive models that accounts
for the presence of unobservables. Our target was two fold: (i) to develop the theory
needed for fitting flexible trivariate equation models; and (ii) to make the develop-
ments available to the public use by implementing a reliable estimation algorithm
in the R language.

In Chapter 2 we outlined a flexible joint modelling framework by considering
trivariate probit models with additive predictors. We have shown that our extended
framework provides improvement to model fit and also offers better prediction when
compared to existing estimation approaches. We have also shown that under small
or moderate sample size, the MLE results in some situations are unsatisfactory. Such
problem has been tackled in Chapter 3 by introducing an approach for penalizing
the correlation coefficients. The software for straightforward implementation of
the proposed approach has been provided, while some asymptotic properties of the
proposed estimator have also been discussed. The validity of the method has been

confirmed via simulation studies.
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As byproduct of the framework developed in Chapters 2 and 3, Chapter 4 in-
troduced a flexible framework to model unmeasured confounding and non-random
sample selection where several models are discussed. A Monte Carlo experiment
showed the promising performance of the double sample selection model, while the
endogenous trivariate model has been used for the analysis of two chronic diseases
on labor force participation.

Chapter 5 proposed a framework which allows researchers to estimate trivariate
binary models with arbitrary link functions. We explored the possibility of modelling
the margins using probit, logit and complementary log-log links through the use of
Gaussian copulae. The model was illustrated through simulated data.

In Chapter 6, we further enhanced the trivariate Gaussian binary model by al-
lowing the model’s association parameters to depend on several types of covariate
effects. The practical performance of the approach was assessed via real data, where
we jointly analysed multiple births, premature birth and low birth weight in North
Carolina using a triariate Gaussian copula additive model that permits each corre-
lation parameter to be specified as a function of an additive predictor.

In Chapter 7 we have discussed some copula based possible extensions to model
the dependence structure beyond the classical Gaussian distribution. After a review
of the available methods, we concluded that such an extension may not be particu-
larly interesting for the class of models we consider. It looks like that maintaining

the assumption of the normality is not too problematic for trivariate binary data.

8.2 Topics for future research

Although in this thesis we have restricted to the case of binary responses only, it is
conceivable that other types of marginal outcomes might be of interest (e.g., con-
tinuous, discrete). Therefore, an interesting extension of the proposed methodology
would be to account for outcome types other than binary. This will considerably
extend the scope and applicability of the trivariate modelling approach introduced

in this thesis. Such an extension will require deriving the model’s log-likelihood and
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its respective score and Hessian components.

A second extension of the proposed model would be to consider systems involving
more than three responses. The parameter estimation of such a model can be
employed via the developed methodology presented in Chapters 2 and 3, where the
log-likelihood function as well as the analytical derivative components need to be
recomputed. This can be implemented via the propositions presented throughout

the thesis by replacing M with the total number of equations one wishes to use.



Appendix A

Complements to Chapter 2

A.1 Proof of Lemma 2.3.1

Proof. For convenience we ignore index k and term Y;; 7. By definition,

Li(y;0) = P(=guyy; <0,..., —miyan < 0)
= P(—gu(mi +e1) <0,..., —Uni(mi + eari) < 0)
= P(—gumi — €1 <0, .., =Inralingi — Jnmicni < 0)
= P(—gucu < G, - - - —Imi€ms < Yminni)

= ¢M,—Bi€i (anza 07 2)

YMinMi J1imi M
c=1

—00 —00

Since fm; is either equal to —1 or 1, it follows that B; = B; ' and |B;XB;| = |X|.
In addition, the pdf of a multivariate normal vector —B;e; with zero mean and

covariance matrix 3 can be re-expressed as the pdf of a multivariate normal vector
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g; with zero mean and covariance matrix B;XB;, that is

¢M’,Bi5i (B,Lll, O, E) = ‘27TE|7% exXp {—%(—Blll)T(E)l(—lel)}

~ prBEB e {7 B28) |

Therefore, equation (A.1) can be written as

YMinMi Y1iM14 M
Ei(yi; 5) = / e / (bM,si(li; 0, Bisz‘) H dlz,;
- - é=1

= (I)M,m (Bﬂh’; 0, BiEBi)

= q)M,ei (wi; 0, Ti),

where

1 7“1271- Ce TlM,i
2, 1 - ToMy
Ti — )
"M Tomygo - - 1

for rop; = .k (2y.: — 1)(2yks — 1), V2, k,i. Note that the above derivation applies to
all /;:s, thus the likelihood £ ; is equal to

Lii(yi:8) = {@are (w0, (X)) P,

as required. O
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A.2 Computation of trivariate normal integrals

A.2.1 Numerical computation of multivariate normal inte-

grals

In what follows we describe in detail the numerical method used in pmnorm() in R

package mnormt (Azzalini, 2016) for the evaluation of multivariate normal integrals.

Introduction

Let (E,T) = (&1, 1) x (E2,T2) X ... x (Enr, Tu) be a M-dimensional rectangle.
Then the problem is to find

J1 N 1
Py (E,.T) = / / (——ljr;lli) dl;, (A2
M( ) W exXp 9 ( )

where |Y;| denotes the determinant of Y;. Since we are interested in the value
of the distribution function ®,,(w;;0,Y;), we have that £ = (—o0, ..., —00); this
reduces the number of variables in the problem and makes the evaluation of ®,;
simpler (see next section for more details). In addition, the upper bound J is
equal to (wy,...,wp ). For M =1 and M = 2, a reliable way to calculate the
distribution function is via pnorm() in stats (Team & contributors worldwide, 2015)
and pbinorm() in VGAM (Yee, 2015). Here, we assume M > 2 and we describe Genz’s
approach for computing ®,; which uses numerical integration software based on sub-
region adaptive methods. A problem, however, that arises with these methods is
that they assume finite integration limits. Because infinite limits are used in our
case, we need to handle them: we apply a sequence of transformations to turn the
problem into a form that allows for efficient computation of ®,;. Note that even
if £ is finite, the transformations are also applied in order to make the numerical
computation of the integral easy. The set of transformations that are employed are

described in the next section.
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Genz’s method

The basic idea of this method is to transform the original domain of integration
(€,T) to [0,1]M = [0,1] x [0,1] x ... x [0,1]. First we will keep the domain of
integration general and assume that both € and J are finite. Then we move onto
our case where &, = —oo and J,,, = Wy,;, Ym. Genz’s method can be employed

using the following sequence of three transformations.

(T.1) We begin by employing the Cholesky decomposition transformation l; = Cla;,
where C} denotes the Cholesky factor of the covariance matrix Y;, such that
C; is a lower triangular matrix and Y; = C;C;T. Vector a; consists of

univariate standard normal random variables that are independent of each

other. Applying this transformation to equation (A.2) leads to

Ty (a1) Tr(a,..,anr—1) 1
wie.g) = apiEgee [ e (~4(Cia)”

(a1) E\lar,..anr—1)

(C-C’-‘T)* "(Ciay)) |C*|da,~

T3 (a1) Tryiar,,anr—1)
= 1/ ]TQ 27r / / / exp (
Eylar,.an—1)

—2a,jc*Tc* TCr™ 1C*al> |Tﬂdai

1 Ty rJ4(ar) Tilar,..,anr—1) 1
= —/ / / exp (——a az> da;
) > Jer Jeyan €1 (a1,ani—1) 2
j J3(@1)  q o2 /J,’W(a1,---7aM1) 1 a3,
2
£

= e 2 ... e 2
/ &) (ar) V2m v(at,.anr—1) V27T

T J5(ar) Tni(ar,.apr—1)
N T / b(as) ... / b(ans)dayy . . da,
: Ehs(atari 1)
(A.3)

where the limits & (aq,...,ap—1) and J, (a1, ..., ap—1) come from inequality

€ <!l;,=Ca; < J. Specifically, for m =1

E=&E<a<Th=J,
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while for m=2,... M

m—1 m—1
g — ( Zh 1 thzah) < < ( Zh 1 thzah) 7t
m — am — - jm?
Cmm,i Cmm,i
where &, = & (ay,...,ap—1) and J,, = J} (a1,...,ap—1). The elements
k 7 7 *
Crani and ¢ o refer to the components of the lower triangular matrix C,
that is
1 0 0
k *
Ch1:  Cagi  vn. 0
* 21, 22,1
Ci -
k * k
Cyvii Cm2i -+ CMMy

The element cj; ; is equal to 1 because of the following relation: ¢j, ; = |/r11;
where 71, refers to the (1, 1) diagonal element of Y;. Since ry;,; = 1, it

follows that cj; ; = V1i=1.

(T.2) Next we transform the a,,’s by using a,, = ®1(Z,,), where ®(a,,) is the

standard univariate normal distribution. Therefore equation (A.3) becomes

T pT2(21) Tm (21, 20m-1)
w(E.T) = /S /5 /S oan)o(as) ... olan)

2(21) M(Z1,020—1)

le

anr)

71 Ta2( 21 Tv (21,20 -1)
= / / . / dZy ... d2y, (A.4)
S1 (Z1) Sm (21,20 1)

where the limits for m = 1 can be defined as
S1=9(&) <Z <) =T,

while form=2,... M

m—1 m—1
SM:q)( Zh 1 thz (Zh)> <z SCI)( Zh 1 thz (Zh)> TM,

c ck

mm,i mm,i
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(T.3)

where Sy and Ty refer to Sy (24, ..., 2y-1) and Ty (21, ..., Zp-1).

Even though (A.4) is much simpler than (A.3), the integration region is more
complicated. To overcome this, Genz (1992) suggested the transformation
Zm = S+ wn(Tm — Sim), which standardizes this region, that is 0 < w,, < 1,
Vm. In addition,

Z
flw—m = T = Sy = dZm = (Tra — Su)dwrm.

Therefore, (A.4) can be expressed as

Ou(T) = /01/01.../01(7;—:51)(75—52)...(er—sM)asz...dw1

= (T -8) /01(75 ~S)... /OI(TM — Sur)dw,

where S,,, = ® ((Sm — Zzzll c:lh’iQ)_l(Sh + win (T — Sh))) /cfnm’i) and

T = @ (T — Xp s ® Sk + wi(Th — Sh))) /€hmy)- Since both S,
and 7,, do not depend on w,,, the innermost integral is equal to 1 and the
number of integration variables can be reduced to M — 1. Therefore, standard

numerical integration methods can be applied for the computation of
1 1
@M(j):/ / f(wl,...,wM,l)dw,
0 0

for f(wl, coowy—1) = (T = S1)(Te(wr) — Sa(wr)) - (T (wry oo ywnr—1)—

SM(w1 e ,wM_l)).

Computation of ®,,;(w;;0,Y;) using Genz’s method

Since we are interested in the computation of the multivariate normal distribution

function @y (w;;0,7Y;), &, = —o0 and J,,, = Wy, ;, Ym. Therefore,

C*

mm,i

S o (—oo — 35 @ (Sn o+ (T~ sh») Lo
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and

c*

mm,i

o (wmvi — Y i TN (Sh + wn(Th — 5h))>

3 b
Cmm,i

® (% -y c;h,z@—l(wm)))

since S, = 0, for all h. It follows that

1 1
Oy (wi;0,7;) = // TiTa(wr) . Tar(wr,y -y war—1)dw. (A.5)
0 0

Once we get the transformed expression (A.5), the sub-region adaptive method is

applied (see next section) and thus the cdf ®,; is obtained.

The algorithm

The algorithm that is used in the subroutine sadmvn() in Fortran-77 for the nu-
merical computation of the multivariate normal distribution function ®y;(w;; 0, Y;)
is based on subdivisions of [0, 1], where each sub-region is used to provide a better
approximation to @/ (w;;0,7Y;). As previously described, we set S, = 0 to avoid
wasteful evaluation of .

The basic algorithm can be described as follows. Suppose that € denotes the
global absolute error and Ny, is the maximum number of sub-regions. The algo-
rithm starts with region Ry; = [0, 1]™. At the N* step, [0, 1] is partitioned into N
sub-regions Ry, . .. Ryx and in each sub-region we get estimates Iy, . . ., Ixx of the
corresponding integrals by applying quadrature rules. Moreover, we obtain absolute
error estimates Exy, . .., Fxx. If Exy+. . +FExxy < € = 1075 or N > Ny = 2000x M
then the algorithm stops. Otherwise a new subdivision has to be determined and
the above procedure is repeated. Further details about the algorithm can be found

in Genz (1991), Genz (1992), Genz & Kass (1997) and Genz & Bretz (2002).
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A.2.2 Bivariate conditioning approximation for trivariate

normal integrals

This section describes the bivariate conditioning algorithm applied for the evaluation
of trivariate normal integrals, which is based on the work by Trinh & Genz (2015).
As described in Section 2.3, the computation of triple integrals is required only for
the evaluation of P(y;; = 1,y2; = 1,y3; = 1); the remaining probabilities can be
evaluated via univariate and bivariate normal integrals. Thus, the aim is to provide

accurate and low computational cost methods for approximating the triple integrals

1

1 14 n2i 134
D3 (n1i7772i7 1345 2) = —/ / / exp ( l:zlll) dl“
VIR J oo S J oo 2

where ¥ = (Y;),.

The algorithm is based on the Cholesky decomposition of the correlation matrix
¥ = CCT, where C is a lower triangular matrix. Note that the decomposition
always exists as X is symmetric and positive-definite because of the restrictions

imposed on the correlation parameters. Based on this, we have that 1] X7, =

] C~"C7!; and by using transformation l; = Ca; we get ] X711, = a/a; with
dl; = |Cl|da; = /|X|da;. The integrals are transformed according to —oo < Ca; <

1;, where 1; = (114, 12, 7’]37;>T. Specifically, the limits can be determined as follows

@ i /

—00 <a; < = =M
C11 V011
T2i — C2181; Tl2i — C2141; ,
—00 <ay < = = T)o;
C22 V022
7]3i — C31a1; — C32a9; 73; — C31a1; — C32a9; /
—00 <ay < = =

C33 B 033 o

The a,; values, Vz = 1,2, cannot be computed directly, so they are approximated
using their truncated expected values:

fiar, = E(=00,1.,) = (6(=09) — (nL,)) / (B(n)) — B(—00)) = —6(nL,)/D(r,). The
basic idea of this replacement is that these values are the average values that the

a,;$s would have if we simulated a,;s with values taken from truncated univariate
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distributions. In order to improve the accuracy of the results the authors apply
variable re-ordering. They specify that these orderings do not change the value of the
probabilities as long as the integration limits and corresponding rows and columns
of ¥ are also permuted. Specifically, sorting the variables so that those with the
shortest integration interval widths are the outer integration variables reduces the
overall variation of the integrand and thus makes the numerical integration problem
easier.

The algorithm is structured as follows.

Step 1 First, we need to select the outermost integration variable. This can be

done by choosing the variable ¢ so that

- Ti - Nsi
¢ = argminj<.<zq P ( > — CI)(—oo)} = argminj<.<s {CI) ( )} :
) { AVASRS ) Vs

The rows and columns of ¥ as well as the integration limits for variables 1

and ¢ are interchanged. The elements in the first column of C are computed
as follows: ¢1; = /011, c21 = 091/c11 and c¢31 = 031/c11, where o.. denotes

the (-, )" element of 3. Then, we set fy;; = 7}, and fia,, = —@(A1;)/P(N1s).

Step 2 Next, ¢ is chosen such that

¢ = argminggggg P —Tki _ Cgl,uzu - (I)(_OO)
O¢g — Cgl

. . Nei — Co1llay,
= argmlnggggg, —2 .

O¢¢ — C1

The rows and columns of 3, the integration limits, and c;» and co are
interchanged. The elements in the second column of C are computed as
follows: c99 = m, c32 = (032 — C91031)/Coa. Then we let 7y =
(M2 — Carflay,;)/C22 and fla,, = —@(7)2;) / P(1)2i).

Step 3 At this step, we calculate the (3,3)" element of C as cz3 = \/033 — ¢ — %,

and we set 93 = (93; — C31/lay; — C32flay; )/ C33-
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Step 4 Based on the resulting C matrix, we can determine L and D using the
relation LDLT = CCT, where D = C5C[, L = CCZ' and Cp denotes
the block diagonal matrix of C.

Step 5 Once we obtain C, L, D and the new upper integration limits, say n1;, 7o
and 73;, the next step is the computation of the bivariate normal approx-
imation. In particular, based on a similar transformation that has been

discussed above, we obtain the updated upper integration limits as follows

i - Moi - i — 3

7711‘:—~,T)2z':—~,7]3¢— —
Vdi V dao Vdss3
where g3 = Z3151+l~3252, €1 =1V C211, €o = [l 6222, f1 = 1/F {=pp(12;) P (71—
P12i) /@) — (1)@ (i — pia) /@) }> flz = 1/ F {—pd (1)@ ((2i — pine)/4)

—O(N2)P (M1 — p12i) Q) }s p = Ciu/ dirdyy, § = /T —p, F = ®y (T4, T2i; S2)

and €2 is a 2 x 2 correlation matrix with 1s in the diagonals and p in the

th

off-diagonals. The elements d.. and [.. correspond o the (-,-)"™ entry of D

and L, respectively.

Step 6 Based on Trinh & Genz (2015), the bivariate normal approximation for

trivariate normal probabilities can be written as follows

(193(7712'7 125 1345 E) ~ Oy (ﬁliu T2 Q) (I)(f]?n')-
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A.3 (Geometric proof of the restriction on a cor-

relation matrix

Geometric proofs of the restriction on a correlation matrix were first provided by
Glass & Collins (1970) and Leung & Lam (1975). In what follows, we discuss a
proof and show that the restriction on the values 115 can assume when ;3 and 93
are fixed. This is also displayed through spherical triangles.

Suppose that the n observations of the error term ey; are coordinates on the
n-orthogonal axes of an n-dimensional space. Thus, the observations of €1, may be
considered as corresponding to a vector, €1, in the n-space. Similarly, two vectors
corresponding to the n observations on e9; and e3; may be established in the n-
space. By using the well known result, that the Pearson’s coefficient is equivalent
to the cosine of the angle between two vectors (Anderson et al., 1958, pp. 49-50),

we re-express 1,y as

Ve = cos(@ur), (A.6)

where ¢, denotes the angle that separates €, and €;. Now, consider vectors €1,
€y and €3 in a three-dimensional subspace of the n-dimensional space. Let the
angles separating €, and €s, €; and €3, and €5 and €3 be fixed at 19, 13 and (a3,
respectively. Then, €, €; and €3 form a spherical triangle on the surface of a sphere
of radius equal to one, centred at the origin O = (0,0, 0) with vertices A, B and C
(Figure A.1). Planes Py and 75, P, and 75, and P; and P, form the dihedral angles
/CAB, /CBA and ZACB respectively. Suppose that Z/CAB = a, ZCBA = b and
ZACB = ¢ and assume that angles @12, (13, ¥23, 0, b and ¢ are between 0 and 7

radians. By using the spherical law of cosines for angles, we have the following three
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equations

COS P12 = COS P13 COS Pa3 + SiN (P13 SiN Pa3 COS ¢, (A.7)
COS P13 = COS (P13 COS (Pa3 + SiN 1o SiN o3 cOS b, (A.8)
COS (a3 = COS (P12 COS P13 + sin 15 Sin 13 cos a. (A.9)

Solving (A.7), (A.8) and (A.9) with respect to ¢, b and a, respectively, it can be
shown that the correlation parameters are restricted to a specific range. For instance,
by solving equation (A.7) for cos ¢ we have that cosc¢ = (cos 12 — COS 13 COS Pa3)/
sin 13 sin gag. Since cos¢ € (—1,1) it follows that —1 < (cos 12 — oS 13 COS @a3)/
sin 13 sin 93 < 1, which implies that — sin 13 sin a3 < €OS 12 — COS (P13 COS Po3 <

sin 13 sin o3 and therefore
COS (P13 COS (P23 — SiN P13 SiN P23 < COS P12 < COS P13 COS Pao3 + Sin 13 8in a3.  (A.10)

Then, by using equation (A.6) and the trigonometric identity cos?(@.x)+sin®(¢.;) =
1 = sin(pn) = V1 —0%, Vz = 1,2,k = 3, it follows that inequality (A.10)

becomes

19131923 — \/1 — 79%3\/]_ — ’1933 < 1912 < 19131923 + \/1 — 79%3\/]_ — ’1933,

which is equal to (2.7). The interval for ;3 and 0,3 is obtained by solving (A.9)
and (A.8) respectively.
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Figure A.1: Spherical representation of intercorrelations among the error terms &,
€, and €3.
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A.4 Proof of Propositions 2.3.2 and 2.3.3

The first-order derivatives of the log-likelihood function for a multivariate probit
model are obtained as follows. First, we express the multivariate normal cdf &,
in terms of multivariate integrals. Then, by using conditional density distributions,
we decompose ¢, into a product of two normal probability density functions (pdfs)
and re-express ®,; based on that decomposition. In doing so we proceed with the
calculation of the two derivatives, where the derivative of ®,; with respect to 3,, is
mainly based on a decomposition formula, while the derivative of ®,, with respect
to ¥, has been derived by applying an idea by Plackett (1954).

The multivariate integrals

WM i w1, M
Oy (w;; 0,7 :/ dur(L;0,07) [ ] dle (A11)

—o0 —o0 =1

can be written in a more convenient form by using the conditional distribution of
the normal multivariate distribution. This can be achieved by partitioning both I;

and Y such that

L= ()",

and
* * | * *
1 P12 o+ Tiwi 1 Trut1s oo Tim
|
* * | * *
T91 1 Toui | T2u+1,i To M
|
! |
* | * |
v [ O @ ) |, , Lo .
i o [ o - Tuly T2 V Tyt - Tu,Mz
9. /7 V- -"—-"—""""""=""="="="="="=-"=-=-=- - 4T - -"-"-"-" - - - - - - - - ="
21,2 : 224 , - T* | 1 ,
u+1,1,4 u+1,2,2 u+1,u, | u+1,M,i
|
|
|
|
* * * *
T a2 o TMug ' "M 1
(A.12)

. T
respectively, where ll,i = (ll,ialliv---alu,i) ) l2,i = (lu+1,ialu+2,i>--'alM,i
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L., M =1, 7} = tanh(9%,) (292 — 1)(2yks — 1), ©F;,; is a u X u matrix, @3, ; is
a (M —u) x (M —u) matrix and @3, ; = ©7] ;. By using the chain rule for random
variables and the partitioned vector l; as well as the partitioned matrix Y, the M-
variate normal pdf ¢,/(1;; 0, YF) can be expressed as the product of the conditional

density function of ly; given I, ; times the pdf of I, ;
drm(li;0,77) = Onr—u(loillis)dulliy), (A.13)
where

Ll ™ Nur—u(E(lll ), Var(lo|L 1))
iid * *— * * *— *
~ NM*“(HIQJ + 621,i@11 1(l1,z’ - l’l‘ll,i)7 @2271' - @21,1'@11,@1@12,0’ (A.14)

and

by ~ Nu(]E(ll,i)vvar(ll,i))

itd

~ Nu(/-l’ll,iv @Tl,i)' (A15)

p,, and py,, stand for the mean of I;; and l; respectively. It follows that the

integrals (A.11) can be rewritten as

wi,;

WM,
’ lo ity 5 ls ity 4
Pp(wi;0,Y7) = / Snr—u(log|ly s M @ bl iy, ©71 )
—o0

—00

M
1] . (A.16)
c=1

*loillis * *—1 *laillie * x—1
where M; = pu,, + 05,07 (i — pu,,), ©; =0 — 05,011,001,

3 7

My, = Hi,, = 0 and OF; ; denotes the u X u sub-matrix of Y7.
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A.4.1 Proof of Proposition 2.3.2

Proof. Consider formula (A.13) and let w = 1, such that

O (1i;0,X7) = dnr—1(loi|lii)d(lis).

By re-ordering matrix (A.12) we obtain

1x1 1x(M—-1)
@*m | @*m
o 115 12,i
2 o T ’
*m *m
@21,1' ! @22 i
S~~~ ~~—

(M=1)x1 (M—1)x(M—1)

Vm, where O77;, O3, O3, and O3y are defined in Proposition 2.3.2, while the
full matrix Y™ can be found in Appendix A.5. Then the multivariate normal cdf

(A.16) becomes

WM 5 W5 w1, M
Dy (w; 0,X5™) = / / o (10,07 [ ] dle

—00

M
= / ¢M71<lfm,’i‘lm,i; Mi*m7 @:m)¢<lm,zv ,ulm,ia @ﬁ??l) H dlé,ia (A17)
C; c=1

for C; = Cy; x Cy; X ... x Cyp, where C,y; is the interval (Wi, +00) if Y = 1 and
the interval (—00, Wy, ;] if Ymi = 0. Vector i = (L1 bty b1 - - -5 lari) |
where [,,, ; refers to the m' element of vector I;. M;™ and ©;™, respectively, denote
the mean and the variance of 1_,, ;|l,;, while t,, . and O77"; denote the mean and
variance of [, ;. Applying the properties of the conditional multivariate normal
distribution, it follows that E(l,,;) = ju,,, = 0 and E(I_,;) = p_,,, = 0. (Note
that E(I_,,|l.:) # 0.) Hence, the distribution of I_,, ;|l,,; and I,,; is equal to

Unillms % Noarot (B illns), Var(lpm b))

iid *m *m\ —1 *m *m sm | —1 *m
~ Nu (NLm,i + 057 (O©1") " (bni — /’le,i)7 05 — O (@11,i> @12,i>
iid -1 -1

Y Ny (O35 (017) 7 1 O3 — O3 (077) ' 0331
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and

i " N(E(Ls), Var(ln))
i’i\c’l N(/le,w
iid *m
~ N(07 @11,1)7

SHE)
respectively, where the sub-matrix ©77"; in this case is equal to 1, Vm,i. It follows

that (A.17) becomes

M
Barwi 0. 1) = [ 6t 0. 0)rr-1Lmallnss M, 07 [l
C; é=1

-/ : B(ls50, 1) { /C

¢M—1(l—m,i‘lm,i; Mi*ma Gjm)dl—mﬂ} dlm,z

= [ M0 D (Wl M O (A.18)
where Wi = (w1,z‘, Wiy s Win—1,55 Win4-1y45 - - - 7wM,i>T and Ci,fm € {Cz} \ sz‘-

According to the properties of the conditional multivariate normal distribution, it
follows that the expected value of w_,,;|l;,; is equal to M} = (-);Tilmﬂ' while
its variance-covariance matrix is expressed as ©;" = @33, — O3, ©77",. By using
the chain rule as well as the fundamental theorem of calculus, it follows that the

derivative of (A.18) with respect to (3, is equal to

8(I)M(wi; 0, T?m) aCDM('wi; 0, @}km) awm,i

- afm,i {/: s 0, 1) P41 1 (0l i M @;"“)dzm,i} x

awmﬂ‘
(5)

a m,i
= (b(wm,laoa1>(I)M71(w7m,z|wm,l>Mz*mv(-):m) ( - 7)'

Since Wy ; = (2Ymi — 1)X,]..Bm, the derivative of w,,; with respect to B, is equal to

(9wm,z-

B

= (2ymz - 1)X7ju'7
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and thus

P (w;; 0, Y7™)
B

= (W33 0, D)@ 1 (W i Wi i3 M, OF™) (2ymi — 1)X,,

mi?
*m *m *m *Mm *m *m :
for M™ = O3, wp,; and O™ = O3, — O3",O77";, as required. O

A.4.2 Proof of Proposition 2.3.3

Proof. 1f we differentiate equation (A.11) with respect to the correlation coefficient

V%,., we get the following

0Py (wi; 0, T7) o [ [ e M
o= . 1;;0,Y)
097, 097, / d’M 1:[

—00 —0o0

and by using the chain rule
6®M(wz70,T*) zk'L
o= 1;;0, Y7 dlz;
o0, v o ot H aﬁ*

0o (150, YY) Oy
- ; | [dic, §p 2 Al
{/c oy - ey o, ’ (4.19)
i zk,i =1 z

where 7, ; and region C; have been defined previously. By using the following

differential equation derived by Plackett (1954)

Opn(1:;0,Y;)  PPn(1:;0,77)

ar:k,i oL, 0l ’

equation (A.19) becomes

04 ol ;0ly; - o,
?Par(l:;0,Y%) o’
_ 0 2 | dl g s =22 (A20
{/(;zk,i [/Czk,i 8lz7zalkvl ; & 8192]6 ( )

where szk,i € C; \ {Cziaéki}a Czk,i = C,; X Oki; L, = (lz,ialk,i)T and I_.;; =

c K3

(ll,iu s 7lk—1,i7
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Uettis -y lomtin Logis lMyi)T. According to the fundamental theorem of calculus, the

integral inside the brackets is equal to

L dly = 50, X7 )dl, ;dl ;
/Czkﬂ- alz,ialk,i & 8lzzalkz /Z]“(bM v ) &

82
Al Ol {/ gy, P00 0 gl }
= ¢M(ll,la ey lz—l,zv wz,i; lz—i—l,ia <. 7lk—1,i7 wk’,i7 lk—‘rl,i) R

Therefore, (A.20) can be expressed as

aﬁzk‘z

/ ¢M(l1,i, vl wag s - T Whes leyasis - - -
C—zk i
*

ori,
s 0, X5 )dl i b —2.
v,

The last expression can be written in a more convenient form by using the conditional
distributions of the normal multivariate distribution. This can be done by imposing

the special case u = 2 in equation (A.13), that is

¢M(li;0,Tka) = ¢M72<l2,i’l1,i)¢2(ll,i)> (A-21)

where Iy ; and I, ; correspond to l_,; and w,y ;, respectively, with w,x; = (w,;, wkyi)T.

Re-ordering matrix (A.12), we obtain

2x2 2x(M—-2)
/\; \ /\;
*Z | *Z
pek_ [ Oma o @i (A.22)
¢ w2k ! *zk ’ '
ezii ! @25,1‘

(M=2)x2  (M—2)x(M—2)

Vz=1,...,M —1,k=z+1,... M, where the sub-matrices ©77%, @33", ©3" and

©33" are defined in Proposition 2.3.3, while the full matrix Y;** can be found in
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Appendix A.5. By using both (A.21) and (A.22), we have that

0P w;; 0, T:Zk *— k=
al " : - / Orr—2(lspi|waps; M, ©77*7)x
87‘92k,i

szk,i

o,
G2 (Wt i P OF75 )AL i } Wf” (A.23)
zk

where Mi*_Zk and ©; ~#F refer to the mean and variance-covariance matrix of U ki|lw.g,
while iy, , and @’{’fﬁ» denote the mean and variance-covariance of w,; ;. By using
the properties of the conditional multivariate normal distribution, it follows that
E(w.r;) = o, = 0 and E(I_.;) = py_,, = 0. (Note that E(l_.xi|lw.x:) # 0.)

Hence, according to (A.14) and (A.15)

-
U pilwags =~ Nu(E(pi|w.g,), Var(l_gi|w.g,))
id 1 —1
~ Nu(pa_,, + 0575 (057) T (wers — ), O35 — ©37% (©51)  ©73%)
iid

-1 -1
~ Nu(©57 (011)) w53 — O35 (071 O53)),

and

itd

lzk,i ~ Ny (E(wzk;i)a Var(wzk,'i))

1id

~ Nut(frawy > O7F5)

iid

~ NM(Ov Gﬁfﬂz%

where the sub-matrix @1 is a 2 x 2 diagonal matrix with unit variances and correla-

*

tions equal to r, ;. For simplicity, we will denote this matrix as ©:**. Consequently,

equation (A.23) can be expressed as

szk,i

0P wy; Oa T:(Zk * *— *—
e 507 ) = {/ Go (w1430, 07V dar_o(l g i|waps; M7 ©F77F)
zk

dl ) T ki
kit X .
T
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Because only the term ¢nr—o(l_ .k i|w.k; M~ ©r~**) depends on l_.k;, it follows

that

G2 (W55 0, O;7) /_ Onr—o(lopilwap s M~ @5 7F)

C—zk,i

oV,

87“:1“'
dl—zk‘,i} X Wzk
ar:k,i
007,
(A.24)

= {o(W.r,3;0,0;F) Do (w_s s|w.p i M, ©F %)}

where the last term comes from basic results of the multivariate normal distribution
. o, T
function. In addition, w_.x; = (W1, Wai, .oy Wart iy Wak1 4y« -+ s Wh—145 Wht1,0s - - - WALi)
while the partial derivative drf, ;/00%, is equal to
*
87azk,i 0

- h(9%,) (2025 — 1) (2 — 1
819,zk aﬁzk {tan (19216)( Yz )( Yk,i )}

0
= (2y.; — 1)(2yxi — 1) {tanh(97,)}
o),
= (2020 — 1)(2urs — 1)sech®(9%,)
1
= (2u.;, — 12y — 1)————
( Yz, )( Yk, )COSh2(?9zk)
1
= (2u,; —1)2up; — 1
2y A Ik, )<exp(192k)+exp(—192k)>2
2
(201 — 1) (290 — 1) 1
= Yei — Yk,i — N *
{exp(9%;,) + exp(—0%,)
469k

= (20 — D2y — 1) ——3,
{ewzk + 1}2

by using definitions and properties of the hyperbolic functions. Therefore, (A.24)

becomes

E)(IDM('wZ, 0, TjZk)
aﬁ*zk

= (W3 0,07 Dy o(w oy iw.p s M O ) (2y., — 1) x
4e27zn

Qi — 1)
(e ){ewik+1}2
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T T

for Wi = (wz,ia wk,i) y W_zki = (wl,ia Wiy vy Wa—1,4y Wat14y oy Wh—1,4y W15 - - -wM,i) )
*zk __ *zk x—zk __ *zk w2k 1 x—zk __ *zk *xzk w2k} —1 *zk
0" = 811,@'? M; = G)21,1 (811,1) w; and ©; = 922,1'_@21,1' (911,i> 612,1'7

as required. O
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A.5 Correlation matrices Y, and TjZk

For m = 1, matrix Y™ is equal to

712, 713, T, M—14 "M
L
. * * * *
o1 | @ M2 | 1 723, ToM-1, Ton,i
vl 114 | P12, B . |
e R I E : |
*1 *1
©31 1 O . ‘
l r | r r* 3 1 7”* .
LM-1i , T2,M—-1i T3a—1, M—1,M,i
|
* * * *
Timyi 0 T T3Mi TM-1,Mi 1
while for m > 2
*m | *Mm
vEm 114 | 2124
v *Mm *Mm
21,4 ' Y22,
| * * * * *
1 I rml,z Tm?,z Tm,m 1,0 7am,erl,z 7ﬂmM,z
T
* * * * *
rml,z : 1 712, 7al,m—l,z Tl,m—‘rl,z 7nlM,z
* ‘ * * * *
Tmoi v Ti2; 1 Tom—1,i T'o2m+1,i ToM.i
|
|
o [
- I
* * * *
Tm,m—1,i : Tim—14 Tom—14 --- 1 Tm—1m+1s - Tm—1,m,
* Iox * * *
Tmma1,i 0 Tima1i Tooma1d -0 Tme1,ma1,i 1 coe T My
|
|
|
|
* * * * *
Tmai ' V1M Tomi -+ Tm—1,M; Tm+1,Mi - 1
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Correlation matrices Y™ and Y
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A.6 Derivation of results in Section 2.3.2

A.6.1 Derivation of (2.11)

For notational convenience we denote g(8!1) as gll, g,(6l)) as gH, H(6) as HI
and H,(8!1) as ’HE.

By using the Taylor series expansion for gz[,”ﬂ] at 611 we have that 0 = gj[fﬂ} ~
g+ ’HL”]((S[”“] — 6, where gl = gl — S50 and ’H][j’} =M —S;. Suppose
that Z = —H . then we have that

0 = gbl4 (80 — 5 (_1-[%] _ gx> .
Re-arranging the above equation we get

glf = (80— k) (I[%urgx) —
— g 80 = gl (IM +5x) — T — 6HS, —
el (I[%ng) _ gy s —

~ -1 -1
— ot = (2V48,) VI <~/IM6[’4+~/IM gm)‘

Therefore, the parameter estimator can be expressed as
Nl
sl — (IM X Sx) THz1A,

-1
where 2 = pl? + e,y = /ZH§H and € = VI gl as required.



145

A.6. Derivation of results in Section 2.3.2

A.6.2 Derivation of (2.12)

Based on the notation in Section 2.3.2, we have that

E(HMZ - ﬂiHQ)

l

E

&=

&=

&=

&=

(
(
(
(
(

z—Cyz

(z — €) — Caz

(z — CaZ)
7 — CzZ
7 — C\Z
7 — C\Z

)

N 2
)
+E€—2 (Z—CAZ)EH)
+e€e—2 {uz—l—E—CA(HZﬂLE)}EH)
+ €' € — 2||pz€ + € — Crpz€ — Cr€?)

3+E@%yﬂE@MJ—

2F (€"€) + 2E (€' Capz) + 2E (€' Cré)

E

(

7z — C\Z

j_E@%yQE@mg+

)

2E (€' Capz) + 2E (€' Cxé) .

By using the following results (e.g., Wood, 2006, Section 1.8.5)

E(e'e) = E (Z éf) =n-1=n, for i =6n,
E(€'p,) = E(€)ps =0,
E(e'Cxe) = E(tr(e'Cx€)), since a scalar is its own trace
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it follows that

2
Z )—ﬁ—2-0+2-0—|—2tr(05\)

Ellus - ial?) = (|
(

2
Z )—ﬁ—l—Qtr(C,\),

as required.

A.6.3 Equivalence of V() and AIC

The AIC of a model can be defined as follows
AIC = 2Q —20(d),

where () is the number of estimated parameters in the model.

A~

Consider a Taylor expansion of —2¢(d) about §

—_

—2(8) =~ _%wy+@—5fv“—%w»+5@-5ﬂvv“—%wn@—5)
—20(8) —2(6 —8)Tg — (6 — 8)TH(6 — &), (A.25)

Q

where g := g(d) and H := H(d). By using Z = —H, we have that

—(6—08)"H(Ob6—-68) = (6—8)"Z(6-9)
IVZ (-6
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and by applying z = V8 + \/fflg to the above expression we get

G-8)THEB-0) = |VTé-2+VT 'g|?
= |- (2-VZ6 VT ') P
= | (2= VZ8) - VT 'g|? (A.26)
- <2—\/f5,2—\/f8> -
2 <z — VT, \/f_lg> + <\/f_1g, \/f_lg>
= 2= VTP -2 (2~ VIS VT 'g) +IIVT gl
(A.27)

where (A.26) results from the fact that || — x||* = ||x||?, for any vector x. Similarly,

by using the expression for the pseudo-data vector z in the second term in (A.25)

we have

(6-68)'g = 5) VIVI g

)) g
\/7_.'5> VI g
6—2+VT ) VI g
VI g)VT g
) VI'g+(VI'g) VI g
3) (\/f_lg> +9'Zg
5.VT 'g)+ VT gl (A.28)

I
N TS
= g ﬁ ﬁ
S

N I

N |

ﬁ@ﬁ&
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Substituting both (A.27) and (A.28) in (A.25), we obtain

~208) ~ —200)~2{~(2-VI§,VI 'g)+IIVT 'g|*} + |z - VTS| -
2(z - VIS VT 'g) + VT g’

~20(8) +2 (2~ VIS, VT 'g) ~2VT 'g|* + |1z~ VI| -
2(z - VIS VT 'g) + VT g’

~20(6) — VT 'glI* + ||z — VZ4II*.

Q

Q

where (-, -) denotes the inner product. It follows that

2Q —2(8) — VT g+ ||z — VI3’
~ 2tr(Cy) — 200) — VT gl + |z — VZ4?. (A.29)

AIC

Q

where tr(Cy) denotes the number of estimated parameters in the model and thus
() = tr(Cy). Since we are interested in optimizing a criterion with respect to the
smoothing parameter A, we drop any terms that are not affected by X, i.e., —2((9)
and —||\/filg||2. Therefore (A.29) becomes

AIC = 2tr(Cy) + ||z — VZ|?,

as required.
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A.7 Data generating processes used in the simu-

lation study I

A.71 DGP1 & DGP2

Both DGP1 and DGP2 were based on the following trivariate system of equations

y; = 1.6 + 0.91}11‘ — 132’11 + 14
y;z = —1.0-— 1.41)” + 1021@ + E9;
y;l = —14+ 2.01)12' — 1.5212‘ + €34

where g; ~ N (0,X) and v,,,; and z,,;, Ym, denote a binary regressor and a contin-
uous covariate, respectively. DGP1 is fully parametric and was used for comparing
mvprobit () and SemiParTRIV() /gjrm(). The correlation parameters were set as
(912 = —0.8, ¥13 = —0.6, ¥23 = 0.8). These values were obtained after fitting the
trivariate probit model on the North Carolina data set used for the case study
in Section 3.4. DGP2 was based on the following set of correlations (¢;2 = —0.1,
s = 0.3, Y93 = 0.9), which was selected while trying out different combinations
of values; this choice seemed to be problematic from an estimation perspective as
convergence was not achieved in most of the replicates used in the simulation study,
and the estimates of the correlation parameters were not close to the true values.
For each set-up, we generated 250 datasets with sample sizes equal to 1000 and
10000. Note that the responses were unbalanced (similarly as in the case study).
Specifically, responses y1;, ¥2; and ys; had typical observed value 1 proportions of

90.5%, 15.1% and 21.5%, respectively.

STATA and R code for DGP1

# Generate some data using STATA:

set obs 1000
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matrix Er = (1, -0.8, -0.6 \ -0.8, 1, 0.8 \ -0.6, 0.8, 1)
forvalues i = 1/250{

set seed ‘i’

drawnorm erl1‘i’ er2‘i’ er3‘i’, corr(Er)
matrix C = (1, .5\ .5, 1)

drawnorm x1i’ x2¢i’, corr(C)

gen v1‘i’ = round(normal(x1¢i’))

gen z1°1’ = normal(x2‘i’)

gen y1‘i> = (1.6 + 0.9 * v1‘i’ - 1.3 *x z1°1’ + er1¢i’>0)
gen y2i’ = (-1.0 - 1.4 * vi‘i’ + 1.0 *x z11’ + er2°i’>0)
gen y31” = (1.4 + 2.0 * v1‘1’ - 1.5 x z1°1> + er3i’>0)
}

# Fit the model via the mvprobit routine in STATA:

ssc install mvprobit

forvalues i = 1/250{

capture mvprobit( y1¢i’ = v1‘i’ z19i’)(y2‘i’ = v1‘i’ z1¢i’)
(y3¢i’ = v1‘i’> z1i?)

matrix estparams‘i’ = e(b)

* creates a matrix of the parameter estimates

}
# Fit the model via the SemiParTRIV routine in R:
library(GJRM)

library(foreign)

SimsSTATADGP2 <- read.dta("SimsDGP2.dta") # extracts the simulation

# STATA file

gammall <- gammal2 <- gammal3 <- gamma2l <- gamma22 <- gamma23 <- NULL
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gamma3l <- gamma32 <- gamma33 <- thetal2 <- thetal3 <- theta23 <- NULL

n.rep <- 250 # number of replicates

n <- 1000

p <- 10 # number of variables generated in STATA, i.e., erl, er2, er3,

# x1, x2, vi, z1, y1, y2, y3

eqnl <- y1 " vl + z1
eqn2 <- y2 7 vl + z1
eqn3 <- y3 7 vl + z1

f.1 <- list(eqnl, eqn2, eqn3)

for(i in 1:n.rep){

j <- ifelse(i>0, i+1, 1)

DataSTATADGP2 <- SimsSTATADGP2[1:n, (i * p +1):(j * p)]

vl <- DataSTATADGP2[1:n,
z1 <- DataSTATADGP2[1:n,
y1 <- DataSTATADGP2[1:n,
y2 <- DataSTATADGP2([1:n,
y3 <- DataSTATADGP2([1:n,

data <- DataSTATADGP2

out <- SemiParTRIV(f.1l, data
X1.d2 <- out$X1.d2 # number of
# equation
X2.d2 <- out$X2.d2 # number of
# equation
X3.d2 <- out$X3.d2 # number of

# equation

6]
7]
8]
9]
10]

data)

columns in the design matrix of first

columns in the design matrix of second

columns in the design matrix of third

gammall[i] <- out$fit$argument[1]

gammal2[i] <- out$fit$argument [2]
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gammal3[i] <- out$fit$argument [X1.d2]

gamma21[i] <- out$fit$argument[X1.d2 + 1]

gamma22[i] <- out$fit$argument [X1.d2 + 2]

gamma23[i] <- out$fit$argument[X1.d2 + X2.d2]
gamma31[i] <- out$fit$argument[X1.d2 + X2.d2 + 1]
gamma32[i] <- out$fit$argument[X1.d2 + X2.d2 + 2]
gamma33[i] <- out$fitPargument[X1.d2 + X2.d2 + X3.d2]
thetal2[i] <- out$thetal?

thetal3[i] <- out$thetall

theta23[i] <- out$theta23

# Note: for sample size 10000 we replace set obs 1000 with set obs
# 10000 in the STATA code and n <- 1000 with n <- 10000 in the R code.

R code for DGP2

library (GJRM)

thetal2.sim <- -0.1

thetal3.sim <- 0.3

theta23.sim <- 0.9

n.rep <- 250

n <- 1000 # then n <- 10000

Sigma.er <- matrix( c( 1, thetal2.sim, thetal3.sim,
thetal2.sim, 1, theta23.sim,
thetal3.sim, theta23.sim, 1), 3 , 3)

theta.cov <- 0.5

SigmaCov <- matrix(theta.cov, 2, 2)

diag(SigmaCov) <- 1

f.1 <= 1list(yl “ vl +2z1, y2 ~ vl +2z1, y3 " vl + z1 )
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gammall <- gammal2 <- gammal3 <- gamma2l <- gamma22 <- gamma23 <- NULL

gamma3l <- gamma32 <- gamma33 <- thetal2 <- thetal3 <- theta23 <- NULL

for(i in 1:n.rep){
set.seed (i)
er <- rMVN(n, rep(0,3), Sigma.er)
cov <- rMVN(n, rep(0,2), SigmaCov)
cov <- pnorm(cov)
vl <- round(cov[,1])

z1 <- cov[,2]

yl <- ifelse(1.6 + 0.9 *x vl - 1.3 *x z1 + er[,1] > 0, 1, 0)
y2 <- ifelse(-1.0 - 1.4 x vl + 1.0 *x z1 + er[,2] > 0, 1, 0)
y3 <- ifelse(-1.4 + 2.0 x vl - 1.5 x z1 + er[,3] > 0, 1, 0)

dataSim <- data.frame(yl, y2, y3, vi, z1)

out <- SemiParTRIV(f.l, data = dataSim) # penCor = "lasso"
# or penCor = "ridge"
# or penCor = "alasso"
# for penalized correlation
#study

X1.d2 <- out$X1.d2

X2.d2 <- out$X2.d2

X3.d2 <- out$Xx3.42

gammall[i] <- coef (out) [1]

gammal2[i] <- coef (out) [2]

gammal3[i] <- coef (out) [X1.d2]

gamma21[i] <- coef(out) [X1.d2 + 1]

gamma22[i] <- coef(out) [X1.d2 + 2]

gamma23[i] <- coef(out) [X1.d2 + X2.d2]

+

gamma31[i] <- coef(out) [X1.d2 + X2.d2 + 1]

gamma32[i] <- coef(out) [X1.d2 + X2.d2 + 2]
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gamma33[i] <- coef(out) [X1.d2 + X2.d2 + X3.d2]
thetal2[i] <- out$thetal?2
thetal3[i] <- out$thetall

theta23[i] <- out$theta23



Appendix B

Complements to Chapter 3

B.1 Correlation-based penalty

B.1.1 The penalty functions

Lasso: Py . (8) = Py.(IRg|h)
= Mo [|Ry6 11

= Mo {led 28] + el 18] + e}

= Ao ([072] + 03] + [935])
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B.1.

where e, = (0,...,0,1,0,..

Ridge: 7759* (9)

Ad. Lasso: 77)‘\:2 (8)

. ,())T with a one at the ¢** position, Vq.

1
= PR (IR3I3)
1
= IR,
. 0 1/2 2
9=Q—2
1 Q
= M > ((Ry0)'R,0)
=Q—2
1 o T e\ 2
= 5)\19* Z (eqé)
q=Q—2
1
= 5)\19* {(eg_Qé)2 + (85_15)2 + (655)2}

1
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Q
R,
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@ le]d|
_ gt
Ao+ Z |6T8MLE|§
q
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Ao- { eq 2]
’a5725MLEW

19*
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Livalt

|€5_15|
‘egil(;MLEW
|913]
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L ledd]
|a;55MLE’f‘y

NEUYIRY
I

Correlation-based penalty
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B.1.2 LQA of the penalty function 73/\%* (4)

The approximated penalty functions for both Lasso and Adaptive Lasso belong to
the Li-type family. Based on (3.5) and by applying the chain rule, it follows that

73,(\;19* (8) can be written as

PS,.(0) = P (8) + V5PY,.(0) (8 )

g ~ ~ ~
pY (SHWAWE&) ORIl R0 (5_5)
o O|R0|l, OR,  08T

Q

(B.1)

-\ T ~
By using the local approximation (R,8)" / (Rqé) ~ 1 for § =~ § (Fan & Li, 2001)
as well as the following approximation (Ulbricht, 2010)

R,0)'R,0 — (R,0) R,0

—~

(R,8) R, (6-6) =
(Ry8)' Ry0 —2(Ry0)" Ryd + (Rﬁ)T R,0 } +
(R,5) R,6— (R,8) RqS}

R (5 5)7(6 - J)Rq> +

e N Y et Yot

(R,8) R6 — (R,6) Rqs)

Q

N~ NI~ N~ N~ N

(6'R R, — 'R/ R,9),
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equation (B.1) becomes

< - Di(R,0 AT .
PYL(8) ~ PY.(6) + V||Rq8\|1pgﬁ* (6) - DiRy9) - T) ' (Rq5) Ry <6 — 6)
q
(R 5)~
. - Di(R,0) 1 . .
~ PY.(6)+ Vg5, P5,.(9) 1(—‘12 : 5((STRqTRq(s —6'R, R,0)
(Rs3)
- 1 - Di(R,6
~ Pfﬁ* (0) + §6T v”RqulP)\gﬂ* (9) - ﬁRQRJ o —
R,6
1. < Di(R,0) <
50" Vir,a) PL. () - = RRy 5 6,

AN T
(R.9)
where Vg 5,75, (8) = 9PS (8)/0|R 8|1, D1(R,6) = O||R,8/OR,S and R, =

OR,6/96". The constant terms do not affect (3.1) and hence can be eliminated.

Therefore Pf\;ﬂ* (6) can be locally approximated (except for a constant term) by

Di(R,9)

1 .
7’519*<5) ~ §5T V||1?Lq<§||17>§19*(5) ( 5>T
Rq

R,R, 6.

B.1.3 Derivation of AL19 and AigL*

Based on the approximation derived in Appendix B.1.2, we have that the penalty
matrix Afw is equal to

- Di(R,9)
Agw - V||1:c45||17jxgm(5) : 1—qRqR;.

(vi5)
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Quantity VHRq SHIPAQW (5) for Lasso and Adaptive Lasso, respectively, is equal to

oPy (8) O (MlIRSIL)

Vir.é, Pr.(0) = — = - = \g-,
T TR ’
AL /% 377)/\*;;(5) 3()\19* quq|Rq5’>
Vir,é1.Px,:(0) = = = = = A= g.
9| Ry0 |l 9||R40 |1
Derivative D;(R,0) is equal to
Dl(RqS) — aHRq5~H1
OR,5
Q 1/2
o AT
= = R,0) R,
s 3 () Rs)
Q. ( T\ 2 i
- ¥ _< R,0) Rqé) 2Rq6}
2
=Q—2
Q

%
Mo
&
S



160 B.1. Correlation-based penalty

AT —1/2
where the denominator was approximated by ((Rqé) R,6 + E) which allows

for & = 0. It follows that A])jﬂ* can be expressed as

i ‘R,R,

ol { R0\ J(R,6)R6 + ¢

- R,R]
A7 RO TRG 4
1 .
= )\19* Tdlag(OPlel,0p2><P27()P3><P3,1’O’O)+
19){2 +c
19){3 + E diag(OPlela OP2><P27 0P3><]337 0’ 1’ O)+
1

————diag(0p,xp,, 0r,x Py, Op;xps, 0,0, 1)}
/19;% _l_ z 3 3

A+ di (0 0 0 ! ! L
= 9+ dlag PiXP1yYPyXPoy YP3XP3» ) 3 )
V3R +e Jii+e Vo +e

while A/\AﬁL* is equal to
Q ~

AL =y A R0 RR]
a2 | Red \/(RQJ)TRq6+é

Q )\19*W
— Z Sl -RqRqT
G=Q—2 \/(Rqé)TRqé +c

W12 .
= )\19* {19— T%—_f_é dlag(OPlel, 0P2><P27 OP3><P3> 17 Oa O)+
W13
VU +¢
W23

Vi +e

= )\19* dlag <0P1 X P15 0P2 X Ps s 0P3><P3a

dia’g(OPl X Py 0P2><P27 OP3><P37 07 1, O)‘I’

diag(oﬂ X P1 s 0P2><P27 OP3><P3> 07 Oa 1)}

L/|93E 1/[03E ) 1)/ |9hme )
VUE+e Jug+e JUg+e )
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B.2 Data generating process used in the simula-

tion study II

B.2.1 DGP3

The trivariate system of equations was based on

v, = 1.05+0.900y; + s1(21) + e
ys, = —1.45 — 1400y + so(215) + €9
i = —1.60+2.00vy; + s3(21:) + €3

where g; ~ (0, X) and s,,, for all m, corresponds to the smooth component which was
represented using penalized thin plate regression splines with basis dimensions equal
to 10 and penalties based on second-order derivatives. The correlation parameters
were set to the same values as those used for DGP2, while the smooth functions are
given by s;1(z1;) = 0.5c0s(2721;), s2(21:) = 21; + exp {—30(z1; — 0.5)%} and s3(21;) =
—0.5(21;+323;). The other settings are similar to those described in Appendix A.7.1.
For each replicate and fitted model the estimated smooth functions were evaluated

at 200 fixed values in the ranges of the respective covariates. Parameter estimation

L

was carried out using a Lasso-type penalty for the correlations, i.e. Ty = Sy +A Nge

using Ridge and Adaptive Lasso did led to virtually identical results.

R code for DGP3

library (GJRM)

# Simulate some data:
n <- 1000 # then n <- 10000
n.rep <- 250

thetal2.sim <- -0.1
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thetal3d.sim <- 0.3

theta23.sim <- 0.9

Sigma.er <- matrix( c( 1, thetal2.sim, thetal3.sim,
thetal2.sim, 1, theta23.sim,
thetal3.sim, theta23.sim, 1 ), 3 , 3)

SigmaCov <- matrix(0.5, 2, 2)

diag(SigmaCov) <- 1

f.1 <= 1list(yl ~ vl + s(z1), y2 ~ vl + s(z1), y3 ~ vl + s(zl) )

F1 <- F2 <- F3 <- matrix(NA, 200, n.rep)

thetal2 <- thetal3 <- theta23 <- NULL

# smooth functions

f1 <- function(x) 0.5%cos(pi*2*x)

f2 <- function(x) x+exp(-30*(x-0.5)"2)

f3 <- function(x) -0.5*%(x+3*x"3)

xt <- seq(0.0000001, 0.9999999, length.out = 200) # grid to evaluate

smooth functions

dt <- data.frame(z = xt)

fit <- f1(xt) - mean(f1(xt))

f2t <- f2(xt) - mean(f2(xt))

f3t <- £f3(xt) - mean(£f3(xt))

for(i in 1:n.rep){

set.seed (i)

u <= rMVN(n, rep(0,3), Sigma.er)

cov <- rMVN(n, rep(0,2), SigmaCov)

cov <- pnorm(cov)

vl <- round(cov[, 1])

zl <- cov[, 2]

yl <- ifelse( 1.05 + 0.9xv1 + fi1(z1) + ul[,1] > 0, 1, 0)
y2 <- ifelse(-1.45 - 1.4xvl + f2(z1) + u[,2] > 0, 1, 0)
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y3 <- ifelse(-1.6 + 2.0xvl + £3(z1) + ul[,3] > 0, 1, 0)
dataSim <- data.frame(yl, y2, y3, vi, z1)

out <- SemiParTRIV(f.l, data = dataSim, penCor = "lasso")

X1 <- PredictMat( out$gami$smooth[[1]], dt )

X2 <- PredictMat( out$gam2$smooth[[1]], dt )

X3 <- PredictMat( out$gam3$smooth[[1]], dt )

1lgl <- length(coef (out$gaml))

1g2 <- length(coef (out$gam2))

F1[,i] <- X1%xY

coef (out) [(out$gami$smooth[[1]]$first.para:out$gami$smooth[[1]]$
last.para)]

F2[,1] <- X2%xJ,

coef (out) [1gl + (out$gam2$smooth[[1]]$first.para:out$gam2$smooth[[1]]$
last.para)]

F3[,1i] <- X3%x*%

coef (out) [1gl + 1g2 + (out$gam3$smooth[[1]]$first.para:out$gam3
$smooth[[1]]$last.para)]

F1[,i] <- F1[,i] - mean(F1[,i])

F2[,i] <- F2[,i] - mean(F2[,i])

F3[,i] <- F3[,i] - mean(F3[,i])

thetal2[i] <- out$thetal?

thetal3[i] <- out$thetal3

theta23[i] <- out$theta23

}
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B.3 Some theoretical aspects

B.3.1 Proof of Theorem 3.3.1

SMLE

Proof. By definition, the gradient of the log-likelihood function at is equal to

zero, that is g(6MEE) = 0. If $MLE is close to &, then g(6ME) can be approximated
by a Taylor series around the true parameter §,. We apply the mean value theorem

in order to truncate the Taylor series at the second term, that is
g(8MF) & g (&) + H(80)(8MF — §p) = 0.

Multiplying both sides by /n and rearranging, we obtain
Vn(0MHE — 8g) ~ {=H(00)} ' {Vng(80)}

and by dividing H(dp) and g(dy) by n we obtain

VA(BMIE — 6,) ~ {—%'H(‘So)}l {W"(‘s“) } |

n
Since g(dp)/n is the mean of a random sample, we may apply the Central Limit The-

orem (CLT) to \/ng(do)/n. According to the theorem and given that E(g;(dp)) =0

(as dp is the maximizer of £(dy), Vi) we have that

N {ggm - E@r@o’ﬁ}o% A (0, Cov (g:(80)))

where
Cov (9i(80)) = E(gi(60)gi(0) ') = {—E (H(0))} = —EH;(8) = —%E%(fso)-

It follows that
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By using the limiting distribution P (lim (—1/n#(dy))) = —1/nEH(dy) we have
that

for

- {—%E’H(do)}_l {—%E’H(JO)} {—%E’H(do)}_l _ {—%EH(&O)}_l.

Equivalently

V(@M — &) — N (o, {—%E%(éw}_l) )

or

JABME 5 S N (0, {%1(50)}_1> ,

where Z(8y) = —EH(do) and Z(dy) denotes the Fisher information matrix, as re-

quired. O

B.3.2 Proof of Theorem 3.3.2

Proof. The first-order Taylor expansion of g,(-) around 4y is as follows
9,(8) ~ gy(d0) + H,(30)(8 — &0). (B.2)
By using the fact that gp(s) = 0 and multiplying all terms by /n leads to
Vngy(80) + v/nH,(80)(6 — &) = 0.

Inverting the above series results to

A

V(o —d) = —{H,(00)} " {Vng,(80)}.
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We then divide both H,(dy) and g,(do) by n, that is

Vnd — &) = — {M}_l {\/EM}_

n n

By using the CLT on v/ng,(dy)/n we obtain the following
vi{ 22 sigu(@)} > (0. Covlgu(an), (B.3)
where E(gyi(0)) = 1/nE (gp(80)) = 1/nE (g(do)) — T'5do) = 1/n[E (g(do)) — E (T'5do)] =
1/TL [0 — 1"5\(50] = —1/711_‘5\(50 and COV(gpi((S())) = COV(gi((so)—Fj\(so) = Cov(gl(ég)) =
—EH;(6p) = —1/nEH(dy). Therefore, (B.3) can be re-expressed as
\/ﬁ{w} S N(0,—1/nEH(S,))
and thus

\/ﬁM — N(—@,—l/nlﬁlﬂ(éo)).

Next we use the law of large numbers that says that the observed information
converges to the expected Fisher information as the sample size increases. That is,

—H,(60) = —EH,(d). Therefore

() o) - ([ (58],

(i)} EH(B)) {—]E?—Lp(éo)}1> |

which implies that

Vilb—d) > N ({——E”p<50> g

n

{—]E?-Lp(éo)}_l {—E”H(éo)} {—E’Hp(do)}_l>, B.4)
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From the above result we can calculate the bias of the estimator & , that is

Q

Bias(d) = E(6 — &)
1
1

=) (58
1

o Txd,
~n (B (60} {— ﬁ}
— {—EH,(60)} ' T'xdo

Q

Q

Q

Q

—{-E#H(8,) +Ts} ' Txdo
—{Z(8y) + T'5} ' T'5d0.

Q

as well as its asymptotic covariance matrix

Cov(d) ~ ~ {—Eﬂp(éo)}‘l{—ﬁﬂ(ao)} {_Eﬂp(éo)}—l

n n n n

{—EH,(80)} " {-EH(60)} {-EH,(60)} "
{—EH(8) +Tx} " {~EH(80)} {-EH () + Ts} "
~ {Z(8o) + Tx} " Z(80) {Z(8) + Tx} "

Q

Q

Rearranging (B.4) leads to
VIZ(8) + T} [(8 = 8) + {Z(8) + Tx} ' Txdo| — N (0,nZ(80)).,
which results from the following: expression (B.4) can be re-written as

\/5(5 — &) — N(—\/ﬁ{—E'Hp((so)}_l {T'xéo},
n{—EH,(60)} " {—EH (o)} {—EH,(80)} "),

or

Vi {—~EH,(00)} (6 —80) — N (=Vn{Txdo},n{~EH(do)}),
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and therefore,

0,n{-EH(d0)})
0’ n {_EH((SO)})

Vi{=EH,(60)} (8 — 80) + Vi {Txdo} — N

— Vi {=EH,(00)} |6 — 8 + {~EH,(8)} ' Txd| — N

— Vi {—E#(8) + Tx} |6 = 8 + {~EH(J) + Ts} ' Txd| — N
— Vi {Z(8) + Ts} [ (8 = &) + {Z(8) + Tx} ' Txdo| —

0,n{-E#(do)})

e e e

=

0,nZ(J)) .

B.3.3 Asymptotic order of § — 8y, Cov(d) and Bias(é)

Proof of the asymptotic order of 5 — 8

Rearranging equation (B.2) leads to

§—38 = —{H,(00)} " g,(80)+...
= —{#(d) ~Tx} " {g(6) — T} + ...
= —{H(8)) —EH (o) + EH(80) — Tx} ' {g(o) —Tx0} + ...,

and by applying assumptions (i)-(iv) we have that

6—8y = —{0p(n"?)+0(n) —o(n"?)} " {Op(n"/?) — o(n'/?)}
= {0p(n)} " {Op(n'?)}
= Op(n")Op(n'"?)
= Op(n™'7?).
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Proof of the asymptotic order of COV(S)

The asymptotic covariance of 8 is of order

Cov(d) ~ {—EH(8)+ s} ' {—EH()} {-EH(8) +T5} "
= {O(n) + o)} {Om)} {Om) + o(n'?)} !
= {O(n)} " {om}{O0m)}
= O(mn™).

Proof of the asymptotic order of Bias(d)
The asymptotic bias of 8 is of order
Bias(d) ~ —{—E#(d)+Tx} 'Txdp
= —{-0(n) + o(nl/z)}_1 o(n'/?)
= {O0(m)} " o(n'?)

= O(n Y o(n'?

= o(n71/?).

B.3.4 Proof of Theorem 3.3.3

Proof. If max|T'5dg| = o(n'/?) and max|T'5| = o(n'/?), then as n — oo we have that

1/y/nmax|T'5dg| — 0 and 1//nmax|T'x| — 0. Given these two conditions, it follows

that
E(ﬁ(é—(so)) _ {—EH(?HP;}l{_F;ﬁ}
—EH(8) +T5 ‘1.
N

Y
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and
Cov (\/E(5—50>) _ {—E’H(i))ntr,\}_l{—E?z(do)}{—E?—L((Z])Jrr)\}_l
= n{-EH(d) + Tx} ' {-EH(8)} {-EH(d) + 5}
_ {—E?—L(é\/%)ntr‘}\}_l{_E%(éO)}{—E?—L((S\/(;_I)Jrr,\}_l
L {FE) o} e {2 )
= V{=EH(80)} " {—EH(80)} {—EH(60)} ' Vn
— n{—EH (&)}
— n{z((so)}‘_l1
- fzof
and thus

B.3.5 Proof of Theorem 3.3.4

Proof. If & minimizes —(,(8), then it also minimizes —/,(8)/n. Similarly, §M-P

minimizes —¢(d) as well as —((8)/n. Because X is fixed, we have that —(,(8)/n —
—0(6MVE) /n and —£,(8) /n — —£(8)/n; thus —0(8)/n — —L(8MF) /n hold as well.
Since 8MLE is a unique minimizer of —¢(8)/n and —¢(8)/n is convex, it follows that

6 — 6MLE The consistency of 8 follows from the consistency of §MLE. ]



Appendix C

Complements to Chapter 5

C.1 Proof of Lemma 5.2.1

Proof. For convenience we ignore index k and term YV,i.. By definition,

Li(yi;6) = P(=guyy; <0,..., —Guiyp, < 0)
= P(—gu(nui+eu) <0, —Fnmi(Masi + emi) <0)
= P(=gu(® Y Fi(nu) + 1) <0, —0ari (P (Far(nars)) + eari) < 0)
= P(—g1,® " (F1(ni) — g1 <0,..., —0au® " (Far(mars)) — Gnsieass < 0)
= P(—guen < gu® Frlnu)). - —Imien < Gai® " (Far(nan)))

= ®M7—Bi€i (B’LH’H 07 E)

I ® L (Far(mars)) 1@ (F1(n1:)) M
:/ / Ort—Be,(Bili;0,%) [ [ dlzs. (C.1)
c=1

— 00 —00

Since §; is either equal to —1 or 1, it follows that B; = B; ' and |B;XB;| = |Z|.
In addition, the pdf of a multivariate normal vector —B;e; with zero mean and

covariance matrix 3 can be re-expressed as the pdf of a multivariate normal vector

171
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g; with zero mean and covariance matrix B;XB;, that is

¢M’,Bi5i (B,Lll, O, E) = ‘27TE|7% exXp {—%(—Blll)T(E)l(—lel)}
-1 Lo+ -1

Therefore, equation (C.1) can be written as

—00 —00

Iai®H(F ar () 1:® 1 (F1(n13)) M
Ei(yz'é 5) = / e / ¢M,si<li; 0, Bz‘EBD H dlz;
c=1

= (I)M,ei (Wz’; 0, Tf);

where

* *
Loy, o T
* *
o T2, 1 coe Tonpy
[ )
* *
v Tomio - 1

for r%,; = tanh(9%,)(2y.; — 1)(2yrs — 1), Vz,k,4i. Note that the above derivation

applies to all l;:s, thus the likelihood £ is equal to
Liwid) = {Bare (W0, (1))

as required. O
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C.2 Proof of Propositions 5.2.2 and 5.2.3

The first-order derivatives of the log-likelihood function for a multivariate probit
model are obtained as follows. First, we express the multivariate normal cdf &,
in terms of multivariate integrals. Then, by using conditional density distributions,
we decompose ¢, into a product of two normal probability density functions (pdfs)
and re-express ®,; based on that decomposition. In doing so we proceed with the
calculation of the two derivatives, where the derivative of ®,; with respect to 3,, is
mainly based on a decomposition formula, while the derivative of ®,, with respect
to ¥, has been derived by applying an idea by Plackett (1954).

The multivariate integrals
Wi, i Wi, M
Oy (W;0,7F) = / / dur(L;0,Y7) [ dlz (C.2)
—00 —00 e=1

can be written in a more convenient form by using the conditional distribution of
the normal multivariate distribution. This can be achieved by partitioning both I;

and Y such that

L= ()",

and
* * | * *
1 P12 o+ Tiwi 1 Trut1s oo Tim
|
* * | * *
T91 1 Toui | T2u+1,i To,M,i
|
! |
* | * |
e [ O @ ) |, , Lo .
i o [ o - Tuly T2 V Tyt - Tu,Mz
9. /7 V- -"—-"—""""""=""="="="="="=-"=-=-=- - 4T - -"-"-"-" - - - - - - - - ="
21, : 224 , - - | 1 ,
u+1,1,4 u+1,2,2 u+1,u,% | u+1,M,i
|
|
|
|
* * * *
T a2 o TMug ' "M 1
(C.3

. T
respectively, where ll,i = (ll,ialliv---alu,i) ) l2,i = (lu+1,ialu+2,i>--'alM,i
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L., M =1, 7} = tanh(9%,) (292 — 1)(2yks — 1), ©F;,; is a u X u matrix, @3, ; is
a (M —u) x (M —u) matrix and @3, ; = ©7] ;. By using the chain rule for random
variables and the partitioned vector l; as well as the partitioned matrix Y, the M-
variate normal pdf ¢,/(1;; 0, YF) can be expressed as the product of the conditional

density function of ly; given I, ; times the pdf of I, ;
drm(li;0,77) = Onr—u(loillis)dulliy), (C.4)
where

l2,i ’ll,i “ NMfu(EaQ,i |l1,i)7 Var<l2,i |l1,i))

iid

~ Nyu(tu,, + @Sl,i@Tfl(ll,i — ), ©5y; — @;1,i@>f1_,zl@>f2,i)> (C.5)
and

ll,i %l NU(JE(lLi),Var(ll,i))
© Nulh, ©71,). (C.6)

p,, and py,, stand for the mean of I;; and l; respectively. It follows that the

integrals (C.2) can be rewritten as
Wat,i Wi ol oyrlzilli
®n(Wi;0,77) = / / Oar—u(loillyi; M, ©,750)
—00 —00
M

Gulii; py i, OT1;) H dlz, (C.7)

c=1

*l2,¢|l1,¢ - * *—1 *l27i|l17i _ * * *—1 *
where M; = pu,, + 05,07 (i — pu,,), ©; =0, — 05,011,071,

3 7

M, = Hi,, = 0 and OF; ; denotes the u X u sub-matrix of Y7.
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C.2.1 Proof of Proposition 5.2.2

Proof. Consider formula (C.4) and let v = 1, such that

O (1i;0,X7) = dnr—1(loi|lii)o(lis).

By re-ordering matrix (C.3) we obtain

1x1 1x(M—-1)
@*m | @*m
~Em 115 12,i
e o T ’
*m *m
@21,1' ! @22 i
S~~~ ~~—

(M=1)x1 (M—1)x(M—1)

Vm, where ©17;, ©1y;, ©37"; and O3y, are defined in Proposition 5.2.2. Then the

multivariate normal cdf (C.7) becomes

Wht,i Wi Wi i M
Dy (W30, T = / / / S (L0, [ ] dlza

M

_ / vt A millss M O™ (1, O7) T [ s
C;

c=1

(C.8)

for C; = Cy; x Cy; X ... x Cyi, where C,,; is the interval Wi, +00) if ym; = 1 and
the interval (—oo, Wini] if Ymi = 0. Vector 1, = (liiy -+ bty b1 - - -5 Lari) |
where [,,, ; refers to the m™ element of vector I;. M;™ and ©;™, respectively, denote
the mean and the variance of I_,, ;|l,,;, while 4, , and ©77; denote the mean and
variance of [, ;. Applying the properties of the conditional multivariate normal
distribution, it follows that E(l,,;) = ju,,, = 0 and E(I_,;) = p_,., = 0. (Note
that E(I_,,|lm.:) # 0.) Hence, the distribution of I_,, ;|l,,; and [,,; is equal to

Unillms % Narey (B pillns), Var(l_m il b))

iid *m *m\—1 *m *m xm | —1 *m
~ Ny (NLm,i + 057 (©1") " (bnsi — Iulm,i)7 0% — O (®1l,i) @12,i>
iid -1 ~1

© N (O3 (01 s O3, — O3, (617) T O



176 C.2. Proof of Propositions 5.2.2 and 5.2.3

and

i " N(E(Ls), Var(ln))
ZZ‘C’I N(/le,w
iid *m
~ N(07 @11,1)7

SHE)
respectively, where the sub-matrix ©77"; in this case is equal to 1, Vm,i. It follows

that (C.8) becomes

M
Wi, T") = [ 6l 0. Déws(Loillns M, 07 [l
C; c=1

Wm,z
= / ¢<lm,zv 07 1)(I)M71(me,i’lm,i; Mi*ma @:m)dlm,’u

—0o0

,—m

where W_i = Wii, Wais oo . W16 Wanitias - - - Wara) | and Cs_y € {Ci}\
Coni. According to the properties of the conditional multivariate normal distribution,
it follows that the expected value of W_,, ;|l,,; is equal to M;™ = O57" 11 while
its variance-covariance matrix is expressed as @™ = @37, — O3",©77".. By using
the chain rule as well as the fundamental theorem of calculus, it follows that the

derivative of (C.9) with respect to 3, is equal to

0 Win,i
B an,l {/;oo (b(lm’“ 07 1>®M71(W7m:i’lm,i; Mi*mu Gjm>dlm
awm,i
OBm
a m,i
= OWnii 0. ) ar s Wem i Wan s M, ©77) ( ayg | ) .

¢M—1(l—m,i|lm,i; Mi*ma Q:m)dl—m,z} dlm,z

(C.9)

z} X
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Since Wi = (2Ymi — 1)@ 1 (Fp (i), then the derivative of W, ; with respect to

3., can be expressed as

where OW,,,.i /OF 1 (Nmi) = (2Ymi—1) /(P (F,n(nmi))) (based on the inverse function
theorem), OF . (Mmi) /ONmi = fn (M) and Onpi/OBm = X, .. Therefore, we have that

0P, (W;; 0, Y7) S (i)
= = dWini; 0, 1) @01 (Wi Winis M, ©7 X
9B, ( 2341 (Woms G @ o)
(Qymi - 1)X;Lz‘
for M = O3, Wn,; and O] = @3y, — O3, ©717",, as required. ]

C.2.2 Proof of Proposition 5.2.3

Proof. 1f we differentiate equation (C.2) with respect to the correlation coefficient

V%, we get the following

0Py (W;;0, Y} B Wht i Wi . M
zk zk —00 —00 S

¢

and by using the chain rule

00, (W;;0,Y7) 0 / Y O
i) _ L-0.Y* | | I )
0%, or’y, { Ci Pl 0,75) a1 He 0%,

01 (10, X 19 Orip.
i dlz; p =22 1
{/c o, L (€10

where 77, ; and region C; have been defined previously. By using the following

differential equation derived by Plackett (1954)

0o (15;0,X7)  ?Pn(13;0,77)
Oty B ol i0l;
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equation (C.10) becomes

L. * 2 * a *
OPu(Wii0.X;) {/ 000 (::0, ) Hdzm} oy

0%, c, OOl 0%,

— ) Y 3 dlZ i dl,z 71: Z* ,’l’
{/C_k [/ck 0L, ;0 & F o,

(C.11)

where C—zk,i € G \ {C'zi,éki}, Czk,i = C, x éki; L, = (lz,ivlk,i)—r and I_.;; =
(ldy s be—tiy bt - -+ s ety Lot1is Lari) 7. According to the fundamental theorem
of calculus, the integral inside the brackets is equal to

Pon(l;;0,Y7) o2
0 TVl = —— 520, XHdl,,dl, ;
/; k 8lz,lalk,z ot alm@lk,z Cors ¢M(W l) k, )

82
S 50,2 dly sl
alzﬂalkﬂ' {/CZZ ékl ¢M(W ’L) k7 ) }
- ¢M<ll,i7 ey lz—l,i; Wz,ia lz+1,i; s 7lk—1,i7 Wk,i? lk-‘rl,ia ceey

I 0,Y7).

Therefore, (C.11) can be expressed as

0%y (Wi;0,Y7)
0%

= {/ ¢M(l1,ia v 7ZZ—1,i7 Wz,ia lz—l—l,iy R lk—l,i7 Wk,ia lk—l—l,i) ceey
szki

s 0.5l ) ok
M,is Y, Ly —zk,i .
ovz,

The last expression can be written in a more convenient form by using the conditional
distributions of the normal multivariate distribution. This can be done by imposing

the special case u = 2 in equation (C.4), that is

(10, X77%) = dpa(logllii)da(liy), (C.12)

where ly; and Iy ; correspond to l_ ;. ; and Wy ;, respectively, with W.;.; = (W,;, Wi.i) .

Re-ordering matrix (C.3), we obtain
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2x2 2x(M-2)
' ~ =
G‘)*Zk [ @*Zk
xzk __ 1 126
Yok = S el (C.13)
G)21 i ! G)22,1'

(M=2)x2 (M—2)x(M-2)

Vz2=1,....M — 1,k = z+1,... M, where the sub-matrices @’{fﬁ», @*{5{‘;, 9’2‘?2 and
©35% are defined in Proposition 5.2.3. By using both (C.12) and (C.13), we have
that

0P W’Ly 07 T;ka *—2z *—2z
M( " ) = / ¢M72(lfzk,i‘wzk,i;Mi ka(-)i k>¢2(wzk,i;ﬂwzk,m
8192]677/ C—zk,i
ork, .
OVl 2t 14
11,1) k, } 31921/ (C )

where M "** and ©; " refer to the mean and variance-covariance matrix of
l_.rilW.ki, while Bw.,, and @ﬁﬁ- denote the mean and variance-covariance of
W.k.i- By using the properties of the conditional multivariate normal distribution,
it follows that E(W.i;) = pw,,, = 0 and E(I_.4;) = p_,,, = 0. (Note that
E(l_.ki|Wki) # 0.) Hence, according to (C.5) and (C.6)

sz,z’|Wzk,z‘ “ NM(E<lfzk,i|Wzk,i)aVar(lfzk,i‘wzk,i))

itd

-1 -1
N Ny, + 0575 (O5F7) - Weri — ), 0335 — O35 (O175)  ©13)

itd

k ky—1 k k k1L k
~ Nu(05% (011%) Wi, 0555 — 057 (077,)  ©13%),
and

id

lzk,i ~ NM(E(Wzk,z)yvar(Wzk,z))
N (W, ©335)

iid *2
~ NM<07 ®llf€i)7

where the sub-matrix ©3%* is a 2 x 2 diagonal matrix with unit variances and correla-

tions equal to r7; ;. For simplicity, we will denote this matrix as ©; #* Consequently,
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equation (C.14) can be expressed as

cfzk,i

6® WZ) 07 T:Zk * *— *—
M( 6’19* ) - {/ ¢2(Wzk,za 07 @7, Zk)¢M—2(l—zk,i|Wzk,i; Ml Zk7 97, Zk)
zk

*
arzk,i

dl_zkﬂ'} W
zk

Because only the term ¢p—o(1_ .k ;| W k.i; M;** ©;7**) depends on l_;, it follows
that

M(W s Uy Ly ) {¢2(Wzk,i§ 0’ @:zk)/ ¢M—2(l—zk,ilwzk,i; Mi*_Zkv @;k—zk)

019;k C_zk,i
[
dlfzi :
=i,
= {$o(W.1:0, 07 a1 o(W_poi|[ Wiy M7, ©17°7)} x
Ori C.15
819%’ ( ' )

where the last term comes from basic results of the multivariate normal distribution
function. In addition, szk,i = (Wl,’h W2,i7 . 7Wz71,i7 Wz+1,i7 . 7Wk71,i7 WkJrLi, ceey

Wasi)|, while the partial derivative Ory, /007, is equal to

*
arzk,i 0

aﬁzk - (%lzk {tanh<ﬁzk><2yz,i — 1)(2yk7i _ 1)}

%)
= (2025 = D(2yri — 1) 50— {tanh(d7,)}
0%,

= (2y.; — 1)(2uyp; — 1)sech2(19§k)

1
= (e = Dy = 1) —5 -
(2420 — 1) (2, )coshQ(ﬂ;k)
1
( Yz, )< Yk, )<exp(ﬂ;k)+exp(—ﬁzk))2
2
(2 1)(2 1) -
— yz,z’ - yk?,l - * *
{exp(v2,) + exp(—02)}*
46219;“

= (2u.;, —1)Quy; — 1) ———,
{6219zk + 1}2
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by using definitions and properties of the hyperbolic functions. Therefore, (C.15)

becomes

8<I>M(WZ-; 0, T;ka)
aﬁ*zk

= Gs(Wir330,0;")0p o(W i Woki; M, ©;77F)
4629k

(2y.: — 1)y — 1) ————,
{ewzk + 1}2

.

for W.ei = Wais Wei) s Wiy = Wi Waiy oo o Wai i Wataiy oo, Wm0 Wit
T k _ xzk x—zk k k)1 *—zk k

W), ©7F = ek, M, = O3 (O7%) " Wik, and ©7 7% = @33% —

)

-1 :
(Chs (@’{f’j) ©73%, as required. O



Appendix D

Complements to Chapter 6

D.1 Proof of Lemma 6.3.1

Proof. For convenience we ignore index k and term YV,i.. By definition,

Li(yi;6) = P(=guyy; <0,..., —Guiyp, < 0)
= P(—gu(nui+eu) <0, —Fnmi(Masi + emi) <0)
= P(=gu(® (Fi(ms) +eu) < 0,y =0ara( @7 (Far(mari)) + €ai) < 0)
= P(—gu® " (Fi(ni) — Jueni <0, =00 ® ™ (Fy(mars)) — Gasie s < 0)
= P(—guen < gu® (Fi(nu))s - —Omienrs < Gai® " (Far(nars)))

- ®M7—Bi€i (B’LH’H 07 EZ)

I ® L (Far (M) 1@ (F1(n1:)) M
:/ / Ort-Be,(Bili;0, %) [ [ dlzs. (D.1)
c=1

— 00 —00

where g; = (e1;,...,¢ Mi)T corresponds ot the error term of the M-variate Gaussian
binary model. Since g,,; is either equal to —1 or 1, it follows that B; = B, 1 and
|B;3;B;| = |X;|]. In addition, the pdf of a multivariate normal vector —B,;e; with

zero mean and covariance matrix 3J; can be re-expressed as the pdf of a multivariate
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normal vector €; with zero mean and covariance matrix B;3;B;, that is

Ort e (B0.5) = \2@4%exp{%(—Bizi)T(zi)1<—Bizi>}

= ¢M,ei<li§ 0, BiEiBi)
= ou(l;;0,B,%,8;).

where in the last expression we ignored index €; for convenience. Therefore, equation

(D.1) can be written as

I @ (Far (mna)) 7127 (F1(m3)) M
ﬁi(yz’;fs) = / / ¢M(li;0,BiEiBi)Hdla,i

where

* *
1 Toi -+ Tim
* *
7o 1 AU
* 12,3 2M.,i
T — ,
* *
Tivi Tomio - 1

th

for r7; s = tozitur,i0ly (2020 — 1) (2yk — 1), where t..; and tgy,; denote the (z, 2)"* and

(k, k)" element of matrix T, respectively, Vz, k,i. Note that the above derivation

applies to all ks, thus the likelihood L,; is equal to
Li(yi0) = {Pu((Wi)i;0, (Yo},

as required. O
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D.2 Matrices T; and X

Matrix T; is equal to

1 0 0 0
0 (1+1%,) " o . 0
T, — ( Mo, ) ’
2 2 2 —1/2
0 0 0 ... (T+nh+nis;+ - +M_100s)

while matrix 37 is defined as

1 2, . MM,

S _ M12,i T+ Moy e M2, + oM

MMmi MMmiTh2s + Memi .- 1+ U%M,i +. Tt 77%/1_1,1\4,1'
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D.3 Proof of Proposition 6.3.3

Proof. Since the correlation parameter 77, ; in matrix Y7 is defined as 77, =
tootrn0i (220 — 1)(2yri — 1), it follows that 77, ; may not only depend on 7.;; but
may also depend on M_.x;, where n_x; € M \ Naks, for 7 = (M2, - - ,T]M_LM’Z')T.
In order to account for these dependencies, we employ the multivariate chain rule

pr— P D-2
0B+ or; ON.ii OBk (D-2)

where 7} = (7"1‘271-, . ,r}*\/[_l,M’i)T and 0P (W;;0,Y7)/0rf = (0P (W;;0,Y7)/
Oring- -, 0P(Wi50,X7) /01 pr:), Vi. Based on result (C.15) in Appendix
C.2.2, we have that

ors

(2

= (¢2(W12,z‘; 0,0:)Pyo(W_12;|Whai; M2, 057), ...,

Po(Wii—1,m4; 0, @:M717M>(DM72(Wfol,M,i‘WMfl,M,i;
MMM @M ) (D.3)

)

where the notation is the same as in the previous chapters. The term Jr; /093 ;

can be obtained via the Jacobian matrix

8TT2,¢ 87"13,1’
T o124 T OnM—1,My
or; or; or; : . S
J="1= i) = : - : . (D.4)
on; 87712,i anM—l,M,i y )
8r]b1—1,M,i aTM—LM,i
o124 U Onm-1,My
as
or* ory or’ T
r; . < 12,4 Ml,M,i)
- AR I
877214:,1' 87]214:,1 8nzk,z
while On,x;/0B.k is equal to
0Nk
Teki T (D.5)

= X, .
0B
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since 1,x; = X;r]m-,ﬁzk. Based on the results (D.3), (D.4) and (D.5), it follows that
(D.2) becomes

aﬂzk

(¢2(W12,z‘§ 0,0:)®y_o(W_12;|Whas; M2, 057), ...,
P2(Whi—1,m4; 0, @:M717M>®M72(Wfol,M,i‘WMfl,M,i;

* * T
MFM-LM g M-1M a7”12,2‘ arMA,M,z’ T
; , 0O ) 5 T Xopio
N2k, N2k

-

for Wzk,i = (Wz,u sz) ) W—zk,i = (Wl,ia WQ,ia ceey Wz—u, Wz—i—l,ia e 7Wk—1,i> Wk:—i—l,ia
T ko k w—zk k k1 x—zk k

W), O7F = O3k, M, = O3% (013%) Wi, and O] = @33k —

)

-1 :
O3 (O1:%) " ©@13%, Vz, k, as required. O
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D.4 Data generating process used in the simula-

tion study

D4.1 DGP4

DGP4 was based on the following system of three equations

yh, = —0.55 4 0.90vy; + s1(21) + €14
yh = —0.45 — 1.4001; + s9(21) + €
y;l = —060 -+ 2.00U1i —+ 83(zli> + €3iy

while the additive predictors 1124, 713, and 7,3 ; were defined as

Mo = 0.20 + 0.70’012' + S919 (Zh')
Ms3:; = —0.80 — 0.151}11‘ + 51913(211‘)
772371' = —0.50 + 0.90’011' -+ S9a3 (Zli)7

where €; ~ N (0,3;), vy; is a binary regressor, and s,, and sy, correspond to
the smooth components which were represented using penalized thin plate regres-
sion splines with basis dimensions equal to 10 and penalties based on second-order
derivatives, Vm, z, k,i. The smooth functions are given by s;(21;) = 0.5cos(27z1;),
s9(211) = 215 + exp {—=30(21; — 0.5)2}, s3(215) = —0.5(21; + 323, s9,,(21:) = —2(0.25
exp(z11) — 25, S1,(215) = 23/% + exp(—3(z1; — 0.45)2) and sg,, (21;) = —221;. Sample
sizes were set to 1000 and 3000 and the number of replicates to 1000.

R code for DGP4

library(GJRM)

n <- 1000 # then n <- 3000
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n.rep <- 1000

SigmaCov <- matrix(0.5, 2, 2);diag(SigmaCov) <- 1
f1 <- function(x) 0.5%cos(pi*2*x)

f2 <- function(x) x+exp(-30%(x-0.5)"2)

f3 <- function(x) -0.5%(x+3%x"3)

f4 <- function(x) (-2 * (0.25 * exp(x) - x73))

f5 <- function(x) ((x~(5/2) + exp(-3*(x-0.45)72)))

f6 <- function(x) (-2x*x)

xt <- seq(0.0000001, 0.9999999, length.out = 200)

dt <- data.frame(z = xt)

fit <- f1(xt) - mean(f1(xt))
f2t <- f2(xt) - mean(f2(xt))
£3t <- £3(xt) - mean(£f3(xt))
f4t <- f4(xt) - mean(f4(xt))
f5t <- £f5(xt) - mean(f5(xt))
f6t <- f6(xt) - mean(f6(xt))

gammall <- gammal2 <- gamma2l <- gamma22 <- gamma31l <- NULL
gamma32 <- thetal2l <- thetal22 <- thetal3l <- NULL
thetal32 <- theta231 <- theta232 <- NULL

F1 <- F2 <- F3 <- F4 <- F5 <- F6 <- matrix(NA, 200, n.rep)

for(i in 1:n.rep){
set.seed (i)
data.gen <- function(SigmaCov, f1, f2, £f3, f4, f5, £6){

Mvdcov  <- mvdc(copula = normalCopula(0.5), margins = c("logis",



189 D.4. Data generating process used in the simulation study

"norm"), paramMargins = list( list(location = 0, scale = 1),
list(mean = 0, sd = 1)) )

cov <- rMvdc(1l, Mvdcov)

vl <- round(mm(plogis(cov[, 1])))

z1 <~ mm(pnorm(cov[, 2]))

eta_thetal2 <- 0.2 + 0.70%v1 + f4(z1)
eta_thetal3 <- - 0.8 - 0.15%vl + £5(z1)
eta_theta23 <- - 0.5 + 1.00%xvl + f6(z1)

Sigma.er <- matrix( c( 1, eta_thetal2, eta_thetal3,
eta_thetal2, 1, eta_theta23,
eta_thetal3, eta_theta23, 1 ), 3 , 3)
# Check if Sigma.er is positive-definite:
eS <- eigen(Sigma.er)
check.eigen <- any(eS$values < 0)
if (check.eigen == TRUE) {
C <- matrix(c(1, 0, O, eta_thetal2, 1, 0, eta_thetal3, eta_theta23,
1), nrow = 3, byrow = TRUE)
Sigma.star <- C %x% t(C)
T <- diag(1/sqrt(diag(Sigma.star)))
Sigma.er <- T %%} Sigma.star %x% T
} else Sigma.er <- Sigma.er
eta_thetal2 <- Sigma.er[1, 2]; eta_thetal3 <- Sigma.er[1l, 3];

eta_theta23 <- Sigma.er[2, 3]

norm.copu <- normalCopula( c(eta_thetal2, eta_thetal3, eta_theta23),
dim = 3, dispstr = "un"
Mvdu <- mvdc(copula = norm.copu, margins = c("logis", "gumbel", "norm"),

paramMargins = list( list(location = 0, scale = 1),

list(location = 0, scale 1),

list(mean = 0, sd = 1)) )
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u <- rMvdc(1, Mvdu)

yl <- ifelse(-0.55 + 0.9xvl1 + f1(z1) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.45 - 1.4xv1 + f2(z1) + ul[,2] > 0, 1, 0)
y3 <- ifelse(-0.60 + 2.0%xvl + £3(z1) + u[,3] > 0, 1, 0)

c(yl, y2, y3, vi,z1)

dataSim <- matrix(NA, nrow = n, ncol = 5)

for(j in 1:n) dataSim[j,] <- data.gen(SigmaCov, f1, f2, f3, f4, f5, £6)

dataSim <- data.frame(yl, y2, y3, vi, zl1)

S=mgcv::s

f.1 <= list(yl ~ vl + s(zl1),
y2 =~ vl + s(zl),
y3 ~ vl + s(zl),
~ vl + s(zl1),
~ vl + s(z1),

~ vl + s(z1))

out <- try( SemiParTRIV(f.l, margins = c("logit", "cloglog", "probit"),
data = dataSim, Chol = TRUE) )

X1 <- PredictMat( out$gami$smooth[[1]], dt
X2 <- PredictMat( out$gam2$smooth[[1]], dt
X3 <- PredictMat( out$gam3$smooth[[1]], dt
X4 <- PredictMat( out$gamd4$smooth[[1]], dt

X5 <- PredictMat( out$gamb5$smooth[[1]], dt

A S T A A s

X6 <- PredictMat( out$gam6$smooth[[1]], dt

1gl <- length(coef (out$gami))

1g2 <- length(coef (out$gam2))
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1g3 <- length(coef (out$gam3))
lg4 <- length(coef (out$gamd))
1gb <- length(coef (out$gamb))

F1[,i] <- X1%x%coef (out) [(out$gami$smooth[[1]]$first.para:
out$gami$smooth[[1]]$last.para)]

F2[,i] <- X2%x%coef (out) [1gl + (out$gam2$smooth[[1]]$first.para:
out$gam2$smooth[[1]]$last.para)]

F3[,i] <- X3%x%coef (out) [1gl+ 1lg2+(out$gam3$smooth[[1]]$first.para:
out$gam3$smooth[[1]]$last.para)]

F4[,i] <- X4Jx*coef (out) [1gl+lg2+1g3+(out$gamd$smooth[[1]]$first.para:
out$gamd$smooth[[1]]$last.para)]

F5[,i] <- X5%x%coef (out) [1g1+1g2+1g3+1ga+(out$gamb5$smooth[[1]1]$
first.para:out$gam5$smooth[[1]]$last.para)]

F6[,i] <- X6%x*J%coef (out) [1gl+1g2+1g3+1gl+1gh+(out$gam6$smooth[[1]]$

first.para:out$gam6$smooth[[1]]$last.para)]

F1[,i] <- F1[,i] - mean(F1[,i])
F2[,i] <- F2[,i] - mean(F2[,il)
F3[,i] <- F3[,i] - mean(F3[,i])
F4[,i] <- F4[,i] - mean(F4[,i])
F5[,1] <- F5[,i] - mean(F5[,1i])
F6[,i] <- F6[,i] - mean(F6[,i])

gammall[i] <- coef (out) [1]

gammal2[i] <- coef (out) [2]

gamma21[i] <- coef (out) [out$X1.d2+1]
gamma22[i] <- coef (out) [out$X1.d2+2]
gamma31[i] <- coef (out) [out$X1.d2+out$X2.d2+1]
gamma32[i] <- coef (out) [out$X1l.d2+out$X2.d2+2]
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simulation study

thetal21[i] <-
thetal22[i] <-
thetal131[i]

N
|

thetal32[i] <-
theta231[i]

N
[

out$X5.d2+1]
theta232[i] <-
out$X5.d2+2]

coef (out) [out$X1.

coef (out) [out$X1.

coef (out) [out$X1

coef (out) [out$X1.

coef (out) [out$X1.

coef (out) [out$X1.

d2+out$Xx2.
d2+out$X2.

.d2+out$Xx2.

d2+out$X2.
d2+out$X2.

d2+out$Xx2.

d2+out$X3.
d2+out$X3.
d2+out$X3.
d2+out$Xx3.
d2+out$X3.

d2+out$X3.

d2+1]

d2+2]
d2+out$X4.d2+1]
d2+out$x4.d2+2]
d2+out$X4.d2+

d2+out$X4.d2+
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