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Application of optimal control theory in finance and economy 

Master’s thesis 

Olesia   Kucheryk 

Abstract. The aim of current master thesis is to give the appropriate knowledge for the full 

understanding of models used in the optimization of the economical processes. A 

comparison was made of whether the size of the company influences the order of the solution 

and its general look. Now it’s known that both huge and tiny companies, as well as 

individuals, who are about to make some investment decision, and use optimal control theory 

for the optimization of their activity. The model of the optimal economic growth can easily 

find its use in real economic and experience various improvements and extensions. There 

might be derived the unified models for groups of typical cases, as we can say that all 

decisions to be made can be summed under one variable.  

CERCS research specialization: P160 Statistics, operations research, programming, 

actuarial mathematics 

Keywords: control, optimum, variation, functional, Hamiltonian 

 

Optimaalse juhtimise rakendused majandusteaduses 

Magistritöö 

Olesia   Kucheryk 

 

Lühikokkuvõte. Käesoleva magistritöö eesmärk on tutvuda optimaalse juhtimise teooria 

põhialustega ja selle rakendusvõimalustega majandusteaduses ning finantsmatemaatikas. 

Töö esimesed kaks peatükki sisaldavad variatsioonarvutuse ja optimaalse juhtimise teooria 

põhiseoseid. Siin tuletatakse Euleri võrrandid ning transversaalsuse tingimused, samuti 

formuleeritakse maksimumprintsiip. Kolmandas peatükis vaadeldakse erinevaid rakendusi 

majandusteaduses, tuuakse kolm erinevat näidet optimaalse juhtimise teooria rakendamise 

kohta majanduses ja üks näide finantsmatemaatika alalt. Optimaalse juhtimise teooriat on 

võimalik kasutada nii suurte kui ka väikeste ettevõtete jaoks oma finantsotsuste 

langetamiseks optimaalse tulemuse saavutamiseks. 

CERCS teaduseriala: P160 Statistika, operatsioonianalüüs, programmeerimine, finants- ja 

kindlustusmatemaatika. 

Märksõnad: optimaalne juhtimine, variatsioon, funktsionaal, Hamiltoni funktsioon. 
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The introduction 

 

 

In the modern society one can notice the tendency to optimize every possible thing 

that can be measured with any valuable unit. In the economy, the unlimited demand has to 

be satisfied with limited supply, what arises the problem of the most productive use of the 

given input. One can’t sound the decision only on historical data, experience and objective 

mind, decision must have appropriate economic and mathematical methods otherwise it’s 

just a winning-lose game. The previous economical background of the author was one of the 

reasons of choosing the topic as there could be found an intersection between mathematics 

and economy. The mathematical essentials of the optimal control are relatively new, so this 

theory still reaches improvements in different spheres.  

The maximum principle was first introduced by Pontryagin and the team of scientists 

involving Boltyanski, Gamkrelidze and Mischenko [1] in 1961. Their work laid the 

foundation for the development of the optimal control theory. The book is written in pure 

scientific language what required the advance level of mathematics for understanding. So, 

few years after it was introduced, the first interpretations with some improvements were 

published. In finance, the application of the optimal control theory was studied with 

economists and scientists such as Sethi [2], Davis and Elzinga [3]. The earliest papers 

devoted to the economic interpretation of optimal control theory were made by Arrow and 

Shell [4], after that such scientists as Leban and Lesourne [5], Chiang [6], Hadley and M. C. 

Kemp [7]. The authors noted gave the appropriate and understandable interpretation of the 

theory that could be used. To perform perfect computation in the middle of 80’th the 

programming environment MATLAB was mostly used.    

Optimal control theory was widely used after its introduction, but now the number of 

publications devoted to the topic is significantly smaller than it was before. For me there 

arises the question whether the optimal control theory is still relevant in finance and 

economy and how it can be used by different size firms. If one claims that the theory can be 

unified for the use in finance in economy, how will the standardized solution differ is various 

cases.  In this thesis the answer to the question, whether some group of economic indexes 

can be grouped under one mathematical denotation and used, was studied.  
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To answer the questions above, the paper was structured so that the reader can understand 

the logic of the optimal control theory. The first chapter is theoretical, it is devoted to the 

necessary theoretical background of the optimal control theory. Here you can find the 

essentials of the calculus of variations, Lemma of Lagrange, Euler’s equations and some 

necessary extensions that needed to be known to understand the information in the Chapter 

II. The material given is based on the result of researches made by mathematicians before 

Pontryagin has presented the maximum principle. It’s is all unified under similar notations 

and logically contained. Second chapter gives explains the maximum principle and the 

meaning of the Hamiltonian, on the base of the theory presented in both chapters, there 

presented examples from finance and economy and personal understanding of the problem.  
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Chapter I: Foundations of the calculus of variations  

 

 

1.1 Weak variation 

 

Let’s assume that a functional 𝐽(𝑥)⃗⃗⃗⃗  is defined for 𝑥 ∈ 𝐶𝑛
1[𝑡0, 𝑇]. It is said that it reaches 

its minimum at 𝑥∗⃗⃗  ⃗ , if 𝐽(𝑥 ) ≥ 𝐽(𝑥∗⃗⃗  ⃗ ) for each 𝑥  satisfying the condition ‖𝑥 − 𝑥∗⃗⃗  ⃗‖1 < 휀, where 

휀 is an arbitrary positive small number. Here 

‖𝑥 ‖1 = max 
𝑡∈[𝑡0,𝑇]

(|𝑥 (𝑡)| , |𝑥 ̇(𝑡)|),                                        (1.1.1) 

the functional is weakly differentiable at 𝑥 , if there is a limit 

𝛿𝐽 = lim
𝜀→0

𝐽(𝑥 + 휀ℎ⃗ ) − 𝐽(𝑥 )

휀
,                                         (1.1.2) 

where 휀 is a small number and ℎ⃗  is a given function that belongs to the space 𝐶1[𝑡0, 𝑇]. The 

quantity 𝛿𝐽 in (1.1.2) is called a weak variation of the functional 𝐽. To calculate the weak 

variation, the equation (1.1.2) should be modified with the respect to the identity 𝑥 =

(𝑥 + 휀ℎ⃗ )
𝜀=0

, and 휀  should be changed to ∆휀. Then the equality (1.1.2) can be rewritten as  

𝛿𝐽 = lim
∆𝜀→0

𝐽[𝑥 + (휀 + ∆휀)ℎ⃗ ] − 𝐽(𝑥 + 휀ℎ⃗ )

∆휀
|

𝜀=0

.                   (1.1.3) 

Using (1.1.3) one can derive the equation that is more convenient for the calculation of weak 

variation 

𝛿𝐽 =
𝜕

𝜕휀
𝐽(𝑥 + 휀ℎ⃗ )|

𝜀=0
.                                             (1.1.4) 

Let us denote 𝑥𝜀⃗⃗  ⃗ = 𝑥 + 휀ℎ⃗  and 𝐽𝜀 = 𝐽(𝑥𝜀⃗⃗  ⃗). We assume that the functional (1.1.1) has an 

extremum at 𝑥∗⃗⃗  ⃗. The right-hand side of (1.1.4) can be considered as a function of 휀. It is 

known that if 휀 = 0, then the function has the extremum [8]. Consequently, according to the 

necessary condition of the extremum of the function with one variable 

𝜕𝐽𝜀
𝜕휀

|
𝜀=0

= 0.                                                (1.1.5) 

Comparing (1.1.5) with (1.1.4) it becomes obvious that at the point of extremum the first 

variation vanishes. Thus, the necessary condition of optimality is  

𝛿𝐽(𝑥∗⃗⃗  ⃗) = 0.                                                          (1.1.6) 
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1.2 Lemma of Lagrange 

 

While deriving the necessary conditions of optimality, it is convenient to use the Lemma of 

Lagrange. If  �⃗� = �⃗� (𝑡)  is a vector function so that 𝑡 belongs to the interval [𝑡0, 𝑇], then 

consequently �⃗� ∈ 𝐶𝑛
1[𝑡0, 𝑇]. Let’s assume that ℎ⃗ (𝑡) is continuously differentiable function 

on the interval [𝑡0, 𝑇]. Then the following lemma holds good. 

If for all continuous and differentiable ℎ⃗ (𝑡), that satisfies the conditions ℎ⃗ (𝑡0) = 0 and 

ℎ⃗ (𝑇) = 0 

∫∑𝜑𝑗(𝑡)ℎ𝑗(𝑡)𝑑𝑡 = 0                                      (1.2.1)

𝑛

𝑗=0

𝑇

𝑡0

 

then �⃗� (𝑡) = 0. 

 

1.3 The Euler equations 

 

Let’s derive Euler’s equations. The easiest and the most fundamental issue of the 

calculus of variations is the minimization or maximization of a functional. This means 

finding the best way between 𝐴 and 𝐵 (Fig.1.1). Usually line connecting 𝐴 and 𝐵 is a smooth 

curve, so the aim is to find the smooth line between points 𝐴 and 𝐵 so that it is the best path 

that minimizes a cost criterion. 

 

Figure 1.1. Smooth curves connecting points 𝐴 and 𝐵. (see Lellep [9]) 

 

Let’s define the cost function as  
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𝐽 = ∫𝐹(𝑥 , 𝑥 ̇, 𝑡)𝑑𝑡

𝑇

𝑡0

.                                                   (1.3.1) 

Let’s assume that integrand function 𝐹 is continuous and twice differentiable. A smooth 𝑥  =

 𝑥 (𝑡) that yields an extremum to 𝐽 is called an extremal. Here 𝑥 ̇=𝑥 ̇(𝑡) and 𝑥 ̈ = 𝑥 ̈(𝑡) are 

continuous on the interval [𝑡0, 𝑇]. The aim of this section is to find the curve that minimizes 

the functional (1.3.1).  For maximizing the same approach is used.  So 𝐽 reaches its extremum 

at point 𝑥 = 𝑥 (𝑡). When minimizing the cost function (1.3.1) it’s assumed that 

𝑥 (𝑡0) = 𝑥0⃗⃗⃗⃗ , 

𝑥 (𝑇) = 𝑥𝑇⃗⃗⃗⃗ .                                                     (1.3.2) 

According to (1.1.6) one can write that the weak variation of the function of 𝐽 equals to zero: 

𝛿𝐽 = ∫∑(
𝜕𝐹

𝜕𝑥𝑗
ℎ𝑗 +

𝜕𝐹

𝜕�̇�𝑗
ℎ�̇�)

𝑛

𝑗=1

𝑇

𝑡0

𝑑𝑡 = 0,                                     (1.3.3) 

 where ℎ�̇� =
𝑑

𝑑𝑡
ℎ𝑗. 

The integration by parts in (1.3.3) gives 

∫
𝜕𝐹

𝜕�̇�𝑗

𝑇

𝑡0

ℎ�̇�𝑑𝑡 =
𝜕𝐹

𝜕𝑥�̇�
ℎ𝑗|

𝑡0

𝑇

− ∫
𝑑

𝑑𝑡

𝜕𝐹

𝜕𝑥�̇�
ℎ𝑗𝑑𝑡.

𝑇

𝑡0

                                 (1.3.4) 

The weak variation will take the form 

𝛿𝐽 = ∑
𝜕𝐹

𝜕𝑥𝑗
ℎ𝑗|

𝑡0

𝑇

+ ∫∑(
𝜕𝐹

𝜕𝑥𝑗
ℎ𝑗 −

𝑑

𝑑𝑡

𝜕𝐹

𝜕�̇�𝑗
ℎ𝑗  ) 𝑑𝑡 = 0.                 (1.3.5)  

𝑛

𝑗=1

𝑇

𝑡0

 

𝑛

𝑗=1

 

Under the terms of the task, all curves comparable to those which are sought among 

extremums undergo predetermined points 𝑥0⃗⃗⃗⃗  and 𝑥𝑇⃗⃗⃗⃗ . As it is shown in (1.1.4), if the 

extremum is achieved at 

𝑥 = 𝑥 (𝑡) 

then the appropriate curves are given by the equation 

𝑥 =  𝑥 (𝑡) + 𝛿𝑥 (𝑡),                                                    (1.3.6) 

where 𝛿𝑥 (𝑡) = 휀ℎ⃗ (𝑡). Here ℎ⃗ (𝑡) is a function of 𝑡 where 𝑡 belongs to the interval   [𝑡0, 𝑇] is 

a continuously differentiable function, 휀 is a small number. As 𝑥  and ℎ⃗ (𝑡) are given 

functions, each value of 휀 will determine a particular value of 𝐽. 

As 𝑥 (𝑡0) = 𝑥0 ⃗⃗ ⃗⃗   and 𝑥 (𝑇) = 𝑥𝑇⃗⃗⃗⃗ , then 
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𝑥0⃗⃗⃗⃗ =  𝑥 (𝑡0) + 𝛿𝑥 (𝑡0) 

and 

𝑥𝑇⃗⃗⃗⃗ =  𝑥 (𝑇) + 𝛿𝑥 (𝑇). 

 

As all boundary conditions are met it can be said that 

𝛿𝑥 (𝑡0) = 0                                                                (1.3.7) 

and 

𝛿𝑥 (𝑇) = 0.                                                               (1.3.8) 

We have to use the equation (1.3.5) where 𝛿𝑥 (𝑡0) =  𝛿𝑥 (𝑇) = 0. Thus, we obtain 

∫∑ (
𝜕𝐹

𝜕𝑥𝑗
−

𝑑

𝑑𝑡

𝜕𝐹

𝜕𝑥�̇�
)

𝑑

𝑑𝑡

𝑛

𝑗=1

𝛿𝑥𝑗𝑑𝑡 = 0.

𝑇

𝑡0

 

Here 𝛿𝑥𝑗 (𝑗 = 1,2…𝑛) is arbitrary. Thus, according to the lemma of Lagrange one obtains 

𝜕𝐹

𝜕𝑥𝑗
−

𝑑

𝑑𝑡

𝜕𝐹

𝜕�̇�𝑗
= 0                                                  (1.3.9) 

for all 𝑡 ∈ [𝑡0, 𝑇]  and 𝑗 = 1,… , 𝑛. This formula is known as Euler’s equation and since now 

we can start applying it for particular mathematical issues. The equation (1.3.9) is a 

necessary condition for weak extremum, that means that the functional can reach extremum 

only on curves, that satisfy the Euler’s equation. As weak extremum is meantime a strong 

extremum, then the necessary conditions of weak extremum are the necessary conditions for 

strong extremum, but not the opposite. 

 

1.4 Extensions 

 

1.4.1 Problems with functional constraints 

 

Let’s find the extremum of the functional (1.3.1) with additional constraints 

𝑔𝑗(𝑥 , 𝑡) = 0,                                                              (1.4.1) 

for 𝑗 = 1,… , 𝑞   and boundary conditions (1.3.2). 

Let’s assume 𝐹 and 𝑔𝑗 to be continuous up to the second order derivatives. Beside that the 

rank of  
𝜕𝑔𝑗

𝜕𝑥𝑖
 is equal to 𝑞, for all 𝑞 < 𝑛. To derive the necessary conditions for the extremum, 
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one should use the method of Lagrange multipliers. The essence of this method is to use the 

extended functional 𝐽∗ = 𝐽+< 𝜑 , 𝑔 > to find the conditional stationary for the functional 

𝐽 with 𝑔 = 0. Here  < 𝜑 , 𝑔 > is the scalar product, 𝜑 and 𝑔 can be vectors or scalars. For 

the given issue 

< 𝜑 , 𝑔 >= ∫∑𝜑𝑗(𝑡)𝑔𝑗(𝑥 , 𝑡)𝑑𝑡,

𝑞

𝑗=1

𝑇

𝑡0

                                               (1.4.2) 

where �⃗� = (𝜑1, …𝜑𝑞) and 𝑔 = (𝑔1, … , 𝑔𝑞), 𝜑𝑗 is an unknown Lagrange multipliers. 

Consequently, one can apply the condition 𝛿𝐽∗ = 0, where 

𝐽∗ = 𝐽 + ∫ ∑𝜑𝑗𝑔𝑗𝑑𝑡.                                                  (1.4.3)

𝑞

𝑗=1

𝑇

𝑡0

 

Now one should calculate the weak variation and equalize it to zero 

∫∑(
𝜕𝐹

𝜕𝑥𝑖
−

𝑑

𝑑𝑡

𝜕𝐹

𝜕𝑥�̇�
+ ∑𝜑𝑗

𝑞

𝑗=1

𝜕𝑔𝑗

𝜕𝑥𝑖
)𝛿𝑥𝑖𝑑𝑡 = 0.                      (1.4.4)

𝑛

𝑖=1

𝑇

𝑡0

 

Equation (1.4.4) allows to derive the modified Euler’s equation 

𝜕𝐹

𝜕𝑥𝑖
+ ∑𝜑𝑗

𝑞

𝑗=1

𝜕𝑔𝑗

𝜕𝑥𝑖
−

𝑑

𝑑𝑡

𝜕𝐹

𝜕𝑥�̇�
= 0,                                 (1.4.5) 

or 

𝜕𝐹∗

𝜕𝑥𝑖
−

𝑑

𝑑𝑡

𝜕𝐹∗

𝜕𝑥�̇�
= 0,                                             (1.4.6) 

for 𝑖 = 1,… , 𝑛. 

 

 

1.4.2. Problem with integral constraints 

 

Let’s solve the same problem that was described in section 1.4.1, so that instead of 

constraints (1.4.1) one has integral constraints 

∫𝑔𝑖(𝑥 , 𝑡)𝑑𝑡 = 𝐴𝑖 ,                                                (1.4.7) 

𝑇

𝑡0

 

for  𝑖 = 1,… , 𝑛, where 𝐴𝑖 is a set of given constants [8]. Here 𝑘 can take the value of any 

natural number. The method of Lagrange multipliers is valid for the problems with integral 
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constraints, so the modified Euler’s equation is derived by the same way as in (1.4.1), but 

with constant 𝜑𝑗 , 𝑗 = 1,… , 𝑘.  

 

 

1.4.3 Problems with unknown terminal time 

 

 Transversality conditions are used when the terminal or initial point is variable, as 

the boundary condition is not fixed. In the current case one can also apply the method of 

Lagrange multipliers to derive the optimal path.  Let’s solve the case when the terminal time 

𝑇 is preliminary unknown. Now  

𝐽𝜀 = ∫ 𝐹(𝑥 , 𝑥 ̇, 𝑡)𝑑𝑡.                                                 (1.4.8)

𝑇𝜀

𝑡0

 

 

Although, the boundary conditions can be arbitrary. Let us assume for the simplicity that the 

boundary conditions (1.1.2) are satisfied by the optimal solution. Evidently the optimal curve 

satisfies the Euler’s equations 

To receive the needed conditions for the extremal the first step is using 휀 to generate a 

perturbing curve to be compared with extremal. Perturbing curve ℎ⃗ (𝑡) creates the 

neighboring paths that must pass through endpoints (Fig.1.2)  𝐴 and  𝐵2. Let’s assume that 

𝑇 is given optimal terminal time, then all 𝑇𝜀 are in the immediate neighborhood. The property 

may be written as 

𝑇𝜀 = 𝑇 + 휀∆𝑇 ,                                                             (1.4.9) 

where 𝑇 is given and ∆𝑇 is its small change. Evidently  𝑇 is a function of 휀, its derivative 

will take the form 

𝑑𝑇𝜀

𝑑휀
= ∆𝑇. 

To find the neighboring paths of the extremal 𝑥 (𝑡) one can state that (see (1.3.6)) 

𝑥𝜀⃗⃗  ⃗(𝑡) = 𝑥 (𝑡) + 휀ℎ⃗ (𝑡),                                              (1.4.10) 

where ℎ⃗ = ℎ⃗ (𝑡) is a smooth vector function on the interval [𝑡0, 𝑇]. Substituting (1.4.10) into 

the given functional (1.3.1) and taking into account that 𝑇 is a function of 휀, the following 

function is received 
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𝐽(휀) = ∫ 𝐹 (𝑥 + 휀ℎ⃗ , 𝑥 ̇ + 휀ℎ⃗ ̇, 𝑡) 𝑑𝑡.                          (1.4.11)

𝑇𝜀

𝑡0

 

 

 

 1.4.4 Transversality conditions 

 

The transversality conditions can be derived in three steps. Firstly, let us define 

𝜕𝐽

𝜕휀
= ∫

𝜕𝐹

𝜕휀

𝑇𝜀

𝑡0

𝑑𝑡 + 𝐹(𝑥 (𝑇), 𝑥 ̇(𝑇), 𝑇)
𝜕𝑇

𝜕휀
.                            (1.4.12) 

 

According to the Leibnitz’s rule we can differentiate under the integral sign. Since we 

assumed that ℎ⃗ (𝑡0) = 0, but ℎ⃗ (𝑇) ≠ 0 one has 

 

∫
𝜕𝐹

𝜕휀
𝑑𝑡

𝑇𝜀

𝑡0

= ∫∑ℎ𝑗(𝑡)

𝑛

𝑗=1

𝑇

𝑡0

(𝐹𝑥𝑗 −
𝑑

𝑑𝑡
𝐹𝑥�̇�

) 𝑑𝑡 + ∑(𝐹�̇�𝑗
)
𝑡=𝑇

𝑛

𝑗=1

ℎ𝑗(𝑇)        (1.4.13) 

and 

𝐹(𝑥(𝑇), �̇�(𝑇), 𝑇)
𝜕𝑇

𝜕휀
= (𝐹)𝑡=𝑇∆𝑇. 

After substituting these two formulas into (1.4.11) it takes the form 

∑(∫ℎ𝑗(𝑡)[𝐹𝑥𝑗 −
𝑑

𝑑𝑡

𝑇

𝑡0

𝐹�̇�𝑗]𝑑𝑡 + [𝐹�̇�𝑗] 𝑡=𝑇ℎ𝑗(𝑇)) + (𝐹)𝑡=𝑇∆𝑇 = 0

𝑛

𝑗=1

 (1.4.14) 

Since ℎ𝑗(𝑡), where 𝑗 = 1,2, … , 𝑛 and ∆𝑇 are independent, the last term in (1.4.14) must be 

equal to zero. The last terms relate only to the terminal condition, while the first one equals 

zero, because of Euler’s equations. 

Second, we should get rid of ℎ⃗ (𝑡) transforming it into terms ∆𝑇 and ∆𝑥𝑇⃗⃗⃗⃗ , that denotes the 

change in 𝑇, and 𝑥𝑇⃗⃗⃗⃗ ,  that denotes the two principle variables and in the variable-terminal 

point issue. The easiest way is to do it is to build a graph (Fig.1.2) that will illustrate 𝑥 (𝑡) 

and ℎ⃗ (𝑡) meantime. In Fig. 1.2 the variations of the trajectory and of the terminal line are 

shown. 
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 Figure 1.2. Total variation (see Chiang [6])  

 

Basically, here curve 𝐴𝐵2 is the neighboring path that starts with the same initial point. 

Curve 𝐴𝐵1 was perturbed with 휀ℎ⃗ (𝑡). 𝐵1𝐵2 is the segment that characterize the change in 

𝑥 (𝑡) caused by perturbation, and we can change T with 휀∆𝑇. As a consequence,  𝑥 (𝑡) has 

been pushed up further by segment 𝐵2𝐵3. If we assume that ∆𝑇 is small, we can conclude 

that next change in 𝑥 (𝑡) is approximated by  𝑥 ̇(𝑇)∆𝑇. The entire change in 𝑥 (𝑡) between 

points 𝐵2 and 𝐵3 that is called total variation, can be written as  

∆𝑥𝑇⃗⃗⃗⃗ = ℎ⃗ (𝑇) + 𝑥 ̇(𝑇)∆𝑇.                                            (1.4.15) 

This approximation lets us derive a formula for the weak variation and the total variation 

coupling 

ℎ⃗ (𝑇) = ∆𝑥𝑇⃗⃗⃗⃗ − 𝑥 ̇(𝑇)∆𝑇.                                           (1.4.16) 

Using the approximation (1.4.16) we can easily avoid ℎ⃗ (𝑇). So, to reach the general 

transversality condition (1.4.14) should be rewritten without the integral term as 

(𝐹 − ∑�̇�𝑗

𝑛

𝑗=1

𝐹𝑥�̇�
)

𝑡=𝑇

∆𝑇 + ∑(𝐹𝑥�̇�)𝑡=𝑇

𝑛

𝑗=1

∆𝑥𝑇𝑗
= 0.                     (1.4.17) 

The role of the derived condition is to replace the missing terminal point in the current 

problem and can be relevant to only one point of time 𝑇. It can be written in different forms 

depending on peculiarities of the terminal line.  
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For fixed 𝑇 there won’t be any change in 𝑇, what means that the terminal line will be vertical, 

as  ∆𝑇 = 0. The drop out the first term in (1.4.17) will be resulted.  If ∆𝑥 𝑇 is arbitrary, then 

(𝐹�̇�𝑗
)
𝑡=𝑇

= 0, 

for 𝑖 = 1,2, … , 𝑛. In case if the situation is opposite ∆𝑥𝑇⃗⃗⃗⃗ = 0, terminal line is horizontal and 

𝑇 is arbitrary, there will be a drop out of the second sum in (1.4.17). The only way to 

eliminate the term with ∆𝑇 is to make the entire expression in brackets equal to zero. In this 

case, the transversality conditions will take the form 

(𝐹 − ∑�̇�𝑗

𝑛

𝑗=1

𝐹𝑥�̇�
)

𝑡=𝑇

= 0.                                             (1.4.18) 
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Chapter II: Optimal control theory 

 

 

2.1 The Hamiltonian 

 

In the calculus of variations, the problem of optimization includes the variables 𝑥 =

𝑥 (𝑡). In the optimal control theory, we have to deal with one or more control variables. To 

reach the key insights of optimal control theory it’s necessary first to determine the problem 

of finding optimal state variable 𝑥 , what means the finding of the optimal control variable �⃗�  

and the optimal state path 𝑥 (𝑡).  The problem posed as a minimization problem since the 

maximization can be easily transformed into minimization one by just putting minus sign in 

front of the functional. The functional takes the form  

𝐽 = ∫ 𝐹(𝑥 , �⃗� , 𝑡)𝑑𝑡.                                                        

𝑇𝜀

𝑡0

(2.1.1) 

The functional (2.1.1) must be minimized among the solutions of the system  

𝑥 ̇ = 𝑓 (𝑥 , �⃗� , 𝑡).                                                             (2.1.2) 

The boundary conditions can be different. For instance, in case of a problem with fixed initial 

point and free terminal point one has 

𝑥 (𝑡0) = 𝑥0⃗⃗⃗⃗  

                                                                                                                               (2.1.3) 

𝑥 (𝑇) = free. 

Similarly, in the case of a free initial point and fixed terminal point ones has 

𝑥 (𝑇) = 𝑥𝑇⃗⃗⃗⃗ ,                                                                       

𝑥 (𝑡0) being arbitrary. 

It’s assumed that for each 𝑡 ∈ [𝑡0, 𝑇] the control function satisfies the requirement  

�⃗� ∈ 𝑈,                                                                   (2.1.4) 

where 𝑈 is a convex closed set of admissible controls. Function 𝐹(𝑥 , �⃗� , 𝑡) no longer contains 

the derivative 𝑥 ̇, but it depends on states variables 𝑥𝑗  (𝑗 = 1,… , 𝑛) and controls 𝑢𝑖  (𝑖 =

1, … 𝑟). The connection between them can only be seen through the first order differential 

equations 

𝑑𝑥𝑗

𝑑𝑡
= 𝑓𝑗(𝑥 , �⃗� , 𝑡), 
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for 𝑗 = 1,… , 𝑛. Assume that at time 𝑡 = 𝑡0  𝑥 (𝑡0) = 𝑥0⃗⃗⃗⃗ . Depending on different 

�⃗� (𝑡)1, … �⃗� (𝑡)𝑟 the derivative will have different values, what will predetermine a special 

direction of movement for 𝑥 . The first order necessary condition is known as the maximum 

principle and it’s the most important result of optimal control theory [6]. In order to 

formulate 𝐻, let us introduce the Hamiltonian. In this case, a new adjoint variable �⃗�   is added 

to the existing variables 𝑡, 𝑥  and �⃗� . Later it will be shown that �⃗�  is closely related to Lagrange 

multipliers and it evaluates the shadow price of the problem. It depends on time as well as 

𝑥 (𝑡) and �⃗� (𝑡). The Hamiltonian function, that is more often called the Hamiltonian, is the 

tool to be used to reach the optimal control problem. It contains of integrand function 𝐹 and 

the product of the adjoint variable with function 𝑓 , and takes the form 

𝐻 = 𝜑0𝐹(𝑥 , �⃗� , 𝑡) + ∑𝜑𝑗𝑓𝑗(𝑥,⃗⃗⃗  𝑢,⃗⃗⃗  𝑡).

𝑛

𝑗=1

                                            (2.1.5) 

We assume that 𝜑0 = −1, as it can’t be equal to zero and should be a negative constant, that 

can be normalized to unity.   

The application of maximum principle applied to the Hamiltonian involves pair of first-order 

partial derivatives 
𝑑𝑥 

𝑑𝑡
  and 

𝑑�⃗⃗� 

𝑑𝑡
 . The maximum principle states that the Hamiltonian must be 

maximized with respect to �⃗�  at every time instant. The maximization of 𝐻(𝑥 , �⃗� , �⃗� , 𝑡) is to 

be done in accordance with the relations 

𝑑𝑥𝐽

𝑑𝑡
=

𝜕𝐻

𝜕𝜑𝑗
 

and  

 

𝑑𝜑𝑗

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥𝑗
                                                          (2.1.6) 

 for 𝑗 = 1,… , 𝑛.                                                
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2.2 The variational problem 

 

The transversality condition corresponding to (2.1.3) will take the form �⃗� (𝑇) = 0. Let us 

consider now the variational problem (1.3.1) - (1.3.3) with the integrand 𝐹. This problem 

can be treated as a particular problem of the optimal control. 

In the case of problems of the calculus of variations it can be stated that 

𝑥�̇� = 𝑢𝑗                                                                                (2.2.1) 

𝑓or  𝑗 = 1,… , 𝑛. The equation (2.2.1) can be treated as the state equations for the variational 

problem (1.3.1), (1.3.2). Let’s write the Hamiltonian function in the following way  

𝐻 = −𝐹(𝑥 , �⃗� , 𝑡) + ∑𝜑𝑗𝑢𝑗

𝑛

𝑗=1

.                                                    (2.2.2) 

According to the principle of maximum the function 𝐻 = 𝐻(𝑥 , �⃗� , �⃗� , 𝑡) attains maximum 

with respect to �⃗� , we receive the following system that will give us the value. Since the 

maximum is a local maximum, the condition 
𝜕𝐻

𝜕𝑢𝑗
= 0 must be satisfied. Evidently, 

𝜕𝐻

𝜕𝑢𝑗
= −

𝜕𝐹

𝜕𝑢𝑗
+ 𝜑𝑗 = 0.                                                (2.2.3) 

From (2.2.3) one obtains 

𝜑𝑗 =
𝜕𝐹

𝜕𝑢𝑗
.                                                             (2.2.4) 

It can be seen from (2.2.2) that  

𝜕𝐻

𝜕𝜑𝑗
= 𝑢𝑗 .                                                           (2.2.5) 

According to (2.1.6) 

𝜑�̇� = −
𝜕𝐻

𝜕𝑥𝑗
.                                                       (2.2.6) 

The transversality condition yields in the case of free terminal state 

𝜑𝑗(𝑇) = 0.                                                         (2.2.7) 

According to (2.2.2) 

𝜕𝐻

𝜕𝑥𝑗
= −

𝜕𝐹

𝜕𝑥𝑗
.                                                          (2.2.8) 

Thus, according to (2.2.6) one has  
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𝜑𝑗̇ =
𝜕𝐹

𝜕𝑥𝑗
.                                                           (2.2.9) 

Combining (2.2.4) and (2.2.9) gives 

𝜕𝐹

𝜕𝑥𝑗
−

𝑑

𝑑𝑡

𝜕𝐹

𝜕𝑥�̇�
= 0 ,                                                   (2.2.10) 

for 𝑗 = 1,… , 𝑛. It is seen that this system of equations is identical to Euler’s equations, that 

was derived previously. So, there is an obvious connection between the Hamiltonian and 

Euler’s equation. Since in the case of the maximum of 𝐻, its second derivative must be 

negative. Thus,  
𝜕2𝐻

𝜕𝑢𝑗𝜕𝑢𝑖
 is negatively assigned. 

Taking into account the transversality condition, that is obtained in the present case, it can 

be written 

(
𝜕𝐹

𝜕�̇�𝑗
)

𝑡=𝑇

= 0.                                                        (2.2.11) 

It was also obtained in the calculus of variations (see Troickij [11], Lellep [6]). 

If we have an issue with horizontal terminal 𝑛 the transversality condition will take the form 

(𝐹 − ∑𝜑𝑗𝑢𝑗

𝑛

𝑗=1

)

𝑡=𝑇

= 0.                                          (2.2.12) 

The last equation can be rewritten as 

 (𝐹 − ∑
𝜕𝐹

𝜕𝑥�̇�
𝑥�̇�

𝑛

𝑗=1

)

𝑡=𝑇

= 0.                                          (2.2.13) 

So, all the issues in the calculus of variations can be derived from the maximum principle 

and the Hamiltonian function.  

 

 

2.3 The principle of maximum 

 

In the calculus of variations, the Hamiltonian is assumed to be differentiable with 

respect to the control variable �⃗� , and the equalities  
𝜕𝐻

𝜕𝑢𝑖
= 0, 𝑖 = 1,… , 𝑛 replace the condition 

of maximum of the Hamiltonian. However, in the theory of optimal control these conditions 

are not satisfied in general. 
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 Consider now the control problem, which consists in the minimization of the functional 

𝐽 = ∫𝐹(𝑥 , �⃗� , 𝑡)

𝑇

𝑡0

𝑑𝑡,                                                   (2.3.1) 

subjected to differential constraints 

𝑥 ̇ = 𝑓 (𝑥 , �⃗� , 𝑡). 

To apply the maximum principle, the equation of the motion should be incorporated into the 

objective functional, rewritten in terms of Hamiltonian. The equation 𝑥 ̇ = 𝑓 (𝑥 , �⃗� , 𝑡) must be 

satisfied for all 𝑡 on the interval [𝑡0, 𝑇]. In this case, evidently, 

∫∑𝜑𝑗

𝑛

𝑗=1

𝑇

𝑡0

(𝑡)(𝑓𝑗(𝑥 , �⃗� , 𝑡) − 𝑥�̇�)𝑑𝑡 = 0                               (2.3.2) 

We can add (2.3.2) to the functional 𝐽 without changing its value [6]. Thus, the extended 

functional can be presented as 

𝐽∗ = 𝐽 + ∫∑𝜑𝑗

𝑛

𝑗=1

𝑇

𝑡0

(𝑡)(−𝑓𝑗(𝑥 , �⃗� , 𝑡) + 𝑥�̇�)𝑑𝑡 

= ∫(F(𝑥 , �⃗� , 𝑡) + ∑𝜑𝑗

𝑛

𝑗=1

(𝑡)(−𝑓𝑗(𝑥 , �⃗� , 𝑡) + 𝑥�̇�))𝑑𝑡

𝑇

𝑡0

.         (2.3.3) 

Evidently, 𝐽 = 𝐽∗, but the difference between them is that the derivative of 𝐽∗ will be 

different. Inserting the Hamiltonian defined by (2.1.5) into (2.3.3) the following equality is 

obtained 

𝐽∗ = − ∫(𝐻(𝑥 , �⃗� , �⃗� , 𝑡) − ∑𝜑𝑗

𝑛

𝑗=1

(𝑡)𝑥�̇�)

𝑇

𝑡0

𝑑𝑡 = 

= ∫−𝐻

𝑇

𝑡0

(𝑥 , �⃗� , �⃗� , 𝑡)𝑑𝑡 + ∫∑𝜑𝑗

𝑛

𝑗=1

(𝑡)𝑥�̇�𝑑𝑡.                             (2.3.4) 

𝑇

𝑡0

 

Here 𝑥  and �⃗�  are optimal trajectory and optimal control, respectively. The non-optimal 

control can be presented in the form �⃗� + ∆�⃗� ∈ 𝑈, so that ∆�⃗� (𝑡) = 0 if 𝑡 ⋷ [𝜏, 𝜏 + 휀]. 

Evidently, moving from non-optimal trajectory to the optimal one, the increase of the 

functional 𝐽∗ is non-negative [8]. 

Let’s write the Hamiltonian  
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𝐻 = −𝐹(𝑥 , �⃗� , 𝑡) + ∑𝜑𝑗(𝑡 )

𝑛

𝑗=1

𝑓𝑗(𝑥 , �⃗� , 𝑡).                              (2.3.5) 

The Hamiltonian (2.3.5) must be maximized among the solutions of the state equations and 

adjoint equations 

𝜑𝑗̇ = −
𝜕𝐻

𝜕𝑥𝑖
.                                                       (2.3.6) 

The difference of the values of the functional  𝐽∗ can be written as  

 

∆𝐽 = ∫(∫  (𝐹(𝑥 + ∆𝑥 , �⃗� + ∆�⃗� , 𝑡) − 𝐹(𝑥 , �⃗� , 𝑡)

𝑇

𝑡0

+ 

+∑𝜑𝑗(𝑡)(∆𝑥�̇� − 𝑓𝑗(𝑥 + ∆𝑥 , �⃗� + ∆�⃗� , 𝑡) + 𝑓𝑗(𝑥 , �⃗� , 𝑡)

𝑛

𝑗=1

)𝑑𝑡.                (2.3.7) 

Simplifying and rewriting the equation (2.3.7) in case of the Hamiltonian (2.3.5), we have  

∆𝐽 = ∫(−∑�̇�𝑗(𝑡)∆𝑥𝑗(𝑡)

𝑛

𝑗=1

− 𝐻(𝑥 + ∆𝑥 , �⃗� + ∆�⃗� , �⃗� , 𝑡) + 𝐻(𝑥 , �⃗� , �⃗� , 𝑡)) 𝑑𝑡.     (2.3.8)

𝑇

𝑡0

 

We know that the change of state variable 𝑥  and control variable �⃗�  equals to zero and 𝑡 ≤ 𝜏 

if 𝑡 > 𝜏 + 휀 [6]. The integral in (2.3.8) can be divided into parts. Taking into the 

consideration (2.3.6) we have  

∆𝐽 = ∫ (∑
𝜕𝐻

𝜕𝑥𝑗
∆𝑥𝑗(𝑡) − 𝐻(𝑥 + ∆𝑥 , �⃗� + ∆�⃗� , �⃗� , 𝑡) + 𝐻(𝑥 , �⃗� , �⃗� , 𝑡)

𝑛

𝑗=1

)𝑑𝑡 +

𝜏+𝜀

𝜏

 

+ ∫ (∑
𝜕𝐻

𝜕𝑥𝑗
∆𝑥𝑗(𝑡) − 𝐻(𝑥 + ∆𝑥 , �⃗� , �⃗� , 𝑡) − 𝐻(𝑥 , �⃗� , �⃗� , 𝑡)

𝑛

𝑗=1

)𝑑𝑡.     (2.3.9)

𝜏

𝜏+𝜀

 

Those two integrals from the equation (2.3.9) can be rewritten as 

∆𝐽 = −∫ (𝐻(𝑥 , �⃗� + ∆�⃗� , �⃗� , 𝑡) − 𝐻(𝑥 , �⃗� , �⃗� , 𝑡))𝑑𝑡 + 𝜂.           (2.3.10)
𝜏+𝜀

𝜏

 

In equation (2.3.9) 𝜂 is a small value of 휀2 order (see Lellep [6]). So, as the value of the ∆𝐽 

is nonnegative and 휀 is a small value, one can write an inequality 

𝐻(𝑥 , �⃗� , �⃗� , 𝑡)|𝑡=𝜏 ≥ 𝐻(𝑥 , �⃗� + ∆�⃗� , �⃗� , 𝑡)|𝑡=𝜏.               (2.3.11) 

As 𝜏 + 휀 ∈ [𝑡0, 𝑇], the optimal control satisfies the maximum principle 
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𝐻(𝑥 (𝑡), �⃗� (𝑡), �⃗� (𝑡), 𝑡) = max
𝑥 ̇∈𝑈

𝐻(𝑥 (𝑡), 𝑥 ̇(𝑡), �⃗� (𝑡), 𝑡).              (2.3.12) 

So, if the control �⃗�  and trajectory 𝑥  give the minimum to the functional (2.3.1), so that the 

boundary conditions (2.3.2) are met and the control belongs to the closed set 𝑈, then there 

exists a continuous vector function �⃗� = (𝜑1, … , 𝜑𝑛) that satisfies (2.3.6) so that for each 𝑡 ∈

[𝑡0, 𝑇], the Hamiltonian (2.3.5) attains its maximum over the set 𝑈. 

It should be noted the maximum principle (2.3.12) is just a necessary condition of optimality. 

In various situations, non-optimal conditions may satisfy the maximum principle as well, 

because the principle of maximum presents a necessary condition of optimality.  
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Chapter III: The application of optimal control theory 

 

 

3.1 Simple economic interpretation of optimal control theory 

 

In theory, everything looks good but when coming to the real issues the mathematics 

described in the first before has to be converted into applicable terms and be economically 

interpreted so that it’s easy to use. Each mathematical term that was used has its intuitive 

meaning in economy, this statement is well described in the article published by Robert 

Dorfman [10] in that is still relevant, but need to be amended according to changes that have 

happened during the last years. To connect reality with the theory the first step is to match 

meanings in the maximum principle. In his work Dorfman assumed that there is a company 

that wants to maximize its total profit over some period of time [0, 𝑇], here we assume that 

𝑡0 = 0. 

Let’s assume 𝑘 to be the value of the capital, at any time 𝑡 company has to make some 

business decisions, like price of output, supplies cost, rate of output and others. Let us denote 

these factors by the vector �⃗� = (𝑢1, … , 𝑢𝑟) As capital and decision making process are 

interdependent one can introduce the profit function as  𝜚 = 𝜚(𝑘(𝑡), �⃗� (𝑡), 𝑡). It’s known that 

there is a dependency between �⃗� (𝑡) and 𝑘(𝑡) as decisions are made upon rate at which capital 

changes.  

According to this, the total profit earned over time period 𝑇 is the solution of the optimal 

control problem, that consists in the maximization (see Chiang [6]) 

𝐽 = ∫𝜚(𝑘, �⃗� , 𝑡)𝑑𝑡.

𝑇

0

                                                     (3.1.1) 

The rate of change of the capital stock 𝑘 at any moment is a function of the current standing, 

time and the decision made. Thus, one can state that 

�̇� = 𝑓(𝑘, �⃗� , 𝑡).                                                       (3.1.2) 

These two formulas above (2.1.1) and (2.1.2) describe a problem of optimal control. Strictly 

speaking, the main problem is to find �⃗�  so that the total profit 𝐽 is as big as possible under 

the condition, that the rate of the capital satisfies (3.1.2).  
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The problem (2.1.1) and (2.1.2) will be treated as a particular problem of the optimal control 

(2.1.1), (2.1.2). Here the state variable 𝑘 and the control variable is �⃗� . Thus, 𝑛 = 1 and 𝐹 =

𝜌. 

 In the present case. Therefore, the Hamiltonian function is  

𝐻 = −𝜚(𝑘, �⃗� , 𝑡) + 𝜑(𝑡)𝑓(𝑘, �⃗� , 𝑡).                                   (3.1.3) 

After applying (2.2.8) to the existing problem and putting in all the values for all variables 

𝐽∗ = ∫ −(𝐻(𝑘, �⃗� ,
𝑇

0

 𝜑, 𝑡) + 𝑓(𝑘, �⃗� , 𝑡)𝜑(𝑡))𝑑𝑡 − 𝜑(𝑇)𝑘(𝑇) + 𝜑(0)𝑘0 ,        (3.1.4) 

where 𝑘0 = 𝑘(0). In equation (3.1.4) 𝜑(𝑡) measures the shadow price of capital at each time 

moment. The transversality conditions take the form 

𝜑(0) =
𝜕𝐽∗

𝜕𝑘0
, 

  (3.1.5) 

𝜑(𝑇) = −
𝜕𝐽∗

𝜕𝑘(𝑇)
.                                                                 

The first equation in (3.1.5) shows the interdependency between the functional 𝐽∗ and initial 

capital stock, while the other equation in (3.1.5) displays the negative rate of change of 𝐽∗ 

with respect to the terminal capital stock. 

The functional (3.1.1) can be rewritten as Hamiltonian that basically represents overall profit 

prospect of different meanings of decision-making function 𝑢(𝑡) with immediate and future 

effects taken into account. 

So, one can say that the first term of (3.1.4) can be called as current-profit effect as it’s a is 

the profit function dependent on time 𝑡, and the second term – as future-profit effect of �⃗� , is 

a monetary value, that consists of shadow value multiplied with rate of change of capital. 

Now a very controversial situation arises, some optimal decision �⃗�  at some time 𝑡 influences 

the current profit, it will naturally require a sacrifice in the future profit.  

As we need to make overall profit represented by (3.1.1) the greatest possible, we should 

apply the maximum principle to (2.3.7). In the present case, we have a local maximum. 

Therefore, one must compute its partial derivatives with respect to �⃗�  and equate partial 

derivative to zero 

𝜕𝐻

𝜕𝑢𝑗
=

𝜕𝜚

𝜕𝑢𝑗
+ 𝜑(𝑡)

𝜕𝑓

𝜕𝑢𝑗
= 0. 

It can be rewritten as 
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𝜕𝜚

𝜕𝑢𝑗
= −𝜑(𝑡)

𝜕𝑓

𝜕𝑢𝑗
,                                                      (3.1.6) 

where 𝑗 = 1,… , 𝑟. Taking into account (3.1.6) it becomes obvious, that the optimal choice 

in �⃗�  should cause an increase in current profit and avoid the drop down in the future profit 

meantime.  

The variable of motion 𝑘 specifies only the effect of the policy decision on the rate of change 

of capital. Assume that the shadow price is constant. Now we have 

𝜕𝐻

𝜕𝑘
=

𝜕𝜚

𝜕𝑘
+ 𝜑(𝑡)

𝜕𝑓

𝜕𝑘
+ 𝜑(𝑡) = 0. 

The rewritten equation will take the form  

−𝜑(𝑡) =
𝜕𝜚

𝜕𝑘
+ 𝜑(𝑡)

𝜕𝑓

𝜕𝑘
.                                                       (3.1.7) 

The basic ideas of the usage of the maximum principle was explained. In terms of the 

Hamiltonian equations (3.1.6), (3.1.7) and �̇� = 𝑓(𝑘, �⃗� , 𝑡), we can be rewritten them into the 

following system 

𝜕𝐻

𝜕𝜑
= 𝑘, 

𝜕𝐻

𝜕𝑢
= 0,                                                              (3.1.8) 

𝜕𝐻

𝜕𝑘
= −𝜑.                                                                        

The system of equations (3.1.8) determines the optimal paths for all variables starting from 

given initial point, so that the problem reduces to the issue of finding the optimal initial value 

of the capital. 

To use the transversality condition properly, it’s essential to understand the given boundary 

conditions. It’s seen that the starting values are already given and they determine the terminal 

values. The task is to find starting values that will lead to wanted terminal values to find the 

path, that will satisfy conditions of optimality.  

In case of free terminal state 𝑘(𝑇) with fixed terminal time T, the shadow price of capital 

should be equal zero, because value of the capital appears from its ability to bring profit in 

the future 

𝜑(𝑇) = 0. 

 To see how terminal line can, differ, let’s review some special cases. One can make a 

conclusion, that for the company it makes sense to use the initial capital by the time 𝑇  to 
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receive higher income, as there is no reason to accumulate capital closer to the end of the 

period. If the company wants to persuade consistent and continuous growth it should assign 

definite minimum acceptable level of terminal capital, then the terminal line will be 

truncated and transversality condition is  

(𝑘∗(𝑇) − 𝑘 min  )𝜑(𝑇) = 0 

 for  all 𝜑(𝑡) ≥ 0. When we have definite terminal capital, we can assign the time 𝑇, at which 

the company wants to reach some level of income, the transversality condition here basically 

means that at some 𝑇 the sum of current and future income should be equal to zero. Thus, 

(𝐻)𝑡=𝑇 = 0. 

 

 

3.2 Problems in small business 

 

Now let’s for comparison try to use the optimal control theory for the problem of small 

businesses. 

Let’s assume that there is a start-up company that works with long time and short time 

projects. At any time 𝑡 company has to make business decisions on how much to invest into 

full time workers. Assume that 𝑘 is the value of budget planned for operational costs, it 

should be noted that the salaries are the only costs the company has, 𝑥 and 𝑦 will denote the 

amount of work done by full-time workers and part-time workers respectively. Let 𝑤1 and 

𝑤2 be labour utility on long and short time projects, respectively. Let 𝑐 be the amount paid 

to full time workers during their vacations. According to the current problem the objective 

is to maximize the income of the company with limited budget. We can present the income 

function as 𝑝 = 𝑝(𝑘(𝑡), 𝑢(𝑡), 𝑡) as budget and the decision-making function doesn’t depend 

on each other. So, we need to maximize the functional on the interval [𝑡0, 𝑇],   

𝐽 = 𝑥(𝑇) + 𝑦(𝑇).                                                    (3.2.1) 

The variables 𝑥 and 𝑦 are state variables. The state equations will take the form (see Sethi 

[2]) 

�̇� = 𝑤1𝑥 − 𝑐 + 𝑢                                                 (3.2.2) 

and 

�̇� = 𝑤2𝑦 − 𝑢.                                                 (3.2.3) 



26 
 

The aim is to determine 𝑢, that will let the company to receive the highest possible income, 

and the budget rate should satisfy the conditions given by (3.2.2) and (3.2.3). Let’s assume 

that 𝑥(0) = 𝑥0 and 𝑦(0) = 𝑦0. One can write the Hamiltonian as 

𝐻 = 𝜑1(𝑤1𝑥 − 𝑐 + 𝑢) + 𝜑2(𝑤2𝑦 − 𝑢).                      (3.2.4) 

Let’s describe some economic meanings of all the variables and their combination given 

above. Let 𝑤1𝑥 and 𝑤2𝑦 give the values of income based on the utility of the labour that is 

involved. The adjoint variables 𝜑1 and 𝜑2 characterize the value of one money unit, that is 

invested in long-time and short-time project, respectively. The future value of these adjoint 

variables should satisfy the equations 

𝜑1̇ = −𝜑1(𝑡)𝑤1 

and                                                                                                                               (3.2.5) 

𝜑2̇ = −𝜑2(𝑡)𝑤2.                                                                  

The necessary condition for an optimum is that the first derivatives of state variables are 

equal to zero. Then we can assume that the transversality conditions equals to one, so the 

most accurate equations to give 

𝜑1(𝑡) = 𝑒−∫ 𝑤1(𝜏)𝑑𝜏
𝑇
𝑡                                                      (3.2.6) 

and 

𝜑2(𝑡) = 𝑒−∫ 𝑤2(𝜏)𝑑𝜏
𝑇
𝑡 .                                                   (3.2.7) 

 

To receive the proper solution for the current problem one just need to define the boundary 

conditions and substitute all given values into the equations of the adjoint variables (3.2.6), 

(3.2.7). As current problem deals with real problem there can’t be any negative value of 𝑥 

or 𝑦. Let us consider the previous problem once more in the case when additional constraints 

are 𝑥 ≥ 0 and 𝑦 ≥ 0. The extended Hamiltonian will take the form 

𝐻∗∗ = 𝐻 + 𝜃1�̇� + 𝜃2�̇� = 𝜑1(𝑤1𝑥 − 𝑐 + 𝑢) + 𝜑2(𝑤2𝑦 − 𝑢) + 

+𝜃1(𝑤1𝑥 − 𝑐 + 𝑢) + 𝜃2(𝑤2𝑦 − 𝑢).                    (3.2.8) 

Here we can derive the equations for the adjoint variables in the form 

𝜑1̇ = −
𝜕𝐻∗∗

𝜕𝑥
= −(𝜑1 + 𝜃1)𝑤1                                            (3.2.9) 

and  

𝜑2̇ = −
𝜕𝐻∗∗

𝜕𝑦
= −(𝜑2 + 𝜃2)𝑤2.                                           (3.2.9) 
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In present case 

𝜕𝐻∗∗

𝜕𝑢
= 0.                                                                (3.2.10) 

The transversality conditions of the current problem are (see Sethi[]) 

(𝜑1(𝑇) − 1)𝑥(𝑇) = 0 

and  

(𝜑2(𝑇) − 1)𝑦(𝑇) = 0.                                                (3.2.11) 

The slack variables 𝜃1 and 𝜃2 must be positive or equal to zero and the complimentary 

conditions to be satisfied are 

𝜃1(𝑡)𝑥(𝑡) = 0                                                       (3.2.12) 

and 

𝜃1(𝑡)(𝑤1𝑥(𝑡) − 𝑐 + 𝑢(𝑡)) = 0.                                      (3.2.13) 

Similarly, 𝜃2 must satisfy the equations 

𝜃2(𝑡)𝑦(𝑡) = 0                                                    (3.2.14) 

and 

𝜃2(𝑡)(𝑤2𝑥(𝑡) + 𝑢(𝑡)) = 0.                                     (3.2.15) 

So, looking at these two examples above, it’s easy to say that the optimal control theory is 

applicable for the problems of different size of the company as long as there is some variable 

upon which the decision should be made. In case of a big corporation this control variable 

was a vector of meanings, let’s say without proof that it was the rate of output. In case of 

small start-up company, the control variable is the fraction of the budget to be spend on the 

employees’ wages. Both problems have different economic meanings but they have the same 

aim – to maximize the profit of the company. It makes the optimal control theory very useful 

for the small companies. Of course, real cases are way more complicated and need more 

input to be correctly solved, but there is no difference between the production or service 

sector on which the company is oriented; there are always decisions to be made. Of course, 

optimal control can deal only with that ones that have the real measures. 

 

3.3 Models of optimal economic growth 

 

Many economic problems have a very complicated structure of decision making function, it 

may be the product of more than two components that influence the final result. In this case, 
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the application of optimal control theory requires finding optimal growth path for all 

variables to provide the best possible final result.  

Consider the company that wants to increase its profit over some period of time [0, 𝑇]. 

Assume that the labour amount is denoted by 𝑙(𝑡). As its growth is exponential with rate 𝑔 , 

at time 𝑡 the value of 𝑙 (𝑡) will follow the equation 

𝑙(𝑡) = 𝑙(0)𝑒𝑔𝑡. 

 Let’s assume the stock of capital 𝑘(𝑡)  and labor 𝑙(𝑡) to be the only production factors, then 

𝐹(𝑘, 𝑙) is the production function that gives the output rate of the company. At time 𝑡 = 0  

the output rate will equal to zero as well, but at any following time moment [0, 𝑇] it will be 

more than zero. The first and second order derivatives should satisfy the conditions for all  

𝑘 more than zero 

�̇�(𝑘, 𝑙) > 0, 

and 

�̈�(𝑘, 𝑙) < 0. 

The output of the company can be sold or reinvested for the future enrichment of capital 

stock. Lets’ define 𝐾 =
𝑘

𝑙
, then the function 𝑓(𝐾) defines production per capita 

𝑓(𝐾) =
𝐹(𝑘, 𝑙)

𝑙
= 𝐹(𝐾, 1).                                           (3.3.1) 

  Let 𝑐(𝑡) be the output allocated to sale, and 𝐶 =
𝑐

𝑙
  be the consumption per capita then the 

investment amount is 𝐼(𝑡) = 𝐹[𝑘, 𝑙] − 𝑐(𝑡). Let the 𝛿 be the constant rate of the depreciation 

of the capital and 𝛾 = 𝛿 + 𝑔. The capital stock equation will take the form 

�̇� = 𝑓(𝐾) − 𝑐 − 𝛾𝐾,                                                    (3.3.2) 

for  𝐾(0) = 𝐾0. It will also determine the first boundary condition. The utility of 

consumption is a function of the output denoted by 𝑈(𝐶) [13]. We assume that �̇�(𝐶) = ∞ . 

The company management will face the following maximization problem on the time 

interval [0, 𝑇] 

𝐽 = ∫ 𝑒−𝜚𝑡𝑈(𝐶)𝑑𝑡.                                              (3.3.3)

𝑇

0

 

Where 𝜚 denotes the social discount rate. One of the boundary conditions will take the form 

𝐾(𝑇) = 𝐾𝑇 .                                                       (3.3.4) 
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In the equation (2.3.4) 𝐾 is a constant vector of predetermined values. Substituting the given 

values into (2.3.3) one can write the Hamiltonian 

𝐻 = 𝑈(𝐶) + 𝜑(𝑓(𝐾) − 𝐶 − 𝛾𝑘).                                    (3.3.5) 

The first term in (3.3.5) determines the utility of current consumption and the second term 

is the value of the net investment that is measured by the adjoint variable 𝜑.  

The adjoint equation for the problem (3.3.3), (3.3.4) is 

�̇� = 𝜚𝜑 −
𝜕𝐻

𝜕𝐾
= (𝜚 − 𝛾)𝜑 − 𝜑𝑓̇(𝐾),                           (3.3.6) 

where 𝜑(𝑇) = 𝛼. The latter can be considered as a boundary condition, 𝛼 is simply a 

predetermined constant.  

To receive the optimal solution of the current problem one has to find the local maximum of 

𝐻. Thus, the condition 
𝜕𝐻

𝜕𝐶
= 0 must be applied. Therefore,  

𝑑𝑈

𝑑𝐶
− 𝜑 = 0,                                                   (3.3.7) 

where �̇�(0) = ∞. From the equation (3.3.7) the last boundary condition to be determined 

for the current problem. There are two more conditions to be satisfied in the optimal run of 

the company. The dynamic efficiency condition that is described in (3.3.6) causes the change 

in the price 𝜑 of the capital over definite time period [0, 𝑇]. Multiplying (3.3.6) to 𝑑𝑡 one 

has 

𝑑𝜑 +
𝜕𝐻

𝜕𝐾
𝑑𝑡 = 𝜚𝜑𝑑𝑡.                                               (3.3.8) 

Summarizing (3.3.2) and (3.3.6) yields 

�̇� = 𝑓(𝐾) − ℎ(𝜑) − 𝛾𝐾                                              (3.3.9) 

and 

�̇� = (𝜚 − 𝛾)𝜑 − 𝑓̇(𝐾)𝜑,                                        (3.3.10) 

where 𝑐 = ℎ. The point of intersection of right-hand side of (3.3.9) and (3.3.10) is denoted 

by 𝐴 in Fig.2.1. This point represents the long-run stationary equilibrium. After defining 𝐴, 

one should figure out whether there is an optimal path that satisfies the equilibrium. 
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Figure 2.1. Phase diagram of the optimal control model [2] 

 

 3.4 Financial interpretation of the optimal control theory 

 

The problem of implementation of the optimal control theory in finance mostly refers 

to investment and dividend policies, as these require decision making issues, earnings 

distribution, equity issuing, lending money, investment package and so on. Right now, we 

will give the solution in a form that is similar to the problem in the section 3.2 but contains 

complications and a little bit more explanations. 

Consider that there is a company that wants to control the cash demand over some period of 

time 𝑇, in order not to lose possible income from shares and bonds that could’ve been bought 

for that money. Let’s assume 𝑐 to be a cash balance and 𝑠 to be a security balance at any 

time 𝑡. The company has to make a decision on how much cash to hold and let 𝑢 denoted 

the cost of chancery to be bought, 𝑑 is assigned to be the rate of sales of securities, 𝑟1 and 𝑟2 

are interest rates earned on the cash balance and security balance respectively, 𝛼 some 

broker’s commission.  It’s known that there is a dependency between 𝑐(𝑡) and 𝑠(𝑡) as 

decisions are made upon the cash balance. According to the given input the problem is to 

minimize the functional (see Sethi [2]) 

𝐽 = −𝑠(𝑇) − 𝑐(𝑇).                                                     (3.4.1) 

The variables 𝑐 and 𝑠 are the state variables. The state equations will take the form 

�̇� = 𝑟1𝑐 − 𝑑 + 𝑢 − 𝛼|𝑢|,                                           (3.4.2) 

and  
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𝑠 = 𝑟2𝑠 − 𝑢.                                                         (3.4.3) 

Here 𝑐(0) = 𝑐0 and 𝑠(0) = 𝑠0. The aim of the problem is to maximize the sum of 𝑐(𝑇) and 

𝑠(𝑇). The Hamiltonian has the form 

𝐻 = 𝜑1 
(𝑟1𝑐 − 𝑑 + 𝑢 − 𝛼|𝑢|) + 𝜑2( 𝑟2𝑠 − 𝑢).                      (3.4.4) 

 

The adjoint variables 𝜑1 and 𝜑2 relate to the Lagrange multipliers and represent the future 

value of one money unit being invested into cash or securities. They should satisfy the 

equations [2] 

𝜑1̇ = −𝜑1(𝑡)𝑟1                                                                  

and                                                                                                                                 (3.4.5) 

𝜑2̇ = −𝜑2(𝑡)𝑟2.                                                                

The transversality conditions   𝜑1  and 𝜑2 equals to one. The best equations to give  

𝜑1(𝑡) = 𝑒∫ 𝑟1(𝜏)𝑑𝜏
𝑇
0                                                               

and                                                                                                                                                  (3.4.6) 

𝜑2(𝑡) = 𝑒∫ 𝑟2(𝜏)𝑑𝜏
𝑇
0 .                                                            

It appears that the control function must be rewritten as a difference of two nonnegative 

variables 

 𝑢 = 𝑢1 − 𝑢2.                                                      (3.4.7) 

Note that the value of the control variable 𝑢 lies between nonnegative constants 𝑈1 and 𝑈2. 

To avoid any negative sign in the equation let’s assume that 𝑢1𝑢2 = 0, so, at least one of it 

doesn’t take the value zero. As our problem includes the broker’s commission being paid 

out on every transaction, it doesn’t make sense to buy and sell securities simultaneously, so 

the equation (3.4.7) can be rewritten as 

|𝑢| = 𝑢1 − 𝑢2.                                                       (3.4.8) 

Let’s rewrite the Hamiltonian substituting (3.4.8) into (3.4.4) 

𝐻∗ = 𝑢1((1 − 𝛼)𝜑1 − 𝜑2) − 𝑢2((1 + 𝛼)𝜑1 − 𝜑2).                  (3.4.10) 

Control variable 𝑢1 of the rate of securities sale, it’s function is to determine whether to sell 

or not sell the securities [12]. If the future value of the money unit 𝜑1 minus broker’s 

commission is greater than the future value of the securities that can be bought for one money 

unit, then the securities should be sold on maximum possible rate. If the situation is opposite 

– the function of the control variable is to prevent the sale, if both values are equal, then the 
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optimal policy is underdetermined. The same rule works with control variable 𝑢2, that 

denotes the purchase of the securities, but here the purchase is recommended if the sun of 

the future value of the one money unit and the commission is less than the future value of 

the securities that can be bought for one money unit, purchase is not done when the situation 

is the opposite and if the values are equal, then the decision is underdetermined. 

So, to receive the solution one just need to assign the boundary conditions and put values 

inside the equations of the adjoint variables (3.4.6) and the control variable (3.4.7).  

To avoid overdrafts and short-sales in the cash balance problem few more additional 

constraints have to be added: 

𝑐(𝑡) ≥ 0                                                                 (3.4.10) 

and  

𝑠(𝑡) ≥ 0.                                                              (3.4.11) 

In order to fulfill the constraints (3.4.10) and (3.4.11) and to use the maximum principle, so, 

we the Hamiltonian for the extended functional in the form  

𝐻∗∗ = 𝐻 + 𝜃1𝑐 + 𝜃2𝑠 = 𝜑1(𝑟1𝑐 − 𝑑 + 𝑢 − 𝛼|𝑢|) + 𝜑2( 𝑟2𝑠 − 𝑢) 

+𝜃1(𝑟1𝑐 − 𝑑 + 𝑢 − 𝛼|𝑢|) + 𝜃2( 𝑟2𝑠 − 𝑢).          (3.4.12) 

Now let’s write the adjoint equations for this problem as 

𝜑1̇ = −
𝜕𝐻∗∗

𝜕𝑐
= −(𝜑1 + 𝜃1)𝑟1,                                          (3.4.13) 

and  

𝜑2̇ = −
𝜕𝐻∗∗

𝜕𝑠
= −(𝜑2 + 𝜃2)𝑟2.                                         (3.4.14) 

In the equations (3.4.13) and (3.4.14)  𝜑1(𝑇), 𝜑2(𝑇) ≥ 1, (𝜑1(𝑇) − 1)𝑐(𝑇) = 0 and 

(𝜑2(𝑇) − 1)𝑠(𝑇) = 0.   

The adjoint variables 𝜃1 and 𝜃2 should be more or equal to zero and the optimality conditions 

is 
𝜕𝐻∗∗

𝜕𝑢
= 0. The complimentary conditions to be satisfied are 

𝜃1(𝑡)𝑐(𝑡) = 0                                                  (3.4.15) 

and 

𝜃1(𝑡)(𝑟1𝑐(𝑡) − 𝑑(𝑡) + 𝑢(𝑡) − 𝛼|𝑢(𝑡)|) = 0.               (3.4.16) 

Simply  𝜃2 should satisfy  

𝜃2(𝑡)𝑠(𝑡) = 0                                                 (3.4.17) 

and 
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𝜃2(𝑡)(𝑟2𝑠(𝑡) − 𝑢(𝑡)) = 0.                                    (3.4.18) 

The problem described herein can be solved analytically or by the use of the computer 

program. 

One can notice that the problem discussed in the current section takes the same look as the 

problem described in the 3.2. It shows that the same approach can be used to different 

problems. The only condition to be satisfied is the existence of the factors on which the 

decisions can be done. Now it’s obvious, that the simplest explanation of the control function 

𝑢, is that it represents one or the combination of various key performance indicators, that 

means the value of 𝑢 is essential for the income as it directly influences it. Simple examples 

of key performance indicators are labour cost, raw materials cost, the cost of one production 

unit, the value of rent, administrative cost, income rate, return on capital, capacity utilization 

and many others. So basically, one can derive the optimal control path storing all or some of 

the key performance indicators in 𝑢, that will basically be the product of all factors upon 

which the decision has to be made.   

 

3.5 Application of the optimal control theory to monopolistic firm 

 

Now we will apply optimization problem to a simple economic unit such as classic 

monopolistic firm. This example is believed to be one of the first economic interpretation of 

the variational calculus. Let’s consider that there exists a monopolistic firm, that is a 

manufacturer of a single commodity and its cost function takes the form of quadratic 

equation 

𝐶 = 𝛼𝑄2 + 𝛽𝑄 + 𝛾                                                       (3.5.1) 

𝑄(𝑡) denotes both the output and the quantity demanded, as there is no inventory and we 

can equalize them. We take into the account that the quantity demanded depends not only 

on price P(t) but additionally on the rate of change of that price �̇�(𝑡). We have the equation 

for quantity 

𝑄 = 𝑎 − 𝑏𝑃(𝑡) + ℎ�̇�(𝑡)                                                     (3.5.2) 

The equation of profit is a function of P and �̇� 

𝐼 = 𝑃𝑄 − 𝐶 = 𝑃(𝑎 − 𝑏𝑃 + ℎ�̇�) − 𝛼(𝑎 − 𝑏𝑃 + ℎ�̇�)
2
− 𝛽(𝑎 − 𝑏𝑃 + ℎ�̇�) − 𝛾      (3.5.3) 

Having done simple manipulations such as multiplying out and collecting terms we can write 

an expression of the dynamic profit function 
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𝐼(𝑃, �̇�) = −𝑏(1 + 𝛼𝑏)𝑃2 + (𝑎 + 2𝛼𝑎𝑏 − 𝛽𝑏)𝑃 − 𝛼ℎ2𝑃2̇ − ℎ(2𝛼𝑎 + 𝛽)�̇�                      

+ ℎ(1 + 2𝛼𝑏)𝑃�̇� − (𝛼𝑎2 + 𝛽𝑎 + 𝛾)                                                          (3.5.4) 

The company should find an optimal paths for P that will maximize the profit over the time 

[0,T]. We will not take into account the discount factor, as over the given period of time we 

will have fixed demand and cost functions. The aim is to maximize the functional 

𝐽 = ∫ 𝐼(𝑃, �̇�

𝑇

0

)𝑑𝑡                                                           (3.5.5) 

In this case it’s obvious that the easiest way is to use the classic Euler’s equation (1.3.9) 

and  to do it, we have to calculate partial derivatives based on the profit function 

𝜕𝐼

𝜕𝑃
= −2𝑏(1 + 𝛼𝑏)𝑃 + (𝑎 + 1𝛼𝑞𝑏 + 𝛽𝑏)�̇�                                 (3.5.6) 

𝜕𝐼

𝜕�̇�
= −2𝛼ℎ2�̇� − ℎ(2𝛼𝑎 + 𝛽) + ℎ(1 + 2𝛼𝑏)𝑃                            (3.5.7) 

And 

𝜕2𝐼

𝜕�̇�2
= −2𝛼ℎ2                                                     (3.5.8) 

𝜕2𝐼

𝜕𝑃𝜕�̇�
= ℎ(1 + 2𝛼𝑏)                                                  (3.5.9) 

𝜕2𝐼

𝜕𝑡𝜕�̇�
= 0                                                       (3.5.10) 

After substituting (3.5.6), (3.5.7), (3.5.8), (3.5.9) and (3.5.10)  into the Euler’s equation 

(1.3.9) and normalizing it we receive a second order differential equation with constant 

coefficients and constant term 

�̈� −
𝑏(1 + 𝛼𝑏)

𝛼ℎ2
𝑃 = −

𝑎 + 2𝛼𝑎𝑏 + 𝛽𝑏

2𝛼ℎ2
                             (3.5.11) 

There is a well-known general solution for it, that was described by A. Chiang [6].  

𝐴1 and 𝐴2 are two arbitrary constraints and in our case the solution will take the form 

𝑃∗(𝑡) = 𝐴1𝑒
𝑟1𝑡 + 𝐴2𝑒

𝑟2𝑡 + �̅�                                   (3.5.12) 

where characteristic roots 

𝑟1,𝑟2 = ±√
𝑏(1 + 𝛼𝑏)

𝛼ℎ2
                                               (3.5.13) 

and particular integral 
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�̅� =
𝑎 + 2𝛼𝑎𝑏 + 𝛽𝑏

2𝑏(1 + 𝛼𝑏)
                                               (3.5.14) 

Taking into account that two characteristic roots are the exact negatives of each other we can 

denote r as absolute value of both roots. The rewritten solution 

𝑃∗(𝑡) = 𝐴1𝑒
𝑟𝑡 + 𝐴2𝑒

−𝑟𝑡 + �̅�                                        (3.5.15) 

We can define boundary conditions P(0)=𝑃0 and 𝑃(𝑇) = 𝑃𝑡 from 𝐴1 and 𝐴2. Here we set 

t=0 and t=T 

𝑃0 = 𝐴1 + 𝐴2 + �̅�                                                  (3.5.16) 

and 

𝑃𝑇 = 𝐴1𝑒
𝑟𝑡 + 𝐴2𝑒

−𝑟𝑡 + �̅�                                         (3.5.17) 

The solution value for 𝐴1 and 𝐴2 

𝐴1 =
𝑃0 − �̅� − (𝑃𝑇 − �̅�)𝑒𝑟𝑇

1 − 𝑒2𝑟𝑇
                                         (3.5.18) 

𝐴2 =
𝑃0 − �̅� − (𝑃𝑇 − �̅�)𝑒−𝑟𝑇

1 − 𝑒−2𝑟𝑇
                                         (3.5.19) 

It completes the solution of the problem as now all the parameters were taken into account 

except of h, but it doesn’t seem to be an issue as this parameter enters the solution path only 

through r  and as a squared term, so it’s sign can’t affect the result, but its value will. 

        

 

Figure 3.1. Production quantity over the period of time with different terminal prices 

 

Figure 3.1 illustrates the change in quantity produced based on the price and its change. 

Obviously, the volume of the terminal price creates a change in the trajectory of each curve. 
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Summary 

 

Optimal control theory is the extension of the calculus of the variations; it is relatively 

a new discipline. In this thesis, we showed the logical way of connecting them together. It 

appeared that the principle of maximum is actually the necessary part of it. To use the 

optimal control theory, it should be interpreted using all the mathematical laws and values. 

It can be applied to any problem that requires finding optimal decision connected with some 

value that will bring some positive input in the future. One can’t apply the theory to the very 

abstract meanings, just to those ones that can be measured with some measurable units.  

The first two chapters are aimed to give the appropriate knowledge for the full 

understanding of the interpretation process. In the third chapter, we introduced three 

economic and one financial case of applying the theory to the real problems. There was made 

a comparison of whether the size of the company influences the order of the solution and its 

general look. Now it’s known that both huge and tiny companies, as well as individuals, who 

are about to make some investment decision, and use optimal control theory for the 

optimization of their activity. It is shown that control variable can be at some point a 

synonym to the mathematical meaning of the control variable. The model of the optimal 

economic growth can easily find its use in real economic and experience various of 

improvements and extensions. There might be derived the unified models for groups of 

typical cases, as we can say that all decisions to be made can be summed under one variable.  

Optimal control theory is easy to be applied as it gives enough information to 

understand the mathematical reasons of the decision-making process in the real world.  
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