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Abstract 
 

It has been known for over 40 years that the mammalian mitochondrial genome 

contains persistent sporadic ribonucleotides, for which there has been no molecular 

explanation to date. To better understand the significance of incorporated 

ribonucleotides in mitochondrial DNA I developed a deep sequencing method to 

determine the precise location of ribonucleotides in the mitochondrial DNA of a range 

of cell and tissue types. Using Next Generation Sequencing I have shown that the 

vast majority of ribosubstitution events in murine mitochondrial DNA from solid 

tissues are dominated by adenosine bases derived from adenosine triphosphate, the 

product of oxidative phosphorylation. In contrast, proliferating cells show a much 

lower rate of ribonucleotide incorporation. However, this can be manipulated by 

inducing cell cycle arrest, which leads to an increase in adenosine monophosphate 

incorporation rate, comparable to that of solid tissues. This study confirms that the 

specificity of the incorporated ribonucleotide base identity is directly influenced by 

the ratio of ribonucleotides to deoxyribonucleotides (NTP:dNTPs) within the 

mitochondrial compartment of the cell.  

 

In a mouse model of Mpv17 deficiency there is a mitochondrial specific 

deoxynucleotide depletion which results in a significant increase in riboguanosine 

incorporation in mitochondrial DNA. The results described within this thesis 

demonstrate that elevated riboguanosine incorporation is associated with early-

onset mitochondrial DNA depletion in liver and late-onset multiple deletions in brain 

of the Mpv17 ablated mice. These findings suggest that aberrant ribonucleotide 

incorporation is a primary mitochondrial DNA abnormality that can result in pathology. 
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Impact Statement 
 

The main body of this thesis focuses on a novel advanced methodology to locate 

ribonucleotides in mtDNA using Next Generation Sequencing technologies. 

Moreover, the data indicate that this is not the only DNA modification which can be 

mapped to single nucleotide resolution using this technique, and it has been 

previously demonstrated that this technique is applicable to genomic DNA and not 

just mitochondrial DNA. Enabling the precise mapping of a vast array of DNA 

modifications in vivo facilitates a better understanding of epigenetics and 

mutagenesis among many other things. The versatility of this approach will be of 

great benefit to the scientific community. 

 

Furthermore, better understanding of mitochondrial DNA modifications will help gain 

a greater perspective of mitochondrial DNA metabolism and repair, a subject which 

is often under contentious debate. 

 

Improved understanding of mitochondrial DNA modifications and the role they play 

in diseased states will enable future advances in mitochondrial therapies. In many 

cases of mitochondrial disease, such as those described in this thesis associated 

with mutations in MPV17, the mechanism of disease is poorly understood which 

presents an obstacle in developing targeted therapies for patients. Understanding 

the fundamental cause and mechanism of mitochondrial dysfunction and the role of 

mitochondrial DNA damage will prove instrumental in progressing further on this front.  

 

This work was an example of a successful collaboration predominantly between 

three groups in London and Edinburgh, across fields of expertise where information 

and know-how were exchanged to produce a novel and exciting project. Furthermore, 

such collaborations outside of the mitochondrial field have given the work extra 

scope to penetrate into the wider scientific community.  
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RNase H1 mammalian ribonuclease H2 
RNase H2 mammalian ribonuclease H2 

RNase HII bacterial ribonuclease HII  
ROS reactive oxygen species 

RR ribonucleotide reductase 

SAP shrimp alkaline phosphatase 

SCM Strand-coupled mechanism of DNA replication 

SDM Strand-displacement mechanism of mtDNA replication 

SDS sodium dodecyl sulfate 

SSB single strand break 

ssDNA single stranded DNA 

ssRNA single-stranded RNA 
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T- -tamoxifen; control MEFs 

T+ +tamoxifen; Rnaseh1-/- knockout MEFs 

TALENs transcription activator-like effector nucleases 

TAS termination associated sequences 

TBE tris-borate EDTA 

TCA tricarboxylic acid cycle 

TE Tris-EDTA 

TFAM mitochondrial transcription factor A 

TK2 thymidine kinase 2 

Twinkle T7 gp-4 like protein with intramitochondrial nucleoid localization 

UCP-1 uncoupling protein 1 

UTP uridine triphosphate 

w/v weight/volume 

WT wild-type 
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Chapter 1. Introduction 

The presence of mitochondria in eukaryotic cells is generally accepted as the result 

of a symbiosis event rising from fusion of α-protobacteria and archaebacteria 

(Andersson et al., 1998, Gray, 2012, Lang et al., 1997, Gray et al., 2001). Since then, 

the genetic content of the mitochondrial ancestor has diminished over time owing to 

redundancy and transfer of information to the nucleus. Only a vestige remains on an 

extrachromosomal element- the mitochondrial genome, which encodes 13 essential 

proteins required for oxidative phosphorylation and the RNA elements required for 

their expression (22 tRNAs and 2 rRNAs).  

 

Within the cell, mitochondria form an interconnected and dynamic network which is 

facilitated by the fusion and fission of organelles within the cell (Figure 1). The 

individual mitochondria themselves are characterised by an intricately folded double 

membrane where the proteins involved in the electron transport chain are embedded. 

The membrane encases numerous proteins involved in protein import and folding, 

as well providing as the sites for organelle interactions including the endoplasmic 

reticulum. The cristae structure is vital for mitochondrial function as it serves to 

increase the surface area of the organelle, maximising energy production.  

 
Figure 1: The interconnected mitochondrial matrix in Mouse Embryonic 
Fibroblasts (MEFs).  

Tomm20
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Confocal images from wild-type MEFs stained with fluorescent antibodies to mark 
the mitochondrial network (TOM20). 
 

Mitochondria provide not only the proteins and machinery required for oxidative 

phosphorylation, but are also the hub for metabolism and are therefore essential for 

eukaryotic cell survival. They play an essential role in cell differentiation, signalling 

and autophagy.  

1.1 The Role of Mitochondria in Cellular Respiration 

Mitochondria are commonly referred to as the powerhouses of the cell and are 

responsible for generating almost all the cell’s adenosine triphosphate (ATP) through 

phosphorylation of adenosine diphosphate (ADP).  

1.1.1 The Tricarboxylic Acid Cycle 

The primary series of reactions which ultimately release stored energy from the 

oxidation of carbohydrates, fats and proteins, is known as the tricarboxylic acid (TCA) 

cycle or the Krebs cycle. The TCA cycle also provides many of the precursors for 

essential amino acids and nucleotide synthesis.  

 

This cycle, which takes place in the mitochondrial matrix in eukaryotic cells, utilises 

a two-carbon molecule in the form of acetyl-CoA, which is the product of catabolism 

of carbohydrates, fat and proteins. The acetyl-CoA enters the TCA cycle and the 

acetyl group is transferred to a four-carbon molecule; oxaloacetate, to form the six-

carbon compound citrate. The citrate molecule goes through a series of reactions 

where it subsequently loses two carboxyl groups as carbon dioxide (CO2) and 

reduces nicotinamide adenine dinucleotide, NAD+, to NADH, ultimately regenerating 

a four-carbon oxaloacetate molecule. For every acetyl group transferred into the TCA 

cycle, three molecules of reduced NADH are produced.  

 

The products of one turn of the cycle are ATP (or guanosine triphosphate, GTP), 

three molecules of NADH, one ubiquinol (QH2, the reduced form of ubiquinone (also 

known as co-enzyme Q)) and two CO2 molecules. The NADH and reduced flavin 

adenine dinucleotide (FADH2) produced by the TCA cycle are then used by the 
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electron transport chain to produce ATP from ADP via oxidative phosphorylation 

(OXPHOS) (Figure 2). 

1.1.2 The Electron Transport Chain 

In eukaryotes, OXPHOS is carried out by five inner-membrane proteins within the 

mitochondria (four of which contain polypeptides encoded by the mitochondrial 

genome) and these are referred to as the electron transport chain since that is the 

role they play; facilitating the flow of electrons via various electron donors. This flow 

of electrons generates a pH gradient and electrical potential across the mitochondrial 

inner membrane. This potential energy is harnessed by another membrane-bound 

complex called ATP synthase (sometimes referred to as Complex V) which acts as 

a sophisticated proton channel enabling protons to flow back along this gradient. This 

flux of protons drives the phosphorylation of ADP to ATP in a process called 

chemiosmosis. This process is termed aerobic as it requires molecular oxygen. 

 
Figure 2: Schematic of the mammalian electron transport chain. 

All 5 of the complexes, with the exception of Complex II, require polypeptides 
encoded by the mitochondrial genome to function and they function to facilitate 
electron transport across the membrane which ultimately produces ATP via oxidative 
phosphorylation. Superoxide *O2 is produced as a by-product (at low levels) by 
complex I and II during cellular respiration.  
 

1.1.3 Electron and Proton Leak 

There are two important side-reactions that take place alongside the electron 

transport chain; electron and proton leak, both of which have an impact on the 

H+

H+H+

CI

CII

CIII CIV CV UCP

Intermembrane	space

Matrix

e

e

e
Q

e

e
C

e

H+

NADH NAD+ Succinate Fumarate-

H+

O2 H20 ADP ATP

O2
-.

O2
-.

O2
-.



Chapter 1: Introduction 

22 

 

efficiency of OXPHOS. Electrons can escape from the membrane-bound complexes 

and react undesirably with oxygen to form superoxide (*O2), which is thought to be 

the major cause of oxidative damage within the mitochondria (Murphy, 2009, Sohal 

et al., 1995). Superoxide is a very reactive molecule but it is efficiently converted to 

hydrogen peroxide (H2O2) by superoxide dismutase (Mn-SOD in the matrix, Cu/Zn-

SOD in the cytosol) and subsequently to oxygen and water by catalase or glutathione 

peroxidase (Brand et al., 2004). 

 

Proton leak refers to the translocation of protons back across the membrane 

independent of ATP synthase, disrupting the proton gradient and reducing the 

capacity for ADP phosphorylation. Proton leak is the sum of two separate processes; 

basal proton leak and active proton leak. The former is unregulated and the latter is 

catalysed by specific mitochondrial inner membrane proteins and can be both 

inhibited and activated (Jastroch et al., 2010). The best-known example of active 

proton leak is facilitated by uncoupling-protein 1 (UCP1, Figure 2) which, for example, 

is activated in mammalian brown adipose as a mechanism of heat production.  

1.1.4 Glycolysis 

Under anaerobic conditions (the absence of free oxygen), glycolysis is an alternative, 

albeit less efficient, pathway that converts glucose into pyruvate, generating ATP. It 

is oxygen-independent, yet takes place in both the presence and the absence of 

oxygen in eukaryotes. Glycolysis occurs in the cytosol of the cell and produces 

numerous metabolites, many of which are subsequently used within the mitochondria.  

1.2 The Mitochondrial Genome 

Mitochondrial DNA (mtDNA) was discovered in the 1960s. It was firstly identified by 

electron microscopy (EM) in chick embryo mitochondria. MtDNA molecules were 

described as fibres with properties akin to nucleic acid (Nass and Nass, 1963). This 

discovery was corroborated by biochemical assays carried out in Saccharomyces 

cerevisiae which demonstrated the presence of significant amounts of DNA from 

purified mitochondria isolated by flotation in density gradients (Schatz et al., 1964).  
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Mammalian mtDNA is a compact 16 kilobase (kB) pair circular molecule with very 

few non-coding regions. The 13 proteins encoded by the mtDNA provide essential 

components of OXPHOS complexes I, III, IV and V and therefore all 37 mtDNA genes 

are critical for effective energy production. The two strands of mtDNA are termed 

heavy and light strand (H-strand and L-strand respectively) owing to different 

proportions of pyrimidine and purine nucleic acids on each strand and their 

buoyancies in a caesium chloride gradient. 

 
Figure 3: The mammalian mitochondrial genome.  

[Reused with permission from Nature publishing group (Taylor and Turnbull, 2005)] 
 

1.2.1 Nucleomitochondrial Interactions 

Although the mitochondria have their own genome, functioning replisome and 

translation machinery, the mtDNA only codes for approximately only 1% of the total 

mitochondrial proteome. The other ~1,200 mitochondrial proteins are nuclear 

encoded, including all the proteins required for replication, transcription and 

translation. And their expression is dependent on many factors, not-least the 

effective crosstalk between the mitochondria and the nucleus.  

 

Mitochondrial biogenesis and activity is not uniform across all cells and tissues and 

depends largely on the energetic and metabolic requirements of the individual cell or 

tissue which is ever-changing throughout the life of the cell. The mitochondrial 

content and activity of each cell is a dynamic feature, tightly controlled and 
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continually adjusted by mitochondria-nuclear crosstalk, also referred to as retrograde 

signalling. Changes in nuclear gene expressions can be triggered by several factors 

including mtDNA damage, reactive oxygen species (ROS), nutrient availability and 

fluctuating energy demands (Capps et al., 2003). 

  

1.2.2 Regulatory Elements of MtDNA 

MtDNA is approximately 16 kB in length (16,299 base pairs (bp) in mice and 16,569 

bp in humans) and almost all the protein-coding genes are located on the heavy-

strand sequence (the exception being the ND6 gene). Unlike the nuclear DNA, the 

mitochondrial genome has only one appreciable non-coding region (NCR); a short 

1kB section of DNA which contains the initiation site(s) for leading strand replication 

(OH), transcription and other regulatory elements (HSP1 and HSP2; heavy strand 

promoters, LSP; light strand promoter, conserved sequence block I-III (CSBI, CSBII 

and CSB III)). Interestingly, the NCR has been reported to have a significantly greater 

frequency of point mutations (in aged cells) than the rest of the mitochondrial genome 

(Michikawa et al., 1999). 

1.2.3 The D-loop 

Within this NCR is a stable triplex structure containing a short, additional stretch of 

DNA termed the mitochondrial D-loop (Nass, 1980). In mammals, the D-loop is 

approximately 500 bp in length and commonly referred to as 7S DNA based on its 

sedimentation properties. Its abundance is highly variable and its function is largely 

unknown. Interestingly, recent studies report the presence of an additional 

complementary RNA species, which has been christened the R-loop, whose 

presence appears to be linked to the segregation of mtDNA molecules within the 

organelle (Akman et al., 2016). This novel species is still not entirely understood, but 

may provide critical information about the replication-transcription switch in 

mitochondria. 

1.2.4 MtDNA Topology and Packaging 

The mtDNA molecule is a circular supercoiled plasmid-like entity. The majority of 

mtDNA molecules are clustered into compact nucleoprotein complexes referred to 
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as nucleoids. They are packaged by a variety of proteins, chiefly the widely-

characterised mitochondrial Transcription Factor A, mitochondrial (TFAM), and 

tethered to the inner mitochondrial membrane (IMM). It is not known how nucleoids 

are utilised for replication or transcription, nor is it understood how nucleoids 

segregate within the mitochondria during fission.  

There are more than two dozen distinct topoisomers identified, but it is not clear what 

roles they play (Kolesar et al., 2013). The different topoisomers include supercoiled 

circles, linear molecules, relaxed circles and higher-order catenated molecules 

among additional structures such as covalently closed circles which can be identified 

by 2D-AGE. Such structures are conserved across various mouse and human cell 

and tissue types, however the abundance of different topoisomers varies between 

tissues (Kolesar et al., 2013). This is in agreement with previous findings, reporting 

that mtDNA from human heart is highly catenated (Pohjoismäki et al., 2009). Again, 

the functional consequences of this are unclear but they are likely to provide an 

insight into the distinction between replication and transcription within the 

mitochondria.  

 

Moreover, the nucleoids themselves can aggregate within the mitochondria and 

research has demonstrated that the initiation of mtDNA stress, elicited by TFAM 

deficiency, increases nucleoid aggregation and clustering and this phenomenon is 

postulated to be involved in priming the antiviral innate immune response (Reyes et 

al., 2015).  

1.3 MtDNA Inheritance 

MtDNA is significantly different from the DNA found within the nucleus for numerous 

reasons. The starkest being that mtDNA is maternally inherited. Shortly after 

fertilisation, paternal mitochondria, and the DNA contained within, are selectively 

destroyed and therefore not transmitted to the zygote and only the maternal mtDNA 

is passed onto the offspring. Maternal transmission of mtDNA is well established, 

however there are case studies which suggest that paternal mtDNA carry over is 

possible (Schwartz  and Vissing 2002).  
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1.3.1 Heteroplasmy 

Since each somatic cell can contain up to 1000’s of mtDNA copies, a condition where 

there exists more than one variant of mtDNA co-exists is relatively common (Elliott 

et al., 2008, Payne et al., 2013). This is called heteroplasmy. In the case of 

mitochondrial disease caused by one or more mtDNA mutations, the severity of the 

pathology can be largely determined by the heteroplasmy level of the mutation(s) 

and the threshold above which the disease manifests is usually between 60-90%. 

1.3.2 The Mitochondrial Bottleneck 

One unique feature of mtDNA inheritance is the bottleneck phenomenon (Figure 4). 

Primary oocytes are derived from a dividing primordial germ cell containing a certain 

number of mitochondria harbouring either wild-type or mutant mtDNA. During mitosis 

of the primordial germ cell, the population of mitochondria are distributed between 

the two daughter cells seemingly without predisposition for the proportion of ‘healthy’ 

or ‘mutant’ mitochondria. This leads to heterogeneity amongst primordial oocytes, 

and depending on which is fertilised and eventually forms a foetus, this can lead to 

a variety of outcomes; in the worst instances, high mutant-load and perinatal death.  

 

Although mtDNA does not follow the Mendelian rules of inheritance there are 

seemingly supplementary rules which work to encourage genetic drift within the 

population (Brown et al., 2001). The bottleneck hypothesis rationalises the dramatic 

reduction in the number of mtDNA molecules during germline transmission, which in 

turn explains the common incidence of significant changes in heteroplasmy levels 

throughout this time (Cree et al., 2008). However, recent studies report that the 

germline bottleneck is generated without an accompanying reduction in mtDNA 

content in mice (Cao et al., 2007, Cao et al., 2009). 
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Figure 4: The mitochondrial bottleneck. 
 

The question remains whether the nuclear background has an effect on 

mitochondrial DNA inheritance. Data derived from cytoplasmic hybrids, commonly 

referred to as cybrids (a cell derived from fusion of r0 cells (cells lacking mtDNA) and 

an enucleated cell, mixing nuclear and mitochondrial genomes), has demonstrated 

that the nuclear background of a cell can influence the mtDNA heteroplasmy levels 

and their fluctuations over time (Dunbar et al., 1995). But it is unclear whether this 

mechanism, whatever it may be, is at play during germline transmission or not.  

 

Despite recent advances and increasingly powerful sequencing methods, 

mitochondrial DNA inheritance is still poorly understood. It is not clear why, but 

mtDNA molecules containing deletions are almost never inherited; suggesting that 

there is some degree of selection against abhorrent mtDNA molecules (Chinnery et 

al., 2004, Stewart et al., 2008). It is for this reason that inheritance of mtDNA 

mutations, the origins of which are discussed later, is difficult to predict, as is the 

pathology of any mutations transmitted to the offspring, making the fundamental 

understanding of mtDNA replication and metabolism a vital piece of the puzzle. 
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1.4 Mitochondrial Biogenesis  

Mitochondrial biogenesis is most commonly a response to the increased cellular 

energy demand of a cell whereby the cell increases its mitochondrial mass and 

mtDNA copy number to facilitate increased ATP production. Activation of biogenesis 

can be triggered by numerous external stimuli, including aerobic exercise.  

1.4.1 PGC-1α 

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is 

the master regulator of mitochondrial biogenesis and provides the link between 

external stimuli and mitochondrial biogenesis. It performs this task as a 

transcriptional co-activator which interacts with multiple nuclear transcription factors 

to enhance transcription of nuclear-encoded genes involved in energy metabolism. 

PGC-1α itself is activated by different stimuli including ROS and endurance exercise 

(Pilegaard et al., 2003).  

1.4.2 Fusion and Fission 

Biogenesis and mitochondrial degradation (mitophagy) are facilitated by the dynamic 

network of mitochondria which regularly undergo fusion (the joining together of two 

or more mitochondria) and fission (the division of a mitochondrion). Both processes 

are metabolically controlled by GTPases and the two processes oppose one another. 

The balance between fusion and fission is in flux, constantly reacting to the changing 

requirements of the cell (Mishra and Chan, 2016). Disruptions in both fusion and 

fission can hamper normal development and have been implicated in 

neurodegenerative diseases, such as Parkinson’s (Narendra et al., 2008).  

 

Fission is driven by the dynamin protein Drp1 which works by forming a spiral around 

the mitochondrion and constricting to cleave the inner and outer mitochondrial 

membranes and subsequently dividing the organelle. Fission is essential in dividing 

cells to populate the two daughter cells with sufficient mitochondrial mass. But fission 

isn’t only active during the cell cycle. Fission can be activated by a multitude of 

external stimuli and an increase in fission, and therefore increased fragmentation of 
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the mitochondrial network, is associated with clearance of mitochondria by 

mitophagy. 

 

The inverse process, mitochondrial fusion, is mediated by multiple proteins which 

are tethered to either the outer or inner mitochondrial membranes, most notably 

Mitofusins 1 and 2 (Mfn1 and Mfn2) and Opa1. Fusion can help combat cellular 

stress by combining multiple organelles if one or more contains damaged contents 

as a form of dilution (Schon and Gilkerson, 2010). Interestingly, nucleoids 

themselves do not appear to transfer DNA, therefore complementation of 

mitochondrial contents and functional mitochondrial proteins serves as a mechanism 

to compensate for the deleterious effects of mtDNA mutations within an individual 

organelle. Similarly, fusion of two or more organelles when one has become 

damaged by external stressors or environmental factors can enable the exchange of 

healthy lipids and proteins to mitigate the damage and works as a protective defence 

against cellular stress.  

1.4.3 Mitophagy 

Fusion is one way to combat low levels of damage within mitochondria, but this only 

works when the damage is below a certain threshold. Once this threshold is 

exceeded and the mitochondrion is beyond repair, it is destroyed. This autophagic 

clearance of mitochondria is termed mitophagy and is closely linked to the dynamic 

processes of fusion and fission within the cell (Egan et al., 2011). Elimination of 

extensively damaged mitochondria is essential to maintain a healthy mitochondrial 

network.  

 

Mitophagy is relatively common in normal cells and there are numerous mechanisms 

of induction (see (Ding and Yin, 2012) for an extensive review). In fact, a study of 

cultured fibroblasts showed that 1 in every 5 daughter mitochondria are subsequently 

eliminated by mitophagy (Twig et al., 2008). Following fission of a damaged 

mitochondrion, damaged components or debris contained therein are segregated, 

resulting in two daughter mitochondria; one healthy and one containing damage. The 

latter is cleared via mitophagy to maintain a healthy population of mitochondria within 

the cell (Youle and van der Bliek, 2012).  
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1.5 Mitochondrial Transcription  

Mitochondrial transcription is driven by the nuclear-encoded RNA polymerase 

(POLRMT) and a set of transcription factors (TFAM and transcription factor B2, 

mitochondrial (TFB2M)), all of which together can reconstitute transcription in vitro 

(Litonin et al., 2010), although there is an argument that TFB2M and POLRMT alone 

are sufficient (Shutt et al., 2010, Zollo et al., 2012, Lodeiro et al., 2012). POLRMT is 

a single-subunit, DNA-dependent protein with homology to the RNA polymerases of 

the bacteriophages T3 and T7 (Masters et al., 1987). However, unlike the 

bacteriophage RNA polymerases, POLRMT is unable to initiate RNA synthesis at 

mtDNA promoter sites alone, and instead requires additional factors (Wanrooij et al., 

2008). 

 

Transcription of the mtDNA encoded genes is initiated from promoters on each 

strand of DNA in two long polycistronic transcripts which are subsequently processed 

to form mature mRNA, tRNA and rRNAs by a handful of different RNases. There is 

one light-strand promoter (LSP) and two heavy-strand promoters (HSP1 and HSP2) 

found within the D-loop which have been identified using a variety of techniques 

including 5’ mapping of primary mitochondrial transcripts and S1 nuclease protection 

assays (Montoya et al., 1983, Montoya et al., 1982, Yoza and Bogenhagen, 1984). 

The light strand transcript is that which is transcribed using the heavy strand DNA as 

a template, and vice versa for the heavy strand transcript.  

 

The light strand is transcribed after initiation at LSP, forming one full length 

polycistronic transcript. The heavy strand transcript is also formed in a similar 

manner initiating at HSP. However, following the observation that heavy strand 

encoded rRNAs were synthesised at a higher rate than the heavy-strand mRNAs, 

Montoya et al. presented evidence for two distinct transcription initiation sites 

(Montoya et al., 1983). Another mechanism for modulating different RNA transcripts 

from the same strand is premature termination. This mechanism was revealed when 

it was shown that 16S rRNA molecules had imprecise 3’-termini, resulting from 

transcript termination at the adjacent tRNALeu(UUR) gene (Kruse et al., 1989). The 

protein facilitating this process was identified as mitochondrial transcription 

termination factor 1 (mTERF1) which can bind and induce bending of the DNA 
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double helix (Shang and Clayton, 1994). mTERF1 is a member of the mTERF family 

of proteins, all of which are localised within the mitochondria, and are associated with 

not only termination of transcription, but also initiation of transcription and mtDNA 

replication (Hyvarinen et al., 2007, Roberti et al., 2009, Kruse et al., 1989). mTERF1 

is the protein which binds just after the mitochondrial rRNAs (Fernandez-Silva et al., 

1997) and has been associated with transcription termination. However, Terzioglu et 

al. demonstrated that the mTERF1 knockout mouse is viable, showing no change in 

mtRNA levels, indicating that the role of mTERF1 is not essential for mitochondrial 

function (Terzioglu et al., 2013). 

 

Interestingly, the A3243G heteroplasmic mutation, located within human mTERF1’s 

binding site, is the characteristic transition associated with mitochondrial myopathy, 

encephalopathy, lactic acidosis and stroke-like episodes (MELAS) (Goto et al., 1990). 

In vitro studies demonstrate that this mutation disrupts the human mTERF binding 

site, impairing transcript termination (Shang and Clayton, 1994, Hess et al., 1991).  

 

As the mitochondrial genome is deficient for introns it is believed that processing the 

polycistronic transcripts is a relatively simple process, involving few enzymes- not 

least the mitochondrial RNase P (Rossmanith and Karwan, 1998) and the zinc 

phosphodiesterase ELAC protein 2 (ELAC2). The organisation of the genome is such 

that almost all genes are separated by tRNA genes, therefore endonucleolytic 

excision of each tRNA facilitates the processing of the neighbouring mtRNAs. Akin 

to nuclear transcripts, all mtRNAs are polyadenylated by a polyA polymerase 

(mtPAP) with the exception of ND6 (the only heavy strand transcript) (Tomecki et al., 

2004) (although they do not carry upstream polyA signals) (Taanman, 1999). 

Addition of CCA to the 3’- end of tRNAs is facilitated by TP(CTP):tRNA 

nucleotidyltransferase (Rossmanith et al., 1995). 

1.5.1 Mitochondrial RNA Granules 

There is still much more to be discovered about how immature mitochondrial 

transcripts are matured, modified, assembled and turned over within the organelle.  

More than ten years ago, researchers identified mitochondrial RNA granules (MRGs) 

by labelling the organelle with uridine analogue 5-bromouridine (BrU) which formed 
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punctate structures, not dissimilar to mtDNA nucleoids (Jourdain et al., 2013). Said 

structures colocalise with G-rich RNA sequence biding factor-1 (GRSF1) and the 

mitochondrial RNase P Complex both of which are associated with RNA processing, 

suggesting that the MRGs could be the sites of RNA maturation. Depletion of GRSF1 

leads to an increase of immature RNA molecules and a decrease in mature RNAs 

(Jourdain et al., 2013, Jourdain et al., 2016) further supporting this conclusion.  

1.6 Mitochondrial Translation 

The 12S and 16S rRNA of the mitochondrial ribosome, together with tRNAVal, are 

assembled with imported mitochondrial ribosomal proteins of the 39S mitochondrial 

large subunit and of the 28S small subunit, thus initiating the first steps of ribosome 

assembly (Richter-Dennerlein et al., 2015). Like the cytosolic ribosomes, 

mitochondrial ribosomes (mitoribosomes) are composed of a large and small 

subunit, but are characteristically more protein rich (and thus have an unusually low 

RNA content) compared to other ribosomal structures (Rorbach et al., 2016).  

 

In 2009 the Nobel Prize in Chemistry was awarded to Venkatraman Ramakrishnan, 

Thomas A. Steitz and Ada E. Yonath for their work on elucidating the structure of the 

bacterial ribosome. It was in 2003 when Rajendra K. Agrawal produced the first 3-

dimensional structure of the (bovine) mitochondrial 55S ribosome using cryo-EM. 

(Sharma et al., 2003). Following this, two separate groups began the race to produce 

the best crystal structure of the mitochondrial ribosome. In a race between the 

laboratories of Venkatraman Ramakrishnan (Cambridge, UK) and Nenad Ban 

(Zurich, Switzerland), there were rapid advancements in the mitochondrial ribosome 

structure field, resulting in near-atomic resolution of the mammalian mitochondrial 

ribosome (Amunts et al., 2014, Brown et al., 2014, De Silva et al., 2015, Fernandez-

Silva et al., 1997, Greber et al., 2014a, Greber et al., 2014b).  

 

Translation of the mitochondrial transcripts initiates with the mRNA binding to the 

28S complex. Translation elongation then proceeds by cycles of aminoacyl-tRNAs 

binding, peptide bond formation, and displacement of deacylated tRNAs. 
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1.7 MtDNA Replication 

Another distinguishing feature of mtDNA is its unorthodox mechanism of replication. 

Unlike nuclear DNA, mtDNA continues to replicate throughout the lifetime of the cell. 

The mechanism of mtDNA replication is a hotly debated subject and there are two 

main hypotheses; the strand displacement model (SDM) and the RITOLS/bootlace 

model (RNA Incorporated ThroughOut the Lagging Strand). For extensive reviews 

see the following; (Holt and Jacobs, 2014, Holt and Reyes, 2012, Clayton, 1982). 

 

 
Figure 5: Mechanisms of mtDNA replication in vertebrate mitochondria:  

[This image was originally published in PLOS One by Fonseca et al. and has been 
reproduced without modifications for this thesis]. The three predominant 
mechanisms of mtDNA replication; strand displacement model (SDM), 
Ribonucleotide Incorporation ThroughOut the Lagging Strand (RITOLS) and Strand-
coupled mechanism (SCM). Where the solid lines denote DNA and the dashed lines 
represent RNA (Fonseca et al., 2014). 
 

1.7.1  The Strand Displacement Model (SDM) 

Both mechanisms are based on electron EM images from 1972 (Robberson et al., 

1972) which show significant portions of single stranded DNA in actively replicating 
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mtDNA molecules. The two mechanisms agree that there are two dominant priming 

events, one on each strand. In the SDM model replication is initiated at the origin of 

heavy strand replication (OH) in the major non-coding region (≈ 16,034 nucleotide 

position (nt) in mice). Leading strand synthesis proceeds for approximately 11 kb, 

displacing the lagging strand as it goes. This model proposes that the displaced 

lagging strand is coated with mitochondrial single-stranded binding protein (mtSSB) 

during this initial phase of replication, which is supported by Chip-Seq data from 

mtSSB pull-down (Miralles Fusté et al., 2014). Once the replication fork reaches a 

stem-loop structure, which defines the origin of light strand replication (Ori-L), DNA 

synthesis of the lagging strand can begin and two identical daughter molecules are 

formed. This model envisions continuous synthesis of both strands (Nass, 1980, 

Robberson et al., 1972, Clayton, 1982, Brown et al., 2005). 

1.7.2 Ribonucleotide Incorporation Throughout the Lagging Strand (RITOLs) 

In 2000, it was demonstrated that mtDNA replication intermediates (mtRIs) contained 

fully duplex structures based on 2D-AGE from highly purified organelles, which is 

discordant with the predicted single-stranded mtRIs of the previously described SDM 

(Yasukawa et al., 2006). These duplex structures were resistant to single-strand 

nuclease (following removal of any associated proteins by Proteinase K) which 

demonstrated that they could not be the mtSSB-bound intermediates of the SDM. 

Further interrogation of the mtRIs demonstrated that these structures contained 

significant portions of RNA/DNA hybrid. This has been attributed to the presence of 

long stretches of RNA hybridized to the lagging strand during leading strand 

synthesis (as opposed to mtSSB), the source of which is mitochondrial transcripts 

(mtRNA), also known as; bootlaces. This association of mtRNA with replicating DNA 

molecules has been corroborated by multiple methods including; sensitivity to 

Ribonuclease H1 (RNase H1), an enzyme which degrades the RNA portion of 

RNA/DNA hybrids, EM analysis and the capture of mtRIs with an antibody specific 

for RNA/DNA hybrids (Yasukawa et al., 2006, Reyes et al., 2013).  

 

A common critique of this model is that the RNA species observed hybridised to the 

lagging strands of mtRIs is that this is merely an artefact, whereby transcripts within 

the mitochondria have bound to their complementary DNA sequence during 
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extraction. This was refuted by in organello pulse-chase experiments with both 

radioactive deoxynucleotide precursors and ribonucleotide precursors. This 

demonstrated that the observed hybrid species were in fact newly synthesised mtRIs 

which subsequently mature to full-length mtDNA molecules. Moreover, cross-linking 

of nucleic acids using psoralen prior to extraction dismissed the claim that the 

RITOLs intermediates were formed upon extraction.  

 

An additional critique is the undeniable presence of vast amounts of mtSSB within 

the organelle, and therefore the question arises; if it is not bound to ssDNA during 

mtDNA replication then what is it doing? One possibility is that mtSSB is important 

for regulating and stabilising 7SDNA or RNA. In support of this replication-

independent role for mtSSB, Mikhailov et al. showed that mtSSB is highly abundant 

in mtDNA preparations from xenopus oocytes, where mtDNA replication is not 

occurring (Mikhailov and Bogenhagen, 1996).  

1.7.3 Ori-z and Strand-Coupled Bidirectional Replication 

For many years, unidirectional, strand-asymmetric mode of replication was believed 

to be the sole primary mechanism of DNA replication in mammalian mitochondria. 

Using neutral/neutral 2D-AGE, however, it has been demonstrated that there are 

conventional double-stranded RIs in mitochondria indicative of coupled leading and 

lagging strand synthesis (q replication), as well as the previously described strand-

asymmetric mode (Holt et al., 2000). Initiation of this strand-coupled q replication 

takes place downstream of OH, outside of the NCR and there is evidence which 

suggests that q replication is the predominant mechanism of DNA replication in 

mammalian mitochondria (Bowmaker et al., 2003).  

 

Interestingly, attempts to locate and define an exact bidirectional origin of replication 

in mammalian mtDNA have proved difficult as overlapping fragments examined with 

2D-AGE revealed what is described as an origin ‘zone’, rather than a discrete origin 

in both humans and mouse. The presence of different origins within different 

molecules has been reported to span across as much as 5 kB of the genome. Notably 

this window is smaller in mice than in humans (11,300- 15,500 and 10,500 – 16,000 

respectively). This was demonstrated by revealing sets of overlapping fragments 
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associated with initiation arcs visualised by neutral/neutral 2D-AGE (Bowmaker et 

al., 2003).  

 

In addition to this, cultured human cells which have undergone mtDNA depletion and 

recover show replication intermediates reminiscent of strand-coupled replication with 

initiation originating from within the NCR, distinct from OH (Yasukawa et al., 2005). 

This second putative origin of replication, Ori-b, maps to approximately 15,600 nt in 

mice (Yasukawa et al., 2006). Not only does this provide additional evidence that 

mitochondria actively possess and use a conventional bidirectional origin and mode 

of replication, but also suggests that different modes of replication may be used 

under different circumstances.  

1.8 Key Players in mtDNA Replication 

1.8.1 Polymerase Gamma 

Many of the proteins involved in DNA metabolism are shared between the nuclear 

and mitochondrial compartments, such as the primary mtDNA polymerase, 

Polymerase g (Pol g). For many years Pol g was thought to be the sole polymerase 

in mitochondria, until recently where two additional polymerases have been reported 

in mitochondria; PrimPol and Polymerase b (Sykora et al., 2017, García-Gómez et 

al., 2013). (For a comprehensive view on mammalian mitochondrial polymerases, 

see (Krasich and Copeland, 2017)).  

 

Pol g is a heterotrimer, with a catalytic subunit encoded by the nuclear gene POLG 

and a dimeric accessory subunit encoded by POLG2. The holoenzyme has three 

activities; a 5’-3’ DNA polymerase activity, a 3’-5’ exonuclease activity and a 5’-dRP 

lyase activity associated with base excision repair. The dimeric accessory unit 

functions to help tight DNA binding and processivity (Lim et al., 1999). Its enzymatic 

activity and sensitivity to nucleotide analogues make it unique among classical 

eukaryotic polymerases (Ropp and Copeland, 1996).  

 

Pol g is essential for mtDNA replication and has a restrictive steric gate and highly 

specific active site which confers a high replication fidelity and low error rate, akin to 

other family A replicative polymerases (Copeland and Longley, 2003). Disruption to 
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the exonuclease domain of Pol g leads to a dramatic increase in mtDNA mutation 

load (discussed in greater detail at the end of this chapter) and mutations in the 

POLG gene itself are associated with mitochondrial disease characterised by either 

deletions or depletion of mtDNA (Van Goethem et al., 2001). Although less common, 

mutations in POLG2 have been identified in cases of mitochondrial disease (Longley 

et al., 2006). Additionally, long term exposure to antiviral nucleoside analogue drugs 

(e.g. AZT) can lead to mitochondrial toxicity, and ultimately mitochondrial pathology 

due to Pol g’s heightened sensitivity to nucleotide analogues (Lewis and Dalakas, 

1995).  

 

Despite its high fidelity, Pol g like almost all polymerases will (mis)incorporate 

ribonucleotides into DNA. Pol g does in fact discriminate against ribonucleotides 

efficiently but with differential discrimination depending on the base identity. 

Subsequently, Pol g is able to perform single-nucleotide reverse transcription from 

both DNA and RNA 3’ termini although it’s extension ability becomes significantly 

hindered by longer stretches of ribonucleotides (Kasiviswanathan and Copeland, 

2011).  

1.8.2 PrimPol 

More recently, multiple studies have demonstrated the presence of an additional 

DNA polymerase in mammalian mitochondria. CCDC111, more commonly referred 

to as PrimPol, is a novel AEP-like (archaea and eukaryotes) polymerase-primase 

and is found in the nucleus, cytoplasm and mitochondria (García-Gómez et al., 2013).  

 

PrimPol is unique in its ability to prime DNA synthesis. None of the other known 

human DNA polymerases are able to initiate DNA synthesis without an 

accompanying RNA polymerase. And not only is PrimPol able to initiate DNA 

synthesis using ribonucleotides, like a RNA primase, but PrimPol can utilise 

deoxyribonucleotides to initiate DNA synthesis (García-Gómez et al., 2013).  

 

PrimPol is well documented as a translesion DNA synthesis (TLS) polymerase 

tailored to bypass the most common oxidative lesions in DNA, such as abasic sites 

and 8-oxoguanine (Mourón et al., 2013, Bianchi et al., 2013). Due to this ability, 
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however, PrimPol is error-prone with a preference to generate base insertions and 

deletions due to its lack of 3’ to 5’ exonuclease proofreading domain. It is believed 

that PrimPol’s activity in the mitochondria is regulated by mtSSB to prevent the 

generation of indels (Guilliam et al., 2014) and is responsible for replication restart 

following damage and stalling or fork arrest. PrimPol knockout mice are viable but 

show impaired mtDNA replication, implicating it as a novel yet important player in 

mtDNA maintenance and metabolism (García-Gómez et al., 2013). 

1.8.3 Mitochondrial Single Stranded Binding Protein 

MtSSB is a heterotrimeric protein with a high affinity for single-stranded DNA. MtSSB 

is not like the nuclear single stranded binding protein (SSB) but more similar to 

eubacterial SSB, such as that from E.coli (Curth et al., 1994, Webster et al., 1997, 

Tiranti et al., 1993).   

 

MtSSB is documented as an essential protein in many aspects of mtDNA replication 

and metabolism. MtSSB binds to single stranded DNA during replication to protect it 

from degradation by damaging agents such as free radicals within the mitochondria. 

MtSSB also interacts with other proteins within the mitochondria, such as Twinkle 

and multiple repair factors where mtSSB binding has a stimulatory effect (Korhonen 

et al., 2003). For example; in Drosophila Melanogaster when the mtSSB gene is 

disrupted there is mtDNA depletion and impaired respiration (Farr et al., 2004, Maier 

et al., 2001).  MtSSB is also involved in the regulation of the D-loop whereby it plays 

an important role in the synthesis and abundance of 7S DNA (Ruhanen et al., 2010).  

1.8.4 Twinkle 

Twinkle is a hexameric helicase of the Rec-A superfamily and is partially homologous 

to the helicase domain of the T7 phage gp4 protein. Twinkle can catalyse 5’ to 3’ 

NTP-dependent unwinding of the mtDNA duplex in vitro and its activity is stimulated 

by mtSSB (Korhonen et al., 2003) supporting the idea that it is the mitochondrial 

replicative helicase. It is essential for mtDNA replication and is an important player 

in the reconstituted minimal replisome consisting of Pol g, mtSSB and Twinkle which 

can effectively replicate the mitochondrial genome in vitro (Korhonen et al., 2004).  
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Knockdown via RNAi of Twinkle in human and insect cells causes mtDNA depletion 

and defects in Twinkle are associated with progressive external opthalmoplegia 

(PEO) with multiple mtDNA deletions in humans. Twinkle expression is directly linked 

to mtDNA copy number and over expression of Twinkle leads to an increase in copy 

number in transgenic mice (Tyynismaa et al., 2004). 

 

Mice harbouring an autosomal dominant PEO (adPEO) mutation in Twinkle (a 13 

amino-acid duplication in the linker region) accumulate large numbers of mtDNA 

deletions in the skeletal muscle and brain, and generally recapitulate the disease of 

the human patients, albeit significantly milder (Tyynismaa et al., 2005). The so-called 

‘deletor’ mice do not exhibit a decreased lifespan however they do show 

characteristic histological features of late-onset mitochondrial myopathy, such as 

Cytochrome-c-oxidase (COX) negative muscle fibres (an indication of respiratory 

dysfunction). The model for deletion formation by adPEO mutations is Twinkle 

stalling or pausing during replication. Although the deletions form slowly in vivo, in 

young deletor mice there is already an accumulation of mtRIs indicative of stalling 

(Goffart et al., 2009). This is strong evidence to suggest that early problems with 

mtDNA replication results in the accumulation of deletions which can cause PEO.  

1.8.5 Mitochondrial Genome Maintenance Exonuclease 1 

Mitochondrial Genome Maintenance Exonuclease (MGME1) is a RecB-type 

exonuclease encoded by the orphan gene C20orf72 in humans. Homozygous 

nonsense and missense mutations in the gene are characterised by common 

mitochondrial disease phenotypes such as PEO, mtDNA depletion and multiple 

mtDNA deletions in the muscle (Szczesny et al., 2013).  

 

MGME1 cleaves single-stranded DNA and flap substrates and knockdown or 

complete knockout of the protein in both human cells and mice results in an 

accumulation of 7S DNA. It is generally accepted that MGME1 is required for 

effective mtDNA synthesis (Kornblum et al., 2013). RNase H1 is required during 

mtDNA replication for the removal of residual RNA primers. However, RNase H1 is 

unable to remove the last two ribonucleotides at the RNA-DNA junction and so it is 

believed that flap processing is invoked to efficiently removed these species. The 



Chapter 1: Introduction 

40 

 

enzymes involved in this process in mitochondria are the helicase/nuclease DNA2, 

FEN1 and now MGME1 (Holt, 2009, Uhler et al., 2016).  

 

Cells derived from patients with loss-of-function mutations exhibit an 11kB deleted 

linear mtDNA species which is also present in mice harbouring an exonuclease-

deficient Pol g (Uhler et al., 2016, Bailey et al., 2009, Nicholls et al., 2014). Moreover, 

in vitro reconstitution of MGEME1 activity shows that MGME1 is highly dependent 

on the 3’-5’ exonuclease activity of Pol g. This observation implicates flap processing 

and removal, and subsequent ligation in effective mtDNA replication and 

maintenance. However, it is yet to be proven that both linear species are formed via 

the same mechanism (Uhler et al., 2016).  

1.8.6 Mitochondrial Topoisomerase I 

Like a plasmid, mtDNA is mostly supercoiled and replication of the genetic 

information contained within requires relaxing of the circular duplex DNA, a process 

which relies on topoisomerase activity. Three putative topoisomerases have been 

identified in mitochondria (Top1mt, Top3a and Top2b), yet Top1mt is the most widely 

documented. Top1mt is a type 1B topoisomerase present in vertebrates and targeted 

exclusively to the mitochondrial compartment. Top1mt catalyses the transient 

cleavage and ligation of one strand of the mtDNA ahead of the replisome facilitating 

relaxation of the duplex supercoiled circular DNA. Despite this, Top1mt activity is not 

required for mitochondrial transcription (Zhang and Pommier, 2008).  

 

MEFs from Top1mt deficient cells exhibit impaired mitochondrial function 

characterised by dysfunctional respiration, fatty acid oxidation, lipid peroxidation and 

induction of mitophagy. Interestingly, in cells lacking Top1mt there is an increase in 

ROS production and in the activation of DNA damage response pathways. For 

example; histone gH2AX, a marker for DSBs was elevated in Top1mt knockout MEFs 

(Douarre et al., 2012).  

 

Studies which mapped the binding sites of Top1mt demonstrated an important role 

for Top1mt in the control region and suggested that Top1mt is involved in 
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degradation of specific mtDNA molecules (Dalla Rosa et al., 2014) and in D-loop 

maintenance (Zhang and Pommier, 2008).  

1.8.7 Ribonuclease H1 

The mammalian RNase H1 is knockout-lethal. RNase H1 degrades the RNA portion 

of RNA/DNA hybrids (specifically stretches of RNA which are 4 consecutive 

ribonucleotide bases in length, or longer) in both the nuclear and mitochondrial 

compartments and it is essential for mtDNA replication (Cerritelli et al., 2003, Holmes 

et al., 2015). In mouse embryonic fibroblasts (MEFs) lacking RNase H1 there is 

ubiquitous primer retention at the origin(s) of replication which leads to replication 

stalling by Pol g and subsequent double strand breaks (DSBs) at the origin(s) which 

results in mtDNA depletion and instability (Akman et al., 2016).  

 

Mutations in the human Rnaseh1 gene have recently been discovered which cause 

adult onset mitochondrial encephalomyopathy (Reyes et al., 2015). It is not clear 

what the mechanism of disease is but it may be linked to the role of the newly 

reported R-loop species and mtDNA segregation within the organelle (Akman et al., 

2016). The human mutation and the mouse knockout model are strikingly different 

and this is likely because Rnaseh1 ablation is incompatible with development beyond 

early embryogenesis (Cerritelli et al., 2003). This pathogenic mutation highlights the 

importance of RNase H1 in mtDNA metabolism and also the significance of the R-

loop in mtDNA.  

1.9 Ribonucleotides in DNA 

Ribonucleotides are the most common non-canonical nucleotide incorporated into 

replicating DNA and all polymerases will (mis)incorporate ribonucleotides, but at 

different frequencies depending on their discrimination abilities. Ribonucleotides 

have an additional hydroxyl group compared to deoxyribonucleotides, and 

consequently embedded ribonucleotides in duplex DNA make the DNA more 

susceptible to damage via hydrolysis (Williams and Kunkel, 2014). In fact, a single 

ribonucleotide makes the DNA backbone 100,000 times more susceptible to 

hydrolysis. This is in part also due to the conformational changes associated with a 

distortion to the backbone when there is a single ribonucleotide present. The 
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distortion leads to puckering of the ribose sugar, making it more vulnerable to 

nucleophilic attack (Figure 6) (DeRose et al., 2012).  

 
Scheme 1:  Alkali hydrolysis of an embedded rNMP. 

Nucleophilic attack of the ribonucleotide OH initiates the formation of a 2’3’-cyclic 
phosphate intermediate which is rapidly hydrolysed to the break the DNA backbone 
resulting in a 3’-phosphate and 5’-OH products via a SN2-like mechanism. 
 

 
Figure 6: Solution Structure of the Dickerson DNA Dodecamer Containing a Single 
Ribonucleotide. 

Reprinted with permission from DeRose et al. (DeRose et al., 2012). Copyright 
(2012) American Chemical Society.  
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1.9.1 Ribonuclease H2 

Akin to RNase H1, Ribonuclease H2 (RNase H2) recognises and nicks duplex DNA 

at the sites of RNA/DNA hybrid, but specifically recognises single embedded 

ribonucleotides. This makes it an essential enzyme for maintaining genome stability 

and it is responsible for initiating ribonucleotide excision repair (RER) in the nucleus 

(Reijns et al., 2012, Sparks et al., 2012). Unlike RNase H1 which has a strong 

mitochondrial localisation pattern, RNase H2 has not been detected in mitochondria 

to date. 

 

In humans, hypomorphic mutations in any of the genes which encode the three 

subunits of RNase H2 cause Aicardi-Goutières syndrome (AGS); a rare 

neuroinflammatory disorder.  Interestingly, AGS can be caused my mutations in a 

variety of genes including SAMHD1 which codes for a protein involved in nucleotide 

metabolism. 

 

The RNase H2 knockout, like RNase H1, is embryonic lethal, but for different reasons. 

RNase H2 null mouse embryos accumulate ribonucleotides in their nuclear DNA 

which leads to genomic instability and a p53-mediated DNA damage response 

(Reijns et al., 2012, Nick McElhinny et al., 2010a). However, recent research 

indicates that the problems arise not from the persistent unrepaired ribonucleotides, 

but from aberrant RER processing in the absence of RNase H2, mediated by 

Topoisomerase I (TopI) (Huang et al., 2015, Kim et al., 2011, Huang et al., 2017). 

Top1 also possesses a ribonuclease activity and is able to recognise single 

ribonucleotides in duplex DNA. In the absence of RNase H2, Top1 binds to the 

embedded ribonucleotide, forming a cleavage complex at the site of ribonucleotide 

incorporation. The phosphotyrosyl bond is attacked by the 2’-OH and Top1 is 

released leaving 2’,3’-cyclic phosphate ends (akin to those in iii). If there is a second 

Top1-cleavage complex adjacent to the nick, this enables dissociation of the short 

intervening DNA fragment (and excision of the ribonucleotide). Religation of the gap 

results in a small 2-5 base-pair deletion (Huang et al., 2015). Alternatively, following 

Top1 nicking additional cleavage on the opposite strand by Top1 can generate a 

double-strand break (DSB) (Huang et al., 2017). DSBs subsequently lead to genomic 

instability.  
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1.9.2 Persistent Ribonucleotides in mtDNA 

Despite the vital importance of the mitochondrial genome and the considerable lack 

of non-coding regions, mtDNA is commonly reported to have a high mutation rate, 

as well as persistent (mis)incorporated ribonucleotides (Grossman et al., 1973).  

Not only do ribonucleotides render the DNA more susceptible to hydrolysis, they also 

cause a distortion to the helix of the duplex structure (Figure 6)(Williams and Kunkel, 

2014). It is unclear why ribonucleotides remain in the mitochondrial genome; whether 

it is due to a lack of repair mechanism or machinery, the redundancy of the multicopy 

genome or if there is a functional role for the ribonucleotides. Or a combination of 

two or more of these factors. There are numerous reports, a handful of which the 

reader is directed to, concerning the positive outcomes of retained ribonucleotides in 

DNA (Yao et al., 2013, Potenski and Klein, 2014, Dalgaard, 2012, Lujan et al., 2013). 

1.9.3 Methods to Sequence Embedded Ribonucleotides  

In 2015 multiple groups independently developed and published an array of next 

generation sequencing (NGS) approaches to identify the precise location of 

(mis)incorporated ribonucleotides in DNA (Figure 7) (Clausen et al., 2015, Ding et 

al., 2015, Koh et al., 2015, Keszthelyi et al., 2015). Of the four techniques detailed in 

Figure 7, three use alkali hydrolysis to fragment the DNA at the sites of 

ribonucleotides and one, EmRiboseq, uses RNase H2 in vitro. All techniques use the 

most advanced sequencing methods; either Illumina or Ion Torrent and claim to be 

able to provide single nucleotide resolution of embedded ribonucleotides.  

 

Initially, at the time of their publication, all four techniques were focussed on the 

nuclear genome in yeast or bacteria. Moreover, in order to capture ample data for 

sequencing the library preparations were carried out in Rnaseh2 null strains to 

increase the persistence of ribonucleotides within the DNA. These approaches 

proved to be valuable tools in identifying which DNA polymerases were acting on 

which strands/regions of DNA in vivo as well as locating origins of replication. It was 

only recently that attention moved to the mitochondrial genome. In 2017 Berglund et 

al. used the HydEn-seq method to locate and identify the sites of ribonucleotide 

incorporation in mtDNA from human cultured cells. The results indicated that there 

were base biases within the mtDNA, of which were attributable to the ratio of 
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nucleotide triphosphates (NTPs) to deoxyribonucleotides (dNTPs) within the 

mitochondrial compartment.  

 

 
Figure 7: Techniques to sequence embedded ribonucleotides. 

(Clausen et al., 2015, Ding et al., 2015, Koh et al., 2015, Keszthelyi et al., 2015) 
 

1.10 Mitochondrial dNTP Metabolism 

Mitochondria by nature require a distinct and separate mechanism to maintain 

sufficient dNTP pools for mtDNA synthesis in non-dividing cells. In proliferating cells, 

dNTPs are synthesised de novo in the cytosol and by two parallel salvage pathways 

acting in the cytosol and mitochondria. Deoxynucleosides are imported into the 

mitochondria and phosphorylated by Thymidine Kinase 2 (TK2) or Deoxyguanosine 

Kinase (DGUOK) (Figure 8). R2 and Thymidine Kinase 1 (TK1) are both only 

transiently present in proliferating cells modulated by the cell cycle. And when there 

is no longer a high demand for dNTPs for nuclear DNA synthesis, cytosolic dNTP 

synthesis is downregulated and the mitochondrial dNTP pools become largely reliant 

on the internal mitochondrial salvage pathway.   
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Figure 8: dNTP synthesis in actively dividing mammalian cells  

Adapted from Rampazzo et al. (Rampazzo et al., 2010) 
 

1.10.1 Thymidine Kinase 2 

As aforementioned, TK2 is one of two deoxynucleoside kinases in the mitochondria, 

responsible for the first, and rate-limiting, phosphorylation step in the mitochondrial 

salvage pathway. TK2 specifically phosphorylates the pyrimidines thymidine, 

deoxycytidine and deoxyuridine (Roos et al., 2014, Saada‐Reisch, 2004). As many 

as 30 different mutations in the TK2 gene are associated with mtDNA depletion 

syndromes (MDS). This is believed to be due to reduced activity of TK2, although 

the tissue-specific nature of the resulting phenotype is yet to be explained (Saada et 

al., 2001, Frangini et al., 2013). In addition to MDS, mutations in TK2 have also been 

linked to PEO associated with multiple mtDNA deletions (Tyynismaa et al., 2012, 

Alston et al., 2013).  
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DGUOK is a deoxynucleoside kinase located within the mitochondria, responsible 
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mechanism of pathology is not fully understood but it is believed that the mutations 

result ultimately in imbalanced, depleted mitochondrial dNTP pools which impedes 

mtDNA replication. Additionally, there are documented cases of a missense mutation 

in DGUOK which leads to reduced activity and an accumulation of mtDNA deletions 

due to a defect in DGUOK activity (Ronchi et al., 2012).  

1.10.3 Ribonucleotide Reductase 

Ribonucleotide reductase (RR) is an enzyme which catalyses the reduction of 

ribonucleotide 5’-diphosphates to their corresponding 2’- deoxynucleotide. It is 

comprised of one large subunit RRM1 and two smaller subunits RRM2 and p53R2. 

p53R2 refers to the small subunit of RR and as the name suggests, has a p53 binding 

site and plays an important role in tumour suppression and DNA damage response. 

p53R2 is critical in dNTP synthesis outside of the S-phase and therefore plays a 

large role in providing dNTPs for DNA repair.  

 

Mutations or complete ablation of p53R2 is associated with significant mtDNA 

depletion (Bourdon et al., 2007, Kollberg et al., 2009) and mtDNA deletions causing 

PEO (Tyynismaa et al., 2009). However, it is still not clear whether p53R2 affects 

mtDNA metabolism via perturbations in dNTP pools or in another manner as it has 

been shown that p53R2 positively correlates with mtDNA content, and even 

increasing p53R2 expression reduces ROS and protects mitochondrial membrane 

potential in human cancer cells (Wang et al., 2011). Despite this, no appreciable RR 

activity was detected in mitochondria, in contrast to earlier reports (Young et al., 

1994). 

1.10.4  MPV17 

MPV17 is an inner mitochondrial membrane protein coded for by the MPV17 gene 

located on chromosome 2p21-23 and it has been identified as a mutant gene 

associated with MDS (Spinazzola et al., 2006). Patients with mutations in MPV17 

exhibit numerous symptoms including liver failure and neurological impairments. 

MPV17 mutations have also been associated with adult-onset neuropathy and 

leukoencephalopathy due to the accumulation of mtDNA deletions in skeletal muscle 

(Blakely et al., 2012). 
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The function of the protein is largely unknown but the human MPV17 is the 

orthologue of the mouse kidney disease gene, Mpv17. The mouse MPV17 knockout 

is viable and as anticipated, exhibits late-onset proteinuric nephropathy as well as 

early-onset liver mtDNA depletion. These symptoms were associated with a 

significantly shorter lifespan (Dalla Rosa et al., 2016, Spinazzola et al., 2006, Viscomi 

et al., 2009).  

 

It is likely that MPV17, absence of which exhibits similar features to the DGUOK 

knockout, is involved in mitochondrial dNTP metabolism. Both mouse liver 

mitochondria and quiescent patient cells have significantly reduced dNTP pools and 

mtDNA copy number, the latter of which is rescued by deoxynucleoside 

supplementation in the patient fibroblasts, thus indicating that the dNTP insufficiency 

associated with absence, or near-absence, of the protein in the mitochondria is the 

cause of the mtDNA depletion (Dalla Rosa et al., 2016).  

 

S. cerevisiae express a protein, SYM1, which is the genetic orthologue of the 

mammalian MPV17 gene. Akin to the MPV17 knockout models, the SYM1 gene 

product is essential for effective OXPHOS, mitochondrial morphology and mtDNA 

stability under high-temperature and ethanol-dependent growth. Either deletion or 

disruption of the SYM1 gene leads to an accumulation of mitochondrial respiratory-

deficient ‘petite’ mutants (Dallabona et al., 2010). 

1.10.5 dNTP Import 

The mitochondrial and cytosolic dNTP pools are separated by the IMM which is 

impermeable to charged molecules, meaning that dNTPs have to be actively 

imported by dedicated transporters. dNTPs produced by the nucleotide de novo 

synthesis can be imported from the cytosol by deoxynucleotide transporters (PCN1 

and PCN2). Additionally, the respective deoxynucleosides can enter the 

mitochondrial matrix through the Equilibrative Nucleoside Transporter 1 (ENT1), to 

then be phosphorylated by kinases of the mitochondrial salvage pathway (Figure 8). 

It is likely that there are additional nucleoside transporters, however their identity has 

so far eluded the field.  
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1.11 MtDNA Repair 

For an extensive review please see (Kazak et al., 2012). 

1.11.1 Mitochondria and Oxidative Damage 

Superoxide, produced in the mitochondria as a by-product of OXPHOS (Figure 2), is 

quickly converted to H2O2 by SOD1 or 2, which does not react with DNA. However, 

via Fenton Chemistry (below) H2O2 can be converted to the highly reactive hydroxyl 

radical (HO•) which is known to cause DNA damage. 

 

𝐹𝑒#$ + 	𝐻#𝑂# → 	𝐹𝑒*$ + 𝐻𝑂∙ + 	𝑂𝐻, 

 

Attack on DNA by ROS can generate a plethora of DNA adducts and base 

modifications, of which 8-hydroxydeoxyguanine (8-oxodG) is one of the most 

abundant (Ames, 1989). What is more, because mitochondria are the source of the 

majority of cellular ROS, it has been observed that mtDNA contains a higher amount 

of steady-state amount of oxidative damage than nuclear DNA (Richter, 1995). 8-

oxodG is particularly problematic because it is mutagenic due to its ability to promote 

mispairing. 8-oxodG is readily misincorporated opposite adenine (Pavlov et al., 

1994), and so to avoid this, mitochondria possess a mitochondrial homologue of an 

8-oxo-dGTPase, encoded by the MTH1 gene, which hydrolyses free 8-oxodG 

moieties in the mitochondria before it can be incorporated into mtDNA (Kang et al., 

1995).  

 

However, when and if 8-oxodG is incorporated into mtDNA, the predominant 

pathway for repair is the mitochondrial base excision repair (BER) pathway which is 

initiated by oxoguanine DNA glycosylase (OGG1) and mice deficient for ogg1, have 

a 20-fold increase in 8-oxodG in the liver mtDNA compared to wild-type mice (de 

Souza-Pinto et al., 2001).  

1.11.2 Base Excision Repair in Mitochondria 

As eluded to above, mammalian mitochondria possess an active BER pathway, 

which is perhaps the best characterised repair pathway within the organelle. BER is 
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used to repair non-bulky lesions such as oxidised bases and abasic sites (Pinz and 

Bogenhagen, 1998, Szczesny et al., 2008). Like the nuclear BER pathway, the 

mechanism involves excision of the damaged base, strand cleavage, DNA end-

processing, gap filling and ligation. BER can be divided into short-patch (SP) BER or 

long-patch (LP) BER. The former is utilised when nucleotide excision leaves a 3’-OH 

and a 5’-phosphate group for ligation. However, if a 5’- end is generated which is not 

conducive to ligation, LP-BER is used. Both have been reported in mammalian 

mitochondria, and are facilitated by membrane association of mtDNA (Boesch et al., 

2010, Szczesny et al., 2008, Robertson et al., 2009).  

 

Effective BER relies on efficient gap filling by a DNA polymerase. In the nucleus, 

sugar removal and gap filling is carried out by Pol b, which until recently was thought 

to be absent from mitochondria (Krasich and Copeland, 2017, Sykora et al., 2017). 

Nonetheless, Pol g has been shown to possess intrinsic dRP lyase activity and can 

convert 5’ dRP residues to a ligatable 5’-phosphate (Longley et al., 1998). 

1.11.3 Single-strand Break Repair 

Repair of single-strand breaks (SSBs) in mitochondria is largely similar to BER 

following detection of the SSB. The poly(ADP ribose) polymerase (PARP) family of 

proteins are responsible for detection in the nucleus, and PARP1 has been detected 

in mitochondria (Rossi et al., 2009).  

 

SSBs can be caused by abortive DNA ligase activity which leaves a residual 5’AMP. 

The DNA strand-break repair protein aprataxin has been found to localise to 

mitochondria in human calls where it removes 5'-adenylate groups from DNA that 

arise from aborted ligation reactions. Depletion of aprataxin in human SH-SY5Y 

neuroblastoma cells and primary skeletal muscle myoblasts results in mitochondrial 

dysfunction, suggesting a direct role for the enzyme in mtDNA repair (Sykora et al., 

2011).  

1.11.4 Homologous Recombination in Mitochondria 

Double strand breaks (DSBs) are much more problematic and present a greater 

potential problem to the cell, both in the nuclear and mitochondrial compartments. In 
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the nucleus, there are three predominant mechanisms for DSB repair; non-

homologous end-joining (NHEJ), microhomology end-joining (MMEJ) and 

homologous recombination (HR).  

 

Because the mitochondria possess a multicopy genome, turnover of mtDNA 

molecules is in itself a mechanism of damage processing; a process which cannot 

be afforded to the nuclear DNA. And thus, the mitochondria do not possess the same 

wealth of repair processes as the nucleus. Despite this, there is indirect evidence to 

suggest that mitochondria are able to repair DSBs (Bacman et al., 2009) as well as 

the argument that mammalian mitochondria possess all the necessary machinery for 

HR activity (Thyagarajan et al., 1996).  

 

1.12 Mitochondrial Disease 

Mitochondrial disorders are caused by dysfunctional mitochondria and can be 

triggered by either mutations within the mtDNA itself or in nuclear genes which code 

for mitochondrial proteins. Being the core of energy production in cells, the number 

of mitochondria varies between cell types, often relating to the energy demand of the 

tissues. For example, there is a high concentration of mitochondria in muscle fibres. 

As a consequence, mitochondrial disorders often manifest in high-energy demand 

tissues and common pathologies include blindness, deafness, neurological 

impairment, muscle weakness/lack of muscle co-ordination and heart disease. The 

term mitochondrial disease encompasses an extensive spectrum of disorders, many 

of which are still poorly understood.  

 

Mitochondrial diseases are broadly divided into two factions; diseases which result 

from or exhibit mtDNA depletion (mtDNA depletion syndrome (MDS)), or mtDNA 

deletions (multiple deletions). MDS are typically early-onset and are often fatal. By 

contrast, multiple deletions tend to manifest in adults and the pathology is often less 

severe.  
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1.12.1  Diagnosing Mitochondrial Disease 

Ragged red fibers are important biomarker for mitochondrial disease, in particular 

mitochondrial myopathies, but have also been identified in normal ageing (Rifai et 

al., 1995). The term refers to the appearance of a muscle biopsy which has been 

stained with Gomori trichrome and visualised under the microscope. Mitochondrial 

dysfunction in some instances can result in an accumulation of mitochondria located 

in the sub sarcolemma, that appear red once stained. This phenotype is often 

accompanied by muscle weakness and external opthalmoplegia.  

 

Another characteristic feature of mitochondrial dysfunction is the presence of 

cytochrome oxidase (COX) deficient fibers (stained blue), which are indicative of 

respiratory chain deficiency (Johnson et al., 1983). They are identified by 

histochemical assay using a sequential cytochrome c oxidase-succinate 

dehydrogenase reaction, and are often found in a mosaic pattern within the muscle 

fibers (Murphy et al., 2012).  

 

The above mentioned histochemical tools are extremely common assessments of 

mitochondrial disease alongside clinical assessments and physiological tests to 

assess oxidative capacity of patients. For a review of diagnosis of mitochondrial 

disease please refer to (Taylor et al., 2004).   

1.12.2 MtDNA Deletions 

In 1988 Holt et al. reported the presence of a sub-population of mtDNA molecules 

containing a deletion, alongside the wild-type molecules; a form of heteroplasmy. 

Said deletions were observed in biopsies from skeletal muscle but not blood from 

patients exhibiting mitochondrial disease (Holt et al., 1988). It is now well established 

that these deletions are pathogenic and contribute to the mitochondrial dysfunction 

(Pitceathly et al., 2012).  

1.12.3 Disease-Causing Mutations in mtDNA 

As aforementioned, the presence of mtDNA mutations can appear in just a fraction 

of the total mtDNA molecules in a cell, or in all molecules resulting in either 

heteroplasmy or homoplasmy. In the case of heteroplasmy there exists a sub-
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population of mtDNA molecules carrying the mutation, which if increased past a 

certain, often variable, limit, causes the disease to manifest. When the mutation in 

question is a non-synonymous substitution, this is referred to as the threshold of 

disease. There is evidence from cell models that certain cell lines carrying mtDNA 

mutations will spontaneously segregate to homoplasmy; both 100% mutant or 100% 

wild-type (Dunbar et al., 1995, Holt et al., 1997). The mechanisms for segregation 

are still extremely unclear but are an important avenue for potential future therapeutic 

treatments.   

 

The majority of diseases caused by mtDNA mutations are mutations contained within 

mitochondrial tRNAs. This includes the most common mtDNA mutation; A3245G in 

the tRNALeu, which causes MELAS, a condition which affects predominantly the brain 

and muscles and is often fatal. Myoclonic epilepsy and ragged-red fiber disease 

(MERRF) is associated with another mtDNA tRNALys mutation at 8344 nt (Shoffner 

et al., 1990). All mitochondrial diseases caused by heteroplasmic mtDNA mutations 

are subject to mitochondrial inheritance down the maternal line, and thus predicting 

the severity of the resulting disease is extremely difficult.  

1.12.4 Treating Mitochondrial Disease 

Due to the plethora of multifactorial processes affecting the pathology of 

mitochondrial disease, the treatment of mitochondrial diseases is complex and 

specific for each individual case. Traditionally mitochondrial disorders have been 

treated with vitamins and supplements, with little proven benefit. However, more 

recently there are emerging therapies which show promise (for an in-depth review 

see (Nightingale et al., 2016)). One such method is the use of zinc finger nucleases 

or transcription activator-like effector nucleases (TALENs) directed to degrade 

specific mtDNA mutated molecules (Bacman et al., 2013, Minczuk et al., 2008, 

Reddy et al., 2015).  

 

Another novel approach, which has attracted widespread media attention is the use 

of pronuclear transfer during in vitro fertilisation to prevent inheritance of mtDNA 

disease. This technique aims to produce a fertilised zygote where the maternal 

mitochondria have been replaced by healthy mitochondria from a donor egg. 
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Although promising, preliminary data suggests that it is not a guaranteed method of 

prevention (Hyslop et al., 2016). 

 

1.13 The Role of mtDNA in Ageing 

1.13.1 The Free Radical Theory of Ageing 

There are numerous hypotheses regarding ageing and the role of mitochondria in 

the ageing process. The most famous theory is the free-radical theory of ageing, 

based on observations as long as 50 years ago that radiation of living things, and 

thus the subsequent production of free-radicals, shortens their lifespan (Harman, 

1956). The theory, and its subsequent developments (Harman, 2009) postulates that 

animals age due to the accumulation of free-radical damage over time, and more 

specifically that the mitochondria are the hub for this process, producing high levels 

of free radicals and ROS. Despite its appeal this theory has many pitfalls. For 

example; experiments which have used genetic manipulations to increase 

antioxidant production have had no effect on lifespan and numerous species such 

as birds, bats and mole rats have a long lifespan along with high levels of oxidative 

damage even at young ages (Buffenstein et al., 2008). Although this theory still holds 

some weight, it is generally accepted that this is not the sole explanation for the 

ageing phenomenon (Muller et al., 2007). 

 

The mtDNA continues to replicate throughout life unlike the nuclear DNA and 

consequently the mtDNA accumulates mutations and deletions as we grow old 

(Cortopassi et al., 1992). It is well established that somatic mtDNA mutations in 

human aging undergo clonal expansion and cause a mosaic respiratory chain 

dysfunction in different tissues (Krishnan et al., 2007, Larsson, 2010). It has generally 

been assumed that age-associated somatic mtDNA mutations are caused by 

accumulated damage during the aging process (Wallace, 2001). However, an 

alternative hypothesis is that most of the mutations are created as replication errors 

during embryogenesis and then undergo clonal expansion in adult life (Park and 

Larsson, 2011). 
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1.13.2 The Mutator Mouse 

In 2004 and 2005 two separate groups developed a mouse model to test their 

hypothesis that the accumulation of mtDNA mutations is related to the ageing 

phenomenon (Trifunovic et al., 2004, Kujoth et al., 2007). The so-called 'mutator-

mouse' carries a mutation in the PolgA sub-unit of the tDNA polymerase: Pol γ. The 

mutation in the exonucleolytic domain of PolgA cripples the proofreading capacity of 

the enzyme. The result is a dramatic increase in the number of mtDNA point 

mutations than seen in age-matched controls (although the extent of this increase is 

still under debate) and an accumulation of so-called linear deletions. The adult 

mutator mice exhibit a striking ageing phenotype. Although this work indicates that 

high levels of point mutations can cause a premature ageing phenotype this is very 

far from demonstrating that such point mutations are a significant contributor to 

ageing, not least because the mutation levels in the homozygous mice vastly exceed 

that observed in naturally aged mice or humans. This suggests that mtDNA 

mutations may play a role in ageing but are certainly not the sole cause. 

 

1.14 Aims and Hypotheses 

The aim of this PhD was to examine the phenomenon of ribonucleotide incorporation 

and retention within mammalian mtDNA; something of which is still poorly 

understood. It was intended to investigate ribonucleotide incorporation to better 

understand mtDNA synthesis, turnover and repair. After developing a mitochondrial-

specific NGS approach to analyse ribonucleotides in mtDNA it was invoked as a tool 

to assess ribonucleotide incorporation in the context of mitochondrial disease and 

dysfunction. 

 

Early hypotheses focused on ribonucleotides being increasingly incorporated as a 

function of time – ie a function of age. And that the ribonucleotides embedded within 

the mtDNA molecule could identify sites of replication initiation or pausing. As the 

project developed the former hypothesis was refuted and the latter was complicated 

by the high frequency of ribonucleotide retention.  
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Focus instead turned to the factors influencing ribonucleotide incorporation and the 

predominant hypothesis became the effect of changing mitochondrial nucleotide 

pools on ribonucleotide incorporation frequency. As it stands, the current hypothesis 

is that ribonucleotide incorporation is directly affected by the ratio of dNTPs to NTPs 

within the vicinity of the replisome. Moreover, that ribonucleotide incorporation 

beyond a certain threshold can become deleterious for the mitochondria.   
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Chapter 2. Materials & Methods 

2.1 Primer and oligo sequences 

 
Table 1: Primer sequences used to generate PCR products for riboprobe and DNA 
probe synthesis. 

The T7 promoter sequence is underlined where applicable. Note that the 
phosphorothioate is used as an oligonucleotide modification to prevent nucleolytic 
degradation during library preparation (Shin et al., 2014). 

2.2 Cell Culture 

2.2.1 MEFs 

Both primary and immortalized fibroblasts were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM, Life Technologies) supplemented with 10% foetal bovine 

serum (FBS, Hyclone), 1% penicillin and streptomycin (PS, Life Technologies) at 

37°C in a 5% CO2 atmosphere. 

2.2.2 Conditional RNase H1 Knockout MEFs 

RNase H1 immortalised MEFs were grown under identical conditions as the wild-

type MEFs. Conditional gene knockout was via the action of cre-recombinase on 

LoxP sites flanking exons V–VII of the Rnaseh1 gene using the drug Tamoxifen – 

nt (strand) Sequence 5’-3’

300 (L) ATTTCGTGCCAGCCACCGCGGTCATACGAT

T7 1000 (H) TAATACGACTCACTATAGGGGTATGCTT

T7 14881 (L) TAATACGACTCACTATAGGTCCCAGACATACTAGGAGACCCA

15800 (H) AAGAACCAGATGTCTGATAAAGTTTC

15490 (H) CTTGGGGAAAATAGTTTAATGTACG

T7 15750 (L) TAATACGACTCACTATAGGATTAAACTTGGGGGTAGCTAAAC

16299 (H) TTGTTAATGTTTATTGCGTAATAGAGT

340 (H) GTTTGGGTTAATCGTATGACCG

trP1-top CCTCTCTATGGGCAGTCGGTGAT-phosphorothioate-T

trp1-bottom Phosphate-ATCACCGACTGCCCATAGAGAGG-dideoxyC

A-top Phosphate-CTGAGTCGGAGACACGCAGGGATGAGATG-dideoxyG

A-bottom Biotin-CCATCTCATCCCTGCGTGTCTCCGACTCAGNNNNNN-C3-phosphoramidite

Primer A CCATCTCATCCCTGCGTGTCTCCGAC

Primer trP1 CCTCTCTATGGGCAGTCGGTGATT
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100 nM final concentration. Cells were typically harvested between 7 and 10 days of 

gene knockout.  

2.2.3 Induction of Quiescence by Serum Starvation 

Non-immortalised MEFs deficient for P53 were grown under standard conditions as 

detailed above. Quiescence was induced at ~ 80% confluence by serum starvation 

– a reduction from 10% to 0.1% FBS (dialysed serum). Quiescence was confirmed 

by arrest of growth and cell division and gross physical changes as observed by light 

microscopy. Cells under serum starvation were washed with phosphate-buffered 

saline (PBS) and the media changed daily.  

2.3 Animals and Genotyping 

CFW-Mpv17/J strain from Jackson laboratory (original stock number 002208) was 

backcrossed to C57Bl/6J background using the Marker-Assisted Accelerated 

Backcrossing (MAX-BAX®) provided by Charles River to generate 100% of C57Bl/6J 

within 10 generations. The congenic strain generated is identified as B6.CFW-

Mpv17/J. Animals were genotyped by PCR, as described by Dalla Rosa et al. (Dalla 

Rosa et al., 2016).  

2.4 Mitochondria Isolation from Mouse Liver 

Fresh mouse livers (BL6/CD45.1) were immediately placed in cold phosphate-

buffered saline on ice and added to a tenth volume of homogenization buffer (HB); 

225 mM mannitol, 75 mM sucrose, 10 mM HEPES-NaOH, pH 7.8, 10 mM EDTA, 

0.1% (w/v) fatty acid-free bovine serum albumin (BSA) and 357.5 µM β-

mercaptoethanol. The tissue was washed with 5 volumes of HB and then added to 

9 volumes of HB and homogenized using a motorized tight-fitting Dounce 

homogenizer. The homogenate was centrifuged at 600gmax for 10 min at 4⁰C to 

pellet nuclei and intact cells then the homogenate/supernatant was collected and 

then centrifuged at 5,000 gmax for 10 min at 4⁰C to pellet the mitochondria. The 

mitochondrial pellet was resuspended in 2 mL of HB and added to the sucrose 

gradient. The single-step sucrose gradient was prepared in a 25 x 89 mm tube with 

17.5 mL of 1.5 M Sucrose (in HB) overlaid with an equal volume of 1 M sucrose.  The 

sucrose gradients were centrifuged in a swing-out rotor at 40,000 gmax for 1h at 4⁰C 
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after which the mitochondria resolve at the interface of the 1M and 1.5 M sucrose 

solutions.  

 

The mitochondria were collected from the 1 M:1.5 M sucrose interface and 

transferred to a 15 mL falcon tube and added to 5 volumes of gradient buffer; 10 mM 

HEPES-NaOH, pH 7.8, 10 mM EDTA. The solution was mixed gently and centrifuged 

at 9,900 gmax for 10 min at 4⁰C. The pellet was weighed and resuspended in 1.6 

mL/g lysis buffer (LB); 20 mM HEPES-NaOH, pH 7.8, 75 mM NaCl, 50 mM EDTA 

and incubated with 10 µL Proteinase K (20 mg/mL, based on an average preparation 

of 10 adult mouse livers) on ice. After 10 min sodium dodecyl sulfate (SDS) was 

added to a final concentration of 0.25% and incubated at room temperature for 50 

minutes. MtDNA was then isolated by Phenol-Chloroform extraction, described 

below. 

2.5 Mitochondria Isolation from Mouse Embryonic Fibroblasts 

40 X 20 cm2 dishes were harvested at 80-90% confluency. Cells were washed with 

Phosphate-buffered saline (PBS) and detached from the plates with trypsin before 

being collected and centrifuged at 1,100 rpm for 5 minutes. The cell pellet was 

washed with PBS twice and weighed and then resuspended in 7.2 mL/g hypotonic 

buffer; 200 mM HEPES pH 8, 50 mM KCl, 15 mM MgCl2. The suspension was left 

on ice for 10 min then homogenized with a tight fitting Dounce homogenizer with 20 

strokes. After homogenization, the protocol is identical to that of the liver 

mitochondria isolation (see above). 

2.6 Phenol-Chloroform DNA Extraction 

An equal volume of phenol was added to the lysate and mixed thoroughly for 5 min 

then centrifuged at 5,000 gmax for 5 minutes. The upper aqueous phase was 

removed and added to a clean falcon tube and an equal volume of chloroform: 

isoamyl-alcohol 24:1, mixed and then centrifuged at 5,000 gmax for 5 minutes. The 

upper aqueous phase was removed and added to a clean falcon tube. 2 volumes of 

absolute ethanol were added and the solution was mixed and left on ice for 15 

minutes before centrifuging at 12,000 gmax for 30 minutes. The supernatant was 

discarded then the pellet washed with 70% ethanol. All ethanol was removed and 
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the pellet was air dried and resuspended in tris-EDTA (TE) and the nucleic acid 

concentration determined by UV spectrometry.   

2.7 Total DNA Extraction from Mouse Tissues 

Fresh tissue was immediately placed in LB and homogenized with either a motorised 

tight-fitting Dounce homogenizer (liver and brain) or with a mechanical Ultra-Turrax 

high-speed homogenizer (heart and eyes (following removal of the optical lens)). 

Proteinase K was added (1 mg for brain, heart and eyes and 2 mg for liver) along 

with SDS to a final concentration of 0.25%. The tissue was incubated at 37 ⁰C on a 

shaker at 225 rpm for 2-3 hours. The DNA was extracted using the Phenol-

Chloroform procedure outlined above. 

2.8 Total DNA Extraction from Cell Culture 

LB was added directly to the 90% confluent plate of cells and then left at room 

temperature for 10 minutes before collecting. 5 µL of Proteinase K (Sigma Aldrich, 

20 mg/mL) was added per ~20 million cells along with SDS to a final concentration 

of 0.25% and incubated at 37 ⁰C for 2 hours. The DNA was extracted using the 

Phenol-Chloroform procedure outlined above. 

2.9 PCR 

PCR was performed with typically 100 ng of mtDNA or 500 ng total DNA using Ex 

Taq DNA polymerase according to the manufacturer’s instructions (Takara). 

2.10 MtDNA Copy Number Determination Using qPCR 

MtDNA copy number was determined from total nucleic acid isolated from either cells 

or tissues. For each sample two PCR reactions were made with a) Nuclear primers 

(APP) or b) Mitochondrial primers (COXII). Each 25 µL reaction contained 25 ng total 

nucleic acid, 12.5 µL SYBR Green PCR master mix (applied Biosystems), 1.25 µL 

forward/reverse primer (30 µM APP, 10 µM COXII) and nuclease free water (NFW). 

The reactions were carried out in a 96-well plate and carried out according to 

(Schmittgen & Livak 2008) x. Changes in mtDNA amount were calculated using the 

2-ΔΔCt method and represented as fold changes relative to the indicated control. 
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2.11 Treatment of mtDNA with Nucleic Acid Modifying Enzymes 

Typically, 500 ng – 1 µg of mtDNA or 5-6 µg of total DNA was used for each lane of 

a 1-Dimensional Agarose Gel Electrophoresis (1D-AGE). Restriction digestions were 

carried out in 100 µL of the appropriate reaction buffer with 10 units of enzyme 

according to the manufacturer’s instructions (NEB). Restriction digests were 

incubated at 37 ⁰C for 2 hours and stopped by precipitation in ethanol (10 µL 3M 

NaAc and 220 µL absolute ethanol, kept at -20 ⁰C for at least 30 minutes and 

centrifuged at 12,000gmax for 30 minutes before air drying the pellet and re-

suspending in TE).  

 

RNase A (Qiagen) digestion was typically carried out at 37 ⁰C for 30 minutes under 

salt concentrations less than 100 mM to promote DNA-RNA hybrid hydrolysis activity 

as at NaCl concentrations higher than 0.3 M RNase A specifically cleaves single-

stranded RNA.  

 

Eco-RNase HI (Takara) is an RNA-specific endonuclease that hydrolyses the RNA 

portion of RNA-DNA hybrids. Typically, 1 µg of mtDNA was treated with 1 unit of 

RNase HI at 37 ⁰C for 90 minutes. One unit is the amount of the enzyme that 

produces 1 nmol of acid-soluble 3H in 20 minutes at 30℃ and pH7.7, with poly (rA)

･poly (dT) as the substrate. 

 

The single strand endonuclease used was Mung Bean nuclease (MBN) (Takara) 

which hydrolyses single-stranded DNA and RNA into 5’-phosphate and 3’-hydroxyl-

containing products. MBN was used in the appropriate buffer with varying 

concentrations and amounts of time at 37 ⁰C. 

 

Any sequential treatments were treated with either Eco-RNase HI or Eco-RNase HII 

(NEB) and then re-precipitated in ethanol, re-suspended and then treated with MBN. 

Reactions involving Eco-RNase HI or MBN were terminated with addition of SDS as 

per manufacturers guidelines. 
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2.12 1D-AGE 

Where indicated DNA samples were denatured at 90 ˚C for 5 min then immediately 

put on ice before loading onto the gel. All gels were set with either 150 mL 1 X Tris-

borate EDTA (TBE) and run with 1 X TBE running buffer or 1 X Tris-base, Acetic 

acid, EDTA (TAE). Typical run conditions were 250 mA for 4 hours, 0.8-1% agarose 

(UltraPureTM Agarose, Invitrogen).  

2.13 Neutral-Neutral 2D-AGE 

Prior to electrophoresis, mtDNA was treated with specific restriction enzyme(s) and 

precipitated with ethanol to create a desired fragment of interest as detailed above. 

Typically fragments sized 3-6 kb were run overnight at 20V, 0.4% agarose. Individual 

lanes were then excised and rotated 90°. The second dimension is run at 4 ⁰C, 1% 

agarose with 1 µL/100 mL EtBr, 280 mA for approximately 4hrs, or until sufficient 

separation has been achieved, which is visualised under UV light. Prior to Southern 

Blot (see below) the gel is flipped and washed in 25mM HCl for 15 minutes, before 

2 X 20 minutes in 400 mM NaOH.  

2.14 Southern Blot 

1D-AGE: After electrophoresis, the gel was removed from the tank and inverted into 

a glass dish. If the DNA samples were denatured the gel was washed in 10 x SSC 

only. If the DNA samples were non-denatured the gel was washed in 400 mM NaOH 

for 15 min twice before removing all excess solution. Nylon membrane was cut to the 

shape of the gel and soaked in water briefly before being placed upon the gel. 5 

sheets of stacked 3MM Whatman filter paper were placed on top as well as 10-12 

cm of paper towels. A small weight was added to the blot to add pressure and the 

blot was left overnight. In the morning, the membrane was UV cross-linked, total 

energy 1,200 x 100 µJ/cm2. 
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2.15  Southern Hybridisation and Riboprobe Synthesis 

The membrane was pre-hybridised with 10-15 mL of hybridisation solution; 2 x 

SSPE, 2% SDS, 6 x Dernahrdts reagent, 5% Dextran Sulfate, for 30 minutes at 55 

⁰C in a hybridisation oven.  

 

To synthesise the riboprobe the desired PCR product was incubated with ATP, CTP, 

GTP and α-P32 UTP and the T7 enzyme at 20 ⁰C for 2 hours (Ambion Maxiscript T7 

In vitro Transcription Kit). After this 15 µL DNase was added and left for 15 min at 37 

⁰C. Unincorporated bases were washed away on the Probe-Quant G50 micro-

column after centrifuging for 1 min at 3000 gmax. The radiolabelled riboprobe was 

denatured at 90 ⁰C for 5 min then put on ice before adding to 10 mL of fresh 

hybridisation solution and then added onto the membrane. The membrane was 

incubated at 55 ⁰C overnight for 16-20 hours. The membrane was washed with 0.1 

x SSPE, 0.5% SDS until there was no signal left in the wash solution as measured 

by the Geiger counter. The membrane was then exposed to film.  

2.16  Mitochondrial NTP Quantification 

2.16.1 Mitochondrial NTP/dNTP isolation 

The mitochondrial dNTP and NTPs were quantified from crude mitochondrial pellets 

which were isolated by differential centrifugation of total homogenate either from cells 

or tissue, as described in (Spinazzola et al., 2006). The mitochondrial pellet was 

resuspended in 200 µL 0.5 N TCA and vortexed for 15 seconds. The protein was 

precipitated by centrifugation at 20,000 gmax for 5 minutes at 4 ⁰C. The supernatant 

was collected and the pH neutralised by adding 1.5 X volumes (300 µL) of 0.5 M 

trioctylamine in Freon (1,1,2- trichlorotrifluoroethane). The solution was centrifuged 

for 10 minutes at 4 ⁰C, 10,000 gmax and the upper-aqueous phase was collected. 

This extract containing the isolated dNTPs (and NTPs) was dried using a speed 

vacuum (RT, until completion ~2h) until no liquid remained and the pellet stored at -

80 ⁰C. 
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2.16.2 NTP Quantification 

Using extracts from mouse liver mitochondria, each dried pellet was resuspended in 

20 µL TE and further diluted 1:5 before 1 µL was used per reaction. Each reaction 

mix contained 1µL α-P32 UTP and 2 µL T7 enzyme, 1 X T7 buffer with either i) all 3 

remaining nucleotides (G, C, A) but no mitochondrial extracts, ii) C and A, iii) G and 

A, iv) G and C and v) all three nucleotides; G, C and A. After 2 hours incubation at 

20 ⁰C the reaction mixes were spun through a Probe-Quant G50 micro-column (1 

min at 3000 gmax) to get rid of unincorporated nucleotides. The resulting 

radiolabelled RNA products were run on 6% TBE gels at 100 V for 1 hour and the 

gel dried and visualised using X-ray film.  

 

In order to quantify the relative amounts of NTPs from the extracts each sample was 

normalised to the lane containing all 4 nucleotides and mitochondrial extracts. The 

differences in labelling efficiency is then proportional to the internal concentration of 

the ‘missing nucleotide’ in the reaction which is compensated for by the mitochondrial 

extracts.  

2.17  Image Quantification Using ImageJ 

X-ray films were scanned and saved as .tiff files which were imported into ImageJ. 

In order to quantify the signal from the different lanes, the subtract background 

function was used. The signal intensity was measured from plotting the signal from 

each lane using identical lane markers and calculating the integral for each lane. In 

all cases, the measurements were normalised to the control lanes to account for 

variability between samples. Where appropriate standard deviations were calculated 

and this is shown in the error bars. 

2.18 Illumina Truseq mtDNA Library Preparation  

Isolated mtDNA samples (6 µg total nucleic acid in 50 µL) were fragmented using 

sonication were placed in microTUBEs AFA Fibre Pre-slit Snap-cap 6 x 16mm 

(520045) tubes and sheared using the following settings on the Covaris S220 using 

the Sonolite software: 
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 Duty cycle: 10%  

 Intensity: 5 

 Cycles/burst: 200 

 Time (s): 120  

 Temperature (⁰C): 4 

Following this, the library was prepared according to the Illumina Truseq low sample 

library preparation protocol. DNA was then and subjected to 200 base-pair paired-

end sequencing on an Illumina MiSeq. 

2.18.1  Mutational Statistical Analysis 

Data are expressed as the mean ± standard error of the mean (SEM). Group means 

were compared using parametric t-test or non-parametric Mann-Whitney test. One-

way ANOVA was used to compare more than two independent groups. A P-value of 

<0.05 was considered to be statistically significant. 

2.19  Modified EmRiboSeq Library Preparation 

2.19.1 RNA Degradation and Shearing 

Isolated mtDNA (20 µg) was resuspended in 50 µL 0.4 M NaCl solution and free 

RNA was removed by incubation with RNase A; 2.5 µg 1 hour at room temperature. 

Following this the mtDNA was sheared using the same covaris settings as above. 

Samples were then re-precipitated with ethanol and glycogen.  

2.19.2 End Repair, dA Tailing and Adapter Ligation 

DNA was resuspended in 85 µL with 10 µL of 10 x End Repair Buffer (NEB) and 5 

µL of End Repair enzyme mix. Samples were incubated at 20 ⁰C for 1 hour. Samples 

were purified with 1.2 x volumes of AMPure XP magnetic beads, washed twice with 

75% ethanol carried out on a magnetic stand (referred to as ‘bead clean-up’ 

henceforth) and eluted in 42 µL of NFW. For dA tailing the DNA solution was 

separated from the beads and added to 5 µL 10 x Klenow Buffer and 3 µL Klenow 

(NEB) for 1 hour at 37 ⁰C (Clark et al., 1987).  
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Following bead clean-up the library solution was separated from the beads and 

resuspended in 20 µL NFW. The solution was incubated overnight with 10 µL 5 x 

quick ligase buffer (NEB), 5 µL T4 quick ligase and 15 µL dstrP1 adapter at 16 ⁰C. 

The library was separated from the beads and resuspended in 195 µL NFW following 

a bead clean-up. 

2.19.3 3’ Blocking and Endonucleolytic Treatment  

The 3’ ends were blocked with addition of 2.5 µL 10 mM ddATP, 25 µL 2.5 mM CoCl2 

and 50 units of terminal transferase (and 25 µL 10 x terminal transferase reaction 

buffer (NEB)) for 2 hours at 37 ⁰C. Following a bead-clean up, the DNA was 

separated from the beads and was fragmented by Eco-RNase HII (25 units, NEB) in 

100 µL with 10 µL 10x Thermopol buffer for 2 hours at 37 ⁰C. Fragmented DNA was 

separated from the beads and resuspended in 85 µL NFW after bead clean up.  

2.19.4 Dephosphorylation and Second Adapter Ligation 

The DNA solution is dephosphorylated by shrimp alkaline phosphatase (SAP), 5 

units for 1 hour at 37 ⁰C with 10 µL 10x SAP reaction buffer. The SAP is inactivated 

by heating to 65 ⁰C for 15 minutes. After bead clean-up the solution is separated 

from the beads and resuspended in 25 µL NFW and heat denatured at 95 ⁰C for 3 

minutes and then snap-cooled on ice. Immediately, 10 µL 5 x quick ligase buffer, 6 

µL dsA adapter and 5 µL of T4 quick ligase (NEB) was added and the library solution 

incubated overnight at 16 ⁰C.  

 

This time the bead-clean up used 1.8 x volumes of magnetic beads and the solution 

was eluted and separated in 40 µL NFW.  

2.19.5 Single-stranded lLibrary Preparation and Second-strand Synthesis 

Streptavidin beads (Dynabeads M-280) were prepared by transferring 20 µL to a new 

Eppendorf and using a magnetic stand to retain the beads, the supernatant was 

discarded and replaced with 1 mL of 1 x bind and wash buffer. Again, the supernatant 

was removed and replaced with 40 µL of 2 x bind and wash buffer. To this 

streptavidin bead solution, the 40 µL of DNA library was added and incubated on a 
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shaker for 15 minutes at room temperature. Using a magnetic stand to retain the 

beads the supernatant was removed and replaced with 50 µL saline sodium citrate 

(SSC) and incubated at room temperature for 5 minutes. This was repeated twice 

and then the supernatant replaced with 40 µL 150 mM NaOH. The solution was 

incubated on a shaker for 15 minutes. Using the magnetic stand, the eluate is 

removed and transferred to a fresh tube. This elution step is repeated and the eluates 

pooled resulting in 80 µL of 150 mM NaOH solution containing the DNA library. 120 

µL NFW, 5 µL glycogen, 20 µL 3M NaAc and 550 µL 100% EtOH is added and the 

solution is re-precipitated.   

 

The DNA library is resuspended in 9.5 µL NFW. 0.5 µL of Primer A, 10 µL of 2 x 

Phusion master mix (Life technologies) is added and the second strand is 

synthesised in a thermocycler: 

  98 ⁰C 1 minute 

  58 ⁰C 30 seconds 

  72 ⁰C 1 minute 

  4 ⁰C hold 

To this solution 1.8 volumes of magnetic beads are used for a bead clean up and the 

solution is separated from the beads and eluted in 15 µL NFW. The final library 

solution is stored immediately at -80 ⁰C.  

2.19.6 Quality Control of Final Library 

Using 1 µL of the final library solution for each PCR mix the following PCR reactions 

were carried out: 

10 µL final volume, using primers A and trp1 and either 16, 17 or 18 cycles: 

i 98 ⁰C 10 seconds 

ii 58 ⁰C 5 seconds 

iii 72 ⁰C 1 minute  

Step i-iii repeat 

4 ⁰C hold 

The entire 10 µL PCR mix is run on a 1.2% agarose 1 x TBE gel (with EtBr) with size 

markers to estimate the amount and size distribution of the DNA library.  
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2.19.7 Ion Torrent Sequencing 

The final library is sequenced using Ion Proton technologies according to the original 

EmRiboSeq protocol from Ding et al.. Assuming the Bioanalyzer trace showed a 

quantifiable distribution of material between ~200 and 300 bp, which is confirmed by 

the above-described PCR, the library was then prepared for Ion PGM™ or Ion 

Proton™sequencing following the manufacturer’s protocol. (The required input for 

Ion OneTouch™ emulsion PCR is 100 μL of 12 pM for the Ion Proton™ and 26 μL 

of 25 pM for the Ion PGM™). 

 
Figure 9: EmRiboseq 

The EmRiboseq protocol as developed by Ding et al. (Ding et al., 2015). The * 
highlight the steps in the original protocol which are modified in the mitochondria-
specific EmRiboseq protocol adapted and used within this thesis. It is important to 
emphasise that the site which is sequenced and mapped is that which is directly 5’ 
to the embedded ribonucleotide (referred to as +1). 

*

*
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2.19.8 Primer-Directed EmRiboseq 

The protocol was followed as detailed above with the exception of the 

endonucleolytic treatment (2.19.3). In place of Eco-RNase HII, the library was 

incubated with 1 µg RNase A, 30 units of Eco-RNase HI in 1x RNase HI buffer 

(Homemade; 50 mM Tris-HCl, 75 mM KCl, 3 mM MgCl2, 10 mM DTT, pH 8.3) for 2 

hours at 37⁰C. 

2.20  EmRiboseq Data Analysis and Bioinformatics 

2.20.1 Genomic Mapping Strategy 

Mapping of reads largely as previously described (Ding et al., 2015). However, for 

the purposes of comparisons between chrM and the nuclear genome, and to look at 

the rDNA locus in more detail all libraries have been re-mapped. Bowtie2 paired end 

read mapping and Samtools alignment quality filtering. The reference genome for 

mapping was mm9 including all major chromosomes and random assembly 

fragments. The reference chrM sequence was aligned by blat to the reference 

genome requiring high identity matches (match-score > 100, identity > 95%). All 

identified matching segments (excepting chrM itself) were N-masked in the 

reference. The same filtering approach was applied to reference genome segments 

matching rDNA reference fragment (NCBI:). The rDNA reference fragment was 

included as an additional separate sequence in the Bowtie2 library. 

2.20.2 Genomic Composition 

Due to the repetitive nature of the genome and the necessity to filter on alignment 

quality, a substantial and compositionally biased portion of the genome cannot be 

mapped. Accounting for this, all segments of the reference genome that could be 

uniquely mapped (GRCmappability100 track from UCSC) were extracted (bedtools 

fastaextract) and their nucleotide and trinucleotide compositions calculated. 

Trinucleotide context was calculated for each identified ribonucleotide incorporation 

site, where the ribonucleotide was the central of the three nucleotides on the 

ribonucleotide-containing strand. 
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2.21  Western Blot Analysis from Cultured Cells 

2.21.1 Antibodies 

 
Table 2: Antibodies 

2.21.2 Protein Isolation and Quantification 

Typically, steady state protein levels were examined from one 15cm dish of attached 

cells, at no more than 80% confluence. Cells were collected by mild trypsin treatment 

to detach cells. Cells were spun at 1,100 gmax for 3 minutes and washed with cold 

PBS before being spun again. The resulting cell pellet was resuspended in 40 μL 

PBS + protein inhibitor cocktail (PIC) with 0.1% DDM and 50 units Benzonase 

(Millipore) and incubated for 20 minutes on ice. After this time, 1% SDS was added 

and the solution is vortexed regularly for 30 minutes on ice. The suspension was left 

at room temperature for 10 minutes prior to protein quantification determined using 

the DCTM protein assay (Biorad). 

2.21.3 PAGE and Membrane Transfer 

Samples are diluted using PBS and 25 µg of total cellular protein was loaded per 

lane. 4-12% Bis-Tris gels were typically run at 120 V for 90 minutes, but this varied 

depending on the size of the protein of interest, with 1 x SDS PAGE running buffer.  

Antibody Dilution Secondary Catalogue number

RNase H2A 1:200 rabbit
Collaborators - Jackson laboratory, 
Edinburgh

TOM20 1:500 rabbit Santa Cruz 11415

Vinculin 1:4000 mouse Abcam- ab130007

TFAM 1:1000 mouse Collaborators

FEN1 1:2000 mouse GenTex

Top1mt 1:2000 mouse Collaborators – Pommier lab, NIH

Twinkle 1:500 rabbit Sigma- HPA002532

GAPDH 1:50000 mouse Sigma – G8795

NDUFB8 1:1000 mouse Abcam ab110242

PrimPol 1:500 rabbit Collaborators –Luis Blanco, Madrid

MGME1 1:250 rabbit Atlas Antibodies – HPA040913

MPV17 1:500 rabbit Proteintech 10310-1-AP
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To transfer the samples to the membrane, the membranes were first activated in 

methanol. Whatmann papers and blotting apparatus were submerged in 1 x transfer 

buffer (Tris-Glycine-SDS (0.25 M Tris, 1.92 M Glycine, pH. 8.3)), 20% methanol and 

the blotting apparatus set up as per the manufacturers guidelines. The transfer was 

left at 100 V for 90 minutes at 4 ⁰C. 

2.21.4 Immunoblotting 

The membrane was blocked with 5% Milk in 0.05% PBS-T at 4 ⁰C for at least 45 

minutes. The membrane was incubated with the primary antibody overnight at 4 ⁰C 

in either PBS-T or milk depending on the antibody. The membrane was washed with 

0.05% PBS-T and then incubated with the secondary antibody (HRP conjugated anti 

mouse and rabbit, Promega) for one hour (1:4,000 in PBS-T). The membrane was 

washed with 0.05% PBS-T and then imaged using luminescent reagent (ECL GE 

healthcare) and X-ray film. 

2.22  Immunocytochemistry and Confocal Microscopy 

Cells were plated and fixed at approximately 70% confluency using 2% neutral 

buffered formalin (NBF) (diluted in PBS). Following overnight incubation, cells were 

permeabilized in Triton X and washed with PBS extensively. The fixed cells were 

washed with blocking buffer (5% Goat Serum in PBS) and incubated with the primary 

antibodies (diluted in blocking buffer) overnight at 4 ⁰C.   

 

The cells and primary antibodies are washed with 0.2% PBS-T to ensure that any 

unconjugated primary antibody has washed off and then incubated with the 

secondary antibody (1:1000 in 0.2% PBS-T) for one hour at room temperature. The 

slides were washed with PBS-T and oiled and inverted and imaged within 24 hours. 
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Chapter 3. Results I: Next Generation Sequencing of 
Ribonucleotides in Mammalian MtDNA 

3.1 Background 

All replicative polymerases incorporate ribonucleotides, however infrequently 

(Cerritelli and Crouch, 2016). Incorporated ribonucleotides in replicating DNA are 

known to serve as markers for the newly synthesised DNA strand and so can aid in 

quality control and repair systems such as mismatch repair which ensure faithful 

replication of the template DNA (Ghodgaonkar et al., 2013, Lujan et al., 2013, Kunkel 

and Erie, 2015).  

 

In nuclear DNA, incorporated ribonucleotides are rapidly excised by an efficient 

RNase H2 mediated RER mechanism, and therefore embedded ribonucleotides are 

transient and an accumulation of unrepaired ribonucleotides leads to genomic 

instability (Reijns et al., 2012). Therefore, the presence of persistent, unrepaired 

ribonucleotides throughout the mtDNA is unique. And given the structural 

perturbations and chemical lability their presence confers to the DNA molecule it is 

not fully understood why they are tolerated. It is theorised that embedded 

ribonucleotides may be better tolerated by mtDNA because of its small genome size, 

the slow rate of DNA synthesis (Bogenhagen et al., 1979) or the bacteriophage-like 

enzymes involved in its replication (PEO1, POLG and POLRM) (Shutt and Gray, 

2006). 

 

In the last few years, multiple groups have developed various techniques to map 

embedded ribonucleotides to single resolution which has elucidated valuable 

information about polymerase behaviours and replication origins in eukaryotic DNA 

replication (Clausen et al., 2015, Ding et al., 2015, Koh et al., 2015, Keszthelyi et al., 

2015). Nevertheless, such techniques have been neglected as a tool for 

understanding mtDNA replication and metabolism, until recently. Berglund et al. 

utilised one of the aforementioned techniques, HydEn-seq, to map alkali-sensitive 

sites in human mtDNA (Berglund et al., 2017). They reached the broad conclusion 

that nucleotide pools within the mitochondria are the predominant determinant of the 

identity and frequency of ribonucleotide incorporation in mtDNA. The results 
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presented in this chapter agree generally with those conclusions, suggesting that 

this is unequivocally the case.  

 

In addition, Berglund et al. used two different cell models of perturbed mitochondrial 

dNTP pools to demonstrate that when dNTPs within the mitochondrial compartment 

are limiting, NTPs are utilised to maintain mtDNA replication. Their data support the 

conclusions that (mis)incorporation by Pol g is the predominant source of 

ribonucleotides in mtDNA and that there is no evidence for a RER pathway in 

mitochondria. These statements are sound for the context in which ribonucleotide 

incorporation was analysed but here it is intended to provide a more comprehensive 

picture of ribonucleotide incorporation and its role in mtDNA metabolism and 

mitochondrial disease.  

 

3.2 Southern Blot Analysis Reveals Persistent 
Ribonucleotides in Murine mtDNA 

Isolated mtDNA can be fragmented by incubation in vitro with RNase H2, which nicks 

DNA 5’ to any single embedded ribonucleotides in duplex DNA, due to the presence 

of persistent ribonucleotides throughout the mature mtDNA molecule. MtDNA can 

be fractionated by 1D-AGE and visualised using a radiolabelled riboprobe specific 

for the NCR containing region of the mtDNA. RNase HII-sensitive molecules can be 

identified as the smear of fragments which run below the full-length untreated 

molecule (Figure 10). 
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Figure 10: Southern blot analysis of mouse liver mtDNA treated with (+) or without 
(-) RNase HII. 

Purified murine liver mtDNA was fractionated by 1D-AGE, after treatment with 
RNase H2 or a combination of RNase H2 and Mung Bean Nuclease (MBN), which 
cleaves single-stranded DNA and at nicks in duplex DNA, or denatured and 
hydrolysed with NaOH. The DNA was blot hybridized to probe to H-strand np 14,881-
16,299. Size marker lanes with DNA fragments of 619 and 819 nucleotides are 
followed by mtDNA 1) uncut; 2) RNase H2 1:25 of 11.8 µM, 37oC, 2 h; 3) RNase H2 
1:25, 2h MBN 5U 3h; 4) 100 mM NaOH; 5) 150 mM NaOH; 6) 200 mM NaOH 30 
min. 
 

3.3 Persistent Sites of Frequent Ribonucleotide Incorporation 
in Murine mtDNA  

As demonstrated in Figure 10, mtDNA can be fragmented at sites of ribonucleotide 

retention using NaOH and/or RNase H2, and visualised via Southern Blot using a 

mtDNA-specific radiolabelled probe. Restriction digestion of mtDNA creates smaller 

fragments of DNA which can be interrogated more closely via 1D-AGE. MtDNA cut 

with a restriction enzyme and then incubated with Eco-RNase HII gives rise to a 

laddering effect (Figure 11). The mtDNA appears to be fragmented by RNase HII at 

persistent sites in the mtDNA of multiple molecules suggesting that there are sites 

within the mtDNA where there is frequently an embedded ribonucleotide. Not only 

619

819 

MBN
RH2
NaOH- - -
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does this conclusively demonstrate the presence of sporadic ribonucleotides 

throughout many of the mtDNA molecules, but the laddering pattern suggests that 

there is a non-uniform distribution of ribonucleotides and that there are ‘hot-spots’ of 

persistent ribonucleotide incorporation throughout the genome.  

 
Figure 11: Southern blot analysis of mouse liver mtDNA treated with (+) or without 
(-) RNase HII after BspHI digestion gives rise to a laddering effect. 

(A) The mtDNA was restriction digested with BspHI, and with (+) or without (-) Eco-
RNase HII (2 units, 2 hours, 37 °C) heat denatured (3 minutes at 95 °C) and 
fractionated by 1% agarose gel electrophoresis prior to transfer to a nylon membrane 
and hybridization with a H-strand specific riboprobe (14881-15490 nt) to detect the 
3.14 kilobase fragment spanning from 14230 to 1072 nt. (B) A diagrammatic 
restriction map of BspHI digested mtDNA along with the probe (red) used to detect 
the heavy strand of mtDNA. 
 
A non-random pattern of ribonucleotide incorporation is indicative of a sequence bias 

in ribonucleotide incorporation and/or functional roles for particular loci of 

ribonucleotide incorporation, such as programmed pause sites or replication origins. 

In order to better examine the intricacies of ribonucleotide incorporation in mtDNA I 

employed a novel, tailored Next Generation Sequencing approach in order to gain 

qualitative detail about the sites of ribonucleotide incorporation at single nucleotide 

resolution.  
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3.4 Next Generation Sequencing Protocol Development and 
Troubleshooting 

EmRiboseq is one of four published NGS protocols to map embedded 

ribonucleotides in vivo. The benefit of the EmRiboseq method, as developed by Ding 

et al., is the specificity for single embedded ribonucleotides conferred by using 

RNase HII (rather than alkaline hydrolysis which fragments abasic sites and long 

stretches of RNA, in addition to single ribonucleotides), as well as the ability to retain 

strand information. Prior to this study, the protocol had been adapted for nuclear 

DNA in S.cerevisiae, and therefore needed to be modified for mammalian mtDNA. 

Moreover, published data utilising EmRiboseq had been retrieved from rnaseh2 

deficient models (with elevated embedded ribonucleotides). For that reason, it was 

important to demonstrate that this method was both appropriate and applicable to 

control mouse tissues which are RNase H2, and therefore RER - proficient. 

3.4.1 EmRiboseq Protocol Adaptations 

To refine the procedure for use with mtDNA, the input DNA used was from sucrose-

purified mitochondria. The original protocol was followed and extracts of the library 

were removed at different stages throughout to estimate the amounts of DNA in the 

library after each subsequent step and to identify any problematic points within the 

protocol (as summarised schematically in Figure 12B). Variations of the protocol 

included removing the beads from the reaction mix at each step, as it was possible 

that the beads were interfering with subsequent reactions by residually binding to the 

DNA libraries. Another consideration was the solution which is used to bind the DNA 

molecules to the beads; -polyethylene glycol (PEG).  

 

It is well-known from anecdotal evidence and personal communication with other 

researchers that using magnetic beads to clean-up libraries can lead to substantial 

loss of material and this was confirmed by Southern-blot analysis of mtDNA 

fragments taken throughout the procedure which showed a progressive decrease in 

yield following bead clean-up(s) (Figure 12A). In preparations where the beads were 

retained in solution throughout (lanes 6 and 7) a large amount of material was lost 

and the resulting amount of DNA is below the limits of detection, demonstrating that 
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removal of the beads between steps was essential to retain the DNA under these 

conditions (Figure 12A). It is for this reason that the adapted EmRiboseq method as 

described in this thesis removes the beads before each subsequent enzymatic 

treatment, which results in consistently high yield library preparations. The other 

deviations from the original published protocol used in the final method in this thesis 

are when isolating the target DNA, the sonication settings and the omission of the 

size selection step (see methods).  

 
Figure 12: Separating beads from the DNA solution markedly reduces loss of 
material during library preparation. 

(A) Southern blot (H-strand radiolabelled riboprobe nt 14881-16299) of progressive 
stages of the protocol where input is the untreated starting material – 16 kB closed-
circular mtDNA. (B) Protocol variations of the initial phase of the EmRiboSeq 
protocol. The right-hand branch (1, 2, 3, 7) is identical to the original protocol. After 
Step (3) the sample was split and the beads were either retained or removed from 
the library using a magnetic stand. Removing the beads from the solution (lanes 4 
and 5) resulted in higher DNA yield. 
 

3.4.2 NUMTs 

NUMTs are nuclear mtDNA sequences and are presumed to be the result of transfer 

of mitochondrial genomic information to the nucleus in evolving eukaryotes. In the 
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case of mitochondrial-EmRiboseq, the primary signal of interest is precise read end-

mapping of mitochondrial sequences and therefore we used a global (rather than 

local) alignment strategy. In general, any preparation of sub-cellular compartment 

DNA is likely to be contaminated by nuclear DNA, so alignment would normally be 

to the whole nuclear and mitochondrial genome rather than just mitochondrial. 

However, these high identity mitochondrial segments integrated in the nuclear 

genome would either reduce mapping read coverage (through signal dilution) or 

reduce mapping quality score (and abundance) leading to erroneous filtering of 

reads. Masking of high identity chrM segments in the reference mm9 nuclear 

genome provided a solution to this problem. Figure 13 highlights regions of high 

identity matches to NUMTs throughout the mitochondrial genome and how this 

mapping strategy improves the mapping of mitochondrial reads. One negative from 

this method is that real nuclear reads which map to NUMTs in the library will be 

incorrectly attributed to mtDNA, but this is considered to be negligible owing to 

enrichment of mtDNA during DNA extraction, and procedural enrichment for 

ribonucleotide-containing fragments, of which is very low in wild-type nuclear DNA 

compared to mtDNA.  

 
Figure 13: The effect of NUMTs on mitochondrial read mapping. 

Sonicated wild-type murine liver data mapped to forward (top) and reverse (bottom) 
strands of chrM. Yellow segments show high identity matches to NUMTs from the 
mus musculus nuclear genome, deeper bars denote greater identity. The longest 
segment is 4648 nt and only shows one mismatch to the chrM reference. Grey bars 
show the results of standard mapping. Black bars show the difference when masking 
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the high identity NUMTs from the nuclear genome. [Bioinformatic analysis by Dr 
Martin Taylor] 
 

3.4.3 Sequence Drop-out Analysis 

It became clear from the read-mapping that there were significant regions of high 

and low coverage across the genome. To assess whether this was attributable to 

ribonucleotide incorporation frequencies or an artefact, wild-type mtDNA was 

prepared for EmRiboseq analysis with exclusion of the RNase H2 nicking step. 

Therefore, any residual signal could be attributed to either background nicks incurred 

during library preparation or residual unblocked ends from ineffective ligation 

(blocking). What became clear from this control-library analysis was that regions of 

low coverage within libraries were correlated with regions of low mapping quality. 

However, it is not the uniqueness of the sequence which was causing this 

phenomenon, but instead regional biases in read length. Consequently, shorter 

reads were less likely to map and thus producing a recurring pattern of peaks and 

troughs (Figure 14). Although why truncation occurs unevenly is not clear. 



Chapter 3: Results I 

 

80 

 

 

0
50

00
10

00
0

15
00

0

50100150200250300

C
M

39
A

: P
os

iti
on

al
 b

ia
se

s 
in

 re
ad

 le
ng

th

Po
s

Mean read length

0
50

00
10

00
0

15
00

0

323436384042

C
M

39
A

 M
ap

 q
ua

lit
y

Po
si

tio
n

Phred scaled map quality

c(
1:

16
29

9)

Read coverage

05000150002500035000

C
M

39
A

: n
o 

cl
ea

va
ge

 tr
ea

tm
en

t

Homopolymer tract

46810

0
50

00
10

00
0

15
00

0

●
●
●●
●

●
●●

●
●

● ●●

●
●●

●
●●

●

●
●

●

● ●● ●

●

●●
●
●

● ●

●
●

●

●
●●

●
●●

●●

●

●
●

●

●

●
●

●

●

●
●●

●●

●
●

●

●

●

●
●

●●
●

●
●

●
●

●
●●

●
●
●●● ●●

●
●

●
●

●●

●

●
●

●

●

●
●●

●

●●

●● ●

●
●
●

●
●

●
●

●

●
● ●

●●
●

●●

●●

●
●
●

●

●
●●

● ●

●
●

●

● ●

● ● ●

● ●●
●
● ●

●
●●

●
●

●

●

● ●●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●

●
●

●
●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●●
●

●

● ● ●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●●
●

●

●
●●

●
●

●
●
●
●●

●

●
●●

●
●

●
●

●
●

●
●

●

●●
●

●

●
●

●
●

●●
●

●
●

●
●

●

●
●
●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●

● ●
●

●●

Read coverage

35000250001500050000
Read coverage

Homopolymer tract

15
,0

00
5,

00
0

10
,0

00
0

1k

010
0

20
0

30
0

Phredscaled map quality
Mean read length (bp)

m
tD
NA

	p
os
.	(
nt
)

323436384042

3k 2k 1k

Fi
gu

re
 1

4:
 S

eq
ue

nc
e 

dr
op

-o
ut

 a
na

ly
si

s 
of

 w
ild

ty
pe

 m
ou

se
 li

ve
r m

tD
N

A.
 

O
ve

rla
y 

of
 m

ap
pi

ng
 q

ua
lit

y,
 re

ad
 c

ov
er

ag
e 

an
d 

av
er

ag
e 

re
ad

 le
ng

th
 o

f u
nt

re
at

ed
 m

tD
N

A.
 S

eq
ue

nc
e 

co
ve

ra
ge

 o
f t

he
 g

en
om

e 
is

 s
ho

w
n 

in
 b

la
ck

 (L
-s

tra
nd

 s
ho

w
n,

 b
ut

 th
e 

ef
fe

ct
 is

 c
om

pa
ra

bl
e 

fo
r b

ot
h 

st
ra

nd
s)

, r
ea

d 
qu

al
ity

 in
 b

lo
ck

 p
ur

pl
e,

 a
nd

 th
e 

m
ea

n 
re

ad
 le

ng
th

 in
 re

d/
bl

ue
 w

he
re

 re
d 

is
 th

e 
L-

 s
tra

nd
 a

nd
 b

lu
e 

is
 th

e 
H

- s
tra

nd
. [

Bi
oi

nf
or

m
at

ic
 a

na
ly

si
s 

by
 D

r M
ar

tin
 T

ay
lo

r] 
  



Chapter 3: Results I 

 

81 

 

3.5 Quantification of Ribonucleotides in MtDNA Using 
EmRiboseq 

The EmRiboseq method alone is not absolutely quantitative because of the way in 

which the reads are captured; meaning that only molecules which are RNase HII-

sensitive and are within the optimal range from the adapter terminus, are sequenced 

(Figure 9). Because the shearing stage of the protocol is, in theory, random, it is 

anticipated that the majority of embedded ribonucleotides throughout a population of 

mtDNA are identified which means that within a sample, relative abundances of 

different sites and or ribonucleotide base can be quantitatively compared but an 

absolute number of ribonucleotides per molecule is not possible. 

 

In order to make this technique more quantitative I employed a method to normalise 

the reads to the total number of mtDNA molecules in the library using restriction 

digestion, a similar tactic to Ding et al. (Ding et al., 2015). Using this approach, it is 

also possible to quantify the background signal in the absence of RNase HII. As 

restriction digestion will cut all molecules with the correct restriction site, this provides 

an internal control. The enzyme used was DraI which recognises the site TTT|AAA 

and cuts nine times in mus musculus mtDNA (1478, 3043, 3896, 5276, 9820, 11011, 

11653, 13198, 14177 nt). Three libraries were sequenced in parallel for mouse liver 

mtDNA (n=2); i) no treatment, ii) DraI and iii) DraI and RNase HII. When the read-

ends were analysed by the flanking 3-mers, the ends mapping to TTT|AAA were 

quantified relative to the total number of ends. The value obtained from the untreated 

library (i) gives the background signal. Analysis of the 10 most frequent 6mers 

revealed that approximately 15% of reads from the (ii) DraI treated library, and 5% 

of the (iii) DraI and RNase HII treated library mapped to TTT|AAA sites (Figure 15). 

The high background signal is likely due to ineffective ligation (blocking) at the 

beginning of the library preparation, and/or breakage during subsequent steps 

following restriction digestion. It will also be affected by incomplete digestion, 

however, DraI incubation was optimised to ensure maximal digestion.  
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Figure 15: Quantification of the 10 most frequent 6mers in control library 
preparation (wild-type mouse liver, ChrM).  

i) Wild-type liver mtDNA untreated during library preparation- all mapped reads in 
this instance are background signal, as shown in Figure 14. ii) Wild-type liver mtDNA 
incubated with DraI where the recognition site TTT|AAA is the most prominent site. 
iii) Wild-type liver mtDNA incubated with DraI and RNase HII. iv) total reads for each 
DraI site in mtDNA, separated by strand from ii.  
 

When examining each DraI site from libraries which were treated with the restriction 

enzyme alone there is a huge amount of variation between different DraI sites across 

the genome and also between the same site on different strands (Figure 15 iv). This 

supports the evidence presented in Figure 14 that there is a great deal of coverage 

(read depth) bias of reads due to fragment size. For example, the most abundant 

site in Figure 15 iv) is reasonably proximal to the next site (11,011 and 11,653 nt 

respectively), and is therefore more likely to release fragment sizes which fall within 

the right size-range for the sequencing platform following DraI cutting. However, it is 

not clear why there are such big discrepancies for the same site between strands. 

Again, this could be attributed to size biases, but it would mean that there was 

frequently a sheared end either too far away from- or to near to- one side of the DraI 

cut site. Therefore, this could suggest that there are fragile sites within the genome 

where there is consistently a break during the shearing stage of the library 
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preparation. These sites could be attributed to sites of persistent ribonucleotides 

which persist at hot spots in the genome (Figure 11) and are structurally perturbed 

within the DNA double helix, and perhaps more likely to break during physical 

shearing (Chiu et al., 2014, DeRose et al., 2012, Evich et al., 2016).  Significant 

under-representation of certain sites (For example; 13,198 nt) can be explained by 

the sequence drop-out analysis (Figure 14). Sites which fall within the trough 

between approximately 13,000 and 16,000 nt prove difficult to read and many reads 

are truncated and not aligned.  

 

By using the restriction enzyme reads to quantify the number of mtDNA molecules 

within the library, a number of approximately 340 ribonucleotides per molecule was 

calculated. However, this is still preliminary and doesn’t take into account the 

background signal, nor the regional bias and lost restriction-enzyme sites due to 

ribonucleotides. More development would need to be done to make the technique 

truly quantitative.  

 

Reassuringly, in the library where there was no treatment, the trinucleotide rates 

across the genome (the frequency of all 64 possible 3mer sequences where the 

central base is the ribonucleotide along with its flanking bases) are approximately 

equal for each base, a phenomenon which was not observed in any other conditions 

(Figure 16). This indicates that the background has no base or triplet bias. 
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Figure 16: Trinucleotide rates of sequenced ends in mouse liver mtDNA untreated 
libraries. 

Each triangle represents the rate of a trinucleotide sequence where the 
ribonucleotide is the middle base. Each of all the 64 trinucleotide possibilities is 
plotted as a function of its normalised signal in the library. Upward pointing triangles 
= L-strand, downward pointing triangles = H-strand. [Bioinformatic analysis by Dr 
Martin Taylor] 
 

3.6 Equal Ribonucleotide Incorporation Frequencies in Both 
MtDNA Strands Revealed by EmRiboseq 

Sequencing multiple biological replicates revealed that across all libraries there were 

near-identical frequencies of ribonucleotide incorporation between the strands of the 

mtDNA. Calculating ribonucleotide incorporation rate per trinucleotide separately for 

each strand demonstrated that the ribonucleotide incorporation frequencies are the 

same (a wild-type liver example is shown in Figure 16) and any differences can be 

attributed to differences in the sequence content between the two strands. This result 

strongly indicates that the same DNA polymerase is acting on both mtDNA strands. 

This is because equal relative rates of ribonucleotide incorporation on both strands 

uncovers information about the behaviour and propensity of the replicative 

polymerase to (mis)incorporate ribonucleotides. And this finding is concordant with 

all proposed mechanisms of mtDNA replication in mammals.  
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Figure 17: Ribonucleotide frequencies per trinucleotide match between the two 
mitochondrial (ChrM) strands. 

Each site of the chrM genome was categorised onto one of 64 trinucleotide 
categories and the rate of ribonucleotide per trinucleotide category calculated 
separately for the forward (light) and reverse (heavy) strands. Each point represents 
one of the 64 trinucleotide categories (Red = rA, Green = rG, Blue = rU, Purple = 
rC). The diagonal corresponding to equal frequencies between strands is shown as 
a light blue solid line. The frequent outlier point (purple spot) corresponds to the 
trinucleotide at the Ori-L high frequency retained site. Excepting the Ori-L signal the 
two chrM strands show the same rate pattern. [Bioinformatic analysis by Dr Martin 
Taylor] 
 

3.6.1 Polymerase g, and not PrimPol, is Responsible for Ribonucleotide 

(Mis)incorporation in mtDNA in Cultured MEFs 

For many years Pol g was assumed to be the sole DNA polymerase in mammalian 

mitochondria. PrimPol is a X-family DNA polymerase which is also present in the 

mitochondria and is well-documented as a TLS polymerase (Bianchi et al., 2013, 

García-Gómez et al., 2013, Mourón et al., 2013). However, unlike Pol g, PrimPol is 

not essential for mtDNA maintenance (García-Gómez et al., 2013). However, as a 

low-fidelity polymerase it is most likely to be involved in replication restart and fork 

rescue than responsible for synthesising large portions of mtDNA. In line with this, 

EmRiboseq analysis of wild-type and PrimPol knockout immortalised MEFs showed 
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no difference in trinucleotide ribonucleotide incorporation frequencies (Figure 18). In 

other words; there is no change in the observed patterns of ribonucleotide 

incorporation in the absence of PrimPol. From this it is inferred that under normal 

cell cultured conditions PrimPol is not incorporating the vast majority of 

ribonucleotides that are identified across the mitochondrial genome. That is not to 

say, that under conditions of increased oxidative stress where DNA damage and 

replication stalling is more likely, that PrimPol activity would be heightened. From 

this data, it is suggested that Pol g, the mitochondrial replicative polymerase, is 

responsible for ribonucleotide incorporation in mitochondria and contribution by 

PrimPol is negligible.   

 

If PrimPol were responsible for the embedded ribonucleotides there would not only 

be a difference in the abundance of ribonucleotides, but also the frequencies of the 

different trinucleotides. This is because each different polymerase has a different 

propensity for incorporating ribonucleotides; which is determined by its 

discrimination factor (DF); the ability of the polymerase to effectively discriminate 

between each deoxyribonucleotide base and its ribonucleotide equivalent.  

 

 
Figure 18: Trinucleotide frequencies of wildtype (A) and PrimPol knockout (B) 
immortalised MEFs. 

Each triangle represents the rate of a trinucleotide sequence where the 
ribonucleotide is the middle base. Each of all the 64 trinucleotide possibilities is 
plotted as a function of its normalised signal in the library. Upward pointing triangles 
= L-strand, downward pointing triangles = H-strand. [Bioinformatic analysis by Dr 
Martin Taylor] 
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3.7 Base-Biases in Ribonucleotide Retention in Mouse MtDNA 
from Post-Mitotic Tissue 

Despite the equality in ribonucleotide abundance between the two mtDNA strands, 

there was a striking bias among the four ribonucleotide bases. EmRiboseq analysis 

revealed that adenine mononucleoside phosphates (rAMPs) were the most 

frequently incorporated ribonucleotide in wild-type mouse liver mtDNA, where 83% 

(n=3) of all ribonucleotides were identified as rAMPs (Figure 19). This base-bias was 

replicated, although not to such a dramatic extent, in all post-mitotic tissues analysed 

(Figure 19). This is greater than the sequence identity of the mouse mitochondrial 

genome (ChrM), which is moderately AT rich.  
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Figure 19: rAMP is the dominant ribonucleotide in mtDNA of murine solid tissues. 
(Top) The profile of ribonucleotide incorporation in wild-type mouse liver mtDNA. 
(Bottom) Base frequency in mtDNA EmRiboseq libraries from different tissues. 

(Top) The frequency of ribonucleotides (y-axis) across the mitochondrial genome (x-
axis) in mouse liver mtDNA The individual ribonucleotides are shown in different 
colours according to their base identity (rAMP – red, rCMP – purple, rGMP – green 
and rTMP/rUMP – blue). The strands are separated by light strand (positive) and 
heavy strand (negative). (Bottom) A pie chart representation of the proportion of each 
of the rNMPs in murine liver (n=3), brain (n=2) and heart (n=1) mtDNA and for 
comparison, the base content of the primary mtDNA sequence, chrM. 
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3.7.1 There is No Observed Base Bias in Ribonucleotides in Wild-Type 
Nuclear DNA 

In contrast to the mtDNA, analysis of nuclear DNA reads present in the same 

EmRiboSeq libraries showed that there is no appreciable bias towards a particular 

rNMP in the nuclear genome of murine liver or that of the RER-proficient mouse 

embryonic fibroblasts (MEF) (Figure 20).  

 

 
Figure 20: There is no skew to rAMP in murine nuclear DNA. 

The proportions of the four rNMPs in the nuclear DNA of (A) murine liver and (B) 
mouse embryonic fibroblasts. 
 

This relative equality in the mouse nuclear genome is of note, given there is not yet, 

to the best of my knowledge, any published data which examines the steady state 

level of nuclear ribonucleotides in a wild-type mammalian background (where RNase 

H2, and therefore the RNase H2-mediated RER pathway, is active). Analogous 

studies in S.cerevisiae strains deficient for RNase H2 found that rGMP and rCMP 

were incorporated more frequently than expected from the G+C content of the yeast 

nuclear genome (Koh et al., 2015). As evidenced from this study, this phenomenon 

is not mirrored in the wild-type mouse nuclear DNA. This is either reflective of the 

extremely low levels of retained ribonucleotides or background signal in the wild-type 

strain caused by random fragmentation of DNA during library preparation. Despite 

this, the data potentially highlights the differences in the DNA polymerases acting in 
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nuclear DNA replication between yeast and mouse, or the repair capabilities of the 

different organisms. 

 

However, from this alone one cannot conclusively state that there is no skew in 

ribonucleotide incorporation in the nuclear genome as this observation could just be 

the natural background of the technique. This is supported by the fact that the 

observed base frequencies are roughly equal to one another but not concordant with 

the base bias of the nuclear genome itself (Figure 21).  

 

Interestingly, there is a dramatic change in the base frequencies upon loss of RNase 

H2B in the nuclear genome, as would be expected from RNase H2’s role in the 

nucleus (Figure 21) (Ding et al., 2015, Sparks et al., 2012, Williams et al., 2017). 

However, the role of RNase H2 in the nucleus is not the focus of this study and only 

limited conclusions can be drawn from this data with regard to the nuclear genome, 

as these data were from mitochondrially-enriched EmRiboseq libraries and it is not 

known if there are any intrinsic biases on any residual nuclear DNA in such 

preparations.  

 
Figure 21: Ribonucleotide incorporation relative rates in nuclear DNA from RH2B 
proficient and deficient MEFs. 

The proportion of ribonucleotides identified in nuclear DNA from p53 knockout MEFs 
with (+/+) and without (-/-) RNase H2B. There is an increase in the relative 
abundance of rAMPs upon loss of RNase H2B in the nuclear DNA. 
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3.7.2 Predictive Calculations of Ribonucleotide Incorporation Relative Rates 
in Mitochondria 

The DF of a polymerase is the degree by which it is able to distinguish between the 

correct deoxyribonucleotide and its ribonucleotide equivalent to avoid ribonucleotide 

(mis)incorporation. The DF is an intrinsic feature of all DNA polymerases. As 

aforementioned, ribonucleotides are the most common non-canonical 

(mis)incorporated in DNA and yet their incorporation is unfavourable. Therefore, 

polymerases are adapted to evade ribonucleotide incorporation using steric gates to 

exclude the extra hydroxyl group which is present on the ribose sugar. But as 

evidenced by the requirement for RER and the presence of embedded 

ribonucleotides in DNA, the system is not perfect and ribonucleotides are frequently 

incorporated during DNA synthesis. And so, the DF of the active DNA polymerase 

influences the rate of ribonucleotide incorporation during DNA synthesis.  

 

The observed base bias of embedded ribonucleotides in mtDNA (rA>rG>rC>rT/U –

Figure 19) is consistent across sequenced mtDNA from wild-type mouse liver, brain 

and heart. This base hierarchy agrees with previous in vitro data from 

Kasiviswanathan et al. whereby the DF of Pol g was determined using the human 

exonuclease-deficient (D198A/E200A) recombinant protein, suggesting that the DF 

of the mitochondrial DNA polymerase has a direct impact on ribonucleotide 

incorporation (Kasiviswanathan and Copeland, 2011).  

   

Another important factor influencing ribonucleotide incorporation is substrate 

availability. During the S-phase of the cell cycle, intracellular dNTP concentrations 

are highest, and therefore the ratio of [NTPs]:[dNTPs] is at its lowest point. This ratio 

influences ribonucleotide incorporation rate as it determines the exposure of the DNA 

polymerase to the substrate for DNA synthesis at the replication fork. Consequently, 

if there is a decrease in dNTPs (and therefore an increase in the ratio of 

[NTPs]:[dNTPs]), ribonucleotide incorporation becomes more likely. dNTP pools 

fluctuate throughout the cell cycle according to demand, and the same can be said 

for mitochondrial concentrations which are largely dependent on dNTP import from 

the cytosol.  
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Using the DF of Pol g  in combination with mitochondrial dNTP and NTP 

quantifications from Wheeler et al. (measured in Rattus norvegicus) it is possible to 

create a formula to justify the observed frequencies of ribonucleotide incorporation 

in murine liver mtDNA (Table 3). These calculations are based on the assumption 

that ribonucleotide incorporation is a direct result of both polymerase error and 

substrate availability.  

 

The predictive values shown in Figure 22 consider both the fidelity of the polymerase 

and the precursor mitochondrial pools, together with the base-content of the mouse 

mitochondrial genome. The values are very similar to the real base-biases from 

EmRiboseq, validating the conclusion that the identity and frequency of 

ribonucleotide incorporation in mtDNA is determined by the mitochondrial 

[NTP]:[dNTP] and the DF of Pol g. The formulae used to calculate the hypothetical 

incorporation frequencies of each ribonucleotide base (𝑥) per mtDNA molecule are 

shown below: 

 

ii) If the DF were the sole determinant of ribonucleotide incorporation: 

 

= 	
𝑁𝑜. 𝑜𝑓	𝑥	𝑏𝑎𝑠𝑒𝑠	𝑖𝑛	𝑎	𝑚𝑡𝐷𝑁𝐴	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

𝐷𝐹	𝑜𝑓	𝑃𝑜𝑙	g	
 

 

iii) If the [NTP]:[dNTP] ratios were the sole determinant of ribonucleotide 

incorporation: 

 

= 	𝑁𝑜	𝑜𝑓	𝑥	𝑏𝑎𝑠𝑒𝑠	𝑖𝑛	𝑚𝑡𝐷𝑁𝐴	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒	×	 𝑁𝑇𝑃 : [𝑑𝑁𝑇𝑃] 

 

iv) a composite of ii) and iii): 

 

= 	
𝑁𝑇𝑃 : [𝑑𝑁𝑇𝑃]

𝐷𝐹
	×	𝑛𝑜. 𝑜𝑓	𝑥	𝑏𝑎𝑠𝑒𝑠	𝑖𝑛	𝑚𝑡𝐷𝑁𝐴	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 

 

The absolute values obtained are hypothetical and were used to estimate the relative 

proportions of the ribonucleotide bases throughout the genome and so are compared 

as a fraction of the total predicted ribonucleotides in Figure 22. It is important to note 
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that the DF values are obtained from an exonuclease deficient Pol g. This is in 

accordance with the conclusions drawn from Berglund et al. who found that there 

was no change in ribonucleotide incorporation in the mutator mouse background 

(exonuclease-deficient Pol g), demonstrating that Pol g  does not repair 

(mis)incorporated ribonucleotides by proof-reading (Berglund et al., 2017). 

 
Table 3: A) The DF of Pol  g and B) the [NTP]:[dNTP] ratios within mitochondria  

(A) The human (exonuclease deficient)  Pol g DF as reported by Kasiviswanathan et 
al. (B) The mitochondrial NTP and dNTP concentrations in rat liver reported by 
Wheeler et al. and the calculated [NTP]:[dNTP] ratios.  
  

A

B
rN Approx. conc

nmol/mg dN
Approx. 

conc
pmol/mg

*rN/dN

rA 4.78 ± 2.93 dA 2.4 ± 1.88 1,800
rC 0.05 ± 0.05 dC 6.35 ± 5.43 8.49
rG 0.49 ± 0.36 dG 18.7 ± 14.9 25.3
rU 0.11 ± 0.06 dT 1.49 ± 1.85 50.9

DF
dA/rA 9,300
dC/rC 6,600
dG/rG 1,100
dT/rU 77,000

* Ratios calculated using the maximum rN and dN values
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Figure 22: Predicted (calculated, see Table 3) proportions of individual base 
ribonucleotide incorporation versus EmRiboseq data from mouse liver for each 
individual base. 

Data expressed as fraction of total ribonucleotides. i) the proportional rNMPs values 
predicted from the primary mtDNA sequence, represented as a stacked bar chart, 
alongside the expected proportion of each rNMP if the sole determinant were either 
(ii) the DF of the mitochondrial DNA polymerase (Pol g) (derived from 
(Kasiviswanathan and Copeland, 2011), (iii) the [rNTP]:[dNTP] ratio in mitochondria 
(derived from {(Wheeler and Mathews, 2011), Table 3B}), both adjusted for the 
mtDNA sequence; or if (iv) rNMP incorporation was a function of both the  Pol g  DF 
and the [NTP]:[dNTP] ratio (composite) which is remarkably similar to the observed 
EmRiboseq values for liver (v). 
 

3.8 Flanking Deoxynucleotides Influence rNMP Incorporation 

A ribonucleotide may be more or less likely to be incorporated in DNA depending on 

the preceding dNMP or the following dNTP and this trinucleotide context was shown 

to be influential in determining the overall ribosubstitution rate in vitro 

(Kasiviswanathan and Copeland, 2011). Moreover, analyzing trinucleotide 

frequencies can be informative when assessing the activities of different DNA 

polymerases, as shown in Figure 17. 
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Trinucleotide context analysis of the EmRiboSeq datasets indicated some biases for 

and against particular flanking dNMPs leading to the following conclusions: i) ATP is 

more often incorporated after dCMP or dTMP residues; ii) there is a general bias 

against incorporating the same base after a rNMP (e.g. AaA, TcC, TgG, TuT); and 

iii) triplet symmetry is favoured in a number of cases (CaC, TaT, AcA, AuA and GcG) 

(Figure 23). Although rUMP was most likely to be followed by dAMP, this should be 

seen in the context of the very low numbers of rUMPs in murine liver mtDNA; 

whereas the triplets CaC, TaC and TaT that were 1.6-1.8 times more frequent than 

expected represent hundreds more sites of ribosubstitution because of the high 

levels of rAMPs in the mtDNA. Although repair systems may contribute to the 

observed biases, no mechanisms have been identified that allow targeted removal 

of embedded ribonucleotides from mtDNA; therefore, these features are attributed 

to Pol g.   

 
Figure 23: Trinucleotide context analysis to assess the frequency of dNMPs 
flanking each embedded ribonucleotide for murine liver mtDNA (n=3).  

The frequency of each ribonucleotide (rNMP) with respect to all the possible flanking 
dNMPs (64 triplets) was normalized for the occurrence of each triplet sequence in 
the murine mitochondrial genome and expressed relative to the mean (set to 1) of 
all 16 possible triplets for each rNMP, where the lower case central base represents 
the ribonucleotide. The range from least to most frequent triplet was almost five-fold 
for rAMP and rUMP, but less than three-fold for rGMP. Error bars represent the 
standard deviation of 3 biological replicates. 
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3.9 There is No Evidence for Classical Ribonucleotide Excision 
Repair in Mitochondria 

It has long been assumed that mitochondria lack the capacity for RER due to the 

absence of RNase H2 (Reijns et al., 2012). However, many of the other enzymes 

involved in nuclear RER are present in the mitochondrial compartment; such as 

FEN1 and Lig3. It has also been postulated that the mitochondrial DNA 

topoisomerase, Top1mt, can recognise embedded single ribonucleotides and such 

activity is well documented for Top1 in the nuclear compartment in the absence of 

RNase H2 (Huang et al., 2015, Huang et al., 2017, Kim et al., 2011, Williams et al., 

2013). Therefore, mammalian mitochondria theoretically possess the ability to excise 

ribonucleotides. Before dismissing this possibility, it was important to verify that 

RNase H2 was not present in mitochondria. This was done using 

immunocytochemistry analysis of protein localisation and cell fractionations (Figure 

24) of cells deficient for RNase H2B (gifted from the laboratory of Dr Andrew 

Jackson, Edinburgh University).  

 

 
Figure 24: (Top) cell fractionation of RNH2B +/+ and -/- MEFs (p53 -/-) and 
immunoblotting. (Bottom) immunocytochemistry of wild-type MEFs. 

(Top) Cellular fractionation of p53 deficient MEFs where WC = whole cell lysate, N 
= nuclear, C = cytoplasm M= mitochondria, sM = shaved mitochondria (+ trypsin). 
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Cells were prepared via sucrose gradient purification and samples extracted at 
different stages throughout the procedure (see methods). H2AX serves as a control 
for the nuclear compartment, TOM20 for the outer mitochondrial membrane and 
COXII inside the mitochondria. No clear RNase H2 signal was observed inside the 
mitochondrial fraction. The sizes of the RNase H2 subunits are; RNH2A 33.5 kDa, 
RNH2B 34.7 kDa, RNH2C 17.8 kDa. (Bottom) confocal images from wild-type MEFs 
stained with fluorescent antibodies to mark the mitochondrial network (TOM20) and 
the A subunit of RNase H2. From the merged image, there appears to be no co-
localisation of TOM20 and RNH2A under standard conditions. [This experiment was 
done in collaboration with Dr Romina Durigon who performed the immunoblotting 
and mitochondrial shaving.] 
 

These data are not conclusive as the cells were assessed under standard 

proliferating cell culture conditions, which as discussed in greater detail later in the 

thesis, involves little ribonucleotide incorporation in mtDNA, thus not invoking a high 

demand for RER. So there remains the possibility, that RNase H2 is recruited to the 

mitochondria under certain conditions.  

 

Despite this, when looking at the RNase H2B knockout cells in quiescence, where 

there is an accompanying decrease in cytosolic dNTP production, in the knockout 

there is both a concomitant decrease in proteins associated with mtDNA 

maintenance (for example; the alternative splice variant of Twinkle; Twinky 

(Spelbrink et al., 2001), which is absent in the knockout cells), and an increase in 

top1mt. This suggests that in the absence of RNase H2B there is an alteration in 

mtDNA metabolism which is likely a downstream effect of increased nuclear genomic 

instability. Whether this is related to RER in mitochondria is not clear, as many of the 

proteins, such as Fen1, also have a role in the nucleus. Thus, it may be that altered 

expression of nuclear DNA factors in response to RNase H2B deficiency includes 

factors that are shared with the mitochondria, and that the remodelled gene 

expression conflicts with the usual changes in mtDNA metabolism that accompany 

exit from the cell cycle. In this scenario, RNase H2B has no direct role in 

mitochondria, but instead has downstream effects on the organelle owing to 

increased nuclear genomic instability. In any case, there is no evidence of an 

increase in ribonucleotide incorporation, nor patterns of ribonucleotide incorporation 

in mtDNA in RNase H2B deficient cells (Figure 25 and Figure 26B). 
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Figure 25: Ribonucleotide profile of A) RNase H2B wild-type and B) RNase H2B 
knockout MEFs in mtDNA identified by EmRiboseq. Ablation of RNase H2B has 
no effect on ribosubstitution in mtDNA. 

The frequency of ribonucleotide incorporation in mtDNA is plotted as ribonucleotide 
per million along the y-axis and the genome position 1 to 16,299 nt on the x-axis. 
The base-identity of each ribonucleotide is identified by its colour as highlighted in 
the figure legend. [Bioinformatic analysis by Dr Martin Taylor] 
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Figure 26: A) Steady state level of mtDNA maintenance proteins in RNase H2B 
wild-type (WT) and knockout (KO) MEFs. B) Quantification on Southern blot 
analysis of mtDNA from RNase H2B wild-type and knockout MEFs.  

(A) Western blot of steady state level of proteins from cultured p53 deficient MEFs 
with (WT) or without RNase H2B (KO). (B) Quantification from Southern blot analysis 
of isolated mtDNA from WT and KO MEFs treated with RNase H2 and alkali in vitro. 
The fraction of resistant 16 kB molecules are shown. Proliferating (P), quiescence 
(10 days serum restriction, Q) 
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The mammalian mtDNA molecule contains persistent ribonucleotides. This is a 

consequence of the absence of a canonical RER mechanism within the mitochondria. 

Using a ribonucleotide directed NGS method, EmRiboseq, I mapped the sites of 

embedded ribonucleotides in mouse mtDNA. It was demonstrated that there is 
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significant regional and base-bias in ribonucleotide incorporation. Moreover, 

ribonucleotide incorporation is largely attributable to the mitochondrial 

compartmental ratio of NTP:dNTPs, the DF of the mitochondrial replicative 

polymerase; Pol g, and the base content of the genome itself. 

 

Concordant with the conclusion that mitochondria do not possess the ability to excise 

ribonucleotides, I found no changes in ribonucleotide incorporation rate in mtDNA 

from RNase H2B ablated MEFs, nor any RNase H2 in mitochondria from 

immunoblotting and immunocytochemistry experiments. 
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Chapter 4. Results II: The Role of dNTP Metabolism 
in MtDNA Maintenance 

4.1 Background 

MtDNA depletion syndromes (MDS) are a branch of mitochondrial disease and these 

severe autosomal recessive disorders have a broad spectrum of symptoms and are 

typically characterised by a decreased mtDNA copy number in clinically affected 

tissues. MDS are categorised by the affected tissue and are most commonly 

identified as hepatocerebral, encephalomyopathic, myopathic or 

neurogastrointestinal. It is proposed that a reduction in mtDNA leads to reduced 

synthesis of respiratory chain subunits which results in insufficient energy production 

in affected tissues. This can lead to organ failure which is why such conditions are 

often fatal. 

 

MDS are commonly caused by mutations in genes associated with mtDNA 

maintenance; either the synthesis of dNTPs or mtDNA replication. So far, there are 

at least 12 different nuclear genes known to be directly linked to mtDNA maintenance 

and MDS. Hepatocerebral forms of MDS (mtDNA depletion in the liver and brain) 

have been associated with mutations in the POLG, PEO1 (Twinkle), DGUOK 

and MPV17 genes (Uusimaa et al., 2014).  

 

Besides depletion of mtDNA, aberrant mtDNA maintenance can lead to 

accumulation of tissue-specific mtDNA deletions. Both depletion and deletions in 

mtDNA lead to severe mitochondrial dysfunction, yet unlike depletion which 

manifests in infancy, mtDNA deletions tend to develop later in life, causing adult-

onset phenotypes typically in skeletal muscle or brain (Nishino et al., 1999, Spelbrink 

et al., 2001, Van Goethem et al., 2001, Ronchi et al., 2012, Tyynismaa et al., 2012, 

Alston et al., 2013). 

 

This chapter focuses on a specific mouse model of mitochondrial disease, which is 

the Mpv17 knockout mouse. This model is used to examine the role of mitochondrial 

dNTP metabolism in mtDNA integrity with a focus on ribonucleotide incorporation. 
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Using the EmRiboseq technique this chapter aims to uncover how perturbation of 

dNTP pools in mitochondria influences ribonucleotide incorporation in mtDNA.  

4.1.1 MPV17 

In humans, MPV17 is a protein encoded by the MPV17 gene comprising of 176 

amino acids, located at p21-23 on chromosome 2. It is ubiquitously expressed and 

the mouse homologue is the kidney disease gene Mpv17. MPV17 belongs to a family 

of membrane proteins in mammals (others include; PXMP2, MPV17, MP-L, and 

MPV17L2) and is the genetic orthologue of the SYM1 protein found in yeast.  

 

In 2006 Spinazzola et al. demonstrated that the human MPV17 protein was imported 

to the mitochondria and tightly imbedded within the mitochondrial inner membrane 

(Spinazzola et al., 2006). In accordance with this conclusion, the protein contains 

four hydrophobic residues, indicative of transmembrane domains (Spinazzola et al., 

2006). The same is true for the orthologue protein SYM1 (Trott and Morano, 2004). 

The protein itself is 20 kDa and has an amino acid sequence akin to a typical channel 

protein. In support of this, using protein secondary structure predictions Antonenkov 

et al. identified five a-helical regions in the MPV17 sequence which are long enough 

to penetrate a lipid bilayer. These in silico calculations were supported by in vitro 

experiments with recombinant MPV17 whose circular dichroism (CD) spectra 

demonstrated that the a-helices were preserved (Antonenkov et al., 2015). Despite 

ample evidence that MPV17 is a mitochondrial IMM protein, the function of the 

protein is still unknown. 

4.2 Ribonucleotide Incorporation in Different Post-Mitotic 
Tissues 

It was demonstrated in the previous chapter that ribonucleotide incorporation in 

mtDNA is largely influenced by the mitochondrial concentrations of dNTPs and 

NTPs. And subsequently, in mtDNA from solid tissues, rAMP is the most common 

(mis)incorporated ribonucleotide due to high ATP concentrations within the organelle 

(Figure 19). Mitochondrial ATP concentrations are dependent on oxidative 

phosphorylation and ultimately the energy demand of the cell, which varies between 

different cell and tissue types. The same can be said for the other nucleotides which 
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serve as metabolites for other reactions within the organelle, for example GTP which 

is also used to drive key reactions such as ribosome assembly (De Silva et al., 2015). 

Therefore, a pertinent question is whether these differences in energy demand and 

metabolism in various tissues have an impact on the ribonucleotide incorporation 

patterns in mtDNA.  

 

To address this question, the gross levels of embedded ribonucleotides in mtDNA from 

various tissues were analysed using Southern Blot analysis of mtDNA molecules 

incubated with alkali in vitro. As ribonucleotides are alkali sensitive, fragmentation of the 

DNA is indicative of embedded ribonucleotides. The smaller fragments indicate more 

frequent alkali-sensitive sites. When examining the gross ribonucleotide levels in mtDNA 

from different murine tissues using 1D-AGE, there were only minor differences (on 

average, across the tissues examined, approximately 70-80% of mtDNA molecules were 

sensitive to alkali hydrolysis- Figure 27B). It does appear that mtDNA from skeletal 

muscle is more sensitive to alkali hydrolysis than the other tissues, yet after 200 mM 

NaOH for one hour, a comparable fraction of sensitive and insensitive molecules remain.  

 

Despite only mild differences in alkali sensitivity, there were marked differences in the 

topology of the mtDNA molecules from different tissues (Figure 26A). It is not clear from 

this technique alone what these differences represent. MtDNA topology could be linked 

to the transcription and replication activity within the organelle as strand separation alters 

the supercoiled structure of mtDNA. It is also worth noting that there were surprisingly 

few multimeric species in heart mtDNA, which is known to be highly catenated in humans 

(Pohjoismäki et al., 2009). However, it is important not to over-interpret the importance 

of these species as their presence is variable, and could be attributed to technical 

elements of the southern blot procedure. In order to evaluate these species further, 

different complementary approaches would have to be employed, such as; gel extraction 

of the multimeric species prior to subsequent analysis.  

 

The topological differences could also be linked to segregation (Akman et al., 2016) or 

copy number (Figure 27). Accordingly, qPCR analysis of mtDNA copy number shows 

significant variation among tissues. MtDNA copy number in cells from heart and muscle 

is the highest (as would be expected from high energy demand tissues), whereas copy 

number in total brain as well as isolated eyes and hippocampus is lower compared to 

the control tissue, liver (Figure 27C). This indicates that a low copy number correlates 
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with a greater fraction of multi-catenated, higher order structures, which could be 

indicative of replication rates in different cell types, where more open mtDNA structures 

facilitate high mtDNA replication. Nonetheless, there is no evidence for significant 

differences in ribonucleotide incorporation in post-mitotic tissues, refuting the hypothesis 

that differences in energy demand or metabolism have a significant impact on the 

frequency of ribonucleotide incorporation in mtDNA. 
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Figure 27: Alkali fragmentation of mtDNA from solid murine tissues.  

(A) 1D-AGE of alkali treated mtDNA from solid tissues. Lane 1: untreated, lane 2: 50 
mM NaOH 1h, lane 3: 100 mM NaOH 1h, lane 4: 200 mM NaOH for 1h (all incubated 
at room temperature). (B) Gel quantification shows little difference in ribonucleotide 
content in mtDNA from the solid tissues examined- evidenced by similar extent of 
fragmentation (~80% of mtDNA molecules are NaOH sensitive at the highest NaOH 
concentration used). (C): Copy number variation amongst post-mitotic tissue relative 
to liver mtDNA (n=4).  
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4.3 Ribonucleotide Incorporation Rate is Lower in mtDNA from 
Proliferating Cells 

Although there were no gross differences in ribonucleotide levels in mtDNA across 

different tissues, the question remained whether there would be a difference in 

proliferating cells where dNTP concentrations are much higher due to the high 

demand for dNTPs to replicate the nuclear DNA. Initially this was examined by 

comparing the extent of fragmentation induced by in vitro alkali treatment of mtDNA 

in cultured cells and post-mitotic tissue. Figure 28 shows that there are significantly 

more alkali sensitive sites in mtDNA from liver compared with cultured cells (Figure 

28). 

 
Figure 28: MtDNA of cultured cells is less alkali labile than that of solid tissues.  

[Experimental work and image courtesy of Dr Takehiro Yasukawa, analysis carried 
out by myself]. Riboprobe H15,007-15,805 nt. 
 
The difference in alkali sensitivity between cells and tissue indicates that there are 

fewer ribonucleotides in mtDNA from cultured cells. This was corroborated by 

EmRiboseq analysis of cultured cells which revealed a dramatic difference in 

ribonucleotide distribution and base-specificity in mtDNA between cultured cells and 
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tissue, in this case MEFs and liver (Figure 29). This supports the conclusion that 

ribonucleotide incorporation rate in mtDNA is largely determined by the [NTP]:[dNTP] 

ratio within the organelle.  

 

EmRiboseq showed that rAMP incorporation was dramatically higher in liver 

compared to cultured MEFs (from 40% in MEFs (n=3) and 83% in liver, (n=3)) 

Moreover, base-distribution of ribonucleotides in liver mtDNA skewed away from 

equality compared to cells (Figure 29).  

 

In (the majority of) solid tissues, most cells are no longer dividing and so there is 

minimal DNA synthesis taking place within the nucleus. Although mtDNA replication 

is not constrained to the cell cycle, the switch from mitotic to post-mitotic status, and 

the arrest of nuclear DNA replication, has a dramatic effect on the metabolism of the 

precursors of DNA synthesis. I have demonstrated that mtDNA from proliferating 

mouse cells has significantly fewer ribonucleotides than mtDNA from solid tissues 

(Figure 28) and it can be inferred that rAMPs account for much of the difference, as 

rAMPs form a much smaller proportion of embedded ribonucleotides in proliferating 

cells than solid tissue (Figure 29). The difference can, in part, be attributed to the 

drastic reduction in the total cellular pool of deoxyribonucleotides upon exit from the 

cell cycle, which in turn has a downstream impact on the size of the pools within the 

mitochondrial compartment (Ferraro et al., 2005, Reichard, 1988).  
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Figure 29: The sites of ribonucleotides in mouse mtDNA from immortalised MEFs 
(A) and liver (B).  

The ribonucleotide profile of incorporation across the genome from 1-16,299 nt on 
the x-axis and ribonucleotide (ribo) per million on the y-axis. The individual 
ribonucleotides are shown in different colours according to their base identity (rAMP 
– red, rCMP – purple, rGMP – green and rTMP/rUMP – blue). The strands are 
separated by light strand (positive) and heavy strand (negative). [Bioinformatic 
analysis carried out by Dr Martin Taylor] 
 

4.4 Cell Cycle Exit Results in a Dramatic Increase in rAMP 
Incorporation in MtDNA 

To investigate this phenomenon and further test the hypothesis that the 

ribonucleotide incorporation rate in mtDNA is directly affected by the mitochondrial 

dNTP pools, we induced cell-cycle arrest in a cell culture model. Immortalised MEFs 

100

200

300

400

100

200

300

400

R
ib

o 
pe

r m
illi

on

200

400

600

800

800

600

400

200

A

B

R
ib

o 
pe

r m
illi

on



Chapter 4: Results II 

 

109 

 

deficient for p53 were grown under standard cell culture conditions and quiescence 

was induced by serum starvation for 10 days which causes growth arrest and exit 

from the cell cycle (see methods). MEFs deficient for p53 were used in place of 

immortalised wild-type MEFs as the latter showed no signs of quiescence under 

severe serum starvation whereas the p53 -/- MEFs stopped growing and their 

morphology changed dramatically, as routinely observed when quiescence was 

induced in primary human fibroblasts by serum restriction (Figure 30).  

 
Figure 30: Growth arrest of p53 -/- MEFs with serum starvation. 

Cells were plated and cultured in high glucose and 10% serum. Serum was reduced 
to 0.1% at 48hrs and the growth of the cells was monitored using an incucyte (Essen 
Instruments). p53 -/- MEFs stop growing almost immediately, whereas immortalized 
MEFs continue to proliferate until confluence (and can be re-plated and will continue 
to grow in low serum- data not shown).  
 

EmRiboSeq analysis of quiescent cells (10 days serum-starvation) revealed a 

dramatic shift in the ribonucleotide incorporation profile, akin to that of post-mitotic 

cells (Figure 31). This dramatic shift in the ribonucleotide distribution is concordant 

with the hypothesis that the changes in the nucleotide pools has a direct impact on 

the mtDNA.  
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Figure 31: Exit from the cell cycle results in an increase in rAMPs in mtDNA of 
MEFs approaching that of solid tissues. 

Pie charts depicting the proportion of identified embedded ribonucleotides in mtDNA 
from i) proliferating MEFs, ii) quiescent MEFs (induced by serum starvation – 
10days) and iii) mouse liver. 
 

Although this result demonstrates the impact of changing nucleotide pools on 

ribonucleotide (mis)incorporation rate, it is not clear why there is a substantial 

disproportional bias in rAMPs in quiescence which isn’t observed in proliferating 

cells.  

4.5 Complex I Deficiency and Ribonucleotide Incorporation 

As dNTP pools are not the sole determinant of the NTP:dNTP ratios, it was important 

to investigate the effect of differential ATP production on ribonucleotide 

incorporation. In order to do this, I used a mouse model, which is deficient for the 

Ndufs4 gene. This gene encodes for an 18 kDa subunit of the 45-protein Complex I 

and its knockout results in severe OXPHOS dysfunction, ultimately leading to 

premature death. Prior to death the mice are significantly smaller than their wild-type 

counterparts, exhibit lethargy, blindness, loss of motor control and elevated serum 

lactate (Kruse et al., 2008). 

 

EmRiboseq analysis of wild-type and Ndufs4 knockout mouse brain mtDNA revealed 

no significant difference in the proportion of embedded rAMPs, which suggests that 

the ATP levels are maintained in the mitochondria of the complex I deficient mice, 

perhaps via elevated glycolysis or that the concentration of ATP at the replication 

fork is not a direct function of the total amount of ATP in the organelle (Figure 32).  
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Figure 32: There are no significant differences in ribonucleotide incorporation in 
Complex I deficient mouse brains compared to controls. 

(A) Wild-type mouse brain and (B) Ndufs4 knockout brain mtDNA. The proportional 
base bias of incorporated ribonucleotides identified by EmRiboseq. [Ndufs4 
knockout mice were gifted from the lab of Professor Jan Smeitink, Nijmegen]. 
 

4.6 Mpv17 Deficiency and Mitochondrial dNTP Pools 

In proliferating cells, dNTPs are transported into the mitochondria from the cytosol, 

generated either by de novo synthesis or the cytosolic salvage pathway. But in non-

dividing cells there is a dramatic reduction in cytosolic synthesis of dNTPs, as there 

is no longer a demand from nuclear DNA replication, and the mitochondria need to 

supplement the limited supply of dNTPs from the cytosol by activating their internal 

salvage pathway (Figure 8) to provide sufficient dNTPs for mtDNA synthesis. This is 

why the proteins involved in the mitochondrial salvage pathway are so crucial in 

maintaining mtDNA integrity and mitochondrial function.  

 

The human MPV17 gene, located on chromosome 2p21-23, is comprised of eight 

exons and mutations in MPV17 are known to be linked to two types of common 

mtDNA abnormalities associated with mitochondrial dysfunction; mtDNA depletion 

and mtDNA deletions. To date, MDS caused by MPV17 mutations has been reported 

in 32 patients with the clinical manifestations including early progressive liver failure, 

neurological abnormalities, hypoglycaemia and raised blood lactate (Uusimaa et al., 

2014). Although the exact function of MPV17 is still unknown, it has been shown that 

the protein is involved in the maintenance of mitochondrial dNTP pools (Dalla Rosa 
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et al., 2016). Ablation of Mpv17 in the mouse leads to perturbations in the 

mitochondrial dNTP pools and decreased mtDNA copy number in the liver (Figure 

33), recapitulating the phenotype of the human patients with MPV17 associated MDS 

(Dalla Rosa et al., 2016). Decreased dNTP pools are associated with slow mtDNA 

replication, as shown by the increase in replication intermediates in the Mpv17 

mouse knockout liver (Figure 33C). Maintenance of the dNTP pools within the 

mitochondria is critical for effective mtDNA synthesis and so perturbations in the 

pools can have a direct impact on mtDNA, both quantitatively and qualitatively.  

 
Figure 33: A) MtDNA copy number in Mpv17 ablated mice relative to controls. B) 
Mitochondrial dNTP pools in Mpv17 ablated mouse livers compared to controls. 
C) Mpv17 ablation results in a marked increase of mtDNA replication intermediates. 

[Figure re-used with permission from the authors (Dalla Rosa et al., 2016). 
Experimental work and analysis was carried out by Drs Dalla Rosa, Spinazzola and 
Holt]. A) qPCR analysis of mtDNA copy number of liver, kidney and brain in Mpv17 
knockout mice relative to the control. B) Quantification of mitochondrial dNTPs from 
wild-type (black) and knockout mice (grey) livers C) Analysis of mtDNA replication 
intermediates in the liver of WT and Mpv17-/- mice. MtDNAs from six Mpv17 
knockout mice and six wild-type livers were isolated, digested with BclI and 
fractionated by 2D-AGE and blot hybridized to a probe to the major non-coding 
region (NCR) of the murine mitochondrial genome as indicated schematically. Figure 3
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Because of the significant decrease in dNTP pools, the Mpv17 mouse provides an 

excellent model with which to study the effect of altered NTP: dNTP pools on mtDNA 

metabolism and replication. Moreover, this is an opportunity to assess if changes in 

ribonucleotide incorporation might have implications for mitochondrial disease.  

4.7 MtDNA Mutational Load in MPV17 Deficient Tissues 

Cellular dNTP pool sizes are regulated by multiple mechanisms, both allosteric and 

genetic, and perturbations in the dNTP pools are known to have mutagenic 

consequences (Mathews and Song, 2007, Mathews, 2014). Thanks to in vitro 

studies the predominant mechanisms of mutagenesis have been identified as i) 

misinsertion (i.e. incorrect base pairing formed due to an excess or deficiency of a 

specific nucleotide base), or ii) inhibition of proof-reading (next-nucleotide effect) 

whereby dNTP excess encourages rapid DNA extension, before the polymerase can 

correct the error (Song et al., 2005, Mathews and Song, 2007).  

 

There are multiple instances of nuclear-encoded proteins which when silenced or 

knocked-out have an impact on mitochondrial dNTP pools (Kiliç et al., Leshinsky-

Silver et al., 2011, Ronchi et al., 2012). In the case of loss of function mutations in 

the gene encoding thymidine phosphorylase (TYMP), the changes in nucleotide 

pools cause an increase in mtDNA mutations (Nishigaki et al., 2003), a phenomenon 

which has been well-established in vitro for other cases of nucleotide pool 

asymmetry (Marchler-Bauer et al., 2005). It is therefore important to establish if there 

is an increase in mtDNA mutations in the absence of Mpv17, and whether this is 

contributing to the impaired OXPHOS capacity.  

 

To determine the effect of the reduced dNTP pools on mtDNA fidelity, deep 

sequencing of purified mtDNA from the livers and brains of three pairs of wild-type 

and Mpv17 deficient mice was carried out using the illumina Truseq technology and 

single nucleotide polymorphisms (SNPs) were quantified as detailed in the methods. 

In mouse liver mtDNA, where there is a perturbation of dNTP pools and a reduced 

copy number, there was no significant increase in the mutational load (Table 4). 

Brain mtDNA also showed no differences, although in brain the frequency of 
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mutations in mtDNA were an order of magnitude greater than in liver. Irrespective of 

genotype, adenine was the most commonly mutated base, and guanine the least. 

The mutational base-bias was remarkably consistent amongst both tissues and 

genotypes. 

 
Table 4: Mutational load in Mpv17 wild-type and knockout 2-month-old mouse 
mtDNA 

It is worth noting that this mutational analysis revealed a dramatic difference in the 
mutational rates in the two tissues examined. Regardless of genotype, the frequency 
of mutations in mtDNA were an order of magnitude greater in the brains than in the 
livers of mice. [Bioinformatic analysis carried out by Lilian Hunt] 
 

This shows that the dramatic reduction in dNTP pools in Mpv1 knockout mice does 

not cause an increase in mutational load in the samples examined. This is true for 

both liver, where there is an observed reduction in copy number and dNTP pools, 

and brain, where copy number and dNTP levels are normal (Figure 37). However, 

this does not exclude a possible increase in base mis-incorporation by Pol g in the 

Mpv17 knockout. It is possible that repair, either by Pol g itself or an independent 

base-excision repair pathway, or mtDNA turnover is sufficient to prevent mutated 

copies of mtDNA persisting. However, there is no evidence for this in other mtDNA 

mutator models, nor would it be expected to have any pathophysiological 

Run Genotype Total 
bases

Total ML 
(e-4) A C G T

1 WT 8.76E+07 4.3 32.3% 24.9% 19.1% 26.0%

1 KO 2.50E+07 3.3 30.3% 26.1% 20.3% 23.3%

1 WT 1.13E+08 3.4 32.4% 22.9% 18.2% 25.3%

1 KO 5.97E+06 5.8 38.3% 20.5% 14.1% 26.4%

2 WT 1.82E+08 9.9 32.2% 26.4% 16.0% 23.8%

2 KO 1.16E+07 22.1 35.0% 22.9% 15.4% 25.6%

Li
ve

r
Br

ai
n

Run Genotype Total 
bases

Total ML 
(e-3) A C G T

3 WT 6.61E+08 1.26 30.3% 27.2% 16.3% 25.8%

3 WT 1.51E+08 5.51 30.5% 27.4% 16.3% 26.0%

3 WT 3.19E+08 2.60 30.4% 27.4% 16.3% 25.9%

3 KO 3.76E+08 2.21 30.4% 27.3% 16.3% 25.9%

3 KO 1.02E+08 8.16 30.4% 27.3% 16.3% 25.9%

3 KO 2.73E+08 3.04 30.5% 27.4% 16.3% 25.9%
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consequences. Another explanation for the absence of mutations in the knockout is 

that the base-specific reduction in dNTP pools in the mitochondria results in a 

roughly equimolar base distribution (Figure 33), opposed to the asymmetric pools in 

controls, which although reduced, may facilitate correct base pairing and faithful 

mtDNA replication which in turn explains the slow replication phenotype. This 

proposed mechanism is the opposite of the next nucleotide effect whereby saturation 

of the replication fork and the replicative polymerase causes rapid DNA extension 

without proof-reading. In this instance, reduced dNTP concentrations at the fork and 

slowed rate of replisome progression facilitates proof-reading and faithful DNA 

synthesis. 

4.8 1D-AGE Comparison of MPV17 Wild-type and Knockout 
mtDNA from Liver 

Incorrect base pairing is only one way that a DNA polymerase can create errors. 

Another is incorporating the wrong sugar. Ribonucleotide (mis)incorporation is the 

most common type of polymerase error and ribonucleotides are in vast excess 

compared to their deoxyribonucleotide counterparts, a phenomenon which is 

exaggerated in the Mpv17 knockout liver where there is dGTP and dTTP pool 

depletion. Mpv17 deficiency was therefore predicted to cause a concomitant 

increase in ribonucleotide incorporation in mtDNA. To assess ribonucleotide 

incorporation frequencies in the absence of Mpv17, Southern blot analysis was used 

to compare the alkali sensitivity of mtDNA isolated from the livers of wild-type and 

knockout mice (Figure 34). 

 

As shown in Figure 34, there is a subtle difference in alkali sensitivity which is evident 

from the gel quantification, suggesting that there is a mild increase in alkali-sensitive 

sites in mtDNA from Mpv17 deficient livers, inferred to be due to increased 

ribonucleotide incorporation in the Mpv17 knockout mtDNA. In addition to this, there 

are disparities in the mtDNA topology between the wild-type and knockout samples. 

The mtDNA from the knockout contains a greater proportion of multimeric species 

which reside in the well of the gel, similar to those observed in brain mtDNA (Figure 

27). Interestingly said species are alkali sensitive which indicates that they contain 

significant numbers of alkali-sensitive sites. Yet, as aforementioned it is difficult to 
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make conclusive statements about these well-residing species without additional 

experiments.  

 

Notably, the variation between the two probes in Figure 34 indicates that the alkali-

sensitive sites are not uniform across the genome. In order to better understand 

these differences, it seemed logical to turn to a qualitative approach with the detail 

conferred by NGS. EmRiboseq analysis enables base-specific analysis of 

ribonucleotide incorporation which is pertinent in the Mpv17 model, where there is 

base-specific dNTP depletion.  

 
Figure 34: 1D-AGE of mtDNA from wild-type and MPV17 knockout liver treated 
with NaOH.  

Isolated purified mtDNA was treated with MBN (5U, 2’) as a control for single-
stranded DNA breaks or increasing amounts of NaOH (100mM 30’, 200mM 30’, 200 
mM 1h) and fractionated by 1D-AGE. The DNA was blot hybridized and probed for 
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two distinct and separate regions of double-stranded mtDNA; probe a: 4000-8120 
nt and probe b: 14881-16299 nt (D-loop containing region). The arrow indicates the 
well of the gel. The lower panel is the normalised quantification of the southern blots 
where the signal has been divided into insensitive (16 kB) and sensitive (<16 kB) 
species to more easily compare the two samples.  
 

4.9 There is a Marked Increase in rGMP Incorporation in MPV17 
Deficient Liver mtDNA 

EmRiboseq was used to gain a qualitative insight into differences in ribonucleotide 

incorporation in the absence of Mpv17. Although there is only a mild increase in 

ribonucleotide abundance in the absence of Mpv17 (Figure 34), EmRiboseq analysis 

of wild-type and Mpv17 knockout liver mtDNA revealed a dramatic shift in the profile 

of ribonucleotide incorporation in the absence of Mpv17 (Figure 35). In Mpv17 

deficient liver mtDNA there is a significant increase in the proportion of rGMPs 

embedded throughout the mtDNA molecule compared with the wild-type equivalent. 

The observation of increased rGMP is specific to the mtDNA as the nuclear DNA 

showed no appreciable difference between the knockout and wild-type (Figure 36). 

This is in accordance with the role of Mpv17 in mitochondrial dNTP metabolism, 

specifically.   



Chapter 4: Results II 

 

118 

 

 

 
Figure 35: Ribonucleotide incorporation profile in mtDNA from wild-type (WT) and 
MPV17 knockout (KO) liver. 

 (A and C) Circos plots of the annotated mtDNA genome in Mpv17 wild-type (WT, 
A) and knockout (KO, C) mouse liver. (B and D) The ribonucleotide profile of 
incorporation across the genome from 1-16,299 nt on the x-axis and ribonucleotide 
(ribo) per million on the y-axis for wild-type (B) and knockout (D) mouse liver mtDNA. 
Mitochondrial tRNAs and rRNAs are represented by yellow in A and C. [Bioinformatic 
analysis carried out by Dr Martin Taylor] 
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Figure 36: Proportional base distribution of ribonucleotides in Mpv17 wild-type 
(WT) and knockout (KO) liver nuclear DNA as identified by EmRiboseq reveals no 
significant differences.  
 

4.10 There is a Marked Increase in rGMP Incorporation in Mpv17 
Deficient Tissues Where there is no MtDNA Depletion and 
Normal dGTP Levels 

Analogous to patients with MPV17 mutations, the knockout mice show liver-specific 

mtDNA depletion and nucleotide imbalances (Figure 33). In addition to the liver 

phenotype, patients carrying mutations in MPV17 also have neurological 

dysfunction. Thus, it was important to examine the effect of MPV17 ablation on 

mtDNA metabolism in the brain.  

 

Both brain and heart from Mpv17-/- mice have normal mtDNA copy number and 

mitochondrial dNTP concentrations (Figure 37). Therefore, with respect to 

ribonucleotide incorporation, the prediction would be that there is no change in the 

ribonucleotide content of mtDNA in unaffected tissues from the knockout mice, in 

accordance with the conclusion that the ribonucleotide incorporation rate is 

dependent on NTP:dNTP ratios within the mitochondria. However, EmRiboseq 

analysis of heart mtDNA and brain mtDNA from wild-type and Mpv17 knockout 

material revealed a comparable shift to rGMP incorporation in the absence of Mpv17 

(Figure 38). The increase of rGMP in heart and brain mtDNA was not as dramatic as 

the liver but it was substantial nonetheless, further implicating Mpv17 in dNTP 
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metabolism, especially with respect to guanine, and demonstrating that its function 

has a very tangible downstream effect on mtDNA content. Therefore, this result 

demonstrates that the observed increase rGMP incorporation is not simply a 

consequence of altered GTP:dGTP ratios.  

 
Figure 37: (Top) MtDNA copy number in brain and heart and (bottom) dNTP levels 
in brain. 

The mtDNA copy number from Mpv17 -/- mice is equivalent to that of the wild-type 
mice in brain and heart tissues and there is no observed nucleotide pool depletion in 
the brain mitochondria. [Experimental work and analysis carried out by Dr Ilaria Dalla 
Rosa]. 
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Figure 38: Relative frequency of incorporated ribonucleotides of liver, brain and 
heart mtDNA of Mpv17 ablated mice. 

The relative abundance of each embedded ribonucleotide base in mtDNA of 2-3 
months of age determined by EmRiboSeq represented as pie charts; rA – rAMP, rC 
– rCMP, rG – rGMP, rU – rUMP/rTMP. Percentages were calculated as the fraction 
of the total number of identified ribonucleotide sites across the mitochondrial 
genome, and not normalised for base content i.e. frequency of each base within the 
mtDNA sequence.  
 

Furthermore, Southern blot analysis of wild-type and knockout brain mtDNA revealed 

a mild increase in alkali sensitivity, suggesting that, like the liver, in the brain there is 

an increase in ribonucleotide incorporation in the absence of Mpv17 (Figure 39). 
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2D-AGE analysis of brain material was attempted but using this technique I am 

unable to make any statements about the abundance of mtRIs as the abundance of 

such is so low in wild-type steady-state brain mtDNA, unlike the liver.  

 

4.10.1 There are Multiple Deletions in the Mpv17 Knockout Mouse Brain 

It has been demonstrated that even in the absence of dNTP or mtDNA depletion 

there is an increase in rGMP incorporation in the brain material of Mpv17 knockout 

mice (Figure 38), without an increase in mutation rate (Table 4). It was hypothesized 

that in the liver, the reduced dNTPs were an adaptation to avoid mutagenic mtDNA 

replication as equimolarity promotes faithful replication (Song et al., 2005). Thus, it 

is possible that the dNTP depletion is a downstream feedback effect of increased 

rGMP incorporation, of which is the primary phenomenon in Mpv17 deficiency.  

 

If increased rGMP incorporation precedes dGTP and dTTP depletion then it is likely 

that rGMP incorporation causes other problems of mtDNA replication which 

ultimately result in mtDNA depletion, as in the liver. Total DNA from brains from old 

(>12 months) Mpv17 knockout mice was analysed using 1D-AGE which revealed 

the presence of late-onset mtDNA deletions (Figure 39). It is evident that the 

deletions shown in Figure 39B are not as abundant as other examples of MDS. Long-

range PCR was invoked to complement the 1D-AGE analysis but I found it was so 

sensitive (polymerase stalling could be a result of the embedded ribonucleotides in 

mtDNA) that ‘deletions’, or more accurately; stalled intermediates, were present even 

in controls. So, it is important to utilise a NGS method to corrobate the 1D-AGE 

results. 

 

Deletions are synonymous with replication stalling which is extremely likely if the 

replisome is encountering more ribonucleotides. Kasiviswanathan and colleagues 

demonstrated in vitro how extension from a 3’ rG terminus (as opposed to a dG 

terminus) reduces the catalytic efficiency of Pol g by up to five-fold. Moreover, 

increasing number of contiguous ribonucleotides drastically hinders Pol g’s ability to 

extend from either a 3’ deoxyribonucleotide or ribonucleotide, which in vivo would 

result in reduced replication rate and ultimately, fork stalling (Kasiviswanathan and 

Copeland, 2011). Therefore, increased rGMP incorporation in the absence of Mpv17 
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is expected to impede mtDNA replication and thereby offers a credible explanation 

of the multiple deletions and depletion observed in the brain and liver of the knockout 

mice. 

 
Figure 39: 1D-AGE of mtDNA from wild-type and Mpv17 knockout 12 month-old 
brain treated with alkali. 

(A) Isolated purified mtDNA (2-3 month brain) was treated with MBN (5U, 2’) as a 
control for single-stranded DNA breaks or increasing amounts of NaOH (50mM 1 hr, 
100mM 1hr, 200 mM 1hr and 500 mM 1hr) and fractionated by 1D-AGE. The DNA 
was blot hybridized and probed for the H-strand 14881-16120 nt (D-loop containing 
region). The lower panel is the normalised quantification of the southern blots where 
the signal has been divided into insensitive (16 kB) and sensitive (<16 kB) species 
to more easily compare the two samples. (B) Southern blot of brain DNA of mice 
aged 1 year hybridized with a probe to np 14881-16299 (heavy strand) in Mpv17 
wild-type and knockout mice. [Panel B was carried out by Dr Ilaria Dalla Rosa]. 
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It is important to note that the brain is an extremely heterogeneous tissue, containing 

many different cell types. Therefore, it is difficult to make conclusions about any 

specific cell type. That being said, all analysis and comparisons made from brain 

material in this study were carried out on total brain homogenate, so any differences 

observed are real within the context of all cells contained within the brain.  

 

4.11 Mpv17 Deficiency and Mitochondrial NTP pools 

Mass spectrometry is commonly used to identify and quantify dNTPs and NTPs, 

however the technique relies on expert analysis and even then, it can be difficult to 

discriminate between various metabolites. Having experienced first-hand the 

difficulty of working with dNTPs (as they degrade very easily and quickly), I 

developed an indirect method to measure relative NTP concentrations within the 

mitochondria. Using mitochondrial dNTP extracts which were analysed in parallel for 

dNTP quantification (see Methods), the NTPs were quantified using a radiolabelling 

experiment. In this approach, an RNA oligo is synthesised using commercially 

available nucleotides, radiolabelled UTP (a-P32) and the isolated mitochondrial 

nucleotides, whereby a DNA oligo with T7 promoter sequence is transcribed. In order 

to measure the relative amounts of NTPs, in each individual reaction mixture one of 

the four commercial nucleotides is omitted and therefore there is a requirement for 

that omitted ribonucleotide from the mitochondrial extract to synthesise the 

radiolabelled RNA oligo. The amount of radioactive labelling can then be used as a 

read-out for the availability of each base within the mitochondrial extracts to 

compensate for the absence of each base within the reaction mix. Whilst this 

approach cannot give an exact concentration, it is extremely informative about the 

relative abundance of ribonucleotides. 

 

This approach revealed that there is no significant difference in the relative 

mitochondrial ribonucleotide amounts in wild-type and knockout liver and kidney 

(Figure 40). Given that all tissues of the knockout animal examined to date have 

elevated embedded rGMPs, one can infer that the increase in mitochondrial GTP 

concentrations is not the primary cause of the high frequency of embedded rGMPs 

in the absence of Mpv17. 
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Figure 40: Mitochondrial NTP quantification of Mpv17 knockout and wild-type liver 
and kidney. 

(A) A representative gel of radiolabelled RNA using mitochondrial extracts in 
combination with commercially available nucleotides. (B) Gel quantification of signal 
intensity, the integral of each gel was used to quantify the total signal. (C) Relative 
mitochondrial NTP levels from Mpv17 wild-type (WT) and knockout (KO) mouse liver 
and kidneys. (None of the differences achieved statistical significance).  
 

4.12 MPV17 is Upregulated in Quiescence 

As with many mitochondrial disorders, there are tissue-specific phenotypes, yet the 

precise rationale for why some tissues are so severely affected whilst others remain 
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unaffected is not known. Mpv17 is ubiquitously expressed so there is little evidence 

to suggest that it has a tissue-specific role (Spinazzola et al., 2006).  

 

Cultured patient fibroblasts with mutations in MPV17 show no depletion, nor 

OXPHOS deficiency until quiescence, where they undergo depletion (Dalla Rosa et 

al., 2016). Immunoblotting confirmed that Mpv17 expression increases dramatically 

in immortalised MEFs under serum starvation (Figure 41). The same trend has been 

shown in human fibroblasts (Dalla Rosa et al., 2016), suggesting a role for Mpv17 in 

the mitochondrial dNTP salvage pathway. Serum starvation is associated with a 

dramatic change in ribonucleotide incorporation rate (Figure 29) and this is 

accompanied by an increase in the steady state levels of the mitochondrial 

topoisomerase (Top1mt). An outstanding question is whether top1mt, like its nuclear 

equivalent top1, is able to recognise and excise embedded ribonucleotides (Williams 

et al., 2013), which could explain its increased expression in line with increased 

rNMP incorporation and Mpv17 expression.  

 
Figure 41: Steady state level of mitochondrial proteins in proliferating and 
quiescent MEFs 

Total cellular proteins were analysed in triplicate from proliferating and quiescent 
(serum starvation, 10 days) immortalised MEFs.  
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4.13  Results II: Concluding Remarks 

All DNA polymerases (mis)incorporate ribonucleotides despite their preference for 

deoxyribonucleotides, and analysis of cultured cells indicates that mammalian 

mtDNA tolerates such replication errors. Here, I’ve shown that the DNA in 

mitochondria of solid tissues contains many more embedded ribonucleotides than 

that of cultured cells, consistent with the former’s high ratio of ribonucleotide to 

deoxynucleotide triphosphates, and that rAMPs are the predominant events. This 

was corroborated by analysis of quiescent cells which show a dramatic increase in 

rAMP incorporation, akin to mtDNA from solid tissues. The pattern of ribonucleotide 

incorporation in mtDNA changes in a mouse model of Mpv17 deficiency, as rGMPs 

increase markedly, in some cases becoming the major embedded ribonucleotides of 

mtDNA. However, while mitochondrial dGTP is reduced in the knockout liver, the 

brain shows no change in the overall dGTP pool, leading me to infer that Mpv17 

determines the local concentration or quality of dGTP. Embedded rGMPs are 

expected to impede DNA replication, and elevated rGMP incorporation is associated 

with early-onset mtDNA depletion in liver and late-onset multiple deletions in brain 

of the Mpv17 ablated mice. These findings suggest aberrant ribonucleotide 

incorporation is a primary mtDNA abnormality that can result in pathology. 

 

 



Chapter 5. Results III 

 

128 

 

Chapter 5. Results III: RNase H1 and Persistent RNA 
in MtDNA 

5.1 Background 

In addition to single sporadic ribonucleotides throughout the mitochondrial genome, 

stretches of RNA are also embedded within the DNA duplex and are known to persist 

in mtDNA (Brown et al., 2008). These RNA patches can be attributed to residual 

primers or replication re-start upstream of a DNA lesion. In nuclear and mtDNA, 

persistence of long stretches of RNA/DNA hybrid impede DNA replication and when 

left unprocessed lead to genomic instability (Williams et al., 2016, Holmes et al., 

2015).   

 

In mammals, RNA stretches of 4 or more ribonucleotides hybridised to DNA in 

mitochondria and the nucleus are processed by RNase H1. RNases H are part of 

the nucleotidyl-transferase superfamily and endo-nucleolytically cleave the RNA 

portion in RNA/DNA hybrids ((Cerritelli and Crouch, 2009, Pallan and Egli, 2008) and 

the references therein). RNase H activity was first reported in 1969 from calf thymus 

(Stein and Hausen, 1969) and following years of research the family of enzymes has 

been divided into two classes depending on their amino acid sequence (Ohtani et 

al., 1999). Type 1 RNases H (RNase H1/I) recognise longer stretches of RNA/DNA 

hybrids (> 4 ribonucleotides). In mammals RNase H1 is present in both nuclear and 

mitochondrial compartments, and in the latter it is essential for mtDNA replication 

during embryonic development (Cerritelli et al., 2003). Type two RNases H (RNase 

H2/II/III), as aforementioned, are able to recognise single embedded ribonucleotides, 

and in mammals, RNase H2 is responsible for initiating RER in the nucleus.  

 

In eukaryotic RNases H1, the N-terminal domain contains the hybrid binding domain 

(HBD) which is critical for its activity, alongside its catalytic domain and connecting 

domain (Nowotny et al., 2008). Many, but not all, eukaryotic RNases H1 have a 

mitochondrial targeting sequence (MTS) upstream of the HBD. RNases H1 are well 

conserved in eukaryotes, and in both prokaryotes and archaea the domains are 

maintained but the protein is not required for viability in prokaryotes or unicellular 

eukaryotes (Kochiwa et al., 2007). In S.cerevisiae, RNase H1 can be deleted 
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showing only modest increases in sensitivity to DNA-damaging agents, suggesting 

the role of RNase HI is dispensable in S.cerevisiae (Arudchandran et al., 2000) and 

there is no evidence to suggest that it is localised to mitochondria in S.cerevisiae to 

the best of my knowledge (Frank et al., 1999). This ability to survive without RNase 

HI could be attributed to the ability of S.cerevisiae to function without mtDNA 

(Chandel and Schumacker, 1999). By contrast, ablation of Rnaseh1 in mice results 

in embryonic lethality at 8.5 days post-coitus, due to massive mtDNA depletion 

(Cerritelli et al., 2003). Unlike nuclear DNA, mtDNA replication is initiated after 

implantation following multiple cell divisions where the maternal mtDNA is diluted (El 

Shourbagy et al., 2006, Houghton, 2006). In the case of the RNase H1 knockout, the 

mitochondria are unable to maintain replication of their mtDNA due to retained 

primers which impede replication, and this ultimately leads to dysfunctional 

mitochondria.  

5.2 Pathological Mutations in RNASEH1 

The significance of RNase H1 in mtDNA metabolism has been highlighted by recent 

reports of pathological mutations in RNASEH1 which cause adult-onset 

neuromuscular disease (Reyes et al., 2015). The features of the RNase H1-

associated pathology are characteristic of mitochondrial disease. The precise 

missense mutation in RNASEH1; c.424G > A; p.Val142Ile (hereafter referred to as 

V142I) is reported to have a reduced catalytic activity (Reyes et al., 2015) and V124I 

derived fibroblasts show mtDNA aggregation, reduced mitochondrial translation and 

impaired respiration (Akman et al., 2016). Contrary to the mouse RNase H1 knockout 

cells (Holmes et al., 2015), there is no evidence for primer retention nor mtDNA 

depletion in patient-derived cells, but the V124I fibroblasts instead show an increase 

in 7S DNA (Reyes et al., 2015) and a corresponding depletion of the R-loop (Akman 

et al., 2016). These observations strongly implicate RNase H1 as an essential player 

in mtDNA replication and metabolism.  

5.3 Primer Retention in the Absence of RNase H1 in MEFs 

The model used to examine mtDNA metabolism in the absence of RNase H1 is a 

conditional knockout cell line engineered from MEFs (DRH1 MEFs). MEFs were 

genetically modified to carry a single copy of RNase H1 that is ablated when Cre-
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recombinase is induced by the addition of 4-hydroxy-Tamoxifen (4-OHT). Upon loss 

of RNase H1, there is an accumulation of mtDNA primers within mtDNA (Holmes et 

al., 2015). 1D-AGE analysis of mtDNA from 4-OHT+ DRH1 MEFs revealed 

prominent ends at four discrete sites, three of which mapped to previously defined 

replication initiation sites in the mitochondrial genome; OH, Ori-b and Ori-L. The 

fourth at LSP is on the L-strand and is proposed to act as the initiation point for 

synthesis of the minor arc portion of the L-strand. To date, Southern blot analysis 

has been used to map these sites using in vitro Eco-RNase H1 digestion (Figure 42)  

(Holmes et al., 2015). Analysis of the 4-OHT+ DRH1 MEFs demonstrated that there 

is a significant amount of replication initiating with primer synthesis at LSP and 

transition to DNA synthesis at OH and Ori-b. As both of these primer species 

accumulate in the knockout it was concluded that RNase H1 is absolutely required 

for their processing, which under normal conditions it does very efficiently, as they 

are undetectable at steady state in cells.  

 
Figure 42: Loss of Rnaseh1 reveals one prominent origin of replication in the NCR 
and a primer starting at the light strand promoter. 

 [This image has been re-used with permission from the authors. J. Bradley Holmes 
et al. PNAS 2015;112:9334-9339, Copyright (2015) National Academy of Sciences. 
(Holmes et al., 2015)]. MscI digested and denatured mtDNAs were fractionated by 
1D-AGE and hybridized to riboprobe H15500-15750. Where indicated, samples 
were treated with (+) or without (−) Eco-RNase HI, before denaturation. DNA from 
mitochondria of MEFs treated without or with 100 nM 4-OHT for 8 days. 
Interpretations of the RNase HI sensitive species appear below; red lines, RNA; blue 
lines, DNA.  
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5.4 The Most Frequent Site of Ribonucleotide Incorporation in 
Mouse MtDNA Maps to Ori-L 

The most abundant primer identified by Holmes et al. was at Ori-L, which was 

present in both wild-type and 4-OHT+ DRH1 MEFs  samples)  (Holmes et al., 2015). 

In agreement with this finding, EmRiboseq analysis of wild-type mouse mtDNA 

revealed that the highest site of ribonucleotide incorporation was a single rGMP at 

5188 np on the light strand (Figure 43), which is the initiation site for lagging stand 

replication (Brennicke and Clayton, 1981). This high rGMP peak is the exception to 

most other sites which are dominated by rAMPs (Figure 19), and is at least an order 

of magnitude more abundant than any other rGMP site in mouse liver mtDNA (Figure 

43A). The prominence of this peak was such that it was strikingly present in all 

RNase H2-treated libraries.  

 
Figure 43: (A) Isolated profile of rGMP incorporation in wild-type mouse liver 
mtDNA (B) Zoom in on Ori-L region that comprises a conserved stem-loop and 
poly-T tract used to template light strand RNA primer synthesis. (C) The predicted 
stem-loop of Ori-L, the origin of light-strand replication. 

(A) Based on EmRiboSeq, the single most frequent ribosubstitution of murine mtDNA 
is a guanosine at np 5,188, which confirms the location of Ori-L, and validates the 
technique. The example shown is murine liver mtDNA. (C) The position of the 
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prominent rNMP at np 5188 mapped to the predicted stem-loop structure for Ori-L 
(Bogenhagen et al., 1979).  

5.4.1 Ori-L is Not Processed by RNase H1 in vivo 

The Ori-L peak is of note, as it is present in high abundance in the wild-type (4OHT-) 

MEFs and wild-type solid tissues, where RNase H1 is present and active. This is 

concordant with previous reports that the primer at Ori-L is present in controls, but is 

more abundant upon ablation of RNase H1 (Holmes et al., 2015). Therefore, unlike 

OH and Ori-b, Ori-L is not rapidly processed in vivo. Thus, RNase H1 either spares 

some primers at Ori-L or at this position they are processed less rapidly than those 

in the NCR, which could be due to association of the protein with the IMM or the 

replisome.  

 

Due to its abundance across all libraries, it is likely that there is a persistent primer 

at Ori-L in the majority of wild-type mtDNA molecules, although using this technique 

alone that conclusion cannot be drawn. This is a logical conclusion based on the fact 

that the strand-asynchronous mechanisms (both the SDM and RITOLS versions) of 

mtDNA replication invoke the use Ori-L as the major site of initiation of second strand 

DNA synthesis, and therefore any mtDNA molecules synthesised via either 

mechanism would retain a primer at that site, if indeed the RNA is not processed by 

RNase H1.  

5.5 Primer-directed EmRiboseq Protocol Development 

As shown in chapter 3, EmRiboseq is a powerful tool in mapping single embedded 

ribonucleotides. RNase H2 is also able to nick at sites of longer RNA/DNA hybrids, 

however discriminating between such sites among single embedded ribonucleotides 

using EmRiboseq is a challenge. In order to map RNA/DNA hybrids >3 nucleotides, 

RNase H1 was employed in place of RNase H2 in a primer-directed, modified-

EmRiboseq approach.  

5.5.1 The Mechanism of RNase H1 

RNase H1 activity is not processive and appears to bind and release each 

ribonucleotide portion of an RNA/DNA hybrid following cleavage. RNase H1 is 

magnesium-dependent and quantum mechanics and molecular simulations predict 
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that cleavage of the RNA phosphate backbone occurs in a two-step, two-metal ion 

catalytic mechanism (Scheme 2) (Rosta et al., 2011). 

 
Scheme 2: Chemical mechanisms for phosphodiester bond hydrolysis catalysed 
by RNase H. 

[Reprinted with permission from (De Vivo et al., 2008). Copyright 2008 American 
Chemical Society.] Two nucleophilic agents are considered: water (WAT pathway, 
bottom) and hydroxide ion (OH- pathway, top). An in-line SN2-like nucleophilic attack 
on the scissile phosphorus atom by the nucleophilic group is followed by the 
inversion of the phosphate stereo configuration and formation of the 5′-phosphate 
and 3′-hydroxy function of the RNA strand. 
 
RNase H1 is thought to act mechanistically in a similar manner to RNase H2; nicking 

5’ to the RNA site and leaving a terminal 3’-hydroxyl and a 5’-phosphate. This is 

based on the crystal structure of Bacillus halodurans RNase H with the RNA/DNA 

hybrid substrate, and accompanying molecular dynamics simulations. (De Vivo et al., 

2008). However, RNase H1 alone does not remove all the ribonucleotides in a 

stretch of RNA/DNA hybrid. Therefore, products of RNase H1 hydrolysis would leave 

residual terminal ribonucleotide(s) at the 5’ end which are likely to hinder subsequent 

ligation steps within the EmRiboseq protocol. It is for this reason RNase A was used 

in parallel, to remove the terminal ribonucleotide(s) which would otherwise impede 
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ligation. RNase A, unlike the RNases H, leaves a terminal 3’-phosphate and a 5’-

hydroxyl (Scheme 3). 

 

5.5.2 RNase A has RNA/DNA Hybrid Activity in vitro 

RNase A is best known for its ability to hydrolyse single stranded RNA. Yet at low 

salt concentrations (<100 mM NaCl) it is also capable of hydrolysing RNA/DNA 

hybrids. In order to evaluate its ability to hydrolyse embedded ribonucleotides, 

isolated mtDNA was incubated with increasing concentrations of RNase A under low 

salt conditions. Southern blot analysis of isolated mtDNA molecules (containing 

persistent embedded ribonucleotides) treated with RNase A in vitro, induced 

fragmentation (Figure 44), confirming RNase A’s hybrid activity. 

 
Scheme 3: A schematic diagram of RNase A hydrolysis of a single ribonucleotide 
embedded in the DNA duplex under low salt conditions. 

In low salt (<0.1M) the His12 residue of RNase A is sufficiently nucleophilic to attack 
the labile hydroxyl group of the nucleotide and induce hydrolysis at the 3’ end of the 
sugar in an RNA/DNA hybrid. The intermediate is a 2’3’- cyclic nucleotide 
intermediate. The product is a 3’ ribonucleotide with a phosphate group.  
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Figure 44: (Left) RNase A hydrolysis of murine liver mtDNA under low salt 
conditions. (Right) The mechanism of primer-directed EmRiboseq. 

(Left) Mouse liver mtDNA was incubated with RNase A (40, 80, 120, 160, 200, 240, 
280 ng for 1 hour at 37°C in 50 nM NaCl), heat denatured for 3 minutes at 95 °C and 
fractionated by neutral 1D-AGE. The DNA was blot hybridized to probe to H-strand 
nt 14,881-15490. (Right) The proposed mechanism of primer-directed EmRiboseq 
using RNase H1 and RNase A, resulting in a 3’- and 5’- free hydroxyl. 
 

5.6 Primer Directed EmRiboseq of 4OHT+ DRH1 MEFs 

5.6.1 Comparison of EmRiboseq Approaches   

To confirm that the chemistry behind the protocol alterations was as anticipated, 

individual peaks were examined to highlight the similarities and differences between 

the two EmRiboseq approaches (Figure 45). This analysis indicated that the most 

prominent peaks were largely shared by both treatments and thus are attributable to 

RNA patches rather than single ribonucleotides. As expected, the peak heights 

relative to the background are significantly enhanced in the primer-directed libraries 

due to specificity for >3 contiguous ribonucleotides (Figure 45C and D). The analysis 

also revealed that the RNase H1 and RNase A combination was effective in 

removing the terminal ribonucleotide and moreover suggests that RNase H2 is 

removing all the RNA moieties in the RNA patches, as well as single ribonucleotides. 
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Whether that is via processive hydrolysis, or repetitive binding and release of the 

DNA molecule is not known.  

 

As shown in Figure 44, RNase A is also able to hydrolyse single embedded 

ribonucleotides, and so it might have been expected to produce a ribonucleotide 

profile broadly similar to RNase H2 EmRiboseq. However, in the primer-directed 

protocol, the amount of RNase A is very low. It is possible that in the primer-directed 

EmRiboseq approach RNase A is recognising single ribonucleotides, like RNase H2, 

but likely has a greater preference for the terminal ribonucleotides left by RNase H1 

(which are much more structurally and chemically similar to RNase A’s primary 

substrate; RNA). Another possibility is that RNase A is not doing anything, which 

cannot be dismissed until libraries treated by RNase H1 alone are investigated.  
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Figure 45: Zoom in of peaks from 4OHT+ libraries prepared with RNase H2 (A and 
B) or RNase H1 and RNase A (C and D). 

(L-strand +, H-strand -) All profiles are of 4OHT+ DRH1 MEFs mtDNA. Take note of 
variations in the scale of the y-axis, which indicate ribonucleotide per million reads. 
(A) 16,090-16,210, RNase H2 EmRiboseq. (B) 5,163-5,196 nt RNase H2 
EmRiboseq. (C) 16,090-16,210, RNase H1 and RNase A primer-directed 
EmRiboseq. (D) 5,163-5,196 nt, RNase H1 and RNase A primer-directed 
EmRiboseq. [Bioinformatic analysis carried out by Dr Martin Taylor] 
 

5.6.2 Primer Directed EmRiboseq Reveals Persistent Primers in mtDNA from 

4OHT+ DRH1 MEFs 

By comparing libraries created from the same mtDNA samples treated with either 

RNase H2 (original EmRiboseq protocol) or RNase H1 with RNase A (primer-

directed EmRiboseq approach) in parallel, it is clear that the two approaches are 

distinct and identify different types of ribonucleotide incorporation in mtDNA (Figure 

45 and Figure 46). As expected, the modified primer-directed approach (Figure 46C 

and D) yielded fewer overall sites of ribonucleotide incorporation, as RNase H1 will 

only hydrolyse a patch of four or more successive ribonucleotides. Just three sites 

of persistent RNA in control (4OHT-) MEFs were prominent (Figure 46C). Upon loss 
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of RNase H1 (4OHT+) the relative peak height increased at the same three sites and 

yielded several additional sites (Figure 46D).  

 
Figure 46: EmRiboseq of 4OHT- and 4OHT+ DRH1 MEFs. 

Isolated mtDNA molecules from 4OHT- (A and C) and 4OHT+ DRH1 MEFs (B and 
D) were treated with RNase H2 or Eco-RNase HI and RNase A in vitro and the ends 
mapped. (A) 4-OHT- MEFs treated with RNase H and RNase A reveal the major 
sites of primer retention in vivo. (B) 4-OHT+ MEFs (DRH1) show the same peaks as 
in C, in addition to several other candidate primer sites. Take note of variations in 
the scale of the y-axis.  [Bioinformatic analysis carried out by Dr Martin Taylor] 
 

Recapitulating the Southern Blot analysis, comparisons of 4OHT- and 4OHT+ DRH1 

MEFs identified sites of persistent RNA only found in mtDNA from RNase H1 

deficient MEFs, and absent in the wild-type (Figure 47). 
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Figure 47: Ablation of RNase H1 in MEFs generates novel primers in mtDNA 

Zoom of the region 16,170-16,200 nt in DRH1 MEFs in the absence of (left) and 
presence of (right) 4OHT+. Primer-directed EmRiboseq libraries prepared with 
RNase H1 and RNase A. Upon loss of RNase H1, there is a peak at 16,186 nt on 
the heavy strand (negative).  
 

5.6.3 LSP 

Ori-L is striking because the peak is present in all libraries, either RNase H2 or 

RNase H1/RNase A treated. Despite this, in RNase H1/RNase A treated 4OHT+ 

DRH1 libraries, Ori-L is not the highest peak (Figure 46D). The highest peak 

identified by primer-directed EmRiboseq was at 16186 np on the heavy strand 

(Figure 48C). This is 3 nucleotides upstream from LSP (Chang and Clayton, 1986), 

which plays a critical role in mtDNA replication initiation. LSP is where the light-strand 

transcript originates from and it provides the primer for the initiation of heavy strand 

replication at OH or ori-b (Chang and Clayton, 1985). This is in agreement with 

conclusions made from Holmes et al. that the majority of mtDNA replication is 

initiated at LSP (Holmes et al., 2015). This result establishes that the 3’ RNA/DNA 

transition site has been mapped in these libraries, which is concordant with the 

chemistry of RNase H1 and RNase A hydrolysis (Scheme 4).  
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Scheme 4: RNase H1 and RNase A hydrolysis at LSP maps the 3’ DNA/RNA 
junction (*) 
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Figure 48: Additional RNA/DNA hybrid sites identified by primer-directed 

EmRiboseq of 4-OHT+ DRH1 MEFs.  

(A) Zoom of the region 15,000 to 16,299 nt encompassing the NCR. (B) 16,095 – 
16,113 nt reveals a peak at 16,112 nt on the L-strand. (C) 16,170-16,200 nt highlights 
the peak at 16,186 nt on the H-strand which is the most abundant peak detected in 
the library. LSP is indicated by the arrow (16,183 nt). (Bottom) A diagram of the D-
loop in mouse mtDNA.  
 

With the exception of Ori-L, the most populous sites of RNA mapped by primer-

directed EmRiboseq in the 4OHT+ DRH1 MEFs mtDNA were all located within the 

NCR, where all the regulatory elements are found (Table 5).  
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Table 5: (A) The highest peaks in 4-OHT+ DRH1 MEFs primer-directed EmRiboseq 

libraries. (B) Nucleotide positions as published at www.ncbi.nlm.nih.gov. 
 

5.7 There is an Increase in rGMP Incorporation in DRH1 MEFs 

Accompanied by Reduced mtDNA Copy Number 

The pathogenic associations of increased rGMP incorporation in mtDNA with 

mitochondrial dysfunction were discussed in the previous chapter. It is interesting to 

find an increase in the relative abundance of rGMP in the 4OHT+ DRH1 MEFs 

(Figure 46 and Figure 49) identified by EmRiboseq. This is further evidence that 

RNase H1 has a significant role in mtDNA metabolism, and not simply just primer 

processing (Akman et al., 2016). It also implicates guanosine metabolism as a critical 

feature of mitochondrial function. It is not yet known whether RNase H1 has an 

impact on mitochondrial nucleotide pools. Investigating this further will provide critical 

insight to this observation. 

 

Moreover, when 4OHT is added to the conditional knockout MEFs and RNase H1 is 

excised, there is a corresponding reduction in mtDNA copy number (Figure 49C). 

This is likely due to the accumulation of stalled replication intermediates due to loss 

of RNase H1 (Holmes et al., 2015). Nonetheless, there is no obvious rationale for 

why rGMP incorporation is increased.  

Peak height / 
Ribo per million Strand Position / np Relevance

8362 Heavy 16186 LSP
5106 Light 5188 Ori-L
3248 Light 16112 CSB III
2728 Heavy 16187 LSP
2567 Heavy 16183 LSP
2557 Light 5174 Ori-L
2342 Light 16109 CSB II/III
2308 Heavy 16181 LSP
2283 Heavy 5183 Ori-L
2038 Light 5189 Ori-L

Site

Total genome 16,299 
D-loop 15,423-16,299
HSP 1 16,282
LSP 16,183

CSB III 16,114-16,131
CSB II 16,089-16,104
CSB I 16,035-16,058

OH 16,034
Ori-b ~15,600
Ori-L 5,188

A B
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Figure 49: Proportion of incorporated ribonucleotide bases in A) 4OHT- and B) 

4OHT+ DRH1 MEFs. C) MtDNA copy number upon addition of 4OHT compared to 

the controls (4OHT-).  

EmRiboseq libraries of RNase H2-treated mtDNA from A) 4OHT- and B) 4OHT+ 
DRH1 MEFs as shown in Figure 46A and B respectively. Proportional base 
contributions were calculated from total mitochondrial ribonucleotides. C) [This 
image has been re-used with permission from the authors. J. Bradley Holmes et al. 
PNAS 2015;112:9334-9339, (Holmes et al., 2015)]. 
 

5.8 Results III: Concluding Remarks 

RNase H1 is critical for mtDNA replication, and is therefore knockout lethal. 

Conditional knockout of RNase H1 from MEFs results in the accumulation of retained 

primers in mtDNA. This leads to mtDNA depletion due to replicative stalling and 

ultimately gross mitochondrial dysfunction. The conditional RNase H1 system has 

provided an excellent model with which to examine mtDNA replication in vitro. By 

modifying the original EmRiboseq protocol I have mapped the sites of retained 

primers in DRH1 MEFs. Concordant with reports from Holmes et al. the data 

concludes that the majority of mtDNA synthesis is initiated at LSP. In order to map 

the precise mtDNA origins in the future (as opposed to the 3’ DNA/RNA junction), 

this technique would need to be modified to ligate adapters using a 3’-phosphate 

biotinylated adapter, as opposed to a 5’- one. Nonetheless, this is an early 

demonstration that the EmRiboseq is an adaptable robust NGS protocol for mapping 

sites of DNA modifications in vivo. 

 

 

33.3%

34%

23.1%

9.6%

42%

12.2%

40.4%

5.4%A B C



Chapter 6: Discussion 

 

144 

 

Chapter 6. Discussion 

Over the past 20 years, NGS methods have become ubiquitous in everyday research 

and thanks to rapid developments in efficiency and sequencing power, massive 

parallel sequencing has become an accessible and affordable tool for analysing DNA 

mutations and modifications in vivo.  

6.1 HydEn-Seq and EmRiboseq 

In 2015, four groups published four distinct methods for mapping ribonucleotide 

incorporation, all but one omitting any mitochondrial data from the final publication 

(Clausen et al., 2015, Ding et al., 2015, Koh et al., 2015, Keszthelyi et al., 2015). It 

wasn’t until 2017, when Berglund et al. applied the HydEn-seq method to isolated 

mtDNA, that ribonucleotide incorporation in mtDNA was extensively examined, 44 

years after the initial discovery that mtDNA contains persistent ribonucleotides 

(Berglund et al., 2017, Grossman et al., 1973). They concluded that the identity and 

frequency of ribonucleotide incorporation in mtDNA was dictated by the 

compartmental nucleotide pools. This conclusion is broadly supported by this study. 

 

Using an in vitro model of ribonucleotide incorporation on a primed DNA template, 

where the exonuclease activity was inactivated by a D274A substitution in the 

second exonuclease motif in the POLGA subunit, Berglund et al. showed that the 

exonuclease activity of Pol g has no discernible effect on ribonucleotide incorporation 

in vivo (Berglund et al., 2017). In this thesis, I have found no evidence for an active 

RER pathway in the mitochondria in accordance with this conclusion. 

6.1.1 Limitations of HydEn-Seq 

Berglund et al. looked at ribonucleotide incorporation in mtDNA from cultured human 

cells. As has been demonstrated here, there is minimal ribonucleotide incorporation 

in proliferating cells, the profile of which is very different compared to that of solid 

tissues. A critique of the study is that neglecting the analysis of solid tissues was an 

oversight, given the significance of mtDNA metabolism following exit from the cell 

cycle. Considering that many mitochondrial diseases manifest in a tissue-specific 

manner, it would have been beneficial to examine various tissues, as has been done 
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in this study. Moreover, using HeLa cells as a control is dubious considering that 

they are cancerous, as opposed to true controls.  

 

Akin to all of the aforementioned methods for mapping ribonucleotides, including 

EmRIboseq, the efficiency of HydEn-seq is hampered by the requirement for adapter 

ligation. Adapters are also often associated with sequence bias of adapter capture, 

of which is evident in the study from Berglund et al. where HydEn-seq libraries 

displayed a 14-fold higher coverage on the L-strand relative to the H-strand 

(Berglund et al., 2017).  

 

An additional pitfall of HydEn-seq is the inability to discriminate between alkali-

sensitive sites, such as longer stretches of RNA and abasic sites, and single 

embedded ribonucleotides.   

6.1.2 Limitations of EmRiboseq 

A strength of the EmRiboseq approach is the substrate-specificity conferred by using 

RNase H2, in place of alkali hydrolysis. However, as with the other approaches, total 

quantification is difficult (3.5). One reason is the sequencing technology (Ion 

TorrentÔ), which has an optimal fragment size; normally in the range of 100 to 400 

base pairs. This means that any DNA fragments which fall outside of this window are 

unlikely to be sequenced.  

 

A critical problem, which has hampered progress during this project is the recurring 

trough across the genome due to truncation of reads (Figure 14). This problem has 

no obvious solution at this stage. To develop this approach further, it is absolutely 

critical to address this issue in order to make any valid conclusions about 

ribonucleotide incorporation in vivo. 

 

The other limitations arise from the EmRiboseq protocol itself (Ding et al., 2015). 

Having to ligate adapters at two separate stages in the protocol is problematic for 

many reasons. The primary being the low efficiency of ligation reactions which 

results in many molecules not becoming adapter-ligated and subsequently not 

sequenced. Equally, one end of a molecule may be adapter ligated in the first 
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instance (and the other end escape ligation), and therefore remain ligatable for 

second adapter ligation where ligation should be, in theory, specific for RNase H2-

sensitive molecules. This phenomenon would give rise to false positives; an effect 

which is hopefully eliminated in background screening (3.4.3). Another problem is 

that ribonucleotides in close proximity to one another are not sequenced as outlined 

schematically in Figure 50. The best way to overcome this latter problem is to 

sequence as many technical (and biological, if possible) replicates as possible in 

order to get a powerful average read of ribonucleotides across the genome in all 

samples.  

 

 
 

Figure 50: Limitations of the EmRiboseq approach. 

Examples of problematic instances which could feasibly occur in any given library 
preparation including proximal ribonucleotides not being sequenced and DNA 
shearing causing breaks at sites of ribonucleotides.  
 

6.1.3 Potential Alternatives to Ion Torrent Sequencing 

Many of the limitations of the EmRiboseq approach are associated with the 

requirements of the sequencing technology. Something which is also encountered 
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with Illumina sequencing. That is, the requirement for physical fragmentation of the 

DNA libraries, adapter ligations and amplifications (albeit limited). In the last decade 

there have been rapid advances in sequencing technologies. One such emerging 

technology is nanopore sequencing; a technique which shows promise in being able 

to identify not only the four canonical DNA bases but other modified bases, based 

on their chemical properties. This would be perfect for the application of identifying 

ribonucleotides whilst avoiding the aforementioned problematic requirements. 

However, currently this technology is still in its infancy and there are still relatively 

high error rates in reading DNA moieties. 

 

By contrast, one of the earliest DNA sequencing technologies; PacBio sequencing, 

is able to read much longer reads which would overcome what I believe to be the 

biggest problem with quantification; and that is losing reads due to fragment sizes. 

Although this technique has a higher error rate than the more sensitive Ion Torrent 

and Illumina technologies; this could be beneficial for the applications described 

here, or even in parallel.  

6.1.4 Mapping Primers using EmRiboseq 

In Chapter 5 I modified the EmRiboseq protocol in order to map origins in vivo. This 

was facilitated by conditional DRH1MEFs that enable the capture of RNA/DNA 

hybrids which would otherwise be rapidly processed in control cells. This 

demonstrated the versatility of the technique and using this approach it was possible 

to map persistent primers in vivo to single nucleotide resolution (Figure 43). The 

major limitation of this was that the combination of RNase H1 and RNase A meant 

that the 3’ DNA/RNA junctions were mapped and not the precise replication origin(s). 

One way to combat this is to re-design the primers used in the EmRiboseq protocol 

so that there is a 5’-phosphate adapter to map the 5’ DNA/RNA junctions. Another 

possibility is to incubate the libraries with a single-strand nuclease in addition to 

RNase H1 and RNase A, which would enable identification of replication origins (by 

creating exposed ends on the opposite site). 

 

An additional caveat of this analysis was that, like the RNase H2 approach, the reads 

were subject to sequence coverage bias. This was more acutely palpable in the 
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DRH1 libraries as many of the sites of interest fall inside the NCR, and therefore the 

trough of reads (Figure 14). One way to help improve this is to normalise the data in 

its entirety to the background signal.  

6.1.5 Future Applications for Modified EmRiboseq 

One of the greatest advantages of the EmRiboseq method is its adaptability. The 

critical stage in the protocol which makes it specific for ribonucleotides is the 

endonucleolytic treatment with RNase H2. Yet, as demonstrated this can be adapted 

and modified to target other types of DNA modifications. In theory, a multitude of 

DNA modifications can be sequenced via this method, with the pre-requisite that 

there is a treatment or enzyme which creates a ligatable 3‘-OH end at the site of 

interest. For example, the DNA glycosylase OGG1, is able to excise 8-oxodG 

residues by attacking the N-glycosylic bond, catalysing base removal and 

subsequent excision through hydrolysis via b-elimination and cleavage of the DNA 

phosphate backbone resulting in 3’-phospho-a,b-unsaturated aldehyde (3,4-hydroxy 

2-pentenal) and 5-phosphate termini (Hill et al., 2001, Sun et al., 1995). Harnessing 

this, along with the EmRiboseq method, would provide a powerful approach to 

mapping oxidised bases in vivo.  

6.2 Mitochondrial Evolution and rAMP Tolerance 

The most popular theory of the origin of mitochondria and their presence in 

eukaryotic cells is the endosymbiosis theory which states that mitochondria 

originated from the fusion of α-protobacteria and archaebacteria (Andersson et al., 

1998, Gray, 2012, Lang et al., 1997, Gray et al., 2001). And thus, mitochondria are 

very similar to their bacterial ancestors. One key example being that mtDNA 

replicates in a unique manner, reminiscent of bacterial replication (Lovett et al., 

1974). In line with this, many of the proteins which play a role in mtDNA replication, 

such as TWINKLE and POLRMT, share sequence homology with T7 bacteriophage 

proteins (Ringel et al., 2011, Milenkovic et al., 2013).  

 

Mitochondria have evolved as the energy-providing hub of the eukaryotic cell for 

approximately two billion years and have developed tools and mechanisms to 

preserve the integrity of the DNA contained within. One such protective mechanism 
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is the packaging of mtDNA by protective proteins such as TFAM. TFAM is the mtDNA 

packaging protein and is thought to protect the DNA from ROS and other damaging 

agents, both endogenous and exogenous. Moreover, there are extensive repair 

pathways within the mitochondria (see (Kazak et al., 2012) for a comprehensive 

review). There is strong evidence for base-excision repair in mammalian 

mitochondria, as well as a multitude of proteins which localise to the organelle and 

are involved in processing damaged bases and nucleotides, such as OGG1 

(Furihata, 2015, Ruchko et al., 2011). However, one critical repair pathway has 

eluded the mitochondria; RER. The absence of RNase H2 within the mitochondria is 

unexpected given that the vast majority of bacteria have an extensive set of 

Ribonucleases H proteins; RNase HI, RNase HII and RNase HIII. And thus, the 

persistence of ribonucleotides within the DNA is unique to mitochondria.  

 

As has been outlined throughout this thesis, ribonucleotides embedded into duplex 

DNA confer susceptibility to hydrolysis, strand nicking and double strand breaks and 

cause perturbations to the double helix itself (DeRose et al., 2012). Ribonucleotides 

far outnumber deoxyribonucleotides within the cell and what is more, ribonucleotides 

and deoxyribonucleotides differ only by one atom so it is therefore a challenge for 

DNA polymerases to discriminate between the two. DNA polymerases use steric 

gates to obstruct ribonucleotide incorporation, however they have a lower limit and 

all polymerases incorporate ribonucleotides, however infrequently (Table 6). 

Evidently, ribonucleotide (mis)incorporation is an unfavourable consequence of 

imbalanced NTP:dNTPs, but how a system reacts to this inevitability is not 

necessarily the same.  

 

In the nucleus, there is a proficient RER pathway which is RNase H2-mediated and 

efficiently excises embedded ribonucleotides from the newly synthesised DNA 

strand. This is a necessity in the nuclear DNA where double-strand breaks can cause 

genome instability if left unrepaired, or if erroneously repaired. However, in the 

mitochondria where there is a multicopy genome, damaged molecules can be turned 

over and therefore ribonucleotide (mis)incorporation is not such a critical state of 

affairs. What is more, there is a growing body of evidence to suggest that the 

genomic instability arising from ribonucleotide (mis)incorporation in nuclear DNA (in 

RNase H2-deficient models) is not from the induced damage susceptibility of the 
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DNA, but a consequence of aberrant repair and replisome stalling (Williams et al., 

2013, Kim et al., 2011, Huang et al., 2017). Therefore, it is not hard to envisage an 

alternative system for tolerating ribonucleotide incorporation; which is the evolution 

of a multicopy genome along with a dedicated replicative DNA polymerase which is 

able to proficiently reverse transcribe embedded ribonucleotides (Table 6) 

(Kasiviswanathan and Copeland, 2011), conferring a semblance of tolerance of 

ribonucleotides in mtDNA.  

 

Compared to other mammalian replicative polymerases, Pol g has a high DF against 

ribonucleotides, especially ATP (Table 6). This is due to the steric gate at residue 

E895, which functions to minimise ribonucleotide incorporation. It would be 

interesting to explore whether mutating this residue, and disrupting the steric gate, 

would result in a gross increase in ribonucleotide incorporation in mtDNA, and 

whether this would lead to an increase in replication stalling, deletions, depletion and 

ultimately OXPHOS insufficiency as in the Mpv17 knockout mouse (Figure 51). 

However, it is likely that this residue is also confers fidelity in correct-base pairing to 

the polymerase, therefore mutating said residue could also increase mtDNA point 

mutations.  

 
Table 6: Base and sugar fidelity of several DNA polymerases from the four 
eukaryotic families. 

Abbreviations: NER, nucleotide excision repair; BER, base excision repair; MMR, 
mismatch repair; DSBR, double strand break repair; TLS, translesion synthesis; 

Polymerase Family Function Sugar 
Discrimination

rNMP
extension rNMP bypass

Human Pol g A mtDNA replication 11,000-77,000 7-33% 51%

S.CerevisiaePol a B Genome replication 3,000-10,000 100% 50-75%

S.CerevisiaePol d B Genome replication, 
NER, BER, MMR, DSBR 10,000-1,700 / 7.4-69%

S.CerevisiaePol e B Genome replication, 
NER, BER, MMR, DSBR 500-6,700 90% 32-85%

S.CerevisiaePol z B TLS, DSBR, ICLR, SHM 470-4,700 / 80-95%

Human Pol d B Genome replication, 
NER, BER, MMR, DSBR 2,000 / 78-85%

Human Pol  e B Genome replication, 
NER, BER, MMR, DSBR 210-5,300 37-52% 66%

Human Pol b X BER, MMR 200-8,200 100% /

Human Pol l X BER, NHEJ, VDJR 3,000-50,000 70% /

Human Pol µ X NHEJ, VDJR 1.4-11 25% /

Human Pol i Y TLS, BER, SHM 1,100 100% /
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ICLR, interstrand cross-link repair; SHM, somatic hypermutation; NHEJ, non-
homologous end-joining; VDJR, VDJ recombination. Data adapted from Cerritelli et 
al. and the references therein (Cerritelli and Crouch, 2016). 
 

6.3 Predictive Ribonucleotide Incorporation Frequencies 

As shown in chapter 3, rAMP is the dominating ribonucleotide embedded in mtDNA 

from post-mitotic tissue (Figure 19). This is largely unsurprising due to the high 

compartmental concentration of ATP due to OXPHOS. The proportion of the four 

different ribonucleotides in mouse liver mtDNA is largely in agreement with predictive 

frequencies (Figure 22); discrepancies of which can be rationalised by the 

sequencing limitations and using in vitro values for Pol g. In order to maintain mtDNA 

copy number, Pol g must have to frequently encounter embedded rAMPs and reverse 

transcribe them, correctly, to create a newly synthesised daughter molecule. Data 

from Kasiviswanathan et al. indicate that this is indeed the case, and that Pol g is 

capable of effective reverse transcription (Table 6); likely an activity which has 

facilitated the evolution of a DNA-containing organelle with high compartmental ATP 

concentrations (Kasiviswanathan et al., 2012). Moreover, mtDNA replication is far 

slower than nuclear DNA replication (Bogenhagen and Clayton, 1977), with unique 

mechanism(s) of replication. Perhaps these two observations are additional 

adaptations to ensure faithful replication and minimise ribonucleotide incorporation.  

 

The EmRiboseq analysis combined with restriction enzyme digestion estimates that 

there are approximately 340 ribonucleotides per mtDNA molecule in mouse liver. 

Berglund et al. postulated that there were approximately 36 ribonucleotides per 

mtDNA molecule from HeLa cells (Berglund et al., 2017), which is in the same range 

of that predicted by Grossman et al. (Grossman et al., 1973). This equates to a 

difference of an order of magnitude between cells and liver mtDNA. Despite 

demonstrating that there are far more ribonucleotides in mtDNA from solid tissue 

(Figure 28), I believe that the figure obtained from liver mtDNA is an overestimate 

attributable to the number of background reads within the EmRiboseq library.  

 

The predictive calculations, although accurate relative to the proportion of the 

different bases, estimates a total of 2,148 ribonucleotides per mtDNA molecule. This 
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is significantly higher than the calculated value of 340 from EmRiboseq and therefore 

suggests that it is not just the NTP:dNTP ratio within the mitochondria and the DF of 

Pol g which determine ribonucleotide incorporation. There are two main possibilities 

as to why ribonucleotide incorporation is less frequent than predicted; i) dNTPs are 

concentrated in the vicinity of the replisome, skewing the NTP:dNTP ratio; or ii) the 

mitochondria possess some ability to excise and repair ribonucleotides, or clear 

molecules which exceed a certain threshold.  

6.4 Potential Advantages of Ribonucleotides in MtDNA 

One of my arguments for the absence of RER within the mitochondria is the 

multicopy genome which means that damaged or compromised mtDNA molecules 

can be turned over. The caveat of this is that there are multiple repair pathways 

active in mitochondria. This suggests that mtDNA turnover is not a primary 

mechanism of damage tolerance. It is therefore possible that the persistence of 

ribonucleotides in mtDNA confers an advantage to the organelle.  

6.4.1 Mismatch Repair 

In many systems mismatch repair (MMR) is used as a mechanism to correctly repair 

lesions or mis-insertions during replication (Nick McElhinny et al., 2010b, Yao et al., 

2013). During MMR the newly synthesised DNA strand is marked by embedded 

ribonucleotides, to facilitate identification of the template strand for repair. However, 

such a mechanism in mitochondria would be futile as there are persistent 

ribonucleotides on both the template and newly synthesised strand.  

6.4.2 Programmed Pause Sites 

An intriguing finding presented within this thesis is the presence of hot-spots of 

ribonucleotide incorporation (Figure 11). There are sites across the genome where 

there is frequently a ribonucleotide in many molecules, aside from the highly 

documented replication origins, which are not easily explained by polymerase 

behaviour nor sequence context. This suggests that there are sites of persistent 

ribonucleotide incorporation in mtDNA. These could represent programmed pause 

sites, as the replisome is known to pause at sites of embedded ribonucleotides (Yao 

et al., 2013). Programmed pause sites could serve as a mechanism to control 
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replication rate, invoke repair processes in the case of DNA damage, or even to 

prevent collision of replication and transcription machinery (Rothstein et al., 2000). 

From this perspective, ribonucleotide incorporation in mtDNA can be seen as 

advantageous.  

6.4.3 Maintaining a Master Copy of mtDNA 

As above stated, an argument for the persistence of ribonucleotides in mtDNA is that 

the genome is multicopy, therefore compromising the integrity of the molecules does 

not matter as long as there is a master copy (ribonucleotide-sparse or -free) to 

preserve future copies of mtDNA. Having a multicopy genome means that the 

mitochondria have the capacity to turnover damaged molecules and replace them 

with newly synthesised ones, independent from the cell cycle. However, as has been 

demonstrated within this thesis, ribonucleotide incorporation is almost unavoidable 

and with no evidence for a RER mechanism, all molecules which have been actively 

replicated should, in theory, contain persistent ribonucleotides. However, this is not 

the case. From Southern blot analysis when mtDNA is incubated with either NaOH 

or RNase HII in vitro less than 100% of mtDNA molecules are alkali-sensitive and as 

such, there are mtDNA molecules which appear to be resistant to in vitro 

fragmentation (Figure 27). This suggests that there are ribonucleotide-free mtDNA 

molecules existing within the population.  

 

One way to retain a master copy of mtDNA is to maintain one or more ribonucleotide 

free molecules of mtDNA which would serve as the pristine template. Preserving said 

copies would mean they would likely be tightly packaged (to avoid oxidative damage 

from ROS and other agents) and perhaps physically segregated from other actively 

replicating or transcribing molecules. This model would infer that mtDNA from 

primordial germ cells (PGCs) contain relatively few ribonucleotides, compared to 

other cell types.   

6.5 Ribonucleotides and the Threshold Effect 

A characteristic feature of mtDNA is the phenomenon of heteroplasmy. Almost all of 

the mitochondrial genome contains coding DNA and therefore mtDNA mutations are 

highly likely to occur in protein-coding genes. An expansion of mutated molecules 
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within a population of mtDNA can have detrimental effects if; i) it is a nonsynonymous 

mtDNA mutation and, ii) the fraction of mtDNA molecules bearing the mutation 

exceeds a certain threshold. This threshold effect is vital to the pathology of 

mitochondrial disorders and is a key element of mtDNA inheritance and disease. It 

is not purely an arbitrary level above which dysfunction takes place, but a critical limit 

above which the healthy molecules cannot compensate for the presence of the 

mutated molecules.  

 

As shown from the Mpv17 knockout mice, there is a substantial increase in 

replication stalling, and subsequently an accumulation of deletions and depletion, 

accompanied with an increase rGMP incorporation rate. Therefore, it could be 

argued that there is also a threshold effect with respect to rNMP levels in mtDNA. 

This threshold appears to be more qualitative than quantitative, as rAMPs are 

naturally abundant in mtDNA from post mitotic tissues. In order to examine this 

further it would be beneficial to have a way to directly increase ribonucleotide 

incorporation in mtDNA, for example by either mutating the aforementioned E895 

residue of Pol g or increasing the mitochondrial rNTP concentrations. Through this, 

the effect of increasing rNMP incorporation and subsequent replication stalling and 

deletion formation could be investigated.  

6.6 MPV17 and Embedded Ribonucleotides in mtDNA 

MtDNA deletions are a common underlying cause of mitochondrial dysfunction and 

are commonly found in aged tissues (Crott et al., 2005, Herbst et al., 2007, Yu-Wai-

Man et al., 2010). Deletions have often been assumed to be distinct from the 

phenomenon of mtDNA depletion. However, the data contained within Chapter 4 

suggest that the two phenomena are on the same spectrum of mitochondrial 

dysfunction. In the Mpv17 knockout mouse model, it appears that mtDNA depletion 

is an adaptive response to the accumulation of deleterious deleted molecules within 

the mitochondria, of which is tightly linked to rGMP levels in mtDNA.  

6.6.1 rGMP and Mitochondrial Disease 

Riboguanosine is the most commonly incorporated rNMP by DNA polymerases in 

vitro (Clausen et al., 2013, Evich et al., 2016) and Pol g is poorest at discriminating 
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between GTP and dGTP (Kasiviswanathan and Copeland, 2011). However, as 

demonstrated, GTP is not the most commonly incorporated ribonucleotide in vivo in 

mtDNA (Figure 19). The reason it is not as populous as rAMP is likely due to the 

GTP:dGTP ratio which is regulated by a multitude of proteins, including Mpv17, 

although how exactly remains a mystery.  

 

Ubiquitous expression of the protein (Spinazzola et al., 2006) and the normal levels 

of dGTP in the brain of the Mpv17 knockout mouse argue against the protein being 

directly involved in dNTP synthesis or transportation (Figure 37). Nevertheless, the 

presence of elevated rGMPs within the mtDNA in all tissues analysed, independent 

of mtDNA copy number, indicate that guanosine metabolism is critical to the disorder. 

One possibility, is that Mpv17 serves to provide a supply of pristine, undamaged 

dGTPs to the replisome in mitochondria to facilitate faithful mtDNA replication.  

 

The link between guanosine metabolism and Mpv17 is not novel. When Mpv17 is 

depleted in zebrafish, the fish lose their stripes, which are composed of crystalline 

guanosine (although there is no accompanying mtDNA depletion) (Krauss et al., 

2013). It is conceivable that in the zebrafish there is a naturally high abundance of 

guanosine in order to maintain their characteristic stripes, and also providing the 

mitochondria with a sufficient source of dGTP pre-cursors for mtDNA replication. 

However, when Mpv17 is depleted, there is no longer sufficient dGTP for mtDNA 

replication and so the majority of guanosine is shunted to the mitochondria to 

maintain normal mtDNA copy numbers whilst sacrificing the stripes. This hypothesis 

places the emphasis on dGTP depletion being the underlying cause of the pathology. 

 

Despite evidence that rGMP incorporation is critical to the Mpv17 phenotype, a direct 

causative link between increased rGMP incorporation and slow replication and 

reduced copy number cannot be drawn without evidence that embedded rGMPs 

pose a problem to the replicative polymerase. Yao and colleagues demonstrated in 

vitro that increased rNTP concentrations at the replisome (which would be the 

relative effect of dNTP depletion observed in the Mpv17 knockout liver), not only 

slows the replisome, but also that GTP is the most detrimental nucleotide impeding 

DNA synthesis (Yao et al., 2013).  
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Moreover, there are ample examples in the literature demonstrating that a single 

embedded rGMP causes significant local torsional changes to the duplex DNA 

(whereby the lesion locally perturbs the structure asymmetrically on the 3’ side), 

without appreciably affecting duplex stability (Chiu et al., 2014, DeRose et al., 2012, 

Evich et al., 2016). Furthermore, the X-ray crystal structure of a duplex containing a 

single rGMP moiety suggests that there is a global conformational change from B-

DNA to A-DNA with all sugars in the C3’-endo conformation (Ban et al., 1994) 

however, more recent studies have disputed this (Evich et al., 2016). Moreover, 

rGMP creates a greater conformational change compared to rAMP according to 

crystallography data (Egli et al., 1993). Therefore, it is very plausible that increased 

rGMP incorporation and torsional stress to the mtDNA molecule causes replication 

stress and subsequent stalling as observed in the absence of Mpv17, more-so than 

the single rAMPs observed in controls.  

 

6.6.2 A Proposed Disease Model 

Fibroblasts with mutations in genes encoding DGUOK, akin to MPV17 patient-

derived cells, have decreased mitochondrial dGTP pool size and subsequently 

increased rGMP in mtDNA was reported from patient cells harbouring pathogenic 

DGUOK mutations (Berglund et al., 2017). Furthermore, patient fibroblasts with 

mutations in the gene encoding TK2 exhibited increased rCMP incorporation in 

mtDNA, concordant with a depleted mitochondrial dCTP pool (Berglund et al., 2017). 

It would be interesting to further explore the TK2 model to see whether increased 

rCMP incorporation had the same pathogenic consequences as the increased rGMP 

in the Mpv17 knockout mice. In order to do this, I would suggest analysing mtDNA 

in tissues from the TK2 knockout mice to see if there are any accompanying deletions, 

in addition to mitochondrial dysfunction and depletion, and whether mtDNA deletions 

precede the mtDNA depletion (Paredes et al., 2013).  

 

High levels of rGMPs are a ubiquitous feature of Mpv17 deficiency and precede any 

consequent phenotype. I propose that Mpv17 has a role in providing sufficient 

amounts of dGTP to the replisome. In the absence of Mpv17 there is an accumulation 

of rGMP throughout the mtDNA which in turn causes replication stalling which leads 

to late-onset mtDNA deletions in the brain. In order to clear the mitochondria of 
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harmful mtDNA deleted molecules, the mtDNA is rapidly turned over which results 

in mtDNA depletion. It is unclear whether the reduction of mtDNA precedes the 

depletion of dGTP pools, which is proposed to be a mechanism to facilitate faithful 

mtDNA replication in the absence of Mpv17 (this would have to be approached by 

looking at more Mpv17 knockout mice at different stages of development). The latter 

stages of the disease progression are as seen in the liver where there is significant 

mtDNA depletion and dGTP (and dTTP) depletion, and ultimately OXPHOS 

deficiency.  

 

MtDNA is thought to be turned over regularly, with a half-life of the order of months 

(Poovathingal et al., 2012). Furthermore, turnover rate across different tissues has 

been reported to be different in rat (Gross et al., 1969), indicating that turnover may 

be modified as a result of increased metabolism, mutation or energy demands of 

cells. Turnover of damaged mtDNA molecules is a key mechanism of coping with 

mtDNA damage and mitochondrial stress. In this instance, it is proposed that mtDNA 

degradation is upregulated to avoid the accumulation of deleterious mtDNA 

molecules. 

 

To confirm my conclusions that the rGMPs in mtDNA are pathogenic, it would be 

highly beneficial to analyse the mtDNA from different stages in the DGUOK knockout 

mouse to confirm that the rGMP is deleterious, and that it is not an Mpv17-specific 

pathology which has been identified.  
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Figure 51: A model of mitochondrial disease for Mpv17 deficiency in mice. 
 

6.7 Ribonucleotide Retention Could be a Cause of mtDNA 
Deletions 

It is highly likely that embedded ribonucleotides in the mtDNA duplex cause 

considerable difficulties for the replicative polymerase, due to torsional 

conformational distortions (Chiu et al., 2014, DeRose et al., 2012, Evich et al., 2016). 

As has been inferred from the Mpv17 knockout mice, rGMPs impede mtDNA 

replication and deletions were observed in the mtDNA from Mpv17 knockout mice 

where there was an increase in rGMPs.  

 

For a long time the precise mechanism of mtDNA deletion formation was not known, 

despite the prevalence of mtDNA deletions in human patients with mitochondrial 

disease. Recently, analysis of single molecule mtDNA replication using DNA 

combing was used to investigate the cause of the common deletion; a 4,977-bp 

region flanked by 13-bp repeats (Phillips et al., 2017). Phillips et al. showed that the 

common deletion is formed as a consequence of frequent fork stalling, a process 

which is mediated by the mitochondrial replisome, but independent of canonical DSB 

repair (Phillips et al., 2017). It is therefore conceivable that an increase in 

ribonculeotides in mtDNA leads to an increase in replisome stalling and erroneous 

repair which results in deletions. The nature and size of the resulting deletion is 
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subject to location and the presence of proximal repetitive sequences. Therefore, 

deletion formation is possible at any time where fork stalling occurs in such regions, 

such as the common deletion, but is more likely when there is an increase in mtDNA 

lesions, such as ribonucleotides. 

6.8 Ribonucleotides in mtDNA in Cancer and Ageing 

A profound difference in ribonucleotide incorporation profiles of mtDNA was found 

when comparing proliferating and quiescent/post-mitotic cells (Figure 31). The 

dramatic difference in ribonucleotide incorporation can be largely explained by the 

increased mitochondrial dNTP pools when nuclear DNA synthesis is taking place, 

however, this does not explain the under-representation of rAMP in cycling cells. 

Akin to quiescent cells, in mtDNA from solid tissues the vast majority of embedded 

ribonucleotides are rAMPs, and this can be explained by the compartmental ratios 

of NTP:dNTPs in the mitochondria. Yet, mtDNA from proliferating cells have 

relatively few rAMPs given the high ATP:dATP within the organelle (Figure 29). This 

hints at a possibility that the mitochondria are in some way able to evade 

ribonucleotide incorporation in proliferating cells via an unknown mechanism.  

 

The dramatic difference between proliferating and non-proliferating cells is 

significant for two reasons. Firstly, because as has been highlighted, ribonucleotides 

impair the integrity of the DNA duplex and therefore an increase in ribonucleotide 

content is associated with increased risk of double-strand breaks, deletions and 

depletion. And therefore, an increase in ribonucleotide incorporation, such as with 

exit from the cell cycle, must therefore be associated with increased mtDNA damage 

or damage-susceptibility, such as ss- or ds- breaks. Secondly, if ribonucleotide 

incorporation is directly influenced by the metabolic state of the cell, the phenomenon 

of reduced ribonucleotide incorporation could be a critical feature of proliferating 

cells, utilised to maintain mtDNA integrity.  

 

The Warburg effect is a widely documented phenomenon of cancer cells and 

describes the observation that cancerous cells are largely glycolytic, even in the 

presence of functioning mitochondria and high energy demands (Liberti and 

Locasale). There are many hypotheses as to why this is advantageous for the cell, 
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and it is likely that this is a process which is beneficial on many fronts. One such 

advantage could be that by eschewing ATP production from the mitochondria to 

glycolysis there is a reduction in both mitochondrial ROS and ATP. If this state 

mimics that of proliferating cells in culture then the mtDNA from cancer cells will have 

fewer embedded ribonucleotides, and thus preserving the integrity of the mtDNA for 

future cell divisions. It would be an exciting avenue of further research to explore this 

hypothesis and it could ultimately serve as a biomarker for malignant cells in vivo.  

 

Furthermore, an energetic shift from OXPHOS to glycolysis in cancer cells could be 

explained by the need for other biosynthetic processes. Glycolysis also produces 

glucose-6-phosphate, ammonia and aspartate which are required for the synthesis 

of purine and pyrimidine nucleotides (Jose et al., 2011). An increase in nucleotide 

synthesis would provide additional dNTPs for actively dividing cells, as well as 

reducing the mitochondrial NTP:dNTP ratio, thus reducing ribonucleotide 

incorporation rate in mtDNA.  

 

However, in recent years biogenetic studies of tumour metabolism have shown that 

the Warburg effect is a blanket statement which is not applicable to all tumour types, 

and there are multiple cases of tumours which are reliant on OXPHOS (Griguer et 

al., 2005). Tumours are varied and heterogeneous by nature and their metabolic 

apparatus and modalities of energy substrate utilisation can differ significantly 

depending on the stage of tumorigenesis, tissue type, oncogene activation and 

microenvironmental substrate conditions (Garber, 2006).  

6.8.1 MtDNA as a Biological Clock 

The idea that cells are able to prevent excessive ribonucleotide incorporation by 

eschewing ATP production, or by an alternative means, is indicative of a preventative 

mechanism against compromising mtDNA quality. One could speculate that 

embedded ribonucleotides act as a biological clock. Accumulation of which results 

in compromised energy production and maybe even induction of mitophagy or 

autophagy. However, I found no evidence for increased ribonucleotide incorporation 

in aged mice, therefore, akin to the Mpv17 model, this threshold could be a qualitative 

shift in ribonucleotides. So, an increase in certain ribonucleotide bases, rather than 

a gross overall increase.  
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6.9 A Proposed Mechanism for Mitochondrial Ribonucleotide 
Excision Repair in Mammals 

Mitochondria seem to possess a non-traditional mechanism of surviving the 

inevitability of ribonucleotide (mis)incorporation during DNA replication. Rather than 

adopting a classical RER mechanism, it appears that mitochondria have evolved a 

tolerance of embedded rAMPs within the mtDNA (6.2). Despite lacking evidence for 

a canonical RER mechanism, almost all of the proteins associated with RER in the 

nucleus are present within the mitochondrial compartment (with the exception of the 

aforementioned RNase H2 (Figure 24)). In the absence of RNase H2 in the nucleus, 

Top1 is able to recognise single embedded ribonucleotides and initiate an alternative 

RER pathway following incision 3’ to the ribonucleotide moiety (Huang et al., 2017). 

Top1mt is the only DNA topoisomerase specific for mtDNA in vertebrates, but there 

is also evidence for the presence of Top2a and Top2b active in murine mitochondria 

(Douarre et al., 2012). If Top1mt is able to recognise and nick single embedded 

ribonucleotides, then it could be argued that mitochondria possess, in theory, all the 

necessary tools to carry out topoisomerase mediated- RER.  

 

ChIP-seq analysis of a poisonous Top1mt (Top1mt*), which carries mutations 

stabilising the DNA-bound complex of Top1mt, revealed the profile of Top1mt 

binding in MEFs. Top1mt binding hot-spots do not, however, seem to correlate with 

regions of high ribonucleotide incorporation in mtDNA. Moreover, an increased 

abundance of Top1mt* in the NCR and rRNA regions suggests that Top1mt is chiefly 

involved in releasing torsional stresses at regions of high transcription (Dalla Rosa 

et al., 2014). This implies that Top1mt is not actively binding at sites of ribonucleotide 

incorporation, however this may be because the steady state levels of 

ribonucleotides in mtDNA from cultured cells is very low, and below the threshold 

above which they become problematic. In vitro analysis of Top1mt would be required 

to first of all demonstrate whether it has ribonucleotide binding and nicking activity 

akin to Top1.  
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6.10 Concluding Remarks and Future Prospects 

Within this thesis I have adapted and developed the EmRiboseq protocol published 

by Ding et al. (Ding et al., 2015) for use with mtDNA and using this revealed the 

profile of ribonucleotide incorporation in mouse mtDNA in vivo. The data showed that 

the vast majority of ribonucleotides in mtDNA of solid tissues are rAMPs, and they 

are present throughout the genome, but they are mostly benign.  

 

There are far fewer ribonucleotides in proliferating cells, in part due to the higher 

concentration of dNTPs. Nonetheless, an explanation for the under-representation 

of rAMPs in mtDNA from proliferating cells is wanting, hinting that there is more to 

be uncovered in the mechanism of ribonucleotide incorporation and metabolism in 

mtDNA.  

 

The striking changes in ribonucleotide incorporation in mtDNA associated with 

Mpv17 deficiency raise the question of whether this phenomenon could explain other 

currently obscure causes of mtDNA disease. In light of the data presented within this 

thesis, many aspects of mtDNA disorders should be reconsidered in light of the fact 

that a striking abnormality, embedded ribonucleotides, has hitherto been largely 

overlooked. 

 

By manipulating the chemistry of the EmRiboseq protocol, the method was adapted 

to map another form of RNA incorporation; primers. This was a preliminary example 

of how adaptable the EmRiboseq technique is and demonstrates its potential to map 

a multitude of DNA modifications in vivo. Regarding mtDNA, this could massively 

benefit the understanding of mtDNA metabolism with respect to damage, repair, 

ageing and disease. I hope that EmRiboseq will continue to be adapted and tailored 

to such avenues.  
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