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Abstract

This thesis investigates the use of reproducing kernel Hilbert spaces

(RKHS) in the context of Monte Carlo algorithms. The work proceeds in

three main themes.

Adaptive Monte Carlo proposals

We introduce and study two adaptive Markov chain Monte Carlo (MCMC)

algorithms to sample from target distributions with non-linear support

and intractable gradients. Our algorithms, generalisations of random walk

Metropolis and Hamiltonian Monte Carlo, adaptively learn local covari-

ance and gradient structure respectively, by modelling past samples in an

RKHS. We further show how to embed these methods into the sequential

Monte Carlo framework.

Efficient and principled score estimation

We propose methods for fitting an RKHS exponential family model that

work by fitting the gradient of the log density, the score, thus avoiding

the need to compute a normalization constant. While the problem is of

general interest, here we focus on its embedding into the adaptive MCMC

context from above. We improve the computational efficiency of an earlier

solution with two novel fast approximation schemes without guarantees,

and a low-rank, Nyström-like solution. The latter retains the consistency

and convergence rates of the exact solution, at lower computational cost.
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Goodness-of-fit testing

We propose a non-parametric statistical test for goodness-of-fit. The mea-

sure is a divergence constructed via Stein’s method using functions from an

RKHS. We derive a statistical test, both for i.i.d. and non-i.i.d. samples, and

apply the test to quantifying convergence of approximate MCMC methods,

statistical model criticism, and evaluating accuracy in non-parametric score

estimation.
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Chapter 1

Introduction

1.1 Overview

This thesis explores how kernel methods can be used within the wider

context of Monte Carlo, a method to solve integration problems, such as

Bayesian expectations, using random samples. More specifically, we are

concerned with the problems of efficient random sampling, learning struc-

ture of unknown densities from data, and measuring how well a set of

samples (e.g. obtained from a random sampling algorithm) fits a particular

model.

The efficiency of Monte Carlo sampling algorithms, such as Markov

chain Monte Carlo (MCMC), crucially relies on the proposal mechanisms

that guide how the next step in the Markov chain trajectory is generated.

We show how to construct a number of such proposal mechanisms via

using kernel methods to model the structure of the underlying density,

e.g. covariance or gradients. This results in a flexible framework that can

be embedded into MCMC and sequential Monte Carlo algorithms.

The main ingredient for the above ideas is non-parametric modelling

of the structure of an unknown probability density. Kernel methods pro-

vide an elegant and computationally efficient framework for such mod-

elling tasks, however, in practice they often come with considerable com-

putational costs. In order to ensure practicality of such models in the
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Monte Carlo context, we develop novel approximation schemes for existing

kernel-based density models. Crucially, we develop statistical guarantees

that trade-off introduced error with reduced computational cost.

Finally, the accuracy of Monte Carlo methods strongly depends on the

‘quality’ of the generated samples, often in the form of bias-variance trade-

offs. This is for example the case in the approximate MCMC framework,

where the variance of an estimator is reduced at the cost of introducing a

(usually small) systematic error. We study how to measure sample quality

in this context and develop a non-parametric goodness-of-fit test for non

i.i.d. data, which can be used to tune such trade-offs systematically.

1.2 Publications
The thesis structure is based on the following publications. Each chapter is

based on collaborative work with the co-authors as outlined in the chapters’

beginnings.

Adaptive Monte Carlo proposals

• D. Sejdinovic, H. Strathmann, M. Lomeli, C. Andrieu, and A. Gretton.

“Kernel Adaptive Metropolis-Hastings”. In: International Conference

for Machine Learning. 2012

• H. Strathmann, D. Sejdinovic, S. Livingstone, Z. Szabo, and A. Gret-

ton. “Gradient-free Hamiltonian Monte Carlo with Efficient Kernel

Exponential Families”. In: Advances in Neural Information Processing

Systems. 2015

• I. Schuster, H. Strathmann, B. Paige, and D. Sejdinovic. “Kernel

Adaptive Sequential Monte Carlo”. In: European conference on machine

learning & principles and practice of knowledge discovery in databases. Joint

first two authors. 2017

Efficient and principled score estimation
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• D. Sutherland, H. Strathmann, M. Arbel, and A. Gretton. “Efficient

and principled score estimation”. In: arXiv preprint arXiv:1705.08360

(2017). Joint first two authors. Submitted.

Goodness-of-fit testing

• K. Chwialkowski, H. Strathmann, and A. Gretton. “A kernel test of

goodness of fit”. In: International Conference for Machine Learning. 2016

1.3 Motivation, contribution, and related work
This section provides a brief introduction to the three main themes of this

thesis, motivates the research objectives, and points out related work.

1.3.1 Adaptive Monte Carlo proposals

Estimating expectations using Markov Chain Monte Carlo is a fundamen-

tal approximate inference technique in Bayesian statistics. Simply speaking,

MCMC is a strategy for generating a Markov chain, a sequence of random

samples X1, X2, . . . from potentially complex and high-dimensional distri-

butions π in a space X , where Xt+1 depends only on Xt. Using those

samples, expectations can be estimated as

∫

X
f (x)π(x)dx ≈ 1

n

n

∑
i=1

f (Xi), (1.1)

given certain properties of the Xi, and π-integrable f , [6]. For example

f (x) = x yields the mean of π.

The key building-block of the MCMC algorithms that we consider here

is the Metropolis-Hastings algorithm, an algorithm that given a state Xt

produces a proposal for Xt+1, and accepts or rejects it at random with a

probability that is based on the underlying density π. Since the expected

estimation error in (1.1) directly depends on the correlation between suc-

cessive points in the Markov chain [93], efficiency can be achieved by taking

steps with little correlation (i.e. large) that are accepted with high probabil-

ity. Proposal mechanisms that adapt to the target on the fly aim to strike
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this balance. Care has to be taken though – using the Markov chain history

to inform future moves generally compromises convergence properties of

the resulting MCMC algorithm [6].

We will generally assume that the target density π is only available

point-wise (in closed form or via a random estimator without bias), and

no higher order information, such as gradients, is available. For example,

in pseudo-marginal MCMC [5, 16], the target density does not have an

analytically tractable expression, but can only be estimated at any given

point, e.g. Bayesian Gaussian process classification [44]. A related setting

is MCMC for approximate Bayesian computation (ABC), where a Bayesian

posterior is approximated through repeated simulation from its likelihood

[80, 108]. In those cases, sophisticated gradient-based schemes [50, 95]

cannot be applied directly on the intractable target.

Kernel adaptive Metropolis-Hastings

The choice of the proposal distribution is known to be crucial for the design

of Metropolis-Hastings algorithms, and methods for adapting the proposal

distribution to increase the sampler’s efficiency based on the history of the

Markov chain have been widely studied [6, 60, 61]. These methods often

aim to learn the global covariance structure of the target distribution, and

adapt the proposal accordingly.

Contribution. We develop a kernel adaptive Metropolis-Hastings algo-

rithm (KAMH) in which the Markov chain trajectory is mapped to an

RKHS, and the proposal distribution is chosen according to the covari-

ance in this feature space [8, 110]. Unlike earlier adaptive approaches, the

resulting proposals are locally adaptive in the input space, and oriented

towards nearby regions of high density, rather than simply matching the

global covariance structure of the distribution. Our approach combines a

move in the feature space with a stochastic step towards the nearest input

space point, where the feature space move can be analytically integrated

out. Thus, the implementation of the procedure is straightforward: the



1.3. Motivation, contribution, and related work 15

proposal is simply a Gaussian in the input space, with location-dependent

covariance that is informed by the feature space representation of the tar-

get. Furthermore, the resulting sampler only requires the ability to evaluate

the un-normalised density of the target.

Related work. Adaptive MCMC samplers were first studied by Haario et al.

[60, 61], who proposed to update the proposal along the sampling process.

Based on the chain history, they estimate the covariance of the target distri-

bution and construct a Gaussian proposal centred at the current chain state,

with a particular choice of the scaling factor from [48]. More sophisticated

schemes are presented by Andrieu and Thoms [6], e.g. adaptive scaling,

component-wise scaling, and principal component updates. While these

strategies are beneficial for distributions that show high anisotropy (i.e. by

ensuring the proposal uses the right scaling in all principal directions), they

may still suffer from low acceptance probability and slow mixing when the

target distributions are strongly non-linear, and the directions of large vari-

ance depend on the current location of the sampler in the support.

Kernel Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [86] is an MCMC algorithm that im-

proves efficiency by exploiting gradient information. It simulates particle

movement along the contour lines of a dynamical system constructed from

the target density. Projections of these trajectories cover wide parts of the

target’s support, and the probability of accepting a move along a trajectory

is often close to one. Remarkably, this property is very robust to growing

dimensionality, and HMC here often is superior to random walk methods,

which need to decrease their step size at a much faster rate [86, Section

4.4]. Unfortunately, as discussed earlier, for a large class of problems gra-

dient information is not available. In those cases, HMC cannot be applied,

leaving random walk methods as the only mature alternative.

Contribution. We extend the above idea of using kernel methods to learn

local covariance structure for efficient proposal distributions. Rather than
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locally smoothing the target density, however, we estimate its gradients

globally. This leads to a kernel-based gradient-free adaptive MCMC algo-

rithm, (KMC), that starts as a random walk and then smoothly transitions

into HMC-like behaviour. In experiments, KMC outperforms random walk

based sampling methods, including the earlier kernel adaptive Metropolis-

Hastings. As the latter, KMC is does not require access to target gradients,

but estimates those from the sample path only.

Related work. Gaussian Processes (GP) were used by Rasmussen [90] as a

surrogate of the target density in order to speed up HMC, however, this

requires access to the target in closed form, to provide training points for

the GP. More recently, neural networks were used for the same purpose

[136]. There have been efforts to mimic HMC’s behaviour using stochastic

gradients from mini-batches in ‘Big Data’ [31], or stochastic finite differ-

ences in approximate Bayesian computation [82, discussed in Section 4.4.4].

Stochastic gradient based HMC methods, however, often suffer from low

acceptance rates or additional bias that is hard to quantify [20].

Score estimation for kernel exponential families

The gradient estimator in KMC is based on a recently proposed proce-

dure to fit a infinite dimensional exponential family models to sample points

drawn i.i.d. from a probability density [117]. While finite dimensional ex-

ponential families are a keystone of parametric statistics [25, 126], it is

difficult to construct a practical, consistent maximum likelihood solution

for infinite dimensional natural parameters [15, 47, 57]. Sriperumbudur

et al. [117] proposed to employ a score matching procedure [63], which

minimizes the Fisher distance: the expected squared distance between the

model score (i.e. the derivative of the log model density) and the score of

the (unknown) true density. The Fisher distance can be recast to yield a

quadratic loss using integration by parts. Unlike the maximum likelihood

case, a solution can be formulated to obtain a well-posed and straightfor-

ward solution, which is a linear system defined in terms of the first and
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second derivatives of the RKHS kernels at the sample points.

We require our adaptive MCMC algorithms to be computationally ef-

ficient yet expressive, as they deal with high-dimensional MCMC chains

of growing length. For a practical implementation, it is necessary to ap-

proximate the full solution from [117], which has quadratic memory costs

and cubic computational costs in both number of samples and dimension.

Despite being useful for the developed MCMC proposals, efficiently esti-

mating the natural parameter of such an infinite dimensional exponential

family model is a challenging problem on its own.

Contribution. We develop two novel approximations for the kernel expo-

nential family model. The first approximation, score matching lite, is based

on computing the solution in terms of a lower dimensional, yet growing,

and simpler subspace in the RKHS. The second approximation uses a fi-

nite dimensional feature space (score matching finite), combined with ran-

dom Fourier features [89]. These approximations greatly reduce computa-

tional costs, and can be used on their own or within the gradient-free HMC

framework described above.

Related work. This setting of score estimation is closely related to that of

energy-based learning [72]. For example, Alain and Bengio [2] proposed a

deep learning-based approach to directly learn a score function from sam-

ples: de-noising auto-encoders are networks trained to recover the original

inputs from noise-corrupted versions. We come back to this approach in

Chapter 6 where we describe the method in Chapter 6 and compare our

methods experimentally in Section 6.3.

Despite the Hamiltonian Monte Carlo context in Chapter 4, the score

function is used for constructing control functionals for Monte Carlo inte-

gration [88], where learned score functions could be used where closed-

form expressions do not exist.

The form of score matching lite is similar to an estimator by Hyvärinen

[64], which we will comment on in Section 4.2.1.



18 Chapter 1. Introduction

Kernel sequential Monte Carlo

In contrast to MCMC, sequential Monte Carlo (SMC) methods are based

on iterative importance sampling, and have traditionally been applied to

inference in filtering problems with a sequence of time-varying target dis-

tributions [39]. We focus on static SMC methods for Bayesian inference

on a fixed target distribution [29, 32, 43, 105]. Static SMC frames infer-

ence as a sequential problem by defining an artificial series of incremental

targets. This can be done by tempering the target density [105], by includ-

ing data points sequentially [32], or by targeting the full density at every

iteration. The latter is a special case known as population Monte Carlo

(PMC) [28]. SMC offers three striking advantages over MCMC: adaptive

proposal mechanisms do not compromise convergence, normalising con-

stants (e.g. model evidence) can be estimated in a straightforward manner,

and the particle system can represent multi-modality (where MCMC often

gets ‘stuck’ in a single mode).

Contribution. We develop a framework for kernel sequential Monte Carlo,

(KSMC). Similarly to the presented work in adaptive MCMC proposals,

KSMC represents the (weighted) particle system of SMC algorithms in an

RKHS. The learned structure of the surrogate model is used to construct

proposal distributions that are used within SMC. We exemplify this frame-

work with two existing SMC algorithms, again based on covariance and

gradients. KSMC enjoys the benefits that SMC has over MCMC, yet the

use of kernel surrogates leads to faster convergence for non-linear targets

as compared to plain SMC. As before, KSMC does not require target gra-

dient information and therefore is particularly useful in combination with

importance sampling frameworks that are based around intractable targets

[33, 125].

Related work. Our algorithms are kernel-based generalisations of adap-

tive SMC [43] and gradient importance sampling [102]. We briefly discuss

these algorithms in Section 5.1.2. The local adaptive importance sampling



1.3. Motivation, contribution, and related work 19

approach by Givens and Raftery [51] adapts to local covariance structure

of the target, by computing pairwise distances and then only using a small

number of close points to estimate local covariance.

1.3.2 Efficient and principled score estimation

Coming back to approximating the kernel exponential family described in

Section 1.3.1, we now focus on the question of developing efficient estima-

tors that are theoretically well justified. Indeed, one of the desirable prop-

erties of the original estimator by Sriperumbudur et al. [117] is established

theory on consistency, with error guarantees depending on the smoothness

of the data-generating density.

Contribution. While the approximations in Chapter 4 greatly improve the

runtime, no convergence guarantees are known, nor any means of deter-

mining how quickly to increase the complexity of these solutions with

increasing sample size n. We here develop a learning scheme using the

framework of Nyström approximation [112, 130]: representing the solution

of the score matching optimisation problem in a sub-space of the original

solution. We prove guarantees on the convergence of this algorithm for an

increasing number m of Nyström basis points. Depending on the prob-

lem difficulty, convergence is attained in the regime m ∼ n1/3 to m ∼ n1/2,

thus yielding cost savings at the same level of guaranteed generalisation

error. The overall Fisher distance between our solution and the true den-

sity decreases as m,n→ ∞ with rates that match those of the full solution

in [117, Theorem 6]. An experimental evaluation confirms the performance

benefits in practice.

Related work. Guarantees on the performance of Nyström methods have

been the topic of considerable study. Earlier approaches have worked by

first bounding the error in a Nyström approximation of the kernel matrix

on the sample [41], and then separately evaluating the impact of regression

with an approximate kernel matrix [37]. This approach, however, results

in suboptimal rates; better rates can be obtained by considering the whole
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problem at once [42], including its direct impact on generalisation error

[99]. Approaches like those of [42, 134], which bound the difference in

training error of Nyström-type approximations to kernel ridge regression,

are insufficient for our purposes: we need to ensure that the estimated un-

normalised log-density converges to the truth everywhere, so that the full

distribution matches, not just its values at the training points. In doing so,

our work is heavily indebted to Caponnetto and De Vito [27], as are Rudi

et al. [99] and Sriperumbudur et al. [117].

1.3.3 Goodness-of-fit testing

Further downstream the pipeline of sampling algorithms, the effectiveness

of any Monte Carlo algorithm strongly depends on the quality of the used

random samples. This is in particular true for approximate sampling meth-

ods, which use modifications to Markov transition kernels that improve

mixing speed at the cost of introducing asymptotic bias [12, 68, 128]. The

resulting bias-variance trade-off can usually be tuned with parameters of

the sampling algorithms. It is therefore important to test whether for a par-

ticular parameter setting and run-time, the samples are of the desired qual-

ity. This question cannot be answered with classical MCMC convergence

statistics, such as the widely used potential scale reduction factor (R-factor)

[49] or the effective sample size, since these assume that the Markov chain

reaches the true equilibrium distribution i.e. absence of asymptotic bias.

We address this question using statistical tests of goodness-of-fit,

which are a fundamental tool in statistical analysis, dating back to the test

of Kolmogorov and Smirnov [67, 109]. Given a set of samples from a dis-

tribution q, our interest is in whether q matches some reference or target

distribution p, which we assume to be only known up to the normalisation

constant.

Recently, in the multivariate setting, Gorham and Mackey [52] pro-

posed an elegant measure of sample quality with respect to a target. This

measure is a maximum discrepancy between empirical sample expectations
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and target expectations over a large class of test functions, constructed so

as to have zero expectation over the target distribution by use of a Stein op-

erator. This operator depends only on the derivative of the logq: thus, the

approach can be applied very generally, as it does not require closed-form

integrals over the target distribution (or numerical approximations of such

integrals). This property is particularly useful in assessing MCMC, since

these integrals are certainly not known to the practitioner.

An important application of a goodness-of-fit measure is in statistical

testing, where it is desired to determine whether the empirical discrepancy

measure is large enough to reject the null hypothesis (that the sample arises

from the target distribution) with a certain p-value. One approach is to

establish the asymptotic behaviour of the test statistic, and to set a test

threshold at a large quantile of the asymptotic distribution.

Contribution. We define a statistical test of goodness-of-fit, based on a

Stein discrepancy computed in an RKHS. To construct our test statistic,

we use a function class defined by applying the Stein operator to a chosen

space of RKHS functions, as proposed by Oates et al. [88].1 Our measure

of goodness of fit is the largest discrepancy over this space of functions

between empirical sample expectations and target expectations (the latter

being zero, due to the effect of the Stein operator). The approach is a natu-

ral extension to goodness-of-fit testing of the earlier kernel statistical tests

[54, 55], which are based on the maximum mean discrepancy, c.f. Section 2.1.

As with these earlier tests, our statistic is a simple V-statistic, and can be

computed in closed form and in quadratic time in the number of samples.

Moreover, it is an unbiased estimate of the corresponding population dis-

crepancy. Only the gradient of the log target density is needed; we do

not require integrals with respect to the target density – including the nor-

malisation constant, which makes the test well suited for MCMC samples.

We make use of the extensive literature on asymptotics of V-statistics to

1Oates et al. addressed the problem of variance reduction in Monte Carlo integration,
using the Stein operator to avoid bias.
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formulate a hypothesis test [74, 106] and provide statistical tests for both

uncorrelated and correlated samples, where the latter is essential if the test

is used in assessing the quality of output of an MCMC procedure.

Related work. Several alternative approaches exist in the statistics litera-

ture to goodness-of-fit testing. A first strategy is to partition the space,

and to conduct the test on a histogram estimate of the distribution [14, 17,

58, 59]. Such space partitioning approaches can have attractive theoreti-

cal properties (e.g. distribution-free test thresholds) and work well in low

dimensions, however they are much less powerful than alternatives once

the dimensionality increases [56]. A second popular approach has been to

use the smoothed L2 distance between the empirical characteristic function

of the sample, and the characteristic function of the target density. This

dates back to the test of Gaussianity of Baringhaus and Henze [13, Equa-

tion 2.1], who used an exponentiated quadratic smoothing function. For

this choice of smoothing function, their statistic is identical to the maxi-

mum mean discrepancy, c.f. Section 2.1, with the exponentiated quadratic

kernel, which can be shown using the Bochner representation of the kernel

[115, Corollary 4]. It is essential in this case that the target distribution be

Gaussian, since the convolution with the kernel (or in the Fourier domain,

the smoothing function) must be available in closed form. An L2 distance

between Parzen window estimates can also be used [24], giving the same

expression again, although the optimal choice of bandwidth for consis-

tent Parzen window estimates may not be a good choice for testing [3]. A

different smoothing scheme in the frequency domain results in an energy

distance statistic (this likewise being an MMD with a particular choice of

kernel; see Sejdinovic et al. [103]), which can be used in a test of normality

[124]. The key point is that the required integrals are again computable in

closed form for the Gaussian, although the reasoning may be extended to

certain other families of interest, e.g. [91]. The requirement of computing

closed-form integrals with respect to the test distribution severely restricts
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this testing strategy. Finally, a problem related to goodness-of-fit testing is

that of model criticism [79]. In this setting, samples generated from a fitted

model are compared via the maximum mean discrepancy, c.f. Section 2.1,

with samples used to train the model, such that a small MMD indicates a

good fit. There are two limitation to the method: first, it requires samples

from the model (which might not be easy if this requires a complex MCMC

sampler); second, the choice of number of samples from the model is not

obvious, since too few samples cause a loss in test power, and too many

are computationally wasteful. Neither issue arises in our test, as we do not

require model samples.

An identical test (for uncorrelated samples) was independently devel-

oped at the same time by Liu et al. [77].

Thesis structure
We begin by introducing a minimal amount of necessary concepts and no-

tations in Chapter 2. This includes basics of reproducing kernel Hilbert

spaces in Section 2.1, score matching in Section 2.2, and Markov chain

Monte Carlo in Section 2.3.

Part I – Adaptive Monte Carlo proposals

We introduce three contributions for using kernel methods in adaptive

MCMC transition kernels. Chapter 3 is based on modelling covariance

in an RKHS for proposals that locally align with the target density. Chap-

ter 4 is based on modelling the score to mimic Hamiltonian dynamics and

develops fast approximations to existing kernel-based score learning meth-

ods. Chapter 5 applies these concepts to the context of sequential Monte

Carlo.

Part II – Efficient and principled score estimation

Chapter 6 provides yet another fast approximate kernel-based score learn-

ing method, which is a generalisation of those described in Chapter 4. The

method’s theoretical foundations are explored in a longer technical proof
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in Chapter 7.

Part III – Goodness-of-fit testing

Chapter 8 introduces a novel kernel goodness-of-fit test for measuring the

quality of MCMC samples, and for assessing convergence of the score esti-

mation models from Chapter 4.

Part IV – Conclusions

We finally conclude, and discuss potential future work and recent develop-

ments related to this work.



Chapter 2

Background

We now introduce concepts and notation that is used throughout the rest

of the thesis.

2.1 Reproducing kernel Hilbert spaces

Reproducing kernel and feature map

According to the Moore-Aronszajn theorem [19, page 19], for every sym-

metric, positive definite function (kernel)

k : X ×X →R

there is an associated RKHS H of real-valued functions on X with repro-

ducing kernel k, that is

〈k(·, x), f )〉H = f (x) ∀ f ∈ H. (2.1)

The map ϕ : X →H, with

ϕ : x 7→ k(·, x), (2.2)

is called the (canonical) feature map of k. The reproducing property (2.1) also

holds for for kernel derivatives, as long as k is differentiable [119, Lemma
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4.34],

〈
∂

∂xi
k(·, x), f

〉

H
=

∂

∂xi
f (x) ∀ f ∈ H, (2.3)

which can be generalised to higher-order derivatives as well.

Mean embedding

This feature map or embedding of a single point can be extended to that of

a probability measure P on X : its kernel embedding is an element µP ∈ H,

given by

µP =
∫

k(·, x)dP(x)

[19, 46, 111]. If a measurable kernel k is bounded, it is straightforward to

show using the Riesz representation theorem that the mean embedding µP

exists for all probability measures on X . For many interesting bounded

kernels k, including the Gaussian, Laplace and inverse multi-quadratics,

the kernel embedding P 7→ µP is injective. Such kernels are said to be

characteristic [114, 115], since each distribution is uniquely characterized by

its embedding. The kernel embedding µP is the representer of expectations

of smooth functions w.r.t. P, i.e.

〈 f ,µP〉H =
∫

f (x)dP(x) ∀ f ∈ H.

Given samples X = {Xi}n
i=1 ∼ P, the embedding of the empirical measure

is µX = 1
n ∑n

i=1 k(·, Xi), i.e. the sample mean in feature space.

Covariance operator

Denote by CP : H→H the covariance operator for a probability measure P

[10, 46], which satisfies

CP =
∫

k(·, x)⊗ k(·, x)dP(x)− µP ⊗ µP, (2.4)
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where for a,b, c ∈ H the tensor product is defined as

(a⊗ b)c = 〈b, c〉H a. (2.5)

The covariance operator has the property that

〈 f ,CPg〉H = EP( f g)−EP f EP g ∀ f , g ∈ H.

Analogous to the mean in feature space, we can think of the covariance

operator as the generalisation of the covariance matrix in feature space.

Maximum mean discrepancy

The MMD [22, 53, 54] is a measure of distance for two random variables

x ∼ P,y ∼ Q, here defined in a unit ball in an RKHS H,

sup
‖ f ‖H=1

(EP f (x)−EQ f (y)) = ‖µP − µQ‖H,

where the right hand side is an interpretation as the mean difference of

the random variables embedded in the RKHS, c.f. mean embedding. The

equality can be showed using simple RKHS arguments [53, Lemma 4]. The

MMD can be estimated from samples {Xi}n
i=1,{Yj}m

j=1 in quadratic time,

for example as

1
n(n− 1)

n

∑
i=1

m

∑
j 6=i

k(Xi, Xj) +
1

m(m− 1)

n

∑
i=1

m

∑
j 6=i

k(Yi,Yj)−
2

nm

n

∑
i=1

m

∑
j=1

k(Xi,Yj).

Measuring convergence of mixed third order moments. Throughout the

experimental section of the paper, we will use the empirical MMD in the

RKHS of the third order polynomial kernel

k(x,y) =
(

1 + x>y
)3

.
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The corresponding (finite dimensional) RKHS captures all mixed moments

up to order three, i.e. an empirical estimate quantifies how close two sets

of samples are in terms of such moments in a single quantity. We will

compare a reference set of samples from a long MCMC chain with outputs

of sampling algorithms.

Kernel parametrization of exponential families

We now describe the kernel or infinite dimensional exponential family [26, 47].

This is a generalisation of the standard exponential family model [126]. The

model class is defined as a set of density functions

P =
{

p f (x) := exp ( f (x)− A( f ))q0(x) | f ∈ F
}

, (2.6)

where F ⊆ H is the set of functions in the RKHS H for which the normal-

izer

A( f ) = log Z(p f ) Z(p f ) =
∫

exp( f (x))q0(x)dx (2.7)

is finite, and q0 is a base measure with appropriately vanishing tails. That

this is a member of the exponential family becomes apparent when we re-

call the reproducing property (2.1): the feature map x 7→ k(x, ·) in (2.2) is the

sufficient statistic, and f is the natural parameter whose evaluation by the

reproducing property (2.1) is the inner product with the sufficient statistic,

f (x) = 〈k(x, ·), f 〉H. An overview of various finite dimensional members of

the exponential family (such as Gamma, Poisson, Binomial, etc.) and their

corresponding kernel functions may be found in [117, Example 1]. The

model (2.6) defines broad class of densities: when universal kernels are

used, the family is dense in the space of continuous densities on compact

domains, with respect to e.g. total variation distance and Kulback-Leibler

divergence [117, Section 3].

Unfortunately, fitting (2.6) by maximum likelihood becomes impracti-

cal in high dimensions, and is ill-posed in infinite dimensions, due to the
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intractability of A( f ) [15, 57], [47, Section 1.3.1]. It is, however, possible to

consistently fit an un-normalised version of (2.6) by directly minimising the

expected gradient mismatch between the model (2.6) and the data gener-

ating density. This is achieved by generalising a score matching approach

[63, 117] to RKHS parameter spaces. The technique avoids the problem

of dealing with the intractable A( f ) in (2.7), and reduces the problem to

solving a linear system. We describe the estimator below.

2.2 Score matching & un-normalised density es-

timation

Suppose we are given a set of points X = {Xb}b∈[n] ⊂ Rd sampled i.i.d.

from an unknown distribution with density p0. Our setting is that of un-

normalised density estimation, where we wish to fit a model p such that

p(x)/Z(p) ≈ p0(x) in some divergence measure, and we do not concern

ourselves with the normalization factor in (2.7).

Hyvärinen [63] proposed an elegant approach to fit an un-normalised

density p0 with a model p, by minimizing the Fisher divergence, the ex-

pected squared distance between score functions1 ∇x log p(x):

J(p0‖p) =
1
2

∫
p0(x)‖∇x log p(x)−∇x log p0(x)‖2

2 dx (2.8)

=
∫

p0(x)
d

∑
i=1

[
∂2

i log p(x) +
1
2
(∂i log p(x))2

]
dx + const, (2.9)

where we use ∂i f (x) to denote ∂
∂xi

f (x). The equality in (2.9) assumes some

mild regularity conditions and contains a constant depending only on p0.

Crucially, (2.9) is independent of the normaliser (2.7) and, other than the

constant, depends on p0 only through an expectation, so it can be estimated

by a simple Monte Carlo average.

1Here we use the term score in the sense of Hyvärinen [63], i.e. the gradient of the log
density w.r.t. a point x in the domain of p0.
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Kernel exponential families

For the kernel exponential family model (2.6), Sriperumbudur et al. [117,

Theorem 3] showed that the score matching loss (2.9) takes a quadratic

form (see also Lemma 1 in Chapter 7),

J(p0||p f ) =
1
2
〈 f − f0,C( f − f0)〉H,

where

C :H→H, C :=
∫

p0

d

∑
i=1

∂ik(·, x)⊗ ∂ik(·, x)dx

can be thought of as a ‘covariance between derivatives’ operator similar to

the covariance operator (2.4), and f0 ∈ H is the RKHS function that corre-

sponds to the true2 density p0. The expression can be further simplified

to

J(p0‖p f ) =
1
2
〈 f ,C f 〉H + 〈 f ,ξ〉H + J(p0‖q0),

where

H 3 ξ :=
∫

p0

d

∑
i=1

(
∂ik(·, x)∂i logq0 + ∂2

i k(·, x)
)

dx,

and where J(p0‖q0) is the Fisher divergence between the base measure q0

and the true density (independent of f ).

We will mostly use q0 = const throughout this work, which results,

intuitively speaking, in 〈ξ, f 〉H =
∫

p0 ∑d
i=1 ∂2

i f (x)dx quantifying curvature

of f .

Estimation in kernel exponential families

We briefly discuss the score matching approach that Sriperumbudur et al.

[117] propose to fit the kernel exponential family model (2.6), i.e. to find an

2Note that this assumes the ‘well specified’ case, i.e. there exists an f0 ∈ H such that
p f0 = p0, more details will follow in Chapter 6 and Chapter 7.
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f such that p f approximates p0. Their empirical estimator of (2.9) is

Ĵ( f ) = Ĵ(p0‖p f )− const

=
1
n

n

∑
b=1

d

∑
i=1

∂2
i f (Xb) +

1
2
(∂i f (Xb))

2 , (2.10)

where the constant depends on p0 and q0 but not on f . Minimizing a

regularised version of (2.10) gives

fλ,n = argmin
f∈H

Ĵ( f ) +
1
2

λ‖ f ‖2
H = − ξ̂

λ
+

n

∑
a=1

d

∑
i=1

β(a,i)∂ik(Xa, ·), (2.11)

ξ̂ =
1
n

n

∑
a=1

d

∑
i=1

∂2
i k(Xa, ·) + ∂ik(Xa, ·)∂i logq0(Xa), . (2.12)

where β(a,i) denotes the (a − 1)d + ith entry of a vector β ∈ Rnd; we use

∂ik(x,y) to mean ∂
∂xi

k(x,y), and ∂i+dk(x,y) for ∂
∂yi

k(x,y). To evaluate the

estimated un-normalised log-density fλ,n at a point x, we take a linear

combination of ∂ik(Xa, x) and ∂2
i k(Xa, x) for each sample Xa. The weights

β of this linear combination are obtained by solving the nd-dimensional

linear system

(G + nλI)β = h/λ, (2.13)

where G ∈ Rnd×nd is the matrix collecting partial derivatives of the kernel

at the training points,

G(a,i),(b,j) = ∂i∂j+dk(Xa, Xb),

and h ∈Rnd evaluates derivatives of ξ̂,

h(b,i) = ∂i ξ̂(Xb).



32 Chapter 2. Background

Solving (2.13) takes O(n3d3) time and O(n2d2) memory, which quickly

becomes infeasible as n grows, especially for large d.

2.3 Markov chain Monte Carlo

Denote an un-normalised target density on X by π. We are interested

in constructing a Markov chain X1 → X2 → ·· · → Xt → . . . such that

limt→∞ Xt ∼ π. By running the Markov chain for a long time T, we can con-

sistently approximate any expectation w.r.t. π using sample averages using

(1.1), [93]. Markov chains are constructed using the Metropolis-Hastings

(MH) algorithm, which at the current state xt draws a point from a proposal

distribution X∗ ∼ Q(·|Xt), and sets Xt+1← X∗ with probability

min
(

1,
π(X∗)Q(Xt|X∗)
π(Xt)Q(X∗|Xt)

)
, (2.14)

and Xt+1← Xt otherwise.

Exact-approximate inference

Replacing π(x) in (2.14) with an estimator π̂(x) that is unbiased,

i.e. E π̂(x) = π(x) where the expectation is over the estimation random-

ness, results in pseudo-marginal MCMC. It is straight-forward to show that

the resulting Markov chain retains the same, asymptotically exact, limiting

distribution [5, 16].

Random walk (adaptive) Metropolis

One of the simplest (continuous) proposal distributions is a Gaussian,

which results in the random walk Metropolis algorithm. At position Xt, the

proposal is sampled from

Qt(·|Xt) =N (· | Xt,νΣ), (2.15)

for some user-specified covariance Σ and (positive) step-size ν.

Clearly, the choice of Σ impacts sampling efficiency, however, choosing
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Σ prior to running the algorithm is challenging, as the structure of the

target is yet unknown. One idea is to learn the global covariance structure

on the fly. Let Σt = Σt(X0, X1, . . . , Xt−1) denote a covariance matrix estimate

obtained from the Markov chain history {Xi}t−1
i=0 . The adaptive Metropolis

algorithm [6, 60, 61] replaces Σ with Σt in (2.15),

Qt(·|Xt) =N (· | Xt,νtΣt). (2.16)

Adaptive Metropolis therefore considers global covariance structure of the

target when proposing moves, which often leads to improved convergence

speed.

While adaptive Metropolis was shown to converge to the same correct

asymptotic distribution as random walk metropolis under certain condi-

tions, this is not necessarily true in general [6, Section 2]. Therefore, care

has to been taken when adaptive proposal mechanisms are used.

Step-size adaptation

One choice for the scaling factor ν in the Gaussian proposal (2.15) is to use

a fixed factor ν = 2.38/
√

d, which was shown to be optimal on Gaussian

targets in an asymptotic sense [48]. This result does not generally hold

for adaptive Metropolis in (2.16) or for non-Gaussian targets, but it can

nevertheless be used as a heuristic. Alternatively, the scale ν can also be

replaced with νt, which can be adapted at each step, as in [6, Algorithm 4],

to obtain an ‘asymptotically optimal’ the acceptance rate α∗ ≈ 0.234 from

Gelman et al. [48] and Rosenthal [97]. A simple rule to tune the step-size

such that the current acceptance rate αt reaches a desired value α∗ is the

stochastic approximation recursion by Robbins and Monro [92], heavily

used by the work of Andrieu and Thoms [6],

logνt+1 = logνt + λt+1 (αt − α∗) , (2.17)

where λt is a ‘learning-rate’ parameter.
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Chapter 3

Kernel adaptive

Metropolis-Hastings

This chapter is based on collaborative work, D. Sejdinovic, H. Strathmann,

M. Lomeli, C. Andrieu, and A. Gretton. “Kernel Adaptive Metropolis-

Hastings”. In: International Conference for Machine Learning. 2012.

A kernel adaptive Metropolis-Hastings algorithm is introduced, for the

purpose of sampling from a target distribution with strongly non-linear

support. The algorithm embeds the trajectory of the Markov chain into a

reproducing kernel Hilbert space, such that the feature space covariance

of the samples informs the choice of proposal. The procedure is computa-

tionally efficient and straightforward to implement, since the RKHS moves

can be integrated out analytically: our proposal distribution in the orig-

inal space is a normal distribution whose mean and covariance depend

on where the current sample lies in the support of the target distribution,

and adapts to its local covariance structure. Furthermore, the procedure

requires neither gradients nor any other higher order information about

the target, making it particularly attractive for contexts such as pseudo-

marginal MCMC. Kernel Adaptive Metropolis-Hastings outperforms com-

peting fixed and adaptive samplers on multivariate, highly non-linear tar-

get distributions, arising in both real-world and synthetic examples.
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Chapter outline

Based on the notion of covariance operators in RKHS, c.f. Section 2.1, we

describe a sampling strategy for Gaussian measures in the RKHS in Sec-

tion 3.1, and introduce a cost function for constructing proposal distribu-

tions. In Section 3.2, we outline our main algorithm, termed kernel adap-

tive Metropolis-Hastings (MCMC Kameleon). We provide experimental

comparisons with other fixed and adaptive samplers in Section 3.3, where

we show superior performance in the context of pseudo-marginal MCMC

for Bayesian classification, and on synthetic target distributions with highly

non-linear shape.

3.1 Sampling in RKHS

Our approach is based on the idea that the non-linear support of a target

density may be learned using kernel principal component analysis (ker-

nel PCA) [8, 110], which is standard linear PCA [21, Chapter 12] on the

empirical version of the covariance operator (2.4) in an RKHS,

CX =
1
n

n

∑
i=1

k(·, Xi)⊗ k(·, Xi)− µX ⊗ µX,

computed on a sample {Xi}n
i=1. The empirical covariance operator behaves

as expected from its finite dimensional covariance matrix counterpart: ap-

plying the tensor product in definition (2.5) gives

〈 f ,CXg〉H =
1
n

n

∑
i=1

f (Xi)g(Xi)−
(

1
n

n

∑
i=1

f (Xi)

)(
1
n

n

∑
i=1

g(Xi)

)
,

By analogy with algorithms which use linear PCA directions to in-

form MH proposals [6, Algorithm 8], non-linear PCA directions could be

encoded in the proposal construction, as we described in Sejdinovic et al.

[104, Appendix]. Alternatively, the approach we pursue here is to focus

on a Gaussian measure in the RKHS determined by the empirical covari-
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ance operator CX. This generalises the proposal (2.16) by Haario et al. [60],

which considers the Gaussian measure induced by the empirical covariance

matrix on the original space.

We next describe the proposal distribution at iteration t of the MCMC

chain. We assume that a subset of the chain history, denoted X = {Xi}n
i=1,

n ≤ t − 1, is available. Our proposal is constructed by first directly sam-

pling from the density induced by the empirical covariance operator in the

RKHS, and then performing a gradient descent in order to find a corre-

sponding location in input space. The gradient step’s cost function solely

depends on the embedded Markov chain history into the RKHS. We finally

add exploration noise.

As we will see later, it is possible to simplify the procedure by integrat-

ing out the sampling in the RKHS, the gradient step, and the exploration

noise altogether, leading to a closed-form proposal.

3.1.1 Gaussian measure of the covariance operator

We work with the Gaussian measure on the RKHS H with mean k(·, Xt)

and covariance ν2CX, where X = {Xi}n
i=1 is the subset of the chain his-

tory1. While there is no analogue of a Lebesgue measure in an infinite

dimensional RKHS, it is instructive (albeit with some abuse of notation) to

denote this measure in the ‘density form’

N ( f | k(·, Xt),ν2CX) ∝ exp
(
− 1

2ν2

〈
f − k(·, Xt),C−1

X ( f − k(·, Xt))
〉
H

)
.

(3.1)

As CX is a finite-rank operator, this measure is supported only on a finite-

dimensional affine space k(·, Xt)+HX, whereHX = span{k(·, Xi)}n
i=1 is the

subspace spanned by the canonical features of X. Conveniently, samples

1We assume w.l.o.g. that X contains the first n of all t data, i.e. {Xi}t
i=1 \ X = {Xi}t

n+1.
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from this measure take the form

f = k(·, Xt) +
n

∑
i=1

βi [k(·, Xi)− µX] ,

where

β ∼N (0,
ν2

n
I) (3.2)

is isotropic. The sample mean is

E [ f ] = E

[
k(·, Xt) +

n

∑
i=1

βi [k(·, Xi)− µX]

]
= k(·, Xt),

and the sample covariance is

E [( f − k(·, Xt))⊗ ( f − k(·, Xt))]

= E

[
n

∑
i=1

n

∑
j=1

βiβ j (k(·, Xi)− µX)⊗
(
k(·, Xj)− µX

)
]

=
n

∑
i=1

n

∑
j=1

E
[
βiβ j

]
(k(·, Xi)− µX)⊗

(
k(·, Xj)− µX

)

=
ν2

n

n

∑
i=1

(k(·, Xi)− µX)⊗ (k(·, Xi)− µX)

= ν2CX,

which exactly coincides with (3.1).

3.1.2 Obtaining proposals through gradient descent

The RKHS sample f = k(·, Xt) + ∑n
i=1 βi [k(·, Xi)− µX] represents the non-

linear covariance structure of the Markov chain history, and therefore

would be a useful proposal. Unfortunately, this sample does not in gen-

eral have a corresponding pre-image in the original domain X = Rd, i.e.

there is no point X∗ ∈ X such that f = k(·, X∗). If there were such a point,

then we could use it as a proposal in the original domain, as illustrated
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ϕ(X )

H

ϕ

CX

Feature space sample f

X∗Xt

ϕ(X∗)

ϕ(Xt)

Find pre-image in X

Feature space HInput space X

Figure 3.1: Illustration of embedding the Markov chain history into RKHS, sam-
pling from the corresponding empirical Gaussian measure, and taking
a gradient step to find the sample’s pre-image.

in Figure 3.1. Therefore, we are ideally looking for a point X∗ ∈ X whose

canonical feature map k(·, X∗) is close to f . A natural way to quantify

‘closeness’ here is the RKHS norm, which allows to translate the problem

of finding the pre-image into an optimisation problem,

argmin
x∈X

‖k (·, x)− f ‖2
H

=argmin
x∈X

{
k(x, x)− 2k(x, Xt)− 2

n

∑
i=1

βi [k(x, Xi)− µX(x)]

}
(3.3)

=: argmin
x∈X

{g(x)} ,

where we implicitly defined the kernel induced cost function g(x). In gen-

eral, this is a non-convex minimisation problem, and may be difficult to

solve [11]. Rather than solving it for every new vector of coefficients β,

which would lead to an excessive computational burden for every pro-

posal made, we instead take a single descent step along the gradient of g



42 Chapter 3. Kernel adaptive Metropolis-Hastings

in (3.3). The proposed new point is

X∗ = Xt − η∇xg(x)|x=Xt + ξ,

where η is a gradient step-size parameter and ξ ∼N (0,γ2 I) is an additional

isotropic ‘exploration’ term added after the gradient step. This exploration

noise avoids the proposal to collapse in unexplored regions, and thereby

ensures the proposal to fall back to an isotropic random walk2.

It is useful to split the scaled gradient at Xt into two terms as

η∇xg(x)|x=Xt = η (aXt −MX,Xt Hβ) ,

where aXt =∇xk(x, x)|x=Xt − 2∇xk(x, Xt)|x=Xt ,

MX,Xt = 2 [∇xk(x, X1)|x=Xt , . . . ,∇xk(x, Xn)|x=Xt ] (3.4)

is a d × n matrix, and H = I − 1
n 1n×n is the n × n centering matrix. Fig-

ure 3.2 shows g(x) and its gradients for several samples of β-coefficients,

in the case where the underlying X-samples are from the two-dimensional

nonlinear Banana target distribution of Haario et al. [60] that we will use in

Section 3.3.2. It can be seen that g may have multiple local minima, and that

it varies most along the high-density regions of the Banana distribution.

3.2 MCMC Kameleon algorithm

We now have a recipe to construct a proposal that is able to adapt to the

local covariance structure for the current chain state Xt. While we will

simplify this proposal by integrating out the moves in the RKHS, it is in-

structive to think of the proposal generating process as:

1. Sample β ∼N (0,ν2 I), n real-valued RKHS coefficients.

2We will see in Chapter 4 that this property translates into the fact that our algorithm
converges at least as fast as standard random walks.
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Samples {Xi}
200
i=1

Current position y

Figure 3.2: Heatmaps (white denotes large) and gradients of g(x) for four samples
of β and fixed {Xi}n

i=1 (blue), at the current position y = Xt (red).

This represents an RKHS sample

f = k(·, Xt) +
n

∑
i=1

βi [k(·, Xi)− µX]

which induces the cost function g(x).

2. Move along the gradient of g and add noise ξ ∼ N (0,γ2 I), i.e. X∗ =

Xt − η∇xg(x)|x=Xt , d-dimensional in the original space

This gives a proposal

X∗|Xt, β,ξ ∼N (X∗ | Xt − ηaXt + ηMX,Xt Hβ,γ2 I). (3.5)

3.2.1 Closed form proposal

As the the explicit sampling of f in the RKHS, the (deterministic) gradient

step, and the addition of exploration noise only involve Gaussian distri-

butions, the procedure can be integrated out analytically. This leads to a

closed form Gaussian proposal whose covariance matrix locally aligns to the

target covariance structure observed through the Markov chain history.

The first step in the derivation of the explicit proposal density is to

show that as long as k is a differentiable positive definite kernel, the term
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aXt vanishes. Derivations of the following result are given in [104, Ap-

pendix].

Proposition 1. Let k be a differentiable positive definite kernel. Then

aXt =∇xk(x, x)|x=Xt − 2∇xk(x, Xt)|x=Xt = 0.

Since aXt = 0, the gradient step-size η in (3.5) always appears together

with β, we merge η and the scale ν of the β-coefficients in (3.2) into a single

scale parameter, and set η = 1 henceforth. Furthermore, since both β and

X∗|Xt, β,ξ admit multivariate Gaussian densities, the proposal density can

be computed via integrating over β and ξ,

QX(X∗|Xt) =
∫

p(X∗|Xt, β,ξ)p(β)p(ξ)dβdξ,

where p(X∗|Xt, β,ξ) is the density of the explicit proposal in (3.5): an

isotropic Gaussian whose mean is shifted according to the kernel gradi-

ents from (3.4). We arrive at the following closed form expression for the

proposal distribution, a simple multivariate Gaussian density.

Proposition 2. QX(X∗|Xt) =N (X∗ | Xt,γ2 I + ν2MX,Xt HM>X,Xt
).

Figure 3.3 depicts contours of the proposal distribution QX(·|Xt) at

various states Xt for a fixed subsample X from various targets (target de-

tails in Section 3.3.2).

With the simplified proposal distribution in Proposition 2, we proceed

with the standard Metropolis-Hastings accept/reject scheme (2.14), where

the proposed sample X∗ is accepted with probability

α(Xt, X∗) := min
{

1,
π(X∗)QX(Xt|X∗)
π(Xt)QX(X∗|Xt)

}
, (3.6)

giving rise to the MCMC Kameleon algorithm. Each π(X∗) and π(Xt)
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Figure 3.3: 95% contours (red) of proposal distributions evaluated at a number of
points, for the first two dimensions of the banana target of Haario et al.
[60], and ring and flower. Underneath is the density heatmap, and the
samples (blue) used to construct the proposals.
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could be replaced by their unbiased estimates without impacting the in-

variant distribution [5].

MCMC Kameleon
Input: un-normalised target π, subsample size n, scaling parameters ν,γ,
adaptation probabilities {at}∞

t=0, kernel k,

• At iteration t + 1,

1. With probability at, update a random subsample X = {Xi}min(n,t)
i=1

of the chain history {Xi}t−1
i=0 ,

2. Sample proposed point x∗ from QX(·|Xt) = N (· | Xt,γ2 I +
ν2MX,Xt HM>X,Xt

), where MX,xt is given in (3.4) and H = I− 1
n 1n×n

is the centering matrix,

3. Accept or reject with the Metropolis-Hastings acceptance proba-
bility in (3.6),

Xt+1 ←
{

X∗, with probability α(Xt, X∗),
Xt, with probability 1− α(Xt, X∗).

3.2.2 Properties of the Algorithm

Update schedule and convergence.

MCMC Kameleon requires a subsample X = {Xi}n
i=1 at each iteration of the

algorithm, and the proposal distribution QX(·|Xt) is updated each time a

new subsample X is obtained. It is well known that a chain which keeps

adapting the proposal distribution need not converge to the correct tar-

get [6]. To guarantee convergence, we introduce adaptation probabilities

{at}∞
t=0, such that at → 0 and ∑∞

t=1 at = ∞, and at iteration t we update

the subsample X with probability at. As adaptations occur with decreas-

ing probability, Roberts and Rosenthal [94] implies that the resulting al-

gorithm is ergodic and converges to the correct target. Another straight-

forward way to guarantee convergence is to fix the set X = {Xi}n
i=1 after

a ‘burn-in’ phase, i.e. to stop adapting altogether [94, Proposition 2]. In

this case, a ‘burn-in’ phase is used to get a rough sketch of the shape of
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the distribution: the initial samples need not come from a converged or

even valid MCMC chain, and it suffices to have a scheme with good ex-

ploratory properties, e.g. Welling and Teh [129]. In MCMC Kameleon,

the term γ allows exploration in the initial iterations of the chain (while

the subsample X is still not informative about the structure of the target)

and provides regularisation of the proposal covariance in cases where it

might become ill-conditioned. Intuitively, a good approach to setting γ is

to slowly decrease it with each adaptation, such that the learned covari-

ance progressively dominates the proposal. We will return to the question

of convergence speed in the case of pre-mature stopping of the update in

Chapter 4.

Symmetry

In Haario et al. [61], the proposal distribution is asymptotically symmetric

due to the vanishing adaptation property. Therefore, the authors compute

the standard Metropolis acceptance probability, i.e. the proposal density

ratio in the MH acceptance probability in (3.6) is equal to one. In our case,

the proposal distribution is a Gaussian with mean at the current state of the

chain Xt and covariance γ2 I + ν2MX,Xt HM>X,Xt
, where MX,Xt depends both

on the current state Xt and a random subsample X = {Xi}n
i=1 of the chain

history {Xi}t−1
i=0 . This proposal distribution is never symmetric (as covari-

ance of the proposal always depends on the current state of the chain), and

therefore we use the Metropolis-Hastings acceptance probability to reflect

this.

3.2.3 Examples of covariance structure for standard kernels

The proposal distributions in MCMC Kameleon are dependent on the

choice of the kernel k. To gain intuition regarding their covariance struc-

ture, we give two examples.
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Linear kernel

In the case of a linear kernel k(x, x′) = x>x′, we obtain

MX,Xt = 2
[
∇xx>X1|x=Xt , . . . ,∇xx>Xn|x=Xt

]
= 2X>,

so the proposal is given by

QX(·|Xt) =N (Xt,γ2 I + 4ν2X>HX).

Thus, the proposal uses the scaled empirical covariance X>HX, with an ad-

ditional isotropic exploration component, and depends on Xt only through

the mean. MCMC Kameleon therefore is a generalisation of the adaptive

Metropolis algorithm [60].

Gaussian kernel

In the case of a Gaussian kernel k(x, x′) = exp
(
− ‖x−x′‖2

2
2σ2

)
, since

∇xk(x, x′) = 1
σ2 k(x, x′)(x′ − x), we obtain

MX,Xt =
2
σ2 [k(Xt, X1)(X1 − Xt), . . . ,k(Xt, Xn)(Xn − Xt)] .

Consider how this encodes the covariance structure of the target distribu-

tion, with the (i, j)-th entry given by

γ2δi=j +
4ν2(n− 1)

σ4n

n

∑
a=1

[k(Xt, Xa)]
2 (Xa,i − Xt,i)(Xa,j − Xt,j)

− 4ν2

σ4n ∑
a 6=b

k(Xt, Xa)k(Xt, Xb)(Xa,i − Xt,i)(Xb,j − Xt,j).

As the first two terms dominate, the previous points Xa which are close

to the current state Xt (for which k(Xt, Xa) is large) have larger weights,

and thus they have more influence in determining the covariance of the

proposal at Xt.
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3.3 Experiments
In the experiments, we compare the following samplers:

• (SM) Standard Metropolis with the isotropic proposal Q(·|Xt) =

N (Xt,ν2 I) and scaling ν = 2.38/
√

d

• (AM-FS) Adaptive Metropolis with a learned covariance matrix and

fixed scaling ν = 2.38/
√

d

• (AM-LS) Adaptive Metropolis with a learned covariance matrix and

scaling learned to bring the acceptance rate close to α∗ = 0.234 using

(2.17).

• (KAMH-LS) MCMC Kameleon with the scaling ν learned in the same

fashion (γ was fixed to 0.2), and which also stops adapting the pro-

posal after the burn-in of the chain

In all experiments, we use a random sub-sample X of the Markov chain

history of size n = 1000, and a Gaussian kernel with bandwidth selected

according to the median heuristic3. We consider the following non-linear

targets:

• the posterior distribution of Gaussian Process classification hyper-

parameters [44] on the UCI glass dataset

• the synthetic banana-shaped distribution of Haario et al. [60] and a

flower-shaped distribution concentrated on a circle with a periodic

perturbation

3.3.1 Pseudo-marginal MCMC for Bayesian classification

In the first experiment, we illustrate usefulness of the MCMC Kameleon

sampler in the context of Bayesian classification with GPs [131]. Variants

of this experiment will be used in Chapter 4, Chapter 5, and Chapter 6.

3The median heuristic matches the bandwidth of a Gaussian kernel with the median
pair-wise distance within the training data.
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Set-up

Consider the joint distribution of latent function responses f ∈ Rn, labels

y ∈ {−1,1}n, and hyper-parameters θ, given by

p( f ,y,θ) = p(θ)p( f |θ)p(y| f ),

where f |θ ∼ N (0,Kθ), with Kθ modelling the covariance between latent

function values evaluated at d-dimensional input covariates xa, xb:

(Kθ)ab = κ(xa, xb|θ) = exp

(
−1

2

d

∑
i=1

(xa,i − xb,i)
2

`2
i

)

and θi = log`2
i . We restrict our attention to the binary logistic classifier, i.e.

the likelihood is given by

p(yi| fi) =
1

1− exp(−yi fi)
,

where yi ∈ {−1,1}. We pursue a fully Bayesian treatment, and estimate

the posterior of the hyper-parameters θ. As observed by Murray and

Adams [84], a Gibbs sampler on p(θ, f |y), which samples from p( f |θ,y) and

p(θ| f ,y) in turn, is problematic, as p(θ| f ,y) is extremely sharp, drastically

limiting the amount that any Markov chain can update θ| f ,y. On the other

hand, if we directly consider the marginal posterior p(θ|y) ∝ p(y|θ)p(θ)

of the hyper-parameters, a much less peaked distribution can be ob-

tained. The marginal likelihood p(y|θ), however, is intractable for the non-

Gaussian likelihood p(y| f ), so it is not possible to analytically integrate

out the latent variables. Pseudo-marginal MCMC methods, c.f. Andrieu

and Roberts [5] and Section 2.3, enable asymptotically exact inference on this

problem, by replacing p(y|θ) with an unbiased estimate. Such an estimate
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Figure 3.4: Dimensions 2 and 7 of the marginal hyperparameter posterior on the
UCI Glass dataset

can for example be obtained via importance sampling,

p̂(y|θ) :=
1

nimp

nimp

∑
i=1

p(y| f (i)) p( f (i)|θ)
q( f (i)|θ) ,

where
{

f (i)
}nimp

i=1
∼ q( f |θ) are nimp importance samples form a tractable

distribution q( f |θ)

Filippone and Girolami [44] applied this idea to the presented GP clas-

sification framework and obtained state-of-the-art results in terms of accu-

racy of predictions and uncertainty quantification. The importance distri-

bution q( f |θ) is chosen as the Laplace or as the expectation propagation

(EP) approximation of p( f |y,θ) ∝ p(y| f )p( f |θ).

Data

We consider the UCI glass dataset [9], where classification of window

against non-window glass is sought. Due to the heterogeneous structure of

each of the classes (i.e. non-window glass consists of containers, tableware

and headlamps), there is no single consistent set of length-scales determin-

ing the decision boundary, so one expects the posterior of the covariance

bandwidths θd to have a complicated (non-linear) shape. This is illustrated

by the plot of the posterior projections to the dimensions 2 and 7 (out of 9)

in Figure 3.4.
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Experimental protocol

Since the ground truth for the hyper-parameter posterior is not available,

we initially run 30 standard Metropolis chains for 500,000 iterations (with

a 100,000 burn-in), keep every 1000-th sample in each of the chains, and

combine them. The resulting samples are used as a benchmark, to evaluate

the performance of shorter single-chain runs of SM, AM-FS, AM-LS and

KAMH-LS. We execute each of these algorithms for 100,000 iterations (with

a 20,000 burn-in) and keep every 20-th sample.

Results

We use two metrics for evaluating the performance, always relative to the

large-scale benchmark sample. First, we compute the Euclidean distance of

empirical mean of the sampler output µ̂θ and the mean of the benchmark

samples µb
θ, ∥∥∥µ̂θ − µb

θ

∥∥∥
2

,

as a function of sample size (Figure 3.5, left). Second, in order to quan-

tify convergence in higher order moments, we estimate the MMD using a

third order polynomial kernel, c.f. Section 2.1, between each sampler out-

put and the benchmark sample (Figure 3.5, right). The figures indicate that

KAMH-LS approximates the benchmark sample better than the competing

approaches, where the effect is especially pronounced in the high order

moments, indicating that KAMH-LS thoroughly explores the distribution

support in a relatively small number of samples.

Computational costs

The bulk of the cost for pseudo-marginal MCMC is in importance sam-

pling in order to obtain the acceptance ratio. Therefore, the additional cost

imposed by KAMH-LS is negligible. Indeed, we observed that there is an

increase of only 2-3% in terms of effective computation time in comparison

to all other samplers, for the chosen size of the chain history sub-sample

(n = 1000).
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Figure 3.5: The comparison of SM, AM-FS, AM-LS and KAMH-LS in terms of the
distance between the estimated mean and the mean on the benchmark
sample (left) and in terms of the maximum mean discrepancy to the
benchmark sample (right). The results are averaged over 30 chains for
each sampler. Error bars represent 80%-confidence intervals.

3.3.2 Synthetic examples.

We next evaluate MCMC Kameleon on a number of artificial targets with

high degrees of non-linearity. In these examples, exact quantile regions of

the targets can be computed analytically, so we can directly assess perfor-

mance without the need to estimate distribution distances on the basis of

samples (i.e. by estimating MMD to the benchmark sample). We compute

the following measures of performance (similarly as in Andrieu and Thoms

[6] and Haario et al. [60]) based on the chain after burn-in: average accep-

tance rate, norm of the empirical mean (the true mean is by construction

zero for all targets), and the deviation of the empirical quantiles from the

true quantiles.

Banana and flower target

In Haario et al. [60], the following family of non-linear target distribu-

tions is considered. Let X ∼ N (0,Σ) be a multivariate normal in d ≥ 2

dimensions, with Σ = diag(v,1, . . . ,1), which undergoes the transformation

X→ Y, where Y2 = X2 + b(X2
1 − v), and Yi = Xi for i 6= 2. We will write
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Y ∼ B(b,v). It is clear that EY = 0, and that

B(y;b,v) =N (y1;0,v)N (y2;b(y2
1 − v),1)

d

∏
j=3
N (yj;0,1).

The second target distribution we consider is the d-dimensional flower

target F (r0, A,ω,σ), with

F (x;r0, A,ω,σ) =

exp


−

√
x2

1 + x2
2 − r0 − Acos (ωatan2 (x2, x1))

2σ2




×
d

∏
j=3
N (xj;0,1).

This distribution concentrates around the r0-circle with a periodic pertur-

bation (with amplitude A and frequency ω) in the first two dimensions.

Results

We consider 8-dimensional target distributions: the moderately twisted

B(0.03,100) banana target (Figure 3.6, top) and the strongly twisted

B(0.1,100) banana target (Figure 3.6, middle) and F (10,6,6,1) flower target

(Figure 3.6, bottom).

The results show that MCMC Kameleon is superior to the competing

samplers. Since the covariance of the proposal adapts to the local structure

of the target at the current chain state, as illustrated in Figure 3.3, MCMC

Kameleon does not suffer from wrongly scaled proposal distributions. The

result is a significantly improved quantile performance in comparison to all

competing samplers, as well as a comparable or superior accuracy in esti-

mating the norm of the empirical mean. SM has a significantly larger norm

of the empirical mean, due to its purely random walk behaviour (e.g. the

chain tends to get stuck in one part of the space, and is not able to traverse

both tails of the banana target equally well). AM with fixed scale has a low
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acceptance rate (indicating that the scaling of the proposal is too large),

and even though the norm of the empirical mean is much closer to the true

value, quantile performance of the chain is poor. Even if the estimated co-

variance matrix closely resembles the true global covariance matrix of the

target, using it to construct proposal distributions at every state of the chain

may not be the best choice. For example, AM correctly captures the scaling

along individual dimensions for the flower target (the norm of its empirical

mean is close to its true value of zero) but fails to capture local dependence

structure. The flower target, due to its symmetry, has an isotropic covari-

ance in the first two dimensions – even though they are highly dependent.

This leads to a mismatch in the scale of the covariance and the scale of the

target, which concentrates on a thin band in the joint space. AM-LS has

the ‘correct’ acceptance rate, but the quantile performance is even worse,

as the scaling now becomes too small to traverse high-density regions of

the target. Figure 3.7 illustrates how the norm of the mean and quantile

deviation (shown for 0.5-quantile) decrease as a function of the number of

iterations. This shows that the observed trends persist along the evolution

of the whole chain.
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Moderately twisted 8-dimensional B(0.03,100) target; iterations: 40000,
burn-in: 20000
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Figure 3.6: Results for three non-linear targets, averaged over 20 chains for each
sampler. Accept is the acceptance rate scaled to the interval [0,1]. The
norm of the mean ||Ê[X]|| is scaled by 1/10 to fit into the figure scaling,
and the bars over the 0.1, . . . ,0.9-quantiles represent the deviation from
the exact quantiles, scaled by 10, i.e. 0.1 corresponds to 1% deviation.
Error bars represent 80%-confidence intervals.
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Figure 3.7: Comparison of SM, AM-FS, AM-LS and KAMH-LS in terms of the
norm of the estimated mean (left) and in terms of the deviation from
the 0.5-quantile (right) on the strongly twisted Banana distribution.
The results are averaged over 20 chains for each sampler. Error bars
represent 80%-confidence intervals.





Chapter 4

Gradient-free Hamiltonian Monte

Carlo with efficient kernel

exponential families

This chapter is based on collaborative work, H. Strathmann, D. Sejdinovic,

S. Livingstone, Z. Szabo, and A. Gretton. “Gradient-free Hamiltonian

Monte Carlo with Efficient Kernel Exponential Families”. In: Advances in

Neural Information Processing Systems. 2015.

We propose Kernel Hamiltonian Monte Carlo (KMC), a gradient-free

adaptive MCMC algorithm based on Hamiltonian Monte Carlo (HMC).

On target densities where classical HMC is not an option due to intractable

gradients, KMC adaptively learns the target’s gradient structure by fitting

an exponential family model in a reproducing kernel Hilbert space. Com-

putational costs are reduced by two novel efficient approximations to this

gradient. While being asymptotically exact, KMC mimics HMC in terms of

sampling efficiency, and offers substantial mixing improvements over state-

of-the-art gradient-free samplers. We support our claims with experimen-

tal studies on both toy and real-world applications, including approximate

Bayesian computation and exact-approximate MCMC.
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Relationship to kernel adaptive Metropolis-Hastings

In Chapter 3, we have seen how adaptively modelling mean and covariance

in an RKHS can be used to adapt MCMC proposals to local covariance

structure of the unknown underlying target density. It would be desirable

to both incorporate prior parametric knowledge about the target density,

such as tail behaviour; and to exploit higher order information of the kernel

model, such as gradients, in order to propose more efficient moves. Fur-

thermore, the ‘Gaussian in feature space’ model (3.1) from Chapter 3 cur-

rently lacks a theoretical framework regarding consistency, convergence,

and generalisation error. This is in particular true for the model’s score

function.

In this chapter, we extend the ideas from Chapter 3 and directly esti-

mate the target gradients in order to construct a Metropolis-Hastings pro-

posal that mimics HMC and inherits the desirable property of covering

wide parts of the target’s support at high acceptance probabilities (c.f. Sec-

tion 1.3.1).

Score estimation

Due to the many unknowns in the model (3.1), we instead use the infinite

dimensional exponential family model (2.6), c.f. Section 2.1. As we will see,

conveniently, the MH accept/reject step (2.14) does not require access to the

(unavailable) normalising constant of the model used for the proposal con-

struction. Furthermore, the estimator enjoys theoretical guarantees [117],

and allows to include prior parametric information via the base measure

q0 in (2.6). More importantly, the method has been empirically observed

to be relatively robust to increasing dimensionality – in sharp contrast to

classical kernel density estimation [127, Section 6.5].

The need for approximations

As mentioned in Section 2.1, if we used the original estimator (2.11), (2.13),

computational costs would grow cubically in dimension and number of
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samples, and fitting the model would quickly become infeasible.

We therefore develop two novel approximations to the infinite dimen-

sional exponential family model. The first approximation, score matching

lite, is based on computing the solution in terms of a lower dimensional,

yet growing, subspace in the RKHS. As we will see in Section 4.3, KMC

with score matching lite (KMC lite) is geometrically ergodic on the same

class of targets as standard random walks. The second approximation uses

a finite dimensional feature space (KMC finite) with a random Fourier basis

[89]. KMC finite is an efficient online estimator that allows to use all of

the Markov chain history, at the cost of decreased efficiency in unexplored

regions. A choice between KMC lite and KMC finite ultimately depends

on the ability to initialise the sampler within high-density regions of the

target; alternatively, the two approaches could be combined.

Problem set-up

In this chapter we assume that the domain of interest X is a compact1

subset of Rd. Again, denote the un-normalised target density on X by π.

Recall we are interested in constructing a Markov chain X1→X2→ . . . such

that limt→∞ Xt ∼ π, c.f. Section 2.3.

Following Chapter 3, we assume that π is intractable, i.e. we can nei-

ther evaluate π(·) nor2 ∇ logπ(·), but can only estimate it without bias via

π̂(·). Again, replacing π(·) with π̂(·) results in pseudo-marginal MCMC

[5, 16], which asymptotically remains exact. This leaves random-walk

based methods as the state-of-the-art, c.f. Chapter 3 and [6]. We aim to

overcome random-walk behaviour with the use of Hamiltonian dynamics,

so as to obtain significantly more efficient sampling [86].

1The compactness restriction is imposed to satisfy the assumptions in [117], i.e. for the
density model estimator.

2Throughout the chapter ∇ denotes the gradient operator w.r.t. x.
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Hamiltonian Monte Carlo

HMC uses deterministic, measure-preserving maps to propose distant, un-

correlated moves with a high acceptance probability [86]. Starting from the

current Markov chain state q = Xt whose density is the negative log target,

referred to as the potential energy

U(q) := − logπ(q),

we introduce an auxiliary momentum variable p ∼ exp(−K(·)) with p ∈ X ;

usually with a ‘Gaussian’ quadratic form

K(p) =
1
2

p>Mp

for some positive definite M. The joint distribution of (p,q) is then propor-

tional to exp (−H(p,q)), where

H(p,q) := K(p) + U(q)

is called the Hamiltonian. H(p,q) defines a Hamiltonian flow, parametrised

by a trajectory length t ∈R, which is a map φH
t : (p,q) 7→ (p∗,q∗) for which

H(p∗,q∗) = H(p,q). This allows constructing π-invariant Markov chains:

for a chain at state q = Xt, repeatedly

(i) re-sample p′ ∼ exp(−K(·)) (independently of previous p)

(ii) apply the Hamiltonian flow for time t, giving (p∗,q∗) = φH
t (p′,q).

The flow can be generated by

dp
dt

= −∂H
∂q

= −U
∂q

dq
dt

=
∂H
∂p

=
K
∂p

. (4.1)

In practice, (4.1) is usually unavailable and we need to resort to approxi-

mations. In this work, we limit ourselves to the leap-frog integrator; see

[86] for details. To correct for discretisation error, a Metropolis acceptance
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procedure can be applied: starting from (p′,q), the end-point of the ap-

proximate trajectory is accepted with probability

min
[
1,exp

(
−H(p∗,q∗) + H(p′,q)

)]
.

It is clear that computing (p∗,q∗) = φH
t (p′,q) via (4.1) requires access to

∇ logπ, a fact that causes classical HMC to be unavailable in this context.

4.1 Kernel Hamiltonian dynamics

We now replace the potential energy in (4.1) by a kernel induced surro-

gate computed from the history of the Markov chain. This surrogate does

not require gradients of the log-target density. The surrogate induces a

kernel Hamiltonian flow, which can be numerically simulated using stan-

dard leap-frog integration. As with the discretisation error in HMC, any

deviation of the kernel induced flow from the true flow is corrected via a

Metropolis acceptance procedure. As in the pseudo-marginal MCMC ap-

proach the acceptance ratio here contains the estimation noise from π̂ and

in particular re-uses previous values of π̂, c.f. [5, Table 1]. Consequently,

the stationary distribution of the chain remains correct, given that we take

care when adapting the surrogate.

We construct a kernel induced potential energy surrogate whose gradi-

ents approximate the gradients of the true potential energy U in (4.1), with-

out accessing π or ∇π directly, but only using the history of the Markov

chain. To that end, we model the (un-normalised) target density π(x) with

the infinite dimensional exponential family model (2.6), i.e.

∇ f ≈ −∇U =∇ logπ

where f is the RKHS function corresponding to the model.

We return to estimation in Section 4.2 where we develop two efficient

approximations, and again in Chapter 6 where we develop an approxi-



64 Chapter 4. Gradient-free HMC with efficient kernel exponential families

mation with guarantees. For now, assume access to an f̂ ∈ H such that

∇ f̂ (x) ≈∇ logπ(x).

Kernel induced Hamiltonian flow

We define a kernel induced Hamiltonian operator by replacing U in the

potential energy part ∂U
∂p

∂
∂q in (4.1) by our kernel surrogate Uk = f . It is clear

that depending on Uk, the resulting kernel induced Hamiltonian Hk(p,q) =

K(p) + Uk(q) differs from the original one. That said, any bias on the

resulting Markov chain, in addition to discretisation error from the leap-

frog integrator, is naturally corrected for in the Metropolis step. We accept

an end-point φ
Hk
t (p′,q) of a trajectory starting at (p′,q) along the kernel

induced flow with the HMC version of the MH acceptance probability (2.14)

min
[
1,exp

(
−H

(
φ

Hk
t (p′,q)

)
+ H(p′,q)

)]
, (4.2)

where H
(

φ
Hk
t (p′,q)

)
corresponds to the true Hamiltonian evaluated at the

kernel induced proposal φ
Hk
t (p′,q). Here, in the pseudo-marginal context,

we replace both terms in the ratio in (4.2) by unbiased estimates, i.e. we

replace π(q) within H with an unbiased estimator π̂(q). This also involves

‘recycling’ the estimates of H from previous iterations to ensure asymptotic

correctness, c.f. [5, Table 1]. Any deviations of the kernel induced flow

from the true flow result in a decreased acceptance probability (4.2). We

therefore need to control the approximation quality of the kernel induced

potential energy to maintain high acceptance probability in practice. See

Figure 4.1 for an illustrative example.

4.2 Two estimators for kernel exponential fami-

lies
We now return to estimating the infinite dimensional exponential family

model from data. The original estimator in [117] has a large computa-

tional cost. This is problematic in the adaptive MCMC context, where the
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Figure 4.1: Hamiltonian trajectories on a 2-dimensional standard Gaussian. End
points of such trajectories (red stars to blue stars) form the proposal of
HMC-like algorithms. Top: Plain Hamiltonian trajectories oscillate on
a stable orbit, and acceptance probability is close to one. Bottom: Ker-
nel induced trajectories and acceptance probabilities on an estimated
energy function.
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model has to be updated on a regular basis. We propose two efficient ap-

proximations, each with its strengths and weaknesses. Both are based on

score matching, c.f. Section 2.2, and the kernel exponential family model,

c.f. Section 2.1.

4.2.1 Infinite dimensional exponential families lite

The original estimator of f in (2.11) takes a dual form in an RKHS sub-

space spanned by nd kernel derivatives, c.f. [117, Theorem 4] and (2.6).

The update of the proposal at the iteration t of MCMC requires inversion

of a td × td matrix. This is clearly prohibitive if we are to run even a

moderate number of iterations of a Markov chain. Following the ideas in

Chapter 3, we take a simple approach to avoid prohibitive computational

costs in t: we form a proposal using a random sub-sample of fixed size n

from the Markov chain history3, X = {Xi}n
i=1 ⊂ {Xi}t

i=1. In order to avoid

excessive computation when d is large, we replace the full dual solution

with a solution in terms of

span
(
{k(Xi, ·)}n

i=1
)

,

which covers the support of the true density by construction, and grows

with increasing n. That is, we assume that the RKHS function of the model

(2.6) takes the ‘light’ form

f (x) =
n

∑
i=1

αik(Xi, x), (4.3)

where α ∈ Rn are real valued parameters that are obtained by minimising

the empirical score matching objective (2.8). This representation is of a

form similar to [64, Section 4.1], the main differences being that the basis

functions are chosen randomly, the basis set grows with n, and we will

require an additional regularising term. Our estimator is summarised in

3As in Chapter 3, we assume w.l.o.g. that X contains the first n of all t data.
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the following result; a derivation is provided in Section 4.5.

Proposition 3. Given a set of samples {Xi}n
i=1 and assuming f (x) =

∑n
i=1 αik(Xi, x) for the Gaussian kernel k(x,y) = exp

(
−σ−1‖x− y‖2

2
)
, and

λ > 0, the unique minimiser of the 1
2 nσ2λ‖α‖2

2-regularised empirical score match-

ing objective (2.8) is given by

α̂λ = −σ

2
(C + λI)−1b, (4.4)

where b ∈Rn and C ∈Rn×n are given by

b =
d

∑
`=1

(
2
σ
(Ks` + Ds`K1− 2Dx`Kx`)− K1

)

C =
d

∑
`=1

[Dx`K− KDx` ] [KDx` − Dx`K] ,

with entry-wise products s` := (x` � x`) ∈ Rn where x` = ((X1)`, . . . , (Xn)`) ∈
Rn and Dx := diag(x) ∈Rn×n.

The estimator costs O(n3 + dn2) computation (for computing C,b, and

for inverting C) and O(n2) storage, for a fixed random chain history sub-

sample size n. We describe how this could be further reduced via low-rank

approximations to the kernel matrix and conjugate gradient methods in

Strathmann et al. [120, Appendix].

Gradients of the model are given as ∇ f (x) = ∑n
i=1 αi∇k(x, Xi), i.e. they

simply require to evaluate gradients of the kernel function. Evaluation and

storage of ∇ f (·) both cost O(dn).

4.2.2 Exponential families in finite feature spaces

Instead of fitting an infinite-dimensional model on a subset of the available

data, the second estimator is based on fitting a finite dimensional approx-

imation using all available data {Xi}t
i=1, in primal form. As we will see,

updating the estimator when a new data point arrives can be done online.

Define an m-dimensional approximate feature space Hm = Rm, and
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denote by φx ∈ Hm the embedding of a point x ∈ X = Rd into Hm = Rm.

Assume that the embedding approximates the kernel function as a finite

rank expansion k(x,y) ≈ φ>x φy. The log un-normalised density of the in-

finite model (2.6) can be approximated by assuming the model takes the

form

f (x) = 〈θ,φx〉Hm = θ>φx (4.5)

To fit θ ∈ Rm, we again minimise the score matching objective (2.8), as

derived in Section 4.6.

Proposition 4. Given a set of samples {Xi}t
i=1 and assuming f (x) = θ>φx for a

finite dimensional feature embedding x 7→ φx ∈ Rm, and λ > 0, the unique min-

imiser of the λ‖θ‖2
2-regularised empirical score matching objective (2.8) is given

by

θ̂λ := (C + λI)−1b,

where

b := − 1
n

t

∑
i=1

d

∑
`=1

φ̈`
Xi
∈Rm, C :=

1
n

t

∑
i=1

d

∑
`=1

φ̇`
Xi

(
φ̇`

Xi

)>
∈Rm×m,

with φ̇`
x := ∂

∂x`
φx and φ̈`

x := ∂2

∂x2
`
φx.

An example feature embedding based on random Fourier features [89,

116] and a standard Gaussian kernel is

φx =

√
2
m

[
cos(ω>1 x + u1), . . . , cos(ω>m x + um)

]
,

with ωi ∼ N (ω) and ui ∼ Uniform[0,2π]; more details for this example

are given in Section 4.6.2.

The estimator has a one-off cost of O(tdm2 + m3) computation and

O(m2) storage. Given that we have computed a solution based on the

Markov chain history {Xi}t
i=1, however, it is straightforward to update
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C,b, and the solution θ̂λ online, after a new point Xt+1 arrives. This is

achieved by storing running averages and performing low-rank updates of

matrix inversions, and costs O(dm2) computation and O(m2) storage, in-

dependent of t. Further details and an algorithmic description are given in

Section 4.6.3.

Gradients of the model are ∇ f (x) = [∇φx]
> θ̂ , i.e. they require the

evaluation of the gradient of the feature space embedding, costing O(md)

computation and and O(m) storage.

4.3 Kernel Hamiltonian Monte Carlo
By constructing a kernel induced Hamiltonian flow as in Section 4.1 from

the gradients of the infinite dimensional exponential family model (2.6),

and approximate estimators (4.3), (4.5), we arrive at a gradient-free, adap-

tive MCMC algorithm: Kernel Hamiltonian Monte Carlo (Algorithm 1).

Computational efficiency and geometric ergodicity

KMC finite using (4.5) allows for online updates using the full Markov

chain history {Xi}t
i=1, and therefore is a more elegant solution than KMC

lite, which has greater computational cost and requires sub-sampling the

chain history. Due to the parametric nature of KMC finite, however, the

tails of the estimator are not guaranteed to be flat. For example, the ran-

dom Fourier feature embedding described below Proposition 4 contains pe-

riodic cosine functions, and therefore oscillates in the tails of (4.5), resulting

in ‘distracted’ HMC proposals that are rarely accepted. As we will demon-

strate in the experiments in Section 4.4, this problem does not appear when

KMC finite is initialised in high-density regions, nor after burn-in.

In situations where information about the target density support is

unknown, and during burn-in, we suggest to use the lite estimator (4.4),

whose gradients decay outside of the training data. As a result, KMC lite

is guaranteed to fall back to a random walk Metropolis (c.f. Section 2.3)

in unexplored regions, inheriting its convergence properties, and smoothly
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transitions to HMC-like proposals as the MCMC chain grows. We have

made this observations already in Chapter 3, where the kernel adaptive

Metropolis-Hastings proposal’s covariance matrix falls back to the scaled

identity in unexplored regions. For the present case, which is more com-

plex due to the nature of the used Hamiltonian dynamics, the following

result establishes this formally, a proof can be found in Section 4.5.2.

Theorem 1. Assume d = 1, π(x) has log-concave tails, the regularity conditions

of [96, Theorem 2.2] (implying π-irreducibility and smallness of compact sets),

that MCMC adaptation stops after a fixed time, and a fixed number L of ε-leapfrog

steps. If limsup‖x‖2→∞ ‖∇ f (x)‖2 = 0, and ∃M : ∀x : ‖∇ f (x)‖2 ≤ M, then

KMC lite is geometrically ergodic from π-almost any starting point.

For example, when using the Gaussian kernel with ∇ f (x) =

∑n
i=1 αi∇k(x, Xi), it is straight-forward to verify that ∇ f is both bounded

and decays at infinity; a consequence of continuity and the fact that

limsup
‖x‖2→∞

(k(x, X)) = limsup
‖x‖2→∞

(
exp

(
−σ−1‖x− X‖2

2

))
= 0.

Vanishing adaptation and a full stop

MCMC algorithms that use the trajectory history for constructing propos-

als might yield divergent Markov chains. For the random walk proposals

in Chapter 3 and Section 2.3, we used the idea of ‘vanishing adaptation’

to avoid such biases. To our knowledge, in the present case of learning

gradients from the Markov chain history, however, it is not necessarily true

that such diminishing adaptation schemes satisfy the conditions required

for convergence, e.g. [94]. Therefore, we here take the conservative ap-

proach of using a diminishing adaptation for a fixed number of iterations,

and then stop adaptation altogether. I.e. let {at}∞
i=0 be a schedule of de-

caying probabilities such that ∃M : ∀t > M : at = 0. We update the density

gradient estimate according to this schedule in Algorithm 1. This schedule

side-steps any potential problems with MCMC convergence.
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The above adaptation schedule raises the natural question whether

stopping to adapt ‘too early’ harms the efficiency of KMC – potentially

resulting in a MCMC algorithm that is less efficient than an adaptive ran-

dom walk scheme? This is in fact not the case: in Theorem 1 we established

that KMC (lite) falls back to a random walk in unexplored regions (just as

KAMH from Chapter 3 did), therefore inheriting efficiency guarantees.

In practice, we did not observe divergent MCMC chains, even when

limt→∞ at = 0 and ∑∞
i=0 at = ∞, which hints at the fact that theoretical work

is needed to establish convergence conditions of adaptive MCMC with

learned gradients. Marshall and Roberts [81] established theory for pre-

conditioned Langevin-based methods adaptive MCMC methods, where the

preconditioning matrix learned from past samples.

Free Parameters

KMC has two free parameters: the Gaussian kernel bandwidth σ, and the

regularisation parameter λ. As KMC’s performance depends on the qual-

ity of the approximate infinite dimensional exponential family model in

(4.3) or (4.5), a principled approach is to use the score matching objective

function in (2.8) to choose σ,λ pairs via cross-validation. The search can be

guided by gradient-free black-box optimisation methods such as Bayesian

optimisation or evolutionary approaches [62, 113].

This is an improvement to the earlier kernel adaptive Metropolis-

Hastings from Chapter 3, where we did not address parameter choice due

to the lack of an objective function that is optimised.

4.4 Experiments

We start by quantifying performance of KMC finite on synthetic targets;

similar results can be produced with the lite version
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Algorithm 1 Kernel Hamiltonian Monte Carlo – Pseudo-code

Input Target (possibly noisy estimator) π̂, adaptation schedule at, HMC
parameters, size of basis m or sub-sample size n.
At iteration t+ 1, current state Xt, history {Xi}t

i=1, perform (1-4) with prob-
ability at
KMC lite:

1. Update sub-sample of {Xi}t
i=1

2. Re-compute C,b from Prop. 3

3. Solve α̂λ = −σ
2 (C + λI)−1b

4. ∇ f (x)← ∑n
i=1 αi∇k(x, Xi)

KMC finite:

1. Update to C,b from Prop. 4

2. Perform rank-d update to C−1

3. Update θ̂λ = (C + λI)−1b

4. ∇ f (x)← [∇φx]
> θ̂

5. Propose (p′, X∗) with kernel induced Hamiltonian flow, using ∇xU =
∇x f

6. Perform Metropolis step using π̂: accept Xt+1 ← X∗ w.p. (4.2) and
reject Xt+1← Xt otherwise. If π̂ is noisy and X∗ was accepted, store
above π̂(X∗) for evaluating (4.2) in the next iteration.

4.4.1 KMC finite: stability of trajectories in high dimen-

sions

In order to quantify efficiency in growing dimensions, we study hypothet-

ical acceptance rates along proposal trajectories from high-density points;

this is solely proposal based and there is no Markov chain produced yet.

Consider a challenging Gaussian target: we sample the diagonal entries

of the covariance matrix from a Gamma(1,1) distribution and then multi-

ply the matrix with a uniformly sampled random rotation matrix [7]. The

resulting target is challenging to estimate, as its length-scales are substan-

tially different across principal components. As a single Gaussian kernel

is not able to efficiently represent such scaling families, we use a rational

quadratic kernel for the gradient estimation,

k(x,y) =
∫

exp

(
−‖x− y‖2

2
2`2

)
p(`)d`,
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which an infinite sum of standard Gaussian kernels, weighted by a Gamma

distribution P(`) over length scales `.

Figure 4.2 shows the average acceptance over 100 independent trials

as a function of the number of (ground truth) samples and basis functions,

which are set to be equal n = m, and of dimension d. In low to moder-

ate dimensions, gradients of the finite estimator lead to acceptance rates

comparable to plain HMC.

On targets with more ‘regular’ smoothness, the estimator performs

significantly better. We reproduce the experiment in Figure 4.2 on an

isotropic Gaussian target. As length-scales across all principal components

are equal, this is a significantly less challenging target to estimate gradients

for; though still useful as a benchmark representing very smooth targets.

We use a standard Gaussian kernel and the same experimental protocol as

for Figure 4.2. The estimator performs well up to d≈ 100 with less variance,

Figure 4.3.

4.4.2 KMC finite: mixing on a synthetic example

We next demonstrate that KMC’s performance approaches that of HMC as

it sees more data. We compare KMC, plain HMC [86], an isotropic random

walk (RW), and KAMH from Chapter 3 on the 8-dimensional non-linear

banana-shaped target that was introduced in Section 3.3.2. We here only

quantify mixing after a sufficient burn-in (burn-in speed is included in next

example). We quantify performance on estimating the target’s mean, which

is exactly 0.

We tune the scaling of KAMH and RW to achieve 23% acceptance us-

ing the Robbins-Monro recursion (2.17), as outlined in Section 2.3. We

set HMC parameters to achieve 80% acceptance and then use the same pa-

rameters for KMC in order to ensure comparability. We run all samplers

for 2000+200 iterations from a random start point, discard the burn-in and

compute acceptance rates, the norm of the empirical mean ‖Ê[x]‖, and the

minimum effective sample size (ESS) across dimensions. For KAMH and
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Figure 4.2: Hypothetical acceptance probability of KMC finite on a challenging
target in growing dimensions. Top: As a function of n = m (x-axis) and
d (y-axis). Middle/bottom: Slices through first plot with error bars for
fixed n = m and as a function of d, and for fixed d as a function of
n = m.
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Figure 4.3: Acceptance probability of kernel induced Hamiltonian flow for a stan-
dard Gaussian in high dimensions for an isotropic Gaussian. Top: As
a function of n = m (x-axis) and d (y-axis). Middle/bottom: Slices
through first plot with error bars for a fixed n = m and as a function in
d, and for a fixed d as a function of n = m.
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KMC, we repeat the experiment for an increasing number of samples and

basis functions m = n to learn the density from. Figure 4.4 shows the re-

sults as a function of m = n. KMC clearly outperforms RW and KAMH,

and eventually achieves performance close to HMC as n = m grows.

4.4.3 KMC lite: pseudo-marginal MCMC for GPs

We next apply KMC to sample from the marginal posterior over hyper-

parameters of a Gaussian process classification model on the UCI glass

dataset [9], as set up in Section 3.3.1. Classical HMC cannot be used for

this problem, due to the intractability of the marginal likelihood and its

gradients. We consider classification of window against non-window glass

in the UCI Glass dataset, which induces a posterior that has a non-linear

shape, see Figure 3.4. Figure 4.5 shows the posterior’s pairwise marginals

and corresponding kernel induced Hamiltonian dynamics.

Our experimental protocol mostly follows Section 3.3.1, though we

only use 6000 MCMC samples. Since the ground truth for the hyper-

parameter posterior is not available, we initially run multiple hand-tuned

standard Metropolis-Hastings chains for 500,000 iterations (with a 100,000

burn-in), keep every 1000-th sample in each of the chains, and combine

them. The resulting samples are used as a benchmark, to evaluate the

performance all algorithms. Once again, we use the MMD to assess con-

vergence in the first three moments, c.f. Section 2.1, between each sampler

output and the benchmark sample.

KMC randomly uses between 1 and 10 leapfrog steps of a size cho-

sen uniformly in [0.01,0.1], a standard Gaussian momentum, and a kernel

tuned by cross-validation, see below. We do not extensively tune the HMC

parameters of KMC as the described settings are sufficient. Both KMC and

KAMH use 1000 samples from the chain history.

Figure 4.6 (top) shows that KMC’s burn-in contains a short ‘explo-

ration phase’ where produced estimates are bad, due to it falling back

to a random walk in unexplored regions, c.f. Theorem 1. From around
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Figure 4.4: Results for the 8-dimensional synthetic Banana. As the amount of ob-
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forming KAMH and RW. 80% error bars over 30 runs.
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Figure 4.5: Pairwise marginals of the posterior over hyper-parameters of a Gaus-
sian process classification model on the UCI glass dataset; along with
kernel induced Hamiltonian dynamics that cover wide parts of the
space. The non-linear marginal of Figure 3.4 is included.
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500 iterations, however, KMC clearly outperforms both RW and the earlier

state-of-the-art KAMH. These results are backed by the minimum ESS (not

plotted), which is around 415 for KMC and is around 35 and 25 for KAMH

and RW, respectively. Note that all samplers effectively stop improving

from 3000 iterations – indicating a burn-in bias. All samplers took 1h time,

with most time spent estimating the marginal likelihood.

Cross-validation

Kernel parameters are tuned using a black box Bayesian optimisation pack-

age and the median heuristic, for KMC and KAMH respectively. The

Bayesian optimisation uses standard parameters and is stopped after 15

iterations, where each trial is done via a 5-fold cross-validation of the em-

pirical score matching objective (2.8). We learn parameters after MCMC

500 iterations, and then re-learn after 2000. We tried re-learning parame-

ters after more iterations, but this did not lead to significant changes. The

costs for this are neglectable in the context of pseudo-marginal MCMC as

estimating the marginal likelihood takes significantly more time than gen-

erating the KMC proposal.

4.4.4 KMC lite: reduced simulations and no additional bias

in ABC

We now apply KMC in the context of approximate Bayesian computation

(ABC), which often is employed when the data likelihood is intractable

but can be obtained by simulation [108]. ABC-MCMC [80] targets an ap-

proximate posterior by constructing an unbiased Monte Carlo estimator

of the approximate likelihood. As each such evaluation requires expen-

sive simulations from the likelihood, the goal of all ABC methods is to

reduce the number of such simulations. Accordingly, Hamiltonian ABC

was recently proposed [82], combining the synthetic likelihood approach

[132] with gradients based on stochastic finite differences, and using the

stochastic gradient HMC framework by Chen et al. [31]. We remark that
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Figure 4.6: Top: Results for 9-dimensional marginal posterior over length scales
of a GP classification model applied to the UCI Glass dataset. The
plots show convergence (no burn-in discarded) of all mixed moments
up to order 3 (lower MMD is better). Middle/bottom: ABC-MCMC
auto-correlation and marginal θ1 posterior for a 10-dimensional skew
normal likelihood. While KMC mixes as well as HABC, it does not
suffer from any bias (overlaps with RW, while HABC is significantly
different) and requires fewer simulations per proposal. We also show
performance of HABC with added friction, which has a severely neg-
ative impact on mixing.
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this requires to simulate from the likelihood in every leapfrog step, and

that the additional bias from the Gaussian likelihood approximation can

be problematic. In contrast, KMC does not require simulations to construct

a proposal, but rather ‘invests’ simulations into an accept/reject step (4.2)

that ensures convergence to the original ABC target.

Target and experimental protocol

We generalise the above example to a 10-dimensional skew-normal distri-

bution

p(y|θ) = 2N (y | θ, I)Φ
(

α>y
)

with θ = α = 1 · 10 ∈R10 and Φ being the cumulative distribution function

of the normal distribution. In each iteration of KMC, the likelihood is esti-

mated via simulating nlik = 10 samples from the above likelihood. We use

the mean of all samples as summary statistic, and a Gaussian ABC similar-

ity kernel with a bandwidth ε = 0.55 [82, 108]. It is clear that sampling from

a log-normal (skewed) and using the sample mean in a Gaussian likelihood

leads to systematic upwards bias in the ABC scheme.

In terms of HMC parameters, both KMC and HABC use a stan-

dard Gaussian momentum, a uniformly random step-size in [0.01,0.1] and

L = 50 leapfrog steps. HABC is used with the suggested ‘sticky random

numbers’ [82, Section 4.4], i.e. we use the same seed for all simulations

along a single proposal trajectory. Both algorithms are run for 200 + 5000

MCMC iterations. KMC then attempts to re-learn smoothness parameters,

and stops adaptation. Burn-in samples are discarded when quantifying

performance of all algorithms.

Results: bias, friction, mixing, and number of simulations

Figure 4.6 (middle/bottom) compares performance of RW, HABC (sticky

random numbers and SPAS, [82, Sections 4.3, 4.4]). KMC mixes as well as

HABC, but HABC suffers from a severe bias.

HABC is used in its ‘stochastic gradient’ form [31] and has a ‘friction’
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parameter that we estimate using a running average of the global covari-

ance of all SPAS gradient evaluations, [82, Equation 21]. We run HABC

with both the friction term included and removed, where we found that

adding friction has severely negative impact on mixing, where not adding

friction results in a wider posterior (with the same bias), c.f. Figure 4.6.

Due to the gradient estimation in every of the L = 50 leap-frog steps,

every MCMC proposal for HABC requires 2L = 100 simulations to be gen-

erated. In contrast, KMC only requires a single simulation, for evaluating

the accept/reject probability (4.2).

We leave studying the exact trade-offs of KMC’s learning phase and

its ability to mix well as compared to HABC to future work.

4.5 Details for lite estimator

4.5.1 Proof of Proposition 3

The proof below extends the model in [64, Section 4.1]. We assume that

the model log-density (2.6) takes the form in Proposition 3, then directly

implement score functions (2.8), from which we derive an empirical score

matching objective as a system of linear equations.

Proof. As assumed, the log un-normalised density takes the form

f (x) =
n

∑
i=1

αik(Xi, x)

where k : Rd ×Rd→R is the Gaussian kernel in the form

k(Xi, x) = exp
(
− 1

σ
‖Xi − x‖2

)
= exp

(
− 1

σ

d

∑
`=1

((Xi)` − x`)2

)
.

The score functions for (2.8) are then given by

∂ f
∂x`

=
2
σ

n

∑
i=1

αi((Xi)` − x`)exp
(
−‖Xi − x‖2

σ

)
,
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and

∂2 f
∂2x`

= − 2
σ

n

∑
i=1

αi exp
(
−‖Xi − x‖2

σ

)

+

(
2
σ

)2 n

∑
i=1

αi((Xi)` − x`)2 exp
(
−‖Xi − x‖2

σ

)

=
2
σ

n

∑
i=1

αi exp
(
−‖Xi − x‖2

σ

)[
−1 +

2
σ
((Xi)` − x`)2

]
.

Substituting this into the empirical version of (2.8) yields

Ĵ(α) =
1
n

n

∑
i=1

d

∑
`=1

[
∂`ψ`(Xi;α) +

1
2

ψ`(Xi;α)2
]

=
2

nσ

d

∑
`=1

n

∑
i=1

n

∑
j=1

αi exp

(
−‖Xi − xj‖2

σ

)[
−1 +

2
σ
((Xi)` − xj`)

2
]

+
2

nσ2

d

∑
`=1

n

∑
i=1

[
n

∑
j=1

αj(xj` − (Xi)`)exp

(
−‖Xi − xj‖2

σ

)]2

.

We now rewrite Ĵ(α) in matrix form. The expression for the term Ĵ(α)

being optimised is the sum of two terms.

First Term:

d

∑
`=1

n

∑
i=1

n

∑
j=1

αi exp

(
−‖Xi − xj‖2

σ

)[
−1 +

2
σ
((Xi)` − xj`)

2
]

We only need to compute

n

∑
i=1

n

∑
j=1

αi exp

(
−‖Xi − xj‖2

σ

)
((Xi)` − xj`)

2

=
n

∑
i=1

n

∑
j=1

αi exp

(
−‖Xi − xj‖2

σ

)(
(Xi)

2
` + x2

j` − 2 (Xi)` xj`

)
.

Define

x` :=
[
(X1)` . . . (Xm)`

]>
.
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The final term may be computed with the right ordering of operations,

− 2(α� x`)>Kx`,

where α � x` is the entry-wise product. The remaining terms are sums

with constant row or column terms. Define s` := x` � x` with components

si` = (Xi)
2
` . Then

n

∑
i=1

n

∑
j=1

αikijsj` = α>Ks`.

Likewise
n

∑
i=1

n

∑
j=1

αi (Xi)
2
` kij = (α� s`)>K1.

Second Term: Considering only the `-th dimension, this is

n

∑
i=1

[
n

∑
j=1

αj(xj` − (Xi)`)exp

(
−‖Xi − xj‖2

σ

)]2

.

In matrix notation, the inner sum is a column vector,

K(α� x`)− (Kα)� x`.

We take the entry-wise square and sum the resulting vector. Denote by

Dx := diag(x), then the following two relations hold

K(α� x) = KDxα,

(Kα)� x = DxKα.
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This means that J(α) as defined previously,

Ĵ(α) =
2

nσ

d

∑
`=1

[
2
σ

[
α>Ks` + (α� s`)>K1− 2(α� x`)>Kx`

]
− α>K1

]

+
2

nσ2

d

∑
`=1

[
(α� x`)>K− x>` � (α>K)

]
[K(α� x`)− (Kα)� x`] ,

can be rewritten as

Ĵ(α) =
2

nσ
α>

d

∑
`=1

[
2
σ
(Ks` + Ds`K1− 2Dx`Kx`)− K1

]

+
2

nσ2 α>
(

d

∑
`=1

[Dx`K− KDx` ] [KDx` − Dx`K]

)
α

=
2

nσ
α>b +

2
nσ2 α>Cα,

where

b =
d

∑
`=1

(
2
σ
(Ks` + Ds`K1− 2Dx`Kx`)− K1

)
∈Rn,

C =
d

∑
`=1

[Dx`K− KDx` ] [KDx` − Dx`K] ∈Rn×n.

Assuming C is invertible, this is minimised by

α̂ = −σ

2
C−1b.

Similar to Sriperumbudur et al. [117], we add a term λ‖α‖2
2 to C,

in order to control the L2 norm4 of the α coefficients. This results a

numerically more stable solution. The corresponding minimised loss is

J(α) + 1
2 nσ2λ‖α‖2

2.

4Sriperumbudur et al. [117] used the RKHS norm to regularise.
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4.5.2 Proof for ergodicity of KMC lite, Theorem 1

Notation Denote by α(xt, x∗(p′)) the probability of accepting a (p′, x∗) pro-

posal at state xt. Let a∧ b=min(a,b). Define c(x(0)) := Lε2∇ logπ(x(0))/2+

ε2 ∑L−1
i=1 (L − i)∇ logπ(x(iε)) and d(x(0)) := ε(∇ f (x(0)) + ∇ f (x(Lε)))/2 +

ε ∑L−1
i=1 ∇ f (x(iε)), where x(iε) is the i-th point of the leapfrog integration

from x = x(0).

Proof. We assumed π(x) is log-concave in the tails, meaning ∃xU > 0 s.t.

for x∗ > xt > xU, we have π(x∗)/π(xt)≤ e−α1(|x∗|−|xt|) and for xt > x∗ > xU,

we have π(x∗)/π(xt) ≥ e−α1(|x∗|−|xt|), and a similar condition holds in the

negative tail. Furthermore, we assumed fixed HMC parameters: L leapfrog

steps of size ε, and w.l.o.g. the identity mass matrix I. Following [83, 96],

it is sufficient to show

limsup
|xt|→∞

∫ [
es(|x∗(p′)|−|xt|) − 1

]
α(xt, x∗(p′))µ(dp′) < 0,

for some s > 0, where µ(·) is a standard Gaussian measure. Denoting the

integral I∞
−∞, we split it into

I−xδ
t

−∞ + Ixδ
t
−xδ

t
+ I∞

xδ
t
,

for some δ ∈ (0,1). We show that the first and third terms decay to zero

whilst the second remains strictly negative as xt→ ∞ (a similar argument

holds as xt→−∞). We detail the case ∇ f (x) ↑ 0 as x→ ∞ here, the other

is analogous. Taking Ixδ
t
−xδ

t
, we can choose an xt large enough that xt − C−

Lεxδ
t > xU, −γ1 < c(xt− xδ

t )< 0 and −γ2 < d(xt− xδ
t )< 0. So for p′ ∈ (0, xδ

t )

we have

Lεp′ > x∗ − xt > Lεp′ − γ1 =⇒ e−α1(−γ1+Lεp′) ≥ e−α1(x∗−xt) ≥ π(x∗)/π(xt),

where the last inequality comes from the log-concave tails assumption. For
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p′ ∈ (γ2
2/2, xδ

t )

α(xt, x∗)≤ 1∧ π(x∗)
π(xt)

exp
(

p′γ2/2− γ2
2/2
)
≤ 1∧ exp

(
−α2p′ + α1γ1 − γ2

2/2
)

,

where xt is large enough that α2 = α1Lε − γ2/2 > 0. Similarly for p′ ∈
(γ1/Lε, xδ

t )

esLεp′ − 1≥ es(x∗−xt) − 1≥ es(Lεp′−γ1) − 1 > 0.

Because γ1 and γ2 can be chosen to be arbitrarily small, then for large

enough xt we will have

0 < Ixδ
t

0 ≤
∫ xδ

t

γ1/Lε
[esLεp′ − 1]exp

(
−α2p′ + α1γ1 − γ2

2/2
)

µ(dp′) + Iγ1/Lε
0

= ec1

∫ xδ
t

γ1/Lε
[es2 p′ − 1]e−α2 p′µ(dp′) + Iγ1/Lε

0 , (4.6)

where c1 = α1γ1−γ2
2/2> 0 for large enough xt, as γ1 and γ2 are of the same

order. Now turning to p′ ∈ (−xδ
t ,0), we can use an exact rearrangement of

the same argument (noting that c1 can be made arbitrarily small) to get

I0
−xδ

t
≤ ec1

∫ xδ
t

γ1/Lε
[e−s2 p′ − 1]µ(dp′) < 0. (4.7)

Combining (4.6) and (4.7) and rearranging as in Mengersen and Tweedie

[83, Theorem 3.2] shows that Ixδ
t
−xδ

t
is strictly negative in the limit if s2 = sLε

is chosen small enough, as Iγ2/Lε
0 can also be made arbitrarily small.

For I−xδ
t

−∞ it suffices to note that the Gaussian tails of µ(·) will dominate

the exponential growth of es(|x∗(p′)|−|xt|) meaning the integral can be made

arbitrarily small by choosing large enough xt, and the same argument holds

for I∞
xδ

t
.
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4.6 Details for finite estimator

4.6.1 Proof of Proposition 4

We assume the model log-density (2.6) takes the primal form in a finite di-

mensional feature space as in Proposition 4, then again directly implement

score functions in (2.8) and minimise it via a linear solve.

Proof. As assumed the log un-normalised density takes the form

f (x) = 〈θ,φx〉Hm = θ>φx,

where x ∈Rd is embedded into a finite dimensional feature spaceHm =Rm

as x 7→ φx. The score functions in (2.8) then can be written as the simple

linear form

∂ f
∂x`

= θ>φ̇`
x and

∂2 f
∂x2

`

= θ>φ̈`
x, (4.8)

where we defined the m-dimensional feature vector derivatives φ̇`
x := ∂

∂x`
φx

and φ̈`
x := ∂2

∂x2
`
φx. Plugging those into the empirical score matching objective

(2.8), we arrive at

Ĵ(θ) =
1
n

n

∑
i=1

d

∑
`=1

[
θ>φ̈`

Xi
+

1
2

θ>
(

φ̇`
Xi

(
φ̇`

Xi

)>)
θ

]

=
1
2

θ>Cθ − θ>b (4.9)

where

b := − 1
n

n

∑
i=1

d

∑
`=1

φ̈`
Xi
∈Rm and C :=

1
n

n

∑
i=1

d

∑
`=1

(
φ̇`

Xi

(
φ̇`

Xi

)>)
∈Rm×m.

(4.10)

Assuming that C is invertible (trivial for n ≥ m), the objective is uniquely

minimised by differentiating (4.9) wrt. θ, setting to zero, and solving for θ.

This gives

θ̂ := C−1b. (4.11)
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Again, similar to Sriperumbudur et al. [117], we add a term λ
2 ‖θ‖2

2 to

(4.9), in order to control the norm of the natural parameters θ ∈Hm and for

numerical stability.

Next, we give an example for the approximate feature space Hm. Note

that the above approach can be combined with any set of finite dimensional

approximate feature mappings φx.

4.6.2 Example: random Fourier features for the Gaussian

kernel

We now combine the finite dimensional approximate infinite dimensional

exponential family model with the ‘random Fourier features’ by Rahimi

and Recht [89]. Assume a translation invariant kernel k(x,y) = k̃(x − y).

Bochner’s theorem gives the representation

k(x,y) = k̃(x− y) =
∫

Rd
exp

(
iω>(x− y)

)
dΓ(ω),

where Γ(ω) is the Fourier transform of the kernel. An approximate feature

mapping for such kernels can be obtained via dropping imaginary terms

and approximating the integral with Monte Carlo integration. This gives

φx =

√
2
m

[
cos(ω>1 x + u1), . . . , cos(ω>m x + um)

]
,

with fixed random basis vector realisations that depend on the kernel via

its Fourier transform Γ(ω),

ωi ∼ Γ(ω),

and fixed random offset realisations

ui ∼ Uniform[0,2π],
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for i = 1 . . . m. It is easy to see that this approximation is consistent for

m→∞, i.e.

Eω,b

[
φ>x φy

]
= k(x,y).

See Rahimi and Recht [89] for details and a uniform convergence bound

and Sriperumbudur and Szábo [116] for a more detailed analysis with

tighter bounds. Note that it is possible to achieve logarithmic computa-

tional costs in d exploiting properties of Hadamard matrices [71].

The feature map derivatives (4.8) are given by

φ̇`
ξ =

√
2
m

∂

∂ξ`

[
cos(ω>1 ξ + u1), . . . , cos(ω>m ξ + um)

]

= −
√

2
m

[
sin(ω>1 ξ + u1)ω1`, . . . , sin(ω>m ξ + um)ωm`

]

= −
√

2
m

[
sin(ω>1 ξ + u1), . . . , sin(ω>m ξ + um)

]
� [ω1`, . . . ,ωm`] ,

where ωj` is the `-th component of ωj, and

φ̈`
ξ : = −

√
2
m

∂

∂ξ`

[
sin(ω>1 ξ + u1), . . . , sin(ω>m ξ + um)

]
� [ω1`, . . . ,ωm`]

= −
√

2
m

[
cos(ω>1 ξ + u1), . . . , cos(ω>m ξ + um)

]
�
[
ω2

1`, . . . ,ω2
m`

]

= −φξ �
[
ω2

1`, . . . ,ω2
m`

]
,

where � is the element-wise product. Consequently the gradient is given

by

∇ξφξ =




φ̇1
ξ
...

φ̇d
ξ


 ∈Rd×m.

As an example, the translation invariant Gaussian kernel and its Fourier

transform are

k(x,y) = exp
(
−σ−1‖x− y‖2

2

)
and Γ(ω) =N

(
ω
∣∣∣0,σ−2 Im

)
.
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4.6.3 Constant cost updates

A convenient property of the finite feature space approximation is that

its primal representation of the solution allows to update (4.10) in an on-

line fashion. When combined with MCMC, each new point Xt+1 of the

Markov chain history only adds a term of the form −∑d
`=1 φ̈`

Xt+1
∈Rm and

∑d
`=1 φ̇`

Xt+1
(φ̇`

Xt+1
)> ∈Rm×m to the moving averages of b and C respectively.

Consequently, at iteration t, rather than fully re-computing (4.11) at the

cost of O(tdm2 + m3) for every new point, we can use rank-d updates to

construct the minimiser of (4.9) from the solution of the previous iteration.

Assume we have computed the sum of all moving average terms,

C̄−1
t :=

(
t

∑
i=1

d

∑
`=1

(
φ̇`

Xi

(
φ̇`

Xi

)>)
)−1

from feature vectors derivatives φ̈`
Xi
∈ Rm of some set of points {Xi}t

i=1,

and subsequently receive receive a new point Xt+1. We can then write the

inverse of the new sum as

C̄−1
t+1 : =

(
C̄t +

d

∑
`=1

(
φ̇`

Xt+1

(
φ̇`

Xt+1

)>)
)−1

.

This is the inverse of the rank-d perturbed previous matrix C̄t. We can

therefore construct this inverse using d successive applications of the

Sherman-Morrison-Woodbury formula for rank-one updates, each using

O(m2) computation. Since C̄t is positive definite5, we can represent its in-

verse as a numerically much more stable Cholesky factorisation C̄t = L̄t L̄>t .

It is also possible to perform cheap rank-d updates of such Cholesky fac-

5C is the empirical covariance of the feature derivatives φ̇`
Xi

.
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tors6. Denote by b̄t the sum of the moving average b. We solve (4.11) as

θ̂ = C−1b =
(

1
t

C̄t

)−1(1
t

b̄t

)
= C̄−1

t b̄t = L̄−>t L̄−1
t b̄t,

using cheap triangular back-substitution from L̄t, and never storing C̄−1
t or

L̄−1
t explicitly.

Using such updates, the computational costs for updating the approx-

imate infinite dimensional exponential family model in every iteration of

the Markov chain are O(dm2), which constant in t. We can therefore use all

points in the history for constructing a proposal. See our implementation

for further details.

Algorithmic Description

1. Update sums

b̄t+1 = b̄t −
d

∑
`=1

φ̈`
Xt+1

and C̄t+1 = C̄t +
1
2

d

∑
`=1

φ̇`
Xt+1

(φ̇`
Xt+1

)>.

2. Perform rank-d update to obtain updated Cholesky factorisation

L̄t+1 L̄>t+1 = C̄t+1.

3. Update approximate infinite dimensional exponential family param-

eters

θ̂ = L̄−>t+1 L̄−1
t+1b̄t+1.

6We use the open-source implementation provided at https://github.com/
jcrudy/choldate

https://github.com/jcrudy/choldate
https://github.com/jcrudy/choldate


Chapter 5

Kernel sequential Monte Carlo

This chapter is based on collaborative work I. Schuster, H. Strathmann, B.

Paige, and D. Sejdinovic. “Kernel Adaptive Sequential Monte Carlo”. In:

European conference on machine learning & principles and practice of knowledge

discovery in databases. Joint first two authors. 2017.

We propose kernel sequential Monte Carlo (KSMC), a framework for

sampling from static target densities. KSMC is a family of sequential Monte

Carlo algorithms that are based on building surrogate models of the cur-

rent particle system in a reproducing kernel Hilbert space. We here focus

on modelling non-linear covariance structure and gradients of the target.

The surrogate’s geometry is adaptively updated and subsequently used to

inform local proposals. Unlike in adaptive Markov chain Monte Carlo,

continuous adaptation does not compromise convergence of the sampler.

KSMC combines the strengths of sequential Monte Carlo and kernel meth-

ods: superior performance for multi-modal targets and the ability to es-

timate model evidence as compared to Markov chain Monte Carlo, and

the surrogate’s ability to represent targets that exhibit high degrees of non-

linearity. As KSMC does not require access to target gradients, it is partic-

ularly applicable on targets whose gradients are unavailable. We demon-

strate the benefits of the the proposed methodology on a series of challeng-

ing synthetic and real-world examples.



94 Chapter 5. Kernel sequential Monte Carlo

Chapter outline

We have seen in Chapter 3 and Chapter 4, how modelling covariance

structure and gradients can greatly improve the efficiency of Metropolis-

Hastings based MCMC algorithms. In this chapter, we will generalise these

ideas to the context of sequential Monte Carlo for static targets. They key

observation that allows this combination is that many SMC algorithms con-

sist of an MCMC move, so-called rejuvenation step. As it turns out, it is

possible to model the structure of the current particle system to make such

moves more efficient in the same way as for MCMC.

5.1 Sequential Monte Carlo

Sequential Monte Carlo algorithms [40, 105] approximate a target density

π by iteratively targeting a sequence of incremental densities π0, . . . ,πT,

with πT = π. These incremental densities are typically defined such that

the initial density π0 is easy to sample from (e.g. the prior in a Bayesian

model). Consecutive distributions πt,πt+1 are ‘close’, in the sense that

drawing samples from πt+1 given samples from πt is easier than drawing

samples from πt+1 directly. At each stage t, we approximate the target

density πt with a set of n samples Xt = {Xi
t}n

i=1, with associated importance

weights Wt = {W i
t}n

i=1, with

π̂t(X) =
n

∑
i=1

W i
t δXi

t
(X) (5.1)

where δXi
t

is a Dirac point mass on Xi
t. In a static SMC setting, in contrast

to SMC as applied to state space models, each target density πt is defined

on the same space X .

We initialise the algorithm by sampling an initial set of n samples X0

from the initial density π0, with uniform importance weights. For each sub-

sequent t = 1, . . . , T, given a particle set (Xt−1,Wt−1) approximating πt−1,

we construct a new particle set to represent πt. This is a three-step pro-
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cess of re-weighting, re-sampling, and rejuvenation, also summarised in

Algorithm 2:

1. We re-weight each particle relative to the new target density, setting

W̃ i
t = W i

t−1
πt(Xi

t−1)

πt−1(Xi
t−1)

.

Weighting the points in Xt−1 by {W̃ i
t}n

i=1 yields an approximation to

πt in the same manner as in (5.1) — the new importance weights

correct for the change from πt−1 to πt.

2. We apply re-sampling, constructing an equally-weighted set of par-

ticles X̃t = {X̃i
t}n

i=1 by sampling with replacement from Xt−1 with

weights proportional to W̃ i
t , [38]. Together, these samples form an ap-

proximation to πt, where values from Xt−1 with high weight under

πt have been duplicated and those with low weight under πt−1 have

been discarded.

This duplication of values, however, can lead to a sample impoverish-

ment problem: many of the re-sampled values X̃i
t may have identical

values. This can be avoided by applying a so-called rejuvenation step

after re-sampling [32], constructing an overall approximation (Xt,Wt)

to πt with a diverse set of values of Xi
t.

3. The rejuvenation is based on a proposal Qt(Xt|X̃t). One traditional

option is to use a Markov density Qt as a proposal in a Metropolis-

Hastings kernel which leaves πt invariant: For each X̃i
t in X̃t, we

propose a new value Xi
t from Qt(Xi

t|X̃i
t) and accept it according to a

standard MH acceptance ratio targeting πt. In this case, importance
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Algorithm 2 Sequential Monte Carlo for Static Models

Input: Sequence of target densities π0, . . . ,πT (where πT = π), size of
particle system n
Output: sets X1, . . . ,XT and W1, . . . ,WT of samples and accompanying
weights
Initialise X0 to n samples from π0, and W0 to equal weights 1/n
for t = 1 through t = T do

W̃t = {W i
t−1πt(Xi

t−1)/πt−1(Xi
t−1)}n

i=1
construct X̃t by re-sampling (Xt−1,W̃t), resulting in n copies of samples
in Xt−1
construct or update proposal Qt
if using a MH transition kernel then

Set Xt to
{Xi

t ∼MH kernel with proposal Qt(·|X̃i
t)}n

i=1
Wt = {1/n}n

i=1
end if

end for
return X1, . . . ,XT and W1, . . . ,WT

weights in Wt are set to uniform.

5.1.1 Construction of a target sequence

One possibility for constructing a sequence of distributions is the geometric

likelihood bridge defined by

πt ∝ π
1−ρt
0 πρt ,

for some initial distribution π0, where (ρt)T
t=1 is an increasing sequence

satisfying ρT = 1. As a simple alternative, we can simply target the final

distribution π at each iteration, i.e. with all πt =π. This algorithm is known

as population Monte Carlo [28].

5.1.2 Existing adaptive SMC algorithms

In SMC algorithms, we are free in choosing a proposal Qt. In contrast

to MCMC, it may be directly informed by the previous samples Xt−1 and

their weights Wt−1, without compromising consistency of the produced

estimates. The following two existing SMC algorithms are examples that
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we will extend to kernel-based alternatives.

Adaptive SMC

The adaptive SMC sampler (ASMC) studied by Fearnhead and Taylor [43]

is based on continuously estimating the global covariance Σt of πt, and

updating a scaling parameter ν2. This is done from the re-weighted par-

ticle system, which is subsequently moved through a Markov kernel. The

proposal distribution used within the MH kernel at point X in Algorithm

2 is

Qt(·|X) =N (·|X,ν2Σt + γ2 I),

which is extremely similar to (2.15) and (2.16). Indeed, the algorithm is

essentially the previously discussed adaptive Metropolis, c.f. Section 2.3

and Andrieu and Thoms [6] and Haario et al. [60], embedded into the

SMC context.

Gradient importance sampling

In addition to using the estimated covariance Σt of π as in ASMC, gradient

importance sampling [102, GRIS] incorporates a drift term based on the

log target gradient. For target gradient ∇ logπ and previous sample X, the

proposal distribution in Algorithm 2 is

Qt(·) =N (·|X + D(∇ logπ(X)),ν2Σt),

for each individual particle X in the current (un-weighted) particle set. A

typical choice for the drift function is D(y) = δy with 0 < δ < 1. Rather than

incorporating a MH step, the updated values are importance weighted —

GRIS is an instance of a population Monte Carlo algorithm. In numeri-

cal experiments, GRIS compares favourably to its closest MCMC relatives

[102].
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5.1.3 Intractable likelihoods

In the the case where likelihoods are intractable, SMC is still a valid algo-

rithm when likelihood values can be estimated without bias. This can be

done using e.g. importance sampling or SMC (nested within SMC, hence

SMC2) [33, 125]. Just like in the pseudo-marginal MCMC case, a simple

way to think about such nested estimation schemes is in terms of an ex-

tended sampling space that spans the actual parameters of interest as well

as any nuisance variables. Once again, efficient gradient-based sampling

schemes such as GRIS or HMC are unavailable. Current practice there is

based on moving particles using random walk schemes solely.

5.1.4 Evidence estimation

An important issue in Bayesian model selection and averaging is that of es-

timating the normalizing constant, or evidence. The evidence is the marginal

probability of the data under a model and can easily be estimated in SMC

instantiations [40, 43] – as compared to MCMC. This enables routine com-

putation of Bayes factors and posterior model probabilities. Under the

assumption that the normalizing constant Z0 of π0 (the distribution that is

used for initially setting up the particle system) is known, one can estimate

the ratio of normalizing constants of any two consecutive targets by

Zt

Zt−1
≈ 1

n

n

∑
j=1

Wt,j

for Wt,j = πt(Xt−1,j)/πt−1(Xt−1,j) and thus an estimate for Z = ZT can be

found recursively by

Z = ZT ≈ Z0

T

∏
t=1

1
n ∑

j
Wt,j

starting with known value Z0. When the likelihood is intractable and im-

portance weights therefore are noisy, evidence estimation remains consis-

tent given that the likelihood estimates are unbiased [125, Lemma 3].
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5.2 Kernel sequential Monte Carlo

We now develop a kernel sequential Monte Carlo framework, which is

based on combining classical adaptive SMC with the proposals of kernel

adaptive MCMC from Chapter 3 and Chapter 4. In general, once a kernel

surrogate is fitted to past particle systems, we can use it in either of two

ways: as proposals for MH rejuvenation steps inside SMC, or as importance

densities in PMC.

5.2.1 Kernel covariance adaptive rejuvenation: KASMC

At time-step t + 1, we target distribution πt+1, based on a particle system

approximating πt. After re-weighting, the new system {(Wt+1,i, Xt+1,i)}n
i=1

is a weighted approximation to πt+1. We here focus on the non-linear co-

variance surrogate, based on Chapter 3, which can be either fitted using the

equally-weighted re-sampled values X̃t, or the original particle set Xt with

weights W̃t. Denote by QKAMH the MCMC proposal distribution based on

a kernel covariance model from Chapter 3, Proposition 2; at particle Xj,

this is (using X̃t)

QKAMH(·|Xj) =N (·|Xj,γ2 I + ν2MX̃t,Xj
CM>X̃t,Xj

).

As described in Section 3.2.3, for a Gaussian kernel, the proposal at particle

Xj locally aligns to the structure of the posterior at Xj. The SMC rejuvena-

tion proposal for Algorithm 2 at X then is exactly QKAMH. As in KAMH,

this results in covariance matrices for Gaussian proposals which locally

align with the target, c.f. Figure 3.3, now taking the SMC particle weights

into account. The resulting kernel adaptive SMC sampler (KASMC) inher-

its KAMH’s ability to explore non-linear targets more efficiently than pro-

posals based on estimating global covariance structure such as in Fearn-

head and Taylor [43] and Haario et al. [61]. Figure 5.1 shows a simple

illustration of a global (ASMC) and local proposal distribution (KASMC).
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Figure 5.1: Proposal distributions around one of many SMC particles (blue) for
each KASMC (red) and ASMC (green). KASMC proposals locally align
to the target density while ASMC’s global covariance estimate might
result in poor MH rejuvenation moves.

Scaling parameters

To accomplish parameter tuning, we use the standard MCMC framework

of stochastic approximation for tuning MCMC kernels, as outlined in Sec-

tion 2.3. I.e. we tune the acceptance rate αt towards an asymptotically

optimal value of α∗ = 0.234, as also done in Chapter 3 and Chapter 4.

In SMC, after the MCMC rejuvenation step, an estimate of expected

acceptance probability is obtained by averaging the acceptance probabili-

ties for all MH proposals, α̂t =
1
t ∑t

i=1 αt, and we substitute this for αt in

the Robbins-Monro recursion (2.17). This strategy of approximating opti-

mal scaling assumes that consecutive targets are close enough so that the

acceptance rate when using νt to target πt provides information about the

expected acceptance rate when using νt with target πt+1. As an alternative

to this, one could treat νt as an auxiliary random variable and define a dis-

tribution over it designed to maximise expected utility, an approach taken

in the adaptive SMC sampler [43].

5.2.2 Kernel induced gradients for importance densities:

KGRIS

Another way to use kernel-based surrogates is for generating proposals

which are corrected by importance sampling, i.e. in PMC, c.f. Section 5.1.1.

In our second approach, a kernel surrogate is fitted to weighted particles,

which were previously corrected via importance weights. As such, parti-

cles share the same underlying density across the PMC iterations. We here
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use the kernel gradient model from Chapter 4, in its finite dimensional

approximation (KMC finite), c.f. Proposition 4.

Weighted random feature exponential family approximations

As in (4.5), the log density of the approximate estimator takes the sim-

ple form f (x) = θ>φx, where φx ∈ Rm is an embedding of x into an m-

dimensional feature space, and θ ∈Rm is estimated by θ̂ = C−1b from sam-

ples x. Given a weighted particle system {(Wt,i, Xt,i)}n
i=1, then b,C are

weighted averages of the form

b := − 1
∑n

i=1 Wt,i

n

∑
i=1

Wt,i

d

∑
`=1

φ̈`
x, (5.2)

C :=
1

∑n
i=1 Wt,i

n

∑
i=1

Wt,i

d

∑
`=1

φ̇`
x

(
φ̇`

x

)>
,

with element-wise derivatives φ̇`
x := ∂

∂x`
φx and φ̈`

x := ∂2

∂x2
`
φx. The only dif-

ference to Proposition 4 are the included sample weights. As described in

Section 4.6.3, the estimator can be updated in an online fashion once the

particle system changes. This is particularly for the present PMC context:

as all particles share the same density, the model can accumulate informa-

tion over time rather than being re-estimated in every iteration. Rather than

simulating Hamiltonian dynamics to generate a proposal, we here follow

the initial work of Schuster [102] and take single gradient steps, i.e. the

Markov density at in Algorithm 2 at Xj is

Qt(·|Xj) =N (·|Xj + δ∇ f (Xj),ν2Σt),

with parameters δ > 0,ν2 > 0, and using an online estimate of the global

sample covariance Σt same as in Fearnhead and Taylor [43] and Haario et

al. [60, 61], c.f. Section 2.3.
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5.3 Experiments

We now evaluate empirical performance of KASMC on a simple non-linear

target, on a multi-modal sensor network localisation problem, and in esti-

mating Bayesian model evidence in a model with an intractable likelihood

on a real-world dataset. The final experiment uses a challenging stochas-

tic volatility model with S&P 500 data from Chopin et al. [33] to evaluate

KGRIS.

For the KASMC experiments on static target distributions, we use the

geometric likelihood bridge described in Section 5.1.1. The bandwidth pa-

rameter of the kernel surrogate models is set to the median distance be-

tween particles [54, 104]. We tune the free scaling parameter ν towards the

asymptotically ‘optimal’ acceptance rate α∗ = 0.234, c.f. Section 5.2.1.

5.3.1 KASMC: Improved convergence on synthetic non-

linear target

We begin by studying convergence of KASMC compared to existing al-

gorithms on a simple benchmark example: the strongly twisted banana-

shaped distribution in d = 8 dimensions, c.f. Section 3.3.2. We compare

SMC algorithms using different rejuvenation MH steps: a static random

walk Metropolis move (RWSMC) with fixed scaling ν = 2.38/
√

d, ASMC,

and KASMC using a Gaussian kernel. For the latter two algorithms, all par-

ticles are used to compute the proposal, and a fixed learning rate of λ = 0.1

is chosen to adapt scale parameters, c.f. Section 2.3. Starting with parti-

cles from a multivariate Gaussian N (0,502), we use a geometric bridge

that reaches the target B(y;b = 0.1,v = 100) in 20 steps. We repeat the

experiment over 30 runs. Figure 5.2 shows that KASMC achieves faster

convergence of the first 3 moments, i.e. in MMD distance, c.f. Section 2.1,

to a large benchmark sample.



5.3. Experiments 103

Figure 5.2: Improved convergence of all mixed moments up to order 3 of KASMC
compared to using SMC with static or adaptive Metropolis-Hastings
steps.

5.3.2 A multi-modal application: sensor network localisa-

tion

We next study performance of KASMC on a multi-modal target arising in

a real-world application: inferring the locations of S sensors within a net-

work, as discussed in [65, 70]. We here focus on the static case: assume a

number of stationary sensors that measure distance to each other in a 2-

dimensional space; a distance measurement is successful with a probability

that decays exponentially in the squared distance, and the observation is

missing otherwise. If distance is measured, it is corrupted by Gaussian

noise. The posterior over the unknown sensor locations, induced by the

spatial set-up, forms a highly constrained non-linear and multi-modal dis-

tribution.

Denote the S unknown sensor locations by {xi}S
i=1 ⊆ R2. Define an

indicator variable Zi,j ∈ {0,1} for the distance Yij ∈ R+ between a pair of

sensors (xi, xj) being either observed (Zi,j = 1) or not (Zi,j = 0), according

to

Zi,j ∼ Binom

(
1,exp

(
−‖xi − xj‖2

2

2R2

))
.

If the distance is observed, then Yij is corrupted by Gaussian noise, i.e.

Yi,j|Zi,j = 1∼N
(
‖xi − xj‖,σ2

)
,
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and Yi,j = 0 otherwise.

Previously, [65] focussed on MAP estimation of the sensor locations,

and [70] focussed on a well-conditioned case (S = 8 sensors and B = 3

base sensors with known locations) that results in almost no ambiguity

in the posterior. We argue that Bayesian quantification of uncertainty is

more important for cases where noise and missing measurements does not

allow to reconstruct the sensor locations exactly. We therefore reuse the

dataset from [70] (R = 0.3, σ2 = 0.02)1, but only use the first S = 3 loca-

tions/observations. In order to encourage ambiguities in the localisation

task, we only use the first 2 base sensors of [70] with known locations that

each observe distances to the S unknown sensors but not to each other.

Unlike [70], we use a Gaussian prior N (0.5, I) to avoid the posterior being

situated in a bounded domain.

Figure 5.3 shows the marginalised posterior for one run each of

KASMC (SMC) and KAMH (MCMC), with the number of iterations set

to that the number of likelihood evaluations match across algorithms

(500,000). We run KASMC using 10,000 particles and a bridge length of

50, and MCMC-KAMH for 50× 10,000 iterations of which we discard half

as burn-in; both are initialized with samples from the prior. Tuning pa-

rameters ν2 are set using a diminishing adaptation schedule λt = 1/
√

t for

KAMH and a fixed learning rate λt = 1 for KASMC. MCMC is not able

to traverse between the multiple modes and interpretations of the data, in

contrast to SMC.

A quantitative comparison of the samples is challenging due to the

lack of a set of benchmark samples. Unlike for the uni-modal posterior

induced by the UCI glass example from Chapter 3, merging the output of

multiple MCMC chains that converged on different modes does not lead

to benchmark samples from the correct distribution. Several work exists to

attack such issues [70, 87]; we avoid going into details here.

1Downloaded from http://www.ics.uci.edu/~slan/lanzi/CODES_files/
WHMC-code.zip on 8/Oct/2015.

http://www.ics.uci.edu/~slan/lanzi/CODES_files/WHMC-code.zip
http://www.ics.uci.edu/~slan/lanzi/CODES_files/WHMC-code.zip
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Figure 5.3: Posterior samples of unknown sensor locations (in color) by kernel-
based SMC and MCMC on the sensors dataset. The set-up of the true
sensor locations (black dots) and base sensors (black stars) causes un-
certainty in the posterior. SMC recovers all modes while MCMC does
not. The posterior has a clear non-linear structure.

5.3.3 KASMC: evidence estimation for intractable GPs

We return to the Bayesian classification problem outlined in Section 3.3.1,

which has a non-linear marginal posterior over GP hyper-parameters,

c.f. Figure 3.4, Figure 4.5. Where the previous experiments on that example

were in the context of pseudo-marginal MCMC, the present experiment is

based around nested importance sampling, c.f. Section 5.1.3 and Tran et

al. [125]. Compared to previous experiments, we now emphasise a differ-

ent point: KSMC’s ability to estimate the model evidence as compared to

KAMH. We also illustrate convergence benefits compared to ASMC.

We begin by establishing ground truth model evidence via running 20

SMC instances using n = 1000 particles and a bridge length of 30, and av-

eraging their evidence estimates. We then compare the evidence estimates

of all all algorithms against that reference. The experiment is performed 50

times, using n = 100 particles and a bridge length of 20, starting from the

prior on the log hyper-parameters π0(·) =N (· | 0,52). The learning rate is

constant λt = 1, and adaptation is towards an acceptance rate of 0.23.

Figure 5.4 shows that evidence estimates of KASMC exhibit less vari-

ance than those of ASMC, at similar levels of estimation error (not shown

here).
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Figure 5.4: Estimating model ev-
idence of a GP us-
ing the IS2 framework.
The plot shows the MC
variance over 50 runs
as a function of the
size of the particle sys-
tem.
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Figure 5.5: Convergence of RMSE for es-
timating all elements of the
posterior covariance matrix
of the stochastic volatility
model.

5.3.4 KGRIS: evidence estimation for intractable stochastic

volatility models

A particularly challenging class of Bayesian inverse problems are stochas-

tic volatility models. As time series models, they often involve high-

dimensional nuisance variables, which usually cannot be integrated out

analytically. Furthermore, risk management necessitates to account for

parameter and model uncertainty, and models have to capture the non-

linearities in the data [33]. We here concentrate on the prediction of daily

volatility of asset prices, reusing the model and dataset studied by Chopin

et al. [33] to evaluate KGRIS.

The problem setting is similar to the Gaussian Process experiment

in Section 3.3.1, where latent function responses of the GP are high-

dimensional and cannot be be integrated out analytically. As in Sec-

tion 3.3.1, we instead work with (unbiased) random estimates of the

marginalised likelihood, obtained via iterated importance sampling, which

results in unavailable gradients. We compare two gradient-free PMC ver-

sions: KGRIS and a random walk PMC with global covariance adaptation

in the style of Haario et al. [61].
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Model details

Let st be the value of a financial asset on day t, then yt = 10(5/2) log(st/st−1)

is called the log-returns (up-scaling for numerical reasons). We model the

observed log-return yt as dependent on a latent vt by the observation equa-

tion

yt = µ + βvt +
√

vtεt

for t ≤ 1. Here εt is a sequence of i.i.d. standard Gaussian errors and vt is

assumed to be a stationary stochastic process known as the actual volatility.

Chopin et al. [33] develop a hierarchical model for vt based on the idea

of analytically integrating a continuous time volatility model over daily

intervals, c.f. [33] for details. Using this construction, the (discrete time) vt

is parametrised by stationary mean ξ and variance ω2 of the so called spot

volatility and the exponential decay λ of its auto-correlation. This results in

the following model for the actual volatility vt:

k ∼ Poisson(λξ2/ω2)

c1, . . . , ck ∼ Uniform(t, t + 1), e1, . . . , ck ∼ Exponential(ξ/ω2)

zt+1 = zt exp(−λ) +
k

∑
j=1

ej exp(−λ(t + 1− cj))

vt+1 = λ−1
(

zt − zt+1 +
k

∑
j=1

ej

)

where zt is the discretely sampled spot volatility process and (vt+1,zt+1)
>

is the Markovian representation of the state process. The variables k,

c1, . . . , ck and e1, . . . , ek are generated independently for each time period

t. The dynamics imply Γ(ξ2/ω2,ξ2/ω2) to be the stationary distribution

for zt, which is also used as the initial distribution on z0.

The parameters of the model are θ = (µ, β,ξ,ω2,λ) and we wish to sam-

ple from their (marginalised) posterior. Despite the underlying time series,

this posterior is static, c.f. Section 5.1.1. Chopin et al. [33] developed a sam-
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pler based on iterated batch importance sampling using nested SMC with

pseudo-marginal MCMC moves and called their approach SMC2. In prac-

tice, this means that each target evaluation in Algorithm 2, i.e. MCMC re-

juvenation and weight computation, is based on random importance sam-

pling estimates – whereas pseudo-marginal MCMC is to run MCMC on

intractable targets, SMC2 is running SMC on intractable targets. See [33]

for more details.

Experimental details

In our experiment, we use KGRIS proposals in a population Monte Carlo

setting, i.e. without resorting to MCMC moves at all. We re-use the code

developed for the original SMC2 paper to obtain likelihood estimates. The

observed st are the 753 observations from consecutive days of the S&P 500

index also used by Chopin et al. [33]. KGRIS uses a particle system of

increasing sizes with each particle going through 100 iterations. Figure 5.6

shows a plot of the pair-wise marginals of this posterior.

We use the same vague priors as Chopin et al. [33],

µ ∼N (0,σ2 = 2), β ∼N (0,σ2 = 2),ξ ∼ Exp(0.2)

ω2 ∼ Exp(0.2),λ ∼ Exp(1).

Figure 5.5 shows that the incorporated gradients lead to better performance

of KGRIS in estimating the target covariance matrix. This is in-line with the

finding that GRIS improves over pure random walk methods [102].
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Figure 5.6: Samples from the doubly stochastic volatility model used in Section
5.3.4.
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Chapter 6

Efficient and principled score

estimation

This chapter is based on collaborative work, D. Sutherland, H. Strathmann,

M. Arbel, and A. Gretton. “Efficient and principled score estimation”. In:

arXiv preprint arXiv:1705.08360 (2017). Joint first two authors. Submitted.

We propose a fast method with statistical guarantees for learning an

exponential family density model in a reproducing kernel Hilbert space.

The model is learned by fitting the derivative of the log density, the score,

thus avoiding the need to compute a normalisation constant. We im-

proved the computational efficiency of an earlier solution with a low-rank,

Nyström-like solution. The new solution retains the consistency and con-

vergence rates of the full-rank solution, with guarantees on the degree of

cost and storage reduction. We evaluate the method in experiments on den-

sity estimation and in the construction of an adaptive Hamiltonian Monte

Carlo sampler. Compared to an existing score learning approach using a

de-noising auto-encoder, our estimator is empirically more data-efficient

when estimating the score, runs faster, and has fewer parameters which

can be tuned in a principled and interpretable way.
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Chapter outline

We reviewed the original estimator [117] and described several related ap-

proaches in Section 2.2. In Section 6.1, we introduce our approximation

scheme and establish an estimator for it, which we analyse regarding con-

sistency and generalisation error bounds in Section 6.2. In our experiments

in Section 6.3, we compare our approach against the full solution of Sripe-

rumbudur et al. [117], the previous heuristics score matching ‘lite’ and

‘finite’ from Chapter 4, Proposition 3 and Proposition 4 respectively, and

an auto-encoder-based score estimator of Alain and Bengio [2], which we

will introduce in Chapter 6.

The kernel exponential family model was introduced in Section 2.1.

Related work on fast approximate kernel regres-

sion

The system of (2.13) is related to the problem of kernel ridge regression,

which suffers from similar O(n3) computational cost. Thus we will briefly

review methods for speeding up kernel regression.

Nyström methods

We refer here to a class of broadly related Nyström-type methods [99, 112,

130]. The representer theorem [100] guarantees that the minimiser of the

empirical regression loss for a training set X = {Xb}b∈[n] over the RKHS

H with kernel k will lie in the subspace HX = span{k(Xb, ·)}b∈[n]. Nys-

tröm methods find an approximate solution by optimizing over a smaller

subspace HY, usually given by HY = span{k(y, ·)}y∈Y for a set of m points

Y ⊆ X chosen uniformly at random. This decreases the computational bur-

den both of training (O(n3) to O(nm2) time, O(n2) to O(nm) memory)

and testing (O(n) to O(m) time and memory).
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Random feature approximations

Another popular method for scaling up kernel methods is to use random

Fourier features [89, 116, 123] and their variants. Rather than finding the

best solution in a subspace of H, these methods choose a data-independent

set of parametric features such that expected inner products between the

features coincide with the kernel. These methods have some attractive com-

putational properties, as for example outlined in Section 4.6.3, but gener-

ally also require the number of features to increase with the data size in a

way that can be difficult to analyse: see Rudi et al. [98] for such an analysis

in regression.

Sketching

Another scheme for improving the speed of kernel ridge regression, sketch-

ing [133, 134] compresses the kernel matrix and the labels by multiply-

ing with a sketching matrix. These methods have some overlap with

Nyström-type approaches, and our method will encompass certain classes

of sketches [99, Appendix C.1].

Deep learning for direct score estimation

Alain and Bengio [2] proposed a deep learning-based approach to di-

rectly learn a score function from samples. De-noising auto-encoders are

networks trained to recover the original inputs from versions with noise

added. A de-noising auto-encoder trained with L2 loss and noise N (0,σ2 I)

can be used to construct a score estimator:

(rσ(x)− x)/σ2 ≈∇x log p0(x),

where rσ is the auto-encoder’s reconstruction function. When the auto-

encoder has infinite capacity and is trained to its global optimum, Alain

and Bengio [2] show that this estimator is consistent as σ→ 0. For realistic

auto-encoders with finite representation capacity, however, the consistency

of this approach remains an open question. Moreover, this technique has
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many hyper-parameters to choose, both in the architecture of the network

and in how it is trained, with no theory yet available to guide those choices.

Computing un-normalised densities from a non-parametric learned

score function, as the auto-encoder, can be a more challenging task. A

direct approach would involve numerical integration of the score estimate,

where errors can accumulate; moreover, as discussed by Alain and Ben-

gio [2, Section 3.6], a given score estimate might not correspond to a valid

gradient function, or might not yield a normalizable density.

6.1 Nyström kernel exponential families

To alleviate the computational costs of the linear system in (2.13), we apply

the Nyström idea to the estimator of the full kernel exponential family

model in (2.11). More precisely, we select a set of m ‘basis’ points Y =

{Ya}a∈[m], and restrict the optimisation in (2.11) to

HY := span{∂ik(Ya, ·)} i∈[d]
a∈[m], (6.1)

which is a subspace of H with elements that can be represented using md

coefficients, similar to (2.11). Typically Y ⊂ X; in particular, Y is usually

chosen as a uniformly random subset of X. We could, however, use any set

of points Y, or even a different set of spanning vectors than ∂ik(Ya, ·).

Theorem 2. The regularised minimiser of the empirical Fisher divergence (2.10)

over HY (6.1) is

f m
λ,n = argmin

f∈HY

Ĵ( f ) +
1
2

λ‖ f ‖2
H =

m

∑
a=1

d

∑
i=1

(βY)(a,i)∂ik(Yb, ·),

βY = −( 1
n BT

XYBXY + λGYY)
†hY. (6.2)

Here † denotes the pseudo-inverse, and BXY ∈Rnd×md, GYY ∈Rmd×md, hY ∈Rmd
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are given by

(BXY)(b,i),(a,j) = ∂i∂j+dk(Xb,Ya) (GYY)(a,i),(a′,j) = ∂i∂j+dk(Ya,Ya′)

(hY)(a,i) =
1
n

n

∑
b=1

d

∑
j=1

∂i∂
2
j+dk(Ya, Xb) + ∂i∂j+dk(Ya, Xb)∂j logq0(Xb).

The proof, which is similar to the kernel ridge regression analogue [99],

is given in Chapter 7. In fact, we show a slight generalisation (Lemma 4 in

Chapter 7), which also applies to more general subspaces HY.

It is worth emphasizing that in order to evaluate an estimate f m
λ,n, we

need only evaluate derivatives of the kernel between the basis points Y and

the test point x. If Y and X do not overlap, we no longer need X at all: its

full contribution is summarised in βY. When Y ⊆ X, the above quantities

are simply block sub-sampled versions of the terms in the full solution

(2.13). Note, however, that when Y = X we do not exactly recover the

solution (2.13), because ξ̂ contains components of the form ∂2
i k(Xb, ·) /∈HX.

Computing the the md × md matrix in (6.2) takes O(nmd2) memory

and O(nm2d3) time, both linear in n. Computing the pseudo-inverse takes

O(m3d3) computation, independent of n. Moreover, evaluating f m
λ,n takes

O(md) time, as opposed to the O(nd) time for fλ,n.

6.1.1 Relationship to finite and lite kernel exponential fam-

ilies

In Chapter 4, we proposed two alternative heuristic approximations to the

full model of (2.6), used for efficient score learning in adaptive HMC. These

approaches currently lack convergence guarantees.

The finite form in Proposition 4 uses an m-dimensional H, defined e.g.

by random Fourier features [89], where (2.11) can be computed directly in

H in time linear in n. We have seen that such parametric features limit the

expressiveness of the model: the score estimate oscillates in regions where

little or no data has been observed. In the context of Hamiltonian Monte
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Carlo, this leads to poor acceptance rates when the sampler enters those

regions, c.f. Section 4.3. Therefore, we do not further pursue this approach

in the present work here.

The lite approximation in Proposition 3 instead finds an estimator

f ∈ span{k(x, ·)}x∈X. This has a similar spirit to Nyström approaches, but

with a different basis from (2.11), which is based on kernel derivatives. Fur-

thermore, the lite approximation uses the entirety of X, so the dependence

on n is improved only by simple sub-sampling. Finally, the estimator in

Proposition 3 is solely for the specific case of Gaussian kernels. The gener-

alised version of Theorem 2 (Lemma 4 in Section 7.2) covers the basis used

by the lite approximation, allowing us to generalise this method to basis

sets Y 6= X and to kernels other than the Gaussian. We discuss this in more

detail in Part IV.

6.2 Theory

We analyse the performance of our estimator in the well-specified case:

assuming that the true density p0 is in P (and thus corresponds to some

f0 ∈H), we obtain both the parameter convergence of f m
λ,n to f0 and the con-

vergence of the corresponding density p f m
λ,n

to the true density p0. Detailed

proofs are provided in Chapter 7.

Theorem 3. Assume the conditions listed in Section 7.1.1 (similar to those of

Sriperumbudur et al. [117] for the well-specified case), and use the HY of (6.1)

with the basis set Y chosen uniformly at random from the size-m subsets of the

training set X. Let β ≥ 0 be the range-space smoothness parameter of the true

density f0, and define b = min
(

β, 1
2

)
, θ = 1

2(b+1) ∈ [1
3 , 1

2 ]. As long as m =

Ω
(
nθ logn

)
, then with λ = n−θ we obtain

‖ f m
λ,n − f0‖H =Op0

(
n−

b
2(b+1)

)
, J(p0‖p f m

λ,n
) =Op0

(
n−

2b+1
2(b+1)

)
.

The first statement implies that p f m
λ,n

also converges to p0 in Lr (1 ≤ r ≤ ∞) and
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Hellinger distances at a rateOp0

(
n−

b
2(b+1)

)
, and that KL(p0‖p f m

λ,n
),KL(p f m

λ,n
‖p0)

are each Op0

(
n−

b
b+1

)
.

The rate of convergence in J exactly matches the rate for the full-data

estimator fλ,n shown by [117] in J; the rates in other divergences essen-

tially match, except that ours saturate slightly sooner as β increases. Thus,

for any problem satisfying the assumptions, we can achieve the same sta-

tistical properties as the full-data setting with m = Ω
(√

n logn
)
, while in

the smoothest problems we need only m = Ω
(
n1/3 logn

)
. A finite-sample

version of Theorem 3, with explicit constants, is stated and proved in Sec-

tion 7.3.

6.2.1 Reduced costs compared to kernel ridge regression

This substantial reduction in computational expense is in contrast to the

comparable analysis for kernel ridge regression [99], which for the hard-

est problems requires m = Ω(n logn), giving no computational savings at

all. In the best general case, it also needs m = Ω(n1/3 logn). This rate was

itself a significant advance: a prior analysis based on stability of the ker-

nel approximation [37] results in a severe additional penalty when using

Nyström, matching the worst-case error rates for the full solution, yet still

requiring m = Ω(n) (i.e., according to the earlier reasoning, we would not

be guaranteed to benefit from improved rates in easier problems).

6.2.2 Proof outline

Our proof uses techniques both from the analysis of the full-data estima-

tor [117] and from an analysis of generalisation error for Nyström-sub-

sampled kernel ridge regression [99].

Each of the losses considered in Theorem 3 can be bounded in terms

of ‖ f − f0‖H. We decompose this loss relative to f m
λ = argmin f∈HY

J( f ) +
1
2 λ‖ f ‖2

H, which is the best regularised estimator in population with the
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particular basis Y. The decomposition is,

‖ f m
λ,n − f0‖H ≤ ‖ f m

λ,n − f m
λ ‖H + ‖ f m

λ − f0‖H. (6.3)

The first term on the right-hand side of (6.3) is the estimation error,

which represents our error due to having a finite number of samples n: this

term decreases as n→∞, but it will increase as λ→ 0. It could conceivably

increase as m→∞ as well, but we show using concentration inequalities in

H that no matter the m, the estimation error is Op0

(
1

λ
√

n

)
.

The last term of (6.3) is the approximation error, where ‘approximation’

refers both to the regularisation by λ and the restriction to the subspaceHY.

This term is independent of n; it decreases asHY grows (i.e. as m→∞), and

also decreases as λ→ 0, as we allow ourselves to more directly minimise

the population risk. The key to bounding this term is to exploit the nature

of the space HY. This can be done by analogy with the treatment of the

‘computational error’ term of Rudi et al. [99], where we show that any

components of f0 not lying within HY are relatively small in the parts of

the space we observe; this is the only step of the proof that depends on

the specific basis HY. Having handled this contribution, we show that the

approximation error term is Op0

(
λb) as long as m = Ω

(
1
λ log 1

λ

)
.

The decay of the two terms is then optimised when λ = nθ, with θ as

given in the proof.

The rate in the Fisher divergence J is better because that metric is

weighted towards points in the space where we actually see data, as op-

posed to uniformly across the space as in (6.3). Our proof technique, sim-

ilarly to that of Sriperumbudur et al. [117], allows us to account for this

with an improved dependence on λ in the evaluation of both estimation

and approximation errors.
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6.2.3 The missing ξ

We previously noted that using Y = X does not yield an identical estima-

tor, f n
λ,n 6= fλ,n. In fact, we could achieve this by additionally including ξ̂

within the space (6.1); it would also not be too hard to alter our proof to

account for this, achieving the same asymptotic rates. Since evaluating ξ̂

requires touching all the data points, however, we would lose the test-time

improvements in both computation and memory achieved by the estimator

of Theorem 2. Moreover, the experiments of Section 6.3 show that dropping

ξ̂ from the basis does not seem to be harmful in practice.

6.3 Experiments

We now validate our estimator empirically, considering two problem set-

tings: score function estimation for known, multi-modal densities in high

dimensions, and again Hamiltonian Monte Carlo, where the score is used

in proposing Metropolis-Hastings moves. We first consider synthetic den-

sities in Section 6.3.1, where we know the true densities and can evaluate

convergence of the score estimates analytically with (2.8). In Section 6.3.2

we evaluate our estimator in the gradient-free Hamiltonian Monte Carlo

setting from Chapter 4, where (in the absence of a ground truth) we com-

pare the efficiency of the resulting sampler.

For all exponential family variants, we take q0 to be a uniform distri-

bution with support encompassing the samples, and use a Gaussian kernel

k(x,y) = exp
(
−‖x− y‖2/σ

)
, with a tuned bandwidth σ and regularisation

parameter λ, c.f. Section 4.3. We compare the following models:

(i) The full model, (2.11) and (2.13), from [117].

(ii) The lite model from Proposition 3 in Chapter 4, which sub-samples

the dataset X to size m, and uses the basis {k(Xa, ·)}, ignoring the

remaining data points (unlike the Nyström case). The code uses the

regularisation λ(‖ f ‖2
H + ‖β‖2

2)
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(iii) The nyström estimator of Theorem 2, choosing m distinct data points

uniformly at random for Y. For numerical stability, we add 10−5 I

to the matrix being inverted in (6.2), corresponding to a small L2

regulariser on the weights β.

(iv) The dae model of Alain and Bengio [2], where we train a two-layer

de-noising auto-encoder, with tanh code activations and linear de-

coding. We train with decreasing noise levels (100σ, 10σ, σ), using

up to 1000 iterations of BFGS each. We tune the number of hidden

units and σ, since, while [2] recommend simply choosing some small

σ, this plays a similar role to a RBF kernel bandwidth, and its careful

choice is essential. We differentiate (using the automatic differenti-

ation capabilities of TensorFlow [1]) the score estimate to obtain the

second derivative needed to evaluate (2.9).

6.3.1 Score convergence on synthetic densities

We first consider two synthetic densities, whose true score functions are

available: The ‘ring’ dataset, Figure 6.1 (left), takes inspiration from the

‘spiral’ dataset of Alain and Bengio [2, Figure 5], being a similarly-shaped

distribution but possessing a probability density for evaluation purposes.

We sample points along three circles in R2 with radii (1,3,5), with mix-

ture weights proportional to the circumference of each circle. We then add

Gaussian noise of standard deviation 0.1 in the radial direction. Extra di-

mensions consist of independent Gaussian noise with standard deviation

0.1. The ‘grid’ dataset, Figure 6.1 (right), generalises the 2-component mix-

ture example of Sriperumbudur et al. [117, Figure 1] into a more challeng-

ing d-dimensional mixture. We first pick d random (using a fixed seed)

vertices of a d-dimensional hypercube, and then construct a mixture of

normal distributions, one at each selected vertex. For each run, we gener-

ate n = 500 training points and estimate the score on 1500 (grid) or 5000

(ring) newly generated test points. In both cases, we estimate the true score



6.3. Experiments 123

Figure 6.1: Two dimensional versions of the ring and grid dataset. The heatmap
corresponds to the log-density, arrows represent the (re-scaled) score
gradient field, and the red dots are samples from the density.

(2.8) on these test points to ensure a ‘best case’ comparison of the models,

though we confirmed that using (2.9) leads to indistinguishable parameter

selections and performance. For lite and nyström, we independently tune

the parameters for each sub-sampling level. We report performances for

the best parameters found for each method.

Results

Figure 6.2 shows convergence of the score as the dimension increases. On

both the ring and grid datasets, nyström performs very close to the full

solution, in addition to large computational savings. With reasonable per-

formance penalties at m = 42, we achieve a major reduction in cost and

storage over the original n = 500 sample size. The lite performance is sim-

ilar to that of nyström at comparable levels of data retention. As expected,

the performance of nyström gets closer to that of full as m increases to-

wards n. The auto-encoder performs consistently worse than any of the

kernel models, on both datasets. Auto-encoder results are also strongly

clustered, with only small performance improvements as the number of

hidden units increases. For the grid data, we observe that in 20 dimen-

sions, all solutions start to converge to a similar score. This indicates that

none of the methods are able to learn the structure for this number of train-

ing points and dimensions, and all solutions effectively revert to smooth,

uninformative estimates.
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Figure 6.2: Convergence and timing on synthetic ring and grid data.

Computational costs

In respect of computational cost1, the lite solution does best, followed by

nyström for low to moderate m, with significant savings over the full so-

lution even at m = 167 on the grid, and across all m on the ring. The

additional cost of nyström over lite arises since it must compute all deriva-

tives at the retained samples. The auto-encoder runtime is longer than the

other methods, although we point out that the settings recommended in

Alain and Bengio [2] are not optimised for run-time. We observed, how-

ever, that replacing BFGS with stochastic gradient descent or avoiding the

‘decreasing noise’ schedule both lead to instabilities in the solution.

6.3.2 Gradient-free Hamiltonian Monte Carlo

Our final experiment uses the methodology of Chapter 4 for constructing a

gradient-free HMC sampler using score estimates learned on the previous

MCMC samples. Our goal is to efficiently sample from the marginal poste-

rior over hyper-parameters of a Gaussian process (GP) classifier on the UCI

Glass dataset [76], c.f. Section 3.3.1. Once again, closed-form expressions

for the score (and therefore HMC itself) are not available, due to the in-

1All experiments are conducted in a single CPU thread for timing comparisons, al-
though multi-core parallelism is straightforward for all models.
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tractability of the marginal data likelihood given the hyper-parameters. We

compare all score estimators’ ability to generate an HMC-like proposal as

described in Chapter 4. An accurate score estimate would result in propos-

als close to an idealised HMC move, which would have a high acceptance

probability. Thus, higher acceptance rates indicate better score estimates.

Kernel induced Hamiltonian flow

Our experiment assumes the idealised scenario where a burn-in is success-

fully completed, just like the trajectory experiments in Section 4.4.1. We

run 40 random walk adaptive-Metropolis MCMC samplers for 30000 itera-

tions, discard the first 10000 samples, and thin by a factor of 400. Merging

these samples results in 2000 posterior samples. We fit all score estimators

on a random subset of n = 500 of these samples, and use the remaining

1500 samples to tune the model hyper-parameters. The validation surface

obtained for nyström by the estimated score objective on the held-out set

is shown in Figure 6.3: we note that it is smooth and easily optimised. For

the dae (validation surface not shown here), a well-tuned level of corrup-

tion noise is essential. Starting from a random point of the initial poste-

rior sketch, we construct trajectories along the kernel induced Hamiltonian

flow, Section 4.1, using 100 steps of size 0.1, and a standard Gaussian mo-

mentum. We compute the hypothetical acceptance probability (4.2) for each

step, and average over the trajectory.

Results

Figure 6.3 shows the results averaged over 200 repetitions. As before, nys-

tröm matches the performance of full for m = n = 500, while for m = 100

it attains a high acceptance rate at a considerably reduced computational

cost. It also reliably outperforms lite for lower m, which might occur

since lite sub-samples the data while nyström only sub-samples the basis.

The dae does relatively poorly, despite a large grid-search for its hyper-

parameters. For any of the models, un-tuned hyper-parameters easily lead

to an acceptance rate close to zero.
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Chapter 7

Proofs

We now prove Theorems 2 and 3 from Chapter 6, as well as providing a

finite-sample bound with explicit constants (Theorem 4). The chapter is

based on the same collaborative work as Chapter 6.

Overview

In Section 7.1, we begin with a review of necessary notation and defini-

tions of all necessary objects, and a review of theory for the full kernel

exponential family estimator by Sriperumbudur et al. [117]. Some of Sec-

tion 7.1 in redundant with Sections 2.1 and 2.2, and Chapter 6, but we

collect everything here to improve readability. In Section 7.2, we establish

a representer theorem for our Nyström estimator and prove Theorem 2.

We address consistency and convergence in Section 7.3, by first decompos-

ing and bounding the error in Section 7.3.1, then developing probabilistic

inequalities in Section 7.3.2, and finally collecting everything into a final

bound to prove Theorem 3 in Section 7.3.3. Section 7.4 establishes auxil-

iary results used in the proofs, in particular a concentration inequality for

sums of correlated random operators in Section 7.4.2.

7.1 Preliminaries

We first establish some definitions that are useful throughout, as well as

reviewing relevant results by Sriperumbudur et al. [117].
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Notation

Following Section 2.1, denote by H a reproducing kernel Hilbert space of

functions Ω ⊆ Rd → R with inner product 〈·, ·〉H and norm ‖·‖H, with a

kernel k : Ω×Ω→R given by the reproducing property (2.1), with deriva-

tives (2.3).

We use ‖·‖ to denote the operator norm

‖A‖ = sup
f :‖ f ‖H≤1

|〈 f , A f 〉H|,

and A∗ for the adjoint of an operator A :H1→H2,

〈A f , g〉H2 = 〈 f , A∗g〉H1 .

λmax(A) denotes the algebraically largest eigenvalue of A. For elements

f ∈ H1, g ∈ H2 recall the tensor product f ⊗ g (2.5), viewed as an operator

from H2 to H1, where we have that ( f ⊗ g)∗ = g⊗ f and that A( f ⊗ g)B =

(A f )⊗ (B∗g).

C1(Ω) denotes the space of continuously differentiable functions on

Ω, and Lr(Ω) the space of r-power Lebesgue-integrable functions.

As in Chapter 6, x(a,i) denotes x(a−1)d+i.

Definitions

We now define a number of operators and other objects used in our study,

some of which were already introduced in Section 2.2.

Definition 1. Suppose we have a sample set X = {Xa}a∈[n] ⊂Rd. For any λ > 0,
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define the following:

C = Ex∼p0

[
d

∑
i=1

∂ik(x, ·)⊗ ∂ik(x, ·)
]

:H→H; Cλ = C + λI (7.1)

ξ = −C f0 = Ex∼p0

[
d

∑
i=1

∂ik(x, ·)∂i logq0(x) + ∂2
i k(x, ·)

]
∈ H (7.2)

ZX =
n

∑
b=1

d

∑
i=1

e(b,i) ⊗ ∂ik(Xb, ·) :H→Rnd; (7.3)

here e(b,i) has component (b− 1)d + i equal to 1 and all others 0.

Define estimators of (7.1) and (7.2) by

Ĉ =
1
n

Z∗XZX =
1
n

n

∑
a=1

d

∑
i=1

∂ik(Xa, ·)⊗ ∂ik(Xa, ·) :H→H (7.4)

ξ̂ =
1
n

n

∑
a=1

d

∑
i=1

∂ik(Xa, ·)∂i logq0(Xa) + ∂2
i k(Xa, ·) ∈ H, (7.5)

and Ĉλ := Ĉ + λI. The operator ZX in (7.3) evaluates derivatives,

(ZX f )(b,i) = ∂i f (Xb), whereas for α ∈ Rnd, Z∗Xα = ∑n
b=1 ∑d

i=1 α(b,i)∂ik(Xb, ·).
C is similar to the standard covariance operator in similar analyses, c.f. Sec-

tion 2.2 and [27, 99].

Analogous to [99], we also use these C-derived quantities:

N∞(λ) := sup
x∈Ω

d

∑
i=1

∥∥∥∥C−
1
2

λ ∂ik(x, ·)
∥∥∥∥

2

H

N ′∞(λ) := sup
x∈Ω
i∈[d]

∥∥∥∥C−
1
2

λ ∂ik(x, ·)
∥∥∥∥

2

H
.

Note that under (G), N∞(λ) ≤ dN ′∞(λ) ≤ dκ2
1

λ , and ‖C‖ ≤ dκ2
1.

7.1.1 Assumptions

We need the following assumptions on p0, q0, and H. These assumptions,

or closely related ones, were all used by [117] for various parts of their anal-

ysis. Assumptions (B) to (D) ensure that the form for the Fisher divergence
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J(p0‖p) in (2.9) is valid. Assumption (E) implies J(p0‖p f ) is finite for any

p f ∈ P . Assumption (G) is used to get probabilistic bounds on the conver-

gence of the estimators, and implies Assumption (E). Note that κ2
2 < ∞ and

Q < ∞ can be replaced by L2(Ω, p0) integrability assumptions as in [117]

without affecting the asymptotic rates, but κ2
1 < ∞ is used to get Nyström-

like rates. Assumption (H) is additionally needed for the convergence in

Lr, Hellinger, and KL distances.

(A) (Well-specified) The true density is p0 = p f0 ∈ P , for some f0 ∈ F .

(B) supp p0 = Ω is a non-empty open subset of Rd, with a piecewise

smooth boundary ∂Ω := Ω̄ \Ω, where Ω̄ denotes the closure of Ω.

(C) p0 is continuously extensible to Ω̄. k is twice continuously differ-

entiable on Ω ×Ω, with ∂α,αk continuously extensible to Ω̄ × Ω̄ for

|α| ≤ 2.

(D) ∂i∂i+dk(x, x′)|x′=x p0(x) = 0 for x ∈ ∂Ω, and for all sequences of x ∈Ω

with ‖x‖2→ ∞ we have have p0(x)
√

∂i∂i+dk(x, x′)
∣∣∣
x′=x

= o
(
‖x‖1−d)

for each i ∈ [d].

(E) (Integrability) For all i ∈ [d], each of

∂i∂i+dk(x, x′)
∣∣
x′=x ,

√
∂2

i ∂2
i+dk(x, x′)

∣∣∣
x′=x

, ∂i logq0(x)
√

∂2
i ∂2

i+dk(x, x′)
∣∣∣
x′=x

are in L1(Ω, p0), and q0 ∈ C1(Ω).

(F) (Range space) f0 ∈ range(Cβ) for some β ≥ 0, and
∥∥C−β f0

∥∥
H < R for

some R < ∞. The operator C was defined by (7.1).

(G) (Bounded derivatives) supp(q0) =H, and the following quantities are
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finite:

κ2
1 := sup

x∈Ω
i∈[d]

∂i∂i+dk(x, x′)
∣∣
x′=x , κ2

2 := sup
x∈Ω
i∈[d]

∂2
i ∂2

i+dk(x, x′)
∣∣∣
x′=x

Q := sup
x∈Ω
i∈[d]

|∂i logq0(x)| .

(H) (Bounded kernel) κ2 := supx∈Ω k(x, x) is finite.

Full-data result

We review a result for the full estimator established by Sriperumbudur et

al. [117, Theorem 3].

Lemma 1. Under Assumptions (A) to (E),

J( f ) = J(p0‖p f ) =
1
2
〈 f − f0,C( f − f0)〉H =

1
2
〈 f ,C f 〉H + 〈 f ,ξ〉H + J(p0‖q0).

Thus for λ > 0, the unique minimizer of the regularised loss function Jλ( f ) =

J( f ) + 1
2 λ‖ f ‖2

H is

fλ = argmin
f∈H

Jλ( f ) = −C−1
λ ξ = C−1

λ C f0.

Using the estimators (7.4) and (7.5), define an empirical estimator of the loss

function (2.10), up to the additive constant J(p0‖q0), as

Ĵ( f ) =
1
2
〈 f , Ĉ f 〉H + 〈 f , ξ̂〉H.

There is a unique minimizer of Ĵλ( f ) = Ĵ( f ) + 1
2 λ‖ f ‖2

H:

fλ,n = argmin
f∈H

Ĵλ( f ) = −Ĉ−1
λ ξ̂.

fλ,n can be computed according to [117, Theorem 4].
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We next define sub-sampling versions of the operators in Definition 1.

Note, however, that we consider a more general HY than (6.1), allowing to

use any finite-dimensional subspace of H.

Definition 2 (Sub-sampling operators). Let Y = {ya}a∈[m] ⊂H be some basis

set, and let its span be HY = span(Y); note that (6.1) uses y(a,i) = ∂ik(Ya, ·).
Then define

ZY =
m

∑
a=1

ea ⊗ ya :H→Rm. (7.6)

Let ZY have singular value decomposition ZY = UΣV∗, where Σ ∈ Rt×t for

some t ≤ m. For an operator A :H→H, let

gY(A) = V(V∗AV)−1V∗. (7.7)

Here,

PY := VV∗

is the orthogonal projection operator onto HY, while V∗V is the identity on

Rt. As ZX in (7.3), the operator ZY in (7.6) evaluates (here sub-sampled)

derivatives.

The projected inverse function gY, defined by Rudi et al. [99], is crucial

in our study, and so we first establish useful properties of it.

Lemma 2 (Properties of gY). Let A :H→H be a positive operator, and define

Aλ = A + λI for any λ > 0. The operator gY of (7.7) satisfies the following:

(i) gY(A)PY = gY(A)

(ii) PYgY(A) = gY(A)

(iii) gY(Aλ)AλPY = PY

(iv) gY(Aλ) = (PY APY + λI)−1PY

(v) ‖A
1
2
λgY(Aλ)A

1
2
λ‖ ≤ 1
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Proof. (i) and (ii) follow from V∗PY = V∗VV∗ = V∗ and PYV = VV∗V = V,

respectively. (iii) is similar: gY(Aλ)AλPY = V(V∗AλV)−1V∗AλVV∗ = VV∗.

For (iv),

PY = VV∗ = V(V∗AλV)(V∗AλV)−1V∗ = V(V∗AλV)V∗V(V∗AλV)−1V∗.

But V(V∗AλV)V∗ = V(V∗AV + λV∗V)V∗ = (PY APY + λI)PY, so we have

PY = (PY APY + λI)PYgY(Aλ);

left-multiplying both sides by (PY APY + λI)−1 and using (ii) yields the

desired result. Finally,

(
A

1
2
λgY(Aλ)A

1
2
λ

)2

= A
1
2
λgY(Aλ)AλgY(Aλ)A

1
2
λ

= A
1
2
λV(V∗AλV)−1V∗AλV(V∗AλV)−1V∗A

1
2
λ

= A
1
2
λV(V∗AλV)−1V∗A

1
2
λ

= A
1
2
λgY(Aλ)A

1
2
λ,

so that A
1
2
λgY(Aλ)A

1
2
λ is a projection. Thus its operator norm is either 0 or

1, and (v) follows.

7.2 Representer theorem for Nyström

In this section, we cover Theorem 2. We first establish some representations

for f m
λ,n in terms of operators on H (in Lemma 3), and then show Lemma 4,

which generalizes Theorem 2. This parallels Rudi et al. [99, Appendix C].

Lemma 3. Under Assumptions (A) to (E), the unique minimizer of Ĵ( f )+λ‖ f ‖2
H

in HY is

f m
λ,n := argmin

f∈HY

Ĵλ( f ) = −(PYĈPY + λI)−1PY ξ̂ = −gY(Ĉλ)ξ̂. (7.8)
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Proof. We begin by rewriting the minimisation using Lemma 1 as

f m
λ,n = argmin

f∈HY

Ĵλ( f )

= argmin
f∈HY

1
2
〈 f , Ĉ f 〉H + 〈 f , ξ̂〉H +

1
2

λ‖ f ‖2
H

= argmin
f∈HY

1
2
〈PY f , ĈPY f 〉H + 〈PY f , ξ̂〉H +

1
2

λ‖ f ‖2
H

= argmin
f∈HY

1
2

〈
1√
n

ZXPY f ,
1√
n

ZXPY f
〉

H
+ 〈 f , PY ξ̂〉H +

1
2

λ‖ f ‖2
H

= argmin
f∈HY

1
2

∥∥∥∥
1√
n

ZXPY f
∥∥∥∥

2

H
+ λ

〈
f ,

1
λ

PY ξ̂

〉

H
+

1
2

λ‖ f ‖2
H +

1
2

λ

∥∥∥∥
1
λ

PY ξ̂

∥∥∥∥
2

H

= argmin
f∈HY

1
2

∥∥∥∥
1√
n

ZXPY f
∥∥∥∥

2

H
+

1
2

λ

∥∥∥∥ f +
1
λ

PY ξ̂

∥∥∥∥
2

H
.

This problem is strictly convex and coercive, thus a unique f m
λ,n exists. Now,

for any f ∈ H, we have

∥∥∥∥ f +
1
λ

PY ξ̂

∥∥∥∥
2

H
=

∥∥∥∥PY f +
1
λ

PY ξ̂

∥∥∥∥
2

H
+ ‖(I − PY) f ‖2

H ,

so that the problem

argmin
f∈H

1
2

∥∥∥∥
1√
n

ZXPY f
∥∥∥∥

2

H
+

1
2

λ

∥∥∥∥ f +
1
λ

PY ξ̂

∥∥∥∥
2

H

will yield a solution in HY. This problem is also strictly convex and coer-

cive, so its unique solution must be f m
λ,n. By differentiating the objective,

we can then see that

1
n PYZ∗XZX f m

λ,n + λ f m
λ,n + PY ξ̂ = 0

(
PYĈPY + λI

)
f m
λ,n = −PY ξ̂,

which since Ĉ is positive yields the first equality of (7.8). The second fol-

lows from Lemma 2 (iv).
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Lemma 4 (Generalisation of Theorem 2). Under Assumptions (A) to (E), f m
λ,n

can be computed as

f m
λ,n = Z∗YβY =

m

∑
a=1

(βY)aya

βY = −( 1
n BT

XYBXY + λGYY)
†hY, (7.9)

where BXY ∈Rnd×m, GYY ∈Rm×m, hY ∈Rm are given by

(BXY)(b,i),a = 〈∂ik(Xb, ·),ya〉H (7.10)

(GYY)a,a′ = 〈ya,ya′〉H
(hY)a = 〈ξ̂,ya〉H.

Proof. First, BXY = ZXZ∗Y, GYY = ZYZ∗Y, and hY = ZY ξ̂. For example, (7.10)

agrees with

ZXZ∗Y =

[
n

∑
b=1

d

∑
i=1

e(b,i) ⊗ ∂ik(Xb, ·)
][

m

∑
a=1

ya ⊗ ea

]

=
n

∑
b=1

d

∑
i=1

m

∑
a=1
〈∂ik(Xb, ·),ya〉H

[
e(b,i) ⊗ ea

]
.

Recall the full-rank factorisation of pseudo-inverses: if a matrix A of

rank r can be written as A = FG for F, G each of rank r, then A† = G†F†

[18, Chapter 1, Section 6, Exercise 17].
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Now we can show that the claimed form (7.9) matches f m
λ,n from (7.8):

−Z∗Y
(

1
n BT

XYBXY + λGYY

)†
hY = −Z∗Y

(
1
n ZYZ∗XZXZ∗Y + λZYZ∗Y

)†
ZY ξ̂

= −Z∗Y
(
ZYĈλZ∗Y

)† ZY ξ̂

= −VΣU∗
(
(UΣ)(V∗ĈλV)(ΣU∗)

)† UΣV∗ξ̂

= −VΣU∗(ΣU∗)†(V∗ĈλV)†(UΣ)†UΣV∗ξ̂

= −VΣU∗UΣ−1(V∗ĈλV)−1Σ−1U∗UΣV∗ξ̂

= −V(V∗ĈλV)−1V∗ξ̂

= −gY(Ĉλ)ξ̂ = f m
λ,n.

Theorem 2 is the specialisation of Lemma 4 to y(a,i) = ∂ik(Ya, ·).

7.3 Consistency and convergence rates

We now address Theorem 3. To prove the consistency and convergence of

f m
λ,n, we first bound the difference between f m

λ,n in terms of various quan-

tities, Section 7.3.1, which we then study individually in Section 7.3.2 to

yield the final result in Section 7.3.3. Section 7.4 gives auxiliary results

used along the way.

7.3.1 Decomposition

We care both about the parameter convergence ‖ f m
λ,n − f0‖H and the con-

vergence of pm
λ,n = p f m

λ,n
to p0 in various distances. By Lemma 1, we know

that J(p0‖pm
λ,n) =

1
2

∥∥∥C
1
2 ( f m

λ,n − f0)
∥∥∥

2

H
. In Lemma 16, we will addition-

ally show that the Lr, KL, and Hellinger distances between the distribu-

tions can be bounded in terms of ‖ f m
λ,n − f0‖H. Thus it suffices to bound

‖Cα( f m
λ,n − f0)‖H for α ≥ 0.

Lemma 5. Under Assumptions (A) to (F), let α ≥ 0 and define

c(a) := λmin(0, a− 1
2)‖C‖max(0, a− 1

2), CY := ‖C
1
2
λ(I −VV∗)‖2.



7.3. Consistency and convergence rates 137

Then

‖Cα( f m
λ,n − f0)‖H ≤ R (2CY + λ) c(α)c(β)

+
1√
λ

∥∥∥∥CαĈ−
1
2

λ

∥∥∥∥
(
‖ξ̂ − ξ‖H + ‖Ĉ− C‖R

(
(2CY + λ) c(α)c(β) + ‖C‖β

))
.

Proof. We decompose the error with respect to the best estimator for a fixed

basis:

f m
λ := argmin

f∈HY

1
2
〈 f , PYCPY f 〉H + 〈 f , PYξ〉H +

1
2

λ‖ f ‖2
H

= −(PYCPY + λI)−1Pyξ = −gY(Cλ)ξ = gY(Cλ)C f0.

Then we have

‖Cα( f m
λ,n − f0)‖H ≤ ‖Cα( f m

λ,n − f m
λ )‖H︸ ︷︷ ︸

Estimation error

+‖Cα( f m
λ − f0)‖H︸ ︷︷ ︸

Approximation error

. (7.11)

Approximation error

We consider the second term of (7.11) first. This term covers both approxi-

mation due to the basis HY and the bias due to regularisation. We break it

down using ideas from the proof of Rudi et al. [99, Theorem 2]:

f0 − f m
λ = (I − gY(Cλ)C) f0

= (I − gY(Cλ)Cλ + λgY(Cλ)) f0

= (I − gY(Cλ)Cλ(VV∗)− gY(Cλ)Cλ(I −VV∗) + λgY(Cλ)) f0

= ((I −VV∗)− gY(Cλ)Cλ(I −VV∗) + λgY(Cλ)) f0,
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where in the last line we used Lemma 2 (iii). Thus, using Assumption (F)

and Lemma 2 (v),

‖Cα( f m
λ − f0)‖H ≤ ‖Cα(I −VV∗) f0‖H + ‖CαgY(Cλ)Cλ(I −VV∗) f0‖H

+ λ‖CαgY(Cλ) f0‖H
≤
∥∥∥∥CαC−

1
2

λ

∥∥∥∥
︸ ︷︷ ︸

Sα

∥∥∥∥C
1
2
λ(I −VV∗)Cβ

∥∥∥∥
∥∥∥C−β f0

∥∥∥
H︸ ︷︷ ︸

≤R

+

∥∥∥∥CαC−
1
2

λ

∥∥∥∥
︸ ︷︷ ︸

Sα

∥∥∥∥C
1
2
λ gY(Cλ)C

1
2
λ

∥∥∥∥
︸ ︷︷ ︸

≤1

∥∥∥∥C
1
2
λ(I −VV∗)Cβ

∥∥∥∥
∥∥∥C−β f0

∥∥∥
H︸ ︷︷ ︸

≤R

+ λ

∥∥∥∥CαC−
1
2

λ

∥∥∥∥
︸ ︷︷ ︸

Sα

∥∥∥∥C
1
2
λ gY(Cλ)C

1
2
λ

∥∥∥∥
︸ ︷︷ ︸

≤1

∥∥∥∥C−
1
2

λ Cβ

∥∥∥∥
H︸ ︷︷ ︸

Sβ

∥∥∥C−β f0

∥∥∥
H︸ ︷︷ ︸

≤R

.

Because PY = (I −VV∗) is a projection, we have

∥∥∥∥C
1
2
λ(I −VV∗)Cβ

∥∥∥∥ ≤
∥∥∥∥C

1
2
λ(I −VV∗)2C

1
2
λ

∥∥∥∥
∥∥∥∥C−

1
2

λ Cβ

∥∥∥∥ ≤
∥∥∥∥C

1
2
λ(I −VV∗)

∥∥∥∥
2

Sβ.

We can also bound the terms Sa as follows. When a ≥ 1
2 , the function

x 7→ xa/
√

x + λ is increasing on [0,∞), so that

Sa =

∥∥∥∥C−
1
2

λ Ca
∥∥∥∥ ≤

‖C‖a
√
‖C‖+ λ

≤ ‖C‖a− 1
2 .

When instead 0≤ a < 1
2 , since H is Hilbert-Schmidt, we have that

Sa =

∥∥∥∥C−
1
2

λ Ca
∥∥∥∥ ≤max

x≥0

xa
√

x + λ
=
√

2aa
(

1
2 − a

) 1
2−a

λa− 1
2 ≤ λa− 1

2 .

Combining the two yields

Sa ≤ λmin(0, a− 1
2)‖C‖max(0, a− 1

2) = c(a),
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and so

‖Cα( f m
λ − f0)‖H ≤ R

(
2
∥∥∥∥C

1
2
λ(I −VV∗)

∥∥∥∥
2

+ λ

)
c(α)c(β). (7.12)

Estimation error

We continue with the first term of (7.11). Let D = PYCPY, D̂ = PYĈPY. Then

f m
λ =−(D+λI)−1PYξ =− 1

λ
(D+λI−D)(D+λI)−1PYξ =− 1

λ
(PYξ +D f m

λ ),

and so the error due to finite n is

f m
λ − f m

λ,n = (D̂ + λI)−1PY ξ̂ + f m
λ

= (D̂ + λI)−1 (PY ξ̂ + (D̂ + λI) f m
λ

)

= (D̂ + λI)−1 (PY ξ̂ + D̂ f m
λ + λ f m

λ

)

= (D̂ + λI)−1 (PY ξ̂ + D̂ f m
λ − PYξ − D f m

λ

)

= (D̂ + λI)−1 (PY(ξ̂ − ξ) + (D̂− D) f m
λ

)

= (D̂ + λI)−1 (PY(ξ̂ − ξ) + (D̂− D)( f m
λ − f0) + (D̂− D) f0

)
.

We thus have, using ‖PY‖ ≤ 1,

∥∥Cα( f m
λ − f m

λ,n)
∥∥
H ≤

∥∥∥Cα(PYĈPY + λI)−1PY

∥∥∥
(

‖ξ̂ − ξ‖H + ‖Ĉ− C‖‖ f m
λ − f0‖H + ‖Ĉ− C‖‖ f0‖H

)
.

We have already bounded ‖ f m
λ − f0‖H, and have ‖ f0‖H ≤ ‖Cβ‖‖C−β f0‖H ≤

R‖C‖β. Using Lemma 2 (iv) and (v), we have

∥∥∥Cα(PYĈPY + λI)−1PY

∥∥∥ =
∥∥CαgY(Ĉλ)

∥∥ ≤
∥∥∥∥CαĈ−

1
2

λ

∥∥∥∥
∥∥∥∥Ĉ

1
2
λ gY(Ĉλ)Ĉ

1
2
λ

∥∥∥∥
∥∥∥∥Ĉ−

1
2

λ

∥∥∥∥

≤ 1√
λ

∥∥∥∥CαĈ−
1
2

λ

∥∥∥∥ ,
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and so
∥∥∥Cα( f m

λ − f m
λ,n)
∥∥∥
H

is upper bounded by

∥∥∥∥CαĈ−
1
2

λ

∥∥∥∥
√

λ

(
‖ξ̂ − ξ‖H + ‖Ĉ − C‖

(
‖ f m

λ − f0‖H + R‖C‖β
))

. (7.13)

The claim follows by using (7.12) and (7.13) in (7.11).

7.3.2 Probabilistic inequalities

We only need Lemma 5 for α = 0 and α = 1
2 ; in the former case, we use∥∥∥∥Ĉ−

1
2

λ

∥∥∥∥≤ 1/
√

λ. Thus we are left with four quantities to control: ‖C 1
2 Ĉ−

1
2

λ ‖,

CY = ‖C
1
2
λ(I −VV∗)‖2, ‖ξ̂ − ξ‖H, and ‖Ĉ− C‖.

Lemma 6. Let ρ,δ ∈ (0,1). Under Assumptions (B) to (E) and (G) for any

0 < λ ≤ 1
4‖C‖, define w := log 25TrC

λδ . When

n ≥max
(

4w
3ρ

,
40dN ′∞(λ)w

ρ2

)
,

we have that with probability at least 1− δ,

‖C 1
2 Ĉ−

1
2

λ ‖ ≤
1√

1− ρ
.

Proof. Let γ := λmax

(
C−

1
2

λ (C− Ĉ)C−
1
2

λ

)
. Lemma 15 gives that ‖C 1

2 Ĉ−
1
2

λ ‖ ≤
1√

1−γ
as long as γ < 1. We bound γ with Lemma 13, using Ya

i = ∂ik(Xa, ·)
so that E∑d

i=1 Ya
i ⊗Ya

i = C. This gives us that γ≤ ρ with probability at least

1− δ as long as

ρ ≤ 2w
3n

+

√
10dN ′∞(λ)w

n
,

which is satisfied by the condition on n.

Lemma 7. Choose the basis y(a,i) = ∂ik(Ya, ·), with the points {Ya}a∈[m] sam-

pled i.i.d. from p0. Let ρ,δ ∈ (0,1), and define w := log 25Tr(C)
λδ . Then, under
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Assumptions (B) to (E) and (G)

CY = ‖C
1
2
λ(I −VV∗)‖2 ≤ λ

1− ρ

with probability at least 1− δ as long as

m ≥max
(

4w
3ρ

,
40dN ′∞(λ)w

ρ2

)
.

Proof. We have that ‖C
1
2
λ(I − VV∗)‖2 ≤ λ

∥∥∥∥( 1
m Z∗YZY + λI)−

1
2 C

1
2
λ

∥∥∥∥
2

via

Lemma 14. Again applying Lemmas 13 and 15 as in the proof of Lemma 6

yields the result.

For the remaining two quantities, we use simple Hoeffding1 bounds.

Lemma 8 (Concentration of ξ̂). Under Assumption (G), with probability at least

1− δ we have

‖ξ̂ − ξ‖H ≤
2d(Qκ1 + κ2)√

n

(
1 +

√
2log 1

δ

)
.

Proof. Let

νa :=
d

∑
i=1

(
∂i logq0(Xa)∂ik(Xa, ·) + ∂2

i k(Xa, ·)
)
− ξ,

so that ξ̂ − ξ = 1
n ∑n

a=1 νa, and for each a we have that Eνa = 0 and

‖νa‖H ≤ 2sup
x∈Ω

∥∥∥∥∥
d

∑
i=1

∂i logq0(x)∂ik(x, ·) + ∂2
i k(x, ·)

∥∥∥∥∥
H
≤ 2d (Qκ1 + κ2) .

Applying Lemma 10 to the vectors νa gives the result.

Lemma 9 (Concentration of Ĉ). Under Assumption (G), with probability at

1A Bernstein bound would allow for a slightly better result when κ1 and κ2 are large,
at the cost of a more complex form.
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least 1− δ we have

‖Ĉ− C‖ ≤ 2dκ2
1√

n

(
1 +

√
2log 1

δ

)
.

Proof. Let

Cx :=
d

∑
i=1

∂ik(x, ·)⊗ ∂ik(x, ·),

so that Ĉ = 1
n ∑a=1 nCXa , C = ECx. We know that

‖Cx − C‖ ≤ 2
d

∑
i=1
‖∂ik(x, ·)‖2

H ≤ 2dκ2
1

‖Cx − C‖HS ≤ 2
d

∑
i=1

sup
x∈Ω
‖∂ik(x, ·)‖2

H ≤ 2dκ2
1,

so applying Lemma 11 shows the result.

7.3.3 Final bound

Theorem 4 (Finite-sample convergence of f m
λ,n). Under Assumptions (A)

to (G), let δ ∈ (0,1) and define Sδ := 1 +
√

2log 4
δ . Use the basis y(a,i) =

∂ik(Ya, ·), for {Ya}m
a=1 an iid sample from p0 not necessarily independent of X.

Assume that 0 < λ < 1
4‖C‖. When

min(n, m) ≥ 90dκ2
1

λ
log

100dκ2
1

λδ
,
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we have with probability at least 1− δ that both of the following hold simultane-

ously:

‖ f m
λ,n − f0‖H ≤ 7Rλmin( 1

2 , β)(dκ2
1)

max(0, β− 1
2)

+
2d

λ
√

n
Sδ

(
Qκ1 + κ2

+ Rκ2
1

(
7λmin( 1

2 , β)(dκ2
1)

max(0, β− 1
2) + (dκ2

1)
β
))

‖C 1
2 ( f m

λ,n − f0)‖H ≤ 7Rλmin(1, β+ 1
2)(dκ2

1)
max(0, β− 1

2)

+
2d
√

3√
λn

Sδ

(
Qκ1 + κ2

+ Rκ2
1

(
7λmin( 1

2 , β)(dκ2
1)

max(0, β− 1
2) + (dκ2

1)
β
))

.

Proof. Recall from Lemma 5 that

‖Cα( f m
λ,n − f0)‖H ≤ R (2CY + λ) c(α)c(β)

+
1√
λ

∥∥∥∥CαĈ−
1
2

λ

∥∥∥∥
(
‖ξ̂ − ξ‖H + ‖Ĉ− C‖R

(
(2CY + λ) c(α)c(β) + ‖C‖β

))
.

We use a union bound over the results of Lemmas 6 to 9. Note that

under Assumption (G), each of ‖C‖ and TrC are at most dκ2
1 and N ′∞(λ)≤

κ2
1/λ.

We first use ρ = 2
3 in Lemmas 6 and 7 to get that CY ≤ 3λ and

‖C 1
2 Ĉ−

1
2

λ ‖ ≤
√

3 with probability at least δ
2 when n and m are each at least

max
(
2, 90dN ′∞(λ)

)
log

25TrC
λ δ

4

≤ 90dκ2
1

λ
log

100dκ2
1

λδ
,

where we used that λ < 1
4‖C‖. The claim follows from applying Lemmas 8

and 9.

Theorem 3 now follows from considering the asymptotics of Theo-

rem 4, once we additionally make Assumption (H):
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Proof of Theorem 3. Let b := min
(

1
2 , β

)
. Under Assumptions (A) to (G), as

n→∞ Theorem 4 gives:

‖ f m
λ,n − f0‖H =Op0

(
λb + n−

1
2 λ−1 + n−

1
2 λb−1

)

=Op0

(
λb + n−

1
2 λ−1

)

‖C 1
2 ( f m

λ,n − f0)‖H =Op0

(
λb+ 1

2 + n−
1
2 λ−

1
2 + n−

1
2 λb− 1

2

)

=Op0

(
λb+ 1

2 + n−
1
2 λ−

1
2

)

as long as min(n,m) = Ω(λ−1 logλ−1). Choosing λ = n−θ, this requirement

is min(n,m) = Ω(nθ logn) and the bounds become

‖ f m
λ,n − f0‖H =Op0

(
n−bθ + nθ− 1

2

)

‖C 1
2 ( f m

λ,n − f0)‖H =Op0

(
n−bθ− 1

2 θ + n
1
2 θ− 1

2

)
.

Both bounds are minimised when θ = 1
2(1+b) , which since 0 ≤ b ≤ 1

2 leads

to 1
2 ≥ θ ≥ 1

3 , and the requirement on n is always satisfied once n is large

enough. This shows, as claimed, that

‖ f m
λ,n − f0‖H =Op0

(
n−

b
2(b+1)

)
J(p0‖p f m

λ,n
) =Op0

(
n−

2b+1
2(b+1)

)

when m = Ω
(

n
1

2(1+b) logn
)

.

The bounds on Lr, Hellinger, and KL convergence follow from

Lemma 16 under Assumption (H).

7.4 Auxiliary results

7.4.1 Concentration inequalities in Hilbert spaces

Lemma 10 (Hoeffding-type inequality for random vectors). Let X1, . . . , Xn be

iid random variables in a (separable) Hilbert space, where E Xi = 0 and ‖Xi‖ ≤ L
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almost surely. Then for any ε > L/
√

n,

Pr

(∥∥∥∥∥
1
n

n

∑
i=1

Xi

∥∥∥∥∥ > ε

)
≤ exp

(
−1

2

(√
nε

L
− 1
)2
)

;

equivalently, we have with probability at least 1− δ that

∥∥∥∥∥
1
n

n

∑
i=1

Xi

∥∥∥∥∥ ≤
L√
n

(
1 +

√
2log 1

δ

)
.

Proof. Following Boucheron et al. [23, Example 6.3], we can apply Mc-

Diarmid’s inequality. The function f (X1, . . . , Xn) =
∥∥∥ 1

n ∑n
i=1 Xi

∥∥∥ satisfies

bounded differences:

∣∣∣∣∣

∥∥∥∥∥
1
n

n

∑
i=1

Xi

∥∥∥∥∥−
∥∥∥∥∥

1
n

X̂1 +
1
n

n

∑
i=2

Xi

∥∥∥∥∥

∣∣∣∣∣ ≤
∥∥∥∥

1
n
(X1 − X̂1)

∥∥∥∥ ≤
2L
n

.

Thus for ε ≥ E

∥∥∥ 1
n ∑i Xi

∥∥∥,

Pr

(∥∥∥∥∥
1
n ∑

i
Xi

∥∥∥∥∥ > ε

)
≤ exp


−

n
(

ε−E

∥∥∥ 1
n ∑i Xi

∥∥∥
)2

2L2


 .

We also know that

E

∥∥∥∥∥
1
n ∑

i
Xi

∥∥∥∥∥ ≤
1
n

√√√√
E

∥∥∥∥∥∑i
Xi

∥∥∥∥∥

2

=
1
n

√
∑
i,j

E〈Xi, Xj〉 =
1
n

√
∑

i
E‖Xi‖2

≤ 1
n

√
nL2 =

L√
n

,

so

Pr

(∥∥∥∥∥
1
n ∑

i
Xi

∥∥∥∥∥ > ε

)
≤ exp


−

n
(

ε− L√
n

)2

2L2


 = exp

(
−1

2

(√
nε

L
− 1
)2
)

as desired. The second statement follows by simple algebra.
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Lemma 11 (Hoeffding-type inequality for random Hilbert-Schmidt opera-

tors). Let X1, . . . , Xn be iid random operators in a (separable) Hilbert space, where

E Xi = 0 and ‖Xi‖ ≤ L, ‖Xi‖HS ≤ B almost surely. Then for any ε > B/
√

n,

Pr

(∥∥∥∥∥
1
n

n

∑
i=1

Xi

∥∥∥∥∥ < ε

)
≤ exp

(
−1

2

(√
nε

L
− B

L

)2
)

;

equivalently, we have with probability at least 1− δ that

∥∥∥∥∥
1
n

n

∑
i=1

Xi

∥∥∥∥∥ ≤
1√
n

(
B + L

√
2log 1

δ

)
.

Proof. The argument is the same as Lemma 10, except that

E

∥∥∥∥∥
1
n ∑

i
Xi

∥∥∥∥∥ ≤
1
n

√√√√E

∥∥∥∥∥∑i
Xi

∥∥∥∥∥

2

HS

=
1
n

√
∑
i,j

E〈Xi, Xj〉HS =
1
n

√
∑

i
E‖Xi‖2

HS

≤ B√
n

using ‖Xi‖ ≤ ‖Xi‖HS.

Lemma 12 (Bernstein’s inequality for a sum of random operators; Proposi-

tion 12 of Rudi et al. [99]). Let H be a separable Hilbert space, and X1, . . . , Xn

a sequence of iid self-adjoint positive random operators on H, with E X1 = 0,

λmax(X1)≤ L almost surely for some L > 0. Let S be a positive operator such that

E[X2
1] � S. Let β = log 2TrS

‖S‖δ . Then for any δ ≥ 0, with probability at least 1− δ

λmax

(
1
n

n

∑
i=1

Xi

)
≤ 2Lβ

3n
+

√
2‖S‖β

n
.

7.4.2 Concentration of sum of correlated operators

The following result is similar to Rudi et al. [99, Proposition 8], but the

proof is considerably more complex due to the sum over correlated opera-

tors.
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Lemma 13. Let Wa = (Ya
i )i∈[d] be a random d-tuple of vectors in a separable

Hilbert spaceH, with {Wa}a∈[n] iid. Suppose that Q = E∑d
i=1 Y1

i ⊗Y1
i exists and

is trace class, and that for any λ > 0 there is N ′∞(λ) < ∞ such that 〈Ya
l , (Q +

λI)−1Ya
l 〉H ≤N ′∞(λ) almost surely. Let Qλ = Q + λI, Va = ∑d

i=1 Ya
i ⊗Ya

i .

For any 0 < ρ < 1
2 and any 0 < λ ≤ ρ‖Q‖, for any δ ≥ 0 it holds with

probability at least 1− δ that

λmax

(
Q−

1
2

λ

(
Q− 1

n

n

∑
a=1

Va

)
Q−

1
2

λ

)
≤ 2β

3n
+

√
10dN ′(λ)β

n
,

with β = log

(
10Tr Q

λδ
(

3
1+ρ−2

)

)
.

Proof. We apply the Bernstein inequality for random operators, Lemma 12,

to Za := Q−
1
2

λ (Q − Va)Q
− 1

2
λ . For each a, clearly E Za = 0, and since Va is

positive

sup
‖ f ‖H=1

〈 f , Za f 〉H = sup
‖ f ‖H=1

〈 f , Q−1
λ Q f 〉H − 〈 f , Q−

1
2

λ VaQ−
1
2

λ f 〉H

≤ sup
‖ f ‖H=1

〈 f , Q−1
λ Q f 〉H

≤ 1.

To apply Lemma 12, we now need to find a positive operator S to upper

bound the second moment of Za. Letting u ∈ H, and dropping the depen-
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dence on a for brevity, we have that

〈u,E[Z2]u〉H =

〈
u,E[Q−

1
2

λ VQ−1
λ VQ−

1
2

λ ]u
〉

H
−
〈

u, Q−
1
2

λ QQ−1
λ QQ−

1
2

λ u
〉

H

≤
〈

u, Q−
1
2

λ E[VQ−1
λ V]Q−

1
2

λ u
〉

H

=

〈
Q−

1
2

λ u,E[VQ−1
λ V]Q−

1
2

λ u
〉

H

=
d

∑
i,j

〈
Q−

1
2

λ u,E[(Yi ⊗Yi)Q−1
λ (Yj ⊗Yj)]Q

− 1
2

λ u
〉

H

=
d

∑
i,j

E

[
〈Q−

1
2

λ u,Yi〉H〈Q−
1
2

λ u,Yj〉H〈Yi, Q−1
λ Yj〉H

]
.

Using the identity 2〈x, Ay〉 = 〈x + y, A(x + y)〉 − 〈x, Ax〉 − 〈y, Ay〉, we get:

〈u,E[Z2]u〉H ≤
1
2

d

∑
i,j

E

[
〈Q−

1
2

λ u,Yi〉H〈Q−
1
2

λ u,Yj〉H〈Yi + Yj, Q−1
λ (Yi + Yj)〉H

]

−
d

∑
i,j

E

[
〈Q−

1
2

λ u,Yi〉H〈Q−
1
2

λ u,Yj〉H〈Yi, Q−1
λ Yi〉

]
.

Similarly, using 2〈A, x〉〈A,y〉 = 〈A, x + y〉2 − 〈A, x〉2 − 〈A,y〉2, we get that

the first line is

d

∑
i,j

1
4

E

[
〈Q−

1
2

λ u,Yi + Yj〉2H〈Yi + Yj, Q−1
λ (Yi + Yj)〉H

]

− 1
2

E

[
〈Q−

1
2

λ u,Yi〉2H〈Yi + Yj, Q−1
λ (Yi + Yj)〉H

]
,

and the second is

1
2

d

∑
i,j
−E

[
〈Q−

1
2

λ u,Yi + Yj〉2H〈Yi, Q−1
λ Yi〉

]

+ E

[
〈Q−

1
2

λ u,Yi〉2H〈Yi, Q−1
λ Yi〉

]

+ E

[
〈Q−

1
2

λ u,Yj〉2H〈Yi, Q−1
λ Yi〉

]
.
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Each of these expectations is non-negative, so dropping the ones with neg-

ative coefficients gives:

〈u,E[Z2]u〉H ≤
1
4

d

∑
i,j

E

[
〈Q−

1
2

λ u,Yi + Yj〉2H〈Yi + Yj, Q−1
λ (Yi + Yj)〉H

]

+
1
2

d

∑
i,j

E

[
〈Q−

1
2

λ u,Yi〉2H〈Yi, Q−1
λ Yi〉

]

+
1
2

d

∑
i,j

E

[
〈Q−

1
2

λ u,Yj〉2H〈Yi, Q−1
λ Yi〉

]
.

Recalling that 〈Yi, Q−1
λ Yi〉 ≤N ′∞(λ), the latter two sums are upper-bounded

by N ′∞(λ) times

1
2

d

∑
i,j

E

[
〈Q−

1
2

λ u,Yi〉2H
]
+

1
2

d

∑
i,j

E

[
〈Q−

1
2

λ u,Yj〉2H
]
= d

d

∑
i=1

E

[
〈Q−

1
2

λ u,Yi〉2H
]

.

We also have that

〈Yi + Yj, Q−1
λ (Yi + Yj)〉H = ‖Q−

1
2

λ (Yi + Yj)‖2
H

≤ 2(‖Q−
1
2

λ Yi‖2
H + ‖Q−

1
2

λ Yi‖2
H)

≤ 4N ′∞(λ),

so the first sum is at most N ′∞(λ) times

d

∑
i,j

E

[
〈Q−

1
2

λ u,Yi + Yj〉2H
]
=

d

∑
i,j

E
[
〈Q−

1
2

λ u,Yi〉2H + 〈Q−
1
2

λ u,Yj〉2H

+ 2〈Q−
1
2

λ u,Yi〉H〈Q−
1
2

λ u,Yj〉H
]

= 2d
d

∑
i=1

E

[
〈Q−

1
2

λ u,Yi〉2H
]

+ 2
d

∑
i,j

E

[
〈Q−

1
2

λ u,Yi〉H〈Q−
1
2

λ u,Yj〉H
]

.
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Thus, 〈u,E[Z2]u〉H is upper bounded by

N ′∞(λ)

(
2

d

∑
i,j

E

[
〈Q−

1
2

λ u,Yi〉H〈Q−
1
2

λ u,Yj〉H
]
+ 3d

d

∑
i=1

E

[
〈Q−

1
2

λ u,Yi〉2H
])

=

〈
u,N ′∞(λ)Q−

1
2

λ

(
2E

[
d

∑
i,j

Yi ⊗Yj

]
+ 3dE

[
d

∑
i=1

Yi ⊗Yi

])
Q−

1
2

λ u

〉

H

=

〈
u,N ′∞(λ)Q−

1
2

λ (2M + 3dQ)Q−
1
2

λ u
〉

H
,

where we defined M := E
[(

∑d
i=1 Yi

)
⊗
(

∑d
i=1 Yi

)]
. Thus we have the de-

sired upper bound E[Z2] � S := N ′∞(λ)Q−
1
2

λ (2M + 3dQ)Q−
1
2

λ . In order to

be able to finally use Lemma 12, we still need to find an upper bound on

TrS, and both upper and lower bounds on ‖S‖.

To do so, we first show that M � dQ:

〈u, Mu〉H =

〈
u,E

[(
d

∑
i=1

Yi

)
⊗
(

d

∑
i=1

Yi

)]
u

〉

H
= E



〈

u,
d

∑
i=1

Yi

〉2

H




≤ E

[
d

d

∑
i=1
〈u,Yi〉2H

]
= E

[
d

d

∑
i=1
〈u, (Yi ⊗Yi)u〉H

]
= 〈u,dQu〉H.

Thus Tr(M) ≤ dTr(Q), and so

Tr(S) =N ′∞(λ)

(
2Tr(Q−

1
2

λ MQ−
1
2

λ ) + 3dTr(Q−
1
2

λ QQ−
1
2

λ )

)

=N ′∞(λ)
(

2Tr(Q−1
λ M) + 3dTr(Q−1

λ Q
)

≤N ′∞(λ)

(
2
λ

Tr(M) +
3d
λ

Tr(Q)

)

≤ 5d
λ
N ′∞(λ)Tr(Q).
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We next bound ‖S‖. Again because M � dQ, we have that

〈u, Q−
1
2

λ MQ−
1
2

λ u〉H = 〈Q−
1
2

λ u, M(Q−
1
2

λ u)〉H
≤ 〈Q−

1
2

λ u,dQ(Q−
1
2

λ u)〉H
= d〈u, QQ−1

λ u〉H
≤ d,

and so

‖S‖ ≤ N ′∞(λ)

(
2‖Q−

1
2

λ MQ−
1
2

λ ‖+ 3d‖QQ−1
λ ‖

)
≤ 5dN ′∞(λ).

A lower bound can be obtained as

‖S‖ =N ′∞(λ)

∥∥∥∥3dQ−1
λ Q + 2Q−

1
2

λ MQ−
1
2

λ

∥∥∥∥

≥N ′∞(λ)

(∥∥∥3dQ−1
λ Q

∥∥∥−
∥∥∥∥2Q−

1
2

λ MQ−
1
2

λ

∥∥∥∥
)

≥N ′∞(λ)

(
3d
‖Q‖
‖Q‖+ λ

− 2d
)

,

so that when λ ≤ ρ‖Q‖ we have that

‖S‖ ≥ dN ′∞(λ)

(
3

1 + ρ
− 2
)

.

At last we can apply Lemma 12 to obtain that with probability at least

1− δ,

λmax

(
1
n

Za

)
≤ 2β′

3n
+

√
2‖S‖β′

n
≤ 2β

3n
+

√
10dN ′∞(λ)β

n
,

where

β′ := log
2TrS
δ‖S‖ ≤ log


2

δ

5dN ′∞(λ)Tr Q

λdN ′∞(λ)
(

3
1+ρ − 2

)


= log


 10Tr Q

λδ
(

3
1+ρ − 2

)


=: β
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as required.

7.4.3 Results on Hilbert space operators

Lemmas 14 and 15 were proven and used by [99].

Lemma 14 (Proposition 3 of [99]). Let H1, H2, H3 be three separable Hilbert

spaces, with Z :H1→H2 a bounded linear operator and P a projection operator on

H1 with range P = range Z∗. Then for any bounded linear operator F :H3→H1

and any λ > 0,

‖(I − P)F‖ ≤
√

λ‖(Z∗Z + λI)−
1
2 F‖.

Lemma 15 (Proposition 7 of [99]). Let H be a separable Hilbert space, with

A, B bounded self-adjoint positive linear operators on H and Aλ = A + λI, Bλ =

B + λI. Then for any λ > 0,

‖A−
1
2

λ B
1
2‖ ≤ ‖A−

1
2

λ B
1
2
λ‖ ≤ (1− γ(λ))−

1
2

when

γ(λ) := λmax

(
B−

1
2

λ (B− A)B−
1
2

λ

)
< 1.

7.4.4 Distances between distributions in P
Lemma 16 (Distribution distances from parameter distances). Let f0, f ∈ F
correspond to distributions p0 = p f0 , p = p f ∈ P . Under Assumption (H), we

have that for all r ∈ [1,∞]:

‖p− p0‖Lr(Ω) ≤ 2κe2κ‖ f− f0‖He2κ min(‖ f ‖H,‖ f0‖H)‖ f − f0‖H ‖q0‖Lr(Ω)

‖p− p0‖L1(Ω) ≤ 2κe2κ‖ f− f0‖H‖ f − f0‖H
KL( f ‖ f0) ≤ cκ2‖ f − f0‖2

Heκ‖ f− f0‖H(1 + κ‖ f − f0‖H)

KL( f0‖ f ) ≤ cκ2‖ f − f0‖2
Heκ‖ f− f0‖H(1 + κ‖ f − f0‖H)

h( f , f0) ≤ κe
1
2‖ f− f0‖H‖ f − f0‖H

where c is a universal constant and h denotes the Hellinger distance h(p,q) =

‖√p−√q‖L2(Ω).
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Proof. First note that

‖ f − f0‖∞ = sup
x∈Ω
| f (x)− f0(x)| = sup

x∈Ω
|〈 f − f0,k(x, ·)〉H| ≤ κ‖ f − f0‖H.

Then, since each f ∈ H is bounded and measurable, P∞ of Lemma A.1 of

[117] is simply P , and the result applies directly.
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Chapter 8

A Kernel Test of Goodness of Fit

This chapter is based on collaborative work, K. Chwialkowski, H. Strath-

mann, and A. Gretton. “A kernel test of goodness of fit”. In: International

Conference for Machine Learning. 2016.

We propose a non-parametric statistical test for goodness-of-fit: given

a set of samples, the test determines how likely it is that these were gen-

erated from a target density function. The measure of goodness-of-fit is a

divergence constructed via Stein’s method using functions from a repro-

ducing kernel Hilbert space. Our test statistic is based on an empirical

estimate of this divergence, taking the form of a V-statistic in terms of the

gradients of the log target density and of the kernel. We derive a statis-

tical test, both for i.i.d. and non-i.i.d. samples, where we estimate the

null distribution quantiles using a wild bootstrap procedure. We apply

our test to quantifying convergence of approximate Markov chain Monte

Carlo methods, statistical model criticism, and evaluating quality of fit in

non-parametric score estimation.



158 Chapter 8. A Kernel Test of Goodness of Fit

Chapter outline

Recall that we are interested in the following question: given a set of sam-

ples from a distribution q, does q match some reference or target distri-

bution p, which we assume to be only known up to the normalisation

constant.

We begin in Section 8.1 with a high-level construction of the RKHS-

based Stein discrepancy and associated statistical test. In Section 8.2, we

provide additional details and prove the main results. Section 8.3 con-

tains experimental illustrations on synthetic examples, statistical model

criticism, bias-variance trade-offs in approximate MCMC, and convergence

in non-parametric density estimation.

8.1 Test definition: statistic and threshold

We begin with a high-level construction of our divergence measure and the

associated statistical test. While this section aims to outline the main ideas,

we provide details and selected proofs in Section 8.2.

8.1.1 Stein operator in RKHS

Our goal is to write the maximum discrepancy between the target distri-

bution p and observed sample distribution q in a modified RKHS, such that

functions have zero expectation under p. Denote by F the RKHS of real-

valued functions on Rd with reproducing kernel k, c.f. Section 2.1 and by

F d the product RKHS consisting of elements f := ( f1, . . . , fd) with fi ∈ F ,

and with a standard inner product 〈 f , g〉F d = ∑d
i=1 〈 fi, gi〉F . We further as-

sume that all measures considered in this paper are supported on an open

set, equal to zero on the border, and strictly positive1 (so logarithms are

well defined). Similarly to Gorham and Mackey [52], Oates et al. [88], and

Stein [118], we begin by defining a so-called Stein operator Tp acting on

1An example of such a space is the positive real line
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f ∈ F d

(Tp f )(x) :=
d

∑
i=1

(
∂ log p(x)

∂xi
fi(x) +

∂ fi(x)
∂xi

)
. (8.1)

Suppose a random variable Z is distributed according to a measure2 q and

X is distributed according to the target measure p. As we will see, the

operator can be expressed by defining a function that depends on gradient

of the log-density and the kernel,

ξp(x, ·) := [∇ log p(x)k(x, ·) +∇k(x, ·)] ,

whose expected inner product with f gives exactly the expected value of

the Stein operator,

Eq Tp f (Z) = 〈 f ,Eq ξp(Z)〉F d =
d

∑
i=1
〈 fi,Eq ξp,i(Z)〉F ,

where ξp,i(x, ·) is the i-th component of ξp(x, ·). For X from the target

measure, we have Ep(Tp f )(X) = 0, which can be seen using integration by

parts, c.f. Lemma 17 in Section 8.2. We can now define a Stein discrepancy

and express it in the RKHS,

Sp(Z) := sup
‖ f ‖<1

Eq(Tp f )(Z)−Ep(Tp f )(X)

= sup
‖ f ‖<1

Eq(Tp f )(Z)

= sup
‖ f ‖<1

〈 f ,Eq ξp(Z)〉F d

= ‖Eq ξp(Z)‖F d , (8.2)

This makes it clear why Ep(Tp f )(X) = 0 is a desirable property: we can

compute Sp(Z) by computing ‖Eq ξp(Z)‖, without the need to access X in

2Throughout the chapter, all occurrences of Z, e.g. Z′, Zi, Z♥, are understood to be
distributed according to q.
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the form of samples from p. To state our first result, we define

hp(x,y) :=∇ log p(x)>∇ log p(y)k(x,y)

+∇ log p(y)>∇xk(x,y)

+∇ log p(x)>∇yk(x,y)

+ 〈∇xk(x, ·),∇yk(·,y)〉F d ,

where the last term can be written as a sum ∑d
i=1

∂k(x,y)
∂xi∂yi

. The following

result gives a simple closed form expression for ‖Eq ξp(Z)‖F d in terms of

hp.

Theorem 5. If Ehp(Z, Z) < ∞, then S2
p(Z) = ‖Eq ξp(Z)‖2

F d = Eq hp(Z, Z′),

where Z′ is independent of Z with an identical distribution.

The second main result states that the discrepancy Sp(Z) can be used

to distinguish two distributions.

Theorem 6. Let q, p be probability measures and Z ∼ q. If the kernel k is C0-

universal [30, Definition 4.1], Eq hq(Z, Z) < ∞, and Eq

∥∥∥∇
(

log p(Z)
q(Z)

)∥∥∥
2
< ∞,

then Sp(Z) = 0 if and only if p = q.

Before we proof these results in Section 8.2, we first proceed to con-

struct an estimator for S(Z)2, and outline its asymptotic properties.

8.1.2 Wild bootstrap testing

It is straightforward to estimate the squared Stein discrepancy S(Z)2 from

samples {Zi}n
i=1: a quadratic time estimator is a V-Statistic, and takes the

form

Vn =
1
n2

n

∑
i,j=1

hp(Zi, Zj).

The asymptotic null distribution3 of the normalised V-Statistic nVn, how-

ever, has no computable closed form. Furthermore, care has to be taken
3The null distribution is the distribution of the estimator under the null hypothesis,

here p = q, and an upper quantile of it is required for constructing a statistical test.
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when the Zi exhibit correlation structure, as the null distribution might

significantly change, impacting test significance. This is particularly im-

portant when applied as an MCMC diagnosis tool. The wild bootstrap

technique [45, 74, 107] addresses both problems. First, it allows us to es-

timate quantiles of the null distribution in order to compute test thresh-

olds. Second, it accounts for correlation structure in the Zi by mimicking it

with an auxiliary random process: a simple Markov chain taking values in

{−1,1}, starting from W1,n = 1,

Wt,n = 1(Ut > an)Wt−1,n − 1(Ut < an)Wt−1,n,

where the Ut are uniform (0,1) i.i.d. random variables and an is the prob-

ability of Wt,n changing sign (for i.i.d. data we set an = 0.5). This leads to a

bootstrapped V-statistic

Bn =
1
n2

n

∑
i,j=1

Wi,nWj,nhp(Zi,Zj).

Proposition 6 establishes that, under the null hypothesis, nBn is a good

approximation of nVn, so it is possible to approximate quantiles of the null

distribution by sampling from it. Under the alternative, Vn dominates Bn –

resulting in almost sure rejection of the null hypothesis.

Statistical testing procedure

We propose the following test procedure for testing the null hypothesis

that the Zi are distributed according to the target distribution p.

1. Calculate the test statistic Vn.

2. Obtain wild bootstrap samples {Bn}D
i=1 and estimate the 1− α empir-

ical quantile of these samples.

3. If Vn exceeds the quantile, reject.
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8.2 Proofs of the main results

We now prove the claims made in the previous section. We refer to

Chwialkowski et al. [34] for further details, in particular in wild bootstrap

testing.

8.2.1 Stein operator in RKHS

In order to proof Theorem 5, we establish Lemma 17, which shows that the

expected value of the Stein operator is zero on the target measure.

Lemma 17. If a random variable X is distributed according to p, under conditions

on the kernel

0 =
∮

∂X
k(x, x′)q(x)n(x)dS(x′),

0 =
∮

∂X
∇xk(x, x′)>n(x′)q(x′)dS(x′),

and then for all f ∈ F , the expected value of T is zero, i.e. Ep(T f )(X) = 0.

Proof of Lemma 17. This result was proved on bounded domains X ⊂Rd by

Oates et al. [88, Lemma 1], where n(x) is the unit vector normal to the

boundary at x, and
∮

∂X is the surface integral over the boundary ∂X . The

case of unbounded domains was discussed by Oates et al. [88, Remark 2].

Here we provide an alternative, elementary proof for the latter case. First

we show that the function p · fi vanishes at infinity, by which we mean that

for all dimensions j

lim
xj→∞

p(x1, · · · , xd) · fi(x1, · · · , xd) = 0.

The density function p vanishes at infinity. The function f is bounded,

which is implied by Cauchy-Schwarz inequality, | f (x)| ≤ ‖ f ‖
√

k(x, x).

This implies that the function p · fi vanishes at infinity. We check that
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the expected value Ep(Tp) f (X) is zero. For all dimensions i,

Ep(Tp) f (X)

= Ep

(
∂ log p(X)

∂xi
fi(X) +

∂ fi(X)

∂xi

)

=
∫

Rd

[
∂ log p(x)

∂xi
fi(x) +

∂ fi(x)
∂xi

]
p(x)dx

=
∫

Rd

[
1

p(x)
∂p(x)

∂xi
f (x) +

∂ f (x)
∂xi

]
p(x)dx

=
∫

Rd

[
∂p(x)

∂xi
fi(x) +

∂ fi(x)
∂xi

p(x)
]

dx

(a)
=
∫

Rd−1

(
lim

R→∞
p(x) fi(x)

∣∣∣∣
xi=R

xi=−R

)
dx1 · · ·dxi−1 · · ·dxi+1 · · ·dxd

=
∫

Rd−1

0dx1 · · ·dxi−1 · · ·dxi+1 · · ·dxd

= 0.

For the equation (a) we have used integration by parts, the fact that

p(x) fi(x) vanishes at infinity, and the Fubini-Toneli theorem to show that

we can do iterated integration. The sufficient condition for the Fubini-

Toneli theorem is that Eq〈 f ,ξp(Z)〉2 < ∞. This is true since Ep ‖ξp(X)‖2 ≤
Ep hp(X, X) < ∞.

We now are ready to proof our result on the closed form Stein discrep-

ancy.

Proof of Theorem 5. ξp(x, ·) is an element of the reproducing kernel Hilbert

space F d – by Steinwart and Christmann [119, Lemma 4.34] ∇k(x, ·) ∈ F ,

and ∂ log p(x)
∂xi

is just a scalar. We first show that hp(x,y) = 〈ξp(x, ·),ξp(y, ·)〉.
Using notations

∇xk(x, ·) =
(

∂k(x, ·)
∂x1

, · · · , ∂k(x, ·)
∂xd

)

∇yk(·,y) =
(

∂k(·,y)
∂y1

, · · · , ∂k(·,y)
∂yd

)
,
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we calculate

〈ξp(x, ·),ξp(y, ·)〉 =∇ log p(x)>∇ log p(y)k(x,y)

+∇ log p(y)>∇xk(x,y)

+∇ log p(x)>∇yk(x,y)

+ 〈∇xk(x, ·),∇yk(·,y)〉F d .

Next we show that ξp(x, ·) is Bochner integrable [see 119, Definition A.5.20],

Eq ‖ξp(Z)‖F d ≤
√

Eq ‖ξp(Z)‖2
F d =

√
Eq hp(Z, Z) < ∞.

This allows us to take the expectation inside the RKHS inner product. We

next relate the expected value of the Stein operator to the inner product of

f and the expected value of ξq(Z),

Eq Tp f (Z) = 〈 f ,Eq ξp(Z)〉F d =
d

∑
i=1
〈 fi,Eq ξp,i(Z)〉F . (8.3)

We check the claim for all dimensions,

〈
fi,Eq ξp,i(Z)

〉
F

=

〈
fi,Eq

[
∂ log p(Z)

∂xi
k(Z, ·) + ∂k(Z, ·)

∂xi

]〉

F

= Eq

〈
fi,

∂ log p(Z)
∂xi

k(Z, ·) + ∂k(Z, ·)
∂xi

〉

F

= Eq

[
∂ log p(Z)

∂xi
fi(Z) +

∂ fi(Z, ·)
∂xi

]
.

The second equality follows from the fact that a linear operator 〈 fi, ·〉F can

be interchanged with the Bochner integral, and the fact that ξp is Bochner



8.2. Proofs of the main results 165

integrable. Using definition of S(Z), Lemma 17, and (8.3), we have

Sp(Z) := sup
‖ f ‖<1

Eq(Tp f )(Z)−Ep(Tp f )(X)

= sup
‖ f ‖<1

Eq(Tp f )(Z)

= sup
‖ f ‖<1

〈 f ,Eq ξp(Z)〉F d

= ‖Eq ξp(Z)‖F d .

We now calculate closed form expression for S2
p(Z),

S2
p(Z) = 〈Eq ξp(Z),Eq ξp(Z)〉F d = Eq〈ξp(Z),Eq ξp(Z)〉F d

= Eq〈ξp(Z),ξp(Z′)〉F d = Eq hp(Z, Z′),

where Z′ is an independent copy of Z.

Next, we prove that the discrepancy S discriminates different proba-

bility measures.

Proof of Theorem 6. If p = q then Sp(Z) is 0 by Lemma 17. Suppose p 6= q, but

Sp(Z) = 0. If Sp(Z) = 0 then, by Theorem 5, Eq ξp(Z) = 0. In the following

we substitute log p(Z) = logq(Z) + [log p(Z)− logq(Z)],

Eq ξp(Z)

= Eq (∇ log p(Z)k(Z, ·) +∇k(Z, ·))

= Eq ξq(Z) + Eq (∇[log p(Z)− logq(Z)]k(Z, ·))

= Eq (∇[log p(Z)− logq(Z)]k(Z, ·))

We have used Theorem 5 and Lemma 17 to see that Eq ξq(Z) = 0, since

‖Eq ξq(Z)‖2 = S2
q(Z) = 0.

We recognise that the expected value of ∇(log p(Z)− logq(Z))k(Z, ·)
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is the mean embedding of a function g(y) = ∇
(

log p(y)
q(y)

)
with respect to

the measure q. By the assumptions the function g is square integrable;

therefore, since the kernel k is Co-universal, by Carmeli et al. [30, Theorem

4.2 b] its embedding is zero if and only if g = 0. This implies that

∇ log
p(y)
q(y)

= (0, · · · ,0).

A constant vector field of derivatives can only be generated by a constant

function, so log p(y)
q(y) = C, for some C, which implies that p(y) = eCq(y).

Since p and q both integrate to one, C = 0 and thus p = q, which is a

contradiction.

8.2.2 Wild bootstrap testing

The following result justifies our proposed test in Section 8.1.2.

Proposition 5. If h is Lipschitz continuous and Eq hp(Z, Z)< ∞ then, under

the null hypothesis, nVn converges weakly to some distribution.

The proof, which is a simple verification of the relevant assumptions,

can be found in Chwialkowski et al. [34]. Although a formula for a limit

distribution of Vn can be derived explicitly [73, Theorem 2.1], we do not

provide it here. To our knowledge there are no methods of obtaining

quantiles of a limit of Vn in closed form. The common solution is to es-

timate quantiles by a re-sampling method, as described in Section 8.1. The

validity of this re-sampling method is guaranteed by the following propo-

sition (which follows from Theorem 2.1 of Leucht and a modification of the

Lemma 5 of Chwialkowski et al. [36]), see Chwialkowski et al. [34] for a

proof.

Proposition 6. Let f (Z1,n, · · · , Zt,n) = supx |P(nBn > x|Z1,n, · · · , Zt,n) −
P(nVn > x)| be a difference between quantiles. If h is Lipschitz continu-

ous and Eq hp(Z, Z)2 < ∞ then, under the null hypothesis, f (X1,n, · · · , Xt,n)
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Figure 8.1: Large autocorrelation, unsuitable bootstrap. The parameter an is too
large and the bootstrapped V-statistics Bn are too low on average.
Therefore, it is very likely that Vn > Bn and the test is too conserva-
tive.

converges to zero in probability; under the alternative hypothesis, Bn con-

verges to zero, while Vn converges to a positive constant.

As a consequence, if the null hypothesis is true, we can approximate

any quantile; while under the alternative hypothesis, all quantiles of Bn col-

lapse to zero while P(Vn > 0)→ 1. For the specific case of testing MCMC

convergence, we point to our discussion in Chwialkowski et al. [34, Ap-

pendix].

8.3 Experiments

We provide a number of experimental applications for our test. We begin

with a simple check to establish correct test calibration on non-i.i.d. data,

followed by a demonstration of statistical model criticism for Gaussian pro-

cess (GP) regression. We then apply the proposed test to quantify bias-

variance trade-offs in MCMC, and demonstrate how to use the test to verify

whether MCMC samples are drawn from the desired stationary distribu-

tion. In the final experiment, we move away from the MCMC setting, and

use the test to evaluate the convergence of a non-parametric density esti-

mator.



168 Chapter 8. A Kernel Test of Goodness of Fit

1.0 5.0 10.0 inf

degrees of freedom

0.0

0.2

0.4

0.6

0.8

1.0

p
va

lu
es

Figure 8.2: Large auto-covariance, suitable bootstrap. The parameter anis chosen
suitably, but due to a large auto-covariance within the samples, the
power of the test is small (effective sample size is small).

8.3.1 Student’s t vs. Normal

In our first experiment, performed by co-author Kacper Chwialkowski, we

modify Experiment 4.1 from Gorham and Mackey [52]. The null hypothesis

is that the observed samples come from a standard normal distribution. We

study the power of the test against samples from a Student’s t distribution.

We expect to observe low p-values when testing against a Student’s t distri-

bution with few degrees of freedom. We consider 1, 5, 10 or ∞ degrees of

freedom, where ∞ is equivalent to sampling from a standard normal dis-

tribution. For a fixed number of degrees of freedom we draw 1400 samples

and calculate the p-value. This procedure is repeated 100 times, and the

bar plots of p-values are shown in Figure 8.1, Figure 8.2, and Figure 8.3.

Our twist on the original Experiment 4.1 by Gorham and Mackey is

that the draws from the Student’s t distribution exhibit temporal correla-

tion. We generate samples using a Metropolis–Hastings algorithm, with a

Gaussian random walk with variance 1
2 . We emphasise the need for an ap-

propriate choice of the wild bootstrap process parameter an. In Figure 8.1

we plot p-values for an being set to 0.5. Such a high value of an is suitable

for i.i.d. observations, but results in p-values that are too conservative for

temporally correlated observations. In Figure 8.2, we set an = 0.02, which

gives a well calibrated distribution of the p-values under the null hypothe-



8.3. Experiments 169

1.0 5.0 10.0 inf

degrees of freedom

0.0

0.2

0.4

0.6

0.8

1.0

p
va

lu
es

Figure 8.3: Thinned sample, suitable bootstrap. Most of the autocorrelation within
the sample is cancelled by thinning. To guarantee that the remaining
autocorrelation is handled properly, the wild bootstrap flip probability
is set at 0.1.

sis, however the test power is reduced. Indeed, p-values for five degrees of

freedom are already large. The solution that we recommend is a mixture

of thinning and adjusting an, as presented in the Figure 8.3. We thin the

observations by a factor of 20 and set an = 0.1, thus preserving both good

statistical power and correct calibration of p-values under the null hypothe-

sis. In a general, we recommend to thin a chain so that Cor(Xt, Xt−1)< 0.5,

set an = 0.1/k, and run test with at least max(500k,d100) data points, where

k < 10.

8.3.2 Comparing to a parametric test in increasing dimen-

sions

In this experiment, performed by co-author Kacper Chwialkowski, we com-

pare with the test proposed by Baringhaus and Henze [13], which is essen-

tially an MMD test for normality, i.e. the null hypothesis is that Z is a

d-dimensional standard normal random variable. We set the sample size

to n = 500,1000 and an = 0.5, generate

Z ∼N (0, Id) Y ∼U[0,1],
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d 2 5 10 15 20 25
B&H n = 500 1 1 1 0.86 0.29 0.24
Stein 1 1 0.86 0.39 0.05 0.05
B&H n = 1000 1 1 1 1 0.87 0.62
Stein 1 1 1 0.77 0.25 0.05

Table 8.1: Test power vs. sample size for the test by Baringhaus and Henze [13]
(B&H) and our Stein based test.
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Figure 8.4: Fitted GP and data used to fit (blue) and to apply test (red).

and modify Z0← Z0 + Y. Table 8.1 shows the power as a function of the

sample size. We observe that for higher dimensions, and where the expec-

tation of the kernel exists in closed form, an MMD-type test like [13] is a

better choice.

8.3.3 Statistical model criticism on Gaussian processes

We next apply our test to the problem of statistical model criticism for GP

regression. Our presentation and approach are similar to the non i.i.d. case

in Section 6 of Lloyd and Ghahramani [79]. We use the solar dataset,

consisting of a d = 1 regression problem with N = 402 pairs (X,y). We

fit Ntrain = 361 data using a GP with an exponentiated quadratic kernel

and a Gaussian noise model, and perform standard maximum likelihood

II on the hyper-parameters (length-scale, overall scale, noise-variance). We

then apply our test to the remaining Ntest = 41 data. The test attempts to

falsify the null hypothesis that the solar dataset was generated from the

plug-in predictive distribution (conditioned on training data and predicted
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position) of the GP. Lloyd and Ghahramani refer to this set-up as non-i.i.d.,

since the predictive distribution is a different univariate Gaussian for every

predicted point. Our particular Ntrain, Ntest were chosen to make sure the

GP fit has stabilised, i.e. adding more data did not cause further model

refinement.

Figure 8.4 shows training and testing data, and the fitted GP. Clearly,

the Gaussian noise model is a poor fit for this particular dataset, e.g. around

X =−1. Figure 8.5 shows the distribution over D = 10000 bootstrapped V-

statistics Bn with n = Ntest. The test statistic lies in an upper quantile of

the bootstrapped null distribution, correctly indicating that it is unlikely

the test points were generated by the fitted GP model, even for the low

number of test data observed, n = 41.

In a second experiment, we compare against Lloyd and Ghahra-

mani: we compute the MMD statistic, c.f. Section 2.1, between test data

(Xtest,ytest) and (Xtest,yrep), where yrep are samples from the fitted GP. We

draw 10000 samples from the null distribution by repeatedly sampling new

ỹrep from the GP plug-in predictive posterior, and comparing (Xtest, ỹrep)

to (Xtest,yrep). When averaged over 100 repetitions of randomly parti-

tioned (X,y) for training and testing, our goodness of fit test produces a p-

value that is statistically not significantly different from the MMD method

(p≈ 0.1, note that this result is subject to Ntrain, Ntest). We emphasise, how-

ever, that Lloyd and Ghahramani’s test requires to sample from the fitted

model (here 10000 null samples were required in order to achieve stable

p-values). Our test does not sample from the GP at all and completely side-

steps this more costly approach.

8.3.4 Bias quantification in approximate MCMC

We now illustrate how to quantify bias-variance trade-offs in an approxi-

mate MCMC algorithm – austerity MCMC [69]. For the purpose of illus-

tration we use a simple generative model from Gorham and Mackey [52]
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Figure 8.5: Bootstrapped Bn distribution for the GP experiment, with the test
statistic Vn marked.
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Figure 8.6: Distribution of p-values as a function of ε for austerity MCMC.

and Welling and Teh [128],

θ1 ∼N (0,10);θ2 ∼N (0,1)

Xi ∼
1
2
N (θ1,4) +

1
2
N (θ2 + θ1,4).

Austerity MCMC is a Monte Carlo procedure designed to reduce the

number of likelihood evaluation in the acceptance step of the Metropolis-

Hastings algorithm. The crux of method is to look at only a subset of

the data, and make an acceptance/rejection decision based on this subset.

The probability of making a wrong decision is proportional to a parame-

ter ε ∈ [0,1] . This parameter influences the time complexity of austerity

MCMC: when ε is larger, i.e., when there is a greater tolerance for error,

the expected computational cost is lower. We simulate {Xi}1≤i≤400 points
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Figure 8.7: Average number of likelihood evaluations a function of ε for austerity
MCMC (the y-axis is in millions of evaluations).

from the model with θ1 = 0 and θ2 = 1. In our experiment, there are two

modes in the posterior distribution: one at (0,1) and the other at (1,−1).

We run the algorithm with ε varying over the range [0.001,0.2]. For each

ε we calculate an individual thinning factor, such that correlation between

consecutive samples from the chains is smaller than 0.5 (greater ε generally

requires more thinning). For each ε we test the hypothesis that {θi}1≤i≤500

is drawn from the true stationary posterior, using our goodness of fit test.

We generate 100 p-values for each ε, as shown in Figure 8.6. A good ap-

proximation of the true stationary distribution is obtained at ε = 0.4, which

is still parsimonious in terms of likelihood evaluations, as shown in Fig-

ure 8.7.

8.3.5 Convergence in non-parametric density estimation

In our final experiment, which relates back to the density models described

in Part I, we apply our goodness of fit test to measuring quality-of-fit

in non-parametric density estimation. We evaluate two density models:

the original infinite dimensional exponential family [117], described in

Section 2.1 with the estimator outlined in Chapter 6, and a the random

Fourier features approximation from Section 4.2.2. Our implementation

of the model assumes the log density to take the form f (x), where f lies

in an RKHS induced by a Gaussian kernel with bandwidth 1. We fit the

model using N observations drawn from a standard Gaussian, and per-
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Figure 8.8: Density estimation: p-values for an increasing number of data N for
the non-parametric model. Fixed n = 500.

form our quadratic time test on a separate evaluation dataset of fixed size

n = 500. Our goal is to identify N sufficiently large that the goodness of

fit test does not reject the null hypothesis (i.e. the model has learned the

density sufficiently well, bearing in mind that it is guaranteed to converge

for sufficiently large N). Figure 8.8 shows how the distribution of p-values

evolves as a function of N; this distribution is uniform for N = 5000, but at

N = 500, the null hypothesis would very rarely be rejected.

We next consider the random Fourier feature approximation to this

model, where the log pdf f is approximated using a finite dictionary of

random Fourier features [89]. The natural question when using this ap-

proximation is: ‘How many random features are needed?’ Using the same

test set size n = 500 as above, and a large number of samples, N = 5 · 104,

Figure 8.9 shows the distributions of p-values for an increasing number of

random features m. From m = 50, the null hypothesis would rarely be re-

jected. Note, however, that the p-values do not have a uniform distribution,

even for a large number of random features. This subtle effect is caused

by over-smoothing due to the (non-decreasing L2-) regularisation approach

taken in Section 4.2.2, which would not otherwise have been detected.
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Figure 8.9: Approximate density estimation: p-values for an increasing number of
random features m. Fixed n = 500.
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Adaptive Monte Carlo proposals
We discuss a number of points that are shared by adaptive Metropolis-

Hastings in Chapter 3, gradient-free HMC in Chapter 4, and adaptive SMC

in Chapter 5.

We have seen that building surrogate models for the underlying den-

sity can be used to improve sampling efficiency of MCMC and SMC algo-

rithms. In particular, kernel methods offer a flexible and efficient way to

model covariance and gradient structure that can be used in those surro-

gate models. We developed three algorithm classes that attempt to model

the density using samples from the Markov chain history or from the cur-

rent set of weighted SMC particles.

The most interesting use-case is when the underlying density is in-

tractable (apart from having a non-trivial or non-linear support), that is it

can only be estimated point-wise without bias, but neither the true log-pdf

nor its gradients are available in closed form. In our examples in Sec-

tion 3.3.1, Section 4.4.3, Section 5.3.3, and Section 5.3.4, intractability arose

from integrating out latent variables in order to turn complicated joint dis-

tributions into marginal likelihoods with simpler structure. Our work here

closely aligns with the literature on pseudo-marginal MCMC [6, 44], and

nested importance sampling techniques [33, 125]. Compared to the random

walk methods usually used in these settings, our kernel adaptive proposals

lead to faster convergence in many cases.

MCMC, SMC, and diminishing adaptation

In Chapter 5, we have seen that the adaptive proposal mechanisms devel-

oped for MCMC in Chapter 3 and Chapter 4 can be embedded into the

SMC framework in a straight-forward manner, with minor adjustments to

account for weighted sample sets, e.g. the weighted KMC finite gradient

estimator in (5.2).

MCMC algorithms with adaptive proposal distributions are not gener-

ally guaranteed to give consistent estimators. That is, continuous re-fitting
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or updating of the surrogate model as the Markov chain grows is not guar-

anteed to result in a Markov chain that converges to the correct stationary

distribution, if any. For the adaptive Metropolis proposal by Haario et al.

[60], it was shown that under certain assumptions on the target density, the

proposal mechanism stabilises for continuous adaptation [4]. This is not

necessarily true for our proposed KAMH algorithm, and even less so for

the gradient-based KHMC. These samplers require a vanishing adaptation

schedule, in order to ensure convergence to the correct target [97], c.f. Sec-

tion 3.2.2, Section 4.3; or even a complete stop as in Theorem 1. Since the

presented algorithms fall back to random walk behaviour in practice, stop-

ping adaptation is not compromising efficiency compared to random walk

schemes, c.f. Theorem 1.

The need to choose a vanishing adaptation schedule creates a difficult

to tune exploration-exploitation trade-off with limited principled guidance.

In Chapter 5, we saw that SMC is a more natural framework for employing

RKHS-based representations. SMC proposals can continuously be adapted

and the choice of an adaptation schedule is thus entirely circumvented.

Somewhat ironically, however, the efficiency gains in our experiments

in Section 5.3 are less significant than in the MCMC case, c.f. Section 3.3,

Section 4.4. An explanation for the case of kernel gradient importance

sampling (KGRIS) in Section 5.2.2 might be the fact that PMC proposal is

generated using only a single gradient step, following [101, GRIS], whereas

the MCMC proposal along the kernel induced Hamiltonian flow in Chap-

ter 4 involved multiple gradient steps. At the date of writing, however,

there exists only initial work addressing the use of Hamiltonian dynamics

in importance sampling [85].

Sampling efficiency

While adaptive MCMC transition kernel proposals can increase statistical

efficiency of the underlying sampling scheme, they impose additional com-

putational costs.
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For example, drawing from the kernel covariance based KAMH pro-

posal in Proposition 2 in Chapter 3 costs O(n2d + d3) in every step, where

n is the number of data used and d is their dimensionality. The KMC lite

estimator in Proposition 3 in Chapter 4 costs O(n3 + dn2) when fitting, and

O(dn) for every leap-frog step. The costs of the SMC rejuvenation moves

in Chapter 5 are similar.

Somewhat surprisingly, however, these relatively large costs do not

severely impact the runtime efficiency in practice. The reason is that in

the context of intractable likelihoods, the computational cost of fitting a

density model is typically dominated by the larger cost of evaluating the

model likelihood. In our real-world experiments on GP classification and a

stochastic volatility model in Section 5.3.3, Section 3.3.1, Section 4.4.3 and

Section 5.3.4, a profiler reveals that only roughly less than 5% of the overall

wall-clock time is spent in generating the proposals. This effect increases

with dataset size and model complexity, as evaluating likelihood gets more

costly. On the other hand, in the case where we need not resort to pseudo-

marginal or SMC2 type samplers, the application of kernel based proposals

might not result in a better statistical efficiency per time.

High dimensionality

In chapter Chapter 4, we have seen that the developed gradient estima-

tor scale up from dozens to a hundred dimensions on laptop computers,

depending on smoothness properties of the target. Eventually, however,

the number of data required to sufficiently estimate non-linear covariance

and gradients quickly becomes infeasible, c.f. Section 4.4.1 and the experi-

ments therein. High dimensional sampling problems typically arise in non-

parametric models, e.g. the Gaussian processe experiment in Section 3.3.1,

or the stochastic volatility model in Section 5.3.4, where each data point

increases the number of parameters. In the intractable likelihood frame-

work that we consider here, however, the marginal posterior over hyper-

parameters typically is independent of such latent variables – and there-
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fore usually of moderate dimension. Random walk methods, which are

the default choice for intractable likelihoods, scale badly in high dimen-

sions themselves [86]. Our method is an improvement in the intermediate

case: closed form gradients are not available, but the dimensionality of the

problem allows to estimate the target geometry just accurately enough to

improve mixing.

It is an active area of research to further scale up these techniques by

exploiting structure in the target density, for example by assuming a pair-

wise structure [121, 135].

Kernel surrogate as a posterior approximation

A common reviewer comment [101, 120] was that the kernel approximation

of the target density could be considered itself as an output of our algo-

rithms, representing the posterior directly. There are a number of problems

with this approach:

• Our density models do not need to be perfect to generate useful pro-

posals, therefore allowing us to exploit posterior structure much ear-

lier (even with non-perfect model fit) during sampling, still resulting

in a correct (and efficient) sampler, c.f. Theorem 1.

• Approximating integrals of test functions with respect to the posterior

using the kernel model is not possible in closed form. For example,

take the KMC lite model (4.3) (with a Gaussian kernel), whose density

is the exponential of a sum of Gaussian kernels centred at the data

Xi. Computing an integral as simple as the posterior mean,

Z−1
∫

x exp

(
∑

i
αi exp(−‖Xi − x‖2)

)
dx,

already is intractable, even if the evidence Z was known.

• It is not possible to sample from the kernel density model directly.

One could imagine running a second sampler (e.g. HMC) targeting
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the surrogate model, an approach taken as a sub-module by Zhang et

al. [137]. The generated samples, however, are not guaranteed to con-

sistently estimate posterior expectations. Therefore, without a clear

notion of consistency and accuracy of the density model, it is unclear

to what extend bias is introduced.

Improving HMC runtime for large datasets

We have seen in the approximate Bayesian computation example in Sec-

tion 4.4.4 that one of the benefits of using a surrogate gradient for HMC

is the reduced number of ABC-likelihood simulations. Compared to the

stochastic finite difference method SPAS by Meeds et al. [82], which needs

to simulate from the likelihood in every leap-frog step, KHMC only does

this once per iteration.

A similar argument can be made for posteriors with a large number of

likelihood evaluations, whose gradient is available. Via replacing the Hamil-

tonian flow (4.1) with a surrogate (kernel) based flow, every leap-frog step

only requires evaluation of the surrogate gradient, c.f. Section 4.1. Conse-

quently, if the number of likelihood evaluations is large, a large runtime

saving can be achieved compared to running classical HMC. Zhang et al.

[136] combine this idea with surrogate models based on random basis func-

tions, similar to KMC finite (4.5). Ultimately, efficiency of such an approach

strongly depends on smoothness of the target density – as for KHMC, the

acceptance rate drops with the accuracy of the surrogate model. This once

more motivates the need for theoretical guarantees of such surrogate mod-

els, addressed in Chapter 6.

Efficient and principled score estimation
We have developed and studied a theoretically founded Nyström approx-

imation to the infinite exponential family model in Section 2.1. Here we

comment on relevance, alternative proof techniques, the relationship to the

approximations in Chapter 4, and avenues for future research.
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Relevance

We first emphasise that simply applying the Nyström technique to an al-

gorithm is a much smaller contribution than proving that it has the same

generalisation ability as the exact solution with m = o(n), i.e. proven cost

savings without loss of generalisation. Establishing this for ridge regres-

sion took 15 years, from the works of Williams and Seeger [130] to those of

Rudi et al. [99].

Re-using generalisation bounds from regression?

On first sight, one might challenge the need for the long and technical

proof in Chapter 6. In fact, the infinite exponential family estimator (2.11)

by Sriperumbudur et al. [117] has a very similar form to standard kernel

ridge regression: a single linear solve in (2.13) where the inverted ma-

trix is contains kernel entries between input data (here, the system matrix

G ∈Rnd×nd contains kernel partial derivatives G(a,i),(b,j) = ∂i∂j+dk(Xa, Xb, )).

Therefore, it seems tempting to re-cast the problem as a regression prob-

lem, and to directly apply the Nyström generalisation bounds by Rudi et

al. [99]. Unfortunately, this strategy does not work for two reasons.

To understand the first problem, we rewrite the score matching loss so

that the Nyström regression results by Rudi et al. apply. Define

qλ,n :=
n

∑
a=1

d

∑
i=1

β(a,i)∂ik(Xa, ·)

such that

fλ,n = qλ,n −
ξ̂

λ
,

where fλ,n is the full solution in (2.11). The Nyström approximation then
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becomes

qm
λ,n = argminq∈HY

Ĵλ

(
q− ξ̂

λ

)

= argminq∈HY

(
‖ZXq− ŷn‖2

H + λ‖q‖2
H
)

=
1
λ

gY(Ĉλ)Ĉξ̂,

where ZX is the ‘derivative evaluation’ operator defined in (7.3), gY(·) was

defined in (7.7) with properties outlined in Lemma 2, and the connection

to ridge regression is via the

ŷn : =
1
λ

ZX ξ̂,

which take the role of ‘regression labels’4. We now have a ridge regression

problem, and therefore can follow Rudi et al. [99, Theorem 2]. Start with

f m
λ,n − fλ,n =

1
λ

[
gY(Ĉλ)Ĉλ − I

]
︸ ︷︷ ︸

(∗)

Ĉ−1
λ Ĉξ̂. (8.4)

Bounding the norm of the term (∗) as in Rudi et al. [99] quickly leads to a

norm

‖C1/2
λ (I −VV∗)‖,

which drops as λ1/2 with high probability ([99, Lemma 6], though also note

the second problem below). This means the overall order of f m
λ,n − fλ,n in

(8.4), due to the Ĉ−1
λ , is λ−1/2, which increases as λ→ 0, and thus cannot

lead to a vanishing error bound.

The second problem comes from the definition of the covariance oper-

ator C in (7.1) (and related operators), defined in terms of a sum of deriva-

tives. Due to the correlation among dimensions in this operator, our con-

centration result on sums of correlated random operators in Lemma 13 is

4In contrast to regression, the ‘labels’ ŷn here depend both on the regularisation pa-
rameter λ and the input data Xa via the definition of ξ in (2.12).
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far more complex than the equivalent of Rudi et al. [99, Proposition 8].

Even if the regression approach worked, we would not have be able to use

their convergence lemmas.

Relationship of Nyström and ‘lite’ kernel exponential families

We show that the lite kernel exponential family in Proposition 3 in Chap-

ter 4 is a special case of the Nyström framework, as already discussed in

Section 6.1.1. The lite estimator obtains a solution inH′Y = span{k(y, ·)}y∈Y,

where we assumed that Y = X, k(x,y) = exp
(
−σ−1‖x− y‖2), and q0 is uni-

form. Recall the estimator in Proposition 3,

α = −σ

2
(A + λI)−1b (8.5)

A =
d

∑
i=1
−[Dxi K− KDxi ]

2 b =
d

∑
i=1

(
2
σ
(Ksi + Dsi K1− 2Dxi Kxi)− K1

)

where xi =
[

X1i . . . Xni

]T
, si = xi � xi with � the element-wise product,

Dx = diag(x), and K ∈Rm×m has entries Kaa′ = k(Xa, Xa′).

Lemma 4 allows us to optimize overH′Y; we need not restrict ourselves

to Y = X, uniform q0, or a Gaussian kernel. Here ya = k(Ya, ·), and we

obtain

β′Y = −
(

1
n
(B′XY)

TB′XY + λG′YY

)†

h′Y.

Using that for the Gaussian kernel k

∂ik(x,y) = − 2
σ
(xi − yi)k(x,y) ∂2

i+dk(x,y) =
2
σ

[
2
σ
(xi − yi)

2 − 1
]

k(x,y),

we can obtain with some algebra similar to the proof of Proposition 3 that

when Y = X and q0 is uniform,

h′X =
2

nσ
b (B′XX)

TB′XX =
4
σ2 A G′XX = K.
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Thus

β′X = −
(

4
nσ2 A + λK

)† 2
nσ

b = −σ

2

(
A +

1
4

nσ2λK
)†

b. (8.6)

(8.6) resembles (8.5) and Proposition 3, except that now, we regularise A

with 1
4 nσ2λK rather than λI, i.e. using the RKHS norm rather than the L2

norm respectively. As mentioned in the experiments in Section 6.3, adding

a small L2 term improves numerical stability further.

Future work: establishing theory for ‘lite Nyström’

The lite estimator from Chapter 4 performs strong empirically, especially

when considering runtime efficiency in growing dimensions – its computa-

tional costs do not grow cubically in d as opposed to nyström from Chap-

ter 6. Therefore, it is desirable to establish theoretical guarantees for this

estimator as well, i.e. to extend the theoretical framework developed in this

section to minimising the Fisher loss over H′Y = span{k(x, ·)}x∈X, c.f. Sec-

tion 6.1.1. This in particular concerns the ‘approximation error’ term in the

decomposition (6.3),

‖ f m
λ,n − f0‖H ≤ ‖ f m

λ,n − f m
λ ‖H + ‖ f m

λ − f0‖H︸ ︷︷ ︸
Approximation error

.

The space over which the lite approximation optimises is a subspace of

the full estimator’s RKHS, and establishing theory therefore will involve

quantifying how fast H′Y covers f0 as opposed to our used HY.

Rudi et al. [98] recently developed theoretical guarantees for the case

of using an explicit random Fourier basis for regression, and their used

techniques might serve as inspiration for our context.

Goodness-of-fit testing

The kernel Stein discrepancy (KSD) from Chapter 8 lead up to a number of

interesting follow-up works, of which we give three examples.
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Stein variational gradient descent

Liu and Wang [78] proposed an approximate Bayesian inference technique

based on the KSD. Their method moves particles to match a desired poste-

rior distribution. This is achieved via a form of functional gradient descent

that minimises the KL divergence between the particle approximation and

the true posterior iteratively. The method is justified by an established con-

nection between the derivative of the KL divergence with the Stein operator

[78, Theorem 1], and this allows for computation of the functional gradient

via only accessing the score function of the true density [78, Algorithm 1].

Linear time goodness-of-fit testing

Recently, Jitkrittum et al. [66] developed a linear time version of our

goodness-of-fit test. Their work is based on the idea of ‘fast ana-

lytic function representation’ of probability measures, as advocated by

Chwialkowski et al. [35]. The main idea comes from the fact that the KSD

in (8.2) is the RKHS norm of a witness function. When a real analytic kernel

is used, it suffices to evaluate this witness function at only finitely many

points (drawn from a density) in order to decide whether it is likely to be

zero everywhere.

Jitkrittum et al. exploit this fact and develop a linear time goodness-of-

fit test that has higher empirical test power than a naive linear time version,

as for example suggested by Liu et al. [77, Equation 17].

Recent work on KSD for score estimation

Li and Turner [75] used the the KSD to construct a score estimator similar

to the kernel exponential family ‘lite’ model in Chapter 4, and as such their

approach connects Chapter 4 and Chapter 8 of this work. Recall Lemma 17

that states that the expected value of the Stein operator Tp in (8.1) is zero

on the target measure, i.e. for X ∼ p and all test functions f ∈ F , we have
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that

Ep(Tp f )(X) = Ep

[
d

∑
i=1

∂i log p(X) fi(X) + ∂i fi(X)

]
= 0.

Li and Turner propose to ‘invert’ a Monte Carlo version of this identity, i.e.

to solve it for the gradients ∂i log p(Xa) via ridge regression. The result is a

matrix collecting all learned gradients ∂i log p(Xa) at all training locations

{Xa}n
a=1.

Their approach is non-parametric in the sense that it does not gener-

ally assume a functional form of the gradient model, however, this comes

at the cost of not being able to evaluate the learned gradient outside the

training data [75, Section 3.4]. This renders the approach unusable for ex-

ample for our kernel HMC method in Chapter 4. Li and Turner point out

that it is also possible use the Stein gradient estimator with a model that

admits a parametric density. This results in a smoothed version (loss uses

RKHS norm rather than L2 norm) of the original score matching estimator.

Experimentally, in the HMC context, the methods seem to perform on-par

in that case [75, Figure 1].
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