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Abstract 

Introduction: The annual economic burden of treating cancer to the National Health 

Service (NHS) in the United Kingdom (UK) is over £15 billion; and for non small cell 

lung cancer (NSCLC), one of the leading causes of cancer deaths in the world, this is 

£2.4 billion. Economic evaluation plays an essential role in assessing the relative 

value of lung cancer treatments. Modelling (HRQoL) data is fundamental in 

determining the cost-effectiveness of cancer treatments. This thesis aims to 

investigate modelling of HRQoL data collected from lung cancer patients for 

economic evaluation. In particular, the role of modelling to improve utility prediction is 

investigated. The sensitivity of disease specific and generic HRQoL measures are 

also explored. In addition, methods to extrapolate utilities beyond cancer progression 

and identifying a selection procedure from relevant published algorithms are 

developed.  

 

Methods: Data from two clinical trials and a prospective observational study in 

NSCLC patients were  designed and executed to develop several mapping models 

(Linear, Non-Linear, Joint, and Bayesian). The sensitivity of EQ-5D-3L and EQ-5D-5L 

were compared with a cancer specific measure (QLQ-C30). Simulation methods 

were used to develop an approach for selecting algorithms. 

 

Results: Two and three-part Beta-Binomial models improve predictions. Joint 

models also contribute to improved prediction of utilities. Bayesian Networks may 

help reduce the over-prediction in poor health states. The EQ-5D-5L offers better 

mapping and is more sensitive for detecting treatment benefit compared to EQ-5D-

3L. It is also viable to develop decision criteria for selecting between several 

published algorithms.  

 

Conclusion: Methodological improvements in modelling HRQoL for the economic 

evaluation of cancer treatments have been demonstrated. Improvements in model 

structure, prediction and selection are empirically demonstrated.  
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Thesis Overview  

The thesis is divided into 10 chapters: Chapter 1 is an introductory chapter on health 

related quality of life (HRQoL) in the context of cancer and economic evaluation. 

Chapters 2 and 3 consist of a literature search, review and statement of objectives 

of the thesis. Chapter 4 compares existing models with a new non-linear Beta-

Binomial mapping algorithm, using patient-level data from two randomized trials. 

Chapter 5 is an extension of chapter 4 as it evaluates other mapping algorithms 

developed from the more recent EQ-5D-5L. Chapter 6 seeks to understand the 

reasons why algorithms may over-predict at poorer health states. Chapter 7 involves 

the use of Bayesian networks in order to develop a mapping algorithm. Chapter 8 

compares the sensitivity and responsiveness of generic and condition-specific 

measures, particularly EQ-5D-5L, EQ-5D-3L, and EORTC-QLQ-C30. Chapter 9 

compares the performance of published mapping algorithms. A selection procedure 

is proposed, which separates ‘useful’ algorithms from ‘not useful’ ones. Finally, 

Chapter 10 provides a summary and conclusion of the above research and 

discusses the nuances, advantages, limitations and future research ideas.   
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Chapter 1 

Chapter 1: Cancer Epidemiology, Treatment, Quality of Life and Economic 

Burden 
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                                                      Abstract 

Introduction: The annual economic burden of treating cancer to the National Health 

Service (NHS) in the United Kingdom (UK) is over £15 billion; and for non small cell 

lung cancer (NSCLC), one of the leading causes of cancer deaths in the world, this is 

£2.4 billion. Economic evaluation plays an essential role in assessing the relative 

value of cancer treatments. The aim of this chapter is to introduce important concepts 

associated with health-related quality of life (HRQoL) and their importance for the 

methodology that underpins economic evaluation of cancer treatments.  

 

Methods: Medical Subject Headings (MESH) search terms using PUBMED, 

MEDLINE, and COCHRANE databases of systematic reviews were used to identify 

articles for this introductory chapter. A narrative review of the epidemiology, 

treatments, economic costs and HRQoL associated with lung cancer are presented 

to contextualize the research aims of this dissertation. 

 

Results: Annual worldwide cancer incidence is around 14.1 million with lung, breast, 

bowel, and prostate being the most common. Treatment options after surgery are 

often (expensive) chemotherapies. The worldwide economic burden of cancer is at 

least $895 billion; in the UK alone, the NHS spending is at least £15 billion. Cancer 

treatments are expensive and their cost-effectiveness may often depend on HRQoL 

estimates and their uncertainties. Unavailability of suitable HRQoL measures for 

cost-effectiveness analyses, use of inadequate modelling methods, lack of sensitivity 

of instruments, unclear definition of relevant effect sizes and rapid disease 

progression are some of the challenges for the economic evaluation of cancer 

treatments. 

 

Conclusion: There are challenges identified with HRQoL in the context of the 

economic evaluation of cancer treatments and these will be addressed in the thesis. 
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1.1 Introduction and Epidemiology of Cancer 

1.1.1 Introduction to Cancer  

The term ‘carcinoma,’ is derived from the Greek word ‘karkinos’, meaning crab. 

Hippocrates associated cancer to the shape of a crab, because of the way it spreads 

through the body and its persistent nature [1].  

The National Cancer Institute Dictionary of Cancer Terms defines cancer as:  

 

“A term for diseases in which abnormal cells divide without control and can invade 

nearby tissues. Cancer cells can also spread to other parts of the body through the 

blood and lymph systems. There are several main types of cancer. Carcinoma is 

cancer that begins in the skin or in tissues that line or cover internal organs. Sarcoma 

is cancer that begins in bone, cartilage, fat, muscle, blood vessels, or other 

connective or supportive tissue. Leukaemia is cancer that starts in blood-forming 

tissue, such as the bone marrow and causes large numbers of abnormal blood cells 

to be produced and enter the blood. Lymphoma and multiple myelomas are cancers 

that begin in the cells of the immune system. Central nervous system cancers are 

cancers that begin in the tissues of the brain and spinal cord.” [2] 

 

Cells in the body incessantly split and start spreading into various parts of the body 

[3]. In a normal body, cells in the body grow and divide to make new cells, as and 

when the body needs. The older or damaged cells die and new cells are generated. 

However, if the old cells do not die and simultaneously the new cells are generated, 

the surplus cells divide and result in tumors [4]. 

1.1.2 Lung Cancer  

An estimated 14.1 million new cases of cancer have been identified across the world 

in 2012. Amongst these, nearly four in ten cases occur in developing countries. The 

four most common types of cancers recognized worldwide are lung, female breast, 

bowel and prostate cancer, respectively. These four types of cancer constitute nearly 

40% of all cancers diagnosed worldwide.  

 

Importance of Lung Cancer: Mortality 
 

Lung cancer is one of the leading causes of cancer-related deaths and accounts for 

nearly 1.4 million deaths per year worldwide, with a yearly incidence of over 41,000 

in the UK alone [5, 6]. Of these, >80% of incidences are non-small cell lung cancers 
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(NSCLC) [7]. Over 342,000 people in Europe and 162,000 in the US die each year 

from lung cancer [8]. In addition, approximately 13% of all estimated new cancer 

cases and 19% of all cancer-related deaths globally are due to lung cancer [8]. Lung 

cancer incidence and death rates are lower in Europe compared to those in the 

United States (USA). The survival rates associated with lung cancers do not vary by 

gender [6, 7, and 8] and the death rate from the disease remains high, at 56 deaths 

per 100,000 people in the UK population annually. 

 

More than 8 out of 10 lung cancer cases occur in people aged 60 and over. Rates of 

lung cancer in Scotland are among the highest in the world, owing to high smoking 

prevalence. In the 1950s, for every 1 lung cancer case diagnosed in women in the 

UK, there were 6 in men. That ratio is now 3 cases in women for every 4 in men. The 

lowest lung cancer rates in the world for men and women are in Northern, Western 

and Middle African countries and South Central Asia; but this will also change if the 

current trends in the uptake of smoking persist [8]. These facts underline the 

importance and significance of lung cancer as an important area for research. 

 

Nine out of ten cases of lung cancer are caused by smoking. In 2002, there were 

38,410 new cases and 33,602 deaths from lung cancer [3]. Recent statistics in 2009 

show lung cancer cases of 42,000 new cases (18,000 of these women, making it the 

second most common cancer in women after breast and bowel cancer). The majority 

of cases are inoperable at presentation. This may be due to medical co-morbidity 

(e.g. at stages I, II and III), or due to tumour extent (e.g. at stage IV): cancer staging 

is a way of defining the severity of a patient’s cancer, stage I being milder and IV 

more advanced.   

 

The median survival of lung cancer patients in the UK is about 203 days (about 7 

months) [9]. This also means that the time horizons for assessing HRQoL and costs 

are also relatively short. Moreover, “Lung cancer costs more than any other cancer – 

mainly because of potential wage losses due to premature deaths from people in 

employment - about 60% of the total economic costs – and high health care costs. 

The death rate from the disease remains high at 56 deaths per 100,000 people in the 

UK population annually, and almost a quarter of these occur before retirement…” [5].  

 

Finding effective treatments has been challenging, with few that extend survival 

significantly. It is still, therefore, an incurable disorder, and consequently one of the 

primary aims as part of patient management should be improving HRQoL particularly 
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towards the end of life. Lung cancer is therefore likely to remain a significant burden 

of illness in the UK as well as worldwide and healthcare resource utilization is likely 

to remain high in these patients. This is at least one reason why modelling HRQoL in 

this population remains an important area of research in economic evaluation.  

 
Importance of Lung Cancer: Morbidity 
 
The lung cancer five-year survival rate (17.7 percent) is lower than many other 

leading cancer types, such as the colon (64.4 percent) breast (89.7 percent) and 

prostate (98.9 percent) [10]. The five-year survival rate for lung cancer is 55 percent 

for cases detected when the disease is still localized (within the lungs). However, 

only 16 percent of lung cancer cases are diagnosed at an early stage. For distant 

tumours (spread to other organs) the five-year survival rate is only 4 percent. 

 

Smoking, the main cause of lung cancer, contributes to 80 percent and 90 percent of 

lung cancer deaths in women and men, respectively. Men who smoke are 23 times 

more likely to develop lung cancer. Women are 13 times more likely, compared to 

never smokers.10. Exposure to second hand (passive) smoke causes approximately 

7,330 lung cancer deaths among non-smokers every year [11]. Lung cancer can also 

be caused by occupational exposures, including asbestos, uranium, and coke (an 

important fuel in the manufacture of iron in smelters, blast furnaces and foundries). 

The combination of asbestos exposure and smoking greatly increases the risk of 

developing lung cancer. Lung cancer is also associated with poor HRQoL, 

sometimes exacerbated due to toxicities from treatments (chemotherapy). These 

include shortness of breath (dyspnoea), cough, anxiety, depression and a marked 

impact on daily activities.  

 
Risks associated with lung cancer  
 

Risks associated with lung cancer depend on several factors, including age, 

genetics, and exposure to other risk factors (e.g. smoking). Smoking, insufficient 

physical activity, alcohol, diet, being overweight and infections account for a high 

proportion of cancers worldwide. Prevalence of different risk factors varies by region 

and country; smoking is the single most preventable cause of cancer-related death in 

the world; around a third of tobacco-caused deaths are due to cancer. Moreover, 

drinking excessive alcohol causes an estimated 6% of deaths worldwide and about 

13% of these deaths (equivalent to 47 million people) are due to alcohol related 

cancer [5]. 

http://www.lung.org/stop-smoking/smoking-facts/health-effects.html
http://www.lung.org/stop-smoking/smoking-facts/health-effects-of-secondhand-smoke.html
http://www.lung.org/our-initiatives/healthy-air/indoor/indoor-air-pollutants/asbestos.html
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Types of Lung Cancer (Histological Classifications) 

 

There are two main types of lung cancer: Small Cell Lung Cancer (SCLC) represents 

about 20 % of lung cancer cases and Non- Small Cell Lung Cancer (NSCLC) about 

80% [3]. They are called SCLC and NSCLC because the cancer cells were found to 

either be small cells, or larger cancer cells, such as adenocarcinomas or squamous 

cells. Consequently, they have been classified into those separate categories, small 

cell or non-small cell cancer [12] . 

 

There are two further types of NSCLC, based on histologic subtyping: squamous and 

non-squamous, where the latter can be divided into two subtypes, adenocarcinoma 

and large cell carcinoma as presented in Table 1.1 (below). 

     

Lung cancer type Histology Subtype  % of total NSCLC 

NSCLC Non-squamous Adenocarcinoma 40% 

Large cell carcinoma 10 – 15% 

Squamous Carcinoma  25 – 30% 

Other – 15 – 25% 

Table 1.1: Summary of NSCLC types (Thunnissen, 2013) [13] 

 

NSCLC presents the largest group of patients for which the economic burden is 

considerable and for which the need for cost-effectiveness treatments is greater 

because of the increasing availability of (often expensive) treatments. Hence, I focus 

on NSCLC primarily in this thesis. 

1.2 Treatments for Lung Cancer  

Common approaches for treating cancer include (i) surgery, followed by (ii) 

chemotherapy and (iii) radiotherapy (not necessarily in that order). Despite treatment 

with chemotherapy, cancer recurrence is not uncommon. Recent novel 

chemotherapy treatments (e.g. immunotherapy) use the body’s immune system to 

fight and kill cancer cells. Some of these have proved to be cost-effective, while 

others have not [14]. ‘Cost-effective’ evaluates the relative costs and benefits of a 

given healthcare technology to determine its value to the taxpayer or relevant budget 

holder/payer. Most cancer treatments are associated with side effects that have a 

marked impact on HRQoL. 

  

As an example, treatment options for a NSCLC patient (the data used in this thesis 

are from lung cancer patients) are shown in Figure 1.1. A given cancer treatment is 
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often used for different types of tumors and results in common side effects, and 

therefore, similar patient experiences (e.g. quality of life).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

 

 

                         

 

                    

 

 

Figure 1.1: Common Treatment Options for NSCLC 

(Source: NICE guidance [15]) 

1.3 Economic Burden of Lung Cancer 

The worldwide economic burden of treating cancer is high. Cancer has the most 

devastating economic impact amongst disease related causes of death in the world 

[16]. The exact worldwide economic costs of cancer are unknown but are estimated 

to be at least $895 billion ($US) [16].  

Drug cost is a major (but not the only) cost component associated with treating 

cancer. Other costs include costs of treating side effects, surgery or administering 

chemotherapy, all of which can be significant. As an example, in the UK, the total 
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annual cost of treating lung cancer in 2012 was about £3 billion [17] (20% of cancer 

costs) - the yearly average cost per patient was £9,071. This is comparable to £2,756 

for bowel cancer, £1,584 for prostate cancer and £1,076 for breast cancer. 

Therefore, the costs associated with treating and managing lung cancer can be three 

times higher compared to the other types of cancer. In the USA, the mean monthly 

cost of treating lung cancer patients was estimated at £1,669 (no active treatment) 

£1=$1.61 and £5,814 (chemo-radiotherapy) [16]. Lung cancer, therefore, is a 

significant health and economic burden on the UK and worldwide health systems. 

1.3.1 Policy Implications  

With a growing and aging population, prevention efforts are critical for reducing new 

cancer cases, human suffering and economic costs [18]. In the United Kingdom (UK), 

the annual economic burden of cancer is estimated to be £15 billion. The National 

Health Service (NHS) increased its budget for cancer drugs from £200 million in 2013 

to an expected £340 million in 2015 [19], a 70% increase in the Cancer Drug Fund 

(CDF) [20].  

The CDF was set up in 2011 by the UK government to make funds available for 

paying for cancer drugs. It was changed in 2016 as its current form had become 

economically unsustainable. One critical change was an explicit reference to the 

cost-effectiveness of cancer drugs and resolving uncertainty associated with respect 

to their costs and effects [20]: 

 “Managed access agreements between NHS England and pharmaceutical 

companies, setting out the terms of a drug’s entry into the CDF and the means by 

which data will be collected to resolve any uncertainty relating to a drug's clinical 

and cost-effectiveness.” 

One objective of government health departments is the desire to optimize the use of 

cancer drugs by a combination of negotiated price reductions (of drugs) and 

improved clinical effectiveness. A number of cancer drugs have been removed from 

the CDF list [20], due to their lack of cost-effectiveness. This is despite NICE defined 

cost-effectiveness thresholds between £20,000 to £30,000 per quality adjusted life 

year (QALY)). In some special cases, this is set as a high as £50,000 per QALY 

where an end of life (EoL) criteria is satisfied. The EoL criteria apply when the life 

expectancy is short (<24 months), the new treatment improves survival by at least 3 

months and the treatment is licensed for a population not exceeding 7,000 (in 
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England). At the time of writing this thesis, the CDF was under review [21] for which 

one key initiative was to ensure the drive for stronger value for money. 

A more recent example of a drug not recommended by NICE is Nivolumab [14, 22]). 

Several reasons were cited for the rejection of this drug as not cost-effective. One of 

these reasons was the absence of adequate HRQoL (utility) data beyond disease 

progression which influenced the decision to recommend. Hence, HRQoL is central 

to the decision process for policy design and implementation for treating patients with 

NSCLC. Table 1.2 shows all the treatments rejected/approved by not only NICE but 

international re-imbursement agencies. It is interesting to note that the more recent 

drugs (at the time of writing) were not considered cost-effective at NICE accepted 

thresholds. A common thread for some of these rejections was related to an absence 

of or inadequate HRQoL data. It is in this context the reference to resolving 

“uncertainty” for determining “cost effectiveness” in the above quoted text [20, 21] is 

meant. Modelling HRQoL (this thesis) will offer ways to estimate otherwise unknown 

(but not unknowable) HRQoL data for economic evaluation. In this thesis, HRQoL 

data collected from lung cancer (specifically NSCLC) patients will be used. 

 

  CADTH/ pCODR TLV HAS NICE NoMA PBAC SMC 

  1L 2L 1L 2L 1L 2L 1L 2L MTx 1L 2L 1L 2L 1L 2L 

Afatinib 
pCODR 
2013  

4116 
 

13272 
 

310 
    

07-
2013 

07-
2013 

920/13 920/13 

Bevacizumab 
    

5390 
 

148 
      

853/13 
 

Carboplatin 
               

Ceritinib        ID729        

Cisplatin                

Combination* 
      

181 
      

N/R 
 

Crizotinib 
pCODR 
2012 

pCODR 
2013      

296 
      

865/13 

Docetaxel 
  

3094 
   

26 N/R 
     

42/03 
 

Erlotinib 
 

S0037 1066 
 

12040 
 

258 162 227 
12937-
7  

07-
2013  

749/11 220/05 

Gefitinib 
 

S0003 2115 
 

6839 
 

192 175 
 

18176-
34  

07-
2013  

615/10 
 

Gemcitabine 
      

26 
        

Methotrexate                

Nintedanib 
      

ID438 
      

SMC 
2015  

Paclitaxel 
      

26 
        

Pemetrexed 
pCODR 
2013    

5800 7892 181 124 190 309 
  

03-
2009 

03-
2010 

531/09 342/07 

Vinorelbine 
  

377 
 

6288 
 

26 
    

03-
2006  

179/05 
 

Table 1.2: Health Technology Assessment Results 
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Note: CADTH: Canadian Agency for Drugs and Technologies in Health, HAS: French National Authority for Health, 

HTA: Health Technology Assessment, MTx: Maintenance treatment; NICE: National Institute for Health and Care 
Excellence, NoMA: Norwegian Medicines Agency, N/R: Not reported; pCODR: pan-Canadian Oncology Review, 
SMC: Scottish Medicines Consortium, TLV: The Dental and Pharmaceutical Benefits Agency 

*Combination therapy: Carboplatin-Taxol, Gemcitabine-cisplatin; 1L: First Line, 2L: Second Line 

Green = Approved; Orange = Approved for some indications; Red = Rejected; Blue = currently reviewed 

NOTE: Numbers in cells represent the technology appraisal id, if available [see 23 - 41] 

1.4 Health-Related Quality of Life in Cancer 

The World Health Organization (WHO) defines Quality of Life (QoL) as an individual’s 

perception of their position in life, in the context of the cultural and value systems in 

which they reside, and in relation to their goals, expectations, standards, and 

concerns [42]. HRQoL however, is a broader concept, affected in a complex way by 

the person's physical health, psychological state, the level of independence, social 

relationships, personal beliefs and their relationship to salient features of their 

environment.  

 

Health-Related Quality of Life (HRQoL) is an important endpoint in cancer trials for 

several reasons. Firstly, when primary endpoint treatment effect sizes (based on 

mortality) are small, HRQoL offers the potential to ‘add value’ to expensive cancer 

treatments. Secondly, HRQoL outcomes are essential for cost-effectiveness analysis 

and drug reimbursement [81,206]. This is particularly true, where some generic 

HRQoL measures are used to adjust important efficacy outcomes for the purpose of 

demonstrating the cost-effectiveness of a new treatment. Thirdly, some anti-cancer 

treatments exhibit serious side-effects, despite improvements in overall survival (OS). 

The quality of the survival experience in the presence of such side-effects is essential 

for understanding the value of new cancer treatments from the perspective of the 

payer. Finally, different HRQoL instruments can result in varied (and sometimes 

opposing) interpretations of effect sizes. Consequently, the need to compare the 

effect sizes from different instruments on a common scale is vital, so that the 

clinicians, decision makers, and patients can align their understanding of HRQoL 

improvement or deterioration.  

 

HRQoL is measured through various methods – often questionnaires, with specific 

questions about feelings, symptoms, physical ability and preferences (amongst other 

questions), in relation to their health. HRQoL data are often collected at several time 

points during a study (including clinical trials). In clinical trials, an experimental 

intervention is expected to yield at least equivalent or better clinical benefit (efficacy), 

compared to usual treatment. However, the new treatment may offer improved 

HRQoL benefit in addition to or despite lack of improved clinical benefit (for instance, 
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the new treatment may be less toxic, with fewer side effects, leading to improved 

symptom control).  

 

Limitations of Anti-Cancer Treatments 

Cancer patients are concerned about their HRQoL during and after treatment [43]. 

Anti-cancer treatments have often resulted in some harm (sometimes without benefit) 

and in some cases clinical benefit with harm [44]. Consequently, HRQoL should be a 

key outcome measure when assessing the cost-effectiveness of a new intervention 

[45].  

 

The implications for HRQoL during palliative therapy can be particularly acute 

because symptom palliation may contribute towards improved quantity and quality of 

life [46]. Since no further treatments (i.e. chemotherapy) are likely to be used during 

the end of life (EoL), the HRQoL benefits for patients and their carers from other 

forms of intervention (e.g. carer support, career education programs) may yield 

important HRQoL benefits.  

 

Some researchers have suggested that a ‘treatment can be recommended ….even 

without an improvement in survival if HRQoL is shown to improve…’ [47]. For 

instance, in nearly 8% of the RCTs in breast cancer, HRQoL influenced a treatment 

decision. In prostate cancer studies, involving chemotherapy and surgery, 25% and 

60% of treatment decisions were influenced by HRQoL, respectively [48].  

 

Due to the increasing number of therapy lines, smaller treatment effect sizes and 

increasing costs of drugs, HRQoL plays an important role in treatment, policy, 

rationing, and decision-making. This is likely to remain an important factor in the 

short to mid-term [49,50]; 26 out of 43 (60%) NSCLC studies, including randomized 

controlled trials (RCT), that assessed HRQoL, included a symptom specific measure 

(in addition to a cancer-specific measure). This suggests that a generic approach for 

measuring cancer HRQoL is inadequate [50], and only 2 studies (5%) used a generic 

measure. In this thesis, this conclusion will be investigated further when comparing 

condition specific and generic measures of HRQoL. 

 
Why collect HRQoL Data? 
 
HRQoL data are collected because researchers need to maximize the information 

about how anti-cancer treatments are working so that informed decisions for treating 

patients can be made. It is essential to know (from both patients’ and clinicians’ 
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perspectives) not only what the side-effects associated with treatments are, but also 

how these side effects impact the patients’ HRQoL. It is now universally accepted 

that HRQoL should be measured in clinical trials, however, the debate still continues 

as to what is the most reliable and practical way to obtain this data [50] or what 

constitutes to be a clinically relevant benefit from these measures.  

 

The value of a new healthcare intervention may also have to be considered, through 

its benefit in terms of HRQoL and not survival. Although some cancers are curable 

(e.g. testicular cancer), a majority of them (including NSCLC), are considered to be 

incurable. Therefore, one of the objectives of cancer patient management should be 

improving HRQoL, particularly towards the end of life, when negligible clinical 

benefits are realized and fewer treatment options are available [44, 51, 52, and 53]. 

The risk-benefit and cost-benefit relationship between competing treatments, 

especially when clinical effects are small, can be guided by HRQoL outcomes [51]. 

For example, baseline HRQoL might predict survival benefits (e.g. patient who has 

poor HRQoL prior to treatment and improve on treatment, may also be the ones with 

improved HRQoL post treatment; whereas those patients who enter a study with 

good HRQoL may not improve their HRQoL further, even if survival is lengthened) 

[44]. Therefore, baseline HRQoL can be used to determine whether certain patients 

are more or less likely to benefit from a given treatment and whether a treatment’s 

cost-effectiveness is likely to be greater for some patients.  

 

Evaluating and measuring HRQoL benefit is an important aspect of economic 

evaluation. Economic evaluation (EE) is the process of systematic identification, 

measurement, and evaluation of the inputs and outcomes of two (or more) alternative 

activities (health interventions), and their subsequent comparative analysis [52]. EE 

in the context of cancer involves assessing the value of various cancer treatments, 

often through a metric which combines the quantity (length) of life and the quality of 

life experienced during that time – called a Quality Adjusted Life Year (QALY). This is 

particularly valuable when some expensive cancer drugs improve survival only to a 

minimal extent (e.g. for 1 or 2 weeks). In cancer trials  

 
Challenges with HRQoL in Cancer Studies 
 
There are several features of measuring HRQoL in cancer patients that are 

important. Firstly, HRQoL for the purposes of economic evaluation is often omitted 

[53,54] because the belief is that a condition specific measure will capture the 

necessary HRQoL features. This consequently results in methods adopted for 
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estimating relevant HRQoL data, which is a key objective of this thesis. There are 

several reasons for this omission. Firstly, for some regions, HRQoL for EE is not 

important due to the specific health care system (e.g. the USA). Hence measures 

such as quality adjusted life years (QALYs) which combine quality and quantity of life 

as a single index, are not relevant. The difficulty is compounded when the same 

study conducted in a region where QALYs are not relevant (e.g. to the FDA in the 

USA) is also submitted for licensing to European authorities (at that point, the payer 

perspective becomes important and demands for estimation for QALYs is essential 

for patients to access cancer medicines (e.g. see [55,107]).  

 

The second reason why HRQoL for EE is omitted is because the emphasis is placed 

on the clinical or disease specific aspects of HRQoL. HRQoL for EE are often 

considered to lack sensitivity. The BR21 trial [55] was primarily submitted to the USA 

for licensing where economic consideration at trial design was largely ignored [55]. 

HRQoL was considered only important so far as clinical effects are concerned. This 

is another objective of this thesis – to investigate to what extent, if any, disease 

specific and HRQoL measures for EE differ in terms of sensitivity. Another reason 

might be that two treatments are considered equivalent and therefore collecting 

HRQoL for an EE may not be useful.  

 

One key feature in cancer is that patients can deteriorate rapidly thereby leading to 

an absence of both short and long-term data to evaluate efficacy and effectiveness. 

Economic evaluation is often determined over a life-time horizon and without 

available HRQoL, EE can become challenging. Some studies report at least 50% of 

the data missing within 3 months of starting treatment [46] due to disease 

progression, death or loss to follow up, attributed to the short survival time of patients 

and rapidly deteriorating health (especially after disease progression). For example, 

survival times for patients with NSCLC can be short (e.g. only 32% and 10% alive 1 

and 5 years after diagnosis, respectively) [56]. 

  

Estimation of HRQoL within a study/trial and beyond protocol defined follow-up also 

plays a significant role in the EE of cancer drugs. For several economic evaluations 

of NSCLC treatments, estimation of HRQoL beyond study follow up have been 

performed [22] inadequately. Several technical documents describe methods of 

estimating both survival data and HRQoL in the absence of available patient level 

data and suggest further research to improve methods are needed in such 

circumstances [57] for cost-effectiveness analyses, particularly when such data are 
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not collected (or available). The short survival time also limits the opportunity to 

collect HRQoL data within a narrow time window. A further challenge is ensuring the 

appropriate HRQoL is used. For example, the FACT-L and QLQ-C30 can both be 

used to measure HRQoL in lung cancer patients with different measures and 

conclusions regarding clinical benefit.  

1.4.1 Measuring HRQoL: Generic and Condition-Specific Measures of 

HRQoL in Cancer 

 
Condition-Specific Measures of HRQoL  

Measuring HRQoL can be broadly classified into the two categories - condition-

specific measures (CSM), which measure specific HRQoL symptoms (e.g. a cough, 

dyspnoea, etc.) and generic measures, which measure the broader HRQoL areas 

(e.g.  mobility). Figure 1.2 illustrates the relation between some generic and 

condition-specific measures (CSM) of HRQoL.  

 

 

 

 

  

 

 

 

 

 

Figure 1.2: Relationship between Generic and Condition-Specific HRQoL Measures 

Note: LCSS: Lung Cancer Symptom Specific questionnaire; HAQ: Health Assessment Questionnaire;   

KHQ: King’s Health Questionnaire; HUI: Health Utilities Index; SF-6D: Short –Form 6D 

 

In most cancer studies, HRQoL data wherever collected and reported, have been 

restricted to condition-specific measures (CSM). A CSM is an instrument that 

captures the specific quality of life issues in patients linked to a given disease. The 

wide use of CSMs is due to several reasons. Firstly, CSMs were validated for 

estimating clinical effects and historically cost-effectiveness was not considered as 

part of their validation. Secondly, a CSM was considered more sensitive than other 

generic measures for estimating HRQoL, focusing on specific symptom relief. Thirdly, 

an economic evaluation was not considered important. As budgets for health care 
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became constrained while demand for health resource use grew, the impetus for 

rationing health resources became essential. For cost-effectiveness, HRQoL from 

CSMs are not used unless responses can be converted into a generic preference 

based measure (section 1.4.2).  The two most common lung-specific measures used 

in studies of lung cancer are: 

 EORTC QLQ-C30 and 

 FACT-L: Functional Assessment of Cancer Therapy – Lung [49,54,56,58] 

These are worthwhile reviewing as the EORTC-QLQ-C30 forms part of later chapters 

of this thesis. 

 
(i) EORTC-QLQ-C30 Generic Cancer Instrument 

The EORTC-QLQ-C30 (QLQ-C30) is a ‘generic’ cancer instrument [59, 60] consisting 

of 30 questions, out of which 28 questions are measured on a 4 point scale (‘not at 

all’ (1) to ‘very much’ (4)) and 2 questions are measured on a 7 point scale. Although 

it is generic across cancer types, it is not a generic instrument across all disease 

areas. The 30 questions result in 5 functional domains: Physical Functioning (PF), 

Role Functioning (RF), Emotional Functioning (EF), Cognitive Functioning (CF) and 

Social Functioning (SF); 8 symptom domains: Fatigue (FA), Nausea & Vomiting (NV), 

Pain (PA), Dyspnoea (DY), Sleep Disturbance (SL), Appetite Loss (AP), Constipation 

(CO) and Diarrhoea (DI); and 2 further domains: Financial Impact (FI) and Global 

Quality of Life (QL). All raw responses are classified to a scale of 0 to 100, where a 

higher value represents better physical function for the function domains (including 

global and financial scales) and the converse for the symptom domains (a high value 

implies poorer symptoms). 

 

For example, for PF, the 5 items (I, or questions) are summed together (questions 1 

to 5): 

                                     RS= (I1+I2 +…I5)/5 to generate the raw score (RS) 

 
The final score is generated as: (1 – [(RS-1)/Range])*100. This is the score used for 

further analyses and interpretation of effects. A similar algorithm is used for the 

symptom scales and adjustments incorporated for missing data [61]. 

 
QLQ-C30 has been well documented, has good psychometric properties, is validated 

and is translated into more than 48 different languages with a large number of 

possible ‘health states’. A health state, in economic evaluation terms, means 

combinations of different responses. For instance, one outcome for a particular 
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patient from the QLQ-C30 could be 11111….1 (i.e. 30 responses of a value 1). This 

combination of 1’s represents a ‘health state’. In this sense, there are 428 + 72 

possible health states. Inferences across all the possible health states are practically 

impossible. Summary statistics are often computed for each domain, in terms of the 

average (mean) scores and health states are less relevant for measuring clinical 

benefit.   

 
(ii) FACT-G & FACT-L 

The FACT-G is a 27 items cancer specific instrument. FACT-G consists of 5 

subscales - physical wellbeing (PW, 7 items), social and family well-being (SW, 7 

items), emotional well-being (EW, 6 items), functional well-being (FW, 7 items). 

FACT-L is a very CSM that consists of 10 additional lung cancer-specific items that 

supplement FACT-G, making it a 37-item questionnaire. These scores can be 

produced through three different calculations - a combined total of all the domains 

(FACT-L total); the Lung Cancer Score (LCS) and a Treatment Outcome Index (TOI), 

which can be calculated by summing the FACT-G physical, functional domains and 

the LCS [59]. This instrument also has a large number of possible health states.  

 

The choice between utilizing FACT-G /FACT-L or QLQ-C30 is based on the 

subjective clinical bias, rather than empirical evidence of the superiority of one over 

the other. In fact, the empirical evidence presented for the relative superiority can be 

considered minimal or non-existent [58]. A related issue is which instrument is more 

(or less) sensitive to detecting a clinically relevant treatment benefit and what is the 

clinically or economically relevant effect size from these measures. This aspect also 

remains unknown and is not well understood. Maringwa et al. (2011) have suggested 

“important” effect sizes of varying magnitudes [60] (e.g. a difference of 10 points). 

Comparing effect sizes between the varying HRQoL measures has not been widely 

reported, particularly in NSCLC. In contrast, generic measures of HRQoL (for 

economic evaluation, in particular) have been criticized for the lack of sensitivity to 

detect HRQoL benefits. This has implications for later cost-effectiveness [62] 

because the QALY can be higher or lower depending on the sensitivity of the 

measure. A further important issue here is that a QALY, a key outcome for 

measuring cost-effectiveness, cannot be directly constructed from CSMs. These are 

estimated using generic measures of HRQoL. 
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1.4.2 Generic Measures of HRQoL  

Generic measures of HRQoL capture responses about health in general and not the 

symptoms that might be associated with the toxicity of chemotherapy. They are 

useful for comparing effects across a variety of diseases. Although responses are 

captured from patients from these measures, it is the public’s preference for certain 

health states, termed ‘preference-based’ measures that are reflected in final 

outcomes. Preference based measures offer a way in which relative preferences (or 

value) for specific health states can be expressed by individuals in terms of 

‘preference weights’ or ‘utilities’. The utilities can subsequently be for later cost-

effectiveness analyses.   

 

A utility value is often measured on a continuous scale and depending on which 

instrument is used, these values have different ranges (lowest and highest values). 

The health utility index (HUI), for instance, generates utilities on a scale from 0 to 1, 

where 0 represents ‘dead’, which is the worth state of health possible and 1 

represents ‘Full’ health. However, not all generic measures of HRQoL generate 

utilities on a scale between 0 and 1. Other preference based generic HRQoL 

measures include the HUI: Health Utilities Index (versions I, II and III) [63], the EQ-

5D-3L [64] and EQ-5D-5L [65]. 

Although responses from QLQ-C30 reflect how a given patient might feel with 

respect to their symptoms, disease or treatment received, the responses do not 

necessarily reflect how payers (people who ultimately pay for treatments through 

taxes) perceive the value of a given patient’s health condition, even if the patient is 

suffering from a disease as severe as cancer. It is possible that society (and not 

necessarily doctors) might regard a specific patient's health (state) as far worse and 

therefore believe any funds available to treat a patient’s illness should be spent 

elsewhere (e.g. preference for a breast cancer sufferer over a lung cancer patient). 

CSMs do not incorporate a relative valuation of the extent to which a specific 

symptom or health state affects the overall perception of health. For instance, severe 

nausea might be considered worse than severe pain for some patients, but not for 

others. The expression of such relative preferences (utilities) is determined by 

preference-based HRQoL measures. The QLQ-C30 is not preference-based 

measures of HRQoL and therefore, cannot be directly used in an economic 

evaluation. The most common preference based measures used in the UK (and 

some European countries) for EE are the EQ-5D-3L (EQ-5D-3L) and the more recent 

EQ-5D-5L. 
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EQ-5D-3L and 5L 

 

The EQ-5D is a widely used generic measure, which is the shortest and perhaps the 

least cognitively demanding instrument that appears to be at least as responsive as 

the other community (preference) weighted instruments [66]. EQ-5D-3L consists of a 

descriptive health state classification system with five questions (mobility, self-care, 

usual activities, pain/discomfort and anxiety/depression), measured on three severity 

levels - ‘no problems’, ‘some problems’ and ‘extreme problems’. A health state 

defined by the descriptive system of EQ-5D can be described by a five-digit number. 

For instance, 12113 refers to a patient, who has no problems with mobility (1), some 

problems with self-care (2), no problems for usual activities (1) or pain/discomfort (1) 

and extreme problems with anxiety/depression (3). Combining one level from each 

question defines 243 different possible health states from 11111 to 33333. The utility 

value associated with a health state 11111 interpreted as full health is 1. For a health 

state 33333, this is interpreted to be a state ‘worse than death’ (valued at -0.594). A 

utility value of zero would be equivalent to a state of death. The EQ-5D also has a 

visual analogue scale (VAS) which ranges from 0 to 1. The EQ VAS records the 

patient’s self-rated health on a vertical visual analogue scale, where the 

endpoints are labelled ‘The best health you can imagine’ and ‘The worst health 

you can imagine’. The VAS can be used as a quantitative measure of health 

outcome that reflect the patient’s own judgement. 

EQ-5D-5L 

EQ-5D-5L is a revision of EQ-5D-3L. It consists of five questions, identical to EQ-5D-

3L (mobility, self-care, usual activities, pain/discomfort, and anxiety/depression), but 

with an expanded 5 point scale and slightly different descriptors for each of the levels 

compared to the 3 point scale of the EQ-5D-3L [63]. For Mobility, Self-Care and 

Usual Activities, these are: 1: “No Problems”, 2: “Slight Problems”, 3: “Moderate 

Problems”, 4: “Severe Problems” and 5: “Unable to”; for the Pain/Discomfort and 

Anxiety/Depression scale, these were: 1: ‘No’, 2: ‘Slight, 3: ‘Moderate’, 4: ‘Severe’ an 

5: ‘Extreme’. The scores are on a 5 point scale 1 to 5 (for each of the 5 domains). A 

perfect health state is ‘11111’ and the worst possible health state would be ‘55555’. 

There are 3125 health states that can be identified using EQ-5D-5L (55).The 

corresponding minimum and maximal values are -0.281 for a health state of 55555 

and a value of 1 for the 11111 health state. 
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Pre-determined scoring algorithms for EQ-5D have been developed in order to yield 

community-based health utility estimates (i.e. relative preferences for health states 

are not based on what the patients think, but what the general population believes) – 

specific to a given country. The derived utilities are determined from a pre-

determined algorithm called a utility function. The utilities from these instruments 

(such as the EQ-5D, HUI, and other preference based measures) may subsequently 

be applied to clinical measures, such as survival or Progression Free Survival (PFS) 

time in order to derive a Quality Adjusted Life Year (QALY). A QALY is used as a 

generic measure of the effectiveness of a (new) intervention which combines both 

the quality and the quantity of life (length of life) experienced by each patient. This is 

a key measure for assessing the cost-effectiveness of health care interventions. One 

QALY is interpreted as equivalent to one year in ‘Full’ Health. If a patient’s HRQoL 

(using a preference-based measure) during 1 year is less than in ‘Full’ Health, the 

QALY will be less than 1. QALYs are often accumulated at a rate of less than (or 

equal to) 1 per year. Examples of the EQ-5D along with other instruments mentioned 

in this thesis are presented in the Appendices. 

 

The primary difference between these two instruments (3L and 5L) is that the latter 

has responses measured on a 5 point scale, with many more health states [187]. EQ-

5D-3L is reported to have limited discriminative ability (and also the power to detect 

differences between groups) compared to EQ-5D-5L [75,187-188]. At the time of 

writing this thesis, research was ongoing as to the best value sets for use with EQ-

5D-5L. An interim scoring was available for EQ-5D-5L, using a crosswalk algorithm 

from EQ-5D-3L to EQ-5D-5L.  

 

Preferences based condition specific measures 

 

In addition to generic preference based measures, attempts have been made to 

develop condition specific preference based measures (CSPM) in cancer [67, 68, 69, 

70, and 71]. Such measures use condition specific items (vignettes or questions) to 

derive algorithms to determine utilities. Once these algorithms have been ‘validated’ 

the items can then be used alongside or instead of the longer CSMs (such as the 

QLQ-C30). However, there are some limitations of these algorithms and hence a 

reason why they were not used in this thesis. Firstly, the estimates of utilities can 

differ significantly compared to those from the EQ-5D [72]. Secondly, the subset of 

states is only a fraction of the possible states (choosing 8 items from a possible 30 

will be under-representing the true health states). Thirdly, even algorithms can be 

https://en.wikipedia.org/wiki/Disease_burden
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determined based on a designed valuation study with adequate statistical power for 

the main effects, the interactions are unlikely to be powered. Finally, in the case of 

EORTC-8D [69, 70], there are vignettes which are not included that are likely to be 

valued differently by lung cancer sufferers.  As an example, in the 8D, shortness of 

breath after a long walk (current 8D) is likely to be less important (valued) than 

shortness of breath after a short walk.  More research is needed to compare CSPMs 

with generic preference measures and other techniques for estimating utilities.     

1.4.3 Constructing Utilities from the EQ-5D 

Utility valuation methods may be classified as direct or indirect methods of health 

utility valuation (Figure 1.3) [73]. Most direct methods include trade-off (standard 

gamble [SG] and time trade-off [TTO]) and visual analogue scale (VAS). The main 

indirect methods of utility measurement include generic preference instruments, 

condition-specific preference measures, and mapping from a condition-specific 

HRQL instrument to a generic instrument. Indirect methods are based on mapping 

preferences onto the utility scale indirectly via a HRQL questionnaire; these methods 

are less time consuming, based on simple and versatile questionnaires that stratify 

data into a number of different dimensions not registered by direct methods. There is, 

however, no universally accepted theoretical basis for choosing direct or indirect 

methods.  

 

Figure 1.3: The EQ-5D Utility Function in Terms of Health States  

Source: reference 73   

 

Direct valuation, such as time trade-off (TTO) involves asking people (members of 

the public) to trade a given time (e.g. 10 years) in a health state worse than full health 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818873/figure/f3-oaju-2-011/
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(but better than death), for a lower time in full health.  The data collected from these 

options (trade-off) are then analyzed to derive weights for determining a utility index. 

An example of such elicitation in breast cancer patients has been reported [74]. 

 

The benefit of direct elicitation alongside a RCT might be that such valuation of 

health states within a RCT framework has strong internal validity. In addition, for 

patients who survive beyond the median survival time, an accurate reflection of the 

value of health states towards end of life might possible. However, using direct 

valuation methods from cancer patients alongside a clinical trial is difficult in practice 

because of the poor prognosis, short median survival times and logistics involved in 

clinical trial conduct. It may require extending the duration of the trial perhaps by 

following up patients until death, which would be impractical in most cases. For 

example, in order to estimate longer-term HRQoL effects (e.g. valuing health states 

towards the end of life), some patients would need to be followed up in the trial much 

longer as part of the same protocol. In practice, after cancer progression, follow up 

for many outcomes (other than necessary longer term safety) is often stopped. Trial 

governance may also complicate the process of further assessments once a patient’s 

main follow up is completed. Moreover, patients in clinical trials are often excessively 

ill and there is a serious debate whether the patients are capable of ascertaining their 

health status through TTO and SG methods. The complex articulations can be 

daunting and time-consuming for some cancer patients, especially when they are 

preoccupied with a variety of other tests - scans, blood tests and radiotherapy 

planning.  

 

An alternative to direct elicitation is to use a pre-scored health status descriptive 

system (questionnaires such as EQ-5D). Direct responses from patients are 

converted into utilities by using a standard set of published tariffs (which in turn are 

based on direct elicitation methods) such as those of Dolan (1997) [75] and Shaw et 

al. (2005) [76]. The word ‘tariff’ refers to the EQ-5D value of each of the health. 

Values such as 11111 or 21333 are not easily analyzed, but converting these 

responses to a utility value will allow analysis. The term ‘health state’, introduced 

earlier is now further elaborated in the context of EQ-5D. 

 

Earlier (Section 1.4.2), it was explained that EQ-5D-3L consist of a descriptive health 

state classification system with five domains and 243 different health states ranging 

from full (value of 1) to worst (value of -0.549) health.  Each of these health states is 

converted to a single number, called a utility value; a value from -0.594 to 1 (1 is full 
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health and -0.594 represents the worst state possibly imaginable – even worse than 

death. If the Shaw et al. (2005) tariff is used the EQ-5D utilities range from -0.109 to 

1.0, whereas the range is between -0.594 to 1.0 for the Dolan (1997) tariff [75, 76]. 

The subsequent utilities are used to compute a QALY by calculating an area under 

the curve (AUC). 

 

In health economics, the concept of utility and utility functions is central to appreciate 

why health states from EQ-5D assume values between -0.594 and 1.0. A utility 

function is a mathematical representation of determining utilities for preferences of 

given health states. Mathematically, for each subject, i, the utility is [66]: 

 

 Ui = 1 – (0.081*K – 1*Mi –2*Si –3*USi –4*Pi – 5*Ai – 

 

where 1 …6 are weights based on TTO scores, such that: 

1= 0.069 if the Mobility score, Mi =2 for patient i and 1=0.314 if Mi=3.  

 

Similarly,   

2= 0.104 if the Self-Care score Si =2, and 2=0.214 if Si=3,  

3= 0.036 if the Usual Activities USi =2, and 2=0.094 if USi=3,  

4= 0.386 if the Pain score Pi =2, and 2=0.123 if Pi=3,  

5= 0.071 if the Anxiety score Ai =2, and 2=0.236 if Ai=3,  

6= 0.269 if any of the Mi, Si, USi, Pi or Ai is a score of 3, otherwise 6= 0, 

and finally, K is the indicator variable, which takes the value 1 if any health state is 

dysfunctional (>1), otherwise, it is 0. For instance, for a health state of 12123, Ui 

would be 1 – (0.081 + 0 + 0.104 + 0 + 0.123 + 0.236+0.269) = 0.187. The utility 

values are ordered from lowest to highest and a numerical coding can be given to the 

ordered health states (11111 = 1, 2=21112=0.878…3= 33333= -0.549).  

 

A few attempts have been made to ‘anchor’ the values from CSMs by dividing the 

raw response by the maximum scale value. For example, if the scale ranges from 0 

to 100 (like QLQ-C30), then this would be reduced to a 0 to 1 scale by dividing it by 

100. However, this is still not a measure of relative preference, even if 0 was 

equivalent to a state of death. For instance, if Pain was the clinical outcome, where, 

pain is scored from 0 to 100 (100 being the worst imaginable pain), then anchoring is 

not possible because the worst possible pain is not necessarily a state equivalent to 
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‘death’ (whether cancer pain or not). A utility value of 0, hence, does not imply that 

the patient is actually in a state of physical ‘death’. Anchoring is a useful method for 

revealing scale perception bias and evaluating data that are not directly comparable, 

thereby acting as a reference point.  

 

In order to make a decision about the value (for money) of health care technologies, 

a generic measure of HRQoL, specifically developed for use in EE for decision-

making is used (the EQ-5D). Other multi-attribute instruments, which are also 

preference-based include the Health Utility Index (HUI) version I, II and III [77], SF-

15D [78], Quality of Well-Being Scales (QWB) [43] and SF-6D [80]. All of these are 

specifically designed to derive utilities.  

 

There are various reasons why the EQ-5D is emphasized. Firstly, it is recommended 

for use in economic evaluations by the National Institute for Health and Care 

Excellence (NICE) [81-83]. NICE is a government decision-making body that 

assesses whether a new health care technology (e.g. new cancer drug) offers the UK 

tax payer value for money through the use of cost-effectiveness analysis by 

accessing the relationship between costs and the quality-adjusted life year (QALY). 

Several reasons exist why NICE prefer the EQ-5D including the fact that it is one of 

the shortest amongst similar measures, with fewest health states. It also allows NICE 

to compare consistently between disease areas. The EQ-5D is also used in several 

countries as a part of the economic evaluation and health technology appraisal 

(HTA). Moreover, the details of EQ-5D are well documented [66,75] and have been 

shown to be a reliable [84, 85] and valid HRQoL measure [86,87]. Finally, for the 

purpose of this thesis, utilities from both EQ-5D-3L and EQ-5D-5L data are readily 

available. The limitations of the EQ-5D have been raised on its lack of sensitivity and 

applicability to children [88, 89]. The recent EQ-5D-5L is meant to address the latter 

issue. The decision support unit (DSU) note the following in response to criticisms 

against the EQ-5D-3L: 

 

“The expectation amongst its developers is that the five level version of EQ-5D will enhance 

responsiveness and sensitivity. This will have the impact of reducing the required sample size 

to detect small changes in health compared to the three level version. How this compares to 

alternative approaches for addressing inadequate sample sizes, and whether it will eradicate 

the need to employ these approaches, remains to be seen” [88] 
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1.4.4 Economic Evaluation in Absence of Utility Data 

In EE, the use of HRQoL is particularly vital for a cost-utility analysis (CUA). CUA is a 

method of estimating the value of a new health technology by combining HRQoL with 

clinical outcomes (e.g. survival time) to derive a quality-adjusted life year (QALY).  

 

A typical cost-utility analysis involves reporting the incremental cost-effectiveness 

ratio (ICER), defined as: 

 

   ICER = (C1 – C2 )/(E1 – E2 )             [1.1 ] 

where, C1 – C2 is the mean incremental cost for groups 1 and 2 respectively and E1 

– E2 is the mean incremental effectiveness between groups 1 and 2 respectively 

(groups 1 and 2 are typically patients who are allocated to two different treatments for 

comparison, which is common in clinical trials). The mean incremental QALY 

between treatments 1 and 2 can also be written as: 

 

∑ 𝟏

𝟐
(𝑭𝒕𝑸𝒕 + 𝑭𝒕+𝟏𝑸𝒕+𝟏)

𝟏𝑻
𝒕=𝟏 ∗ (𝑻𝒕+𝟏 − 𝑻𝒕)

𝟏 - ∑
𝟏

𝟐
(𝑭𝒕𝑸𝒕 + 𝑭𝒕+𝟏𝑸𝒕+𝟏)

𝟐𝑻
𝒕=𝟏 ∗ (𝑻𝒕+𝟏 − 𝑻𝒕)

𝟐     [1.2], 

 

where, Ft is the proportion (probability) that the patient is still alive at the time T=t and 

Qt is the corresponding quality of life (utility) at time T = t. In equation [1.2], the first 

expression in 𝑭𝒕𝑸𝒕 superscripted with 1 corresponds to E1 in equation [1.1] and is the 

mean QALY (area under the quality adjusted survival curve) for Group1. The second 

part, ∑
𝟏

𝟐
(𝑭𝒕𝑸𝒕 + 𝑭𝒕+𝟏𝑸𝒕+𝟏)

𝟐𝑻
𝒕=𝟏 ∗ (𝑻𝒕+𝟏 − 𝑻𝒕)

𝟐 corresponds to E2. The values of Qt are 

typically the (EQ-5D) utilities. If a measure of utility is unobtainable from any source, 

then the ICER can be expressed as an incremental cost per unit of effect (e.g. cost 

per cases detected), rather than an incremental cost per QALY gained.  

 
When utility data are not available 
 
Utility data are often not collected or unavailable for later cost-effectiveness analysis. 

There are several reasons why utility data may not be available, although a cost-

utility analysis might still be required. Several examples in the literature report the 

main results of clinical trials where utility data were not collected in the trial, but later 

cost-utility analyses were performed using historical data [107]. One reason is that in 

some countries the health system does not require cost utility analyses. Therefore, 

cost-effectiveness was not part of the trial design (e.g. submission to the FDA in the 

USA). However, the same data are used for licensing purposes in Europe, where 
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some countries do in fact require QALYs to be reported. Hence, estimates of patient 

level utilities are not available but a CUA is required. A second reason might be that 

EQ-5D are not considered sensitive to detecting treatment benefit. When utility data 

are not available but a cost-utility is required, utilities can be determined in several 

ways. One way might be through direct elicitation studies for example, such as TTO 

or SG methods, which may yield higher utilities and therefore QALYs.   

 

Example of QALYs reported in some published cost effectiveness analyses 

As an example, from 47 ICERs identified in the literature review (Chapter 2 describes 

in detail the approach to literature search), more than 20% could not generate a 

QALY due to an absence of generic HRQoL. This figure is higher once we take into 

account the number of studies where utilities were estimated from historical data 

(about 40%). This underlines the need to generate patient level utilities through 

alternative methods.                   

 

Treatment Cost (£) QALY Cost/QALY (£) Year Source/Reference 

 

Paclitaxel 44290 0.53 53227 2011  [90] 

 

27902 0.923 30230 2010  [91] 

 

21967 NR NR 2000  [92] 

 

24216 NR NR 2000  [92] 

 

26228 NR NR 2000  [92] 

 

33685 0.4513 74639 2009  [45] 

Gemcitabine 27837 0.934 29804 2010  [91] 

 

27401 0.966 28365 2010  [91] 

 

18129 NR NR 2000  [92] 

 

47876 1.96 24427 2013  [93] 

 

38859 0.4676 83102 2009  [45] 

Vinorelbine 23516 0.888 26482 2010  [91] 

 

16678 NR NR 2000  [92] 

 

17482 NR NR 2000  [92] 

 

6901 NR NR 2010  [94] 

Docetaxel 4129 0.1606 25712 2012  [95] 

 

13956 0.206 67748 2010 [55] 

 

27409 0.42 65260 2010 [96] 

 

24798 0.225 110215 2008 [97] 

 

24904 0.42 59296 2008 [98] 

 

11622 0.42 27672 2011 [99] 
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20903 NR NR 2011 [100] 

Pemetrexed 5791 0.1715 33767 2012 [95] 

 

29387 0.52 56514 2010 [96] 

 

27764 0.241 115205 2008 [97] 

 

37119 0.41 90533 2008 [98] 

 

14239 0.41 34729 2011 [99] 

 

17455 0.97 17995 2010 [101] 

 

41731 0.5016 83195 2009 [45] 

 

8905 0.41 21720 2012 [102] 

Gefitinib  6237 0.1745 22766 2012 [95] 

 

NR 1.111 NR 2010 [91] 

 

19787 0.79 25047 2013 [103] 

 

7704 0.79 9752 2013 [103] 

 

28471 0.91 31287 2012 [104] 

 

8980 0.2881 31170 2010 [105] 

 

10536 0.3188 33048 2010 [105] 

Erlotinib  13730 0.238 57689 2010 [55] 

 

22439 0.25 89756 2008 [97] 

 

23567 0.42 56112 2008 [98] 

 

8229 0.1745 30292 2012 [95] 

 

25546 1.4 18247 2013 [93] 

 

23503 0.51 46085 2012 [106] 

 

12909 0.33 39119 2012 [106] 

 

8104 0.42 19296 2012 [102] 

 

22744 NR NR 2011 [100] 

 

7488 NR NR 2010 [107] 

NR: Not Reported 

Table 1.3: Examples of QALYs reported in published cancer studies 

Collecting utilities through direct elicitation or valuation (such as Time Trade-Off or 

Standard Gamble) [68] alongside clinical trial can be expensive and impractical. Only 

a limited number of subjects might participate, which results in only a few reported 

health states. For instance, if only 10 subjects are included, then from a possible 243 

health states, these 10 patients might be representative of only a few health states.  

 

In certain cases, valuation methods may focus on a reduced set of questions. For 

instance, Rowen et al. (2012) determine utilities (directly) using a short form of the 

QLQ-C30 (EORTC-8D) in a cancer population, where patients were milder in terms 

of their severity (i.e. substantially longer median survival) [68]. With the EORTC-8D, 

as an instance, one question that arises is whether the patients would have the ability 
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to carry out a “long walk” for assessing the physical function. However, in lung cancer 

patients, responses about “short walks” are likely to be equally, if not more, relevant 

[68]. Hence, the number of health states may be under-reported with the EORTC-8D 

. Furthermore, the purpose of this thesis is not to compare predicted utilities from 

valuation-based approaches to other (indirect) approaches, but rather, to investigate 

indirect approaches to estimation through mapping algorithms.    

 

A second method to determine utilities for EE is to use aggregate utilities published in 

the literature. However, the patient population may be different and the most 

appropriate utility estimates may not necessarily be reported. Furthermore, 

adjustments for demographic factors that influence utility response are not possible 

with aggregate data; and may not take into account HRQoL changes occurring 

before and after a disease progresses, or heterogeneity in clinical and demographic 

characteristics. Significantly, they may not also adequately reflect between (and 

within) patient variability of utility scores as precisely as one could using patient level 

data. Examples of utilities often cited for cancer economic evaluation are found in 

Nafees et al. (2008) [108]. However, these results are not based on cancer patients, 

but on members of the public and moreover, the sample size was small in this study.   

 
Mapping  
 
An alternative approach to estimating utilities is through mapping and extrapolation 

using statistical modelling techniques. Mapping or ‘cross-walking’ can be useful when 

patient-level utilities are not available in a clinical trial. A statistical model sometimes 

termed as ‘mapping algorithm’, is used to predict (estimate) EQ-5D-3L from a 

disease-specific measure like QLQ-C30. If patient level EQ-5D-3L cannot be 

obtained, then it becomes challenging to conduct a CUA with patient-level data and 

reliance is made on published aggregate utilities. Mapping is, therefore, a critical 

(and sometimes the only) way to estimate patient-level utilities for a trial. 

 

Mapping may refer to estimating utilities between the health states described by a 

CSM and those described by a generic measure and applying the utility values to the 

mapped states. Another type of mapping is from the condition specific descriptors 

directly to utility scores, and the third type of mapping is from summary measures 

derived from the condition specific descriptors to utilities. However, the second form 

of mapping as commonly reported in literature is a method can be described as a 

method where the interrelationship between a generic HRQoL measure like EQ-5D 

and a condition-specific HRQoL measure (e.g. QLQ-C30) is modelled, so that patient 
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level utilities can be predicted (estimate) [109] for the purposes of an economic 

evaluation. It is argued that mapping is preferred (e.g. by NICE in the UK) over other 

valuation methods (e.g. utility studies) which may not be acceptable for a HTAs [81]. 

 

A statistical model is developed to facilitate the prediction of EQ-5D-3L from a 

disease-specific measure, such as QLQ-C30. If patient level EQ-5D-3L cannot be 

obtained, then it becomes difficult to conduct a Cost Utility Analysis (CUA) with 

patient-level data and one may need to rely on published aggregate utilities. Mapping 

is, therefore, an important (and sometimes the only) way to estimate patient-level 

utilities, which can avoid some (but not all) of the limitations (e.g. differences in 

populations, disease severity) and uncertainties associated with using published 

aggregate utilities.  

 

It is fairly common to find a mapping algorithm, which is used to predict (i.e. estimate) 

patient level utilities for a clinical trial in a particular disease area (e.g. pain), even 

though the mapping algorithm may be developed using data from a different patient 

population [110]. Crott et al. (2012) suggest that different algorithms or functional 

forms may exist for each cancer type [111] and similar issues have also been raised 

elsewhere [112]. Therefore, it is not often clear as to whether authors of published 

mapping algorithms intend users of mapping algorithms to generalize their use to any 

patient population or not. Moreover, how factors such as the timing of measurements 

or presence of differential treatment effects influence predicted utilities do not always 

seem to be accounted for in modelling. For instance, where algorithms have been 

developed using only baseline data, it is often not immediately evident how useful 

they are for predicting post baseline EQ-5D-3L utilities. Users of algorithms are often 

interested in predicting differential (post baseline) utilities for cost-effectiveness [113]. 

The effects of treatments on HRQoL occur after treatment has commenced (post 

baseline) and therefore predicted utilities are likely to be more important and useful 

where post baseline data are used. 

  

Although EQ-5D-3L is a relatively short instrument, it is surprising that many studies 

do not collect EQ-5D data. In fact, only 16% of all studies (i.e. observational, surveys, 

RCTs) in lung cancer gathered preference-based HRQoL data prospectively [114]. In 

some clinical trials, patient-level utilities were not collected, although formal economic 

evaluations were conducted at some later point; 25% of HTA submissions to NICE 

used mapping in such situations [115]. In Australian HTAs, this rate was slightly lower 

at 24% [116]. The relatively recent introduction of the EQ-5D-5L (measured on a 5 
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point scale) suggests that EQ-5D-3L may not be adequate to address concerns 

about sensitivity (i.e. ability to detect treatment benefit). At the time of writing this 

thesis, the EQ-5D-3L continues to be widely used due to lack of experience and 

comparison between the two and the absence of specific recommendations for one 

over the other.  

 

Reasons for Mapping 

Given that mapping has an important role in EE, the reasons why mapping is 

considered important will be outlined. In some early phase cancer trials, preference-

based measures are not usually collected, but CSMs, such as QLQ-C30 are 

gathered to provide early indications of symptom control for future phase II/III trial 

planning, particularly for drug reimbursement (i.e. the process of negotiating a price 

for a new healthcare technology) and HTA. A mapping function can be used to 

estimate EQ-5D-3L from (combined) early trial data for planning the cost-

effectiveness argument for later phase III trials. In situations where two identical trials 

are required for licensing purposes (as in multiple sclerosis), a useful mapping 

algorithm from one trial can be used to determine utilities in the other trial [117]. If the 

two trial designs and patient populations are identical, there might be a possibility for 

developing a mapping algorithm in the first trial and predicting the utilities for the 

second. In certain trials intended for drug licensing, EQ-5D are not collected or 

required (e.g. USA, Germany), yet the same set of data are used to support licensing 

of the new drug within the European Union, where cost-effectiveness is often of great 

importance.  

 

The usefulness of a mapping algorithm lies in its ability to predict utility values from 

independent data. A useful mapping function should have good predictive properties, 

accuracy and model fit, and wherever possible, the differences between the 

observed versus expected QALY minimized. The closer the predicted utility is to the 

observed value, the more useful the algorithm is likely to be. Although the true value 

of the utility being predicted is unknown, simulation methods can lead to conclusions 

that the predicted utility (or QALY) lies within a quantifiable range of the observed 

values with a reasonable degree of certainty [109]. 

 

Ades (2013), in support of mapping, argues that it is not always necessarily better to 

directly estimate HRQoL [62]. One theoretical reason for this assumption is that the 

estimate of HRQoL effects (e.g. mean differences) may have lower variability (i.e. 

they are minimum variance unbiased estimates) than those from directly estimating 
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HRQoL. In particular, this is dependent on the relative response between a CSM and 

the generic HRQoL measure [62].   

 

Despite this, a sizeable proportion of HTAs [109], there are no clear definitions of 

‘good’ or ‘bad’ mapping algorithms. Moreover, several questions still remain in 

relation to modelling HRQoL for economic evaluation and further investigation is 

needed. Some of these questions are incorporated in the aims and objectives of this 

thesis stated later in Chapter 3. 

 
Limitations of Mapping 
 
Although mapping can be useful (and sometimes necessary), it is preferable to 

collect EQ-5D, wherever possible [112]. Some particular problems identified with 

mapping include the limited ability of models to predict at poorer health states 

(Rowen et al., 2012) [67]; the assumption being that there is a conceptual 

relationship (overlap) between the two measures [118] and that the predicted value is 

a true measure of HRQoL from the base measure [119] is also a concern. The main 

alternatives to mapping are either to use historically reported estimates or conduct 

utility studies. In the first case of using historical estimates, since anti-cancer 

treatment changes over time, so would the associated side effects. The impact on 

HRQoL may, therefore, be different to what it might have been on previous anti-

cancer therapies (e.g. new immunotherapies have specific side effects different to 

previous/other historical anti-cancer treatments). Consequently, using historical utility 

estimates may not reflect current treatment trends. In the second case, designing a 

separate utility study, whether using discrete choice experiments or otherwise is 

likely to result in fewer health states (e.g. a subset of health) from which inference 

can be drawn compared to mapping; and in any case may be more expensive and 

may add to the burden of patients if conducted alongside a clinical trial. A separate 

study which compares direct elicitation and mapping is an ongoing area of current 

research.   

 

In addition to the statistical framework of mapping algorithms, questions have been 

raised about the usefulness and validity of mapping [118]. It is suggested that it is 

unclear as to what exactly is being predicted from mapping models as the target is 

unknown [186]. However, this is precisely what a mapping model is supposed to do - 

to estimate the unknown utilities, which are assumed to be ‘knowable’ on the basis of 

reasonable assumptions It does not mean the unknown (target utility) is simply 

‘unknowable’.  
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Although this, among other criticisms of mapping, is significant [109,112,118,185], 

they are perhaps not strong enough to dismiss mapping altogether. Consequently, 

about 25% of HTA (to NICE) have used mapping [115] in the UK; while in Australia, 

this was reported to be about 24% (Schuffham, 2008) [116]. Moreover, the published 

mapping models (for the QLQ-C30), suggest the unknown utilities are likely to be 

‘knowable’ to some extent as some mapping algorithms have shown to yield close 

approximates of the target mean utility. Therefore, the mapping can be useful in 

estimating patient level utilities and continues to be used in HTAs of cancer drugs for 

estimating utilities (or sensitivity analyses), despite the prevalent criticisms. 

Moreover, simulations have shown that mapping can indeed estimate the sampled 

utility and is associated with a strong overlap (measured as correlation) between EQ-

5D domains and CSMs [109].       

 

A feature common to all published algorithms, including the ones used in cancer, has 

been the over-prediction of utilities in patients with poorer health states. This means 

that models predict higher utilities than expected when, in fact, patients have poorer 

HRQoL. Moreover, most existing models do not appear to have properly addressed 

over-dispersion at the extremes of the distribution (i.e. many patients have values of 

0 or 1). However, the mapping is likely to be less expensive than a separate utility 

study with the important caveat that a useful algorithm can be identified. Further 

research has been recommended to address the uncertainty of algorithms in a robust 

way by using more complex approaches.  

 

Mapping algorithms based on EQ-5D-3L have been shown to consistently over-

predict utilities, particularly at poorer health states [109,112]. In order to address 

some of the limitations, alternative functional and statistical forms of mapping 

algorithms have been examined [109,134,139,161]. These functional forms in some 

cases generated improved predictive capability [109,134]. In certain cases, however, 

changing the functional form did not offer improved prediction over and above 

simpler models [109,112]. Moreover, when applied to external data, some of the 

algorithms performed poorly [161,162].  

 
Mapping and Cost-Utility Analysis 
 
A number of health economic evaluations have included estimates of utilities 

determined from mapping to generate a cost per QALYs [120]. Other uses of 

mapping range from Rheumatoid Arthritis [121,122]; Multiple Sclerosis [123]; 

Sarcoma [124]; Alzheimer’s and Diabetes [125,126];  Pain [110] and Breast Cancer 
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[127]. Schuffham (2008) [116] identified about 24% of health technology submissions 

between 2002 and 2004 made to the Australian Benefits Advisory Committee 

(PBAC) had included mapping.  

 

Longworth and Rowen (2013)  identified from 71 separate CUAs that about 25% 

used a method of mapping for NICE HTAs [115]. This has increased between 2009 

and 2013 [112]. It is interesting to note that despite persistent criticism of mapping 

algorithms, they are still increasingly used in publications and NICE submissions. In 

summary, the fact that NICE recommends mapping over utility studies, the increasing 

use of mapping and research activity in this area and avoiding the need to what can 

be (expensive) utility studies supports the need for mapping and subsequent 

research in this area. This provides a rationale to research the effectiveness and 

sustainability of mapping. The areas of research were identified from a literature 

research which subsequently led to specific aims and objectives that will be 

answered in this thesis, discussed in the next two chapters. 
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                                                                 Chapter 2 
 

Chapter 2: Literature Search: Methods, Strategy and Thesis Objectives 
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                                                                   Abstract 

Introduction: Published articles relating to themes such as ‘Modelling HRQoL’, 

‘Economic Evaluation’ and/or ‘Cancer’ were identified for further literature searches. 

The aim of the literature search was to identify gaps in the knowledge for future 

hypotheses generation. The specific themes of interest were: Mapping, Bayesian 

approaches in mapping, sensitivity, and responsiveness of the EQ-5D, utility 

extrapolation and model selection. Aims and objectives of the thesis were identified. 

 

Methods: Medical Subject Headings (MESH) search terms were used with 

appropriate wildcards in search engines including PUBMED, MEDLINE, and 

COCHRANE Database of Systematic reviews. Broad search terms were used to 

identify articles associated with terms such as ‘EQ-5D’, ‘QLQ-C30’, ‘Cancer’, 

‘HRQoL’, ‘Mapping’ and ‘Economic Evaluation’. The criteria for selecting articles are 

presented. In general, relevant articles were initially identified from titles or abstracts. 

Each of the articles considered relevant was reviewed in full.  

 

Results: From 443 (Mapping) and 559 (Sensitivity and Responsiveness) articles, 

between 4 (Bayesian Mapping) and 8 (Responsiveness) articles were considered 

suitable for further review. A further 14 articles on Mapping from 443 were 

considered relevant to cancer context. Several research themes were identified for 

further research: a need for improved mapping functions, especially with the more 

recent EQ-5D-5L; investigation of other structural forms: Joint and Bayesian Network 

Models; sensitivity and responsiveness of generic versus cancer-specific measures; 

estimating post-progression utility and an approach to the selection of an optimal 

mapping model. 

 

Conclusion: From these reviews, the evidence for gaps in knowledge can be 

demonstrated and aims and objectives of this thesis were subsequently defined. 
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2.1 Literature Search Methods: Introduction  

In this chapter, the methods used for conducting the literature search are presented. 

A summary of the searches is categorized into five main areas for this thesis (Table 

2.1).           

Table 2.1: Summary of Thesis objectives, number of articles and relevant chapter 

 

The justification for this categorization becomes clearer in section 2.4, although the 

aims of this grouping are briefly outlined. The aim of categories 1 and 2 (mapping 

algorithms) were to identify literature on mapping algorithms used in cancer, with a 

view to identifying limitations and potential areas for improvement. Research activity 

in the area of mapping and modelling HRQoL has increased with more mapping 

algorithms available, but limitations persist in model structure and performance.  

 

The reason for a search in the area of responsiveness and sensitivity (category 3) is 

largely due to the absence of limited information on the comparative performance of 

the recent EQ-5D-5L not only in terms of mapping but also its role in economic 

evaluation when compared with disease specific measures. The aim here is to 

identify potential areas of improvement and answer the outstanding question as to 

whether QALYs are over or under estimated as a result of lack of sensitivity of 

generic measures, a common criticism of the EQ-5D. The reason for a review in the 

area of ‘Extrapolation of Utilities’ (category 4) is because HTAs of cancer treatments 

continue to highlight the problems of missing utility data associated with the 

economic evaluation of cancer drugs. The aim of this search (and review) was to 

identify potential to develop methods to estimate utility after cancer progression to 

inform longer-term cost-effectiveness. Finally, given the fact that research in mapping 

is increasing and more algorithms are available (category 5 in Table 2.1), the need to 

develop selection criteria was considered to be important. The aim of this review was 

therefore to determine the methodology for selecting published algorithms. These are 

some of the reasons why justification for a literature search in these areas is needed. 

Category Thesis Objectives /  

Research Question 

Number of 

relevant articles 

Chapter 

1 Mapping Algorithms 24 4,5,6 

2 Bayesian Mapping Algorithms   1 7 

3 Sensitivity and Responsiveness of EQ-5D   7 8 

4 Extrapolation of Utility after cancer progression   1 9 

5 Criteria for selecting mapping models 14 10 
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2.2 Literature Search: General Search Strategy and Search Terms  

The literature search comprised of examining published articles and national (UK) 

and international health technology appraisals (HTAs) of cancer drugs. HTAs were 

also selected for review because it is important to understand the practical 

methodological issues raised by HTA reviewers when appraising the cost-

effectiveness of cancer drugs. 

 

Broad searches were undertaken for publications (in the English language) on cost-

effectiveness, HRQoL and mapping in cancer trials up to 22nd May 2016. No 

restrictions were placed on the earliest articles in order to maximize the number of 

possible articles for review (all studies at any time). A final update of searches was 

undertaken in January 2017 to reflect any recent developments, which had significant 

implications for this thesis and none were noted. 

 

Databases that were searched included MEDLINE, COCHRANE DATABASE OF 

SYSTEMATIC REVIEWS, NHS Economic Evaluation Database (EED), NHS HTA, 

OHE, Cost-effectiveness Analyses Registry, SCOPUS, WEB OF SCIENCE, 

CANCER TRIALS REGISTRY and country level reimbursement bodies where HTAs 

were submitted (in English); wild cards (*) were used to maximize the search 

potential. The following terms (below) were included when devising a search 

strategy. 

a) ‘Cancer’ Search terms in a) and (cost effectiveness or cost* or QALY* or 

NICE* or Cost-effectiveness Acceptability Curves* or Cost per QALY or 

effectiveness* or …..). 

b) Search terms in a) and b) and Quality of Life, or Quality* or Health Related* or 

QALY. 

c) Search terms in the above and Missing data or Missing* or  

d) Search terms from the above and Condition-Specific QoL or Generic QoL, 

Generic* or Condition-Specific* or 

e) Search terms above and Mapping*, direct elicitation, indirect elicitation, 

direct*, indirect* 

f) *EQ-5D or *Cross-walking. 
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The abstracts and titles of all articles were initially examined for relevance. The 

selected articles were then reviewed in detail in relation to the themes identified in (1) 

to (5) above (Table 2.1). The criteria for comprehensively reviewing articles were 

based on: 

 

(a)  Relevance: whether the article included the key search terms (e.g. in the title or 

abstract such as ‘Cancer’, ‘Cost Effectiveness’, ‘HRQoL’, ‘Mapping’, ‘QALY’, ‘Cross-

walking’. 

(b)  The article was in the English language. 

(c) The rationale of the article was related to the theme/question of interest in (1) to 

(5) above (Table 2.1). 

 

The specific details of the searches are provided below. 

2.3 Literature Search: Results for each chapter  

2.3.1 Literature Search: Mapping (Chapters 4,5,6,7 and 10)  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

                        

Figure 2.1: Literature search of number of articles (Mapping) 
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      ‘Cancer’ 

         n=14  
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   n=1 Bayesian
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1
mapping[All Fields] AND ("cost-benefit analysis"[MeSH Terms] OR ("cost-benefit"[All Fields] AND 

"analysis"[All Fields]) OR "cost-benefit analysis"[All Fields] OR ("cost"[All Fields] AND "effectiveness"[All 

Fields]) OR "cost effectiveness"[All Fields]) 
2
AND ("neoplasms"[MeSH Terms] OR "neoplasms"[All Fields] OR "cancer"[All Fields]) 

3
mapping[All Fields] AND QLQ-C30[All Fields] 

4
(mapping[All Fields] AND ("cost-benefit analysis"[MeSH Terms] OR ("cost-benefit"[All Fields] AND 

"analysis"[All Fields]) OR "cost-benefit analysis"[All Fields] OR ("cost"[All Fields] AND "effectiveness"[All 

Fields]) OR "cost effectiveness"[All Fields])) AND Bayesian[All Fields] 

 

The aim of this review was to identify all mapping algorithms related to cancer, to 

further review the methodological limitations and opportunities for improvements as 

well as identify areas of research not considered. 

From a total of 443 articles on mapping in the context of cost-effectiveness, after 

reviewing titles, 60 were relevant to cancer. After a further review of abstracts and 

titles, 14 were relevant to chapters 4, 5 and 6 of this thesis and 8 were relevant to 

chapter 10. The search terms were used because they broadly define the research 

themes of this thesis. Only 1 article was a cancer specific Bayesian mapping 

algorithm. 

2.3.2 Literature Search: Sensitivity and Responsiveness  (Chapter 8)  

 
 

 

 

 

 

 

 

  

 

 

 

       

Figure 2.2: Literature search of number of articles (Sensitivity and Responsiveness) 

a
EQ-5D[All Fields] AND (Responsiveness[All Fields] OR ("sensitivity and specificity"[MeSH Terms] OR 

("sensitivity"[All Fields] AND "specificity"[All Fields]) OR "sensitivity and specificity"[All Fields] OR 
"sensitivity"[All Fields])) 
b
AND ("neoplasms"[MeSH Terms] OR "neoplasms"[All Fields] OR "cancer"[All Fields]) 

c
AND QLQ-C30[All Fields] 

 

 

     n=52b AND  
      ‘Cancer’ 

     n=7c AND  

     ‘QLQ-C30’ 

              N=559a 
‘EQ-5D’ AND Responsiveness   
      OR ‘Sensitivity’  
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The aim of this review was to identify research articles on the comparative sensitivity 

and responsiveness of generic (both EQ-5D-3L and EQ-5D-5L) and cancer specific 

measures. The objective was to identify articles which investigated whether generic 

measures under-estimated patient benefit and what impact this might have on the 

QALY and economic evaluation of cancer treatments.  

 

From 559 articles related to EQ-5D responsiveness and sensitivity, of which 52 were 

cancer studies and amongst these for the purposes of this thesis, 7 articles were 

considered relevant because the data that will be used in this thesis related to EQ-5D 

and the cancer specific QLQ-C30.  

2.3.3 Literature Search: Utility extrapolation Mapping (Chapters 9)  

 
The aim of this review was to identify articles which proposed methods to estimate 

utility after cancer progression, for the purposes of economic evaluation. This is an 

important area of research because many HTAs are critical on how utilities are 

estimates after cancer progression. The purpose of this review was to investigate 

gaps in the knowledge for methodological improvement. 

 

Using the search terms: EQ-5D[All Fields] AND ("neoplasms"[MeSH Terms] OR 

"neoplasms"[All Fields] OR "cancer"[All Fields])”, 488 articles related to EQ-5D and 

cancer, of which 2 were potentially related to utility extrapolation or post-progression 

utilities. After reviewing the articles in detail, none were related to the theme of post-

progression utility extrapolation.  

2.3.4 Literature Search: Criteria for selecting Mapping Models (Chapter 

10)  

Given the publication of several published mapping algorithms, the objective here 

was to identify articles of published mapping algorithms (used in cancer) and then 

determine whether a robust selection method is possible to distinguish between 

‘Useful’ and ‘Not Useful’ algorithms. This is needed because as more algorithms 

become available, methods that distinguish between poor and good performing 

algorithms is needed.  

 

The details of the searches are the same as those in section 2.3.1, where  n=8 

articles are identified which can be used to compare and select published algorithms. 

These articles were considered relevant on the basis of criteria including: 
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a) Ensuring that QLQ-C30 was used as a part of the process of developing the 

algorithm. 

b) At least 2 coefficients were reported in the mapping function (the intercept 

and at least one of the 15 domains (these domains consist of 5 functional 

domains: Physical Function (PF), Role Function (RF), Emotional Function 

(EF), Cognitive Function (CF), Social Functioning (SF); 8 symptom domains: 

Fatigue (FA), Nausea & Vomiting (NV), Pain (PA), Dyspnoea (DY), Insomnia 

(IN), Appetite Loss (AL), Constipation (CO), Diarrhoea (DI);  a domain for 

Financial Problems (FI) and an overall score: Global Health Status Score 

(QL)).  

c) Algorithms were included irrespective of the tumor type. Most algorithms were 

reported in such a way that it appeared that the authors intended them to be 

used across all tumor types.   

d) Algorithms were included, whether developed from RCT data or other studies 

(e.g. surveys, observational studies). 

2.4 Summary of Literature Review of Mapping (Chapter 4, 5 and 6) 

2.4.1 Previous research on mapping 

Model Structure 

Most approaches to mapping have generally used OLS models but other models, 

such as TOBIT and LOGIT, were also utilized at times [112]. Out of 119 models 

examined, ordinary least squares (OLS) approaches were the most common [112]. 

Criticism on the use of OLS models is concerned with under-estimation of the 

uncertainty of mean utilities used for cost-effectiveness. For instance, the variability 

of mean predictions may be greater than what the OLS models might suggest [128].  

 

Models used for mapping comprising of conditional mean or median regression 

models had varying degrees of success [111,112,129,130-132] (e.g. TOBIT, Quantile 

Regression). Response mapping approaches, where ordinal categorical responses 

are modelled, have also been used with limited success [133]. However, if there are a 

few responses at extremes, the predictions at these extremes are likely to be 

imprecise, particularly with smaller sample sizes. Hernandez et al. (2010) compared 

linear and TOBIT models with adjusted censored models , a class of limited 

dependent variable mixture models (LDVM) which essentially modify the TOBIT and 

are applied in a mixture modelling framework (but none were applied to cancer data 
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sets and QLQ-C30 in particular) [134]. These models appear to work well, but seem 

to need larger sample sizes. For smaller size clinical trials, these models may also 

have limited ability to predict at the extremes. Longworth and Rowen (2013) suggest 

several alternative models for investigation, including the Beta-Binomial [115]. Crott 

et al. (2012) also suggest research of more complex mapping algorithms, as well as 

a need for greater validation [135]. One aspect of this ‘complexity’ might include 

adding many interactions and additional demographic variables, which may improve 

prediction, but on the other hand, may result in an overly complicated algorithm (e.g. 

rather than 15 QLQ-C30 variables, one may have a model with 30 factors, including 

interactions to predict EQ-5D-3L). Another way of considering ‘complexity’ could be a 

more complicated mathematical function, but with fewer independent variables. Table 

2.2 shows details of existing mapping models reported in the literature (all used the 

Dolan [75] tariff for EQ-5D-3L). 

 
Model Comparison 
 
Mapping models have been developed and compared using measures like predictive 

power (R2), predictive mean and residual mean squared error (RMSE). Simplistic 

approaches to reporting model performance were used (e.g. R2), which may not be 

sufficient to conclude a successful mapping (e.g. in non-linear models, R2 may not 

alone be appropriate). In addition, concerns were raised regarding the over-emphasis 

on R2 as a measure of the model fit [112]. It is the predictions of the mean utilities 

and the uncertainty around them, which are critical in a model choice. It was also 

unclear as to what constitutes a good or poor R2 in these models. For instance, on 

the one hand, a value of R2 at 50% was considered to be ‘high’, without justification 

[112]. Testing model performance through the use of simulation may be a way to 

quantify the uncertainty of algorithms. It is appropriate to include measures of model 

fit (e.g. Aikakes Information Criteria (AIC)) or visual plots to understand mode fit as 

well as determining the impact on the QALY, the critical metric of cost-effectiveness.   

 

Model Validation 

Few models used independent datasets to validate the model. When the same 

published models were used in different data sets the results were not as good as 

those in the original development and reporting of the model. Table 2.2 gives a list of 

relevant models that used external validation.  
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Year [Reference] 
Sample 

Size 
Population 

Mapping 

From/To 

Time points 

   (month) 
Model Type 

R
2a

 Country validation 

1.2016  Mariott et al.  [136] 

 

529 Colorectal 

cancer 

QLQ-C30/ 

EQ-5D-3L 

0, 1m, 12m Mixed 

TOBIT 

65% 

 

51% 

Multinational None 

2.2016 Khan et al. [137] 100 NSCLC QLQ-C30/ 

EQ-5D-3L 

EQ-5D-5L 

Monthly for 12 

months 

2 Part Beta 

OLS 

75% UK Cross validation & 

Simulation 

3. 2015 Young et al. [138] 530 to 

771 

Mixed 

Tumour 

FACT-G 

QLQ-C30/ 

EQ-5D-3L 

Baseline and 

post baseline 

OLS 

TOBIT 

2 part 

Splines 

51% 

 

Multinational Independent data 

4. 2015 Kharroubi et al. [139] 1839 Myeloma QLQ-C30/ 

EQ-5D-3L 

Cross section OLS 

Bayesian 

Imputation 

70% Multinational MCMC Simulation 

5. 2014 Khan et al.  [109] 890 NSCLC QLQ-C30/ 

EQ-5D-3L 

0, monthly until 

progression or 

death 

3 part Beta 

 

75% UK Simulation & 

Independent data 

*6. 2014 Proskovorsky et al.[140] 154 Myeloma QLQ-C30 

QLQ-MY20  

EQ-5D-3L 

Baseline and 

post baseline 

OLS 69% Multinational None 

*7. 2012 Versteegh et al. [141] 137 Mixed QLQ-C30 

HAQ 

Baseline and 6 

follow-up 

OLS 82% Netherlands Independent data 
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MSIS-29/ 

EQ-5D-3L 

measures 

*8. 2012 Kim SH et al. [142] 893 Mixed QLQ-C30/ 

EQ-5D-3L 

unknown OLS 52% S.Korea Independent data 

*9. 2012 Kim EJ et al. [143] 199 Breast 

Cancer 

QLQ-C30  

BR23/ 

EQ-5D-3L 

Cross-sectional 

survey 

OLS 49% S.Korea Cross validation 

*10. 2010 Crott and Briggs [111] 448 Breast QLQ-C30/ EQ5D-

3L 

0,1,2,3,6,12,20 

28,36,42,48,54 

Quadratic 80% European Independent data 

*11. 2010 Jang et al. [130] 172 NSCLC QLQ-C30/ EQ5D-

3L 

Unspecified OLS 58% Canada Cross validation 

*12. 2009 Kontodimopoulo et al. [131] 48 Gastric QLQ-C30/ EQ5D-

3L 

Interviewed 

post-surgery 

OLS 91% Greece None 

*13. 2009 McKenzie et al. [132] 199 Oesophageal 

 

QLQ-C30/ EQ5D-

3L 

Approx. 

monthly 

OLS 

PROBIT 

61% UK Independent data 

14. 2007 Wu et al. [144] 280 Prostate  QLQ-C30 

FACT-P/  

EQ5D-3L 

0,3,6, 12 OLS 

Censored 

58% Multinational Cross validation 

                                                  Table 2.2: Summary of Relevant Mapping Algorithms from 443 initial articles on mapping
#
 

 

a 
maximum observed was reported 

#
last search conducted in January 2017 

*Relevant to Chapter 10 
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Limitations of mapping and gaps in research 

Authors of articles on mapping noted that the development of mapping algorithms is 

possibly more complex, citing the need for investigation of complex model structures. 

The inter-relationship between generic and CSM is likely to be more complex than 

simple linear models. In addition, no post-progression mapping models were reported 

(i.e. after the disease has progressed). This is important because pre-progression 

and post-progression QoL are important in determining the QALY for cost-

effectiveness of cancer treatments. Interestingly, at the time of starting this thesis, no 

mapping algorithm in lung cancer patients was developed [111,112]. 

Mapping algorithms over-predict at poorer health states, but reasons for this remain 

unknown. For example, Joint models that incorporate adverse event/toxicity to 

address the over-prediction of poorer health states have not been considered; no 

post disease progression mapping algorithms have been developed. There is limited 

use of Bayesian and Non-Linear mapping Models; an absence of simulation to 

quantify the uncertainty of mapping algorithms is notable; no mapping algorithms 

between EQ-5D-5L and QLQ-C30 existed at the time of writing this thesis. In 

addition, a number of HTAs in cancer (specifically lung cancer as an example)       

[23-41] report utilities from external studies (direct elicitation) were considered which 

were criticized for over-estimating utilities in economic evaluations. Direct elicitation 

studies (utility studies) were criticized for being poorly controlled studies. This is 

another reason for research in this area. Utility studies were not recommended and 

mapping appeared to be preferred [23-41]. 

 

In summary, further research in mapping functions is proposed for specific research 

areas (Longworth and Rowen, 2013) [115]:  

 

(i) Mapping general population visual analog scale (VAS) for both measures 

alongside each other. 

(ii) The mapping between Rasch scores and utility scores. 

(iii) Using Gaussian Processes. 

(iv) Single equation and two-part beta regression models. 

(v) Measurement error models. 

(vi) Investigation of Bayesian Networks. 
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To this end, the development of advanced models will be used based on data 

collected in NSCLC patients to explore alternative mapping algorithms as well as 

compare them using the more recent EQ-5D-5L.  

2.4.2 Summary of Literature Review of Bayesian Algorithms (Chapter 7) 

 
Bayesian methods are being increasingly used in economic evaluation methods. 

There have been some suggestions Bayesian methods may result in improved 

mapping [139, 146]. An important feature of Bayesian algorithms is the potential to 

estimate profiles of health states and not just utility values. Profiles may offer a richer 

insight and information around the estimated (true) utility values.  

 

Only one Bayesian mapping algorithm was used in cancer mapping the EQ-5D-3L 

from QLQ-C30 in a myeloma patient population. There were a total of 9 Bayesian 

mapping algorithms (in varying disease areas and health populations). Basu & 

Manca (2012) use a Bayesian form of a beta regression (using non-informative 

priors) in a non-mapping context, compared to an OLS regression model [145]. A 2-

part version of the beta model in order to handle the over-dispersion (e.g. over-

dispersion of 1’s on the EQ-5D-3L scale) of values was used [145].  

 

Kharroubi et al. (2007) suggested a more complex simulation approach in order to 

better understand the predictive value of the realized mapping function [139] in an 

attempt to reduce the systematic errors found in mapping functions. However, this 

may be difficult in practice because one may need to consider setting prior 

distributions in a multivariate context. This means one would need to set prior 

distributions for each of the 15 coefficients (e.g. for the QLQ-C30) with potentially 

large variances (for non-informative priors). In addition, to determine the prior 

covariance structure of a 15x15 matrix would be a considerable challenge. 

Generating posterior (mean) coefficients from published algorithms, for use in future 

predictions may be difficult in practice.  

 

Other Bayesian algorithms [146] were slightly less complicated because the condition 

specific instrument had fewer coefficients from which to map (using the HAQ); 

however, in most cases, algorithms were more complex and non-informative priors 

were used. One such Bayesian approach was to use a Bayesian Networks [147]. 

The Bayesian Network (BN) approach is based on a probabilistic approach rather 

than estimating utilities through use of (posterior) mean coefficients. Conditional and 
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joint probabilities of responses using Bayes theorem would allow for computation of 

posterior probabilities of each EQ-5D-5L (or EQ-5D-3L) response and consequently 

utilities [148]. However, in this model too, predictions at poor health states in a non 

cancer context were reported as inadequate, although performed better than other 

models. In Chapter 7, the use of this approach to mapping with the QLQ-C30 is 

considered as a ‘first’ in the application of cancer and with the recent EQ-5D-5L. 

2.4.3 Summary of Literature Review: Sensitivity and Responsiveness of 

EQ-5D (Chapter 8) 

Some generic instruments may not be adequate to demonstrate HRQoL benefits, 

compared to condition-specific measures (CSM) [149-151]. This is because a brief 

and standardized HRQoL instrument across diseases will lack sensitivity due to its 

nature. Concerns about the sensitivity and responsiveness of generic measures such 

as EQ-5D-3L [152,153] have been important enough to lead to the development of 

the EQ-5D-5L, using a 5 point scale (EQ-5D-3L has a 3 point scale). The issue 

becomes more acuter and relevant, where a CSM appears to offer an interpretation 

for a treatment benefit inconsistent with a generic one (or vice versa). Therefore, it is 

important to explore sensitivity and responsiveness of HRQoL instruments, 

particularly in a large cancer population, such as lung cancer [154]. 

 

Concerns have also been raised about the sensitivity of the EQ-5D-3L and by 

extension to the derived mapped utilities [151-153]. Most mapping algorithms using 

the EORTC-QLQ-C30 (QLQ-C30) are based on EQ-5D-3L. Given the reported 

limitations and criticisms levelled against the EQ-5D-3L and the consequent 

development of the EQ-5D-5L, a mapping algorithm for the EQ-5D-5L should be an 

important area of research. 

 

It is also unclear, not just in cancer studies, but also in many trials with HRQoL 

endpoints as to what a relevant clinical or economic treatment difference size is. 

Moreover, which among the common HRQoL measures (in cancer) are more 

sensitive to detecting HRQoL benefits, remains highly uncertain [60,155]. This is 

relevant whether the HRQoL is a primary or secondary outcome because HRQoL 

effects are often considered to ‘add value’ to an intervention, especially when the 

primary clinical outcome result shows modest or borderline benefits.  For example, 

with QLQ-C30, there are 15 possible effect sizes and only one for EQ-5D. The 

precise clinical or economic relevance of effect sizes from the QLQ-C30 still remains 

unknown or not well understood. Maringwa et al. (2011), suggest ‘important’ effect 
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sizes of varying magnitudes [60]. A suggested effect size of 10 points (it is unclear 

whether this is a particular domain or any domain of the QLQ-C30) is assumed to be 

an important difference [156] and it is unclear why this should be the case. This 

suggested ‘relevant’ effect size (10 point difference) was made many years ago at a 

time when cancer treatments were comparative to older less effective drugs or even 

placebo. The standard of care has since improved. For EE the ‘best’ standard of care 

is required as a comparator which is likely to result in smaller treatment benefits (and 

QALYs), and therefore, this definition, despite being widely used is likely to be 

redundant [155].  

 

Wiebe et al. (2003) [207] argued that condition-specific measures (CSM) are likely to 

be more responsive than generic measures. However, previous research concludes 

that the responsiveness of the generic EQ-5D-3L was similar to QLQ-C30, using the 

data from patients with liver metastases [208]. Certain generic instruments may not 

be adequate to demonstrate HRQoL benefits compared to CSMs  [149-152]. A brief 

and standardized HRQoL instrument across diseases will lack sensitivity because of 

its inherent nature [151]. Concerns about the sensitivity and responsiveness of 

generic measures like EQ-5D-3L [153,154] have been important enough to lead to 

the development of EQ-5D-5L with a 5 point scale (the EQ-5D-3L has a 3 point 

scale). The issue becomes more acute and relevant, where a CSM appears to 

provide an interpretation of a treatment benefit, which is inconsistent with a generic 

one (or vice versa). Therefore, it is vital to explore sensitivity and responsiveness in a 

cancer population, in particular, lung cancer, which is responsible for most deaths 

among cancer patients [209]. Establishing the validity and reliability of HRQoL 

instruments is not sufficient in itself to determine the responsiveness and sensitivity 

to treatment [210]. 

 

Generic measures are considered to lack the sensitivity to detect HRQoL benefits 

when compared to CSMs. However, if the treatment benefits from a CSM and 

generic measure are similar, then a simpler and shorter preference-based generic 

measure (e.g. EQ-5D) could be used alongside a highly condition specific measure 

(e.g. such as the lung cancer symptom specific LCSS questionnaire) without losing 

much information. With preference-based measures, there may be a concern that 

preference weights based on the general population may not reflect the similar 

relative importance for certain health states that a cancer sufferer might have. A 

comparison of relative effect sizes between generic measures and CSMs have not 

been thoroughly evaluated in cancer, particularly with respect to their implications for 
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the QALY. However, suggested ‘important’ effect sizes for the EQ-5D have been 

suggested to range from 0.03 to 0.074 [157, 158]  

 

In a systematic review of 43 published articles in NSCLC [49], 28 of these studies 

used QLQ-C30 with the objective of detecting clinical improvements in HRQoL [49]. 

Among these 28 studies, the vast majority of studies (>80%) did not report 

improvements with the QLQ-C30, either between treatments or relative to baseline. 

Moreover, wherever an effect was reported, the sample size was small (e.g. n=19 in 

the study of Bianco, 2010 cited in the review) [49]. Khan et al. (2015) more recently 

indicated that treatment effect sizes are rarely large [155] from cancer specific CSMs. 

 

Of the 28 trials (Damm, 2013) which used QLQ-C30, no generic HRQoL was 

included, yet an economic evaluation of some form was performed on the trial data at 

a later point (e.g. the BR21 trial [49,107]). Moreover, conclusions regarding HRQoL 

benefits were provided in terms of “non-worsening HRQoL”- and little or no 

improvements in HRQoL. The conclusions were often presented such that if patients 

did not deteriorate in their HRQoL, then this was interpreted worthy of comment or a 

favorable outcome (see [49] for example). It can be complicated when a CSM 

suggest a HRQoL improvement and a CSM does not. Given that utilities for the EQ-

5D are based on societal preferences and the CSM is based on descriptive 

assessments, the need for an evaluation of the sensitivity of the recent EQ-5D-5L 

and the QLQ-C30 is necessary to inform an economic evaluation, particularly where 

the conclusions are borderline (e.g. ICERs close to £20,000 or £30,000/QALY).     

 

Therefore, in summary, the sensitivity of EQ-5D-3L versus EQ-5D-5L versus 

EORTC-QLQ-C30 has not been addressed extensively; EQ-5D is considered to lack 

sensitivity for measuring changes in health states in a cancer setting [156]. Small, but 

important differences in HRQoL should not be ignored [155] and investigated with a 

view to identifying the implications for an economic evaluation.  

2.4.4 Summary of Literature Review: Utility Extrapolation (Chapter 9) 

 
The QALY in cancer trials is often computed as a weighted measure of pre and post-

disease progress (PP) survival. Therefore, how post-progression utilities are 

estimated, either directly or by extrapolation, influences the overall QALY. Although 

post-progression survival may result in an increase in total QALYs, it is important to 

understand the impact on the incremental QALY.  
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For the more recent class of anti-cancer treatments, such as immunotherapies (e.g. 

Nivolumab), the argument is that ‘pseudo-progression’ (a potentially incorrect 

conclusion of progression) occurs and that treatment should continue beyond it. 

Utility data are (often) not collected after the first instance of so-called ‘pseudo’ 

progression (because some patients may stop treatment) [22]. However, if patients 

continue to take treatment in anticipation of later benefits, after disease progression, 

utility estimates become even more important for estimating the post-progression 

QALY. Such post-progression utilities can be determined from external literature or 

as proposed in this thesis through extrapolation methods. More importantly, the 

continued side effects of toxicity from treatments after disease progression (such as 

hair loss, and other longer term toxicities) can have a continued impact on HRQoL 

well after the first instance of progression. For these reasons models for predicting 

utility between disease progression and death are important. Estimating utilities after 

disease progression through extrapolation has not been considered previously.  

 

When time to progression is short, but the post-progression survival (PPS) is 

relatively longer, utility data are likely to be missing. Typically, in most cancer 

studies/trials, utility data are collected until disease progression and not until death. 

However, in some cases, for some patients, data may be available beyond 

progression. A recommendation should be to collect utility data beyond progression, 

particularly if treatment is to be continued beyond progression (e.g. as in the case of 

more recent immunotherapy advances like Nivolumab [14, 22]). When some patients 

have utility data after disease progression, this would offer an opportunity to ‘borrow 

strength’ from between and within patients to model and consequently predict 

(extrapolate) utility data after disease progression. 

 

Presently, minimal or no data is available for methods in utility extrapolation beyond 

disease progression. Most methods focus on using estimates from external sources 

[108, 160]. Stein et al. (2014) [161] report real world utility study in colorectal cancer 

in a second line setting. However, this is quite different from using a modelling 

approach to extrapolate utility using patient-level data from a clinical trial. This will be 

the focus of Chapter 9. 

 

In summary, modelling HRQoL during the end of life (often after disease progression) 

requires one to explore the relationship between utilities, PD and the probability of 

death at specified time points. Methods for modelling utility post cancer progression 
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have not been extensively used or are non-existent. Moreover, there is considerable 

uncertainty in the literature between published values for patients in the pre and post-

disease progression stages of their cancer, as well as with utilities for toxicities as a 

result of their treatment. 

2.4.5 Summary of Literature Review: Model Selection (Chapter 10) 

While several algorithms to predict utilities are available, classifications of algorithms 

in terms of performance are still in development. Recently Crott (2014) [161], Arnold 

et al. [162] and Doble & Lorgelly [163] tested the external validity of some of these 

algorithms. For instance, an algorithm might report an R2 of 75% with accurate mean 

predicted utilities when applied to the same data the model was generated from. 

However, when this algorithm is applied to an independent dataset, the predicted 

mean utility might be poor. Only when a mapping algorithm has been tested on a 

large number of data sets with known observed utility values, judgments about 

predictive performance can be made. No criteria are available for deciding between 

published algorithms, other than the metrics (e.g. R2, RMSE) used for testing the 

algorithm at the time of development. External validity of published algorithms was a 

relatively recent development at the time of writing this thesis. 

 
From 14 published algorithms identified, eight mapping algorithms between EQ-5D-

3L and QLQ-C30 were considered. These used the QLQ-C30 and reported at least 2 

coefficients. Two algorithms could not be used as they are published as part of this 

thesis [109, 137]. Only three articles on mapping algorithms were from an NSCLC 

population, out of which 2 are published as a result of this thesis. A review of these 8 

algorithms was provided in Table 2.2: 

 

(i) McKenzie et al. (2009) [132] 

This study involved patients with oesophageal cancer (199 UK patients). Data were 

collected from an RCT with follow up of at least 90 weeks. HRQoL (including QLQ-

C30) were collected at 31-time points (baseline, every 3 weeks to at least 90 weeks). 

Validation of the algorithm was carried out using an independent data set.  

(ii) N.Kontodimopoulos et al. (2009) [131] 

This was a gastric cancer sample of 48 patients (in Greece). Data were collected 

from a utility study between November 2007 and March 2008. HRQoL were collected 

at 2-time points (before and after treatment). Independent data were not used to 

validate the algorithm. 
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(iii)   Jang et al. (2010) [130] 

Jang et al. (2010) mapped EQ-5D-3L in 172 Canadian NSCLC patients using 

outpatient data (single cohort/cross section) from a single visit. Methodological 

details were limited in this article. 

 

(iv) Crott and Briggs (2010) [111]. 

This was a breast cancer sample of 448 patients from several European countries. 

Data were collected from a randomized controlled trial (RCT) over 54 months. 

HRQoL were collected at 11-time points (baseline, once per month for the first 3 

months (and 6, 12, 20, 28, 36, 42, and 48 up to 54 months thereafter). Independent 

data were not used to validate this model. 

(v) Eun-ju Kim et al. (2012) [142] 

This algorithm was developed using data from 199 Korean metastatic breast cancer 

patients. Data were collected prospectively and HRQoL were collected before and 

after the patients were diagnosed with breast cancer. Independent data were not 

used to validate the model. 

(vi) Versteegh et al. (2012) [141] 

HRQoL data were taken from two separate trials in multiple myelomas (HOVON 24 

was a trial with, a sample size of 137 German patients) and non-Hodgkins lymphoma 

(HOVON 25). The algorithm was developed from HOVON 24 using data from 

HOVON 25 for validation.  

(vii) Kim SH et al. (2012) [143] 

A model based on 893 Korean patients with various tumor types was tested in 123 

patients with colon cancer. The two data sets were independent. All patients were 

from a single hospital and independent data were used to validate the model. 

(viii) Proskorovsky et al. (2014) [140] 

This is an algorithm developed in 154 multiple myeloma patients (89 UK and 64 

Germany). Data were from a multinational cohort study. Independent data were not 

used to validate the model. 
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In summary, 8 algorithms were identified from which a selection procedure could be 

developed. The development of a selection procedure is needed to identify the more 

useful algorithms.  

2.4.6 Overall Conclusion from Literature Review 

The main conclusion from this review is that further development of algorithms, 

including Bayesian algorithms, could be developed. Moreover, comparisons with the 

EQ-5D-5L along with its sensitivity is important. Methods for extrapolation of utility 

beyond PD (particularly in a real world setting) and criterion for selection of useful 

algorithms are needed. Additional gaps in knowledge identified from a review of the 

articles include the need for developing methods for adjusting utilities for treatment 

switching. When patients switch from the standard treatment to the new one (or vice 

versa), the impact of the switching is not reflected in the QALY or economic model. 

Handling switching for survival methods is well documented [164], however, for 

utilities and HRQoL methods are not developed. However, the methods for utility 

extrapolation may be speculative and a narrower focus on mapping and modelling 

HRQoL will be the object of this thesis.  To this end, the aims and objectives will now 

be stated. 

2.5. Aims and Objectives 

2.5.1 Overall Aim of thesis 

The overall aim of this thesis is to improve the estimation and valuation of 

HRQoL benefits in lung cancer for the purposes of economic evaluation. The 

aims and objectives of this thesis are answered in 7 further chapters (including a 

concluding chapter: Chapter 4 develops and compares existing models with a new 

non-linear Beta-Binomial mapping algorithm; Chapter 5 evaluates other mapping 

algorithms developed from the more recent EQ-5D-5L; Chapter 6 explores other 

reasons why algorithms may over-predict at poorer health states; Chapter 7 involves 

the use of Bayesian networks ;Chapter 8 compares the sensitivity and 

responsiveness of generic and condition-specific measures, particularly EQ-5D-5L, 

EQ-5D-3L, and EORTC-QLQ-C30. Finally, Chapter 10 proposes a selection 

procedure, which separates ‘useful’ algorithms from ‘not useful’ ones. To this end, 

several objectives with specified aims on the theme of modelling HRQoL for the 

economic evaluation of cancer treatments are outlined.  
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2.5.2. Underlying Thesis Questions 

The key conclusions of the literature search suggested that evidence in some 

important areas of research were needed. The literature on research themes 

identified areas such Bayesian mapping algorithms, utility extrapolation, mapping 

algorithms with the recent EQ-5D-5L and comparison of the sensitivity of the EQ-5D-

5L, EQ-5D-3L, and condition specific measures in cancer, was very limited or non-

existent. Improvements in methodological and empirical evidence were needed to 

address some important research questions such as:  

 
 (i) Can mapping algorithms be improved with more complex model structures? 

 

(ii) Is it better to use a mapping algorithm from the EQ-5D-5L or the EQ-5D-3L, given 

a choice? 

 

(iii) Is the more recent EQ-5D-5L sensitive to detecting treatment benefit compared to 

a CSM and the EQ-5D-3L? What implications does this have for an economic 

evaluation? 

 

(iv) After patients progress in their disease, can utilities be extrapolated to estimate 

the cost-effectiveness of new treatments over a life time horizon? 

  

 (v) Given the existence of several mapping algorithms, can a selection criterion be 

developed to identify a more or less useful algorithm?  

 

Based on the literature research and summary of Chapter 2, this thesis will, 

therefore, examine several areas associated with modelling HRQoL for the economic 

evaluation of treatments for cancer, with a particular application to lung cancer data 

sets. To achieve this purpose, seven primary aims are considered: 

 

Aim 1: To undertake a literature search of methods and approaches used in 

modelling HRQoL for Economic Evaluation in the context of cancer.  

 
Objectives of Aim 1 (OA1)  
 

 OA1.1: To identify the questions and gaps in knowledge relating to modelling 

HRQoL from cancer patients in the context of mapping. 



 

71 

 

 OA1.2: To identify the questions and gaps in knowledge relating to Bayesian 

approaches to mapping.   

 OA1.3: To identify the literature that compares the sensitivity and 

responsiveness of the EQ-5D-5L, EQ-5D-3L, and a cancer specific measure.  

 OA1.4: To identify literature and gaps in knowledge relating to estimating 

utility for economic evaluation after cancer progression. 

 OA1.5: To identify literature and gaps in knowledge in terms of objective 

criteria for selecting mapping models when there are several to choose from.  

 

Aim 2: To investigate methods to improve the performance of mapping 

algorithms for estimating utilities for economic evaluation (Chapters 4, 5 and 

6). 

 
Objectives of Aim 2 (OA2)  
 

 OA2.1: To develop and test a novel non-linear Beta-Binomial (BB) approach 

which takes into account the over-dispersion and skewness of utility data.  

 

 OA2.2: To develop and test mapping algorithms that maximize the 

relationship between clinical, demographic and toxicity factors, through joint 

modelling.  

 OA2.3: To compare the performance of mapping algorithms between the 

recent EQ-5D-5L with the previous EQ-5D-3L. 

 

Aim 3: To test and compare the performance of a Bayesian Mapping Algorithm 

(Chapter 7) 

 
Objectives of Aim 3 (OA3) 

 
  OA3.1: To develop and test a Bayesian Mapping Algorithm between QLQ-

C30 and the EQ-5D-3L. 

 OA3.2: To develop and test a Bayesian Mapping Algorithm between QLQ-

C30 and the EQ-5D-5L. 

 

Aim 4: To explore the sensitivity and responsiveness of a disease-specific and 

generic measure using the EQ-5D-5L, EQ-5D-3L and the QLQ-C30 (Chapter 8). 

 
Objectives of Aim 4 (OA4) 
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OA4.1: To determine whether clinical benefits valued from the EQ-5D-5L, EQ-5D-3L, 

and those obtained from the cancer-specific QLQ-C30 are similar. 

OA4.2: To investigate whether HRQoL benefits from a CSM and those valued from 

the generic measure are adequate to reflect QALYs. 

OA4.2: To compare the HRQoL benefits valued from generic and those obtained 

disease-specific measures, using standard measures of effect size. 

 

Aim 6: To investigate a method of selection between published algorithms 

(Chapter 9). 

 
Objectives of Aim 6 (OA6)  
 
OA6.1: To identify relevant published mapping algorithms from the QLQ-C30  

OA6.2: To test published algorithms on independent data sets 

OA6.3: To develop a decision and classification criteria for published mapping 

algorithms using simulation. 

OA6.4: To present a recommendation of potentially usable algorithms. 

 

Aim 7: To design, conduct and analyse a prospective observational study in 

cancer patients for collecting HRQoL data using three measures: EQ-5D-3L, 

EQ-5D-5L, and QLQ-C30 for answering some of the questions identified from 

the literature review. 

 
Objectives of Aim 7 (OA7)  
 
OA7.1: To collect data from cancer patients in a well designed observational study 

for investigating the previously defined aims and objectives 

2.5.3 Data Sources 

The data for this thesis consists of three data sets. Two of these data sets were 

initially provided by the Cancer Research UK (CRUK), Cancer Trials Centre from two 

randomized controlled trials, namely data from the TOPICAL and SOCCAR trials 

[165, 166]. Both the trials were sponsored by CRUK. A third data source, which was 

a prospectively designed study (Study 3) specifically to meet the objectives for 

chapters 5, 6, 7, 8, 9 and 10. 

2.5.4 Conclusion 

In conclusion, based on a detailed review of the literature, a number of objectives 

were identified relating to: improved mapping methods, comparing mapping with the 
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EQ-5D-5L, developing methods for utility extrapolation after disease progression, 

sensitivity of generic versus condition specific measures (particularly EQ-5D-5L) and 

how to go about selecting a suitable mapping algorithm.  

 

In the following chapters, the aims and objectives associated with improved methods 

to predict EQ-5D utilities for economic evaluation are considered beginning with a 

novel approach to mapping using a Beta Binomial modelling approach. 
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Chapter 3 

Chapter 3: Methods  
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                                                                   Abstract 

Introduction: This methods chapter provides an overview of the key methods used 

in later chapters for deriving the main conclusions. The methods are chosen based 

on a review presented in chapter 2. 

 

Methods: Several models were identified that are pertinent to modelling HRQoL for 

mapping. The models range from simpler Linear regression models to the most 

advanced and less well known such as Joint Models that model two outcomes 

simultaneously to predict EQ-5D-utilities. The methods for model fit, model testing 

and performance have been described including how utilities and QALYs are derived. 

Advantages and disadvantages of each model have also been provided. 

 

Results: The models identified include (i) Linear Regression (simple and mixed 

modelling framework), (ii) Beta Binomial models, (iii) Non-Linear (Quadratic), (iv) 

TOBIT, (v) Quantile, (vi) CLAD, (vii) LDVM, (viii) Joint Models and (ix) Bayesian 

Networks. The main advantage of the more complex models is improved model fit 

and better prediction with robust estimates of co-efficient, leading to less uncertainty 

around the true QALY. The key disadvantages are the complexity of the model and in 

using the mapping algorithm in practice. 

 

Conclusions: Each of the models has advantages and disadvantages. Whether the 

disadvantage of greater complexity is offset by improved estimates of utility remains 

the subject of subsequent chapters this thesis will address.   

  



 

76 

 

This chapter details the methods used for reporting the results of each chapter. Since 

the data used in chapters was the same the methods with respect to data collection 

and study design were the same across chapters. However the analyses methods 

naturally differ due to the modelling techniques employed. 

3.1 Population  

For this thesis the population of patients for which data were collected were NSCLC 

patients followed up in 3 different studies.  

 
(i) The TOPICAL Study 
 
This trial was a RCT comparing Elrotinib for the treatment of NSCLC in elderly 

patients who were unfit for chemotherapy. . Data were provided by the Cancer 

Research UK (CRUK) Cancer Trials Centre (CTC) and I was the lead statistician and 

health economist for this study. The results have already been published [165]. In 

this RCT, patients included in the trial were recruited from 78 UK hospital sites in the 

UK. The patient population included in this analysis were newly diagnosed stage IIIb–

IV (pathologically confirmed) patients with NSCLC who were chemotherapy naïve 

with no symptomatic brain metastases, and deemed unsuitable for chemotherapy by 

treating physicians based on the Eastern Cooperative Oncology Group (ECOG) 

performance status (PS ≥2) and/or multiple medical comorbidities including renal 

impairment and estimated life expectancy of at least 8 weeks. The objective was to 

compare the efficacy of erlotinib (a treatment for NSCLC) with standard treatment 

(placebo plus best supportive care). 

 
(ii) The SOCCAR Study 
 
This trial was conducted by the CRUK CTC and I was the lead statistician and health 

economist for this study. Data were provided by the CRUK CTC. The results from the 

main paper and secondary papers have already been published during the course of 

writing this thesis [166]. 

 
Patients included were recruited from UK sites with histologically or cytologically 

confirmed stage III NSCLC, Performance status - ECOG 0 or 1, Life expectancy 

greater than 3 months, No prior chemotherapy, radiotherapy or investigational 

agents, patients willing and able to give informed consent, patients  considered able 

to tolerate platinum based chemotherapy and radical radiotherapy, adequate renal 

function. Further details are found in [166]. 
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(iii) Study 3 

This trial was designed by me along with Dr Joe Maguire (acknowledgment). Local 

ethics approval was given by the NHS research and ethics committee (REC) 

reference number: LH/56/2014, for the design of this study. I entered the data in a 

Microsoft ACCESS database and performed all analyses. Data were provided by the 

CRUK CTC and I was the lead statistician and health economist for this study. The 

results have already been published [137]. 

 

Patients  included were those aged >18 with histologically or cytologically confirmed 

stage III NSCLC, ECOG 0-4, Stage I-IV, able to give informed consent  and attend 

routine assessments. These were set broad to reflect the real-world NHS setting as 

closely as possible. This enhanced generalizability allows estimates of utilities to be 

used as inputs for future economic evaluation. For the purposes of this thesis only 

EQ-5D-3L, EQ-5D-5L and QLQ-C30 will be used. The data for other HRQoL and 

health resource use would be evaluated separately from this thesis.  

 

This study is arguably the first study designed to investigate and compare condition-

specific and generic measures in a real-world setting, using both EQ-5D-3L and EQ-

5D-5L data.  

3.2 Study Design 

TOPICAL: TOPICAL was a double-blind, randomised (1:1), placebo-controlled, 

phase 3 trial, done at 78 centres in the UK. Patients were randomised to receive best 

supportive care plus oral placebo or erlotinib (150 mg/day). Patients were stratified 

by disease stage, performance status, smoking history, and centre. Patients were 

followed up until death or progression (whichever occurred first). Investigators, 

clinicians, and patients were masked to assignment. 

 

SOCCAR: Patients were randomly assigned, in a 1:1 ratio, to receive sequential or 

concurrent chemo-radiotherapy following a dynamic allocation method. The method 

of minimisation to stratify for: Radiotherapist, Staging (Stage IIIa, Stage IIIb N3, 

Stage IIIb Not N3), ECOG Performance (0, 1), Histology (Squamous, 

Adenocarcinoma, Large Cell, Other NSCLC) and Weight Loss (> 5 %, < 5 %, 

Unknown) – a total of 5 stratification factors. 
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Study 3: This was a single cohort prospective (non-interventional) observational 

follow-up study in 100 NSCLC patients. Patients were follow-up during their routine 

anti-cancer treatment and cancer management for a period of at least 12 months.  

 

The primary objective of the study was to assess the HRQoL and health resource 

use using several HRQoL instruments, including EQ-5D-5L, EQ-5D-3L, QLQ-C30, 

LCSS (Lung Symptom Specific Questionnaire), Hospital Anxiety and Depression 

Scale (HADS). The primary outcomes were QLQ-C30 and secondary outcomes were 

EQ-5D, HADS, and LCSS. 

3.3 Interventions 

TOPICAL: Patients were to take oral erlotinib or matching placebo daily, 1 hour or 

more before food, or 2 hours after food. The dose could be reduced to 100 mg, then 

50 mg in cases of substantial toxic effects. Treatment continued until disease 

progression, adverse side-effects judged by the treating clinician to warrant 

discontinuation, or patient withdrawal. Patients continued to receive active supportive 

care, including palliative radiotherapy, at the discretion of their clinician. 

 

SOCCAR: Patients randomized to the sequential group were given cisplatinum 

intravenous (I)V as 80 mg/m2 on day 1 and vinorelbine IV 25 mg/m2 on days 1 and 8 

for 4 cycles, followed by 55Gy in 20 fractions over 4 weeks. In the concurrent group, 

vinorelbine 15mg/m2 was given prior to radiotherapy fractions 1, 6, 15 and 20 

whereas cisplatinum was given as 20 mg/m2 with radiotherapy fractions 1-4 and 16 – 

19. A further 2 cycles of vinorelbine 25 mg/m2 (days 1 and 8) and 80 mg/m2 (day 1) 

cisplatinum were given after concurrent chemo-radiotherapy. Radiotherapy was 

given no more than 6 hours after starting the cisplatin infusion.  Patients in both arms 

of the trial were scheduled to receive a total dose of up to 320 mg/m2 of cisplatinum 

and a radical radiotherapy schedule comprising 55 Gy in 20 fractions over four 

weeks. Patients were scheduled to start chemotherapy within four weeks of 

randomisation and within two weeks of a clinical assessment of fitness.   

 

For the sequential and concurrent group, respectively, patients were scheduled to 

receive a total of four cycles of cisplatinum and vinorelbine. In the concurrent group, 

a reduction in the total vinorelbine dose was allowed to permit concurrent 

administration of radiotherapy with chemotherapy. 
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Study 3: Patients received their standard chemo-therapy. This was either cisplatin IV 

as 80 mg/m2 on day 1 and vinorelbine IV 25 mg/m2 on days 1 and 8 for a maximum 

of 6 cycles (these were standard at the sites). The chemotherapy doses were based 

on the patient’s calculated pre-treatment body surface area using actual body weight. 

Patients were scheduled to start chemotherapy within four weeks of randomisation 

and within two weeks of a clinical assessment of fitness.   

3.4 Sample Size 

TOPICAL: The target sample size was 664 patients, on the basis of the primary study 

objective to detect an increase in 1 year overall survival from 10% with placebo to 17

・5% with erlotinib (equivalent to a HR of 0.75 and much the same as that achieved 

with chemotherapy vs supportive care), with 90% power and 5% two-sided test of 

significance. 

 
SOCCAR: The target sample size was 130 patients. This sample size would allow 

the mortality rate to be characterised with acceptable accuracy using a 95% 

confidence interval (see ref [ 166]) 

 

Study 3: Sample size was determined using an estimation approach, since this was 

not a study powered to detect differences between treatment groups. Hence, 

assuming a SD in the Global QoL score at baseline from the SOCCAR trial of about 

25 points, with a sample size of about 100, the 95% confidence interval (2 sided, 5% 

alpha) for the observed change from baseline will lie within 5 points of the observed 

mean change at 6 months. That is we can be about 95% sure that a sample size will 

be large enough to give us a good precision around the true change from baseline. 

 

3.5 Outcomes 

TOPICAL: Primary outcome: Overall survival (OS). Secondary outcomes: 

Progression-free survival (PFS), tumour response, HRQoL using QLQ -C30, 

LC-14 and EQ-5D-3L, health resource use. Pre-specified subgroups included: 

sex, histological examination, activating EGFR or KRAS mutation, stage, 

smoking status, ECOG score, and development of first-cycle rash. 

 
SOCCAR: The primary endpoint was treatment related mortality (any cause) defined 

as an SAE that results in death; and is definitely, probably, or possibly related to any 

of the trial therapies. Toxicity was assessed according to NCI Common Terminology 
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Criteria for Adverse Events v 2.0. Secondary endpoints include Overall Survival (OS), 

progression free survival (PFS) calculated from the date of randomisation to the date 

of first clinical evidence of progressive disease, or death; Local PFS calculated from 

the date of randomisation to the date of first clinical evidence of progressive disease 

at the primary site, or death; tumour response according to RECIST (version 1.0) 

including the best response in the first 6 months; HRQoL  were assessed using the 

EORTC QLQ –C30, LC-14 and EQ-5D-3L  

Study 3: The primary outcome was the QLQ-C30 (Global outcome) at 6 months. 

Secondary outcomes included QLQ-C30, EQ-5D-3L, EQ-5D-5L, Hospital Anxiety 

Scale (HADS), SF-36, LC-14, overall survival, progression free survival, adverse 

events (AE) and health resource use.  Adverse events (AEs) and health resource use 

were collected as and when they occurred. The AEs were graded using National 

Cancer Institute’s (NCI) Common Toxicity Criteria (CTC) Version 2.0 NCI CTC 

criteria from Grade 1 to Grade 5 (Death).  

 

Adverse events (AEs) and health resource use were collected as and when they 

occurred. The AEs were graded using National Cancer Institute’s (NCI) Common 

Toxicity Criteria (CTC) Version 2.0 from Grade 1 to Grade 5 (Death). All adverse 

events were  categorized as Grade 0:  No adverse events  or laboratory data 

(e.g. CD4 count, neurophils etc.) are within normal limits; Grade 1: Mild 

Adverse events; 2: Moderate Adverse event; 3: Severe and undesirable 

adverse event; 4: Life threatening or disabling adverse event; 5 : Death 

related adverse event. Adverse events were collected prospectively and paired 

observations of grade 3 and above AEs that correspond to EQ-5D-3L, EQ-5D-5L, 

and QLQ-C30 data were available for each patient. Adverse events are commonly 

reported in studies and trials by reporting the worst (maximum) grade – as a single 

patient can have multiple AEs of varying grades and the worst grade (maximum 

grade) is used as a response for later modelling. Patients were classified as having a 

grade 3 or higher AE or not (i.e. dichotomized) for the purposes of joint modelling 

(Chapter 6). 
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3.6 HRQoL Assessments 

TOPICAL: Patients were followed until disease progression or death. Patients 

completed HRQoL assessments (QLQ C-30 and LC14, and EQ-5D-3L) at baseline, 

monthly during the first year, then 18 and 24 months after randomisation.  

 

SOCCAR: Follow up for assessments from randomization continued until August 

2011 where the database was closed for analysis. Patients completed HRQoL) 

assessments using QLQC-30 and EQ-5D at baseline,  3 weekly during treatment, 

then monthly up to 6 months after randomisation, then 3 monthly for 2nd year, 6 

monthly in year 3 and annually thereafter.  

 
Study 3: Assessments for HRQoL (including EQ5D-3L, EQ-5D-5L and QLQ-C30) 

were planned for collection at baseline and every month for at least 12 months. The 

EQ-5D-3L and QLQ-C30 were given at the same time and the EQ-5D-5L between 1 

to 2 weeks later to avoid potential recall bias and avoid the potential for ‘carry over’. 

Patients were given the HRQoL forms to take home and were returned by post or 

when they visited the hospital next (where they were completed with the nurses in 

the clinic). They were instructed to complete the EQ-5D-3L in the first week and the 

EQ-5D-5L in the following (or third) week of each month. 

The delay of 2 weeks was not considered to be a significant difference in assessing 

HRQoL because these patients were newly diagnosed NSCLC patients and HRQoL 

deterioration over one to two weeks was not considered to impact the results in any 

meaningful way. The order of assessing 3L and 5L was not randomized due to 

practicality and the reasoning that a sequence (order effect) was likely to be minimal 

over a short period (1 to 2 weeks) of time. 

3.6.1 The EORTC-QLQ-C30 

 
(i) EORTC-QLQ-C30 Generic Cancer Instrument 

The EORTC-QLQ-C30 (QLQ-C30) is a ‘generic’ cancer instrument [33, 34] consisting 

of 30 questions, out of which 28 questions are measured on a 4 point scale (‘not at 

all’ (1) to ‘very much’ (4)) and 2 questions are measured on a 7 point scale. Although 

it is generic across cancer types, it is not a generic instrument across all disease 

areas. Details of the QLQC-30 were provided in Section 1.4.1. 
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3.6.2 The EQ-5D-3L 

The EQ-5D is a widely used generic measure, which is the shortest and perhaps the 

least cognitively demanding instrument that appears to be at least as responsive as 

the other community (preference) weighted instruments (Brazier et al., 2009) [35b]. 

EQ-5D-3L consists of a descriptive health state classification system with five 

questions (mobility, self-care, usual activities, pain/discomfort and 

anxiety/depression), measured on three severity levels - ‘no problems’, ‘some 

problems’ and ‘extreme problems’. A health state defined by the descriptive system 

of EQ-5D can be described by a five-digit number. For instance, 12113 refers to a 

patient, who has no problems with mobility (1), some problems with self-care (2), no 

problems for usual activities (1) or pain/discomfort (1) and extreme problems with 

anxiety/depression (3). Combining one level from each question defines 243 different 

possible health states from 11111 to 33333. Details of EQ-5D-3L were provided in 

Section 1.4.1. 

 

3.6.3 The EQ-5D-5L  

EQ-5D-5L is a revision of EQ-5D-3L. It consists of five questions, identical to EQ-5D-

3L (mobility, self-care, usual activities, pain/discomfort, and anxiety/depression), but 

with an expanded 5 point scale and slightly different descriptors for each of the levels 

compared to the 3 point scale of the EQ-5D-3L [36]. For Mobility, Self-Care and 

Usual Activities, these are: 1: “No Problems”, 2: “Slight Problems”, 3: “Moderate 

Problems”, 4: “Severe Problems” and 5: “Unable to”; for the Pain/Discomfort and 

Anxiety/Depression scale, these were: 1: ‘No’, 2: ‘Slight, 3: ‘Moderate’, 4: ‘Severe’ 

and 5: ‘Extreme’. The scores are on a 5 point scale 1 to 5 (for each of the 5 

domains). Details of EQ-5D-5L were provided in Section 1.4.1. 

3.7 Analysis Methods 

Analyses methods depended on the modelling approach for each chapter.  
 
3.7.1 Modelling  
 
Table 3.1 below shows for each chapter the range of modelling methods used along 

with assumptions, advantages and disadvantages of the models used. The fuller 

details of methodology are provided in a separate methods section in each chapter.  

 

3.7.2 Criteria for Model Fit and selection  
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For all models, standard model selection criteria were used. These were Aikakes 

information Criteria (AIC) where the smaller the value, the better the fit. This was 

used for all models so that a valid comparison can be made. Although R2 is used as 

a measure of model fit, for non-linear models it may not be so relevant [ref]]. In 

addition to these two measures, the %predicted outside the valid EQ-5D range (i.e. 

below -0.549 and above 1.0) is also important because models should restrict 

predictions to valid ranges. A further measure includes root mean squared error 

(RMSE) or residual error. The smaller this is, the better the fit. The mean absolute 

error (MAE) is similar to the RMSE in that it is the difference between the individual 

predicted values versus the observed value (with squaring). A further measure was 

the mean of the predicted utilities including its standard error (SE). In addition, the 

proportion the observed and predicted differed (expressed as a percent) was also 

computed. This latter value is considered more useful that the predicted 
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Models for 
Mapping 

Chapter Reasons for selection Advantages Disadvantages 

Linear  4 -Most commonly reported model and a 
necessary benchmark model to compare 
against alternatives below 
-Simple to use 

-Simple to develop and apply 
-provides unbiased estimates 
-well known statistical properties 

-can predict outside the valid 
range 
-assumes linearity and  too 
simplistic 

Beta  4 -Responses may be non-linear with EQ-
5D 
-Theoretical basis suggests more flexible 
to model skewness 
 
 

-Better statistical properties over the linear models if 
data skewed and is multi-modal 
 
-can restrict predictions to lie within the valid range 
 
-can model the variance 
 
-treatment effects in terms of odds ratios can 
contextualize mean differences 
 
-can model the clustering (.e mixed effects) 

-more complex than the linear 
-treatment effects in terms of 
odds ratios may have limited 
application in health economic 
decision making 
-requires a transformation 
because only valid on a 0 to 1 
scale 

Quadratic 4 -Responses may be non-linear with EQ-
5D 
-Shown to be the better performing at 
time of writing thesis and a comparator 

-can model curvature 
 
-can model the clustering (.e mixed effects) 

-difficult to interpret 
-predictions outside the valid 
range  

TOBIT 4 -values above 1 and <-0.549 or 0 
restricted or censored 
-ensure predictions are restricted within 
the valid EQ-5D range 
 

-predictions within a valid range 
-unbiased coefficient estimators 
 
-can model the clustering (.e mixed effects), but more 
complex 

-Restricts predictions to within a 
valid range 
-depends on normality 
assumption 
-difficult to interpret 

Quantile 4 Theoretical basis suggests more flexible 
to model skewness 
-complexity of interactions between 
variables could suggest stronger 
relationship between EQ-5D and other 
factors with a quantile than with mean 
 

-Predicts only quantiles 
-models skewness well 
 
-estimates more robust to outliers 
 
-if data normally distributed, the 50

th
 percentile is the 

same as the mean 

-can predict outside the valid 
range 
- if data not normally distributed 
the mean cannot be predicted 
-complex to model the clustering 
(i.e. mixed effects) 

CLAD 4 -Previously reported in literature on 
mapping and shown to have reasonable 
predictive  properties 
 

-no assumption of normality is needed 
-robust to heteroscedasticity (i.e. variance 
increasing/decreasing with mean) 

- better estimates for larger 
sample size (asymptotically 
better) 
-complex to model the clustering 

LDVMM 5 -Previously reported in literature and -allows modelling of two or more distributions in a -Very complex difficult to apply 
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shown to have good prediction properties 
and hence a useful benchmark 
 

dataset 
-valid statistical properties 
-mixing distribution probability estimates can be 
uncertain 
 

-practically require too many 
assumptions to be useful 
-possibly applicable to no more 
than a mixture of two 
distributions 
 

Joint Model 6 Modelling the joint relationship between 
HRQoL and toxicity seems a natural thing 
to do 

-Better estimates expected 
-models the correlation between toxicity and HRQoL 
-Modelling two outcomes 

-Complicated to use as a 
mapping algorithm 
-still at a relatively early stage of 
development 
-more assumptions needed due 
to complexity 
 

Bayesian 
Network 

7 -Models the relationship between all 
different aspects of HRQoL and not just 
between  

-Estimates the profile and not just utility, hence more 
informative 
 

-Depends on prior estimates 
- complex to model 
-may only be useful for shorter 
HRQoL questionnaire 

 
Table 3.1: Summary of models used. 
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mean, because on average, even if differences are variable, there is a tendency of 

the mean predicted values to cluster around the mean. Hence, the proportion of 

differences within +5, +10%, +15%, +25% and +30% were computed. Moreover, 

graphical displays for comparing observed versus predicted, including by health state 

were generated. Model fit was also assessed by normal probability plots. Finally, 

where data were available, the impact of the predicted utility on the QALY was also 

determined.   

 

3.7.3 Model Testing 
 
For each model, the approach to testing was primarily using an independent data set 

where available. For example, for the TOPICAL and SOCCAR data, the models were 

tested independently by developing the model from one data set and testing on the 

other and vice versa. For study 3, cross validation methods were used by a random 

selection of 50% of the data to build the model and test it on the remaining 50%. In 

addition to this, extensive simulation was used to test the models. This included 

bootstrap and monte-carlo simulation techniques. For example, if the sample size of 

Study 3 was 100, then each bootstrap sample would be a size of 100).The monte-

carlo simulation method included multivariate simulation using Fleishman methods 

[167,168].  

 
3.7.4 Statistical Inference and uncertainty 
 
In general, statistical hypotheses were rejected when the two sided p-value was 

<0.05. The 95% confidence intervals provided a set a plausible range of value for 

where the true value (whether utility or QALY) lies. Using the  simulations, the 

proportion of (simulated) 95% confidence intervals that contained the true (observed) 

mean utility were used as a basis for measuring uncertainty.  

3.8 Deriving QALY’s 

Where QALYs were determined, these were derived as the area under the baseline-

adjusted utility curve using linear interpolation between baseline, and each 

subsequent (nominal) time point.  Specifically for the case of SOCCAR and TOPICAL 

(Chapter 4), for each model, patient level QALYs were generated using model 

estimates of patient level utilities and multiplying them by the observed survival 

times. Simulation was used to estimate the mean overall survival (OS), progression-

free survival (PFS) and post-progression survival. The exponential model was 

chosen to fit the empirical Kaplan-Meier curve for OS and PFS. Using the 
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relationship: OS= 1*Log(1-xi))/ where xi are randomly generated from a uniform 

distribution and  is the observed hazard rate. For each realization, the mean (area 

under the survival curve) OS and PFS were determined for each treatment group. 

For TOPICAL, there were no censored data and for SOCCAR, the censoring 

distribution was taken into account (because patients were still alive) so that the 

simulations resulted in PFS < OS. The pre and post progression utilities were 

determined from each of the previously described simulations. Hence, a total of 

10,000 mean OS, PFS, pre-progression and post-progression utilities were 

generated to determine QALYs. They were estimated as weighted sums of pre-

progression and post-progression mean EQ-5D-3L for each treatment group. Hence, 

the mean QALY was constructed as:  

 

Mean PFS utility* Mean PFS + Mean Post-Progression utility*PPS. 

3.9 Handling Missing Data  

Multiple imputation (MI) using the method of chained equations (MCMC) was used 

for handling missing utility data, taking into account covariates including baseline 

utilities, age, gender and ECOG. Mean matching using predictive methods was used 

to improve estimates of imputed values since normality could not be assumed. Each 

imputed data set was analysed independently using model-based approaches; 

estimates were pooled to generate mean and variance estimates of utilities using 

Rubin’s rule to capture within and between variances for imputed samples [169,170].  

 

Information loss from finite imputation sampling was minimized using 20 datasets, 

resulting in minimal loss of efficiency (<0.5%) [170].  Since the fraction of information 

missing was reasonably low, n=20 imputation sets were considered adequate. 

Imputed and observed values were compared to establish that imputation did not 

introduce bias into subsequent estimation [171]. 
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Chapter 4 
 

Chapter 4: A New Non-Linear Two Part Beta-Binomial Mapping Model 

 

Published: A non-linear Beta-Binomial Model (Khan. I and Morris, 2014, Health and 

Quality of Life Outcomes, 2014, 12:163) 

 

 

Published: Book Chapter: Design & Analysis of Clinical Trials for Economic 

Evaluation and Reimbursement; Iftekhar Khan (2016) – Chapter 5; Chapman & Hall 

(2016, 312 pages) 
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                                           Abstract 

Introduction: The performance of the Beta-Binomial (BB) model is compared to 

several existing models for mapping EORTC QLQ-C30 (QLQ-C30) on to EQ-5D-3L, 

using data from lung cancer trials.  

 

Methods: Data from two separate non-small cell lung cancer clinical trials (TOPICAL 

and SOCCAR) are used to develop and validate the BB model. Comparisons with 

Linear, TOBIT, Quantile, Quadratic and CLAD models are executed. The mean 

prediction error, R2, proportion predicted outside the valid range, clinical 

interpretation of coefficients, model fit and estimation of Quality Adjusted Life Years 

(QALY) are reported and compared. In addition, Monte-Carlo simulation is used. 

 

Results: The Beta-Binomial regression model performed ‘best’ among all the tested 

models. The AIC for the BB was lowest (AIC=-2215) compared to all other models for 

both TOPICAL and SOCCAR data sets. For TOPICAL and SOCCAR trials, 

respectively, residual mean square error (RMSE) was 0.09 and 0.11; R2 was 0.75 

and 0.71; observed vs. predicted means were 0.612 vs. 0.608  and 0.750 vs. 0.749. 

Models tested on independent data indicate 95% confidence from the BB model 

contain the observed mean (77% and 59% of the time for TOPICAL and SOCCAR, 

respectively) compared to the other models. All algorithms over-predict at poorer 

health states but the BB model was relatively better, specifically for the SOCCAR 

data. 

 

Conclusion: The BB model may offer superior predictive properties amongst the 

considered mapping algorithms and may be more useful when predicting EQ-5D-3L 

at poorer health states. The algorithm derived from the TOPICAL data, due to better 

predictive properties and smaller uncertainty is, hence, recommended.  
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4.1 Introduction 

Estimating patient-level utilities to determine Quality Adjusted Life Years (QALYs), 

which otherwise might be unavailable, is a key objective of mapping. EQ-5D-3L is 

recommended by the National Institute for Clinical Excellence (NICE) in the UK for 

use in economic evaluations, specifically, Cost Utility Analysis (CUA) [83].  

 

Several models have been developed and published for mapping QLQ-C30 to predict 

EQ-5D-3 [111,130-132,143] as indicated in Chapters 1 & 2. These models have been 

compared using measures like predictive power (R2), predictive mean and residual 

mean squared error (RMSE). Models used for mapping include conditional mean or 

median regression models, with varying degrees of success [112]. Of 119 models 

examined, ordinary least squares (OLS) approaches were the most common [112].  

 

Longworth and Rowen (2013) suggest several alternative models including the Beta-

Binomial for an investigation [115]. Crott et al. (2012) also suggest research on more 

complex mapping algorithms, as well as a need for greater validation [135]. One 

aspect of this ‘complexity’ may involve adding several interactions or additional 

covariates, which improve prediction. However, this can result in an overly 

complicated algorithm (e.g. having many factors that make interpretation of the 

model difficult). Another perspective on ‘complexity’ might be a more complicated 

mathematical function (e.g. Joint or non-linear models), but with fewer variables.  

 

The advantage of the BB as a useful mapping algorithm is its flexibility and ability to 

model skewed and multimodal data, measured on a zero to one interval, directly or 

through a transformation (because EQ-5D is measured on a scale of -0.549 to 1). 

The modelling context allows the clustering of data (to model correlations within and 

between subjects) and is shown to have reported more precise and efficient 

parameter estimates [172]. In situations where responses are overinflated at 

extremes (ceiling effects), it is particularly useful as one can attempt to model 

extreme values, rather than omitting them or considering them as outliers. In 

addition, effect sizes in terms of odds ratios may be more meaningful to decision-

makers (particularly clinicians) than absolute mean differences.    

4.2 Methods 

Several mapping models applied to QLQ-C30 were identified for the purpose of this 

study and a useful review is published [115]. Out of the five published algorithms, 
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which mapped QLQ-C30, four used linear models (OLS estimates) [139-144] and 

one used a quadratic model [111]. A NSCLC data set has been used only once 

previously [130].  

  

4.2.1 Instruments 

The EQ-5D-3L and QLQ-C30 were used and described earlier (Chapters 1& 2) in 

detail.  

4.2.2 Data  

Data were from two national (UK) NSCLC clinical trials described in Chapter 3. The 

first trial (TOPICAL) was a randomized phase III trial in 670 lung cancer patients 

[165]. The second was the SOCCAR trial [166].   

4.2.3 Developing and Testing Alternative Models  

Separate mapping algorithms were developed using data from each of the TOPICAL 

and SOCCAR trials using BB regression and five other models (Linear, TOBIT, 

Quantile, Censored Least Absolute Deviation (CLAD), and Quadratic regression) for 

comparison. The five models selected are among the common mapping models 

reported in a mapping literature review (Brazier et al., 2009) [112]. Estimated utilities 

from each model were compared using several criteria including RMSE, predicted 

distributions, MAE, confidence intervals, R2, residual plots, the proportion of 

predicted EQ-5D-3L outside the range -0.549 to 1.0, estimated QALYs and Monte-

Carlo simulation. The performance of each model was compared using independent 

data from the SOCCAR trial. In addition, each model was fitted using data from the 

SOCCAR trial and then tested with data from the TOPICAL trial. 

4.2.4 Model Specification and Analysis Methods 

For each model, data were combined across time points and treatment groups, 

following methods of previously reported mapping algorithms [130-132,139-144]. 

One reason advocated for pooling across all time points is because more health 

states can be modelled. The models compared were: 

(I)  Linear Mixed Effect Model  

(II)  TOBIT Mixed Effect Model 

           (III)        Quadratic Mixed Effects Model following Crott and Briggs (2010)  

     (IV)        Quantile Fixed Effects Model  

      (V)        Censored Least Absolute Deviation (CLAD): Fixed Effects Model 
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     (VI)        Mixed Effects Beta-Binomial Regression Model 

 

The linear mixed effects model is a regression model with subject as a random term. 

The linear mixed and quadratic models model the mean of the EQ-5D-3L utility 

distribution.  

 

The Quadratic Model of Briggs (2010) (Model III) 

Briggs & Crott (2010) present a mapping of EQ-5D-3L from the QLQ-C30 using a 

quadratic model from a breast cancer population (N=448). Data from this study were 

collected at multiple time points (baseline, 0, 1 2 ,3,6,12,20, 28,36,42,48 and 54 

months). The predictive power of this model using R2 was reported at around 80%. 

The model was linear in parameters (i.e. a linear model but included a number of 

squared terms: PF, EF, SF, SL, and DI). The authors had previously suggested that 

linear models were inadequate and the over-prediction was an important issue. 

Hence a non-linear approach was used. The other important feature of this study was 

the validation of the model using independent data.  

 

The TOBIT models the mean ‘plus’ the remainder of the distribution in a mixed 

effects context; however, the slope parameter is adjusted by the probability of 

censoring. The censoring in the TOBIT can be either from below (censoring EQ-5D-

3L to 0) or above (censoring EQ-5D-3L to 1). The BB models the distributions of EQ-

5D-3L responses. Models (I) - (III) are not described in detail because a review of the 

common features of these and other models have been discussed elsewhere [112].   

 

Quantile Regression (Model IV) 

In linear regression estimation, problems can exist when a response variable like EQ-

5D-3L is skewed, truncated or discrete [172]. A general form of a regression model 

for estimating a quantile can also be used which takes the form: 

 

                                                    Yi =  X* + i                          [4.1]         

Where X, are the predictor variables,  the corresponding vector of coefficients 

representing changes in response to a specified quantile, subscripted  such that that 

for instance when the quantile regression model predicts the median. The 

mean of the predicted medians can be used for CUA. The quantile regression model 

is defined as: 
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In order to predict median patient level EQ-5D-3L values from three variables (such 

as PF, RF, and EF), each patient’s predicted median would be determined in a linear 

regression model of the form: 

 

   Yi = 1*PF + 2*RF + 3*EF                  [4.2] 

 

Where Yi is the predicted median (i.e. = 0.5) for particular values of PF, RF, and 

EF. In order to predict the upper quartile (75th percentile),  would be 0.75 and the 

values of 1, 2 and 3 would represent the coefficients related to the 75th percentile.  

In the context of mapping, X in the above equation is a matrix of the 15 QLQ-C30 

domains,  are a vector of coefficients and the i are assumed to have a median of 0 

for the th quantile (e.g. if , the median of the residuals would be equal to 0). 

The estimates of  are obtained by minimizing the absolute deviation for the th 

quantile or least absolute deviation (LAD) .   

 

Censored Least Absolute Deviation (CLAD) (Model V) 

CLAD extends quantile regression with censored responses [173,174,175].  Values 

>1 are censored at 1 and <-0.549 are censored at 0. The model is now described.  

 

If EQ-5D-3L is the dependent variable, for each patient, the predicted median is 

computed from the explanatory (QLQ-C30) scores. The approach is similar to 

quantile regression with the exception that predicted EQ-5D-3L values >1 are 

restricted to 1, and similarly, values predicted to be < 0 are set to zero.  The rationale 

for censoring assumes that the values below zero are unobservable which is likely to 

be incorrect and perhaps unnecessary. This is likely to lead to biased estimates 

(higher than expected as a result of setting known utilities where patients experience 

states worse than death to values of zero. The form is as follows: 

 

                                     -0.549< X < 0 

    EQ-5D-3L=       1.0     if X > 1.0 

                                               Xelsewhere                  [4.3] 

 

If the errors are symmetric (i.e. median of residuals = 0), the estimator is unbiased 

and consistent, though not efficient [173-175]. Also, conditional medians are 

estimated at the patient level.  
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The mean of all the individual (conditional) medians can be used as before for 

deriving QALYs since the mean is the statistic of choice for decisions relating to 

health technology assessment. The population mean and median are approximately 

equal for normally distributed data.  

 

(VI) Beta-Binomial Regression 

The BB distribution has been used in Probabilistic Sensitivity Analysis (PSA) in 

health economic modelling for utility measures such as EQ-5D-3L [176]. One reason 

for the use in PSA appears to be the convenience of assuming a scale from 0 to 1 for 

utility (although there is no EQ-5D-3L tariff, which is exactly equal to zero). 

Essentially, the BB regression can model responses that are unimodal or bimodal 

with varying levels of skewness [177-179]; utilities are often reported as having 

skewed or truncated distributions [139]. In addition, the BB estimates the mean of the 

distribution, whereas, some other models estimate the median. Therefore, the BB 

approach may be a more suitable model to test for developing a mapping algorithm.  

 

An important feature of the BB approach is that mean predicted estimates of EQ-5D-

3L can be estimated while restricting the range between 0 and 1. Although responses 

are required to be in the (0, 1) interval, BB can still be used in any interval (a, b) for 

a<b, using the transformation Y-a/b-a. For instance, if the observed EQ-5D-3L value 

is -0.1, then -0.1 – (-0.549) /1- (-0.549) would give a transformed value of 0.29. 

However, it may be difficult to correct both asymmetry and heteroscedasticity, 

resulting in difficult interpretations of parameter estimates in terms of the original 

response [177-179].  

 

Using BB can be more complicated than linear models, depending upon the need to 

model the variance. Without modelling the variance (over-dispersion), modelling 

mean response (EQ-5D-3L) as a function of the 15 QLQ-C30 variables requires 

using a simple logit function (because values are assumed to lie between 0 and 1), 

as in a logistic regression model. Hence, the BB regression form for modelling EQ-

5D-3L is:                         

                                      i = exp(X)/{1+exp(X)} [4.4] 

 

Where i is the expected (mean) utility for the ith patient, X is the set of independent 

QLQ-C30 variables and  are the corresponding coefficients. Equation [4.4], which is 

non-linear in its parameters is used to estimate the patient-level EQ-5D-3L utilities. 
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A linearized form of equation [4.4] is  

 

                                   g(LogiiX,     [4.5] 

 

where g() is an equation in [4.5] that predicts the mean utility (i) through a 

transformation of the utilities on a log scale. Equation [4.4] is used to estimate the 

patient-level EQ-5D-3L utilities from the logistic function, with X as the set of 

independent QLQ-C30 variables and  as the set of coefficients (parameters) vector: 

 

An additional useful property of the BB model is that g() is interpreted in a similar 

way to a log odds ratio (the main difference being that there is no dichotomization of 

outcomes) for any statistical inference. The mean predicted utility is however 

determined through equation [4.4].  

 

A further elucidation of this point is that the parameters of a Binomial distribution are 

(n,p), where n are the number of observations and p is the mean (mean proportion). 

The value of p is on a (0,1) interval and this can be assumed to follow a Beta(a, b) 

distribution, where a and b are the shape and scale parameters shown earlier in 

Figure 4.1.  

 

If we re-write replacing p with a mean utility i, then we assume that the utilities are 

Beta (a,b). The log transformation, through g() in [4.4] and [4.5] offers a way to: 

(i) estimate the mean utility 

(ii) provide valid inferences for each coefficient b for which the interpretation is          

     similar to that of an odds ratio.  

 

The values of i need to lie in the interval (0,1) and do not need to be probabilities 

(e.g. they could be very small counts or percentages). This is a feature of the BB 

which has an advantage over the common logistic regression model that assumes 

dichotomized responses to estimate the mean (proportion or probability), whereas, 

the values of i are continuous.  

 

A second model (such as a log function) could be used to model the dispersion in 

terms of a set of QLQ-C30 variables (not necessarily all 15 variables). The additional 

precision parameter assumes a log function ln[g(i.e.gexpW), in terms a 
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set of predictor variables W, with the corresponding parameters Note W may not be 

the same as X, because although predictions of EQ-5D-3L might be determined from 

all 15 QLQ-C30 variables (X), the variance may depend on a subset of X.  

 

Therefore, two sets of equations are associated with the QLQ-C30 variables; one 

through the mean EQ-5D-3L and one through the variance. These (two) equations 

provide the basis to determine the estimates of the parameters .  

 

Notation for Beta-Binomial 

A response variable (EQ-5D-3L) is assumed to follow a Beta (defined by: 

 

  F(y| y*(1-y)   [4.6] 

 

The mean and variance of a Y of [4.6] are: 

                             and

where  andare the shape and scale parameters, respectively. The parameters 

and can be estimated from the observed mean and variance using the method of 

moments. For instance, the values of from the TOPICAL and SOCCAR data are 

shown to be < 1, using the relationship: 


2
)- 1]                 [4.7] 

(1 - ) * [(( * (1 - )) /2-1]    [4.8] 
 

When  and 2 are unknown, the sample estimates can be used. However, the 

above description of the BB distribution is not useful for regression modelling and 

requires re-parameterization (Ferrari and Cribari-Neto, 2004), so that a response can 

be defined along with a set of predictors to form a regression model [180]. Setting 

and then [4.6] becomes: 

 

f(y|y*(1-y)   [4.7] 

 

The expression in [4.7] is a beta distribution: y ~ Beta (and the mean, is 

expressed as a link function (to model the mean) in terms of some predictor 

variables. Typically, the link function g(=X is such that g(=log(With this 

logit link function, the mean response is:  /1+ e, where X. The value of 

is restricted to a 0 to 1 scale.  
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The second parameter is a precision parameter. The conditional variance, V(y) can 

be written as V(y) =a form more flexible than the binomial 

(which allows greater flexibility to model the over-dispersion; the larger the 

value of the smaller the variance (and higher precision) associated with the 

response. The dispersion parameter can also be expressed as a function g (X)). 

For instance, the over-dispersion may be related to one or more of the predictor 

variables (QLQ-C30).  

 

The responses Y (i.e. EQ-5D-3L) are hence, Beta ([(h(h()], with likelihood 

function: 

                        L(, Y, X, W) = expW))/Ys-1 (1-Y)t-1   [4.8] 

 

where,              s = exp(X+W)/{1+exp(X)} 

                                              t = exp(W)/{1+exp(X)} 

 

On comparing [4.7] with [4.8]:  

 

               y y[4.9] 

 

where andthe complicated expression relates the observed EQ-

5D-3L (y values) through the mean and variance.  

 

This form of parameterization allows a powerful way of modelling utilities not only for 

mapping but in a generalized mixed modelling context for estimates of utilities and 

HRQoL which can be scaled to a 0,1 interval. The approach in this chapter is based 

on a nonlinear mixed modelling approach, where the general likelihood has been 

programmed directly using the SAS software (version 9.3) [181]. One reason for 

transforming to a (0,1) range is that the flexibility of the BB model can be properly 

utilized. For outcomes with bimodal or U shaped distributions, it is important that 

unbiased estimates can be determined. For example, in Figures 4.1, the shape and 

scale parameters are useful for modelling distributions which are possible (where 

overs dispersion of values around 1 or zero are observed). It is necessary that the 

transformation is made since a key assumption of the ‘Binomial’ part in the ‘Beta-

Binomial’ framework is that the parameter p lies between the values of 0 and 1. 
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Moreover, in many probabilistic sensitivity analyses, the assumptions for utility have 

been suggested as a Beta-Binomial [176]. 

 

   

 

 

 

 

 

 

 

 

Figure 4.1: Parameters from a BB a < and b <1 resulting in bimodality and U shaped 

 

One reasonable assumption imposed here is that the observed values <0 are set 

equal to 0. There were < 0.5% of values with EQ-5D-3L responses <0 in each data 

set; hence, the potential for bias was considered to be minimal. A transformation 

was, therefore, discarded. However, it is not necessary to set values <0 to zero and 

this could yield misleading estimates.  

 

Although the BB regression can be very flexible, there exist limitations to the model. 

The drawback is that the observations existing at either 0 or 1 must be scaled away 

from these values. That is when there is an inflation of 0 or 1 responses, estimation 

with a standard BB regression can become problematic. Therefore, a zero-one 

inflated BB model was used to account for potentially over-dispersed 0 and 1 

responses [179,181,182]. 

4.2.5 Testing Algorithms with Lung Cancer Data 

For each of the models, using all 15 predictors (one for each of the QLQ-C30, 

regardless of their statistical significance), the predicted and observed values were 

compared. Models were developed using the larger TOPICAL data set and validated 

with SOCCAR data. The proportion of individual predicted EQ-5D-3L responses from 

each model that lie within +5% to +30% of the observed EQ-5D-3L were presented. 

Estimated utilities from each model were compared using the previously described 

model statistics.  
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4.2.6 Model Checking and Adequacy  

In all the models, adequacy of fit was considered using residuals, tests for 

homoscedasticity and Aikakes Information Criterion (AIC). The AIC was used to 

compare models for the same dataset. 

4.2.7 Simulations 

Monte-Carlo simulations (10,000) from a multivariate distribution for the EQ-5D-3L 

and QLQ-C30 scores using the method of Fleishman (1979) [167, 168] with the 

observed correlation structure (Tables 4.7 and 4.8) were carried out to assess the 

uncertainty of predicted means from each model. The method of Fleishman uses 

higher order moments (Skewness and kurtosis) as a way of simulating data that 

approximates the sampling distribution. Each data set simulated contained 670 and 

130 patients with 2038 and 1002 observations for TOPICAL and SOCCAR, 

respectively.  

 

4.2.8 Addressing over Prediction of EQ-5D-3L at the ‘Poorer’ Health 

States  

The over-prediction at ‘poorer’ health states was investigated using a health state of 

11321 (EQ-5D-3L utility 0.433) as a cut-off for ‘Poor’ and ‘Good’ health states in 

TOPICAL and 22222 (EQ-5D-3L utility 0.516) in SOCCAR. Over prediction was 

defined such that the difference between the estimated patient level utility from the 

model was greater than the observed utility by any amount (difference >0). The same 

definition was given for ‘under prediction’ in the opposite direction (difference <0).  

The selected health states cut-points were chosen as this is where the observed and 

predicted EQ-5D-3L values start to diverge.  

 

4.2.9 Impact on QALY Estimates  

For each model, patient level QALYs were generated using model estimates of 

patient level utilities and multiplying them by the observed survival times. For PSA, 

the simulation was used to estimate the mean overall survival (OS), progression-free 

survival (PFS) and post-progression survival. OS and PFS are important outcomes in 

cancer trials, often calculated from the time of treatment allocation or randomization 

until death (OS) or disease progression (PFS). The exponential model was chosen to 

fit the empirical Kaplan-Meier curve for OS and PFS. Using the relationship: OS= 

1*Log(1-xi))/ where xi are randomly generated from a uniform distribution and is 
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the observed hazard rate. In economic evaluation, in the context of cancer, a 

common approach is to simulate survival times, which approximates the mean OS 

and PFS (not the median).  

 

For each realization, the mean (area under the survival curve) OS and PFS were 

determined for each treatment group. For TOPICAL, there were no censored data 

and for SOCCAR, the censoring distribution was taken into account (because 

patients were still alive) so that the simulations resulted in PFS < OS. The pre and 

post progression utilities were determined from each of the previously described 

simulations. Hence, a total of 10,000 mean OS, PFS, pre-progression, and post-

progression utilities were generated to determine QALYs. They were estimated as 

weighted sums of pre-progression and post-progression mean EQ-5D-3L for each 

treatment group.  

 

The mean QALY was constructed as:  

 

Mean PFS utility* Mean PFS + Mean Post-Progression utility*PPS. 

4.3 Results 

A total of 2038 and 1002 data points with 84 and 54 health states were observed for 

each of TOPICAL and SOCCAR trials, respectively. The average (median) number of 

observations per health state were 3 for TOPICAL and 2 for SOCCAR. The most 

frequent health state in TOPICAL was 21222 (12%) and for SOCCAR was 11111 

(25%), followed by 21222 (8%). Patients in the SOCCAR trial had a better 

performance status (Table 4.1) compared to the TOPICAL patients. Less than 0.5% 

(3/2038 observations in TOPICAL and 1/1002 in SOCCAR) of EQ-5D-3L 

observations had values <0 (corresponding to 3 health states in TOPICAL and 2 

health states in SOCCAR).  

 

 TOPICAL 
  (N=670) 

SOCCAR 
(N=130) 

EQ-5D number of observations 2038  1002  
Health states (range) 
[EQ-5D Value] {number of HS <0} 

84 (11111, 33312) 
[1, -0.043] {3 HS< 0} 

54 (11111, 23223) 
 [ 1, -0.028]  {2  HS<0} 

Median number of observations per HS 3 2 
Most Frequent HS 21222 (12%) [value=0.62] 11111 (25%)  

[ value = 1] 
ECOG   

 
1-3         0-1  

 
Median Age (years) 
 

77                62 

Disease Stage   IIIb-IV     IIIa-IIIb 
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Table 4.1: Summary of Health states and Baseline Characteristics 

HS: Health States 

The observed mean (SD) EQ-5D-3L for TOPICAL and SOCCAR were 0.61 (0.29) 

and 0.75 (0.23), respectively over all post-baseline time points (Table 4.2). Figure 4.2 

illustrates the distributions of the EQ-5D-3L, confirming the presence of non-

normality, skewness, and multimodality. The parameters  and  are shape 

parameters which are used to model the distribution; if  and  are the same (i.e.  = 

), the distribution tends towards symmetry (if either  are < 1, data are considered 

non-normal, multimodal or skewed). The Kolgomorov-Smirnoff goodness of fit rejects 

normality (P=0.0093 and P<0.001 for TOPICAL and SOCCAR, respectively). 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

      Figure 4.2: Distribution of EQ-5D for TOPICAL and SOCCAR 

K-Smirnoff Test statistic p-value <0.0093 and <0.001 for TOPICAL and SOCCAR respectively to test 

normality. 

 

Mean=0.612, 
variance=0.0841 

=1.1, =0.7 

Mean=0.75, 
variance=0.0515 

=1.9, =0.6 
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 TOPICAL (N=670) SOCCAR (N=130) 

 Baseline 3 months 6 months 12 months Overall Baseline 3 months 6 months 12 months Overall 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

EQ-5D 0.56 (0.30) 0.61 (0.30) 0.66 (0.26) 0.58 (0.36) 0.61 (0.29) 0.79 (0.17) 0.71 (0.24) 0.71 (0.25) 0.71 (0.33) 0.75 (0.23) 

     PF 51.53( 26.44) 51.66 (24.91) 54.00 (25.41) 54.29 (29.14) 54.15 (26.30) 86.19 (14.50) 72.06 (23.78) 79.11 (43.57) 98.52 (84.21) 78.60 (36.53) 

RF 45.18 (36.58) 45.70 (34.26) 51.36 (32.79) 51.41 (33.94) 49.18 (34.67) 80.84 (24.40)  63.11 (33.28) 72.67 (49.22) 90.37 (89.43) 71.28 (43.04) 

EF 70.96 (24.13) 73.17 (24.02) 75.69 (24.49) 74.58 (27.18) 73.89 (24.41) 73.41 (23.68) 71.91 (28.30) 80.33 (46.39) 91.30 (91.60) 77.06 (42.23) 

FI 75.47 (25.75) 77.24 (25.10) 78.15 (24.27) 68.36 (27.28) 77.17 (24.41) 85.85 (26.84) 78.28 (24.15) 88.22 (42.34) 103.33 (83.08) 83.13 (42.32) 

SF 59.47 (36.00) 64.71 (33.76) 68.69 (31.76) 64.94 (31.79) 66.90 (32.40) 84.52 (25.58) 64.79 (36.79) 76.67 (47.77) 92.59 (91.05) 74.55 (45.17) 

QL 47.60 (25.27) 51.64 (23.03) 55.29 (22.84) 52.68 (23.49) 52.27 (23.25) 71.36 (18.48) 56.93 (22.93) 59.78 (33.09) 55.56 (59.96) 63.75 (29.65) 

FA 53.72 (28.59) 51.45 (29.59) 47.41 (28.67) 45.20 (28.03) 48.52 (28.89) 26.42 (25.47) 46.44 (30.36) 35.41 (50.09) 13.33 (89.88) 33.94 (42.20) 

NV 14.14 (22.61) 11.89 (19.55) 8.56 (15.24) 9.89 (16.41) 10.65 (18.81) 6.82 (25.92) 17.42 (26.70) 11.78 (43.22) 12.96 (86.84) 10.58 (37.26) 

PA 32.22 (32.97) 26.11 (29.97) 24.89 (28.54) 26.84 (32.02) 26.00 (29.70) 17.45 (22.41) 23.41 (26.32) 23.33 (49.32) 5.93 (91.09) 20.66 (41.47) 

DY 55.72 (33.49) 50.40 (32.56) 49.89 (34.32) 52.54 (31.07) 49.76 (32.92) 29.66 (33.92) 30.71 (30.66) 30.67 (49.85) 14.81 (90.61) 31.57 (45.98) 

SL 33.71 (33.83) 32.28 (34.47) 24.49 (29.54) 31.61 (33.87) 29.03 (32.67) 27.03 (31.63) 32.96 (33.52) 22.22 (48.81) 8.15 (89.66) 24.00 (42.70) 

AP 44.07 (38.14) 42.15 (36.44) 32.66 (34.22) 32.20 (32.73) 36.78 (35.57) 16.54 (25.50) 30.34 (47.31) 24.44 (49.12) 3.70 (89.39) 20.47 (43.61) 

CO 28.12 (34.81) 21.95 (29.00) 15.86 (24.87) 20.83 (26.64) 20.33 (28.21) 13.76 (22.42) 37.45 (47.63) 11.56 (45.02) 10.00 (92.93) 18.64 (46.78) 

DI 19.59 (30.71) 20.57 (30.91) 16.32 (25.49) 16.67 (25.93) 17.14 (27.54) 3.70 (10.52) 7.12 (19.77) 2.22 (38.88) 20.00 (99.75) 6.06  (40.62) 

CF 14.36 (25.35) 9.57  (19.95) 7.43 (18.98) 12.07 (24.74) 10.00 (21.02) 20.11 (31.86) 23.22 (41.26) 19.56 (50.85) 10.74 (86.89 20.44 (49.53) 

 

Table 4.2: Summary Statistics of EQ-5D and QLQC30 

Physical Function (PF), Role Function (RF), Emotional Function (EF), Cognitive Function (CF), Social Functioning (SF); Fatigue (FA), Nausea & Vomiting (NV), Pain (PA), 

Dyspnoea (DY), Insomnia (IN), Appetite Loss (AL), Constipation (CO), Diarrhoea (DI), Financial Problems (FI); Global Health Status Score (QL). 
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4.3.1 Comparison of Models 

All terms in the model were retained (regardless of statistical significance); even if 

some terms were not statistically significant. This was because they can still be 

relevant later when applying the algorithm [183]. The standard errors of the QLQ-C30 

for the BB were smallest (Table 4.3). The AIC values were smallest for the BB model 

and ranged from -2215 (BB) to -864 (Quantile) for TOPICAL and -1529 (BB) to -587 

(Quantile). Smaller AIC values suggest better fit (Table 4.3). For the six models, the 

estimated R2 ranged from 0.53 (CLAD) to 0.75 (BB); R2 was highest (TOPICAL 

R2=0.75) for the BB model. Estimated RMSE ranged from 0.09 (BB) to 0.18 

(Quadratic, CLAD). The proportion of predicted values of EQ-5D-3L >1 were highest 

for the quantile model (3.5%), whereas for the Quadratic model, predicted values <0 

were more common (5%), despite only 0.3% of observed values <0 were set to zero 

for modelling purposes (Table 4.3). Only the TOBIT, CLAD, and BB did not predict 

outside the ‘observed’ range. P-values for coefficients are shown in Table 4.4. 
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QLQ-C30  

      Linear Mixed 

TOPICAL      SOCCAR 

              TOBIT 

TOPICAL        SOCCAR 

       

       Quadratic 

TOPICAL   SOCCAR 

        

           Quantile 

TOPICAL    SOCCAR 

            

         CLAD 

TOPICAL  SOCCAR 

          

          Beta 

TOPICAL SOCCAR 

 R
2
 0.63 0.64 0.65 0.63 0.64 0.62 0.66  0.62 0.55  0.53 0.75 0.71 

 MAE 0.14 0.14 0.13 0.10 0.16  0.129 0.13 0.09 0.14  0.71 0.10 0.13 

 RMSE 0.183 0.141 0.17 0.14 0.18  0.14 0.17  0.14 0.18   0.15 0.09 0.11 

 Predicted Mean  

(SE)* 

0.584  

(0.0047) 

 

0.771  

(0.0058) 

0.631  

(0.0057) 

 

0.771  

(0.0068) 

0.635 

(0.0074) 

 

0.774 

(0.0057) 

0.633  

(0.0054) 

 

0.766 

(0.0062) 

0.593  

(0.0059) 

 

0.782  

(0.0058) 

0.608 

(0.0040) 

0.749 

(0.0049) 

 Predicted >1 (%) 

 Predicted < 0 (%) 

0.11%  

0  

1.04% 

0 

0  

0  

0  

0 

0  

 5% 

1% 

2% 

2.8% 

0.6%  

3.5% 

0.4% 

0  

0  

0 

0 

0 

0 

0 

0 

 AIC (lower is better) -1015  -782 -936.9 -593 -978.6  -782 -864  -587 -926  -601 -2215 -1529 

SE of coefficients             

PF 0.000264  0.000335 0.000288  0.000413 0.000686 0.000766 0.002805  0.000513 0.000295  0.000555 0.000190  0.000293 

RF 0.000213  0.000231 0.000231 0.000285 0.000710  0.000635 0.000322 0.000267 0.000422  0.000287 0.000106 0.000220 

EF 0.000214  0.000250 0.000233 0.000307 0.000532  0.000289 0.000312  0.000333 0.000392  0.000411 0.000289 0.000216 

SF 0.000195  0.000203 0.000210  0.000249  n/a  n/a 0.000316  0.000263 0.000419  0.000313 0.000149  0.000204 

CF 0.000207  0.000231 0.000225 0.000288  n/a  n/a 0.000244  0.000328 0.000447  0.000348 0.000163 0.000211 

FA 0.000257  0.000296 0.000279 0.000373  n/a  n/a 0.000204  0.000373 0.000305  0.000391 0.000224  0.000251 

NV 0.000234  0.000217 0.000255 0.000274  n/a  n/a 0.000255  0.000310 0.000255  0.000430 0.000258  0.000204 

PA 0.000168  0.000203 0.000182 0.000250 0.000165  0.000200 0.000329  0.000410 0.000329  0.000460 0.000128 0.000211 

DY 0.000154  0.000161 0.000168  0.000199  n/a  n/a 0.000201  0.000209 0.000201  0.000277 0.000159  0.000116 

SL 0.000144  0.000165 0.000156 0.000203 0.000379 0.000277 0.000241  0.000211 0.000295  0.000291 0.000136  0.000149 

AP 0.000138  0.000170 0.000150 0.000208  n/a  n/a 0.000242  0.000221 0.000292  0.000221 0.000129 0.000169 

CO 0.000153  0.000158 0.000166 0.000196 0.000151  0.000155 0.000206  0.000207 0.000311  0.000283 0.000149  0.000206 

DI 0.000152  0.000218 0.000165 0.000291 0.000405  0.000393 0.000219  0.000426 0.000213  0.000396 0.000133  0.000191 

QL 0.000240  0.000294 0.000263 0.000372  n/a  n/a 0.000363  0.000210 0.000299  0.000260 0.000201  0.000241 

FI 0.000204  0.000143 0.000224 0.000182  n/a  n/a 0.000101  0.000100 0.000209  0.000210 0.000243  0.000182 

Table 4.3: Summary of Model Fit Statistics 
Note: n/a: not applicable because not used in original model of Crott & Briggs (2010); MAE: Mean Absolute Error; RMSE: Residual Mean Squared Error; SE: Standard Error 
*Observed post baseline Mean (SD) for TOPICAL was 0.61 (0.29) and for SOCCAR was 0.75 (0.23)  
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QLQ-C30  Linear Mixed TOBIT Quadratic# 

 

Quantile CLAD 

 

Beta 

PF 
 0.0029, 0.0019

 

(0.0001, <0.0001) 

 0.0034, 0.0022
 

(<0.0001, <0.0001) 

0.0061, 0.00016
 

(<0.0001,0.8247) 

 0.0028, 0.0022
 

(<0.0001, <0.0001 

0.0028 , 0.0016
 

(<0.0001, <0.0001 

0.518, 0.260
 

(<0.0001, <0.0001) 

RF 
 0.0010,0.0010

 

(<0.0001, <0.0001) 

 0.0009,0.0012
 

(<0.0001, <0.0001) 

 

               

 0.0006,0.0007
 

(0.0150, 0.0176) 

 0.0008, 0.0008
 

(<0.0001, 0.0012) 

0.108,0.2340
 

(0.0075, <0.0001) 

EF 
0.0015, 0.0021

 

(0.0008, <0.0001) 

0.0019, 0.0025
 

(<0.0001, <0.0001) 

0.00409, 0.00042
 

(<0.0001, 0.5028) 

0.0019, 0.0026
 

(<0.0001, <0.0001 

0.0017, 0.0028
 

(<0.0001, <0.0001) 

0.067, 0.379
 

(<0.0001, <0.0001) 

SF 
0.0009,0.00010

 

(<0.0001, <0.0001) 

0.0009,0.0011
 

(<0.0001, <0.0001) 

0.00172,0.00152
 

(0.0013, <0.0001) 

0.0016,0.0005
 

(<0.0001, 0.0039) 

0.0015, 0.0007
 

(0.0015, 0.0086) 

0.029, 0.257
 

(0.0452, <0.0001) 

CF 
-0.0003,-0.0002  

(<0.0001, 0.9293) 

-0.0003, -0.0007 

(0.4422, 0.8041)  
 

0.0003,0.0001 

(0.2143, 0.6266)  

0.0003, -0.0004  

(0.0468, 0.8884) 

0.067, 0.061
 

(<0.0001, <0.0001) 

FA 
0.0004,0.0001 

(0.0163, 0.8389) 

0.0005, -0.00021 

(0.0513, 0.5763) 
 

0.0008,-0.0004 

(0.0244, 0.1797) 

0.0007, -0.0005 

(0.0114, 0.3422) 

0.064, -0.012 

(0.0122, 0.8299 

NV 
 -0.0002,0.0004 

(0.3131, 0.1281) 

 -0.0001,0.0005
 

(0.5699, 0.0715) 
 

-0.0001,0.0003 

(0.6821, 0.3951) 

 0.00001, 0.0004 

(0.1922, 0.0998) 

0.011, 0.062
 

(0.6613, 0.0875) 

PA 
0.0019, 0.0025

 

(<0.0001, <0.0001) 

-0.0029, -0.0017
 

(<0.0001, <0.0001 

-0.0030,-0.0018 

(<0.0001, <0.0001 

-0.0029, -0.0020
 

(<0.0001, <0.0001) 

-0.0024, -0.0018
 

(<0.0001, 0.0019) 

-0.496, -0.235
 

(<0.0001, <0.0001) 

DY 
 0.0004,0.00001 

(00.330, 0.9469) 

 0.0004,-0.0002 

(0.0361, 0.3748) 

 

 

 0.0003,-0.0001 

(0.0670, 0.4068) 

 0.0002, 0.0001
 

(0.0466, 0.5325) 

0.065, 0.0088
 

(0.0219, 0.8316) 

SL 
-0.0004,-0.0004

 

(0.0161, 0.0044) 

 -0.0004,-0.0006
 

(0.0053, 0.0059) 

-0.00085, -0.00087 

      (0.0249, 0.0017) 

 -0.0004,-0.0005
 

(0.0410, 0.0032) 

 -0.0003, -0.0004
 

(0.0333, 0.0024) 

-0.062, -0.102
 

(0.0195, 0.0036) 

AP 
  0.0001,-0.0002 

(0.7427, 0.1192) 

 0.00007,-0.0002 

(0.6337, 0.3325) 

 

 

 0.0001,-0.0001 

(0.7616, 0.6294) 

 0.00001, -0.00007 

(0.6257, 0.5998) 

0.0265, 0.0017 

(0.3421, 0.9660) 

CO 
-0.0003,-0.0001 

(0.0602, 0.0882) 

-0.0004,0.0002 

(0.0101, 0.2632) 

-0.00036, 0.0062 

(0.0177, 0.2514) 

-0.0002,0.0003
 

(0.3031, 0.1062) 

-0.0002, 0.0004
 

(0.2145, 0.1145) 

-0.082, 0.026 

(0.0010, 0.4835) 

DI 
-0.0002,0.0007

 

(0.9213, 0.0060) 

-0.0001,0.0009
 

(0.5608, 0.0009) 

-0.00062,-0.00029 

(0.1257, 0.4490) 

-0.0001,0.0001 

(0.8258, 0.8379) 

-0.0004, 0.0009
 

(0.7589, 0.4417) 

-0.017,0.051 

(0.4614, 0.1574) 

FI 
0.0004,-0.0001 

(0.0076, 0.0002) 

-0.0007,0.00037
 

(0.0222, 0.0418) 
 

0.0004,0.0001 

(0.0325, 0.4257) 

-0.0039, 0.0008 

(0.0187, 0.0587) 

-0.005,  0.062
 

(0.0039, 0.0715) 

QL 
 0.0014, 0.0013

 

(0.0163, 0.0002) 

 0.0018, 0.00018
 

(<0.0001, <0.0001 
 

 0.0014, 0.0009
 

(<0.0001, <0.0001 

 0.0013, 0.0014
 

(<0.0001, <0.0001 

0.237, 0.224
 

(<0.0001, <0.0001) 

Table 4.4: Summary of Models: Coefficients (P-values) 

#For Quadratic, P-values for PF
2
, PF

2
, PF

2
, PF

2
, PF

2
 were (0.0002, <0.0001); (0.003, 0.002); (0.503, 0.261); (0.286, 0.034); (0.251, 0.015) respectively 
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The models were first tested on the same dataset used to develop the mapping 

algorithm (Figure 4.3a and 4.3b). 

 
 

a) TOPICAL Data 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

b) SOCCAR Data 

 

 

 

 

 

 

 

 

 

 

 

 
 

       Figure 4.3: Observed vs. Mean Predicted EQ-5D value ((a) TOPICAL & (b) SOCCAR) 
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Mean predicted EQ-5D-3L distributions are also illustrated in Figures 4.2a and 4.2b. 

The predicted means were 0.608 for BB, 0.584 (Linear), 0.631 (TOBIT), 0.635 

(Quadratic), 0.633 (Quantile) and 0.593 (CLAD) in TOPICAL; For SOCCAR these 

were 0.749 (BB), 0.771 (Linear), 0.771 (TOBIT), 0.774 (Quadratic), 0.766 (Quantile) 

and 0.782 (CLAD). Predicted mean EQ-5D-3L was closest to the observed with the 

BB model (Table 4.3). 

4.3.2 Testing Models using Independent Data (out of sample predictions)  

The model developed from TOPICAL was tested on SOCCAR data (Figure 4.4a, 

4.4b and Table 4.5).  

 

                                                   

 

 

 

 

 

 

 

 

a) Model developed from TOPICAL data tested on SOCCAR data 

 

 

 

 

 

 

 

b) Model developed from TOPICAL data tested on SOCCAR data: Predictions by health 

states 

Figure 4.4: Out of sample predictions 

Quadratic 
CLAD 

BETA 

Linear TOBIT Quantile 
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Model Predicted Mean  (SE) 

         [95% CI] 

R
2
 RMSE % of 95% CI 

containing the 

observed mean
‡
 

Beta (a)
*
      0.747  (0.0069) 

   [0.733, 0.760] 
0.75 0.132 77% 

Beta (b)
†
      0.622  (0.0057) 

   [0.608, 0.631] 
0.61 0.159 59% 

CLAD (a)
*
      0.671  (0.0091) 

   [0.652, 0.689] 
0.56 0.027 28% 

CLAD (b)
†
      0.652  (0.0054) 

   [0.639, 0.660] 
0.47 0.154 19% 

Linear Mixed (a)
*
      0.738  (0.0051) 

   [0.728, 0.747] 
0.63 0.019 45% 

Linear Mixed (b)
†
      0.642  (0.0059) 

   [0.630, 0.653] 
0.58 0.095 23% 

Quadratic (a)
*
      0.768  (0.0056) 

   [0.757, 0.778] 
0.63 0.018 37% 

Quadratic (b)
†
      0.636  (0.0039) 

   [0.628, 0.643] 
0.55 0.093 14% 

TOBIT (a)
*
      0.739  (0.014) 

   [0.702, 0.757] 
0.56 0.021 65% 

TOBIT (b)
†
      0.644  (0.0084) 

   [0.627, 0.660] 
0.59 0.112 24% 

Quantile (a)
*
      0.772  (0.0060) 

   [0.754, 0.778] 
0.62 0.190 21% 

Quantile (b)
†
      0.661  (0.0084) 

   [0.644, 0.677] 
0.58 0.148 8% 

     

               Table 4.5: Testing of models using independent data   

  * Model developed from TOPICAL trial and tested using SOCCAR Data 

     † Model developed from SOCCAR trial and tested using TOPICAL Data 

     ‡ based on 10,000 monte-carlo simulations 

 

Figure 4.4 compares ‘out of sample’ predicted and observed EQ-5D-3L distributions. 

In particular, Figure 4.3a shows the predicted vs. observed distributions for the model 

developed from TOPICAL and tested using the SOCCAR dataset. The BB model 
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predicts the over-dispersion at values of zero and one better than other models. For 

SOCCAR, 25% of EQ-5D-3L responses were one, and the BB has predicted these 

very well. The CLAD and Quantile also predict these with some success, whereas 

TOBIT and Linear were less accurate. Figure 4.3b shows the predicted mean EQ-

5D-3L by health state compared to observed values. The BB also over-predicts EQ-

5D-3L at poorer health states, but the extent of the over-prediction is less severe.   

The R2 values were highest with the BB (R2=0.75) when the model developed from 

TOPICAL data was tested on SOCCAR data and R2=0.61 for the model developed 

from SOCCAR data and tested on TOPICAL; the RMSEs were also higher compared 

to other models (Table 4.5). Mean predicted EQ-5D-3L for SOCCAR was 0.747 (95% 

CI: 0.733, 0.760) for the BB.  

 

With SOCCAR data, the BB model approximates mean EQ-5D-3L at each health 

state more closely than all other models (Figure 4.4a). Figure 4.4b shows a similar 

plot using independent data from the algorithm developed from TOPICAL data. 

 

                a) Comparison of models using TOPICAL data                       
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The x-axis indicates ordered health states (1 refers to 11111 and 84 is 33312); these are ordered 
according to the weighted value of the health state using the UK TTO tariff.  
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b) Comparison of models using SOCCAR data                       

 
 
 
 
 
 
 
 
 
 
             
 
 
 
 
 
 
 
 

 
The x-axis indicates ordered health states (1 refers to 11111 and 54 is 23223); these are ordered 
according to the weighted value of the health state using the UK TTO tariff.  
 

Figure 4.5: Predicted EQ-5D versus observed EQ-5D for each Model by health state 

 
developed from TOPICAL data predicted mean EQ-5D-3L to within 0.4%. From 

10,000 simulations, 77% of the 95% confidence intervals for the predicted mean EQ-

5D-3L contained the observed SOCCAR mean EQ-5D-3L value of 0.75.  

 

When the model was developed using SOCCAR data and then tested on TOPICAL, 

the mean predicted mean EQ-5D-3L was 0.622 (as compared to the observed 0.61) 

and 59% of the 95% confidence intervals contained the mean EQ-5D-3L value of 

0.61 observed in TOPICAL (Table 4.5). A possible reason for the lower proportion of 

coverage is that SOCCAR patients had less severe symptoms than NSCLC patients. 

Consequently, they were in ‘better’ health states compared to the patients in the 

TOPICAL trial. Normal probability plots of the model tested on SOCCAR data 

indicate a better fit with the BB model (Figure 4.6). 
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     Figure 4.6: Normal Probability plots (TOPICAL) 

 

Patient-level predictions using independent data 

Comparing mean predicted EQ-5D-3L with the observed mean may not always be 

the best way to judge model performance because the distributions of the prediction 

values tend to cluster around the observed mean. For instance, an observed mean 

utility of 0.61 when compared with a predicted mean of 0.593 using CLAD (Table 4.3) 

is a difference of 0.017 (3%). However, about 40% of individual predicted values 

differed from the observed mean by about 10%. Therefore, for each patient, 

percentage differences within +5% to +30% of observed values were calculated. 

About 28% (BB) of predicted EQ-5D-3L were within +5% (Figure 4.6) of the observed 

EQ-5D-3L, compared to 20% (Linear), 23% (TOBIT), 24% (Quadratic), 22% 

(Quantile) and 22% (CLAD) with SOCCAR data. Predictions were in general better 

with the BB model (the curve is above all others). The median prediction error for the 

BB model is about 10% for both TOPICAL and SOCCAR. Highest prediction errors 

are observed with the Linear model (median of 15% error for both TOPICAL and 

SOCCAR). The QLQ-C30 responses ranged from 0 to 100 for 14 out of the 15 

domains (scores for the financial domain ranged from 30 to 80). 

 

 

 

Quantile 

TOBIT Linear Quadratic 

Beta Binomial CLAD 
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a) TOPICAL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) SOCCAR 

               Figure 4.7: Models compared in terms of patient level predictions (a) 

TOPICAL, (b) SOCCAR 

4.3.3 Over-prediction in Worse Health States  

Mean predicted EQ-5D-3L at observed health states for each algorithm were shown 

earlier in Figures 4.4b, 4.5a, and 4.5b. The BB model had mean predicted EQ-5D-3L 

estimates closest to the observed values at a given observed health state for 

TOPICAL and SOCCAR, respectively. Differences between observed and predicted 

mean EQ-5D-3L for most models occur at about health states of 11321 (value on the 
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x-axis of 32 in Figure 4.4b) for TOPICAL and about 22222 (x-axis value of 26) for 

SOCCAR. The Quadratic model under-predicted mean EQ-5D-3L at less severe 

health states compared to the BB model (Figure 4.5a, 4.5b).  

 
  
Relationship between Health States and Adverse Events  
 
The relationship between adverse event frequency for different definitions of ‘Good’ 

and ‘Poor’ health states was briefly investigated. The results suggest that patients 

with ‘Poor’ health (defined roughly here as >11321 for TOPICAL and >22222 for 

SOCCAR) are also the ones with a higher frequency of adverse events. In the 

TOPICAL trial, 24% of patients in ‘Poor’ health states (i.e. worse than 11321) 

experienced more than two grade 3 to 4 adverse events, compared to 15% for 

patients in ‘Good’ health states (health states 11321 or better); for SOCCAR this was 

66% vs. 44%. Hence, there is some evidence that presence of adverse events is 

likely to influence utility prediction. 

 

One reason why mapping algorithms might over-predict EQ-5D-3L at ‘Poor’ health 

states might be because treatment-related toxicity is not directly captured into the 

mapping algorithm, resulting in estimating a higher observed HRQoL. A similar 

pattern was also seen for other cut-offs that define ‘Poor’ and ‘Good’ health. For 

instance, when the cut-off for ‘good’ and ‘poor’ was defined as health states 21321 

(EQ-5D-3L of 0.364) and > 22111 respectively, fewer patients in ‘good’ health states 

had AEs compared to patients with ‘poor’ health states: 17% vs. 26% of patients in 

‘good’ vs. ‘poor’ health states had at least two adverse events in the TOPICAL trial. A 

similar pattern was observed for SOCCAR data. This suggests that there may be a 

more complex underlying mapping algorithm between EQ-5D-3L, QLQ-C30, and 

toxicity that may better explain the variability and prediction of EQ-5D-3L, chiefly in 

patients with ‘Poor’ health states. 

4.3.4 Impact on QALY Estimates  

Table 4.6 compares observed and expected QALYs from each of the models for 

SOCCAR and TOPICAL. The Observed QALY difference was 0.051 for TOPICAL 

(Erlotinib vs. Placebo) and 0.164 for SOCCAR (Concurrent vs. Sequential) [184]. 

Predictions from the BB model generated closest QALY estimates in both trials with a 

mean QALY difference of 0.053 for TOPICAL and 0.162 for SOCCAR (Table 4.6). 

QALY predictions from other models ranged from 0.041 (Linear) to 0.072 (Quadratic) 

for TOPICAL and 0.153 (Linear) to 0.208 (Quantile) for SOCCAR.  
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 TOPICAL SOCCAR  

 Erlotinib        Placebo Difference Concurrent          Sequential   Difference    
        
Observed 0.35           0.30         0.051 1.31 1.15 0.164  
BB                    0.34 0.29 0.053 1.53 1.37 0.162  
TOBIT 0.37 0.31 0.064 1.59 1.42 0.174  
CLAD 0.33 0.29 0.046 1.62 1.44 0.186  
Quadratic 0.42 0.34 0.072 1.92 1.73 0.196  
Mixed Linear 0.32 0.28 0.041 1.34 1.19 0.153  
Quantile 0.38 0.31 0.070 1.42 1.62 0.208  

Table 4.6: Comparison of estimated (mean) QALY’s for all Algorithms 

4.3.5 Adjustment for Demographic Variables   

Several additional factors were added to the model for evaluation. Although R2 

changed slightly from 0.75 to 0.78 in TOPICAL with the inclusion of ECOG (P<0.001) 

and Gender (P<0.001), the underlying pattern of prediction shown in Table 4.2, Table 

4.5 and Figure 4.4a and 4.4b did not vary. Hence, it can be concluded that adding 

demographic variables does slightly improve the model fit, but it does not have a 

major impact on predicted means and their standard errors.  

 

The correlation between EQ-5D utilities and each of the 15 domains ranged from -

0.60 (FA) to 0.62 (PF) for SOCCAR and -0.62 (PA) to 0.65 (PF) for TOPICAL (Tables 

4.7 and 4.8). Higher (positive or negative) correlations suggest better overlap and 

possibility that mapping will be possible.
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Table 4.7: Correlations between EQ-5D-3L and QLQ-C30 TOPICAL Data 

 

 

 

 

 

 

  EQ5D PF RF EF SF CF QL FA NV PA DY SL SP CO DI FI 

EQ5D 1.00                               

PF 0.65 1.00                             

RF 0.62 0.76 1.00                           

EF 0.53 0.39 0.40 1.00                         

SF 0.61 0.63 0.70 0.47 1.00                       

CF 0.48 0.43 0.41 0.54 0.44 1.00                     

QL 0.57 0.58 0.57 0.43 0.54 0.39 1.00                   

FA -0.62 -0.70 -0.71 -0.54 -0.67 -0.50 -0.63 1.00                 

NV -0.33 -0.29 -0.32 -0.25 -0.33 -0.26 -0.33 0.37 1.00               

PA -0.62 -0.45 -0.43 -0.40 -0.46 -0.40 -0.40 0.51 0.34 1.00             

DY -0.42 -0.55 -0.54 -0.37 -0.45 -0.36 -0.44 0.57 0.20 0.31 1.00           

SL -0.42 -0.34 -0.33 -0.43 -0.32 -0.36 -0.35 0.44 0.20 0.41 0.33 1.00         

AP -0.39 -0.43 -0.44 -0.34 -0.42 -0.28 -0.43 0.52 0.39 0.31 0.28 0.25 1.00       

CO -0.30 -0.24 -0.25 -0.26 -0.27 -0.27 -0.21 0.29 0.21 0.32 0.21 0.22 0.23 1.00     

DI -0.13 -0.11 -0.12 -0.11 -0.13 -0.16 -0.17 0.17 0.21 0.11 0.04 0.10 0.23 -0.03 1.00   

FI -0.34 -0.28 -0.29 -0.30 -0.37 -0.28 -0.23 0.31 0.18 0.27 0.21 0.25 0.18 0.17 0.04 1.00 
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  EQ5D PF RF EF SF CF QL FA NV PA DY SL SP CO DI FI 

EQ5D 1                               

PF 0.62 1.00                             

RF 0.60 0.68 1.00                           

EF 0.56 0.47 0.44 1.00                         

SF 0.57 0.56 0.60 0.47 1.00                       

CF 0.43 0.42 0.40 0.56 0.43 1.00                     

QL 0.57 0.58 0.56 0.48 0.53 0.37 1.00                   

FA -0.60 -0.66 -0.65 -0.57 -0.57 -0.56 -0.63 1.00                 

NV -0.30 -0.28 -0.29 -0.36 -0.34 -0.28 -0.32 0.39 1.00               

PA -0.50 -0.40 -0.42 -0.43 -0.39 -0.37 -0.44 0.52 0.30 1.00             

DY -0.40 -0.52 -0.51 -0.34 -0.41 -0.26 -0.38 0.42 0.30 0.23 1.00           

SL -0.39 -0.32 -0.33 -0.39 -0.39 -0.34 -0.34 0.42 0.24 0.29 0.30 1.00         

AP -0.41 -0.40 -0.39 -0.37 -0.36 -0.31 -0.44 0.50 0.41 0.33 0.28 0.27 1.00       

CO -0.23 -0.20 -0.22 -0.28 -0.26 -0.25 -0.25 0.34 0.19 0.33 0.07 0.15 0.28 1.00     

DI -0.12 -0.13 -0.15 -0.23 -0.16 -0.28 -0.12 0.26 0.16 0.27 0.17 0.08 0.08 0.25 1.00   

FI -0.29 -0.37 -0.32 -0.32 -0.37 -0.35 -0.25 0.36 0.25 0.26 0.24 0.26 0.15 0.07 0.12 1.00 

 

Table 4.8: Correlations between EQ-5D-3L and QLQ-C30 SOCCAR Data 

Physical Function (PF), Role Function (RF), Emotional Function (EF), Cognitive Function (CF), Social Functioning (SF), Fatigue (FA), Nausea & Vomiting 

(NV), Pain (PA), Dyspnoea (DY), Insomnia (IN), Appetite Loss (AL), Constipation (CO), Diarrhoea (DI), Financial Problems (FI), Global Health Status Score 
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4.4 Discussion  

Superior predictive properties have been demonstrated with a non-linear BB mapping 

algorithm, developed and tested using data from two independent lung cancer patient 

populations. Two mapping algorithms for different types of lung cancer patients (poor and 

better prognosis) have been shown to perform better than commonly used models. Either 

algorithm could be used, although there may be a preference for the one derived from the 

larger TOPICAL trial because of less uncertainty (Table 4.5) and better model fit (Table 4.2). 

Simulations assessed the uncertainty of mean estimates of EQ-5D-3L utilities. The degree of 

over-prediction of mean utilities at poorer health states was less with the BB model 

compared to other models. QALY estimates from models were also closer to the observed 

values with the BB model. These findings confirm previous untested assertions that the 

relationship between the EQ-5D-3L and QLQ-C30 may be better understood with a non-

linear model structure [111,115,135].  

 

Previous mapping models have mostly used OLS forms and are considered inadequate or 

over simplistic [112]. Most reported mapping models suffer from over-prediction in poorer 

health states. Previously reported models have reported R2 values (using QLQC-30), 

ranging from 0.23 to 0.83 [112]. These values are similar to those reported in this study. It is 

very rare that models yield values of R2 above 70%. Other models (e.g. multinomial, ordinal) 

have also been used, but have proved to be inadequate [128]. Estimates based on the 

absolute deviation (CLAD, Quantile, and adjusted censored models) predict patient level 

medians, whereas the statistic of interest is the mean. The Quadratic model takes into 

account non-linearity (by having squared terms in the model) but is essentially a linear model 

(linear in parameters because the coefficients are interpreted in the same way as linear 

models).  

 

Improving model fit by "discarding" or "weighting" outliers with extreme values [98] is not an 

optimal solution if the extreme outliers can be modelled (rather than excluding observations). 

Moreover, there are many possibilities regarding the choice of variables to square and then 

combine with non-squared variables in quadratic models. For instance, squaring all 15 

domain scores of the QLQ-C30 is a possible choice, and so is squaring 14 and having only 

one non-squared term remaining. Without conducting numerous tests and increasing the 

type I error, it is challenging to understand the relative merits of one set of variables over 

another. Therefore, this can lead to some arbitrary selection of combinations of terms in 

order to improve model fit. 
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There are several advantages of the BB approach. The BB model applied to this data 

confirms some superior statistical properties in terms of accuracy and efficiency [177-182]. 

The reasons for such superior properties was observed in the better fit with several statistics 

(AIC, R2, and predictions). Given that these metrics are related to the underlying behaviour 

of the model in fitting the data, the BB model models the over dispersion and skewness 

much better than the other models (Figure 4.4). In addition, the parameters (a and b of 1.9 

and 0.6 respectively for SOCCAR, Figure 4.1) strongly support a model that is appropriate 

for modelling skewed, over-dispersed and possible bimodally distributed utilities. The 

interpretation of the model outputs and parameters are still reasonably clear: mean utilities 

are estimated and the exponential of coefficients, have the same interpretation as an odds 

ratio. That is, for every unit change in a given QLQ-C30 domain score, the mean EQ-5D 

utility will change (increase or decrease) by an amount equivalent to exponentiation of the 

associated coefficient. 

 

Clinical relevance may be important [128] if a generic measure is sufficient to provide both 

estimates of utilities as well as a clinical interpretation of HRQoL differences based on an 

odds ratio (which may be easier to interpret than mean differences). For example, the clinical 

relevance of a mean treatment difference of 0.012 on the EQ-5D-3L is difficult to judge. 

However, if this was equivalent to an odds ratio of 1.2 (a 20% improvement in HRQoL), a 

way of relating both clinical effects and utilities becomes feasible. This can also be extended 

to the response domains. This makes the BB a powerful and flexible mapping algorithm, 

relevant to health economic evaluation, policy, and clinical decision making. 

 

The strength of this research lies in the approach to validating the model by using 

independent data and extensive multivariate simulation from correlated EQ-5D-3L and QLQ-

C30 data. Plausible reasons as to why over-prediction at the poorer health states occur were 

explored by using adverse event data (collected in all trials), often ignored in mapping 

algorithms. It is possible that joint relationships between adverse events and EQ-5D-3L may 

offer an explanation for over-prediction because higher toxicity was observed in poorer 

health states. Some researchers suggest that EQ-5D-3L responses have a bimodal 

distribution and therefore two separate mapping algorithms might be needed (Veerstegh, 

2010) for patients in ‘Poor’ and ‘Good’ health states [129]. The nature of the bimodality could 

be explored using baseline clinical data (e.g. using baseline ECOG).  

 

This research has several limitations. Firstly, the impact on results for other values of  and 

 has not been exploited. In this application, and were set to model the mean EQ-5D-3L; 
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other possibilities may include searching for and  which might optimize R2, minimize MSE 

and improve predictions. Secondly, a scale of 0 to 1 was assumed, which may not be 

suitable for certain diseases, where the states worse than death are significant. Surprisingly, 

even in this NSCLC population, the proportion of such cases was very low. Statistically, this 

might seem fine because estimates may not be affected (biased) too much. However, 

conceptually it is placing someone whose health state is ‘worse than death’ equivalent to 

death. Thirdly, model validation has been limited to lung cancer data and further testing 

would be useful in both lung cancer (to see whether algorithms are tumor specific) and non-

lung cancer data sets (to check for generalizability). Finally, the BB was not compared with 

other models such as Bayesian network models that report superior predictive properties 

when compared to the more common models. However, in the case of such Bayesian 

models, the choice of the initial (prior) estimates of the probability of EQ-5D-3L responses 

can influence the predicted utility.  

 

In addition, there are several concerns when using mapping functions, a point that has been 

repeated in past research [112,112,135,118,185 ]. One key concern is that it is not possible 

to know whether the predicted utilities are close to the observed values unless both are 

known. Secondly, there are questions as to what exactly is being measured or estimated 

because some key information in one instrument is not included in the other, particularly 

when predicting EQ-5D-3L from clinical measures alone. One approach might be to evaluate 

the psychometric properties of the two instruments and also analyse the correlations. A 

weak correlation (Spearman’s or linear) might explain a poor mapping algorithm.    

 

The first concern regarding mapping can be partially answered with the use of simulation by 

quantifying uncertainty in how well the predicted values approximate the observed utilities 

and can be quantified as described in Table 4.5. This does not inform us as to what the 

predicted EQ-5D-3L is actually measuring, but it is assumed that the closer the predicted 

values are to the observed, the preferences become ‘essentially similar’. If in 90% of 

simulations, the observed and predicted values are close, it may be reasonable to assume 

that the mapping algorithm provides estimates that are measuring aspects of “essentially 

similar” preferences, which for practical purposes might be acceptable. Moreover, the 

statistical significance of several predictors might also inform us about health state 

preferences.  If a model predicts every EQ-5D-3L perfectly, then one may wish to conclude 

that the model has correctly predicted the ‘essential nature’ of the preferences (ultimately 

contained in a single index), or remain skeptical and seek additional evidence to confirm 

that.  
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Other concerns with mapping involve time points used when developing and applying an 

algorithm. For instance, including baseline data in a model, which aims to predict post-

baseline treatment differences, may lead to misleading estimates. Assumptions that the 

rates of change in EQ-5D-3L (the coefficients of the QLQ-C30) are constant from one cancer 

type to another are also unlikely to hold. If baseline or demographic variables are used, the 

relevance of these variables for the target population may be important (e.g. if an algorithm 

is applied only to a male population). Finally, the mapping algorithm should offer a 

reasonable clinical interpretation. In lung cancer, for example, it might be expected that 

dyspnoea is an important predictor of HRQoL. In some models, dyspnoea was not shown to 

be statistically relevant for predicting EQ-5D-3L, although it is an important symptom in lung 

cancer patients.  A model that might have practical relevance is one where for example as 

dyspnoea symptoms worsen (scores increase) predicted EQ-5D-3L utilities get lower which 

is not always the case.   

4.5 Conclusion 

The Beta-Binomial regression approach indicates superior performance compared to 

published models in terms of predicting the observed EQ-5D-3L from QLQ-C30 in these lung 

cancer trials. This non-linear approach may offer advantages over existing models for 

mapping and as a general approach for modelling utilities. These results confirm previous 

observations that the HRQoL is over-estimated at the poorer heath states. The reasons why 

current algorithms persistently over-predict at poorer health states requires further 

interrogation, perhaps incorporating adverse event information into the models. Guidelines 

on using algorithms may also be beneficial. The mapping may be useful, however, there are 

still concerns as to whether the predicted utilities are essentially the same as the observed 

values.  

 

The next chapter (Chapter 5) will consider the impact of mapping using the more recent EQ-

5D-5L and investigate whether the change in the scale of measurement improves the 

prediction and model fit.  
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     Chapter 5 
 

Chapter 5: Comparing Mapping between EQ-5D-5L, EQ-5D-3L, and EORTC-

QLQ-C30 

 

Published: Comparing the mapping between EQ-5D-5L, EQ-5D-3L and the EORTC-QLQ-

C30 in non-small cell lung cancer patient (Iftekhar Khan, Steve Morris, Nora Pashayan, 

Bashir Matata, Zahid Bashir and Joe Maguirre; Health and Quality of Life Outcomes (2016) 

14:60; DOI 10.1186/s12955-016-0455-1) 
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                                                           Abstract 

 

Introduction: Several mapping algorithms have been published with the EORTC-QLQ-C30 

for estimating EQ-5D-3L utilities. However, none are available with EQ-5D-5L. Moreover, a 

comparison between mapping algorithms in the same set of patients has not been 

simultaneously performed for these two instruments. In this prospective study of 100 non-

small cell lung cancer (NSCLC) patients, the performance of three mapping algorithms using 

the EQ-5D-3L and EQ-5D-5L were compared.  

 

Methods: A prospective non-interventional cohort of 100 NSCLC patients were followed up 

for a period of at least 12 months. EQ-5D-3L, EQ-5D-5L, and EORTC-QLQ-C30 were 

assessed on a monthly basis. EQ-5D-5L was completed at least a week after EQ-5D-3L. A 

random effects linear regression model, a Beta-Binomial (BB) and a Limited Variable 

Dependent Mixture (LVDM) model were used to determine a mapping algorithm between 

EQ-5D-3L, EQ-5D-5L, and QLQ-C30. In addition, simulation and other statistical measures 

were used to compare the performances of the algorithms. 

 

Results: It was identified that mapping from the EQ-5D-5L was better lower AIC, RMSE, 

MAE, and higher R2 were reported with the EQ-5D-5L than with EQ-5D-3L, regardless of the 

functional form of the algorithm. The BB model appeared to be more useful for both 

instruments; for the EQ-5D-5L, AIC was -485, R2 of 75%, MAE of 0.075 and RMSE was 

0.092. For EQ-5D3L, these values were -385, 69%, 0.099 and 0.113, respectively. The 

mean observed utilities were 0.572 and 0.515 for EQ-5D-3L and EQ-5D-5L respectively. The 

mean predicted utilities were 0.577, 0.575 and 0.569 for the random effects, BB and LVDM 

models for EQ-5D-5L; for EQ-5D-3L, these values were 0.523, 0.518 and 0.532, 

respectively. Less over-prediction at poorer health states was also observed with EQ-5D-5L.  

 

Conclusion: The BB mapping algorithm is confirmed to offer a better fit for both EQ-5D-3L 

and EQ-5D-5L. The results are consistent with previous and more recent results on the use 

of BB type modelling approaches for mapping.   
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5.1 Introduction 

The advantages and limitations of mapping were discussed in the previous chapters. 

Recently, Crott (2014), Arnold et al. (2015) and Doble and Lorgelly (2015) [161-163] 

examined the performance of the most common mapping algorithms applied to the QLQ-

C30. Several limitations of some of the simpler mapping algorithms from the EQ-5D-3L were 

also noted. These limitations are related to untenable assumptions around linearity, 

homoscedasticity, multimodality, skewness, and censoring as the metric of model 

performance; and in some cases poor over prediction, particularly at poorer health states 

[109,134,139,161,162].  

 

For this thesis, the performance of three mapping algorithms (from QLQ-C30) - a Random 

Effects linear model, Beta-Binomial (BB) and Limited Dependent Variable Mixture Model 

(LDVMM) were compared, for each of two utility measures: EQ-5D-5L and EQ-5D-3L, 

separately. Currently, no study of mapping compares algorithms from both instruments in the 

same set of patients; and none are available between EQ-5D-5L and QLQ-C30, particularly 

from a non-small cell lung cancer (NSCLC) patient population. In the previous chapter, using 

data from a randomized controlled trial (RCT) [109,165,166], a three-part BB model was 

reported to perform the best amongst other commonly used algorithms. This analysis 

examines mapping models using data from NSCLC patient in a real world NHS setting. This 

will offer researchers a way to compute patient-level utilities from the EQ-5D-5L (and EQ-5D-

3L) with greater generalizability than algorithms using data from a RCT. 

5.2 Methods 

 
Study Design 
 
A single cohort prospective (non-interventional) follow-up study in 100 NSCLC patients was 

designed and executed. Details are provided in Chapter 3 for Study 3.  

 

Assessments 

 

Described in Chapter 3. 

Sample size 

Described in Chapter 3. 

 

Statistical Methods 

Three models were used for mapping:  
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(i) Linear Random Effects Model 
 
The linear model with a random effect is an extension of the ordinary least squares (OLS) 

model. One significant difference is that subject level effects are included in this model. In 

the context of mapping, as utility scores are observed for each subject on more than one 

occasion, the responses are not independent. The subject level differences (between subject 

variability) can be modelled with a random effect. For this reason, the model is often termed 

as a mixed effects model due to the variability of utilities between and within subjects. This 

model is relatively easy to use when applied to an external data set for predicting patient 

level utilities. This is important because, in practice, a mapping algorithm should also have a 

feature that can be used practically and conveniently. More complicated models require 

more assumptions and hence introduce greater uncertainty. The model form in a general 

linear mixed model framework is: 

     Y= X + Z*u +  

Where  is a matrix with the fixed effects parameters (e.g. the 15 coefficients of the QLQ-

C30, as continuous outcomes) and u is a matrix (or vector) with the random (subject) terms 

and  is the experimental error term (corresponding to the fixed effects). Mapping models for 

the QLQ-C30 typically use the 0 to 100 scoring range to estimate EQ-5D values 

 
(ii) Limited Dependent Variable Mixture Model (LDVMM) 
 
A second model [134] belonging to the class of limited dependent variable (LDV) models is 

the Adjusted Limited Variable Dependent Mixture Model (ALVDMM) [134]. This particular 

model has several noteworthy features. Firstly, it assumes additivity of effects (as in a linear 

model). Moreover, it involves a latent variable that is censored. The censoring occurs 

(similarly to that applied in a TOBIT model) because values are considered to be 

unobservable. Hernandez et al. (2012) [134] noted that since there is a gap in utilities 

between the values 0.833 and 1 for the EQ-5D-3L, the preferences for health states are in 

effect ‘cut-off’ on the higher side of values at (or above) 0.833 to a value of 1 (essentially 

capturing the ceiling effect). This means that if a patient’s (true) utility is >0.833 and <1, the 

instrument (EQ-5D) cannot capture this and a value of 1 is assumed.  

The LDV type models generate predicted estimates in a more complex way, which involves 

finding the probability that the unobserved (latent) value is above or below the censored 

threshold value (e.g. 0.833) using the ratio of the probability density function (PDF) to the 

cumulative density functions (CDF). This feature of the LDVs allows the possibility to 

simultaneously model the presence of several distributions. Previously, mapping was 

determined using data from a relatively short health assessment questionnaire (HAQ) in an 
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arthritis population [134]. The greater the number of latent classes, the more complex the 

interpretation. Application of three classes (thresholds) in the context of 15 QLQ-C30 domain 

parameters (using a scale of 0  to 100 as used in some other published approaches) is likely 

to lead to a much more complex latent class structure and hence, two classes (two mixed 

distributions) are used for both the EQ-5D-3L and EQ-5D-5L in this analysis. This is justified 

by observing the kernel density estimates that suggest a bimodal distribution for EQ-5D-3L 

(values between about -0.549 to <0.3 and >0.3 to 1) in this data set (see Figure 5.1 below). 

Although Khan et al (2015) showed that the QLQ-C30 appear to fall into discrete categories, 

it does not follow that the true distribution is discrete [155]. For later Bayesian approaches 

(Chapter 7) a discrete and a continuous form of the model is implemented. The implication 

of using a discrete or continuous scale is likely to be reflected in the precision of 

estimates. A Bayesian approach is probabilistic and with 15 domains and 5 

categorical responses is likely to be more uncertain (as will be shown in Chapter 7).  

 

 

Figure 5.1: Distribution of EQ-5D-3L (left) and EQ-5D-5L (right) utilities 

For the EQ-5D-5L, the mixture of distributions is not obvious, although there is marked 

skewness. The form for the mixture model used in this context is described below. 

 

Assuming responses Y (i.e. EQ-5D utilities), whose distribution depends on an unobservable 

random variable S; S can occupy one of k states (k=2 in this instance), the number of which 

might be unknown, but is at least known to be finite. Since S is not observable, it is referred 

to as a latent variable. Let j denote the probability that S takes on state j. For instance, in 
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the case of the EQ-5D-3L for the ALVDMM, j=1 might refer to values of EQ-5D-3L < 0.833 

and j=2 would refer to states, such that EQ-5D-3L utilities are > 0.833 and <1.0.  

 

Conditional on S, the distribution of the response Y,  is assumed to be fj (y;j, j| S=j). What 

this expression (i.e. (fj(y;j, j| S=j)) means is that depending on the number of states (S), a 

model (with a form fj(y;j,  can be used to determine the relationship between Y (the EQ-

5D) and a set of predictors,  (e.g. the 15 QLQ-C30 coefficients). For instance, for j=1 

(values of EQ-5D-3L between -0.549 and 0.3), the EQ-5D-3L are assumed to follow a 

Normal distribution. For values between 0.3 and 1 (j=2), the data can be considered to follow 

a Beta-Binomial (BB) distribution. In another scenario, for j=1, a Weibull function could be 

used, and for j=2 a Normal distribution could be used. There would be six parameters to 

estimate (two parameters for the Weibull, two parameters for the Normal and consequently 

two mixing probabilities (1 and 2), the probability of observations belonging to one or 

another class. The six parameters to be predicted do not include any of the QLQ-C30 

predictors (parameters), where a further 16 parameters are estimated.  

 

The following mixture models were simultaneously fitted: 

 

(i) EQ-5D as a function of 15 QLQ-C30 domain scores (for example, Normal Distribution 

assumed between -0.549 and 0.30) 

(ii) EQ-5D as a function of 15 QLQ-C30 domain scores (for example, Beta-Binomial 

distribution assumed between 0.30 and 1) 

(iii) The mixing probabilities as a function of the 15 QLQ-C30 domain scores (two mixing 

probabilities that classify observations as belonging to distributions in (i) or (ii)). 

 

Evidently, the above modelling approach is complex and perhaps unnecessary; which can 

lead to model non-convergence. The models practical implementation as an external 

algorithm is, hence, an important consideration. A transformation may be carried out if 

specific distributions are assumed (e.g. modelling negative values). For instance, for values 

between -0.549 and >0.30, a Gamma (or Beta-Binomial) distribution would not be possible.    

 

Hence, in this analysis two distributions are considered for modelling: 

 

(i) Assume Normality between -0.549 and <0.30 for the 15 predictor variables 

(ii) Assume Beta-Binomial between 0.30 and 1.0 for the 15 predictor variables 
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The predicted estimates are determined in a complicated way from the ratio of the CDF to 

the PDF of the EQ-5D responses and using the estimated mixing probabilities. The mixing 

probabilities can be interpreted as the ratio of observations belonging to one of two 

distributions. If the mixing probabilities were 0.5, then 50% of the EQ-5D-3L might be 

considered to follow a normal distribution and the remaining 50% a different distribution. A 

useful exposition of finite mixture models can be found in Schlattman (2009) [189]. 

 

Maximum likelihood estimation for continuous and discrete response distributions is used 

based on a dual quasi-Newton optimization algorithm using SAS® software [190]. A global 

maximum was sought using initial starting values to search for local maxima, followed by re-

running the model using estimates generated from previous model runs.  

 

(iii) Beta-Binomial Model 

For the previously used ALVDMM, censoring occurs for values at 0.833 for the EQ-5D-3L. 

This is not the case for the EQ-5D-5L, where values between 0.833 and 1 do exist. For this 

reason (Figure 5.1) the distribution of the EQ-5D-5L can be considered appropriate for 

modelling on a continuous type scale between -0.549 and 1.0 (after a transformation of Y-

a/b-a), and hence, the BB model is the third model that is considered for mapping. The 

details of the BB model were elaborated in the previous chapter and discussed in Khan and 

Morris (2014) [109]. The BB model demonstrated an improved fit compared to simpler linear 

and LDV models (e.g. TOBIT and CLAD).  

 

Model Performance Criteria 

Several model performance statistics were used, including the root mean square error 

(RMSE), which is a type of model fit measure (lower values indicate better fit), mean 

prediction error, R2, mean absolute error (MAE), and percentage predicted >1 and < -0.594. 

Chai (2014) argues that the RMSE is more appropriate than the MAE, specifically when the 

error distribution is Normally Distributed [191]. The Aikakes Information Criteria (AIC) values 

and percentage predicted within a target range (e.g. +5%, +10%) of the observed values 

were also computed.  

 

Simulation and Cross Validation 

Multivariate simulation (1,000 simulations using Fleishman methods) [167,168] were used to 

test the uncertainty of the models. The method of Fleishman uses higher order moments 

(e.g. kurtosis and skewness) to generate correlated simulated data, regardless of the 

distribution of each of the original variables. The steps involved in simulation require 
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computing the mean, SD, skewness and kurtosis for each of the observed 15 QLQ-C30 

domain scores. Using the Fleishman (1978) [167,168] power transform:  

 

                                                   Y= + *Z +*Z2+*Z3,  

The values of , ,  and  are estimated from randomly generated data Z, normally 

distributed with a mean of zero and a variance of 1 and the observed measures of kurtosis 

and skewness. The values of  and  are estimated through a process of iteration so 

that Y can be determined. The derived Y (e.g. 15 QLQ-C30 scores) are simulated 

(correlated) responses, which are not necessarily normally distributed. Khan & Morris (2015) 

[109] have shown that the QLQ-C30 scores are unlikely to follow a normal distribution in 

most cases.  

 

For each simulated data set, cross-validation was used. Half (50%) of the simulated data set 

(randomly selected) was used to develop the mapping model and the other half was used to 

test the model (out of sample predictions). For each realization (i.e. data set simulated), the 

model performance statistics (e.g. RMSE and R2) were generated and reported. Although 

there is no theoretical reason for 50% of the data used for developing the model, other cut-

offs (e.g. 75% vs. 25%) were also considered.  

 

Handling missing data 

Where missing data occurred multiple imputation approaches were used – using chain 

equations (ref). This involved generating complete data sets (3 were generated) and 

modelling using each of the data sets was used and the results were summarized for 

sensitivity analyses.  

5.3 Results 

 
Between the period of March 2014 and July 2015, a total of 100 patients consented and 

were registered for follow-up. Out of these, two patients withdrew before the follow-up 

started. Consequently, 98 patients (98%) were included in the statistical analysis; 23 patients 

(23%) died during the follow-up and 2 patients (2%) dropped out due to personal reasons 

(Figure 5.2 CONSORT). There was a total of 985 observations (responses), across 98 

patients for EQ-5D-5L and EQ-5D-3L HRQoL forms, respectively. HRQoL forms were 

completed by 97/98 (99%) patients at baseline; completion rates at 3 and 6 months were 

78/98 (79%) and 41/98 (55%) respectively. Also, completion rates were similar for all the 

three (EQ-5D-5L, EQ-5D-3L, and QLQ-C30) instruments.  
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Figure 5.2: CONSORT for Study 3 

 

There were 146 observed health states (5% of all possible health states) observed with EQ-

5D-5L and 62 (26%) for EQ-5D-3L. The most frequent health states with the EQ-5D-5L were 

11111 (6%), followed by 21222 (5%), 43533 (3%) and 31331 (3%). For EQ-5D-3L these 

health state values were 21222 (11%), followed by 22222 (10%), 22221 (7%), 22322 (6%) 

and 11111 (6%). 

 

Demographics  

Registered with informed 
consent (N=100) 

Withdrew before follow 
up started due to 

personal reasons (n=2) 
 

[N=98] 
(985 observations) 

 

Followed up for 3 
months (n=78) 

Followed up  for 6 
months (n=54) 

Followed up  for 12 
months (n=32) 

Included in this analysis 
N=98 

 



 

130 

 

The median age of the respondents was 69 years (range 39 to 86); 55/98 (56%) were male, 

67/98 (68%) were ex-smokers and 19/98 (19%) current smokers. On Easter Co-operative 

Oncology Group (ECOG) performance status, there were 65/98 (64%) patients who were in 

grade 0-2 and the remaining were ECOG >2. ECOG is used as a measure of well-being 

(and prognosis), with higher values suggesting poorer prognosis; 26/98 (27%) were Stage I-

II and 68/98 (69%) were Stage III and higher; Histology subtypes were 43/98 (44%) with 

adenocarcinoma and 36/98 (37%) with the squamous cell. The remainder were of varying 

subtypes (Table 5.1).  

 

 
 

   (N=98) 

Age (Median years, Range) 69 (39-86) 
 
Gender 
  Male 
  Female 

 
 
55 (56%) 
43 (44%) 

 
Smoking Status 
  Current Smoker 
  Ex-Smoker 
  Never 
  Unknown 

 
 
19 (19%) 
67 (68%) 
  5 (5%) 
  7 (7%) 

Stage 
  I -II 
  III 
  IV 
  Unknown 

 
26 (27%) 
31 (32%) 
37 (38%) 
  4 (4%) 

Histology  
  Adenocarcinoma 
  Squamous 
  Mesothelioma 
  Other 

43 (44%) 
36 (37%) 
  5 (5%) 
14 (14%) 

  
  
ECOG: 
0: Normal activity  
1: Near full activity  
2: In bed < 50% of time  
3: In bed > 50% of time 
4: Totally confined to bed 

 
12 (12%) 
23 (23%) 
30 (31%) 
27 (28%) 
  4 (4%) 

                         Table 5.1: Baseline and Demographics Characteristics 

 
Performance of EQ-5D-5L and EQ-5D-3L Mapping Algorithms  
 
The best performing model regardless of EQ-5D-3L or EQ-5D-5L was the BB model (Table 

5.2). This had an AIC, R2, RMSE, MAE and % predicted to within +5% and +10% of - 485, 

75%, 0.092, 0.075, 29% and 59% for EQ-5D-3L and  -385, 69%, 0.113, 0.099, 21% and 

47% for EQ-5D-5L, respectively. The BB, therefore, had good model fit characteristics and 
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predicted more utilities to within +10% of the observed value compared to other models, 

particularly for the EQ-5D-5L.  
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                                                   EQ-5D-5L                                      EQ-5D-3L 

 Random Effect Beta-Binomial LVDM* Random Effect Beta-Binomial LVDM* 

R
2
 72% 75% 70% 67% 69% 67% 

AIC -365 -485 -383 -291 -385 -189 

RMSE 0.152 0.092 0.153 0.183 0.113 0.179 

MAE 0.114 0.075 0.115 0.141 0.099 0.139 

Predicted Mean (SD) 0.577 (0.241) 0.575 (0.211) 0.569 (0.217) 0.523 (0.252) 0.518 (0.183) 0.532 (0.252) 

Observed Mean (SD) 0.572 (0.224) 0.572 (0.224) 0.572 (0.224) 0.515 (0.308) 0.515 (0.308) 0.515 (0.308) 

%predicted outside range <1% 0 0 <1% 0 0 

Predicted within +5% 19% 29% 20% 19% 21% 20% 

Predicted within +5% 38% 59% 42% 37% 47% 35% 

*Normal + Beta Mixture 

Table 5.2: Comparison of Model Performance
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Random Effects Model 
 
The performance of the random effects model was comparable to the LDVMM. Table 5.3 

shows the parameter estimates for the 15 QLQ-C30 coefficients.  

*Statistically significant at the two-sided 5% level 

Table 5.3: Results from Statistical Modelling (Random effects Model) 

 

If all the scores for the Functional, Global and Finance domain scores are assumed to be 

perfect (i.e. score of 100) and no signs and symptoms are present (i.e. score of 0), the 

predicted EQ-5D-3L and EQ-5D-5L mean scores are estimated to be about 0.89 and 0.96, 

respectively. In contrast, if symptom and functional scores are the worst possible (scores of 

0 and 100 for function and symptoms, respectively), the predicted EQ-5D-3L and  EQ-5D-5L 

            EQ-5D-5L EQ-5D-3L 

 Estimate    SE P-value Estimate     SE P-value 

Intercept 0.2255 0.09157 0.0142 0.08046 0.08507 0.3450 

Physical Functioning 0.006718* 0.000676 <.0001 0.005437* 0.000620 <.0001 

Role Functioning -0.00032 0.000591 0.5935 0.001392* 0.000509 0.0066 

Emotional Functioning 0.001871* 0.000554 0.0008 0.001949* 0.000481 <.0001 

Cognitive Functioning -0.00057 0.000491 0.2436 -0.00073 0.000448 0.1024 

Social Functioning 0.000387 0.000530 0.4664 0.000516 0.000462 0.2652 

Global Health Status / QoL -0.00109* 0.000409 0.0082 -0.00043 0.000401 0.2853 

Fatigue 0.000324 0.000696 0.6420 0.000993 0.000647 0.1261 

Nausea / Vomiting -0.00041 0.000600 0.4990 0.000276 0.000524 0.5993 

Pain -0.00290* 0.000495 <.0001 -0.9 0.000427 <.0001 

Dyspnoea 0.000368 0.000464 0.4287 -0.00011 0.000421 0.7915 

Insomnia -0.00017 0.000338 0.6218 -0.00004 0.000313 0.9053 

Appetite loss -0.00030 0.000328 0.3673 0.000341 0.000295 0.2488 

Constipation -0.00013 0.000359 0.7139 0.000524 0.000306 0.0877 

Diarrhoea 0.001155* 0.000438 0.0087 0.000499 0.000425 0.2409 

Financial Problems 0.000345 0.000334 0.3019 -0.00004 0.000297 0.9039 
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results in nearly 0.10 and 0.09, respectively. EQ-5D-5L, therefore, predicts higher at both 

extremes (Table 5.4).  

 

         QLQ-C30 Score Predicted 

Model Symptom Function EQ-5D-3L EQ-5D-5L 

Random effects Best (0) Best (100) 0.89 0.96 

 Worst (100) Worst (0) 0.10 0.019 

     

Beta Binomial Best (0) Best (100) 0.901 0.983 

 Worst (100) Worst (0) 0.097 0.0094 

     

LDVMM Best (0) Best (100) 0.884 0.972 

 Worst (100) Worst (0) 0.055 0.008 

Table 5.4 Predicted Utilities from Three Scenarios 

 
Beta-Binomial Model 
 
The BB (Table 5.5) can be used to predict the EQ-5D using a standard logit link: P/1-P = exp 

(- +X), such that P = 1/1+exp (- +X), where P indicates the predicted EQ-5D and X are 

the QLQ-C30 scores. Hence, the predicted EQ-5D-5L are 0.983, approximating the value 

1.00. Following a similar approach to the above, the first step is to predict the EQ-5D using 

the estimates in Table 5.5. Setting the functional scores of the EQ-5D-3L to perfect HRQoL 

for the two functions and symptom scores (score = 100 and 0 respectively), the predicted 

EQ-5D-5L is estimated as: 

 

1/[1 + exp(- +X) = exp[0.2255 + (100*PF+100*SF +……+0*FA ….+0*FI)]  = 

0.983.  
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 EQ-5D-5L EQ-5D-3L 

 Estimate SE P-value Estimate SE P-value 

Intercept -1.51144 0.00006 <0.001 -0.0123 0.003893 0.00248 

Physical 
Functioning 

0.03644* 0.004666 <0.001 0.01918 0.00294 <0.001* 

Role Functioning 0.009619* 0.00455 0.03867 0.00421 0.002685 0.12215 

Emotional 
Functioning 

0.01904* 0.003192 <0.0001 0.00661 0.002007 0.00166* 

Cognitive 
Functioning 

-0.00633 0.003312 0.06076 -0.00425 0.002111 0.04858* 

Social Functioning -0.00013 0.002758 0.9712 -0.00035 0.001973 0.8598 

Global Health Status 
/ QoL 

0.001652 0.002772 0.55344 -0.00197 0.001913 0.30724 

Fatigue 0.003561 0.005282 0.50279 0.00443 0.002979 0.14223 

Nausea / Vomiting 0.000452 0.004514 0.92057 -0.00146 0.0027 0.59069 

Pain -0.03569* 0.003512 <0.001 -0.03278 0.00191 <0.001* 

Dyspnoea -0.00806* 0.0028 0.00553 0.00015 0.001759 0.93233 

Insomnia 0.002047 0.002388 0.39474 0.00193 0.001491 0.20048 

Appetite loss 0.005383* 0.002446 0.03161 0.0002 0.001415 0.88807 

Constipation 0.000454 0.002052 0.82565 0.0014 0.001386 0.3165 

Diarrhoea 0.000353 0.00274 0.20705 0.00393 0.001841 0.03688* 

Financial Problems -0.00432 0.002182 0.07174 -0.00113 0.001292 0.38527 

 
Table 5.5: Results from Statistical Modelling (BB Model) 

*Statistically significant at the two-sided 5% level 

 

LDVM 

The LDVM model estimates are more complicated to generate as they involve two 

distributions and two mixing probabilities. Consequently, more than 32 parameters are 

involved in determining predictions for the best-worst case scenarios (Table 5.6). The 

LDVMM also predicts well at extremes, despite similar R2 and RMSE to the random effects 

model (Table 5.4). However, the LDVMM is much more complex to use as an algorithm. 

Users would also need to know details of the mixing probabilities, as well as make stronger 

assumptions about the mixed distribution. Other mixtures were also considered, but the 

Normal/Beta mixture offered the best (smallest AIC) fitting model (Table 5.7). 
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 EQ-5D-5L EQ-5D-3L 

 Normal Beta Normal Beta 

  Estimate  SE Estimate  SE Estimate  SE Estimate  SE 

Intercept 0.07353 0.05925 -0.7052 0.4046 0.1032 0.1008 0.1579 0.8373 

Physical Functioning 0.008668* 0.000515 0.01394* 0.002851 0.007667* 0.000771 -0.01009 0.005942 

Role Functioning 0.00034 0.000439 0.01271* 0.002239 0.000961 0.000943 0.01046* 0.003785 

Emotional Functioning 0.002680* 0.000457 0.003145 0.002045 0.001808* 0.000593 -0.00191 0.004717 

Cognitive Functioning -0.00141* 0.000367 -0.00521* 0.001998 -0.00127* 0.000603 0.000919 0.003645 

Social Functioning -0.00085 0.000475 0.001153 0.001935 0.000355 0.000651 0.009044* 0.003982 

Global Health Status / QoL 0.00025 0.000236 -0.00051 0.00203 -0.00151* 0.000424 0.001184 0.004713 

Fatigue 0.000698 0.000519 -0.00074 0.002929 0.002149* 0.000875 -0.01064 0.006315 

Nausea / Vomiting -0.00063* 0.000368 0.001293 0.002378 0.000278 0.000649 -0.00853 0.00621 

Pain -0.00662* 0.000343 -0.00094 0.001835 -0.00584* 0.000568 0.01325* 0.005386 

Dyspnoea 0.001407* 0.000476 -0.00576* 0.001807 0.00064 0.000488 -0.00791* 0.004004 

Insomnia 0.00018 0.000239 -0.00156 0.001351 0.00029 0.000384 -0.00656* 0.002875 

Appetite loss -0.00085* 0.000253 0.008535* 0.001406 -0.00081* 0.000388 0.009893* 0.002344 

Constipation 0.002190* 0.000261 -0.00215 0.001445 0.001571* 0.000382 -0.00631* 0.003363 

Diarrhoea 0.001377* 0.000289 -0.00265 0.001942 0.000749 0.000563 0.005638 0.00477 

Financial Problems -0.00102* 0.00026 0.001778 0.001291 0.000539 0.000337 0.004688 0.00282 

Table 5.6: Results from Statistical Modelling (LDVMM: Normal + Beta) 

*Statistically significant at the two-sided 5% level 

 

           Mixture                      AIC 

 EQ-5D-5L EQ-5D-3L 

Normal /Beta -383.2 -189.1 

Normal/Gamma
#
 -250.5 -250.5 

Normal/Weibull
#
 -252.4 -128.4 

Normal/Log Normal -242.0 -124.4 

Table 5.7: Comparison of Model Performance of other Mixture Models
 

#
Model convergence problems resulted in some parameters not estimated and/or mixing probabilities not 

calculable. 

Health States 
 
EQ-5D-3L predictions by health state were generally as observed in the previous chapter - 

over-prediction at poorer health states. However, there appears to be some evidence that 

mapping algorithms based on EQ-5D-5L may yield improved predicted utilities at poorer 
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health states. In particular, the BB model showed improved predictions, regardless of the 

instrument. 

 

The predictions at poorer health states (Figures 5.3a (5L) & Figure 5.3b (3L)) present some 

interesting findings. Modelling with the LDVMM consisted of a BB and Normal distribution. 

Values >0.30 were modelled assuming a BB distribution. Predictions at poorer health states 

(assumed to be -0549 to 0.30) appear slightly worse. Moreover, better predictions with the 

LDVM after EQ-5D values >0.3 were observed. This supports a BB algorithm as a plausible 

model for developing a mapping algorithm for the EQ-5D-5L.  

 

The predicted values are worse for the EQ-5D-3L. About 50% of predicted utilities were 

over-predictions (higher than the observed value by any amount) with the EQ-5D-5L; for EQ-

5D-3L this value was 67% (Figure 5.3b).  

 

a) EQ-5D-5L       b) EQ-5D-3L 

 

             Figure 5.3: Observed vs. Predicted Values by the Health States  

 
Simulation and Cross Validation 
 
Each simulated data set of 985 observations for EQ-5D-5L and EQ-5D-3L were subject to a 

cross validation using a 50% random sample (about 492 observations each for EQ-5D-5L 

and EQ-5D-3L, respectively) for the BB model. Hence, a total of 1,000 R2, RMSE and mean 

predicted values were observed (Table 5.8 and Figures 5.4 – 5.7). For EQ-5D-5L and EQ-

5D-3L, respectively, the average (mean) R2 from the BB model was 76% (range 51% to 

89%) and 68% (range 38% to 79%); RMSEs averaged around 0.099 (range 0.069 to 0.155) 
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and 0.113 (range 0.058 to 0.177). Simulations from the Random Effects and LDVM models 

showed similar performance but were both inferior compared to the BB.  

 

Algorithm Parameter Mean Lower 95% Upper 95% Range 

EQ-5D-5L R
2
 0.76 0.69 0.82 (0.51, 0.89) 

 RMSE 0.099 0.075 0.121 (0.069,0.155) 

 Observed 0.572 -0.018 1.00 (-0.436,1.00) 

 Predicted 0.575 0.198 0.950      (0, 1) 

EQ-5D-3L R
2
 0.68 0.58 0.78 (0.38, 0.79) 

 RMSE 0.113 0.103 0.120 (0.058, 0.177) 

 Observed 0.515 -0.07 1.00 (-0.594, 1.00) 

 Predicted 0.518  0.112 0.89      (0, 1) 

Table 5.8: Results of Simulation and Cross Validation (BB Model) 

 
a) EQ-5D-5L                                                    b) EQ-5D-3L               

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

139 

 

 
Figure 5.4: Distribution of R

2
 and RMSE for Each of (a) EQ-5D-5L and  (b) EQ-5D-3L after Cross 

Validation Models (50% Holdout Sample): Random Effects Model 
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a) EQ-5D-5L Predicted Mean      b)EQ-5D-3L Predicted Mean 

 

 

Figure 5.5: Distribution of Predicted Means (a) EQ-5D-5L and (b) EQ-5D-3L after Cross 

Validation Models (50% Holdout Sample): Random Effects Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Distribution of R
2
 and RMSE for Each of (a) EQ-5D-5L and (b) EQ-5D-3L after Cross 

Validation Models (50% Holdout Sample): BB Model 
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Figure 5.7: Distribution of Predicted for each of (a) EQ-5D-5L and (b) EQ-5D-3L after Cross 

Validation Models (50% Holdout Sample): LDVMM Model 

 
Predicted mean utilities were closer to the observed for the EQ-5D-5L; 0.572 vs. 0.575, 

whereas, for the EQ-5D-3L, these were 0.515 vs. 0.518 (Table 5.8 and Figures 5.4 – 5.7). 

Hence, the sample predictions for the EQ-5D-5L appeared more accurate than those of the 

EQ-5D-3L, particularly with the BB model. When a different cut-off was used (e.g. 75% to 

model the data and 25% for prediction), there was no change was identified in the 

conclusion. A scatter plot of predicted versus observed EQ-5D-%L utilities are shown in 

Figure 5.8. 

 

 

 

 

 

 

 

 

 

 

 

 

Note: At lower utility scores (poorer health), over –predictions is greater with the EQ-5D-3L, as compared to EQ-

5D-5L. 

Figure 5.8: Scatter Plot of Observed vs. Predicted Values (EQ-5D-5L, EQ-5D-3L) – BB Model 
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5.4 Discussion  

Three mapping algorithms have been developed and compared for the EQ-5D-5L and EQ-

5D-3L using contemporary and novel modelling methods. It has been shown that EQ-5D-5L 

may offer better prediction at poorer health states, where several previous algorithms with 

EQ-5D-3L have usually over-predicted. Modest improvements of an algorithm based on EQ-

5D-5L over one based on EQ-5D-3L in terms of statistical metrics (e.g. R2, percentage 

predicted) have been confirmed with a BB model in this and previous analysis [109]. Others 

have suggested that two-part models may offer a way to predict the different parts of the 

distribution in the context of mapping with improved performance for handling over-prediction 

[138]. More recently, the suitability of the BB type models over other models has been 

confirmed [192,193]. In this analysis, the bimodal nature of the EQ-5D-5L value sets noted 

earlier [188] (Figures 5.6 and 5.8) have been confirmed.  

 

This appears to be the first time a mapping algorithm has been developed simultaneously 

from EQ-5D-5L and EQ-5D-3L in the same set of lung cancer patients, using EORTC-QLQ-

C30 and compared to each other using data collected from lung cancer patients in a real 

world NHS setting. Previous works with the EQ-5D-5L highlighted some of the limitations of 

the EQ-5D-3L, relating to aspects like bimodality of utilities and a lack of sensitivity to detect 

differences between treatment groups [149,142,194]. Some earlier mapping models did not 

take this into account, where for instance, an algorithm using the FACT-B in a breast cancer 

population was reported with R2 of nearly 48% (AIC was not reported) [195]. 

 

In this analysis, over-prediction at poorer health states still exist with EQ-5D-5L, although it is 

not as marked as EQ-5D-3L. The final value sets (Oppe et al., 2014) [188] were being 

developed at the time of writing this thesis, which may result in different predictions at poorer 

health states, compared to the final published ones. The reasons for over-prediction may be 

due to several factors, including the functional form of the model, the range of the scale (5 

point vs. 3 point scale), the number of health states and other clinical characteristics. It was 

suggested in Chapter 4 that over-estimates at poorer health states may be linked to other 

factors like poorer prognosis. Preliminary evidence of this is shown by observing the 

relationship between ECOG performance and EQ-5D utilities (Table 5.9). It is possible that a 

further complexity is required in the modelling by using the joint distribution of utilities and 

other outcomes (e.g. adverse events) to model the QLQ-C30 scores. 
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Table 5.9: Utilities and ECOG Relationship 

 

For the purpose of this thesis, the EQ-5D-5L and 3L assessments were taken in a narrow 

time window (e.g. 3 weeks apart). Therefore, there may be some concern about ‘carry-over’ 

or recall bias. To examine this, it was determined whether the health state responses were 

similarly recorded. For instance, if a response of 11112 was observed for EQ-5D-3L, it was 

checked whether this was also observed for EQ-5D-5L (responses >3 are not possible for 

EQ-5D-3L) or not. It was noted that for 15 out of the 146 (EQ-5D-5L) health states, the 

responses for EQ-5D-5L and EQ-5D-3L were the same. For instance, patients with 

responses of 11111 to both EQ-5D-5L and EQ-5D-3L in 18 of the 985 (pairs) of observations 

(<2%). In the vast majority of cases, the responses were different. This suggests that 

patients did not recall the previous responses and the presence of carry over may be 

unlikely. 

 

However, there are several limitations of this research. Firstly, this is a small sample size 

with relatively few health states. Although the sample size is larger than the algorithm 

reported by Kontodimopoulous (2009) [131].  Secondly, inferences need to be restricted to a 

similar cancer population, until further evidence emerges of wider applicability across tumor 

types. Thirdly, external validity was not possible in an independent data set and therefore 

cross-validation was used as a ‘second best,’ accompanied by simulation for out of sample 

predictions. Fourth, the questionnaires could have been randomized in the order they were 

given, although as noted from above, the potential for an order type effect was likely to be 

minimal over a two week period. Finally, the values of the EQ-5D-5L are cross-walked from 

the EQ-5D-3L and are therefore subject to uncertainty. However, in the absence of a readily 

identified set of value sets, and given that the EQ-5D-5L is currently being used in clinical 

research and for economic evaluation in the interim, using the EQ-5D-3L cross-walk sets are 

considered acceptable.  

 

Despite these limitations, this is the first mapping algorithm for the EQ-5D-5L using real 

world data with enhanced generalizability outside the RCT context. It is inevitable that further 

research is required, particularly through the use of exploring covariates and other clinical 

data in order to improve the mapping. 

ECOG     Mean EQ-5D-5L     Mean EQ-5D-3L 

 Observed Predicted Observed Predicted 

0 0.706 0.736 0.675 0.702 
1 0.625 0.638 0.589 0.600 
2 0.502 0.493 0.489 0.437 
3 0.317 0.331 0.273 0.284 
4 -0.024 0.237 0.067 0.199 
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5.5 Conclusion 

Mapping algorithms developed from EQ-5D-5L appear to provide improved estimates of 

utilities compared to EQ-5D-3L, specifically at poorer health states. Two-part models fit the 

data well and this result confirms earlier and more recent work. It is recommended that in 

studies where EQ-5D utilities have not been collected, an EQ-5D-5L mapping algorithm is 

used. 

 

The next chapter (Chapter 6) will explore the nature of the relationship between toxicity, 

utility and other clinical data when generating a mapping algorithm from the QLQ-C30. This 

will assist in determining whether more complex functional forms are needed to improve the 

utility estimation.  
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    Chapter 6 

Chapter 6: Joint Modelling and Covariates to Improve Estimation of EQ-5D 

Utilities  
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  Abstract 

Introduction: In this chapter, the impact of covariates is examined on the over or under 

prediction of mapping algorithms, specifically at poorer health states. In Chapter 4, it was 

briefly noted how factors other than condition-specific measures can potentially influence 

utility estimation (e.g. the relationship between adverse events and mean utility). Although 

EQ-5D-5L is a more recent instrument, EQ-5D-3L still remains dominant in UK HTA 

submissions. Therefore, examination of the covariates’ influence on prediction from both EQ-

5D-3L and EQ-5D-5L are investigated. 

 

Methods: The impact on the mapping with and without covariates from three models are 

considered: (i) Linear Random Effects Model (RE), which is a common type of algorithm; (ii) 

The Two-Part Beta-Binomial and (iii) a new joint model that considers a relationship between 

toxicity and EQ-5D to model condition-specific measures. Finally, an estimate of the utility 

increment/decrement is reported, following Nafees et al. (2008) [108]. Data from a real world 

study in NSCLC (Study 3) patients was considered to estimate utility for several important 

factors (e.g. response, gender, etc.). 

 

Results: Mapping with EQ-5D-5L was better than EQ-5D-3L, irrespective of model or use of 

covariates. However, it was the joint model that performed the best - R2, AIC, RMSE and 

percentage predicted within +10% of observed were 81%, -4333, 0.069 and 81%, 

respectively for EQ-5D-5L with covariates (ECOG, Histology, Stage, and Smoking: p<0.05). 

The random effects model was the best fitting model: R2, AIC, RMSE, and % predicted 

within +10% of observed were 67%, -328, 0.177 and 36%, respectively for EQ-5D-5L.  

   

Conclusion: Mapping based on the joint modelling of utility and toxicity in addition to 

covariates offers improvements in prediction of utilities over both the Random Effects and 

Beta-Binomial Model.  
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6.1 Introduction 

Following on from Chapter 4, the possible reasons why mapping functions under/over 

predict, specifically for patients in poorer health states are considered by investigating the 

joint relationships between outcomes (e.g. EQ-5D) and factors (e.g. age, gender). 

Over/under prediction occurs when a predicted value differs from the observed utility score 

by any amount, for the purposes of this thesis.  There is no formal definition of ‘over’ or 

‘under-prediction’ in the literature on mapping. Although very ‘small’ departures might appear 

negligible, these ‘small’ differences can have a marked impact on the ICER. Where the 

numerator of the ICER equation (Chapter 1) is large (large difference in costs), even small 

differences between observed versus predicted estimates of EQ-5D can influence the ICER.  

 

For example, in Table 6.1, an EQ-5D prediction error of about 2%, results in a similarly small 

(3%) change in QALY. However, the impact on ICER is marked, leading to an 8% change in 

the ICER (assume the QALY in the control group is unchanged) which changes a decision 

for a cost-effectiveness threshold of £30,000/QALY.  

 

 Experimental Control Difference ICER 

Cost 100,000 96,000 4,000  
EQ-5D Observed 0.65 0.52 0.13  
QALY  Observed 0.35 0.21 0.14 28,571 
     
EQ-5D Predicted 0.66 [1.5%] 0.53 [1.9%]   
QALY Predicted 0.36 0.23 0.13 30,769 [+8%] 

Table 6.1: Example Showing How Small Differences between Observed and Predicted EQ-5D 
Can Lead to Changes in ICER and the Cost-Effectiveness Decision 

 

Where over-prediction occurs, QALYs may be higher (or lower) than expected, which may 

impact the consequent ICER. This might lead to some cancer treatments to be erroneously 

declared cost-effective (or vice versa). The example in Table 6.1 shows it is not difficult to 

see how cost-effectiveness decisions can be altered through over (or under prediction) of 

EQ-5D utilities. Under-prediction is just as critical, because if utilities are under-predicted in 

the group receiving the standard of care, the experimental group (new treatment) may 

unfairly bias against the standard of care (comparator) as noted in Table 6.2. Although the 

assumption that under/over prediction is similar between groups, it is conceivable that a 

treatment that is very toxic may result in poorer HRQoL (and therefore health states). If 

mapping algorithms are reported to over-predict at poorer health states, the degree of the 

over-prediction may be different for each treatment group.   
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Standard (S) Experimental (E) Potential Impact 

on QALY  

Potential Impact 

on ICER* 

Over-prediction Over-prediction Higher QALY both No expected impact 

Over-prediction Under-prediction Lower QALY on E or S ICER biased against E 

Under-prediction Over-prediction Higher QALY on E or S ICER biased against S 

Under-prediction Under-prediction Lower QALY both No expected impact 

Table 6.2: Potential Impact on ICER and QALY (assuming all else is the same between groups) 

*For experimental vs. standard 

6.2 Sources of Over/Under-Prediction from Mapping Algorithms 

Over/Under-prediction (defined earlier as the difference between the observed and 

estimated utility) from mapping algorithms can happen for several important reasons: 

(i) The patient populations are the same: For instance, when a mapping algorithm is 

developed from a lung cancer population and applied to a target cancer dataset, 

which is also a very similar population (e.g. similar age, same tumor type, similar 

ECOG, cancer stage). In this situation, over/under prediction might be due to some 

other unknown, unmeasured or ‘hidden’ factors, such as the timing of toxicity or 

onset of drug action. 

(ii) The patient populations are different: The data used to develop the mapping 

algorithm and the data used for predicting are from different patients. For example, a 

mapping algorithm developed using breast cancer data may be applied to a prostate 

cancer data set. In this case, it is not only differences in cancer but also gender that 

may affect prediction (assuming a group by gender interaction). 

(iii) Populations are ‘similar’ or the same, but differ in baseline characteristics: For 

instance, patients have lung cancer in both data sets, but consist of poor prognosis 

patients in one data set (from which the algorithm was developed) and good 

prognosis in the other data set (where the algorithm is tested); or advanced stage 

cancer in some and early stage cancer in others – such as differences in 

ECOG/morbidity, particularly if these change over time (time varying covariates) 

(iv) Patient populations are different – they differ in baseline characteristics and differ in 

tumor types: For example, developing a mapping function from male patients with 

lung cancer and applying it to a female renal cell carcinoma data set. This is different 

to (ii) in that lung cancer patients and renal cell carcinoma patients can be male or 

female.  
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(v) The two HRQoL instruments are actually measuring different things, even if all other 

factors are similar. For instance, clinical and demographic characteristics are similar, 

but one instrument may be measuring a condition specific HRQoL feature and the 

other a generic HRQoL feature. The lack of overlap may result in poor prediction. 

The correlation between a generic and highly symptom specific measure may be 

poor for prediction purposes. 

(vi) The inadequacy of the mathematical algorithm: The mathematical form of the model 

is not flexible enough to handle complex distributional properties like over-dispersion 

(ceiling effects), skewness and general non-normality, as well as bivariate 

relationships between multiple responses. 

(vii) Different ranges: The range of the two measures is different. For instance, the data 

used to develop the algorithm is from -0.35 to 0.80 for EQ-5D-3L with 20 to 85 for 

QLQ-C30; the target data used to apply the algorithm has QLQ-C30 values that 

range from a wider scale of 0 to 100 leading to extrapolation and greater uncertainty.  

(viii) Some important missing information or factors associated with both EQ-5D and QLQ-

C30 are not included: For instance, high toxicity may result in poor HRQoL when 

measured with EQ-5D and with QLQ-C30. In this situation, a patient may have had a 

severe toxic event resulting in poor EQ-5D and also poor scores on the QLQ-C30. 

Conversely, a positive treatment effect may result, in good HRQoL and potentially 

less toxicity. 

 

The above are likely to be the most common reasons, although there may be additional 

factors that explain the nature of utility prediction. If none of the issues in (i) to (viii) above 

explain how good/poor the predictions are, then alternative modelling approaches could be 

considered (e.g. Bayesian Networks, Chapter 7).  

One hypothesis considered in this chapter is that mapping algorithms using clinical type 

measures like toxicity, which are collected in almost all clinical trials, can be used to form a 

joint relationship with EQ-5D responses to model a condition-specific measure over time. 

Therefore, a bivariate relationship of the form (Y1, Y2) = f (X) is considered, where X is a 

matrix of responses from some condition-specific measure (e.g. the 15 scores from QLQ-

C30) and  is a vector of coefficients associated with QLQ-C30; Y1, for instance, could be 

responses (utilities from EQ-5D), correlated with Y2, which might be adverse event grades. 

Moreover, the relationship between utilities and toxicities might be similar across cancer 

studies because one specific cancer drug may be used for several tumor types. This 
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approach to mapping may address the over-prediction at poorer health states observed in 

chapter 4. Therefore, it is pertinent to first explore the potential reasons for over/under 

prediction. 

6.3 Influence of Clinical and Demographic Factors on Utility Estimation 

In some published algorithms [128], demographic characteristics are used to form part of the 

mapping algorithm; but these variables can be very specific to trials (e.g. gender is not a 

relevant factor for modelling in a mapping algorithm for prostate cancer patients); baseline 

clinical characteristics can also be quite specific to the trial or study in question and may not 

be generalizable. The use of such characteristics in statistical models of mapping is also 

referred to as covariate adjustment (where the included variable is called a covariate).  

 

The use of covariate adjustments is not novel. Several published mapping algorithms have 

incorporated baseline covariates [111]. However, little research has been conducted on the 

impact of the covariates with two-part models and none exist for joint models. Moreover, the 

impact of covariates on prediction at poorer health states has not been considered. 

 

If covariates are used to develop the mapping model, then ideally values for these factors 

should be present in the target data (i.e. the data set where the algorithm will be applied to 

generate the predicted utilities) set if the mapping is to be useful. For instance, if the 

mapping algorithm includes a coefficient for ECOG, but in the target data set, ECOG is not 

collected, the value of the algorithm becomes limited. In addition, if ECOG in one data set 

ranges from 0 to 1, whereas the target data set ranges from 0 to 3, the predictions are 

uncertain (or impossible to predict) for ECOG 4. Therefore, where covariates are used for 

developing a mapping algorithm, it may be better that they cover a wider range (e.g. ECOG 

0 to 3 or an age range covering elderly patients).  

 

The following covariates, in addition to the 15 domain scores of QLQ-C30, are often 

collected in (lung) cancer studies [165,166] 

 ECOG categorical 0, 1, 2, 3 4. 

 Age (as a continuous measure). 

 Gender Categorical (Male /Female). 

 Stage of Cancer (categorical I, II, III, IV, including sub-stages such as IIa) 

 Histology (Adenocarcinoma, large cell, squamous for NSCLC only ). 

 Smoker status (smoker, ex-smoker, never smoked). 
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When covariates are modelled, the interpretation of coefficients is that the utility changes by 

a constant amount (if the model is linear in parameters) across the values the covariate 

assumes. For instance, the rate of change in utility across different ages may be assumed to 

be constant for each year a patient gets older. However, in reality, the rate of change in 

utility may be faster after some specific age or even slower, depending upon the particular 

disease (e.g. patients with Alzheimer’s disease might deteriorate much more rapidly with 

age). It is possible to incorporate the covariates in a non-linear functional form to account for 

this e.g. Logarithm of age.  

 

An alternative approach is to report average utilities for specific subgroups of patients or 

through certain clinical characteristics. Nafees et al. (2008) reported estimates of utility 

values from the general public for various clinical factors (e.g. a utility for each of ECOG 0, 1 

or 3), using a standard gamble (SG) approach [108]. However, these were not from data in 

NSCLC patients, but from the community (general public) based estimates. Values of utilities 

are likely to be different between patients and the public and more so for specific clinical 

characteristics. For instance, a poor prognosis advanced (stage III or higher) NSCLC patient 

with an ECOG score of 3 may have a much lower utility value compared to a Stage I cancer 

patient with an ECOG of 0.  

 

It has been acknowledged that estimates of utilities from patients belonging to each or 

combinations of these categories would have been informative, if available [108]. Moreover, 

using estimates of utility values based on SG methods from the general public are unlikely to 

yield similar values for patients, who have experienced toxicities while having important 

clinical characteristics (e.g. ECOG 2, Stage II) that influence preferences for health states. 

To summarize, if values of utilities are available from patients with this combination of clinical 

characteristics, then these ought to be used in an economic evaluation.  

 

The data used in this chapter has a similar sample size compared to previously reported 

research [108], with the important distinction that utilities are estimated in cancer patients in 

a real world setting and will provide valid estimates of utilities for economic evaluation in 

cancer (NSCLC) studies. The results from this real world data offer unique estimates of both 

EQ-5D-5L and EQ-5D-3L utilities across several important demographic and clinical 

markers. Estimates of utilities will be compared and contrasted with those in a similar way to 

others [108] using a similar modelling approach. 

 

Therefore, this chapter will compare several models with and without covariates, using data 

from NSCLC patients. These models include Linear, Non-Linear and Joint models. In 
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addition, utility values for each of the clinical characteristics will also be reported and 

compared to those already published.  

 

6.4 Methods 

6.4.1 Study Design  

Study 3 design (Observational study) 

Details of the study design were provided in Chapter 3. Local ethics approval was given by 

the NHS research and ethics committee [(REC) Reference LH/56/2014]. 

 
Assessments 
 
Described in Chapter 3 

 

Adverse Events 

Adverse events (AEs) and health resource use were collected as and when they occurred. 

The AEs were graded using National Cancer Institute’s (NCI) Common Toxicity Criteria 

(CTC) Version 2.0 [196] from Grade 1 to Grade 5 (Death). See Chapter 3 for further details. 

6.4.2 Modelling Approaches 

Two approaches to modelling were considered. Firstly, jointly modelling of Grade 3 and 

higher adverse events and EQ-5D utilities as a function of the 15 QLQ-C30 domain scores, 

using a separate Random Effects (RE) model for comparison. Secondly, EQ-5D-3L utilities 

were modelled using clinical factors to estimate the (mean) utility values for given subsets of 

clinical and demographic characteristics, following Nafees et al. (2008). Model performance, 

in all the above modelling approaches, were compared as before using several criteria 

reported previously, including R2, AIC, RMSE, % predicted within +5 and +10%. 

6.4.2.1 Linear Models with Covariate Adjustments 

For any linear mapping model, a response from each patient at each time point Yij is 

required, where the subscript i refers to each patient and j to the time point at which the 

response was elicited. In order to predict a patient-level EQ-5D utility from a given condition-

specific measure (e.g. the 15 QLQ-C30 domains), the linear form of mapping algorithms 

takes the familiar multiple regression forms: 

 

Yij =+ 1X1+2X2 +…….+nXn + ij,                             [6.1] 
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where the ij are identically and independently Normally Distributed N(0,2). Since each 

patient is likely to have repeated measures each block of observations (or each cluster) is 

independent (observations within each subject are unlikely to be independent). 

Consequently, a mixed model approach was used by adding a random effect (Random 

effects model).  

 

The above approach is an example of how most mapping algorithms are reported and 

developed, whether linear, non-linear frequentist or Bayesian. The coefficients of these 

models are assessed for their ‘significance’, often by considering a p-value. If the p-value is 

statistically significant (e.g. p<0.05), the coefficient is retained in the model and the factor is 

considered ‘useful’ or ‘important’ for the purposes of prediction. The practicality or 

significance of a factor may also depend on its clinical relevance. For instance, in QLQ-C30, 

‘Financial’ domain (patients have some fear of facing financial difficulties in paying for their 

cancer treatment) can be less significant if cancer treatment is paid by a country’s national 

health service, despite being a statistically important predictor of the response (EQ-5D 

utility).  

 

6.4.2.2 Joint Models 

A joint model is an alternative approach for investigating over/under prediction. A joint model 

assumes the following (using an example): 

 

 The utilities (first response, Y1) and independent factors (QLQ-C30) are related 

(Figure 6.1). 

 The utilities (Y1) and 2nd response (Y2, where Y2 represents presence or absence of a 

grade 3 or higher adverse events) are related. The adverse events can typically be 

linked to the drug (e.g. Grade 3 or higher neutropenia)  

 The adverse events (Y2) and independent factors (QLQ-C30) are related. 
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Figure 6.1: Description of Joint Modelling Approach  

The heuristic reasoning behind the joint modelling approach is that as adverse events (Y2) 

become worse, utility (Y1) may also deteriorate. It is hypothesized that modelling the 

correlation between two (or more) outcomes and factors (QLQ-C30) might improve 

predictive performance (and smaller standard errors). In Figure 6.1, the arrows move from 

Y1 and Y2 to illustrate the (independent) predictive relationship between each of Y1 and Y2. 

However, Y1 and Y2 themselves are correlated. The benefits of jointly modelling Y1 and Y2 

are that since both Y1 and Y2 are, in fact, outcomes measured after treatment, modelling this 

correlation is likely to result in better prediction, smaller standard errors of coefficients and 

improved model fit.  

 
6.4.2.3 Joint Modelling Notation 

The joint modelling approach will now be formalized using standard notation [197,198]. 

Assume that adverse event is a binary response (Y2), such that any AE grade > 3 is 

categorized as 1, otherwise 0. A consequence of Y2 is its impact on Y1, the EQ-5D utility. 

Variables that are assumed to impact Y = (Y1, Y2) are the 15 QLQ-C30 domain scores 

(explanatory variables) and other potential baseline covariates, Z. If Z consists of the 15 

QLQ-C30 domain scores and also additional baseline covariate, age, then Z will consist of 

the 15 coefficients of the 15 QLQ-C30 scores and additional coefficients such as covariates.  

 

One may model each Yk separately by structuring the mean, E[Yk|Zk] and var[Yk|Zk], k=1,2. 

The values of k refer to the response outcomes (AE for k=1 and utility for k=2). For instance, 

if modelled separately, this would be: 

 

         Y1 = f(Z1)
k=1 =  + 1X1 +2X2 + ………+15 X15                 [6.2] 

               and Y2 = f(Z2)
k=2 =  + 1X1 +2X2 + ………+15 X15                   [6.3] 
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The covariates Z1, Z2 need not be the same. Although, in this instance, they will be assumed 

to influence Y1 and Y2 in equal importance. A parameter is introduced to link the two 

outcomes (utility and AE) through a shared random effect when estimating the expected 

value of Y, i.e. E[Y|Z,] or by structuring the covariance matrix var (Y|Z). 

 

The joint effect of Y1 (utilities) and presence or absence of a grade 3 adverse event 

presence, has the joint distribution: 

               f(Y1,Y2|Z) =f(Y1|Z) f(Y2|Y1,Z)                        [6.4] 

 

The generalized linear model gk(E(Yik|Zi)) = Z’ikk, k=1,2 is the framework for undertaking the 

modelling. The function gk is a link function used to model the specific distribution of each 

outcome: g1 models utilities and assume these as normally distributed (for simplicity) with a 

link function g1(u) =u (the identity link);  g2 models the adverse event where 

                                            g2(u) =-1(u) a probit link. 

  

The procedure GLIMMIX in SAS® is used to estimate the two marginal models jointly. 

 

6.4.2.4 Two-Part Models 

In certain situations, the outcome of interest has a large number of zero or one outcomes 

and a group of non-zero outcomes that are discrete or highly skewed, such as in health care 

costs, where some patients have zero costs or the distribution of positive costs are often 

extremely skewed. An example of such a model was shown using data in chapter 4. The 

results of chapter 4 are already published [109], where a zero-one (three-part) model was 

used. It is called a 3-part model, because of the need to model the over-dispersed zeros (i.e. 

lots of zero’s), modelling the over-dispersed ones and then modelling the values between 0 

and 1. It has been suggested that two-part models may offer a way to predict the different 

parts of the distribution in the context of mapping with improved performance for handling 

over-prediction [138]. This was shown to be the case with the use of the BB model in 

Chapter 4.  

 

One limitation of the BB model used in Chapter 4 was the restriction of negative values to 

zero (because there were so few), which necessitated a 3-part model. For this chapter, a 

transformation is carried out so that a two-part model can be used (i.e. overdispersion of 

values around 1 or 0). Hence, the two-part model in this chapter will be similar to the one 
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used in Chapter 4 and a non-linear BB model will be used (rather than a TOBIT type two-

part model [101]).   

 

Therefore, the following set of models will be considered (Table 6.3) 

Model QLQ-C30 Covariates* Structure Model Details 

1 Yes No Linear Random Effects 
2 Yes Yes Linear Random Effects 
3 Yes No Non-Linear Beta-Binomial 
4 Yes Yes Non-Linear Beta-Binomial 
5 Yes No Joint Two responses 
6 Yes Yes Joint Two responses 
*Covariates: Age, gender, ECOG, Stage, histology, smoking status 

                                     Table 6.3: Summary of Models Compared 

 
6.4.3 Utility Estimates for Various Clinical Factors 
 
Using data from Study 3, EQ-5D-3L and EQ-5D-5L utilities are modelled, including several 

demographic and clinical factors. A Random Effects (RE) model was used previously 

[108,199]. The intercept was considered as the overall mean and utility 

increments/decrements from this intercept were used to provide estimates of utilities for 

each clinical or demographic characteristic. Therefore, a similar approach is used in order to 

facilitate comparisons with previously reported results.  

6.5 Results 

The details of demographics from Study 3 were provided in Chapter 5. The relationship 

between EQ-5D, ECOG and Toxicity are shown in Tables 6.4 and 6.5. A clear relationship 

between EQ-5D and toxicity is shown where EQ-5D HRQoL becomes worse as the AE 

severity increases. It appears to be this relationship at the patient-level, which has been 

exploited in an attempt to improve model performance. Hence, the proposed model appears 

plausible, because utility worsens with worsening toxicity. 

 

 

 

 

 

Table 6.4 ECOG in Relation to EQ-5D Utility 

 

 

ECOG     Mean EQ-5D-5L     Mean EQ-5D-3L 

 Observed Predicted Observed Predicted 

0 0.706 0.736 0.675 0.702 

1 0.625 0.638 0.589 0.600 

2 0.502 0.493 0.489 0.437 

3 0.317 0.331 0.273 0.284 

4 -0.024 0.237 0.067 0.199 
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Table 6.5 Relationship between AE and Utility 

 
Adverse Events 
 
There were a total of 56/98 (57%) of patients who reported grade 3 or higher AEs; all 

patients reported at least one AE of any grade; 20%, 12%, 10% and 36% and 14%, 

respectively reported Grade 0 to Grade 1 AEs (Table 6.6). The majority of the Grade 3 and 

above toxicities appeared to be related to routine treatment or the underlying disease and 

consisted of weight loss (19%), Dyspnoea (10%), Pain (14%) and Chest Infection (8%). The 

maximum grade was used if the AE occurred more than once. 

 

 

                                          

 

 

 

 

 

 

 

 

 

                                Table 6.6: Toxicities by Maximal Grade  

 
Model Performance 
 
Tables 6.7 and 6.8 illustrate the results of model comparisons. Amongst all models, for both 

EQ-5D-3L and EQ-5D-5L, the Joint modelling approach based on R2, and AIC indicated the 

‘best’ model fit, either with or without covariates. Without covariates, the RE, BB, and Joint 

models reported R2 of 67%, 69%, and 80% respectively, with AIC’s of -291, -385 and -3701 

for EQ-5D-3L (Table 6.7, Table 6.8). For EQ-5D-5L, these were 72%, 75% and 85% for R2; 

and AICs were -365, -475 and -3757, respectively. Also, adjusted R2 were slightly lower but 

similar. Moreover, in the presence of covariates, ten QLQ-C30 predictors were statistically 

significant compared to only four for both BB and RE models when modelling EQ-5D-3L 

utilities. For EQ-5D-5L, a similar pattern emerged (Table 6.7, 6.8 and 6.9), with 

AE Grade Mean EQ-5D-5L Mean EQ-5D-3L 

0 0.52 0.56 
1 0.52 0.55 
2 0.54 0.53 
3 0.49 0.46 
4 0.31 0.39 

AE Grade  N=98 (n,%) 

0  20 (20%) 
1  12 (12%) 
2  10 (10%) 
3  36 (36%) 
4  14 (14%) 
5  6 (6%) 
Grade 0-2  42 (43%) 
Grade >3  56 (57%) 

   
Five Most Common Grade >3 AEs  
Weight Loss 19 (19%) 
Dyspnoea 16 (16%) 
Pain 10 (19%) 
Chest Infection 14 (14%) 
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improvements to the BB model. Therefore, modelling the correlation between toxicity and 

utility appears to have contributed towards a more powerful statistical test of rejecting 

H0:i=0 in favor of H1:i≠0. This hypothesis relates to the coefficients or predictors of the 

utility. That is, at least one of these predictors is non zero (i≠0) and influences the 

prediction of the EQ-5D utility.  
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 1: RE 2: RE Cov 3: BB  4: BB Cov  5: Joint 6: Joint Cov 
 

Intercept 0.08046 0.5118 -0.0123 0.1448 0.141174
#
 -0.159258

#
 

Physical Functioning 0.005437* 0.3598
#
 0.01918 1.8351

#
 0.005358

#
 0.005165

#
 

Role Functioning 0.001392* 0.02073 0.00421 0.4006 -0.001852
#
 -0.003122

#
 

Emotional Functioning 0.001949* 0.1294 0.00661 0.6921
#
 0.003562

#
 0.004074

#
 

Cognitive Functioning -0.00073 -0.06618 -0.00425 -0.4856
#
 -0.001235

#
 -0.001533

#
 

Social Functioning 0.000516 0.04849 -0.00035 0.07463 0.000182 0.000293 
Global health status / QoL -0.00043 -0.08086

#
 -0.00197 -0.3012 0.002020

#
 0.002501

#
 

Fatigue 0.000993 0.06067 0.00443 0.4700 0.000257 0.000338 
Nausea / Vomiting 0.000276 -0.05768 -0.00146 0.02201 0.001152

#
 0.000408

#
 

Pain -0.00219 -0.2327
#
 -0.03278 -1.0981

#
 -0.001556 -0.002496

#
 

Dyspnoea -0.00011 -0.02561 0.00015 -0.08724 -0.000092679 0.000117 
Insomnia -0.00004 -0.00274 0.00193 0.05503 -0.000470 -0.000389 
Appetite loss 0.000341 0.009468 0.0002 -0.05375 0.000791 0.000706 
Constipation 0.000524 0.03047 0.0014 0.1260 -0.002282 -0.001911

#
 

Diarrhea 0.000499 0.03633 0.00393 0.2142 0.001098
#
 0.000622

#
 

Financial Problems -0.00004 0.04696
#
 -0.00113 0.1526 0.141174

#
 0.000395

#
 

       
Model Statistics       
Predicted Mean* (SD) 0.523 (0.252) 0.522 (0.201) 0.518 (0.183) 0.517 (0.199) 0.519 (0.112) 0.513 (0.099) 
Observed Mean (SD) 0.515 (0.308) 0.515 (0.308) 0.515 (0.308) 0.515 (0.308) 0.515 (0.308) 0.515 (0.308) 
R

2
 67% 74% 69% 78%  80%   81% 

RMSE 0.183 0.177 0.113 0.101 0.079 0.069 
% predicted +5% 19% 21% 21% 43% 67% 73% 
% predicted +10% 37% 39% 47% 57% 77% 81% 
AIC (smaller better) -291 -328 -385 -396 -3701 -4333 

Covariates of significance
*
 

      
N/A 

 
ECOG, 
Histology 
 

   N/A ECOG, 
Histology 
Stage 
Smoking 

N/A ECOG 
Histology 
Stage 
Smoking 

*predicted from model 
1
 RE: Random Effects (no covariates); 2: RE (covariates); 3: BB (no covariates); 4: BB (covariates); 5: Joint (no covariates);  6: Joint (covariates); ~ Mean Absolute Error 

(calculated as 1/n  |(predicted – observed)|; Statistically significant at two-sided 5% level; 
*
statistically significant covariates at 2 sided level 5% level; 

+
computed by modelling 

observed vs. predicted 

Table 6.7: Summary of Results Comparing Joint Modelling Approach – EQ-5D-3L 
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 1: RE 2: RE Cov 3: BB  4: BB Cov  5: Joint 6: Joint Cov 
 

Intercept 0.2255 0.41878 -1.51144 -0.5679 0.13512
#
 -0.16668

#
 

Physical Functioning 0.006718* 0.41208
#
 0.03644* 2.3147

#
 0.00623

#
 0.003943

#
 

Role Functioning -0.00032 0.06898
#
 0.009619* 0.2258 -0.00199

#
 -0.002922

#
 

Emotional Functioning 0.001871* 0.12975
#
 0.01904* 0.6208

#
 0.001233

#
 0.003774

#
 

Cognitive Functioning -0.00057 -0.03798 -0.00633 -0.1863 -0.00023
#
 -0.00200

#
 

Social Functioning 0.000387 0.034609 -0.00013 0.3489
#
 0.000211 0.000493 

Global health status / 
QoL 

-0.00109* -0.02527 
0.001652 

-0.1560 0.00432
#
 0.001999

#
 

Fatigue 0.000324 0.09045
#
 0.003561 0.7556

#
 0.000199 0.000229 

Nausea / Vomiting -0.00041 -0.00175 0.000452 0.4261
#
 0.00221

#
 0.000511

#
 

Pain -0.00290* -0.13667
#
 -0.03569* -1.0404

#
 -0.000888 -0.001999

#
 

Dyspnoea 0.000368 -0.00408 -0.00806* -0.04231 -0.000123 0.000161 
Insomnia -0.00017 0.001200 0.002047 -0.07279 -0.000460 -0.000334 
Appetite loss -0.00030 0.021845 0.005383* 0.1075 0.000823 0.000834 
Constipation -0.00013 0.020708 0.000454 0.2775

#
 -0.001992 -0.001884

#
 

Diarrhoea 0.001155* 0.014075 0.000353 0.1022 0.009398
#
 0.0005975

#
 

Financial Problems 0.000345 -0.002281 -0.00432 0.02042 0.19394
#
 0.0004221

#
 

       
Model Statistics       
Predicted Mean* (SD) 0.577 (0.241) 0.576 (0.299) 0.575 (0.211) 0.573 (0.223) 0.571 (0.113) 0.571 (0.100) 
Observed Mean (SD) 0.572 (0.211) 0.572 (0.211) 0.572 (0.224) 0.572 (0.211) 0.572 (0.211) 0.572 (0.211) 
R

2
 72% 73% 75% 77%  85%   87% 

RMSE 0.152 0.149 0.092 0.087 0.059 0.053 
% predicted +5% 19% 31% 29% 56% 63% 69% 
% predicted +10% 38% 44% 59% 72% 81% 84% 
AIC (smaller better) -365.3 -377.4 -485.3 -486.1 -3757 -4432 

Covariates of significance
#
 

     N/A Histology 
 

   N/A ECOG, 
Histology, 
Stage 

N/A ECOG 
Histology 
Stage 
Smoking 

*predicted from model; 
1
 RE (no covariates); 2: RE (covariates); 3: BB (no covariates); 4: BB (covariates); 5: Joint (no covariates);  6: Joint (covariates); ~ Mean Absolute Error 

(calculated as 1/n  |(predicted – observed)|; 
#
Statistically significant at two sided 5% level; 

#
statistically significant at 2 sided level 5% level; 

+
computed by modelling observed 

vs. predicted 

Table 6.8: Summary of Results Comparing Joint Modelling Approach – EQ-5D-5L 
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The predictions at poorer health states were also improved for the Joint model (Figure 6.2). 

The results were slightly better for EQ-5D-5L in comparison to EQ-5D-3L. The estimates of 

mean EQ-5D predictions were slightly improved with covariates - the percentage predicted 

within + 5% and +10% were higher when models included covariates (Tables 6.4 and 6.5). 

Hence, there appears to be a combination of a wider scale for EQ-5D-5L and information 

from covariates and toxicity data, which inform expected utility behaviour. Results from the 

cross-validation simulation (Table 6.9) suggesting the Joint models appear to be a more 

useful mapping algorithm with less uncertainty (slightly shorter confidence intervals for 

parameters). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Comparing by Health States (a,b) without and (c,d) with Covariates for Each Model 

(RE, BB, Joint) 

 

a) EQ-5D-5L no covariates                  b) EQ-5D-3L no covariates 

c) EQ-5D-5L covariates                               d) EQ-5D-3L covariates 
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Model Algorithm Parameter  Mean Lower 5% Upper 95% Range 

       
RE EQ-5D-5L R

2
 0.69 0.61 0.75 (0.43, 0.79) 

  RMSE 0.116 0.138 0.177 (0.113,0.218) 
  Observed 0.572 -0.018 1.00 (-0.436,1.00) 
  Predicted 0.573 0.0037 0.924 (-0.305, 1.205) 
       
 EQ-5D-3L R

2
 0.63 0.54 0.72 (0.45, 0.80) 

  RMSE 0.187 0.167 0.207 (0.14, 0.23) 
  Observed 0.515 -0.07 1.00 (-0.594, 1.00) 
  Predicted 0.582 0.05 0.88 (-0.41, 1.19) 
       
       
BB EQ-5D-5L R

2
 0.76 0.69 0.82 (0.51, 0.89) 

  RMSE 0.099 0.075 0.121 (0.069,0.155) 
  Observed 0.572 -0.018 1.00 (-0.436,1.00) 
  Predicted 0.575 0.198 0.950      (0, 1) 
       
 EQ-5D-3L R

2
 0.68 0.58 0.78 (0.38, 0.79) 

  RMSE 0.113 0.103 0.120 (0.058, 0.177) 
  Observed 0.515 -0.07 1.00 (-0.594, 1.00) 
  Predicted 0.518  0.112 0.89      (0, 1) 
       
       
Joint EQ-5D-5L R

2
 0.85   0.63 0.96 (0.58, 0.99) 

  RMSE 0.058   0.051 0.069 (0.049, 0.072) 
  Observed 0.572 -0.018 1.00 (-0.436,1.00) 
  Predicted 0.570 -0.0161 0.998 (-0.436, 1.00) 
       
 EQ-5D-3L R

2
 0.81 0.61 0.94 (0.572, 0.975) 

  RMSE 0.072 0.063 0.089 (0.059, 0.101) 
  Observed 0.515 -0.07 1.00 (-0.594, 1.00) 
  Predicted 0.512 -0.059 0.99 (-0.594, 1.00) 

                          Table 6.9: Results of Simulation and Cross Validation 

 
 
Example of an application of the Joint Model 

 

An example of how the joint model algorithm is applied is shown for the EQ-5D-3L:  

For a joint model, two sets of equations are needed. One set through modelling the 

probability of a grade 3 or higher adverse event with the 15 QLQ-C30 variables and one set 

through modelling EQ-5D. Table 6.10 shows the coefficients for the Binary and Linear 

predictors. 
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 Linear (EQ-5D) Binary (AE) 

Intercept 0.08046 0.5118 
Physical Functioning 0.005437* 0.3598

#
 

Role Functioning 0.001392* 0.02073 
Emotional Functioning 0.001949* 0.1294 
Cognitive Functioning -0.00073 -0.06618 
Social Functioning 0.000516 0.04849 
Global health status / QoL -0.00043 -0.08086

#
 

Fatigue 0.000993 0.06067 
Nausea / Vomiting 0.000276 -0.05768 
Pain -0.00219 -0.2327

#
 

Dyspnoea -0.00011 -0.02561 
Insomnia -0.00004 -0.00274 
Appetite loss 0.000341 0.009468 
Constipation 0.000524 0.03047 
Diarrhea 0.000499 0.03633 
Financial Problems -0.00004 0.04696

#
 

 

Scale 2 

 
0.7051 

 

12 -0.623  

 
Table 6.10: Coefficients from linear and logit parts of the model for prediction 

 

From Table 6.10, as noted previously the expected EQ-5D utility increases with some factors 

(e.g. Physical function) while decreasing with pain. Similarly, the incidence of grade 3 or 

higher adverse events in the Binary column increases for factors like Pain (a negative 

coefficient) and the risk of an adverse event falls with improving physical function or 

symptoms. 

 

The expected value of EQ-5D after taking into account the 3-way relationship between 

toxicity, AE, and QLQ-C30, is determined by: 

 

E[Y2|Y1, QLQ-C30] = Z22 + Y1 +1/2 2
2 x {[Z11 +12 2]/Z21}    [6.5] 

 

where:   

Z22 are the 16 coefficients (including the intercept) relating he EQ-5D-3L with the QLQ-C30, 

Y1 is the binary outcome related to the presence or absence of a Grade 3 AE  

Z11 are the 16 coefficients (including the intercept) for the relationship between the 

probability of AE and QLQ-C30  

 is a parameter such that the ratio of the sample means for Y2 when (Y1=1), and Y2 when 

(Y1=0),  is e -1  

2 is a scale parameter estimated from the modelling  

12 is the correlation between grade 3 AE and EQ-5D 
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In equation [6.5], the EQ-5D is first estimated when Y1 (Grade 3 AE outcome is set to 1) and 

then repeated when Y1 =0 (no AE). Then the EQ-5D is estimated by computed an average 

(mean) over all patients in the sample. 

 
Hence, the estimated mean EQ-5D-3L is determined as follows where Y1=1: 
 
 
[(0.08046 +0.005437*PF +0.001392*RF +………-0.00004*FI) +  
 

*1 + ½*0.7051) ] x  
 
{((0.5118 + 0.3598*PF + 0.02073*RF +…….+0.0469*FI) + (-0.623) x (0.7051))/ 
                   (0.5118 + 0.3598*PF + 0.02073*RF +…….+0.0469*FI))}  
 
=0.413 
 
In equation [6.5], when covariates are added, the mean EQ-5D-3L utility is 0.413 when AEs 

are present and 0.613 without AEs, resulting in an overall mean of (0.413+0.613)/2 = 0.513 

 
Relationship between Utility and Covariates 
 
Tables 6.10 and 6.11 show the utility decrements associated with covariates and AE grades. 

Following Nafees et al. (2008), Lloyd et al. (2006) and Sturza (2010) [108,159,199], the 

estimates of EQ-5D-3L utilities from Study 3 slightly vary from those reported earlier 

[69,138,168]. Model-based least squares mean estimates yield EQ-5D-3L mean utilities of 

0.5882 (Study 3) vs. 0.653 (Nafees et al., 2008);  and 0.5882 vs. 0.673 (Lloyd et al., 2006). 

The differences in these results may reflect differences in populations between those in 

Nafees et al. (2008), Lloyd et al. (2006) and Study 3.  

 

Nafees et al. (2008) reported estimates based on community approximations (and not actual 

patients), as were those in Lloyd et al. (2006). Some differences may be due to the fact that 

Study 3 is a real-world study in NSCLC patients. Only EQ-5D-3L was modelled (response) 

against covariates because EQ-5D-5L data were not available at the time. The responses 

were modelled using a multivariate regression model. There is a clear presence of 

multicollinearity (Variance Inflation Factor =1.9) because patients with comorbidities also 

presented with adverse events (e.g. Hemoptysis, the coefficient of -0.1825) are likely to 

occur with Cough (-0.0706). The multicollinearity does not impact the direction of the effect 

(i.e. EQ-5D worsens in the presence of the AEs). However, the magnitude of the effect is 

notable. For instance, Hemoptysis results in nearly three times a greater decrement in utility 

compared to having a cough. Both of these symptoms are simultaneously present in late-

stage NSCLC patients.   
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Table 6.10 shows the utility decrements (Study 3) resulting from patients who experience 

adverse events (Grade 1 or higher). For instance, patients with rash are considered to have 

a utility decrement by 0.146 (value of -0.146). The AEs with the largest impact on utilities 

were Pleural Effusion (-0.398), Dysphagia (-0.331), Decubitis (-0.327) and Vomiting (-0.311). 

The AEs with the least impact were Alopecia (-0.071), Double Vision (-0.071), Fracture (-

0.071) and High Platelet Count (-0.076). Interestingly, QLQ-C30 also suggested Alopecia 

had a minimal impact on HRQoL.   

 

    Adverse Event EQ-5D-3L 

 Pneumonia -0.162636 

 Rash -0.146111* 

 Vomiting -0.311000* 

 ALP -0.086734 

 Alopecia -0.071000* 

 Back Pain -0.003421 

 Cough -0.070600* 

 Creatinine -0.086787 

 Cystitis -0.294000 

 Decubitus -0.327000 

 Desquamation -0.094521 

 Dizziness -0.098738 

 Double vision -0.071000 

 Dry Skin -0.101831* 

 Dysarthria -0.294000 

 Dysgeusia -0.294000 

 Dysphagia -0.330500 

 Fracture -0.071000 

 Haemoptysis -0.182500* 

 Hoarseness -0.234500 

 Hot flushes -0.294000 

 Hot sweats -0.071000 

 Hypoalbuminemia  -0.110666 

 Infection, normal ANC  -0.140818 

 Leucocytes -0.082675 

 Nail changes -0.294000 

 Neurology other Blackout -0.294000 
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 Ocular other hemianopia -0.294000 

 Platelets -0.076259 

 Pleural effusion -0.398000 

 Skin Changes -0.132186 

 Hypoalbuminemia -0.294000 

                *Statistically significant at 5% level 

Table 6.11: Mean EQ-5D-3L Utilities Decrement for Each Adverse Event  
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With respect to the interpretation of Tables 6.10 & 6.11, one consideration is that utility was 

measured every month, whereas AEs are reported at the time of occurrence (irrespective of when 

EQ-5D is collected). Since the precise time of when an AE occurs is difficult to predict, the 

assessment of EQ-5D is not necessarily close to the window of assessment (this is true for most 

studies or trials). Some AEs tend to last for a longer period of time or increase in intensity (e.g. 

pain and dyspnoea). Therefore, some utility measurements would be taken during and some after 

the start of an AE. Consequently, the results presented can be interpreted as depicting an average 

impact (decrement) on EQ-5D utility. 

 

The mean utility for patients who had a complete or partial response was estimated as 0.6532 + 

0.0193 = 0.6725 (extracted from Table 6.11 of Nafees et al., 2008); Lloyd et al. reports these as 

0.673. In Study 3, the utility in those patients who had a response was: 0.5882 + 0.0539 = 0.642 

(complete or partial response). However, for progressive disease (PD), this was 0.6532 – 0.1798 = 

0.4734 (Nafees et al., 2008); for Lloyd et al. (2006) this was: 0.473 and for Study 3 this was: 

0.5882 – 0.133 = 0.4552 (Table 6.11). Similarly, for patients who experienced fatigue, the estimate 

is about: 0.6532-0.07346 = 0.579 (Table 6.11); compare this with 0.599 (Complete Response) or 

0.580 (Partial response), depending upon whether the tumor response was a complete or partial 

response or stable disease (SD). These utility values are well within the range of earlier reported 

utility estimates [200, 159], despite differences in methodological approaches to obtain the utilities.   
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EQ-5D-3L 
Study 3 

Nafees et al. 
(2008) 

Lloyd et al.  
(2006)

#
 

Intercept (Mean) 0.5882 0.6532 NR 
Gender    
Male  NR NR 
Female -0.0256 NR NR 
ECOG    
0 0.1847 NR NR 
1 0.1474 NR NR 
2 0.1024 NR NR 
3 -0.0010 NR NR 
4 -0.0145 NR NR 
Stage    
I 0.0613 NR NR 
II 0.0492 NR NR 

III -0.0632 NR NR 

IV -0.0614 NR NR 
    
Histology    
    Squamous -0.0009 NR NR 
    Non-Squamous  0.0170 NR NR 
    
Smoking Status  NR NR 
      Current Smoker -0.0192 NR NR 
      Ex-Smoker  0.0155 NR NR 
      Never Smoked  0.0182 NR NR 
    
Any Adverse Event* (any grade)    
Grade 3+ AE -0.0470 NR NR 
Grade 3+ Serious AE -0.0519 NR NR 
    
Tumour Response    
    CR/PR 0.0539 (CR/PR)   0.0193 (CR/PR) 0.673 (CR/PR) 
    Stable Disease 0.0012 NR 0.653 
    Progressive Disease -0.133 -0.1798 0.473 
    
Type of Grade 3+ SAE    
Rash -0.2461 -0.03248 0.640 
Neutropenia  -0.0718 -0.08973 0.582 
Nausea Vomiting -0.3114 -0.04802 0.624 
Fatigue -0.1235 -0.07346 0.599 
Hair Loss -0.0012 -0.04495 0.628 
Diarrhoea -0.1043 -0.0468 0.623 
    

*Maximum Grades for AEs; # reported as combinations of patients who respond 

NR: Not Reported 

Table 6.12: Mean EQ-5D-3L Utilities Increments / Decrements for Each Covariate/ Factor 

 

6.6 Discussion 

In this chapter, data from a prospectively designed real-world observational study were collected 

for investigating the impact of modelling covariates and other factors on estimating utilities. It was 

indicated that a model, which incorporates covariates and toxicity has an important impact on 

estimating utilities. The joint model, in combination with the enhanced EQ-5D-5L scale, may offer 

an underlying explanation for why existing mapping models have performed poorly (in similar 
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patients). This model would be a marked improvement over two-part non-linear models advocated 

earlier [109] if it is confirmed in a larger dataset.  

 

This chapter also reported estimates of utilities for a range of toxicities and clinical characteristics 

associated with common treatments (chemotherapy) for NSCLC patients. These estimates of 

utilities are not reported elsewhere in a similar population. This may help future economic 

modelling, wherever appropriate estimates of utility inputs into health economic models for NSCLC 

can be utilized. Moreover, in the review of HTAs (Chapters 2 & 3), it was indicated that evidence 

for utilities appeared to be dependent on the use of estimates in Nafees et al. (2008). Adding to the 

evidence base from real world actual patient data is likely to be very informative for future 

economic evaluation of cancer treatments.  

 

However, further research is still needed. Although the joint modelling improved the fit over the RE 

and BB models, the over-dispersion of EQ-5D utility may not have been optimally modelled. 

Moreover, there is still potential for prediction outside the range. Therefore, a combined or joint 

model, assuming EQ-5D responses following a BB type distribution and toxicity a Binomial or 

Multinomial, may be an extension of this approach. The mathematics of this is likely to be highly 

complex since the joint distribution of these mixed distributions will be mathematically challenging 

and would involve either Copula or Finite Mixture Models Techniques [201, [202].  

 

A limitation of complex models (including joint models) is how they can be practically utilized. A RE 

model is reasonably straight forward to use and the BB model raises the complexity but is still 

usable. However, the joint modelling approach would require additional assumptions: (i) that there 

is a relationship between AEs and utility and (ii) an estimate of the correlation between the two. For 

instance, in this study, the mean EQ-5D-3L utility was about 0.54 for AE grade of 2, 0.49 for AE 

grade 3 and 0.31 for AE grade 4 (grade 5 is death) – Tables 6.4 & 6.5. A Williams test for trend 

showed this to be a statistical trend (utility becomes significantly worse as toxicity grade rises; 

p=0.00267). This degree of correlation needs to be ascertained in future studies if a joint mapping 

model is to be used successfully.    

 

6.7 Conclusion  

Mapping based on the joint modelling of utility and toxicity, in addition to covariates, offers 

improvements in prediction of utilities over both the RE and Beta-Binomial Model. It is also possible 

that the QLQ-C30 is not very good at identifying condition-specific factors such as toxicity, 

adverse events, and clinical features, and the EQ-5D is possibly more sensitive to. The 

utility increments for specific clinical characteristics from NSCLC patients in a real world NHS 

setting have been reported. Further research and application in a larger data set are, hence, 
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warranted. The results recommend a complex approach that may offer improved models for 

mapping. The next chapter discusses this complexity further by considering a Bayesian approach 

to mapping, which has been reported to offer advantages over some other models discussed in the 

previous chapters. 
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          Chapter 7 

 

Chapter 7: Mapping using Bayesian Networks 
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        Abstract 

 

Introduction: Several mapping algorithms exist to map EQ-5D-3L from disease-specific 

measures, while very few algorithms attempt to map EQ-5D-5L. The aim of this chapter is to map 

from the QLQ-C30, a cancer-specific measure of HRQoL, on to EQ-5D-5L, using Bayesian 

methods. Literature appears to support the use of Bayesian methods for mapping. Hence, a 

Bayesian Network (BN) model is used for the purpose of this study. No BN model exists for the 

QLQ-C30, using either EQ-5D-3L or EQ-5D-5L. 

  

Methods: Using data from a sample of 100 non-small cell lung cancer patients, a comparison 

between a Random Effects, Beta-Binomial (BB) and a BN model was carried out using five 

separate networks for each of the EQ-5D-5L and EQ-5D-3L domains. The R2, AIC, MAE, and 

RMSE were computed to compare the model performance.  

 

Results: Mapping based on EQ-5D-5L was superior, irrespective of the functional form of the 

model. However, the BN performed the worst; MAE, RMSE, AIC, R2 and %predicted to within +5% 

and +10% for EQ-5D-5L were: 0.115, 0.140, -320, 67%, 17% and 36%, respectively. For the BB 

model, with EQ-5D-5L, these were respectively, 0.075, 0.092, -485, 75%, 29% and 59%.  

 

Conclusion: Probabilistic mapping using a BN is a novel approach for the QLQ-C30 and EQ-5D-

5L mapping. The overall performance of the model was complex, but not did perform as well as the 

Random effects or BB model with the QLQ-C30, although the BN appears to under predict (instead 

of over predicting) at poorer health states.  
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7.1 Introduction 

Most mapping methods have used linear ordinary least squares (OLS) and non-linear, censored 

(e.g. TOBIT) type models to predict EQ-5D utilities from the QLQ-C30. In the previous chapter, a 

more complex joint function reported encouraging results, while very few mapping algorithms using 

Bayesian approaches are reported. Khan (2014) [146] and Le (2013) [147] report that a Bayesian 

mapping approach may have improved prediction abilities over other mapping methods. Kharroubi 

et al. (2015) [139] attribute the better performance of Bayesian mapping to the fact that a Bayesian 

model describes the uncertainty in the estimated EQ-5D-3L utility scores and is, therefore, a more 

appropriate method for estimating utility inputs for cost-utility analyses. A Bayesian mapping 

algorithm using a Bayesian Network (BN) uses the probabilistic dependencies among variables, 

which makes it more challenging, but potentially a more powerful predictive model. It also allows 

complete health state profiles to be predicted and not just utility values. 

 

Bayesian modelling techniques can be useful in many real-life data analysis and management 

questions. They provide a natural way to handle missing data, they allow combining of data with 

expert judgments, they facilitate learning about causal relationships between variables, provide a 

method for avoiding overfitting of data [205] and can show good prediction accuracy even with 

small sample sizes. Several advantages of using Bayesian Networks for mapping have been 

reported [147,204]. Importantly, one can predict the health state profile as well as the utility which 

may have a richer source of information. No Bayesian mapping algorithm could be identified from 

the QLQ-C30 using a BN approach with the EQ-5D-5L from any CSM. Hence, the aim of this 

chapter is to map the EQ-5D-5L from EORTC-QLQ-C30 using a Bayesian Network approach and 

compare its results to those of the Beta Binomial (BB) mapping algorithm presented in Chapter 4. 

In addition, a comparison is conducted with the EQ-5D-3L. 

7.2 Methods 

Study Design and Data Collection  

The data used in this chapter is from the Study 3 data, discussed in Chapter 5, where monthly EQ-

5D-5L, EQ-5D-3L, and QLQ-C30 data were collected prospectively from NSCLC patients. The EQ-

5D-5L utility scores used in this chapter are obtained using cross-walked values (available at the 

time) to be consistent and facilitate interpretation of results reported in Chapter 5 [188]. The EQ-

5D-3L were determined using the Dolan (1997) tariff [75]. 

 

QLQ-C30 scores  

QLQ-C30 domain scores were treated as categorical variables to facilitate calculations. One 

reason for this categorization is because a discrete form of the BN uses the groupings described in 
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Table 7.1 (below), following a similar method to that reported earlier [147,148]. Five categories for 

each QLQ-C30 domain based on a preliminary review of the distribution were used. These were 1: 

scores between 0 and 20; 2: for scores between 20 and 40; 3: scores between 40 and 60; 4: 

scores between 60 and 80 and 5: scores between 80 and 100. Khan et al., (2015) [155] have 

suggested that QLQ-C30 scores appear to fall into categorical groupings in practice (i.e. if the 

score is 25 then this falls into category 2). The QLQ-C30 was also used as a continuous value in 

addition to the discrete form in the BN for comparison. 

                                            

Table 7.1: QLQ-C30 Categorization 

The EQ-5D-3L uses only three possible levels (no problem, moderate problem, and extreme 

problem) to assess generic HRQoL the patient’s health state. Although NICE considers EQ-5D-3L 

as an appropriate instrument to assess patient utility, the recent EQ-5D-5L allows for five levels of 

measuring generic HRQoL (no problem, slight problem, moderate problem, severe problem, and 

extreme problem), which may arguably make it a more sensitive measure (see Chapter 8). A BN 

for both EQ-5D-5L and EQ-5D-3L was used for the purpose of this study. 

 

7.2.1 Modelling Approach 

A Random Effects, BB (as discussed in Chapter 4) and BN model were compared. 

Bayesian Network Approach  

The idea of a BN approach is to estimate the probability of each of the response categories of the 

EQ-5D-5L (or EQ-5D-3L) conditional on the 15 QLQ-C30 responses (categories) by forming a 

network. A network shows the plausible relationships between several factors (e.g. Anxiety from 

the EQ-5D-5L with Symptom Scores from the QLQ-C30). This allows a specification of the 

structural form of the network based on prior (expert) judgment or belief with respect to the EQ-5D 

responses. The network is expressed using probability and graph theory through a visual 

representation of the joint probability distributions between EQ-5D-5L and the QLQC-30 in a 

directed acyclic graph (DAG) [147,148] as shown in Figure 7.1. 

QLQ-C30 Category Value of Domain Probability of response 

1 0 ≤ QLQ-C30 ≤ 20 

2 20 < QLQ-C30 ≤ 40  
3 40 < QLQ-C30 ≤ 60  
4 60 < QLQ-C30 ≤ 80  
5 80 < QLQ-C30 ≤ 100  
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Figure 7.1: DAG Graph between EQ-5D-5L Mobility scale and QLQ-C30 15 domain scores 

 

The DAG contains a node for every variable 𝑥𝑖 in the domain D with n variables(𝑥1, 𝑥2, … , 𝑥𝑛), with 

a finite set of arrows or edges between nodes, which represent the probabilistic dependencies 

among variables [147]. In this context, a node represents a health domain (e.g. anxiety from the 

EQ-5D-5L), while the state of the node reflects the possible responses to that particular domain 

(score of 1 to 5). Thus, a Bayesian Network 𝐵𝑁 =  (𝐺, 𝑃) consists of the DAG, G-nodes and P 

links (or vertices) with a set of conditional probability distributions for all variables 𝑥𝑖 in the BN. 

Child nodes 𝑥𝑖 are those whose probability distribution depends on other nodes, known as the 

parent nodes 𝜋(𝑥𝑖) [148]. As an example, the Bayesian network that maps QLQ-C30 insomnia 

(SL) domain on to the EQ-5D-5L anxiety domain (AX), the structure and conditional probabilities 

are shown in Figure 7.2. 

 

 

Figure 7.2: Description of Joint Probabilities 

 

The joint probability distribution of BN is: 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)  =  ∏𝑃(𝑥𝑖| 𝜋(𝑥𝑖))

𝑛

𝑖=1

 

Parent Node: EORTC-QLQ-C30 
sl 

•P(sl=1) = 0.254  

•P(sl=2) = 0.285 

•P(sl=3) = 0.00 

•P(sl=4) = 0.268 

•P(sl=5) = 0.163 

Child Node: EQ-5D-5L ax 

•P(ax=1|sl=1) = 0.698  

•P(ax=2|sl=1) = 0.397 

•P(ax=3|sl=1) = 0.063 

•P(ax=4|sl=1) = 0.016 

•P(ax=5|sl=1) =0.016 
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These conditional probabilities are based on Bayes rule, which states the following in the context of 

Anxiety (ax) from the EQ-5D-5L and Sleep (sl) from the QLQ-C30: 

𝑃(𝑎𝑥 | 𝑠𝑙)  =  
𝑃(𝑠𝑙 , 𝑎𝑥)

𝑃(𝑠𝑙)
 =  

𝑃(𝑠𝑙 | 𝑎𝑥) 𝑃(𝑎𝑥)

𝑃(𝑠𝑙)
 

where 𝑃(𝑎𝑥) is the prior probability of a response on the Anxiety domain of the EQ-5D-5L. 

For the data used in this chapter, five separate Bayesian networks, one for each EQ-5D-5L and 

EQ-5D-3L domain are developed (Figure 7.3). The networks are graphical models describing the 

probabilistic relationships between EQ-5D-5L and QLQ-C30, where parameters (i.e. predicted 

probabilities) are obtained through the following three steps [147]: 

 

(i) PC (Peter Spirtes and Clark Glymour) Algorithm,  

(ii) EM Algorithm,  

(ii) Probabilistic Inference,  

(iv) and Monte Carlo Simulation.  
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Figure 7.3: DAG for BN using Study 3 Data (EQ-5D-5L) 

All networks were obtained and evaluated using the software Bayes Server version 7.8 [205]. 

 

The PC algorithm is utilized to learn the structure of the Bayesian network through testing 

conditional independence among each pair of variables. If tests of independence are rejected (i.e. 

if there is no conditional independence among the variables, it is rejected) the links between the 

nodes are removed (i.e. there is no point in developing a probabilistic relationship between that 

pair of variables because statistical tests would show a lack of dependence). Once the 

relationships among variables are known, the links between the nodes are formed to indicate 

probabilistic relationships among them. Links are identified through arcs (edges or arrows) to 

indicate the relationship, thus forming the graph of the network. The DAG for the BN in this setting 

for EQ-5D-5L and EQ-5D-3L are shown in Figure 7.3 and 7.4. 

 

The EM algorithm is used to estimate the value of parameters in the suggested network through 

two steps, the E-step, finds the expected values of Q with respect to θ (θ is the probability of 

response in each of the categories) and the M-step, which maximizes Q in θ*: 

𝑄(𝜃|𝜃(𝑖−1)) = 𝐸{𝑙𝑜𝑔𝑃(𝑋, 𝑌|𝜃)|𝑋, 𝜃(𝑖−1)}                                                [7.1] 

 

Where X is the known or observed data, Y is the unknown or missing data, 𝜃𝑖−1 is the known 

parameter estimates used to evaluate the expected values, and θ is the new parameter used to 

optimize Q (Bilmes, 1998). With some adjustments, this equation could be written as: 

                            𝐸{𝑙𝑜𝑔𝑃(𝑋, 𝑌|𝜃)|𝑋, 𝜃(𝑖−1)} = ∫ 𝑙𝑜𝑔𝑃(𝑋, 𝑦|𝜃)𝑓(𝑦|𝑋, 𝜃(𝑖−1)) 𝑑𝑦,                [7.2] 

              𝜃𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄(𝜃, 𝜃
𝑖−1)                                   [7.3] 

 

After learning the structure of the BN and estimating the parameters (observed probabilities), the 

third step of Bayesian mapping algorithm is probabilistic inference.  This step involves finding 

predicted probabilities of the response levels for every EQ-5D-5L domain (Le, 2013). Probabilistic 

inference involves computing the probability of an EQ-5D-5L response conditional on the EORTC-

QLQ-C30 responses and involves using an estimate of the prior probability of response for each 

EQ-5D-5L response category. An example of how the probabilistic inference structure set up using 

categorized responses from the QLQ-C30 was demonstrated in Table 7.1. 

 

The goal is to predict for each level of every EQ-5D-5L domain for a given patient. Hence an 

important difference in the mapping approach here is that EQ-5D descriptive health states rather 

than utility values are predicted. The predicted health states are subsequently converted to 

‘predicted’ utilities. As an example, for Mobility. The equations below compute the probability of a 

Mobility score = 1 (for the EQ-5D) given good Function and reasonably low symptoms. If the 
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Mobility is good and the Functional domain scores are high, then the chance of Mobility score =1 

(i.e. good mobility) should be high. A prior probability of 0.2 is used.    

𝑃(𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1 | 𝑄𝐿𝑄𝐶30) =  ∏𝑃(𝑄𝐿𝑄𝐶30𝑖 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1 )

15

𝑖=1

∗ 0.2 

 

𝑃(𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1 | 𝑝𝑓 = 5, 𝑟𝑓 = 5, 𝑒𝑓 = 5, 𝑐𝑓 = 5, 𝑠𝑓 = 4, 𝑔ℎ𝑠 = 5, 𝑓𝑎 = 1, 𝑛𝑣 = 1, 𝑝𝑎 = 1, 𝑑𝑦 = 2, 𝑠𝑙 =

1, 𝑎𝑝 = 2, 𝑐𝑜 = 1, 𝑑𝑖 = 1, 𝑓𝑖 = 1) = 𝑃(𝑝𝑓 = 5 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗ 𝑃(𝑟𝑓 = 5 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗ 𝑃(𝑒𝑓 =

5 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗ 𝑃(𝑐𝑓 = 5 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗ 𝑃(𝑠𝑓 = 4 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗ 𝑃(𝑔ℎ𝑠 = 5 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =

1) ∗ 𝑃(𝑓𝑎 = 1 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗ 𝑃(𝑛𝑣 = 1 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗ 𝑃(𝑝𝑎 = 1 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗ 𝑃(𝑑𝑦 =

2 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗ 𝑃(𝑠𝑙 = 1 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1 ) ∗ 𝑃(𝑎𝑝 = 2 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗ 𝑃(𝑐𝑜 = 1 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗

𝑃(𝑑𝑖 = 1 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗ 𝑃(𝑓𝑖 = 1 | 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1) ∗ 𝑃(𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦) = 0.8,  

 

where 𝑃(𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦) is the prior probability and equal to 0.2.  

 

The same calculation is performed for the remaining four levels of mobility. The domain with the 

highest value (termed argmax) from equation [7.3] is the most likely level (score) of mobility for this 

patient. In this example, the predicted probability of a mobility score =1   is about 0.8. Not only 

does this prediction match the observed level for mobility for this patient, but it is also logical 

because for a patient with good physical functioning (PF = 1, i.e. score for PF >80) it seems 

sensible for these patients to have a high level of mobility.  

 

The above step is then repeated for every EQ-5D-5L domain at all five levels, using the same prior 

of 0.2, until the entire health state of the patient is predicted (for each of Anxiety, Mobility, Self-

Care, Usual Activities and Mobility).  

 

After computing predicted probabilities of EQ-5D-5L response probabilities, a Monte Carlo 

simulation is used to determine the utilities in the following manner:  

{
 
 

 
 

1 𝑖𝑓 0 <  𝑃1𝑖(𝑋)  ≤ 0.2

 2 𝑖𝑓 0.2 <  𝑃2𝑖(𝑋)  ≤  0.4

3 𝑖𝑓 0.4 < 𝑃3𝑖(𝑋)  ≤ 0.6

4 𝑖𝑓 0.6 < 𝑃4𝑖(𝑋)   ≤ 0.8

5 𝑖𝑓 0.8 < 𝑃5𝑖(𝑋)   ≤ 1 }
 
 

 
 

 𝑢𝑖 ~ Uniform ( 0,1) 

 

That is, given the predicted probabilities of the response levels for all EQ-5D-5L domains obtained 

from the BN, estimated EQ-5D utility scores are generated using the Monte Carlo simulation 

method. Responses for each EQ-5D level (for each domain, separately) are determined by 

comparing predicted probabilities with a random number from a uniform distribution. The most 

likely predicted probability is used to determine utility.  
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In summary, the above methodology is applied as follows: 

(i) Conduct statistical tests of independence between EQ-5D and QLQ-C30 to determine the 

statistically independence with the 15 QLQ-C30 domains. These may be excluded from the BN. 

 

(ii) Compute the highest chance of response for a given EQ-5D domain category, for a given value 

(or category) of the QLQ-C30. For example, for the Anxiety score, there are five conditional 

probabilities associated with the PF of the QLQ-C30 category given specific values of EQ-5D 

Anxiety scores. 

 

Prob[QLQ-C30PF = 1| AnxietyEQ-5D-5L=1] 

Prob[QLQ-C30PF = 1| AnxietyEQ-5D-5L=2] etc. 

 

However, since it is of interest to compute the chance of EQ-5D response conditional on QLQ-C30, 

the inference is reversed and estimation is computed through Bayes Theorem.  

 

(iii) Derive the maximal probability associated with the most likely value of response or the highest 

probability across the response categories.  

 

(iv) From the response categories, the predicted health state is generated and is compared to the 

observed health state (using the utilities). 

 

(v) Monte Carlo simulation is used to repeat the process so that the average of the maximal 

predicted probabilities is used to determine response and subsequent utilities.  

 

(vi) The above are repeated for each of EQ-5D-5L and EQ-5D-3L individually. 

 

(vii) The approach was repeated by assuming that the QLQ-C30 domain scores are a continuous 

distribution (normally distributed). 

7.3 Results 

Overall Summary of Findings 

Details of the study design are reported in Table 5.11 (Chapter 5). 

 
Structure of the Network 

The PC Algorithm applied in the software Bayes Server® to learn the structure of the networks 

indicates significant associations between almost all QLQ-C30 domains and each EQ-5D-5L 

domain. Only diarrhoea (DI) of QLQ-C30 had a weak association with the Pain domain of the EQ-
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5D-5L (p=0.056). Consequently, five networks were considered suitable for this mapping model 

(Figure 7.3). However, for the EQ-5D-3L, some QLQ-C30 domains were statistically independent. 

For instance, Global Score (GHS), Sleep (SL), Nausea & Vomiting (NV), Diarrhoea (DI) and 

Constipation (CO) for Anxiety had p-values well above the 5% level and were consequently 

dropped from the network. An interesting conclusion that may be drawn from greater statistical 

independence between EQ-5D-3L compared to EQ-5D-5L is the potential that EQ-5D-5L may 

result in a better mapping and may be more sensitive than the EQ-5D-3L. The resulting BN for EQ-

5D-3L is shown in Figure 7.4 after the similar approach was applied for other EQ-5D-3L domains. 

 
Performance of Mapping Algorithms  
 
Tables 7.2 and 7.3 report the results of each algorithm, where QLQ-C30 is treated as a discrete 

outcome and as a continuous outcome. The model using the EQ-5D-5L performed better, 

regardless of the model. The best fitting algorithm for the discrete form of the QLQ-C30 was based 

on the BB model: MAE, R2, RMSE, AIC, %predicted with +5% and % predicted with +10% were 

0.075, 75%, 0.092, -365, 29% and 59%, respectively for EQ-5D-5L. The BN was the worst 

performing algorithm (Table 7.2).  
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                                   Figure 7.4: DAG for BN using Study 3 Data (EQ-5D-3L) 
 
 

For the EQ-5D-3L, these were 0.220, 58%, 0.20, -107, 12% and 28%, respectively. The findings 

confirm the results of Chapter 5 that mapping from the EQ-5D-5L is superior. For the continuous 

case of the QLQ-C30, the BN performed slightly worse (Table 7.3) – the above results altered by a 

few points for the worst (e.g. R2 fell from 67% to 63%). Consequently, in this application of a BN, 

the algorithm performed worst when compared to the existing methods. 
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                                                          Table 7.2: Model Comparison with Bayesian using discrete form for QLQ-C30 

 

 

                    

 

 

 

 

 

 

 

 

 

Table 7.3: Model Comparison with Bayesian using continuous form for QLQ-C30 

 
 EQ-5D-5L  

 EQ-5D-3L  

 
Random 

Effect 
Bayesian 

Model 
Beta-Binomial 

Model 

 
Random 

Effect 

Bayesian 
Model 

Beta-Binomial 
Model 

MAE 0.114 0.11507 0.075 0.141 0.220 0.099 
RMSE 0.152 0.14024 0.092 0.183 0.200 0.113 
R

2 
72% 67% 75% 67% 58% 69% 

AIC -365 -320 -485 -291 -107 -385 
Predicted Mean (SD) 0.577 (0.241) 0.568 (0.0182) 0.569 (0.217) 0.523 (0.252) 0.505 (0.0271) 0.532 (0.252) 
Observed Mean (SD) 0.572 (0.224) 0.572 (0.224) 0.572 (0.224) 0.515 (0.308) 0.515 (0.308) 0.515 (0.308) 
%predicted with +5% 19% 17% 29% 15% 12% 23% 
%predicted with +10% 38% 36% 59% 31% 28% 33% 

 
 EQ-5D-5L  

 EQ-5D-3L  

 
Random 

Effect 
Bayesian 

Model 
Beta-Binomial 

Model 

 
Random 

Effect 

Bayesian 
Model 

Beta-Binomial 
Model 

MAE 0.114 0.1488 0.075 0.141 0.255 0.099 
RMSE 0.152 0.1482 0.092 0.183 0.210 0.113 
R

2 
72% 63% 75% 67% 53% 69% 

AIC -365 -287 -485 -291 -79 -385 
Predicted Mean (SD) 0.577 (0.241) 0.6475 (0.020) 0.569 (0.217) 0.523 (0.252) 0.5135 (0.0283) 0.532 (0.252) 
Observed Mean (SD) 0.572 (0.224) 0.6854 (0.011) 0.572 (0.224) 0.515 (0.308) 0.5206 (0.0179) 0.515 (0.308) 
%predicted with +5% 19% 17% 29% 15% 10% 23% 
%predicted with +10% 38% 33% 59% 31% 25% 33% 
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Prediction by Health States 

Figure 7.5 compares the observed and the predicted EQ-5D-5L utilities for each observed health 

state and the plot indicates good prediction at most health states. Interestingly, Figure 7.5 shows 

the BN model under predicting utilities at poorer health states. This is contrary to what has been 

observed elsewhere, where mapping algorithms have over predicted utilities at poorer health 

states. The BN appears to be a more conservative mapping algorithm which may imply that QALYs 

may be underestimated (or lower), particularly after disease progression.  

 

 

 

 

 

 

 

 

 

 

                             

 

           Note: x-axis is health state and y-axis is predicted EQ-5D-5L utility 

                                  Figure 7.5 Observed vs. Predicted EQ-5D-5L by Health State 

 
Cross Validation  
 
Bootstrap (non-parametric) samples of size 100 were taken from 50% of the Study 3 data sets; 200 

bootstrap samples were taken due to the computing time involved. A plot of the RMSE, R2 and 

predicted utilities were generated for the BN and compared. The results confirm the bimodal 

distribution of the EQ-5D-5L observed earlier in Chapter 5. Interestingly, there was slightly less 

variability in the predicted utilities as well as RMSE. Therefore, although the BN did not perform as 

well as the BB model, it appears to have less uncertainty (Figure 7.6 & 7.7). 
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Figure 7.6: Distribution of Predicted and RMSE EQ-5D-5L from Cross Validation for BN Model 

 

 

 

 

 

 

 

 

 

Figure 7.7: Distribution of R
2
 for EQ-5D-5L from Cross Validation for BN Model 

 

7.4 Discussion 

In this ‘first time’ simultaneous mapping of the EQ-5D-5L and EQ-5D-3L from the QLQ-C30 in an 

NSCLC population, it has been shown that a BN algorithm performs worst among algorithms, 

whether using QLQ-C30 as a discrete variable or as a continuous variable. Algorithms using the 

EQ-5D-5L perform better than the EQ-5D-3L, regardless of the model. Interestingly, the BN model 

under predicts utility in poorer health states and could be considered as a conservative approach 

to estimating utilities.  

 

One reason for this may be the limited number of poor health states. Less than 3% of health states 

were worse than health states of 5523, corresponding to a utility of about 0.181 in this study 

(based on cross-walked data). Therefore, estimating probabilities might be unreliable since the 

proportions in each health state are highly uncertain. When estimating probabilities of discrete 

categories, especially with the discretization of the QLQ-C30 (not carried out for other mapping 

models), there is likely to be a loss of information. The categorization of the QLQ-C30 is arbitrary, 

even if they are based on observed frequencies. In any case, using QLQ-C30 as a continuous form 

demonstrated worse (but potentially more realistic) model performance.  
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Previous research has not reported any BN with the QLQ-C30 or with the EQ-5D-5L, hence, 

comparisons with previous research are difficult to make. Therefore, several limitations of this 

modelling approach are highlighted. Firstly, a BN is computationally intensive. Even with specialist 

software such as Bayes server® [205], the execution time can be very lengthy (several hours). 

Secondly, the prior estimates of the EQ-5D were set at 0.2. These are based on a simple concept 

that the probability of any EQ-5D response is equally likely, which may be far from reality. If 

reasonably informative prior data were available, an alternative set of posterior probabilities for EQ-

5D responses would be determined. Thirdly, the sample size was small; hence the results of 

validation approaches (cross validation) will be uncertain. The performance of an algorithm is 

better evaluated on its application and validity in an independent data set, for which this was not 

possible. Lastly, the modelling approach can become complex. The number of QLQ-C30 domains 

might have played a factor in the poorer performance of the Bayesian approach. In previous 

applications of BNs, fewer networks were used with the SF-12. 

 

However, despite these limitations, if sufficient prior information can be gathered to propagate 

informative priors, the use of BN may show promise, specifically for predictions at poorer health 

states. The network could be further expanded by creating links between the EQ-5D-5L domains in 

addition to the QLQ-C30. The success of these predictive algorithms using BN has been reported 

in the literature in the context of mapping [147,148]. If BN can resolve the issue of over (under) -

prediction at poorer health states, this would be a significant improvement over the existing 

models.  

7.5 Conclusion 

The BN mapping algorithm performs well, however, other models outperform it. With further 

research using other prior distributions and alternative network structures, the BN algorithm can be 

useful if the overprediction at poorer health states can be resolved. 

 

In the previous chapters, more complex approaches to mapping were considered, which 

specifically use the EQ-5D-3L and EQ-5D-5L. In all the cases, using the EQ-5D-5L appears to 

demonstrate superior mapping and particularly so with the BB model. Given that the EQ-5D-5L has 

a different scale, a related question is what role the EQ-5D-5L (5 points) scale in itself plays in 

measuring response that influences mapping and the ability to detect HRQoL benefit, and impact 

on QALYs. This will be further investigated in the next chapter.   
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Chapter 8 
                                                          

Chapter 8: Comparing Sensitivity between EQ-5D-5L, EQ-5D-3L, and EORTC-QLQ-

C30 

 

Published: Interpreting small treatment differences from quality of life data in cancer trials: 

an alternative measure of treatment benefit and effect size for the EORTC-QLQ-C30 

(Khan I, Bashir Z and Forster M; Health and Quality of Life Outcomes, 2015 13:180) 
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    Abstract 

 

Introduction: The EORTC QLQ-C30 is a commonly used Health-Related Quality of Life (HRQoL) 

instrument in cancer patients. For economic evaluations, the more generic EQ-5D-3L and EQ-5D-

5L are used. However, the comparative sensitivity of these instruments to detect treatment benefits 

remains uncertain. This research compares treatment effects amongst EQ-5D-5L, EQ-5D-3L, and 

QLQ-C30 within the same set of patients. Effects using odds ratios (OR) are considered, rather 

than the differences (MD) so that HRQoL effects can be measured on a similar scale to determine 

if EQ-5D is underestimating HRQoL benefits compared to the condition specific QLQ-C30. 

  

Methods: Data from a prospective observational cohort of 100 NSCLC patients were used. 

Patients were followed up for at least 12 months. HRQoL was assessed at baseline and monthly 

thereafter, during routine hospital visits. Treatment effects were compared using both MDs and 

ORs from a linear and non-linear mixed effects models, respectively.  

 

Results: EQ-5D-5L appeared to be more sensitive than EQ-5D-3L. The improvement from 

baseline in HRQoL was: 35% vs.25% for EQ-5D-5L vs. EQ-5D-3L; OR=1.35 (95% CI : 1.01, 1.36; 

p<0.001) and OR=1.25 (95% CI : 0.94, 1.66; p=0.0915) respectively; about 50% of QLQ-C30 

scores showed improvements relative to baseline with ORs ranging from 1.04 (Physical Function) 

to 1.40 (Pain). Most (87%) QLQ-C30 effect sizes were smaller than EQ-5D-5L. The mean change 

from baseline for EQ-5D-3L was: 0.057 (95% CI: 0.008, 0.105; p=0.0224); for EQ-5D-5L this was: 

0.0457 (95% CI: -0.0073, 0.0986; p=0.0907). 

 

Conclusion: EQ-5D-5L appears to be more sensitive than the EQ-5D-3L and shows comparable 

effect sizes (ORs) to QLQ-C30. There is no evidence to suggest EQ-5D-5L is less sensitive to 

detecting treatment effects than either EQ-5D-3L or QLQ-C30. QALYs derived from the EQ-5D-5L 

are more likely to reflect HRQoL effects obtained from condition-specific measures. 
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8.1 Introduction 

A key factor for assessing the sensitivity of a HRQoL instrument is the metric used to assess it. 

Related to the metric (whether a generic or CSM) is whether it can be understood and interpreted 

by patients and clinicians [155]. A distribution-based approach [148, 211] has been suggested 

where a ‘moderate’ effect size is defined as one-half of the SD of baseline and a ‘small’ effect size 

as 20% of the SD at baseline [212]. Other measures, like anchor-based approaches, or presenting 

effect sizes by disease severity, so that the treatment effects can be demonstrated have also been 

used [213-215]. There is no consensus as to which is the best HRQoL measure for establishing an 

important difference.  

 

Recently, Khan et al. (2105) [155] highlight instances, where small but potentially important HRQoL 

effects can be missed by comparing odds ratios (OR) with a mean difference (MD). The OR can 

facilitate aligning patient and clinical understanding of HRQoL [155]. It is plausible that this is also 

true for EQ-5D (both EQ-5D-5L and EQ-5D-3L), as they have similar distributional properties (i.e. 

skewed, censored and over-dispersed data). This makes the OR an appropriate measure to 

compare the sensitivity of both EQ-5D and QLQ-C30; and a potential metric for determining the 

minimally important clinically significant difference. The OR may be a potentially suitable measure 

for defining a minimal difference, as its interpretation is similar to the hazard ratio (HR), which is 

familiar to many oncologists (and patients participating in clinical trials).  

 

Although the EQ-5D instruments are intended for health economic evaluations, it is essential to 

understand, compare and interpret these effects in the context and background of CSMs such as 

QLQ-C30 (most widely used and considered as a ‘Gold Standard’). When a condition-specific and 

generic measure offers conflicting interpretations over the true size of the HRQoL benefit, the 

Quality Adjusted Life Year (QALY) can be uncertain. Therefore, understanding the extent of 

HRQoL differences between the two measures is critical to determine whether the measures of 

effectiveness reflect higher or lower QALYs and consequently, whether a new treatment offers 

more or less value for money than originally believed.    

 

In this chapter, previous findings [208, 155, 255] are further investigated to compare the sensitivity 

between EQ-5D and QLQ-C30 using ORs alongside MDs as a measure of sensitivity. Sensitivity 

refers to whether an instrument is able to detect changes in health states over time  [216]. To the 

best of my knowledge, no direct comparison of effects between EQ-5D and QLQ-C30 within the 

same group of patients to investigate sensitivity have been reported in the literature so far. In 

cancer studies (e.g. clinical trials), the QLQ-C30 is the most widely used in Europe and can be 

considered as a ‘gold standard’. In the USA, the FACT (discussed earlier) is considered to be the 

‘gold standard’ for assessing HRQoL in cancer patients.  The focus will be on comparing effect 

sizes in terms of ORs, MDs, and standardized effect sizes.  
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8.2 Methods 

8.2.1 Study Design 

Data from Study 3 were used for the purpose of designing this study. The details have already 

been provided in earlier chapters on the design, HRQoL instruments, and assessments. Patients in 

the study were newly diagnosed, good performance (ECOG 0  - 1) NSCLC patients and received 

their first line platinum based chemotherapy (maximum of 6 cycles, where 1 cycle is 21 days).  

 

8.2.2 Scoring HRQoL 

Scoring of the QLQ-C30 has already been discussed in detail in earlier chapters. For EQ-5D-3L, 

the raw responses (on a 3 point scale) were converted into a single index on a scale of -0.549 to 

1.0, using the UK (Dolan) tariff [75]. Similarly, for the EQ-5D-5L (5 point scale), utilities were 

provided on a score between -0.549 to 1.00, described previously [217,218] mapping algorithm for 

the UK tariff. All responses were transformed (so that effects from all three instruments can be 

compared) to a 0 to 1 scale using Y-a/b-a, where Y is the HRQoL score, a is the minimum value 

and b is the maximum value. This transformation allows all measures of effects to be compared on 

the same scale. For instance, a score of 80 on a scale from 0-100 was transformed as 80 – 0/ 100-

0 = 0.8. Values close to zero or one are considered to be indicative of poorer health states or 

nearer to ‘Full’ health for a given domain, respectively. Negative values are not possible for the 

QLQ-C30, unlike EQ-5D, where the above transformation can be applied so that the analysis can 

be conducted using a BB model.  

 

8.2.3 Statistical Analysis 

MDs and ORs were derived from comparisons between baseline and all post-baseline measures 

(collected monthly). A test of average differences over time was used to determine if post baseline 

measures could be combined. A (zero-one inflated) non-linear, repeated mixed effects Beta-

Binomial (BB) model was used to present treatment effects in terms of odds ratios (ORs) 

[109,177]. A repeated measures linear mixed effects model was used for determining differences 

in terms of means. Also, both models take into account clustering (multiple measurements per 

subject). However, the BB model was used for this study as it handles the distributional properties 

(over-dispersion and skewness) particularly well (Khan and Morris, 2014; Khan et al., 2015 

[155,109]). Raw mean differences and standard deviations (SD) were computed to calculate the 

effect size (Mean difference between post-baseline and baseline/pooled SD). Three effect size 

measures were [213-214]: Effect Size (ES) =Mean of within patient differences between post-

baseline and baseline divided by SD of baseline responses; Standardized Response Mean (SRM) 

= Mean of within patient differences between post-baseline and baseline divided by SD of 
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changes; and half SD (HSD) = 0.5 multiplied by SD of within patient differences between post-

baseline and baseline (0.5*SD). 

 

For the purpose of this analysis, the evaluable patient group (for statistical analysis) were defined 

as all the patients registered, who fulfilled study inclusion criteria: patients aged >18 with 

histologically confirmed NSCLC, gave informed consent, had a baseline HRQoL on any one of the 

HRQoL instruments and at least one post-baseline measure for EQ-5D-5L or EQ-5D-3L or QLQ-

C30. All analyses were conducted on the transformed scale (0 to 1) unless stated otherwise. 

Covariates were included in the modelling (age, gender, and ECOG).  

8.3 Results 

The details of Study 3, along with demographic and clinical characteristics were described earlier 

(Chapter 5).  

 

EQ-5D-5L and EQ-5D-3L were unsurprisingly highly correlated (r=0.904; p<0.001); EQ-5D were 

also correlated (Pearson’s Correlation) with QLQ-C30: correlations ranged from r = 0.286 (DI) to 

0.799 (PF) for EQ-5D-3L and -0.148 (Global QoL) to 0.839 (PF) for EQ-5D-5L, respectively. 

Responses from QLQ-C30 and EQ-5D were highly skewed (non-normally distributed); suggesting 

that effects based on MDs may be unreliable (Figure 8.1).
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Figure 8.1: Distribution of EQ-5D-5L, EQ-5D-3L and QLQ-C30 

 
 

From Left to right: EQ-5D-3L, EQ-5D-5L, QOL, PF, RF 
EF, SF, CF FA, NV, DY, SL, AP, CO, PA, DI, FI 
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8.3.1 Comparing Effects between EQ-5D-5L, EQ-5D-3L: Changes over Time 

EQ-5D-5L appears more sensitive than EQ-5D-3L, while demonstrating comparable effect sizes to 

QLQ-C30. Patients are 35% more likely to improve their HRQoL (utility) after treatment (post 

baseline) compared to baseline (OR=1.35; 95% CI: 1.096 - 1.662; p<0.001) for EQ-5D-5L (Forest 

Plot Figure 8.2, 8.3 and Table 8.1); for EQ-5D-3L this was 25% (OR=1.25; 95% CI: 0.938 - 1.66; 

p=0.0915).  

 

                                   

                     a) Odds Ratios (Relative to Baseline)                                   b) Mean Differences (Relative to Baseline) 

 

                                 Figure 8.2: Forest Plot of HRQoL Effects for All Instruments 

 

Global Health Status Score (QL), Physical Function (PF), Role Function (RF), Emotional Function (EF), 

Cognitive Function (CF), Social Functioning (SF); Fatigue (FA), Nausea & Vomiting (NV), Pain (PA), Dyspnoea 

(DY), Insomnia (SL), Appetite Loss (AP), Constipation (CO), Diarrhoea (DI), Financial Problems (FI) and an 

overall score 

 

 

 

 

 

 

 

 

 

 

 



 

193 
 

 OR L95% U95% P-value MD L95% U95% P-value 

EQ-5D-3L 1.249 0.938 1.663 0.0915* 0.04570 -0.00729 0.09869 0.0907 

EQ-5D-5L 1.350 1.096 1.662 <0.001* 0.05666 0.008106 0.1052 0.0224 

QOL 0.930 0.656 1.319 0.6825 -0.02146 -0.09098 0.04806 0.5437 

PF 1.048 0.753 1.458 0.7809 0.03540 -0.03827 0.1091 0.3448 

RF 0.864 0.590 1.266 0.4526 -0.02583 -0.1193 0.06764 0.5867 

EF 1.207 0.850 1.714 0.2920 0.04135 -0.03334 0.1160 0.2766 

CF 1.041 0.702 1.546 0.8399 -0.01371 -0.09651 0.06909 0.7447 

SF 0.767 0.526 1.119 0.1676 -0.05623 -0.1465 0.03403 0.2210 

FA 1.030 0.718 1.476 0.8728 0.005743 -0.07310 0.08459 0.8860 

NV 1.239 0.780 1.967 0.3631 0.007769 -0.04899 0.06453 0.7877 

PA 1.404 0.967 2.038 0.0739* 0.05267 -0.03110 0.1364 0.2167 

DY 0.882 0.606 1.285 0.5117 -0.00954 -0.09671 0.07762 0.8295 

SL 0.663 0.453 0.971 0.0351* -0.1078 -0.2041 -0.01144 0.0285 

AP 1.143 0.780 1.675 0.4913 0.05991 -0.03814 0.1580 0.2299 

CO 1.066 0.707 1.608 0.7588 -0.02983 -0.1201 0.06047 0.5158 

DI 1.358 1.134 1.598 0.0006 0.04681 -0.01404 0.1077 0.1310 

FI 0.809 0.533 1.229 0.3190 -0.08820 -0.1879 0.01149 0.0826 

         

Table 8.1: HRQoL Changes Relative to Baseline: Odds Ratio and MD 

Note: Statistically significant at 10% level. Shaded values show the direction of effects to be the same. MD: Difference 

between post-baseline versus baseline   

 

In comparison, model-based estimates (Linear Mixed Model) of HRQoL MDs improved by only 8% 

and 7% for EQ-5D-5L and EQ-5D-3L respectively. This discrepancy may reflect the strong 

skewness in the data, a feature also noted in previous analyses of similar HRQoL data (Khan, 

2015) [155]. EQ-5D utilities were moderately skewed (p-value <0.001, for Kolmogorov-Smirnov 

test of normality, Figure 8.1). The estimates of MDs (post-baseline vs. baseline) were similar: 

0.0461 (observed) vs. 0.0457 (Linear mixed) for EQ-5D-3L; and 0.0573 (observed) vs. 0.0567 

(Linear mixed) for EQ-5D-5L. This suggests that an improvement in HRQoL from baseline by about 

0.046 points translates into about a 24% (Figures 8.2, 8.3 and Table 8.1) improvement in HRQoL 

for EQ-5D-3L; and for EQ-5D-5L, a 0.057 point improvement in MD corresponds to a 36% 

improvement on an OR scale. The improvement may partially be due to the fact that these are 

newly diagnosed patients, who are starting treatment and have better HRQoL prior to disease 

progression. 
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a) Function Domains of QLQ-C30, EQ-5D-5L and EQ-5D-3L               b) Symptom Domains of QLQ-C30, EQ-5D-5L and EQ-5D-3L   

             

                            Figure 8.3: Mean HRQoL Scores (Transformed Scale) Relative to Baseline 

 

8.3.2 Comparing Effects over Time with QLQ-C30 

About 8/15 (53%) of the QLQ-C30 effects (ORs) showed improvements relative to baseline, 

ranging from OR=1.04 (Physical Function) to OR=1.40 (Pain). On an average, patients are 40% 

more likely to show improved pain symptoms after treatment (post-baseline), compared to before 

starting the treatment (baseline). Most (87%) QLQ-C30 effect sizes were smaller than those of EQ-

5D-5L (Figure 8.2 & 8.4). In contrast, 7/15 (47%) of QLQ-C30 effects based on MDs showed 

improvements (below the commonly stated target of 10 points, often cited [219,220]).  

 

              Figure 8.4: Changes over Time for All Instruments (Transformed Scale) 
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Differences between apparently larger effects with ORs and ‘smaller’ ones with MDs are likely due 

to the presence of skewness in the data. For instance, pain (PA) improved by 0.053 points 

(equivalent to a 5 point difference on the original scale) and 40% (OR=1.4) with an OR (Table 8.1 

and Fig. 8.2 & 8.3) and a sizeable proportion of patients scored highly (better pain control). The left 

skewness influences the mean and consequently MD. Although for health economic evaluations, 

the mean is the statistic of choice, from a clinical perspective, this may not necessarily be the case, 

a theme which is discussed in section 8.4.  

 

8.3.3 Standardized Effect Sizes 

The standardized effect sizes were generally larger for EQ-5D-5L compared to EQ-5D-3L, which is 

consistent with the above findings (Table 8.2). The ES, SRM and 0.5*SD were 0.413, 0.314 and 

0.090 for EQ-5D-5L and 0.315, 0.230 and 0.100 for EQ-5D-3L respectively. For QLQ-C30, the 

values ranged from: -0.031 (DY) to 0.302 (SL) for ES, 0.0216 (FA) to 0.285 (SL) for SRM and 

0.115 (NV) to 0.218 (FI) 0.5*SD. These measures of effect sizes appeared to indicate the 

sensitivity of EQ-5D-5L, were comparable to the QLQ-C30 and were similar to those previously 

reported [221] in lung cancer patients. 
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Table 8.2: Comparison of Effect Sizes between EQ-5D and QLQ-C30 

   

                                 *Within patient mean difference divided by pooled SD 

                                 
1
MD / SD of baseline 

                                                   2
MD / SD of changes between post-baseline and baseline 

       3
0.5*SD of changes between post-baseline and baseline 

 

Comparisons Based on Response Categories for EQ-5D-3L and EQ-5D-5L 
 
The responses at baseline and post-baseline are shown for each domain of the EQ-5D-5L and 3L. 

Inspection of Figure 8.4 reveals that while the EQ-5D-3L distribution looks relatively stable from 

baseline to post-baseline, the EQ-5D-5L distributions appear to shift. For instance, for Mobility with 

EQ-5D-3L in the first three response categories (1:’No Problems’, 2:’Slight Problems’ and 

3:’Moderate), the proportion of baseline vs. post-baseline responses were 22% vs. 26% and 78% 

vs. 74% (Figure 8.5) and for EQ-5D-5L, these were 22% vs. 24%, 20% vs. 25%, and 22% vs. 32%, 

respectively. For EQ-5D-5L, post baseline, the proportion of responses in the first three categories 

appear to be increasing, which suggests that the expanded scale has improved sensitivity and 

responsiveness.  

 

 

 

 MD* ES
1
 SRM

2
 0.5*SD

3
 

EQ5D3L 0.046 0.315 0.230 0.100 

EQ5D5L 0.057 0.413 0.314 0.090 

QOL -0.021 -0.076 -0.240 0.157 

PF 0.035 0.114 0.128 0.135 

RF -0.026 -0.070 -0.069 0.186 

EF 0.041 0.148 0.117 0.174 

CF -0.014 0.048 0.144 0.155 

SF -0.056 -0.159 -0.142 0.196 

FA 0.006 0.206 0.021 0.138 

NV 0.008 0.037 0.034 0.115 

PA 0.053 0.148 0.184 0.143 

DY -0.010 -0.031 -0.025 0.143 

SL -0.108 0.302 0.285 0.197 

AP 0.060 0.171 0.150 0.189 

CO -0.030 0.093 0.088 0.199 

DI 0.047 0.179 0.207 0.168 

FI -0.088 -0.256 -0.201 0.218 
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Figure 8.5: Distribution of Responses for EQ-5D-5L and EQ-5D-3L Pre (left) and Post-Baseline (right) 

 

Key: 

EQ-5D-5L:  

For Mobility, Self-Care and 
Usual Activities; 
 
1:“No problem” 
2: “Slight problems”,  
3: “Moderate problems”  
4: “Severe problems”  
5:”Unable”   
 
For Pain/Discomfort and 
Anxiety/Depression,  
1:”No problem” 
2: Slight problem” 
3: “Moderate problem”  
4; “Severe problem” and 
5:”Extreme problem”  
 
 
EQ-5D-3L:  

For Mobility, Self-Care and 
Usual Activities;  
 
1:“No problem” 
2: “Some problems” 
3: “Unable”  
 
For Pain/Discomfort and 
Anxiety/Depression 
1:“None”  
2: “Moderate”  
3: “Extreme” 
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8.3.4 Adjustments for Covariates  

Interactions between pre and post-baseline with some potential predictors of HRQoL (age, gender, 

ECOG, and Stage) were tested. Both EQ-5D-5L and EQ-5D-3L MDs (post-baseline minus 

baseline) were larger for males vs. females (0.062 vs. 0.027 and 0.065 vs. 0.047) respectively and 

statistically significant with p-values of <0.001. This indicates the ability of both the instruments to 

detect HRQoL changes (where they exist) in subgroups. For QLQ-C30, differential changes 

between males and females were observed only for PF (p-value=0.0338), SL (p-value=0.0285). A 

similar result was identified for ECOG and also with ORs. All instruments were able to detect 

differences across ECOG, yielding varying effect sizes, and depending upon ECOG. For instance, 

MDs of 0.056, 0.031, 0.0256 and 0.118 were observed for EQ-5D-5L for ECOG 0, 1, 2, 3 and 4, 

respectively. 

 

8.4 Discussion 

Treatment effects from three important and commonly used HRQoL instruments have been 

presented and it has been shown that EQ-5D-5L is more sensitive than EQ-5D-3L. Moreover, the 

treatment effects from EQ-5D-5L (relative to baseline) are comparable to those of QLQ-C30. EQ-

5D-5L also appeared to be more sensitive than the EQ5D-3L for worsening severity (e.g. poorer 

ECOG status). This is true whether effects are reported as MDs, ORs or standardized effect sizes. 

ORs were used because distributions of QLQ-C30 and EQ-5D were skewed. Using ORs allows 

researchers to interpret small effects, which can be missed (or dismissed) as irrelevant or 

uninterpretable.  

 

ORs have been used previously in the analysis of HRQoL. Feddern et al. (2015) [222] report them 

for assessment of pain. Others [223] use a propensity score (logistic regression) approach to report 

odds of HRQoL deterioration. ORs with the QLQ-C30 in renal impaired patients have also been 

reported [224]. In these analyses, scores were dichotomized in order to generate the ORs. 

However, in this analysis, no such dichotomization (and consequent loss of information) was 

required, due to the flexibility of the Beta-Binomial regression approach. Given the acknowledged 

difficulties in interpreting standard effect sizes (Norman et al., 2003) [211] in a clinically meaningful 

context, these findings offer an approach to detect effects that can be interpreted clinically and 

judged against the background of an economic evaluation context because utilities and clinical 

effects can be assessed on the same scale.  

 

A useful property of the OR in situations, where a generic instrument is considered to lack 

sensitivity (e.g. EQ-5D-3L shows a small effect) is that it can contextualize these effects. 

Therefore, it can be concluded in a more informative way whether a QALY was unduly 

underestimated or not. As noted earlier, an apparently small MD in NV (from QLQ-C30) of about 

0.008 points (Figure 8.2) can be interpreted as a 24% improvement in nausea and vomiting 
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symptoms, rather than a mean change of 0.008 points. Consequently, EQ-5D utilities used to 

adjust efficacy outcomes (e.g. for QALYs) may not necessarily yield low QALYs because of a lack 

of sensitivity because it is a generic HRQoL measure. The plausible hypothesis that if an 

instrument is generic it may not capture condition specific HRQoL features, does not appear 

tenable from these findings. It is likely that EQ-5D provides adequate estimates of HRQoL. Any 

potential loss of information from the condition-specific QLQ-C30 is likely to be compensated by 

the expanded EQ-5D-5L scale (because EQ-5D effects are sometimes larger than QLQ-C30). 

Most of the items of QLQ-C30 are on a four-point scale; hence, EQ-5D-5L, with a five-point scale, 

may be expected to show greater sensitivity. To emphasize this point, from Table 8.1 we observed 

differences that are likely to be perceived as small; yet when these differences are considered on a 

relative scale, they suggest a more meaningful impact on patient HRQoL that might lead us to 

believe using a MD. In general, generic measures are reported considered to have less sensitivity.  

Clinically relevant effect sizes from generic measures such as the EQ-5D have been suggested to 

range from 0.03 [157,158]. In other studies too, these effect sizes are considered to be clinically 

important [225,226]. The minimally important difference for the EQ-5D (0.074) was almost double 

that for the SF-6D (0.041) – proportionally equivalent to the range of utility scores for each scale 

[225,226].   

 

In this analyses, whereas both EQ-5D-3l and 5L report effect sizes greater than 0.03, the 

suggested minimum for the EQ-5D, none of the effect sizes for the QLQ-C30 satisfied what is 

considered to be a clinically relevant difference of 15 points (or even 10 points).  On the basis of 

the data in this chapter, the effect sizes from the EQ-5D are commensurate with clinical relevance 

in the context of other similar expectations for these instruments, whereas for the QLQ-C30, this is 

not the case. Consequently, EQ-5D does appear to be more sensitive. 

 

The findings here confirm earlier work [208,221] that EQ-5D-3L has comparable effect sizes to 

QLQ-C30, using measures of standardized effect sizes. The findings presented extend this 

research for both EQ-5D-3L and EQ-5D-5L in a larger study. In addition, this is shown with several 

metrics, which take into account the skewed distribution of the data. Values of 0.5*SD  have been 

reported ranging from 0.07 to 0.11, which is comparable to what is reported here [221]. However, 

Krahn et al. (2007) [152], conclude that generic measures are less sensitive and should be 

complemented by a CSM. However, in both of these earlier and later studies the use of the MD 

statistic or its variants (e.g. ‘standardized effect size’, ‘standardized response mean’) makes 

interpretation of the effects challenging. Others [211] conclude that EQ-5D-3L is not as sensitive as 

the 15D or SF6D; 15D has a wider scale than EQ-5D-3L, which, therefore, supports the finding that 

EQ-5D-5L is more sensitive than EQ-5D-3L and possibly QLQ-C30 [211,224,227]. Based on MDs, 

Le et al. (2013) [182] also conclude that EQ-5D-5L was as sensitive to the condition-specific FACT-

B in breast cancer patients. 
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The interpretation of HRQoL effects, whether as an ES, MD, SRM, ½ SD, ORs or variants of these, 

remains a challenge. For instance, it is often unclear how a 2 point MD change in PF (which is 

statistically significant) is clinically important for patients and clinicians. Conclusions are often 

relegated to statistical interpretations, especially when the observed differences are small.  

  

Although the OR is not a direct metric used in economic evaluation, the BB model is 

mathematically tractable to estimate the mean EQ-5D from a given OR. It is important that when 

an apparently small (or large) mean utility or QALY is observed, it can be elucidated with a statistic 

such as an OR. Interestingly, a way to overcome the difficulty of interpreting the standardized 

effects size would be to convert the effect size scale, so as to interpret effect sizes as a proportion 

(of patients), who benefit from treatment [212]. The approach presented here follows a similar line 

of thought but is more direct. It allows one to subsequently compare these proportions through 

ORs using a BB modelling approach while quantifying the uncertainty (using confidence intervals). 

Quantifying uncertainty of the ES is not as simple as using confidence intervals. A simulation is an 

alternative approach; in initial simulations, it was noted that the potential for considerable 

uncertainty exists in (standardized) effect sizes. This is an interesting area for further research.  

 

This study was an observational study with the main objective of assessing HRQoL over time and 

therefore has limitations. Firstly, the study has a relatively small sample size, although it is larger  

than the sample size utilized in earlier similar studies [208,221]. Revicki (2006, 2008) [213-214] 

observes that for assessing the sensitivity of HRQoL instruments, an observational study is 

adequate. For the purposes of deriving QALYs, ORs are not a  statistic useful as an input into a 

health economic model; however, the mean can be estimated from the Logit function. The use of 

the OR may be considered a complex metric to interpret, but is not any more difficult than the 

standardized effect sizes and hazard ratios. Markers of disease evolution were collected 

(progression free survival): the results relating to treatment effects are consistent with what is 

observed with pre and post progression utilities. The mean pre and post progression utilities over 

time were 0.566 and 0.474 respectively with EQ-5D-3L; with EQ-5D-5L these were 0.573 and 

0.432. Hence the 5L also seems to be more sensitive in the sense that higher utilities were 

observed at each of the two clinical states (pre- and post progression) which are consistent with 

the descriptive states  from the EQ-5D. 

 

However, further research must be conducted to quantify the loss of information between generic 

and CSMs using the relationship between MDs, ES, SRM, ORs and impact on QALYs 
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8.5 Conclusion 

To conclude, EQ-5D-5L is more sensitive than EQ-5D-3L and can yield more precise HRQoL 

effects. In this chapter, EQ-5D-5L has shown comparable HRQoL benefits to QLQ-C30. Effects 

sizes based on ORs may contextualize small (or large effects) from EQ-5D effects compared to 

QLQ-C30; and can elucidate the interpretation of QALYs, especially in borderline decisions of cost-

effectiveness. This is the first study that has examined the sensitivity of EQ-5D-5L and EQ-5D-3L 

with the QLQ-C30 in this manner. 

 

The sensitivity of the instruments is vital to determine whether the utilities reflect estimates of 

HRQoL benefit from disease-specific HRQoL measures. The availability of different approaches to 

estimation of utility, particularly through several published mapping algorithms creates a difficulty in 

ascertaining which if any algorithm is optimal or more useful. Hence, in the next chapter, methods 

for selecting an optimal or more ‘useful’ mapping algorithm amongst those published are 

developed and evaluated.  
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         Chapter 9  

 

Chapter 9: Deciding between Published Mapping Algorithms to Predict 

EQ-5D Utility Scores from QLQ-C30 in Lung Cancer Patients 
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Abstract 

 

Introduction: There are several published algorithms for mapping QLQ-C30 onto 

EQ-5D-3L. However, there is an absence of robust validity of these algorithms and in 

particular, a method to select an optimal algorithm. The performances of these 

algorithms are compared using commonly reported metrics. A criterion of algorithm 

selection using a ‘traffic light’ system is based on a simulation approach. 

 

Methods: Data from three studies in NSCLC were used to predict and compare 

observed EQ-5D-3L utility scores from nine published algorithms. Cut-off values for 

R2, root mean squared error (RMSE) and percentage of utilities predicted within 

+10% of the observed value were determined from bootstrap simulated mean values 

in order to compare and select algorithms.  

 

Results: Mapping algorithms were classified into three groups: ‘Green: Good/Useful’, 

‘Amber: Useful but with caution’ and ‘Red: Poor’. The simulated R2 values ranged 

between 0.14 to 0.61, RMSE from 0.17 to 0.21 and percentage predicted within 

+10% of the target from 19% to 55%. The cut-off values from bootstrap simulations 

for these were 0.45, 0.182 and 36% respectively. Three algorithms were classified as 

‘Green: Useful’. These had >50% chance of R2 and % predicted exceeding 0.45 and 

36%, respectively. There was also at least 50% chance of RMSE < 0.182; five 

algorithms were considered as ‘Red: Not Useful’ (>50% chance of worse than 

average values for RMSE, R2, and % predicted) and one algorithm was classified as 

‘Amber: Useful but with caution’. 

 

Conclusion: For estimating predicted utilities in patients with NSCLC from the QLQ-

C30 instrument, a ‘useful’ set of mapping algorithms have been identified. Using 

bootstrap simulations, a criterion for model selection using a basic multi-criteria 

selection approach is offered. Given the increasing number of algorithms available, 

further research into multi-criteria approaches for deciding between algorithms is 

required.  
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9.1 Introduction 

In the previous chapters, alternative functional forms of algorithms and approaches to 

predicting patient level utilities were discussed. Previous reviews of mapping 

functions [112] were restricted to developing algorithms with emphasis on their 

performance based on various metrics. The emphasis was on model structure and 

complexity and less about the practical consequences of models – such as whether 

the model is usable, and how to select from an increasing number of available 

algorithms. A multi-criteria approach for selecting an algorithm may, therefore, be 

required to compare their performance (as there are several measures that are used 

to assess usefulness in practice).  

 

Current approaches for testing the validity and usefulness of published algorithms 

are based on using similar statistical metrics [163], but are less formalized and 

determined from a single instance of prediction. Crott (2014) [161] and Arnold et al. 

(2015) [162] investigated the practical value of algorithms by applying published 

mapping algorithms to independent data sets. Arnold et al. (2015) tested several 

algorithms on a small data set of n=73 in patients with malignant mesothelioma. 

Similarly, Crott (2014) [161] also tested some of these algorithms on 219 breast 

cancer and 172 non-small cell lung cancer (NSCLC) patients.  Both Crott (2014) and 

Arnold et al. (2015) [161,162] tested algorithms in a way similar to Doble and Lorgelly 

(2016) by using various statistical criteria, without developing any selection criteria. 

Also, no formalized approach to selection had been considered so far [72,163].  

 

In this chapter, a similar approach to previous methods [161,162] is adopted, but on 

a larger number of NSCLC patients. In addition, comparisons between observed and 

predicted health states are performed. A decision chart based on common criteria 

(such as R2, RMSE, % predicted) is proposed for the feasibility of the selection 

decision between algorithms using bootstrap simulation.  

9.2 Methods 

9.2.1 General Methods 

Literature Review of Published Algorithms 

Based on the review presented earlier (Chapter 2), several algorithms based on the 

following criteria for selection were identified in this chapter:   
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Criteria for Selecting Published Mapping Algorithms  

 

The criteria for selection of algorithms were based on: 

a) Ensuring that QLQ-C30 was used as a part of the process of developing the 

algorithm. 

b) At least 2 coefficients in the mapping function were reported (the intercept 

and at least one of the 15 domains (these domains consist of 5 functional 

domains: Physical Function (PF), Role Function (RF), Emotional Function 

(EF), Cognitive Function (CF), Social Functioning (SF); 8 symptom domains: 

Fatigue (FA), Nausea & Vomiting (NV), Pain (PA), Dyspnoea (DY), Insomnia 

(IN), Appetite Loss (AL), Constipation (CO), Diarrhoea (DI);  a domain for 

Financial Problems (FI) and an overall Global Health Status Score (QL)).  

c) Algorithms were included irrespective of the tumour type. Moreover, most 

algorithms were reported in a manner that there were no restrictions on use in 

any specific tumour type.   

d) Algorithms were included, whether developed from the randomized clinical 

trial (RCT) data or other studies (e.g. surveys, observational studies). 

e) Algorithms were used irrespective of which country the data were generated 

from (or which language the studies were published in). 

    

Selected Mapping Algorithms 

Nine algorithms were selected based on the above criteria. The selected studies are 

described and summarized in Table 9.1 below: 
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Algorithm          Published Equation or Formulae for EQ-5D-3L prediction 

I: Mckenzie (2009) EQI =0.2376 – 0.0006*FI-0.0003*DI+0.0001*CO+0.0003*AP+0.00004*DY-
0.0024*PA-0.0005*NV - 0.0021*FA+0.0002*SF+0.0009*CF+ 0.0028*EF+ 
0.0022*RF+0.0004*PF+ 0.0016*QL+0.00004*SL 
 

II:Kontodimopoulos 
(2009) 

EQII =-0.1814+ 0.00546*QL + 0.00313*EF +0.00508*PF  

III: Jang et al. (2010) EQIII = 0.3381 +0.0035*PF+0.0007*RF+0.0011*EF+0.0007*CF-
0.0007*SF+0.0009*QL+0.0003*FA-0.0002*NV-0.0021*PA-0.0001*DY -
0.0001*SL-0.0001*AP+0.0005*CO+0.0004*DI-0.0001*FI 
 

IV: Crott et al. (2012) EQIV = 1-[0.85927- 0.006963*PF – 0.008734*EF – 0.003993*SF 
+0.0000355*PF

2
 +0.0000552*EF

2
 +0.0000290*SF

2
+ 

0.001145*CO+0.003561*PA-0.0003678*SL-0.0000540*DI
2
 + 0.0000117*SL

2 

 
 V: Kim-K (2012) EQV = 0.5534+0.0007*QL+ 0.0032*PF+0.0005*EF+0.0005*SF-0.0013*PA 

+0.0008*DY-0.0006*AL+0.0005*DI 
 

VI: Versteegh et al. 
(2012) 

EQVI = 0.130 +0.0007*QL+ 0.0032*PF+0.0005*EF+0.0005*SF-0.0013*PA 
+0.0008*DY-0.0006*AL+0.0005*DI 
 

VII: Kim-A(2013) EQVII =0.53897+0.002*PF+0.002*RF+0.003*EF+0.001*SF+0.001*QL+ 
0.001*FA-0.001*PA-0.001*CO 
 

VIII: Khan (2014)* EQVIII = 1.318+0.260*PF+0.2340*RF+0.379*EF+0.257*SF+0.061*CF-
0.012*FA+0.062*NV-0.235*PA+0.0088*DY-0.102*SL +0.0017*AP 
+0.026*CO+0.051*DI+0.062*FI+0.224*QL 
 

IX: Proskorovsky 
(2014) 
 

EQIX =0.1197+0.000961*FI-0.0003*DI-0.0005519*CO- 0.000479*AP 
+0.000376*DY-0.00229*PA+0.000573*NV - 0.0000575*FA+0.0000447*SF-
0.000378*CF+ 0.00104*EF+ 0.000731*RF+0.00471*PF+ 
0.00161*QL+0.000966*SL 

Table 9.1: Formulae for Estimating EQ-5D-3L Utilities 

Physical Function (PF), Role Function (RF), Emotional Function (EF), Cognitive Function (CF), Social 

Functioning (SF), Fatigue (FA), Nausea & Vomiting (NV), Pain (PA), Dyspnoea (DY), Insomnia (IN), 

Appetite Loss (AL), Constipation (CO), Diarrhoea (DI), Financial Problems (FI); Global Health Status 

Score (QL); *using model developed from SOCCAR data to test on TOPICAL data. 

 

The algorithm details were provided in section 2.4.5 (Chapter 2). 

HRQoL Instruments 

The EORTC QLQ-C30 and EQ-5D-3L were used for this simulation. EQ-5D-5L were 

not available for the TOPICAL and SOCCAR studies. These instruments were 

discussed in detail in earlier chapters.  

 
Data  
 
Each of the published algorithms was applied to three data sets from NSCLC studies: 

The TOPICAL trial (N=670); SOCCAR trial (N=130) [165,166] and Study 3 (N=100). 

Details of each study are in Chapter 3. ,  
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 Observed Simulated 

 
TOPICAL 
[N=2038]* 

SOCCAR 
[N=1002] 

Study 3 
[N=985] 

TOPICAL 
[N=2038] 

SOCCAR 
[N=1002] 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

EQ-5D 0.61 (0.29) 0.75 (0.23) 0.52 (0.31) 0.61 (0.28) 0.75 (0.22) 

PF 54.15 (26.30) 78.60 (36.53) 56.25(26.81) 54.15 (25.10) 77.90 (37.88) 

RF 
 

49.18 (34.67) 71.28 (43.04) 46.00 (33.42) 
 

49.11 (33.87) 70.99 (42.11) 

EF 73.89 (24.41) 77.06 (42.23) 66.34 (27.40) 72.99 (23.91) 77.16 (44.19) 

SF 66.90 (32.40) 74.55 (45.17) 52.54 (32.50) 66.10 (32.30) 74.35 (46.10) 

CF 10.00 (21.02) 20.44 (49.53) 71.25 (28.92) 10.05 (20.92) 20.99 (50.13) 

NV 
10.65 (18.81) 10.58 (37.26) 13.25 (20.96) 

 
  9.99 (19.01)   9.98 (36.18) 

PA 26.00 (29.70) 20.66 (41.47) 38.90 (30.97) 25.90 (28.90) 20.05 (43.45) 

DY 49.76 (32.92) 31.57 (45.98) 52.27 (31.75) 49.10 (31.62) 31.98 (47.13) 

SL 29.03 (32.67) 24.00 (42.70) 46.39 (34.64) 29.66 (32.00) 23.98 (41.66) 

AP 36.78 (35.57) 20.47 (43.61) 38.20 (36.45) 36.12 (35.11) 19.97 (43.53) 

CO 20.33 (28.21) 18.64 (46.78) 26.81 (33.28) 20.83 (27.91) 18.66 (45.99) 

DI 17.14 (27.54) 6.06  (40.62) 11.64 (23.30) 17.14 (26.14)   6.59 (43.92) 

FA 48.52 (28.89) 33.94 (42.20) 53.78 (28.47) 47.92 (28.89) 32.99 (41.44) 

 
FI 

 
77.17 (24.41) 

 
83.13 (42.32) 

 
28.48 (34.26) 

 
78.17 (29.30) 

 
84.09 (46.18) 

QL 52.27 (23.25) 63.75 (29.65) 51.19 (24.16) 52.17 (25.11) 63.22 (28.89) 

 

Table 9.2: Resultant Simulated Mean (SD) Compared to Observed Values 

Physical Function (PF), Role Function (RF), Emotional Function (EF), Cognitive Function (CF), Social 

Functioning (SF, Fatigue (FA), Nausea & Vomiting (NV), Pain (PA), Dyspnoea (DY), Insomnia (IN), 

Appetite Loss (AL), Constipation (CO), Diarrhoea (DI), Financial Problems (FI), Global Health Status 

Score (QL).  

9.2.2 Testing each of the Published Algorithms on Independent lung 

cancer Data  

For each of the (nine) published algorithms, the observed QLQ-C30 (patient level) 

domain scores from the 3 lung studies (separately) were substituted into each of the 

algorithms (Table 9.1). The observed EQ-5D-3L values were then compared to the 

predicted values (by regressing observed versus predicted) to generate R2, RMSE 

and percentage predicted within + 10% of the observed EQ-5D (i.e. if the observed 

EQ-5D utility is 0.50, then a predicted value to within +10% would be 0.45 to 0.55). 

Since most predicted values are likely to lie within +20% and higher and very few to 

be within +5%, It was felt that +10% was an acceptable criterion because several one 

and two-way sensitivity analyses in economic evaluations, utility increments of higher 

than +10% have been used [206].  
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All available coefficients were used for prediction, regardless of statistical 

significance. A non-statistically significant predictor does not necessarily mean 

irrelevance or it is not important (e.g. due to lack of statistical power) [183]. There 

appear to be no caveats, which suggest that non-statistically significant coefficients 

should be excluded for the purposes of predictions [183]. In practice, when users 

apply an algorithm, they may not be able to use their observed QLQ-C30 data if 

some coefficients are not reported (loss of information).  

 

Comparing by Health States 

The mean predicted EQ-5D was computed for each (ordered) health states (from 

11111 to 33333). The predicted values from each algorithm were compared with the 

observed EQ-5D-3L values from each of the 3 studies.   

9.2.3 Classification of Algorithms 

Algorithms were classified using a ‘traffic light’ system and a decision chart to guide 

the algorithm selection. Since each set of predicted utilities corresponds to one data 

set (TOPICAL, SOCCAR, Study 3), the use of a single estimate of a statistic such as 

R2, or percentage of predicted values within +10% of the observed will be uncertain. 

Therefore, in order to classify algorithms based on values of R2, RMSE, and 

percentage predicting within +10%, 1,000 bootstrap simulations were used to 

generate a distribution of these statistics. Each (simple) bootstrap sample consists of 

the same number of observations as the original study (e.g. the SOCCAR study had 

n=130 patients, and therefore a bootstrap size would be 130). For each bootstrap 

sample, the (QLQ-C30) domain scores were used as inputs into each of the 

published algorithms to generate patient level predicted EQ-5D-3L utilities. The 

observed and predicted utilities from each bootstrap sample were then used to derive 

R2, RMSE and % predicted to within +10% and further used to classify published 

algorithms as: 

(i) Green: ‘Useful’. 

(ii) Amber: ‘Useful, but caution needed’.  

(iii) Red: ‘Poor’. 

 

The cut-off values for (i) to (iii) were determined by bootstrap simulation [228,229]. 

For each study (data set), 1,000 estimates of the above statistics (R2, MSE, and % 

predicted) were generated, along with their (bootstrap) mean. An estimate of the 
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overall mean () based on (𝜇̂) across all algorithms (and data sets) was derived for 

each metric: R2, RMSE and %predicted.  

For each algorithm, for each of the three categories/classifications (i) to (iii), the 

following general conditions were used: 

 

                                                 𝜃.𝑗
∗  > 𝜇̂  for R2, % predicted  [Useful]   [9.1] 

                                                 𝜃.𝑗
∗  < 𝜇̂ for RMSE ∶                     [Useful]  [9.2]  

or 

                                                 𝜃.𝑗
∗  < 𝜇̂  for R2, % predicted  [Poor]      [9.3] 

                                                 𝜃.𝑗
∗  > 𝜇̂ for RMSE ∶                     [Poor]     [9.4]  

 

Where    𝜃.𝑗
∗   represents the true mean parameter value across the 3 studies, for each 

of the j=1…9 algorithms, for a given metric (R2, RMSE, %predicted). Hence there 

are, 𝜃.1
∗ , 𝜃.2

∗ , …… . . 𝜃.9
∗  values, one for each algorithm. The table (Table 9.3) below 

clarifies further.  

 

Algorithm (j)                R
2
                  RMSE         %Pred 

Dataset 1 2 3 Average 1 2 3 1 2 3 

1 𝜃11 𝜃12 𝜃13 𝜽.𝟏
∗  etc. etc Etc Etc etc etc 

2 𝜃21 𝜃22 𝜃23 𝜽.𝟐
∗  etc etc Etc Etc etc etc 

3 𝜃31 𝜃32 𝜃33 𝜽.𝟑
∗  etc etc Etc Etc etc etc 

4 𝜃41 𝜃42 𝜃43 𝜽.𝟒
∗  etc etc Etc Etc etc etc 

5 𝜃51 𝜃52 𝜃53 𝜽.𝟓
∗  etc etc Etc Etc etc etc 

6 𝜃61 𝜃62 𝜃63 𝜽.𝟔
∗  etc etc Etc Etc etc etc 

7 𝜃71 𝜃72 𝜃73 𝜽.𝟕
∗  etc etc Etc etc etc etc 

8 𝜃81 𝜃82 𝜃83 𝜽.𝟖
∗  etc etc Etc etc etc etc 

9 𝜃91 𝜃92 𝜃93 𝜽.𝟗
∗  etc etc Etc etc etc etc 

    𝝁̂ etc etc Etc etc etc etc 

Table 9.3: Example of simulated data structure 

 

In Table 9.3, ij is the statistic derived for data set i for algorithm j, .j is the average 

value of the statistic across the 3 data sets for a given algorithm j, and 𝜇̂ is an 

estimate of the true overall mean across all algorithms and data sets. All estimates 

are based across the bootstrap values. The differences between (𝜃.𝑗
∗  -  𝜇̂ ) in [9.1] 

and [9.4], provides an indication of how far each estimate from each algorithm across 

all studies/datasets (𝜃.𝑗
∗) is compared to the overall mean value (𝜇̂) across all studies 

and algorithms.  

 



 

210 

 

Define j=( 𝜃.𝑗
∗  -  𝜇̂), then, one would desire j > 0 for metrics such as R2 and 

%predicted (the algorithm j would be above average performance for such a metric). 

Conversely, one may desire j < 0 for metrics such as RMSE. One could also choose 

values j of other than 0. In addition, one would desire the (empirical) probability of 

j > 0 to be high or at least some value  

More formally,  

              Pr [(j  > 0) |Ai] >for  ∈ {R2 , % predicted}  [9.5] 

              Pr [(j  < 0) |Aj] >for  ∈ {MSE}                    [9.6] 

 

In this example, demonstration of the selection method, is set to 0.5. This 

corresponds to at least a 50% chance (a fifty-fifty chance in the absence of additional 

knowledge) the selected algorithm based on the statistic of interest has above 

average performance. One could have a classification of algorithms such that there 

was at least 80% chance a given algorithm is classified as ‘Useful’. However, the 

higher the probability, the fewer algorithms are likely to be classified. Table 9.4 

(below) outlines the possible outcomes from equations [9.1] to [9.4]. The criteria 

attempts to compare each algorithm compared to the overall mean across all 8 

algorithms and all 3 data sets. Hence the criteria is set against the current mean of 

any particular statistic. Further details for the derivation of these criteria are now 

developed. 

               Table 9.4: Summary of Decision Outcomes Based on Model Statistics 

9.2.4 Methodology for Algorithm Selection 

 
The criteria in Table 9.4 essentially classify the algorithms based on the bootstrap 

means across all three studies. If the individual parameters (𝜃.𝑗
∗  ) from each algorithm 

based on observed data are above or below the expected true parameter (𝜇̂) value, 

using data across all 3 (bootstrapped) studies, the algorithms are appropriately 

classified depending on whether the relative frequency (probability) the statistic (e.g. 

RMSE) is above or below the bootstrap average. The criteria may be correlated (i.e. 

if RMSE is low and R2 is high, then the %predicted within +10% may also be high).  

 

R
2
 RMSE %Predicted Overall 

Useful [10.1] Useful [10.2] Useful [10.1] Useful (Green) 

Any 2 are ‘Useful’ (or any 1 Poor) Useful/Caution (Amber) 

Any 2 are ‘Poor’ (only 1 ‘Good’)  Poor (Red) 

Poor [10.3] Poor [10.4] Poor [10.3] Poor 
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Technical Details of Selection Criteria 

Assume A1, A2…….An (j= 1 to n) algorithms for testing (in this case, n=9). Assume 

there are S1, S2...Sm data sets (with equal or unequal sample sizes) to test each 

algorithm (m= 3 in this example, as there are 3 data sets).  

 

After each algorithm (Aj) has been tested on each data set (Si), a set of parameters 

ij are estimated. Each ij could refer to true values of model fit statistics (R2, 

RMSE, and % predicted (in this instance). The matrix Z, is a matrix of dimension m x 

n parameter values (in this case for n=9 algorithms and m= 3 data sets, there would 

be a 3x9 matrix for a single metric, with each element  𝜃𝑖𝑗. 

                                         = (

𝜃11   𝜃12…𝜃19    
𝜃21   𝜃22…𝜃29    
𝜃31   𝜃32…𝜃39    

) 

However, since each 𝜃𝑖𝑗 is an estimate for each of (R2, RMSE and %predicted), this 

becomes a 3 x 9 x 3 dimension data structure. We now compute an estimate of each 

parameter for each algorithm across the m data sets. 

                                        𝜃.𝑗
∗ =  1/𝑚(∑ 𝜃.𝑗

𝑚
𝑗=1 )                                    [9.7] 

 

Therefore, 𝜃.𝑗
∗  is an estimate of the true mean value of the metric of interest across 

the m (m=3) studies for a given algorithm j. Hence, there are several estimates, 

𝜃.1
∗ , 𝜃.2

∗ , …… . . 𝜃.9
∗  , one for each algorithm, in this case. 

 

Simulate from each study, Sm, (m=1…3), z bootstrap samples (e.g. z=1,000). For 

each bootstrap sample, use the algorithm Aj to predict the patient level utilities and 

consequently, an estimate of model fit statistic of interest (e.g. R2). For example, with 

1,000 bootstrap samples from each study, this would yield 3,000 R2 values for each 

algorithm (hence, 3,000 x 9 estimates of R2).  

Define each bootstrap estimate of each parameter: 

                                                      𝜔𝑖𝑗𝑘  (k= 1 ….z)         [9.8] 

 

Compute the mean across all bootstrap estimates: 

                                     

                                        𝜇̂ = ∑3𝑗=1 ∑ ∑𝑧𝑘=1 𝜔𝑖𝑗𝑘
9
𝑖=1 .    [9.9] 
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This (𝜇̂) is an estimate of the population average () for each of R2, RMSE and 

%predicted. The value of 𝜇̂ provides the basis for the cut-off value; [9.7] is as 

compared to [9.9]. 

 

Set the criteria that if 𝜽.𝒋
∗  < 𝜇̂ or 𝜽.𝒋

∗  > 𝜇̂ for a given metric, then the classification of 

each algorithm is generated as shown in Figure 9.1. This is the simplest classification 

criteria used, which essentially states that if the estimates of a metric (e.g. R2) across 

studies are lower or higher than the expected population average, algorithms can be 

classified accordingly. 

 Figure 9.1: Example Classification Tree for Published Algorithms (Across All Studies) 

 

R2 

(<0.45) 

II, III, IV,VII 

RMSEp (>0.182) 

II, III, IV,VII 

%Predicted (+10%)     

<36% 

II, III, IV, VII 

Red: Poor 

(>0.45) 

I, V, VI, VIII, IX 

RMSEp (<0.182) 

I, VI, VIII, IX 

%Predicted (+10%)     

<36%   

I 

AMBER: Useful / 
Caution 

% Predicted 
(+10%) >36% 

VI, VIII, IX 

Green:  

Ready to 
use/useful  

RMSEp (>0.182) 

V 

%Predicted (+10%)  

   >36% 

V 

     Red: Poor 
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I: McKenzie (2009); II:  Kontodimopoulos (2009); III: Jang et al., (2010); IV: Crott et al., (2012); V:Kim-k 

(2012); VI:Veerstegh (2012); VII: Kim-A (2013); VIII: Khan (2014) using SOCCAR data;  IX: 

Proskorovsky (2014); RMSEp: RMSE Predicted 

 

Further justification can be shown as follows. The differences between [9.7] and 

[9.9], i.e. j( 𝜃.𝑗
∗  -  𝜇̂), provides an indication of how far the observed estimate is 

across all 3 studies compared to the expected population estimate (𝜇̂). For large 

positive values of j, for metrics such as R2 and % predicted one would like this to 

have high probability ( >  for ‘useful’ algorithms (j >>0)  or  (j << 0) for metrics 

such as RMSE, based on [9.5] and [9.6] below. 

                           

                Pr [(j  > 0) |Aj] >for  ∈ {R2 , % predicted}  [9.5] 

                Pr [(j  < 0) |Aj] >for  ∈ {MSE}                    [9.6] 

 

The equations [9.5] and [9.6] are interpreted as the difference between the average 

R2 across all available data sets when compared with the average R2 values across 

all data sets and algorithms across all simulations. The value of j should be positive 

(i.e. j > 0 ), for at least 50% of the time, so that algorithms can be considered useful, 

otherwise they are not considered useful. A similar interpretation is made for the % 

predicted and the inverse is used for RMSE. Hence, the chosen cut-offs for R2, MSE 

and % predicted reflect at least a 50% chance a given algorithm is classified as 

‘Poor’ or ‘Useful’.  A summary of the terminology and definitions are found in Table 

9.5. 

    
Parameter 

                                   Details 

Aj Each Aj is an algorithm (j= 1 to n); n=9 
Si Each Si is a study (i= 1 to m); m=3 
M The number of data sets; m=3 
N The number of algorithms; n=9 

 The set of model fit statistics of interest. 

ij The parameter of interest for algorithm i and study j. 

θ.𝒋
∗  

 
Z 

Mean of parameters for each algorithm j across the m data sets for a 

given statistic in 

The matrix of m x n estimates for each of the elements in  

z The number of bootstrap samples. 
𝛚𝐢𝐣𝐤 Each bootstrap mean (k) for each algorithm (j) and each data set (i). 

𝛍̂ The estimate of the true mean across all algorithms and all studies for a 

given value of  

j   The difference between the mean of parameters for each algorithm and 

the overall mean:  ( 𝜃.𝑗
∗  -  𝜇̂). 

                                          Table 9.5: Parameter Description 
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9.2.5 Method Used to Simulate Data from TOPICAL and SOCCAR Trials 

The data were simulated from a multivariate normal distribution (MVN) using 

summary statistics reported earlier [109]. The data were assumed to be multivariate 

normal. It is not uncommon for QLQ-C30 scores to be reported in terms of mean and 

standard deviations for describing treatment effects, an assumption widely noted in 

the literature [155]. The raw data were no longer available and therefore simulations 

were required. The method of simulation was as follows: 

 

(i) Estimate the mean and SD of each the 15 QLQ-C30 domain scores and EQ-5D, 

for each of TOPICAL and SOCCAR. These were readily available [109]. A total of 

2,038 and 1,002 observations were simulated for each data set (as these were the 

original number of observations in each trial).  

 

(ii) Estimate or make assumptions about the correlations between each EQ-5D and 

QLQ-C30 domain score. These were assumed to be as shown in Table 4.7 and 4.8 

(Chapter 5) published as supplementary tables [109]. The assumption for the 

correlation matrix is justified because the final estimates of the summary Mean and 

SDs from simulated data approximate closely with those observed in Khan and 

Morris [109]. The general approach to simulation is: 

 

(iii) Using the Kaiser and Dickman (1962) approach: 

  ZkxN = F(kxk) X(kxN) 

Where Z is the resultant observation (matrix of observations). 

F is the correlation matrix. 

X is the input data consisting of means and SDs. 

kxN represents the number of variables(k the 15 QLQ-C30 plus one EQ-5D variable). 

The following SAS code was used to construct the simulated data sets: 

 

Data sim (type=corr; 
_type_=’CORR’; 
Input x1-x16; 
1.00  etc <correlations>; 
Run; 
Proc factor n=16; 
run; 

 

The resulting mean and SD’s (Tables 9.2) were very similar to those observed in 

Chapter 4. Since all observations are sometimes pooled in the development and 
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applications of mapping algorithms, this type of simulation approach is unlikely to be 

problematic for the testing of published algorithms.  

9.3 Results 

 
Nine algorithms were used to estimate EQ-5D-3L utilities from the observed QLQ-

C30 data (Tables 9.1).  

 
Demographic and Clinical Characteristics  
 

Table 9.6, 9.7 and 9.8 shows a summary of the data characteristics from each 

algorithm. Only one previous algorithm [130] was developed using a NSCLC data 

set. All algorithms were OLS type models (except IX). Sample sizes used for 

developing algorithms ranged between 48 (algorithm II) to 893 (VI); Reported R2 

(Table 9.9) ranged between 0.49 (V) to 0.91 (IV) and RMSEs were between 0.09 

(VIII) to 0.19 (II). Coefficients of each reported algorithm were shown in Table 9.1 

and 9.10. 

Year [Reference] 
Sample 
Size 

Population Model Type 
R

2a
 validation 

2016 Khan et al. (IX) 100 NSCLC 2 Part Beta 
OLS 

75% Cross validation & 
Simulation 

2009 McKenzie et al. (I) 199 Oesopgeal 
 

OLS 
PROBIT 

61% Independent data 

2009 Kontodimopoulos N (II) 48 Gastric OLS 91% None 
2010 Jang et al. (III) 172 NSCLC OLS 58% Cross validation 
2010 Crott and Briggs (IV) 448 Breast Quadratic 80% Independent data 
2012 Kim EJ et al. (V) 199 Breast 

Cancer 
OLS 49% Cross validation 

2012 Kim SH et al. (VI) 893 Mixed OLS 52% Independent data 
2012 Versteegh et al. (VII) 137 Mixed OLS 82% Independent data 
2014 Proskovorsky (VIII 154 Myeloma OLS 69% None 
      

Table 9.6: Selected Algorithms 

a
maximum observed was reported 

 

 TOPICAL SOCCAR Study 3* 

Sample Size 
Observations

#
 

     670 
     2038 

130 
1002 

98 
985 

Age (Range) [years] 77 (42-91) 63 (36-78) 69 (39-86) 
Gender 
    Male 
    Female 

 
409 (61%) 
261 (39%) 

 
79 (61% 
51 (39%) 

 
55 (56%) 
43 (44%) 

ECOG: 
0: Normal activity  
1: Near full activity  
2: In bed < 50% of time  
3: In bed > 50% of time 
4: Totally confined to bed 

 
12(2%) 
94(14%) 
372(56%) 
192(29%) 
0 

 
10(17%) 
50(83%) 
0 
0 

 
12 (12%) 
23 (23%) 
30 (31%) 
27 (28%) 
  4 (4%) 

# Health States for EQ-5D-3L 85 54 62 
Stage    
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Table 9.7: Baseline Characteristics for Each Study 

# 
EQ-5D observations; *observational study designed for this thesis 

Table 9.7: Baseline Characteristics for Each Study 

Algorithm Sample   
Size 

# Coefficients  reported 
for prediction 

Population 
(Cancer) 

Model 

I 199 15 oesophageal Linear (OLS) 
II 48 3 Gastric Linear (OLS) 
III 172 15 NSCLC Linear (OLS) 
IV 798 12 Breast Linear (OLS) 
V 149 5 Breast Linear (OLS) 
VI 893 11 Myeloma Linear (OLS) 
VII 723 5 Colon Linear (OLS) 
VIII 800 15 NSCLC Non-Linear (BB) 
IX 154 15 Myeloma Linear (OLS) 
SOCCAR 130 15 NSCLC Non-Linear (BB) 
TOPICAL 670 15 NSCLC Non-Linear (BB) 

Table 9.8: Baseline and Data Characteristics for Each Algorithm 

 

I: McKenzie (2009); II:  Kontodimopoulos (2009); III: Jang et al. (2010); IV: Crott et al. (2012); V: Kim-k 
(2012); VI: Veerstegh (2012); VII: Kim-A (2013); VIII: Khan (2014); IX: Proskorovsky (2014)  
 
Note: VIII (Khan 2014) was developed from SOCCAR data and tested on TOPICAL data and vice versa. 

 

 

         Table 9.9: Summary of Algorithm Performance on Independent Data 

Note: Observed Means were 0.61, 0.75 and 0.52 for TOPICAL, SOCCAR and Study 3 respectively 

   Stage I-II 
   Stage III 
   Stage IV 

 0 
234 
436(65%) 

0 
57 (44%) 
73 (56%) 

26 (27%) 
31 (32%) 
37 (38%) 

Histology 
  Adenocarcinoma 
  Squamous  
  Large Cell  
  Other NSCLC 

 
256(38%) 
263(39%) 
30(5%) 
121(18%) 

 
35(27%) 
83(64%) 
0 
12(9%) 

 
43 (44%) 
36 (33%) 
 0 
19 (23%) 

 

Reported/ 
Published 
 

     TOPICAL  
[N=670, #=2038] 
 

    SOCCAR  
[N=130, #=1002] 
 

      Study 3   
[N=100, #=985] 
 

 
R

2
R 

 
RMSER 

 
R

2
P 

 
RMSEP 

 
MeanP 

 
R

2
P 

 
RMSEP 

 
MeanP 

 
R

2
P 

 
RMSEP 

 
MeanP 

 

I 
0.61 NR 0.59 0.19 0.5685 0.57 0.151 0.6959 0.50 0.2193 0.492 

II 
0.61 0.192 0.54 0.20 0.6013 0.56 0.152 0.8056 0.42 0.2360 0.597 

III 
0.58 NR 0.19 0.19 

 
0.6571 0.56 

 
0.152 0.7691 

 
0.60 0.1963 0.638 

IV 
0.80 0.096 0.46 0.22 

 
0.7250 0.22 

 
0.203 0.7861 

 
0.54 0.211 0.640 

V 
0.49 NR 0.59 0.19 0.8234 0.55 0.154 0.9093 0.60 0.196 0.808 

VI 
0.74 0.11 0.58 0.19 

 
0.6229 0.58 

 
0.150 0.7209 

 
0.55 0.209 0.580 

VII 
0.52 0.087 0.59 0.19 1.0830 0.59 0.148 1.1950 0.53 0.213 1.041 

VIII 
0.75 0.09 0.58 0.19 0.622 0.61 0.159 0.7448 0.57 0.230 0.539 

IX 
0.70 0.164 0.56 0.20 0.5106 0.51 0.161 0.6783 0.58 0.201 0.522 
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I: McKenzie (2009); II:  Kontodimopoulos (2009); III: Jang et al. (2010); IV: Crott et al. (2012); V:Kim-k 

(2012); VI:Veerstegh (2012); VII: Kim-A (2013); VIII: Khan (2014) using SOCCAR data; IX: 

Proskorovsky (2014); 
+
as reported in published model; NR: Not Reported; R

2
R : R-squared reported; 

R
2

p: R-squared predicted; RMSER: Root Mean Square Error reported (R) ; RMSEP Root Mean Square 

predicted (P); Note: VIII (Khan 2014) was developed from TOPICAL data and tested on SOCCAR data 

and vice versa; 
#
: number of observations 

 

Selection of Algorithm Results  

The Bootstrap estimates of cut-offs (𝜇̂) for each of R2, RMSE and % predicted within 

+10% were 45%, 0.182 and 36% respectively (Figure 9.1 and Tables 9.9, 9.10 & 

9.11). Therefore, algorithms were classified as: 

 

(i) Green- Useful: VI: Veerstegh (2012) [141];  VIII: Khan (2014) and IX: 

Proskorovsky (2014), because  these reported R2 >45%, better (highest) 

proportion of prediction of EQ-5D to within +10% of the observed mean 

EQ-5D and relatively lower RMSE (Figure 9.2 & Table 9.6). 

 
(ii) Amber- Useful/Caution: Algorithm I is considered ‘Amber’ since it had 

some useful properties as well as some potential for moderate over/under 

prediction: R2 >45%, but higher RMSE and % predicted within +10% were 

<36%. 

 
(iii)  Red – Avoid: Algorithms II, III, IV, V, and VII should not be the first 

choices. These had typically lowest R2, highest RMSE, and poorer 

prediction. These algorithms may yield unreliable estimates of utilities and 

consequently, QALYs. 
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Tables 9.11 & 9.12 show % of predicted EQ-5D scores within +5% and +10% of the 

observed. 

          

              Figure 9.2: Summary of Algorithm Performance (Across All Studies) 
 

I: McKenzie (2009); II:  Kontodimopoulos (2009); III: Jang et al., (2010); IV: Crott et al., (2012); V:Kim-k 

(2012); VI:Veerstegh (2012); VII: Kim-A (2013); VIII: Khan (2014) using SOCCAR data;  IX: 

Proskorovsky (2014); RMSEp: RMSE Predicted 

R2 

(<0.45) 

II, III, IV,VII 

RMSEp 
(>0.182) 

II, III, IV,VII 

%Predicted 
(+10%)     

<36% 

II, III, IV, VII 

Red: Poor 

(>0.45) 

I, V, VI, VIII, IX 

RMSEp 
(<0.182) 

I, VI, VIII, IX 

%Predicted 
(+10%)     

<36%   

I 

AMBER: Useful / 
Caution 

% Predicted 
(+10%) >36% 

VI, VIII, IX 

Green:  

Ready to 
use/useful  

RMSEp 
(>0.182) 

V 

%Predicted 
(+10%)  

   >36% 

V 

     Red: Poor 
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QLQ-C30  I II III IV V VI 
 

VII 
 

VIII* 
 

IX 

PF 0.0004 0.00508 0.0035 
-0.006963 
[0.0000355]* 

0.0032 0.0032 
0.002 0.260 0.00471 

RF 0.0022  0.0007 NR NR NR 0.002 0.234 0.000731 

EF 0.0028 0.00313 0.0011 
-0.008734 
[0.0000552]* 

0.0005 0.0005 
0.003 0.379 0.00104 

SF 0.0002 NR 0.0007 
-0.003993 
[0.0000290]* 

0.0005 0.0005 
0.001 0.257 0.0000447 

CF 0.0009 NR 0.0007 NR NR NR NR 0.061 -0.000378 

FA 0.0021 NR 0.0003 NR NR NR 0.001 -0.012 -0.0000575 

NV 0.0005 NR -0.0002 NR NR NR NR 0.062 0.000573 

PA 0.0024 NR -0.0021 0.003561 -0.0013 -0.0013 -0.001 -0.235 -0.00229 

DY 0.00004 NR -0.0001  0.0008 0.0008 NR 0.0088 0.000376 

SL 0.00004 NR -0.0001 
-0.0003678 
[0.0000117]* 

NR NR NR 
-0.012 0.000966 

AP 0.0003 NR -0.0001 NR NR NR NR 0.0017 -0.000479 

CO 0.0001 NR 0.0005 0.001145 NR NR -0.001 0.026 -0.0005519 

DI 0.0003 NR 0.0004 [-0.0000540]* 0.005 0.0005 NR 0.051 -0.0003 

FI 0.0006 NR -0.0001 NR NR NR NR 0.062 0.000961 

QL 0.0016 0.00546 0.0009 NR 0.0007 0.0007 0.001 0.224 0.00161 

Constant 0.0004 0.00508 0.0035 
-0.006963 
[0.0000355]* 

0.0032 0.0032 
0.002 1.318 0.00471 

*Using model developed from TOPICAL data and tested on SOCCAR data  

I: McKenzie (2009); II:  Kontodimopoulos (2009); III: Jang et al. (2010); IV: Crott et al. (2012); V:Kim-k (2012); VI:Veerstegh (2012); VII: Kim-A (2013); VIII: Khan (2014); IX: 

Proskorovsky (2014)  

Table 9.10: Coefficients of Published Mapping Algorithms
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Algorithm 
 
 

R
2
P  

 
 

RMSEP 

 

 

 
% of 
predicted  
within +10%  
 

Overall 
 
 

 
Interpretation 

I 
0.51 
(U) 0.17 (U) 

 
31% (P) 

Useful/Caution 

 
Amber: Useful, but 
caution 

II 
0.39 
(P) 0.19 (P) 

 
23% (P) 

Poor 

 
Red: Avoid in the first 
instance 

III 
0.14 
(P) 0.21 (P) 

 
29% (P) 

Poor 

 
Red: Avoid in the first 
instance 

IV 
0.32 
(P) 0.19 (P) 

 
19% (P) 

Poor 

 
Red: Avoid in the first 
instance 

V 
0.44 
(U) 0.19 (P) 

 
23% (P) 

Poor 

 
Red: Avoid in the first 
instance 

VI 
0.58 
(U) 0.17 (U) 

 
39% (U) 

Useful 

 
Green: Ready to 
use/useful 

VII 
0.31 
(P) 0.20 (U) 

 
34% (P) 

Poor 

 
Red: Avoid in the first 
instance 

VIII 
0.57 
(U) 0.17 (U) 

 
48% (U) 

Useful 

 
Green: Ready to 
use/useful 

IX 
0.61 
(U) 0.17 (U) 

 
55% (U) 

Useful 

 
Green: Ready to 
use/useful 

Mean 0.45 0.182 
 
36%  

 

I: McKenzie (2009); II: Kontodimopoulos (2009); III: Jang et al. (2010); IV: Crott et al. (2012); V:Kim-k (2012); VI: 
Veerstegh (2012); VII: Kim-A (2013); VIII: Khan (2014); IX: Proskorovsky (2014); Note: VIII (Khan 2014) was 
developed from TOPICAL data and tested on SOCCAR data and vice versa 

 

Table 9.11: Results from Bootstrap Simulations (Averaged across All 3 Studies) 
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                  TOPICAL                   SOCCAR  Study 3  

 % within 
  +5% 

% within 
  +10% 

Mean  
Predicted 

% within 
  +5% 

% within 
  +10% 

Mean  
Predicted 

% within 
  +5% 

% within 
  +10% 

Mean  
Predicted 

          
I   8 25 0.5685   9 29 0.6959 6 28 0.4924 
II   9 16 0.6013   9 24 0.8056 6 22 0.5972 
III 12 24 0.6571 15 32 0.7691 5 29 0.6380 
IV   6 19 0.7250 10 25 0.7861 4 19 0.6409 
V   6 22 0.8234   7 26 0.9093 3 18 0.8089 
VI 10 31 0.6229 14 40 0.7209 6 44 0.5808 
VII 11 32 1.0830 12 34 1.1950 9 30 1.0410 
VIII 12 46 0.6223 15 46 0.7448 14 41 0.5399 
IX 10 40 0.5106 16 44 0.7503 8 39 0.5224 

Observed                    0.61                     0.75                      0.52 

Table 9.12: Mean Predicted EQ-5D within +5% and +10% of Observed 

 

I: McKenzie (2009); II:  Kontodimopoulos (2009); III: Jang et al. (2010); IV: Crott et al. (2012); V:Kim-k (2012); 

VI:Veerstegh (2012); VII: Kim-A (2013); VIII: Khan (2014) using SOCCAR data; IX: Proskorovsky (2014);   

U: Useful, P: Poor 

 

Prediction at Poorer Health States 

Figure 9.3 shows the predicted mean utilities for each health state for the EQ-5D-3L.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.3: Predicted EQ-5D-3L vs. Observed EQ-5D for Each Algorithm by Health State (Study 3) 
 

I: McKenzie (2009); II:  Kontodimopoulos (2009); III: Jang et al., (2010); IV: Crott et al., (2012); V: Kim-k (2012); 
VI: Veerstegh (2012); VII: Kim-A (2013); VIII: Khan (2014); IX: Proskorovsky (2014); observed: bold black line 

 

The x-axis is the ordered health state: in this case, 1 refers to the observed health state 

11111 and 59 to 22322. Algorithms perform better if predictions are close to the observed 

(solid black line).The overprediction at poorer health states is observed for some algorithms 

(e.g. algorithm I). This is shown for algorithms VI, VIII, and IX. Algorithms II, III, IV, V, and VII 
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show marked a departure from the observed health states and are broadly consistent with 

Figure 10.1. Some algorithms predict above 1 (outside the range). 

 

This analysis confirms a feature of mapping algorithms noted previously [97] - the over-

prediction of utility at poorer health states. Figure 9.3 shows predictions overall for each 

health state using Study 3 data. Most models result in over-prediction at some poorer health 

states. One reason for the poorer EQ-5D-3L predictions at worsening health states may be 

related to the deteriorating HRQoL post disease progression or some other mechanism 

associated with progression such as safety/toxicity (noted in earlier chapters).  

9.4. Discussion  

In this chapter, an approach to categorizing mapping algorithms based on several criteria 

have been presented. Algorithms were broadly classified as Green: ‘useful’; Orange/Amber:’ 

Useful with caution’ and Red: ‘Avoid in the first instance’. The overprediction at poorer health 

states and usefulness of a three-part (Beta Binomial) model in comparison with other models 

was confirmed. The estimates of predicted EQ-5D by health states also appear to agree in 

general, with other measures such as R2, RMSE and predicted mean EQ-5D values. The 

approach presented here was based on an empirical approach, using bootstrap simulations 

to define the cut-off values. 

 

Doble and Lorgelly (2016), Arnold et al., (2015) and Crott (2014) confirm that the selection 

and conclusion as to the ‘best’ model may be arbitrary and suggests further research into 

identifying the best model [72,163]. The approach presented here seems arbitrary as the 

metrics chosen for considering one algorithm more (or less) favourable over another is 

based on an arbitrary selection of R2, RMSE and % predicted and an arbitrary selection of 

50% as a probability threshold of a useful algorithm. However, the idea of classifying an 

algorithm based on the probability of the selected metric being close to the overall population 

value across all data (using simulation) is less arbitrary because each algorithm is judged 

against the overall ‘average’ performance after quantifying uncertainty in the choice. 

 

Arnold et al., (2015) conclude that for the model by Longworth et al. (2012) [162], using a 

response modelling approach was ‘best’. The findings here differ with those of Arnold et al. 

(2015) [162] in terms of their classification of the ‘best’ algorithm. The findings presented 

suggest algorithm III [130] is a less useful algorithm while algorithm I [132] is ‘useful with 

caution’. Differences in demographic and tumour characteristics across studies may partially 

explain differing conclusions in algorithm performance.  



 

223 

 

There are several possible reasons, which might explain how the findings differ in their 

classification of the nine algorithms. Firstly, the original algorithms were generated from data 

that are different from the target patient population data set to which the algorithm is applied, 

such as, differences in baseline characteristics, prognoses, and gender. For instance, an 

algorithm developed from a breast cancer population applied to prostate cancer might seem 

inappropriate. Interestingly, the more ‘useful’ algorithms were not necessarily developed 

from lung cancer data, yet worked reasonably well when applied to a NSCLC data set (e.g. 

algorithm IX). Consequently, algorithms may not need to be disease-specific to be ‘useful’. 

Further research is required in order to establish whether the differences between the 

predicted vs. observed estimates are entirely due to the performance of the 

statistical/mathematical form of the algorithm or because the data used to predict the 

estimates are from entirely different cancer populations/tumour types, with quite different 

demographic and disease characteristics. A large dataset across multiple geographical 

locations, clinical characteristics, and tumour types is required and is a current research 

topic.  

 

A second reason for the differences in algorithm performance is that about 50% of the 

algorithms (5/9) reported all 15 coefficients. Although coefficients may not be important 

(statistically), it is still possible that they have a role in predicting EQ-5D utilities in 

independent data sets - particularly, if the predictions are for a different patient population. 

Consequently, differences between algorithm performances may be due to the number of 

coefficients reported. Some coefficients (e.g. for treatments) will differ from trial to trial but 

are expected to influence the utility in different ways; these coefficients are rarely reported. 

Utilities are therefore predicted from available coefficients.  

 

Thirdly, predictions are likely to depend on the differences in data ranges between the data 

used to develop the algorithm and the data used for testing. For instance, if an algorithm is 

developed from data with a smaller range (e.g. EQ-5D values between 0 to 0.95) and 

applied to a data set, where there are many patients with particularly poor health prognoses 

and health states, whose utilities lie between  (-0.549 to 1.0), then prediction will involve 

more extrapolation.  

 

Fourthly, differences in performance between algorithms can also be due to the design of 

the study from which the data were collected (e.g. assessment points for measuring 

HRQoL). In some trials, the presence of toxic treatments, especially after disease 

progression where options are limited (e.g. taking 3rd line treatments), might have a 

pronounced impact on HRQoL (improve or worsen).  
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There are several limitations in this research. Firstly, the criteria used for classifying 

algorithms are dependent on the data. Secondly, some algorithms may have a high R2 and 

% predicted but a poor QALY prediction. Additional criteria may help improve selection, but 

at the same time, these can be more complex with a higher chance of contradiction between 

criteria (although one might expect the criteria to agree in general). When this criterion was 

applied to the observed TOPICAL data, for instance, algorithm IV, of Crott and Briggs (2010) 

[111] classified as ‘Poor’ but generated a QALY and ICER closer to the observed ICER 

compared to other algorithms (£168,810 vs. £139,019). Similar is true for the algorithm I, 

which was considered ‘Useful/caution’ but which generated a large difference compared to 

the observed QALY. Thirdly, the choice of metric to simulate is arbitrary (one could have 

chosen MAE or AIC for instance). The 3 metrics (R2, RMSE %predicted) are assumed as 

being equally important (equally weighted) for simplicity. Some priority ordering could be 

imposed on the importance of metrics. 

 

A further question might be a concern that the algorithms assessed as green still have R2 

and %predicted values that seem low and whether these are sufficiently high to be useful for 

utility estimation. The answer to this is that the magnitude of these values are relative to the 

overall distribution of such statistics across all algorithms and the selected algorithms 

perform better based on the entire distribution. It is not uncommon to find published 

algorithms when tested on independent data, to result in low R2 values [161-163]. Some of 

these authors have made similar recommendations for choices of algorithms based on 

values of R2 commensurate with what is suggested here [161-163. This may show a 

problem with mapping detailed earlier in Chapter 6 on the sources of over or under 

prediction and the role the independent data sets play in validating or testing algorithms. The 

important thing is that the algorithms in this analyses which were reported as good (e.g. 91% 

R2 as for algorithm II not tested in an independent dataset) are found to be quite poor when 

rigorously tested on multiple datasets through simulation. Hence the proposed method is 

cautious to attribute ‘Green’ to an algorithm when in fact it is poor which may be a fair price 

to pay for what appears to be a lower R2 (recall that for non-linear models, R2 may not be the 

best metric and given more models are tending to non-linear approaches, low R2 may not be 

the only concern).   

 

Only four of the algorithms tested on independent data resulted in R2 values (Table 9.6) that 

ranged between 52% to 82% with an average R2 of 69%. No rule has been stipulated on 

how high an R2 should be for use in HTA, where algorithms have been used. Hence, values 
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of R2 of 58%, 57% and 61% (Useful algorithms) although low in absolute terms compared to 

other applications (e.g. biology), in this setting might be considered adequate. 

 

Several other approaches could be used to select algorithms such as the proportion of 

simulations above or below the average values (rather than mean values). Another approach 

might be to adopt a Multi-Criteria Decision Analysis Approach using an Analytic Hierarchical 

Process [230,231] to decide between algorithms. This form of priority setting might help to 

formalize a choice for future algorithm use. An alternative approach might be to use a 

Delphi, or consensus conference, or Analytical Hierarchical Process, around the 

criteria of importance to define relevant thresholds (a possible area for future 

research). Further research is also needed using the suggested approach here to test the 

generalizability with other datasets. It is clear that as more algorithms are published the 

focus may turn to selection criteria methods. Finally, a type of ‘super’ algorithm could be 

developed if there is collaboration and data sharing between authors of algorithms to take 

into account the heterogeneity in clinical and other characteristics. 

9.5. Conclusion 

Despite the limitations of the suggested criteria, they may still offer a useful approach to 

selecting from a choice of mapping algorithms.  This work is, therefore, a valuable addition to 

limited research in this area and may increase interest towards formal methodology in 

algorithm selection.  
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               Chapter 10 

             Chapter 10: Summary and Conclusion 
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10.1 Overall Summary  

This thesis has investigated approaches to modelling HRQoL for economic evaluation in 

lung cancer using data collected from a NSCLC population in routine NHS practice. To 

address the aims and objectives presented earlier, this thesis introduced a number of novel 

issues around the subject of modelling HRQoL data.  

 
Chapters 1 to 3 presented a detailed literature review which identified several very important 

research areas that required necessary research in the development, testing, and validation 

of approaches to modelling HRQoL data for economic evaluation of lung cancer 

interventions. This also included the need for understanding the behaviour of post-

progression utilities and extrapolation of utilities. In addition, useful information that 

contextualizes the economic burden of NSCLC and the QALY estimates were summarized. 

Very few lung cancer treatments satisfied the current NICE thresholds (of £20,000 - £30,000 

per QALY) and a major component of this, related to modelling utility data for economic 

evaluation. In addition, a review of the HTAs of several important NSCLC drugs revealed 

important critiques of the cost-effectiveness models of which one consistent theme was 

handling and estimating HRQoL during and also after disease progression.  

 

To this end, a prospective observational study was designed in an NHS setting to collect 

simultaneously HRQoL data, including EQ-5D-3L, EQ-5D-5L, and QLQ-C30 from study 

registration and beyond progression for at least 12 months. This small, but very rich data 

source will be invaluable for additional research in understanding HRQoL in NSCLC patients 

beyond this thesis. 

 
Chapter 4 developed and tested a new non-linear approach to mapping utilities. A Beta 

Binomial model was used. This was the first use of a three-part non-linear model as a 

mapping algorithm for the QLQ-C30, which was able to model the over-dispersion well. 

Moreover, testing mapping through simulation was introduced - also a novel approach to 

assessing the uncertainty of mapping algorithms.  

 

Chapter 5 (and also Chapters 6 and 7) presents the first research of its type to compare the 

EQ-5D-5L and the EQ-5D-3L. The conclusion reached was that the EQ-5D-5L consistently 

offered a better mapping algorithm (over the EQ-5D-3L) regardless of the statistical 

modelling approach. Moreover, this research may also explain that current limitations in 

mapping may be the measurement scale or at least a combination of both the functional 

form of the model and the scale (the 5L seemed to perform better, perhaps due to its 
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extended scale). The scale may also explain the enhanced sensitivity and responsiveness 

observed in Chapter 8. 

 

In Chapter 6, a further nuance to mapping was introduced by modelling the toxicity and utility 

together. No mapping algorithm based on examining the relationship between toxicity and 

utility has been developed. This is shown to be a promising area of research. In addition, 

Chapter 6 used real world data from a NSCLC population. Previous estimates of utilities for 

specific clinical or toxicity features were based on survey data and not real world clinical 

practice. These estimates are likely to be extremely useful for researchers undertaking future 

economic evaluation in a NSCLC population. Further research in this area could involve 

using the BB model to predict EQ-5D from modelling jointly the QLQ-c30 and toxicity to 

avoid prediction outside the range. Using Finite Mixture models (FMM) too might be useful to 

capture the relationship between HRQoL and other outcomes.   

 
In Chapter 7, the first application of a Bayesian Network to both the EQ-5D-5L and the QLQ-

C30 was used. Although Bayesian methods in mapping are still relatively novel, in this 

application, the Bayesian did not perform as well as expected. An interesting observation 

was that probabilistic type mapping could under-predict utilities at poorer health states – 

suggesting that patients may be much worse (on average) than observed. This was found to 

be at odds with other algorithms where models were overly optimistic. If the over-prediction 

at poorer health states can be resolved through Bayesian applications, this would be a 

significant development in the area of mapping.  

 
Chapter 8 presented treatment effects from three important and commonly used HRQoL 

instruments were compared. EQ-5D-5L was shown to be more sensitive than EQ-5D-3L and 

further, it was also found that treatment effects from EQ-5D-5L relative to baseline are 

comparable with those of QLQ-C30. EQ-5D-5L appeared also to be more sensitive than EQ-

5D-3L as patients became more severe (ECOG status). Again, the novelty in this thesis is 

that this may be the first such study, which measures and compares the sensitivity of EQ-

5D-5L and EQ-5D-3L with a condition-specific measure using a common metric. This is an 

important area of research, because if the hypothesis that EQ-5D-5L is at least as sensitive 

as the cancer specific QLQ-C30 is true, this may lead to a wider use of EQ-5D-5L as a 

clinical measure of benefit and minimize concerns that the QALY is not reflective of the true 

(unknown) HRQoL benefit. The approach introduced in Chapter 8 may also contextualize the 

apparently small HRQoL effects. 
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Chapter 9 consolidates much of the above by developing an approach to selecting a 

mapping algorithm. The performances of several existing algorithms were tested using 

NSCLC data. A ‘traffic’ light approach is developed to selecting mapping algorithms, given 

the existence and continued development of new mapping algorithms. The limitations of 

mapping algorithms in patients at poor health states were also confirmed. This is the first 

approach to developing formal criteria for selecting among several published mapping 

algorithms. Further work around this could involve using formal multi-criteria decision 

analysis and decision theoretic approaches. The contributions and implications of these 

findings will now be discussed. 

10.2 Contribution 

The central contribution offered in this thesis relates to presenting alternative ways of 

modelling HRQoL data for economic evaluation. These contributions are now delineated 

further. 

10.2.1 Methodological Contributions  

 
The main methodological contributions are as follows: 

 

(i) Chapter 4: No application of a Beta-Binomial (BB) model has been used in this context. 

This presents a shift in modelling from the usual OLS type models, which have been shown 

to be inadequate. The investigation into the BB approach has subsequently led to several 

further applications that show improved ways of measuring HRQoL. These can be 

understood readily by clinicians and health economist and can also contextualize generic 

HRQoL effects when compared with disease-specific measures; and where necessary, 

inputs justify adjustments to health benefits through the derivation of QALYs.    

 

(ii) Chapter 5: The contribution of EQ-5D-5L, EQ-5D-3L, and other HRQoL data within the 

same patients for a sustained period of time is both a methodological and empirical 

contribution. It shows that such data collection is possible in this patient population. The 

conclusions of this research show that the EQ-5D-5L offers improved mapping over EQ-5D-

3L regardless of the underlying model. However, among the models used for mapping EQ-

5D-5L, several models do perform better – such as those that take into account skewness 

and over-dispersion. This chapter too was the first mapping algorithm with the EQ-5D-5L 

and made a direct comparison between the BB model and the LVDM model suggested by 

previous authors. This provided an opportunity for further investigation of other types of 

models, including Bayesian models. 
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(iii) Chapter 6: In this Chapter, again, the first time that toxicity and HRQoL data have been 

modelled in the context of mapping is presented. The relationship between toxicity and EQ-

5D shows much promise and may reflect the underlying ‘direct’ connection between HRQoL 

in the context of cancer. In this Chapter too, the utility decrements were estimated and 

compared to those from utility studies conducted on the general public. The patient level 

utility decrements will be extremely valuable for future research. Currently, recourse to 

published utilities is made often using data published by Nafees et al. (2008). The real world 

NHS setting values are likely to be much more realistic of decrements in utilities for various 

toxicity and clinical characteristics.  

 

(iv) Chapter 7 introduced the first Bayesian Network (BN) applied to the QLQ-C30. There 

were two new levels of novelty. Firstly, the application of the BN to the QLQ-C30 and 

secondly it was applied to the EQ-5D-5L. The model was not as successful as reported in 

the literature and may show the limitations of Bayesian algorithms to the QLQ-C30, which 

has a relatively large number of domains.  

 

(vii) Chapter 8 is the first research that compares the sensitivity of the EQ-5D-5L with the 

EQ-5D-3L and the QLQ-C30. Much has been made as to whether economic evaluations 

make proper use of the clinical benefits and whether generic measures are not sensitive 

which might lead to unrealistically high QALYs. This chapter shows that in fact not only is the 

EQ-5D-5L more sensitive to the QLQ-C30 (not unexpected) but importantly the EQ-5D-5L 

reports comparable if not larger effect sizes than the QLQ-C30. When generic and condition-

specific measures show conflicting effect sizes, the approach taken here supports the use of 

the EQ-5D-5L for demonstrating important clinical effects as well as its obvious use and 

value for cost-effectiveness analyses.   

 

(viii) Chapter 10 offers an approach to select published mapping algorithms based on their 

performance on independent data. A theoretical basis is developed using bootstrap 

estimates in order to classify mapping algorithms. Such an approach is needed because it 

allows one to avoid the more uncertain utilities (and therefore more uncertain QALYs). This 

area is again an area of development and several areas of research including multi-criteria 

decision-making models and decision-theoretic models can be developed. 

10.2.1 Empirical Contributions  
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The main empirical contribution of this thesis was the prospectively designed study to collect 

HRQoL data in NSCLC patients (Study 3). As described above, little or no published data is 

available in a NSCLC population that compares HRQoL within the same patients 

longitudinally over at least 12 months. The details of the process of collection and design 

have been provided earlier in the methods Chapter (Chapter 3).  

10.2 Strengths and Limitations 

 
The main strength of this research is the availability of prospectively available data designed 

to investigate the pre-specified objectives above. Methods to improve mapping were 

identified through complex modelling approaches hypothesized to predict better utilities. The 

sensitivity of the EQ-5D-5L was reported in terms of both mapping and also for measuring 

and reporting clinical benefit compared to disease-specific measures. The feasibility to 

develop criteria for selecting mapping algorithms was demonstrated.   

 

Although this thesis offers novel contributions, there are some limitations. Firstly, the utilities 

for the EQ-5D-5Lwere not available (and still not available) at the time of writing the thesis 

and hence a ‘cross walk’ had to be used. This may result in different conclusions and as and 

when the final tariff becomes available, the results will need to be revised for any future 

publication. A second limitation is that mapping is considered to be a ‘second best’ and 

where possible utilities from preference based condition specific measures could be 

considered. A comparison the impact of such condition specific preference based measures 

and mapping requires further research and the relative merits of each require robust 

quantification. Although mapping is considered to be suboptimal, it is important to note that 

NICE guidance does not currently consider estimates of preference based utilities as being 

more important than mapping and utility studies are even lower in the priority [81,82]. Thirdly, 

the data set of Study 3 was small. Fourth, validation in independent data sets could not 

always be performed. Fifth, in Study 3, the impact of administering the EQ-5D-3L and 5L at 

different times might contribute towards a different conclusion. Randomization of the 

instruments to the time points could have been a possible alternative, however, differences 

in observed outcomes and results may have been unlikely given that this differed by only 2 

weeks; initial indications suggested this was unlikely to have impacted on the conclusions.  

Sixth, only data from lung cancer patients were available and therefore, some inferences 

may be less generalizable.  Seventh, the data is restricted to a NSCLC population and 

whether such conclusions are generalizable across all cancers requires further work. 

However, given that both instruments EQ-5D and QLQ-C30 are generic (in the sense that 

latter is generic to cancer while the former more widely generic in a broader sense, even 
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beyond health care), the generalizability of conclusions may, in fact, be wide. Finally,  Study 

3 was not randomized and therefore a direct impact on the ICER as a result of the varying 

methods could not be evaluated.  

10.3 Implications of Findings  

 
The main results from this thesis have shown alternative ways to predict patient level utilities 

for economic evaluation using various mapping models. Each of these models depart from 

the traditional linear prediction approach which while simple has often resulted in over or 

under prediction at poorer health states and in some cases over estimated QALYs. 

Therefore, given the non normal structure of utility data, a shift towards non-linear models is 

the suggested direction for mapping. A further conclusion from this thesis is the proposal to 

consider the EQ-5D-5L as a future measure in economic evaluation because it may be a 

more sensitive measure to the extent that effect sizes may be commensurate with condition 

specific measures. It may also offer a better mapping over the EQ-5D-3L. The implications of 

these main conclusions are addressed below:  

 

(i) Implications for Economic Evaluation:  
 

a) The approach to mapping should go beyond linear models. Although Brazier et al 

(2010) has suggested that more complex models did not improve estimation of utility, 

in this thesis the model fit from non-linear models has shown a much better model fit. 

Consequently, the model that shows the best ‘fit’ should be used (rather than 

performance on R2 alone). This would offer greater confidence in economic 

evaluations that used more complex mapping models. For example, the BB model is 

shown as a very useful and powerful way to model utility data for both economic 

evaluation and informing about the importance of apparently small EQ-5D differences 

on an alternative (odds ratio) scale. 

b) A corollary to the above is that improved mapping algorithms will have more reliable 

estimates of QALYs which will inform key stakeholders (patients, clinicians, budget 

holders) on the relative value of treatments with respect to cost, and HRQoL. 

 
c) Additional data should be used such as covariate data and in particular toxicity to 

properly model the relationship between generic and condition specific measures. 

This shows great promise and seems a very plausible approach. This approach has 

implications on how toxicity might be collected (e.g. close to EQ-5D assessments) as 

well as trial design for better evaluating the relationship between toxicity and HRQoL. 
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(ii) Implications for health state valuation: 

a) In this thesis, I examined the sensitivity of generic and CSMs and came to the 

conclusion that the EQ-5D-5L should be considered as an important and more useful 

instrument not only for mapping but also as a potential clinical measure. This is 

because the observed measure of clinical effect from the EQ-5D-5L are 

commensurate with generic cancer measures. 

 
b) A Bayesian mapping algorithm allows for an interesting and informative estimate of 

utilities while predictive the full health state description. What this implies is that the 

probabilities of each profile score can be updated if these are reported. For example, 

the prior probability of 0.2 for each of the scores (1 to 5) for the EQ-5D-5L will 

generate posterior probabilities. If these posterior probabilities are reported with the 

mapping algorithm, users of the algorithm could then use these as prior information 

(rather than assuming an equal probability of 0.2 which may not be realistic). This 

allows for continuous feedback and updating of probabilities until a set of utility 

values is reached which could be recommended. This avoids user bias (i.e. selection 

of a particular set of prior values) to generating utilities and subsequent QALYs.   

  
(iii) Implications for Decision Making in Cancer:  

 

a) As a result of a more sensitive instrument (EQ-5D-5L) to determine cost-

effectiveness, the implications for new treatments that offer value as well as those 

treatments that do not offer value (assumed) can be differentiated. This implies 

patients and decision makers (budget holders) can benefit from the decisions of an 

instrument (and a mapping process) that leads to more informative assessments of 

HRQoL and a decision for a more or less cost-effective treatment. 

 

b) The above point does not only have implications for NSCLC patients (from which this 

data is taken) but can be extended to other cancer patients because both the EQ-5D 

and the QLQ-C30 are generic type HRQoL measures in their respective contexts.   

 
c) The approach proposed for identifying a useful mapping algorithm is particularly 

important for decision makers. It would allow a much more objective way to select the 

‘best’ mapping model based on simulation from a suite of available algorithms. This 

should allow a reduction in decision uncertainty for the selection from an increasing 

availability of mapping models. 
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d) I have presented a rich area of methodological innovation in mapping and modelling 

HRQoL in cancer which could be developed further. This ranges from further 

development in modelling approaches to more objective methods to select from 

available algorithms. The selection method I have presented is but one of alternative 

methods that could be developed further.  

10.4 Future research  

A number of areas for future research remain. Further work is required in developing and 

testing mapping algorithms using real-world (and not a clinical trial) data from patients, to 

reflect estimates of ‘real world’ utilities for economic evaluation. The functional forms of 

mapping functions, including the use of splines, joint modelling and other more complex 

functional forms, which try to interrogate the relationship with clinical data, are needed. 

Separately, this should be applied to EQ-5D-5L since this may be a more suitable candidate 

instrument for future mappings, due to its extended scale. Currently, a project is being 

initiated to combine data across all available data sources and countries in an attempt to 

develop a ‘Mega Mapping’ model (Khan, Crott, Petrou, Doble).  

 

Additional research on the sensitivity and responsiveness of EQ-5D-5L in comparison with 

other cancer measures (such as the FACT-L) is also required. A post-progression mapping 

algorithm will also be useful. A comparison between the models presented using post-

progression utilities could be developed. In particular, research is needed on how to interpret 

HRQoL effects between the generic and the condition-specific measures, when they reach 

contradictory conclusions and impact on QALY. This is an important area of research, 

especially in the light of several cancer drugs being rejected on the grounds of unjustified 

(optimistic) utility / HRQoL values. Further research also in modelling and extrapolating post-

progression utilities is warranted along with the implications for the QALYs.   

10.5 Recommendations and Conclusion 

This thesis has investigated the approaches to modelling HRQoL in cancer patients using 

data from NSCLC patients. A comprehensive literature review was undertaken. The scarcity 

of research in some areas underlined the gaps in knowledge and need for further research. 

The main results of this thesis can be summarised as: 

 

Chapter 4:  

 A BB model has shown that it offers a much more improved fit over existing methods 

at the time and is an important way of modelling EQ-5D data in the future. The 
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results are considered robust, interpretable and the mapping algorithm is relatively 

simple to apply. 

 

Chapter 5:  

 The EQ-5D-5L offers an improved mapping algorithm compared to the EQ-5D-3L. 

Moreover, the two part BB model was shown to be a better fit compared to the more 

complex LDVMM approach which can become uninterpretable with a CSM such as 

the QLQ-C30.  

 Chapter 6: Models that relate toxicity and EQ-5D to map a CSM are likely to be very 

informative and possibly the best way for handling any over and under prediction 

observed in almost all mapping algorithms to date.  

 The possibility to jointly model EQ-5D and toxicity with covariates and complex 

models (e.g. Joint Beta Models) is likely to significantly improve prediction and model 

fit. However, the cost of this added complexity in terms of interpretability and usability 

needs more investigation  

 EQ-5D-5L may offer potential for better mapping algorithms in the future. 

Chapter 7:  

 Bayesian Networks models allow mapping the entire profile. In this application, the 

Bayesian approach did not offer a significant improvement in mapping using a non-

informative prior.  

 The BN model did, however, confirm a better mapping with the EQ-5D-5L over the 

EQ-5D-3L. 

Chapter 8:  

 The EQ-5D-5L is more sensitive to measuring treatment benefit over time than the 

EQ-5D-3L 

 The EQ-5D-5L has measures of effect commensurate (or larger) compared with the 

cancer specific measure QLQ-C30 and the size of these benefits can be considered 

clinically relevant. The EQ-5D-5L may be very informative in assessing whether any 

observed HRQoL benefit is important in addition to the QLQ-C30 for future economic 

evaluation of treatments for cancer.    

 

 

 



 

236 

 

Chapter 9:  

 Objective criteria for selection of mapping algorithms was developed to separate the 

usefulness of mapping algorithms. Such an approach was considered feasible and 

the results were helpful in eliminating the use of ‘poor’ mapping algorithms.  

 The methodology could be extended to include Delphi, consensus or hierarchical 

process approaches for selection.     

Chapter 10:  

 Future areas of research were identified to add to the findings from this thesis. These 

include:  

a) Joint modelling using a joint Beta and toxicity model 

b) Using final EQ-5D-5L value sets  

c) Developing an algorithm across much more comprehensive data  

d) Using more sophisticated selection approaches amongst the widely available 

mapping algorithms 

e) e) Comparing mapped utilities from those valued using CSM (e.g. such as the 

QLQ-C8D)  

f) Further examination of the sensitivity of the QLQ-C30 with EQ-5D-5L using RCT 

data  
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C30 to the EQ-5D-3L in lung cancer patients: a comparison with existing approaches (Khan. 
I and Morris. S, 2014, Health and Quality of Life Outcomes 2014 12:163.). 
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A2.2: Chapter 5: Comparing the mapping between EQ-5D-5L, EQ-5D-3L and the EORTC-

QLQ-C30 in non-small cell lung cancer patients (Khan. I, Morris. S, Pashayan. N, Matata. B, 

Bashir. Z and Maguirre. J; Health and Quality of Life Outcomes 201614:60).  
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A2.3: Chapters 4 & 8: Interpreting small treatment differences from the quality of life data in 

cancer trials: an alternative measure of treatment benefit and effect size for the EORTC-

QLQ-C30 (Khan. I, Bashir. Z and Forster. M; Health and Quality of Life Outcomes 

201513:180.) [Concepts developed in Chapters 4 and 8]. 
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