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Space-dimension models of spectrum usage
for cognitive radio networks
Miguel López-Benı́tez, Member, IEEE, Fernando Casadevall

Abstract—The Dynamic Spectrum Access (DSA) principle,
relying on the Cognitive Radio (CR) paradigm, allows users to
access spectrum over time intervals or spatial areas where it
remains unused. Owing to the opportunistic nature of DSA/CR,
the behaviour and performance of DSA/CR networks depends on
the perceived spectrum usage pattern. An accurate modelling of
spectrum occupancy therefore becomes essential in the context
of DSA/CR. In this context, this work addresses the problem of
accurately modelling the spectrum occupancy pattern perceived
by DSA/CR users in the spatial domain. A novel spatial modelling
approach is introduced in order to enable a simple yet practical
and accurate characterisation of spectrum. First, a set of models
are proposed to characterise and predict the average level of
occupancy perceived by DSA/CR users at various locations based
on the knowledge of some simple signal parameters. An extension
is then proposed in order to characterise not only the average
occupancy level but also the instantaneous channel state perceived
simultaneously by DSA/CR users observing the same transmitter
from different locations. The validity and accuracy of the theo-
retical models are demonstrated with results from an extensive
spectrum measurement campaign. Some illustrative examples of
their potential applicability are presented and discussed as well.

Index Terms—Cognitive radio, dynamic spectrum access, spec-
trum occupancy models, spatial models.

I. INTRODUCTION

COGNITIVE Radio (CR) has become one of the most
intensively researched paradigms in radio communica-

tions [1]–[3]. A CR is a context-aware intelligent radio capable
of autonomous reconfiguration by learning from and adapting
to the surrounding radio environment. The two main defining
features of a CR are its cognitive capability (ability to capture
information and learn from the radio environment) and re-
configurability (ability to dynamically modify the transceiver
parameters to adapt to varying communication conditions).

An important application of CR is Dynamic Spectrum
Access (DSA) [3], [4], a concept that has been identified
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M. López-Benı́tez is with the Department of Electrical Engineering and
Electronics, University of Liverpool, Liverpool, United Kingdom (email:
M.Lopez-Benitez@liverpool.ac.uk).

F. Casadevall is with the Department of Signal Theory and Commu-
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as a promising solution to enhance the overall efficiency
of spectrum usage. Despite being a wider concept [5]–[7],
DSA is often understood as an opportunistic spectrum access
method whereby unlicensed (secondary) users are allowed
to access, in a non-interfering manner, some licensed bands
unoccupied by the licensed (primary) systems for a certain
time period (time dimension) or over a certain area (spatial
dimension). DSA/CR has been motivated by the outcomes of
spectrum measurement campaigns performed all around the
world [8]–[17], demonstrating that spectrum is underutilised.
This indicates that new wireless systems based on DSA/CR
can coexist with legacy systems in the same spectrum, leading
to a more efficient exploitation of the available radio resources.

As a result of the opportunistic nature of DSA/CR, the
behaviour and performance of secondary networks depend on
the spectrum occupancy pattern of the primary system. Thus,
the availability of realistic and accurate, yet simple spectrum
occupancy models can provide significant benefits in DSA/CR
research [18]. Spectrum usage models are frequently employed
in the study of DSA/CR systems, ranging from analytical
studies to the design and dimensioning of DSA/CR networks,
including the development of new simulation tools and more
efficient DSA/CR techniques. Spectrum usage models are also
useful to determine the impact of DSA/CR systems on the
performance of primary systems. This is particularly important
for TV broadcasting systems given the fact that the initial
deployments of DSA/CR networks are planned to take place
in spectrum bands allocated to the TV broadcasting service.

This work focuses on the modelling of spectrum occupancy
patterns in the spatial domain. Spatial spectrum opportunities
arise when a spectrum band is exploited by the primary
system within a bounded area, thus enabling the reuse of the
same band by secondary users well outside this area (a clear
example of this scenario is the spatial frequency planning
of TV broadcasting systems). This work introduces a novel
spatial modelling approach based on an innovative theoretical
framework. The proposed models are envisaged to describe
the average level of occupancy (expressed in terms of the
channel duty cycle) perceived by DSA/CR users at various
locations based on the knowledge of some simple primary
signal parameters. Moreover, an extension is proposed in order
to characterise not only the average spectrum occupancy but
also the instantaneous busy/idle state perceived simultaneously
by DSA/CR users observing the same transmitter from differ-
ent locations. This extension can be useful in the study of
cooperative techniques (e.g., cooperative spectrum sensing) as
well as the development of innovative simulation tools. The
validity and correctness of the theoretical models is evaluated
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and corroborated with results from an extensive spectrum
measurement campaign. Some illustrative examples of the
potential applicability of these models are discussed as well.

In summary, the contributions of this work are as follows:
• This work provides, for various scenarios, closed-form

relations between the average spectrum occupancy (in
terms of the duty cycle) that would be observed by
DSA/CR users at different locations and some simple
operation parameters (received signal and noise powers,
primary activity factors and false alarm probability).

• An extension is also developed to characterise not only
the average spectrum occupancy observed in the long-
term but also the instantaneous channel state perceived
simultaneously by DSA/CR users observing the same
transmitter from different locations.

• The validity and accuracy of the developed analytical
models are corroborated with empirical data from an
extensive spectrum measurement campaign.

• A discussion, with illustrative numerical results, is pro-
vided on how the developed models can be: i) combined
with radio propagation models to provide a more realistic
characterisation than the trivial busy/idle approach based
on the average received power commonly considered in
the literature, and ii) implemented in simulation tools
to efficiently generate the spatial spectrum occupancy
pattern perceived by DSA/CR users at different locations.

The rest of this work is organised as follows. First, Section
II reviews previous related work. Section III then describes the
methodology employed to capture and process the empirical
data used in the validation of the proposed models, which are
then presented in Section IV (models for average spectrum
occupancy perception) and Section V (models for concurrent
observations at different locations). The potential applicability
of the developed models is illustrated in Section VI. Finally,
Section VII summarises and concludes the work.

II. PREVIOUS WORK

The spatial dimension of spectrum occupancy has frequently
been analysed and modelled in terms of the interference from
a secondary network to a primary system as a function of
relative locations, distances, transmission powers and radio
propagation conditions [19]–[21]. Previous work has studied
the aggregated interference from DSA/CR users surrounding
a primary receiver [20], [22], [23], the outage probability of
a primary system caused by the interference from a DSA/CR
network for underlay and overlay spectrum sharing [24], the
region of communication and interference for the users of a
DSA/CR system that coexists with a cellular network [25], the
interference to wireless microphones in TV bands [26], and
refinements including shadowing and fading effects [27], [28]
and power control in the secondary DSA/CR network [29].

This work deals with the modelling of the binary busy/idle
occupancy state observed by DSA/CR users as a function
of their spatial location. This relevant aspect has received
less attention in DSA/CR research. For example, the spatial
distribution of the spectral occupancy was analysed in [30]
in the context of a cellular mobile communication system. In

contrast to other similar works where a cellular network is
monitored by means of external field measurements and in a
limited geographical region [31]–[33], the study reported in
[30] monitors the arrival of calls inside an operator’s network
and simultaneously over hundreds of base stations over the
period of 3 weeks. Based on such measurements and making
use of variograms, [30] analyses the spatial variability of spec-
trum occupancy for sectors of the same and different cells as
well as the correlation among various cells based on the traffic
supported during the minute of maximum load. Although the
analyses in [30] show interesting spatial properties of spectrum
use in cellular systems, no model enabling the reproduction
of the analysed statistics and patterns is developed.

The possibility to characterise spectrum occupancy in the
spatial domain by means of spatial statistics and random
fields is explored in [34]. Based on the spatial statistics
studied in [34], a modelling procedure is proposed in [35] and
complemented in [36]. The procedure in [35], [36] consists
in determining the average power over a set of points in a
specified geographical area, with a certain spatial distribution.
This information can be obtained by means of field measure-
ments (empirical model [35]) or simulators and radio planning
software tools (deterministic model [36]). Once the spatial
values of average power are determined, the resulting values
are employed to fit an analytic semivariogram model, which
permits reproduce the statistical properties of the average
powers observed over a certain region.

Some related studies have appeared more recently. A 3-
dimensional analytical interference model is proposed in [21],
which is used to determine the number of TV channels
available for secondary DSA/CR users in different indoor
locations. An alternative modelling approach is developed
in [37], where a framework for the statistical estimation
of primary transmitter locations is proposed based on the
spatial characterisation of spectrum usage in a collaborative
spectrum sensing context. Several joint time-space studies
have been published as well. A study on the impact of time-
domain primary activity parameters (distributions of on/off
holding times) on the opportunities of spatial spectrum reuse
is presented in [38] along with a discussion on simple models
for occurrences of spectrum opportunities over both time and
space. In [39], the theory of random fields is applied to
the modelling of spatial-temporal correlated spectrum usage
data. A theoretical analysis on the probability distribution
of wireless signal strength received from mobile stations is
performed in [40], where a polylogarithm-like statistical model
to characterise the spatio-temporal dynamics of the mobile
service spectrum usage is proposed. A more detailed review
of spectrum occupancy models for CR can be found in [41].

While spectrum occupancy modelling in the time and
frequency domains has received a great deal of attention,
spectrum modelling in the space domain has received signif-
icantly less attention. This work develops a novel theoretical
spatial modelling framework, validated with empirical data, to
characterise the binary busy/idle occupancy patterns observed
by DSA/CR users as a function of their spatial location, based
on the knowledge of simple signal parameters.
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75 – 3000 MHz

Spectrum analyzer
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Noise figure: 4 – 4.5 dB
20 – 8000 MHz

Fig. 1. Measurement platform employed in this work.

III. MEASUREMENT SETUP AND METHODOLOGY

The measurement platform employed in this work is de-
picted in Fig. 1. The design is composed of two discone an-
tennas (75-7075 MHz), a Single-Pole Double-Throw (SPDT)
switch to select the desired antenna, several filters to remove
out-of-band and overloading FM signals, a low-noise pre-
amplifier to enhance the overall sensitivity, and a high perfor-
mance spectrum analyser to record the spectral activity. The
spectrum analyser is connected to a laptop via Ethernet and
controlled by a tailor-made software based on the Matlab’s
Instrument Control Toolbox. A GPS receiver is connected
to the laptop via USB to provide a unique time reference
for simultaneous synchronised measurements. The captured
power samples are compared to a decision threshold, following
an energy detection method [42], in order to extract binary
busy/idle channel occupancy patterns. A detailed description
of the measurement platform design and configuration and
associated methodological aspects can be found in [43], [44].

The spectral activity of a wide variety of spectrum bands and
radio technologies was monitored, including broadcasting sys-
tems such as analog TV, digital TV and Digital Audio Broad-
casting (DAB) as well as amateur systems, paging systems,
Private/Public-Access Mobile Radio (PMR/PAMR) systems
such as TETRA, and cellular mobile communication systems
such as GSM 900, DCS 1800 and UMTS FDD. Measurements
were performed over a set of strategically selected locations
in a urban environment (see Fig. 2), including an outdoor
high point in a building rooftop with direct line-of-sight to
several transmitters a few tens or hundreds of meters apart
(location 1), indoor environments (location 2), and additional
outdoor locations in narrow streets (locations 3-7), between
buildings (locations 8-10) and open areas (locations 11-12).
For more details, the reader is referred to [45]. The considered
measurement locations represent various scenarios of practical
interest and embrace a wide range of receiving conditions and
levels of radio propagation blocking, ranging from direct line
of sight to severely blocked and faded signals. This variety
of measurement conditions allowed the same transmitters to
be observed under different radio propagation conditions and
Signal-to-Noise Ratio (SNR) levels.

Two different types of measurements were performed. First,
each location in Fig. 2 was measured individually in order to
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Fig. 2. Measurement locations considered in this work.

determine the perceived average occupancy as a function of the
experienced SNR. This information was used to validate the
models for average spectrum occupancy perception presented
in Section IV. Afterwards, two identical measurement suites
were employed for simultaneous synchronised measurements.
One measurement suite was placed in the outdoor high point
(location 1 in Fig. 2), where the receiving SNR was observed
to be maximum for the analysed bands, while the second mea-
surement suite was displaced along the rest of outdoor mea-
surement locations at the ground level (locations 3-12 in Fig.
2), performing concurrent measurements for every possible
pair of locations. These measurements provided information
about how the instantaneous occupancy of a certain band is
perceived at different locations. This information was used
to validate the models for concurrent observations presented
in Section V. The empirical data captured for various radio
technologies enabled an adequate validation of the theoretical
models developed in this work.

IV. MODELS FOR AVERAGE PERCEPTION

This section presents a set of spectrum occupancy models
envisaged to characterise the average spectrum occupancy
perceived at different locations in terms of the channel Duty
Cycle (DC). The interest of employing the DC lies in its ability
to summarise, in a single numerical value, the overall spectrum
occupancy within a certain time interval and frequency range.
The DC has been employed in past spectrum utilisation
studies to quantify and compare the occupancy level of various
spectrum bands, or the same band under different conditions
or at different locations. The DC is employed in this work as
a means to describe the spectrum occupancy level perceived
by DSA/CR terminals at different locations.

It is worth making a clear distinction between the Activity
Factor (AF) of a primary transmitter and the DC perceived by
secondary terminals. The AF of a primary transmitter repre-
sents the fraction of time (or probability) that the transmitter
is active (i.e., transmitting in the channel), while the DC of a
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channel can be defined as the fraction of time (or probability)
that the channel is observed as busy. A DSA/CR terminal in an
arbitrary location with good radio propagation conditions with
respect to the primary transmitter would observe the channel as
busy whenever the primary transmitter is active. In such a case,
the observed DC would be equal to the AF of the transmitter.
However, at other locations where the propagation conditions
are not so favourable, the primary signal might not be detected
always. In such another case, the level of spectrum activity
perceived by the DSA/CR terminal in terms of the DC would
be lower than the actual AF of the primary transmitter. While
the AF is unique for a given transmitter, the DC perceived
at different locations may be different. Since the propagation
conditions strongly vary with the location, the perceived DC
will vary over space accordingly. The aim of this section is
to develop models capable to describe the DC perceived at
various locations as a function of the received signal strength.

A. Distribution of the received average power

The channel state perceived by a DSA/CR user (busy or
idle) depends, among other factors, on the employed spec-
trum sensing method. Due to its simplicity, wide range of
application and relevance, energy detection [42] has been the
preferred spectrum sensing method for DSA/CR and is also
considered in this work. According to the energy detection
method, a DSA/CR terminal measures the power received
in a frequency band over a time interval 2T , which can be
expressed as:

PR =
1

2T

∫ +T

−T
PR(t) dt (1)

where PR(t) is the instantaneous power received by the
DSA/CR terminal (including noise) and PR is the average
power employed as a test statistic to decide whether a primary
signal is present in the sensed channel. The spectrum occu-
pancy perception of a DSA/CR user at a particular location
depends on the statistics of the received average power, PR,
which in turn depends on the radio propagation conditions
resulting from the surrounding environment. The perceived
spectrum occupancy can therefore be related to the received
average power and analysed based on the statistics of PR,
which can be inferred as follows.

The Probability Density Function (PDF) of PR(t) is in
general unknown since it is the result of the combined effects
of the primary transmission power pattern, which can be
assumed to be unknown to a secondary terminal, and the radio
propagation mechanisms. However, the instantaneous power
PR(t) is a stochastic process1 that can be thought of as a non-
countable infinity of independent and identically distributed
random variables, one for each time instant t. As PR is
obtained by averaging an infinite number of random variables,
the central limit theorem can be employed to approximate the
PDF of PR with a Gaussian/normal distribution, regardless of
the particular distribution of the instantaneous power PR(t).

1Note that even if the primary transmission power is perfectly constant, the
radio propagation channel results in some random variation of the received
power PR(t). Moreover, the unavoidable effects of the receiver’s noise also
result in some random component in PR(t).
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Fig. 3. Validation of the Gaussian approximation for the PDF of the received
average power.

The validity of the Gaussian approximation is verified in
Fig. 3 for signals of various radio technologies and the thermal
noise’s average power (measured by replacing the antenna
with a matched load). It is worth noting that the power
samples provided by swept spectrum analysers are obtained by
sequentially tuning a narrowband filter to a set of consecutive
frequency points. Every frequency point is measured for a
certain time interval, thus causing some unavoidable averaging
effect over the measured signal. Therefore, due to the inherent
operating principle, the power values provided by spectrum
analysers implicitly include the averaging effect of (1). Fig.
3 compares the distribution of the PR values captured by
the spectrum analyser at some selected channels2 and the
Gaussian curve corresponding to the sample mean and sample
variance of the PR values. Although signals from different
radio technologies received at different frequencies are ex-
pected to exhibit various instantaneous power patterns PR(t),
Fig. 3 indicates that in the considered problem the received
average power PR can be modelled as a Gaussian random
variable for all cases regardless of the particular instantaneous
power distributions, thus verifying the formulated hypothesis.
Notice the analogy between the average power PR and the test
statistic of an energy detector, which is frequently modelled
as a Gaussian random variable [46].

B. Spatial duty cycle models

This section develops a set of generic spectrum occupancy
models to characterise and predict3, based on the statistics
of the received average power, the average occupancy level
perceived by DSA/CR users in terms of the channel DC (a
preliminary version was presented in [47]).

Let’s denote the noise power distribution as fN (PN ) ∼
N (µN , σ

2
N ) and the signal power distribution (received in the

presence of noise) as fS(PS) ∼ N (µS , σ
2
S). According to

this formulation, µN represents the noise floor of the DSA/CR

2Spectrum analysers normally provide power measurements in logarithmic
magnitudes (e.g., dBm). For convenience, to simplify the validation with field
measurements, it is assumed hereinafter that all power values, means and
variances are in logarithmic magnitude.

3In this work the term prediction of the duty cycle refers to the calculation
of the observed duty cycle based on the set of parameters it depends on
(i.e., given the particular operation conditions, the aim is to determine the
corresponding duty cycle that would be observed by a DSA/CR user under
such conditions).
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receiver and σN denotes the standard deviation of the noise
powers PN experienced at various sensing events (the effective
noise power may vary between sensing events due to the
finite averaging period T or other reasons such as temperature
variations). The primary power PS received in the presence
of noise is characterised by an average value µS that depends
on the transmission power and propagation attenuation, and
a standard deviation σS that is additionally affected by the
DSA/CR receiver’s noise.

Assuming energy detection, a DSA/CR terminal will report
the sensed channel as busy whenever the observed average
power is above a certain decision threshold λ. Since energy
detection is not able to distinguish between intended signals
and undesired noise, the channel will be reported as busy not
only when a primary signal is received above the decision
threshold, but also when there is no signal (or it is received
below the threshold) and the noise power exceeds the level λ.

When a sensed channel is idle, the PDF of the observed
average power, fR(PR), will be that of the noise, fN (PN ), and
the probability that the observed power is above the threshold
(i.e., the perceived DC, Ψ) is given by (see Fig. 4):

Ψidle =

∫ ∞
λ

fR(PR)dPR =

∫ ∞
λ

fN (PN )dPN = Pfa (2)

where it is assumed that the decision threshold λ is set so as
to meet a specified probability of false alarm Pfa.

On the other hand, if the channel is busy when it is sensed,
the PDF of the observed average power, fR(PR), will be that
of the received signal, fS(PS). Assuming an ideal situation
where there is no noise, the DC perceived by the DSA/CR
user would be given by:

Ψideal
busy =

∫ ∞
λ

fR(PR)dPR =

∫ ∞
λ

fS(PS)dPS

=
1√

2πσS

∫ ∞
λ

e
− 1

2

(
PS−µS
σS

)2

dPS = Q
(
λ− µS
σS

)
(3)

where Q(·) represents the Gaussian Q-function [48, (26.2.3)].
Notice that (3) indicates that the perceived occupancy in
terms of the DC would tend to zero as the received signal
power PS decreases (i.e., limµS→−∞Ψideal

busy = 0). How-
ever, if the received signal power is below the receiver’s
noise, this situation would be equivalent to an idle chan-
nel where the receiver observes noise. In such a case, the
actually perceived DC would be Pfa, instead of zero, as
indicated by (2). A more realistic model for fR(PR) when
the channel is busy, taking into account the presence of
noise, would be fR(PR) = M{fN (PN ), fS(PS)}, where
M{·} denotes a realisation-wise maximum operator de-
fined as follows. If A = {xa1 , xa2 , . . . , xan , . . . , xaN } and
B = {xb1 , xb2 , . . . , xbn , . . . , xbN } represent two sets of N
random numbers (realisations of a random variable) follow-
ing PDFs fa(xa) and fb(xb), respectively, then fc(xc) =
M{fa(xa), fb(xb)} represents the PDF of the elements of
the set C = {xc1 , xc2 , . . . , xcn , . . . , xcN }, where xcn =
max{xan , xbn} for n = 1, 2, . . . , N , when N tends towards
infinity. Note that this operator reproduces the effect of the
noise floor on the observed power levels (i.e., the DSA/CR user

μN λ μS

Decision threshold

Average noise power→ ← Average signal power

fN (PN ) fS(PS)

σN σS

Fig. 4. Model for computing the DC (shaded area).

observes the received signal power PS when it is above the
noise floor, or the noise power PN otherwise). Therefore, this
definition of fR(PR) provides a more realistic model for the
average power PR actually observed by a real radio receiver.
Based on this model, the DC perceived by the DSA/CR user
when the channel is busy will then be given by:

Ψreal
busy =

∫ ∞
λ

fR(PR)dPR

=

∫ ∞
λ

M{fN (PN ), fS(PS)} dPR

≈ max

{∫ ∞
λ

fN (PN )dPN ,

∫ ∞
λ

fS(PS)dPS

}
= max

{
Pfa,Q

(
λ− µS
σS

)}
(4)

As appreciated, this model rightly predicts that the probability
to observe a channel as busy is never lower than the target
Pfa, as it occurs in a real radio receiver.

The average DC perceived by a DSA/CR user depends on
the primary transmission power and particular activity pattern.
The following sections provide closed-form expressions for
various particular cases4.

1) Constant-power continuous transmitters: This section
considers the case of constant-power primary transmitters with
an AF of 100% (e.g., TV and DAB). This case provides the
basis for a simple model that will be extended in the next
sections for variable-power and/or discontinuous transmitters.

If the primary transmitter is always active, the PDF of the
received average power fR(PR) will be that of the primary
signal (with noise) at the location of the DSA/CR terminal,
i.e., fR(PR) = M{fN (PN ), fS(PS)}. The probability that
the received average power PR is above the decision threshold
λ and the DSA/CR user observes the channel as busy is given
by (4). Assuming that the decision threshold is set so as to
meet a certain target Pfa:

Pfa =

∫ ∞
λ

fN (PN )dPN =
1√

2πσN

∫ ∞
λ

e
− 1

2

(
PN−µN
σN

)2

dPN

= Q
(
λ− µN
σN

)
(5)

Solving (5) for λ yields the decision threshold:

λ = Q−1(Pfa)σN + µN (6)

4Preliminary versions of these models were published in [47] based on the
ideal noise-free case of (3). More realistic versions based on (4) are presented
in this section.
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where Q−1(·) denotes the inverse of Q(·). Substituting (6)
into (4) finally yields the DC model:

Ψ = max

{
Pfa,Q

(Q−1(Pfa)σN − Γ

σS

)}
(7)

where Γ = µS−µN is the average SNR expressed in decibels,
while σS and σN are the standard deviation of the signal and
noise average powers also in decibels.

2) Constant-power discontinuous transmitters: This section
extends the model of (7) by including the case of constant-
power but non-continuous transmitters. If the primary trans-
mitter is characterised by a certain AF, denoted as 0 < α < 1,
the PDF of the received average power fR(PR) will be
that of the primary signal (with noise) M{fN (PN ), fS(PS)}
whenever the transmitter is active (which will occur with
probability α) or noise fN (PN ) otherwise. Hence:

fR(PR) = (1− α) fN (PN ) + αM{fN (PN ), fS(PS)} (8)

and the resulting expression for the DC becomes:

Ψ =

∫ ∞
λ

fR(PR)dPR

=(1− α)

∫ ∞
λ

fN (PN )dPN

+ α

∫ ∞
λ

M{fN (PN ), fS(PS)} dPR

≈(1− α)

∫ ∞
λ

fN (PN )dPN

+ α max

{∫ ∞
λ

fN (PN )dPN ,

∫ ∞
λ

fS(PS)dPS

}
=(1− α)Pfa + α max

{
Pfa,Q

(Q−1(Pfa)σN − Γ

σS

)}
(9)

which reduces to (7) for α = 1.
3) Variable-power discontinuous transmitters: In the case

of variable-power transmitters, the average transmission power
is not constant, but characterised by a certain PDF instead. To
simplify the model, let’s assume that the primary transmission
power pattern can adequately be characterised by a discrete
set of K average transmission power levels, instead of a
continuous PDF. This assumption not only simplifies the
resulting analytical expressions of the model, but also allows
the application of the model to those cases where a channel
is time-shared by K transmitters, transmitting at different
average power levels, as it may be the case of various TDMA-
based systems such as GSM/DCS, TETRA, etc. This approach
embraces the case of a single variable-power transmitter with
K transmission power levels, the case of K constant-power
transmitters time-sharing the channel, or a combination of
both. In any case, the problem reduces to the possibility of
observing K average received powers in the channel.

Let’s denote as fSk(PSk), with mean µSk and standard
deviation σSk , the PDF of the received average power when the
k-th average transmission power is selected (k = 1, 2, . . . ,K).
Let’s define an AF αk for each transmission power rep-
resenting the fraction of time (or probability) that the k-
th transmission power is selected. In the case of a single-
transmitter with K transmission power levels, only one out

of the K power levels can be selected at a time. Moreover,
in the case of K transmitters time-sharing the channel it is
reasonable to assume that there exists some MAC mechanism
so that when one primary transmitter accesses the channel
the rest of potential primary transmitters remain inactive. In
both cases, the K average power levels are mutually exclusive,
and hence

∑K
k=1 αk ≤ 1, where the equality holds when the

channel is always busy. The left-hand side of the inequality
represents the probability that any of the K transmitters is
active (and the channel is busy), and its complementary prob-
ability 1−∑K

k=1 αk is the probability that the channel is idle.
The PDF of the received average power fR(PR) will be that of
the k-th primary signal (with noise) M{fN (PN ), fSk(PSk)}
whenever the k-th transmission power is active (which will oc-
cur with probability αk) or it will be noise fN (PN ) otherwise.
Hence:

fR(PR) =

(
1−

K∑
k=1

αk

)
fN (PN )

+

K∑
k=1

αkM{fN (PN ), fSk(PSk)} (10)

and the resulting expression for the DC becomes:

Ψ =

∫ ∞
λ

fR(PR)dPR

=

(
1−

K∑
k=1

αk

)∫ ∞
λ

fN (PN )dPN

+

K∑
k=1

αk

∫ ∞
λ

M{fN (PN ), fSk(PSk)} dPR

≈
(

1−
K∑
k=1

αk

)
Pfa

+

K∑
k=1

αk max

{
Pfa,Q

(Q−1(Pfa)σN − Γk
σSk

)}
(11)

where Γk = µSk − µN is the SNR resulting from the k-th
average transmission power level expressed in decibels.

C. Model validation

This section validates with empirical data the models pre-
sented in Section IV-B. Note that the models of Sections IV-B1
and IV-B2 are particular cases of the model of Section IV-B3,
with (11) reducing to (9) for K = 1 and α < 1, and (7) for
K = 1 and α = 1. Thus, the validation of the general form
of (11) also validates the particular cases of (7) and (9).

Fig. 5 shows the PDF of the received power for a time-
shared channel where two transmitters (K = 2) are present.
The left-most Gaussian bell corresponds to the noise of the
channel, which was measured by replacing the antenna of
the measurement platform with a matched load. The captured
noise samples were used to estimate the noise parameters (µN ,
σN ), which are used to depict the noise distribution fN (PN )
shown in Fig. 5. The other two Gaussian bells correspond
to the two signals present in the channel. Note that all the
received signal powers are well above the noise and both
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Fig. 5. Empirical and fitted PDF of the received power for a time-shared
channel (two signals are present).

signals are far enough from each other to reliably classify
the captured signal samples (e.g., samples below −85 dBm
belong to the first signal and samples above −80 dBm belong
to the second signal). Based on this observation, two signal
sequences Sk (k ∈ {1, 2}) can be extracted from the captured
samples. These sequences were used to estimate the signal
parameters (µSk , σSk , αk), which are used to depict, based
on (10), the fitted signal distributions fSk(PSk) in Fig. 5.

The DC model is validated as follows. The two extracted
signal sequences Sk are individually processed to simulate the
received signals Sk at arbitrary SNR levels. This is accom-
plished by substracting the adequate amplitude value from the
samples of the sequences Sk so as to meet the desired SNR,
given by Γk = µSk−µN . As signal amplitudes below the noise
floor cannot be detected and are reported as noise, samples
lying below the noise floor after subtracting the adequate
amplitude value are replaced with a random noise level drawn
from a Gaussian distribution with appropriate mean µN and
standard deviation σN . Various combinations of SNR values
for the signal components, (Γ1,Γ2), are simulated, and the
resulting signal is compared to a decision threshold in order
to determine the corresponding DC. The obtained empirical-
simulated results for decision thresholds corresponding to
target Pfa values of 1% and 10% are shown in Figs. 6(a) and
6(d), respectively. The DC corresponding to each simulated
pair (Γ1,Γ2) was also predicted based on (11), making use
of the estimated parameters (µSk , σSk , αk) shown in Fig. 5.
The theoretical predictions are shown in Figs. 6(b) and 6(e) for
target Pfa values of 1% and 10%, respectively. The differences
between the empirical-simulated and theoretically predicted
DC values are shown in Figs. 6(c) and 6(f) for the considered
target Pfa values. As appreciated, the maximum absolute error
for Pfa = 1% is below 1.5%, while the value of the same
parameter for Pfa = 10% is below 8%. These results not only
corroborate the ability of the developed model to predict the
average DC perceived by a DSA/CR user based on some basic
signal parameters, but also demonstrate the accuracy attained
with the proposed modelling approach.

V. MODELS FOR CONCURRENT OBSERVATIONS

The models developed in Section IV describe the average
level of spectrum occupancy (expressed in terms of the DC)
perceived by DSA/CR users at a specified location. In the
study of spatial DSA/CR, it can be useful to characterise
not only the average level of perceived spectrum occupancy,
but also the simultaneous observations of DSA/CR users at
different locations. This can be specially helpful in the study of
cooperative techniques such as cooperative spectrum sensing,
where the nodes of a DSA/CR network exchange sensing
information (i.e., the channel state observed by each DSA/CR
node) in order to provide a more reliable estimation of the
real busy/idle state of the channel. As an example, let’s
consider a DSA/CR node blocked by a radio propagation
obstacle (e.g., a building), which may misdetect a primary
signal. Cooperation with other DSA/CR nodes could alleviate
the problem. However, if the cooperating DSA/CR nodes are
blocked by the same obstacle, they may experience similar
SNR levels and observe the same channel state. In such
a case, cooperation among these users would not provide
significant gains. On the other hand, other DSA/CR nodes
in better radio propagation conditions may experience higher
SNR levels and detect the presence of the primary signal
when it is active. The characterisation of the simultaneous
observations of various DSA/CR users as a function of their
locations and experienced SNRs can be of great utility in
the study of cooperative DSA/CR techniques. In this context,
this section extends the models of Section IV with additional
considerations to characterise the concurrent observations of
DSA/CR users at different locations.

Let’s define the reference location of a spatial region under
study as the location where the experienced SNR is maximum.
Thus, by definition, the SNR Γ∗ at the reference location
satisfies the inequality Γ∗ ≥ Γ, where Γ represents the SNR
experienced at any arbitrary location within the region under
study. The previous inequality also implies that the average DC
Ψ∗ perceived at the reference location satisfies the condition
Ψ∗ ≥ Ψ for all the DC values Ψ observed in the area
under study. Let’s denote the state space of a primary radio
channel as S = {s0, s1}, where the s0 and s1 states indicate
that the channel is observed as idle and busy, respectively.
The instantaneous observation at any arbitrary location can be
characterised in terms of the joint probability P (si, s

∗
j ), with

i, j ∈ {0, 1}, that the channel is simultaneously observed in
state si at the selected arbitrary location and in state sj at the
reference location, or alternatively, in terms of the conditional
probability P (si | s∗j ) that the channel is observed in state si at
the arbitrary location given that it has been observed in state
sj at the reference location. This probabilistic characterisation
can be extended to any number of locations over the area
under study by taking one location as a reference point (i.e.,
the location experiencing the highest SNR) and comparing, in
pairs, with the rest of considered locations.

A. Joint and conditional probabilities

The analytical expressions of P (si, s
∗
j ) and P (si | s∗j ) for

an arbitrary location can be derived as a function of the DC
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Fig. 6. Validation of the DC model for variable-power discontinuous transmitters: (a) empirical-simulated DC for Pfa = 1%, (b) DC model prediction for
Pfa = 1%, (c) DC model prediction error for Pfa = 1%, (d) empirical-simulated DC for Pfa = 10%, (e) DC model prediction for Pfa = 10%, (f) DC
model prediction error for Pfa = 10%.

value observed at the desired location (Ψ) and the DC value
observed at the reference location (Ψ∗).

The set of conditional probabilities P (si | s∗j ) can be derived
as follows. When the channel is observed as idle at the
reference location, this means that the channel is actually idle,
or it is busy but the received power is below the decision
threshold. In the latter case, the power received at any location
whose receiving SNR is lower will also be below the decision
threshold and the channel will also be observed as idle.
However, there exists a probability Pfa that the channel is ob-
served as busy because of noise samples above the threshold.
Thus5, P (s1 | s∗0) = Pfa and its complementary probability is
P (s0 | s∗0) = 1 − Pfa. On the other hand, when the channel
is observed as busy at the reference location, this means
that there has been a false alarm at the reference receiver,
or the channel is actually busy and it has been received at
the reference location with a power level above the decision
threshold. In this case, the probability that the channel is
observed as busy/idle at an arbitrary location depends not only
on the probability of false alarm but also the experienced SNR
Γ and its relation to the reference SNR Γ∗. The conditional
probability P (s0 | s∗1) can be derived by writing the probability
P (s0) that the channel is observed as idle at the arbitrary

5These equalities are always true only if the SNR at the reference location is
higher. Otherwise, the event of observing the channel as idle at the reference
location would not provide any information about the observation at other
arbitrary locations with higher SNRs where the channel could be correctly
observed as busy (the same applies to the other expressions in Table I).

location in the following form:

P (s0) = P (s0 | s∗0)P (s∗0) + P (s0 | s∗1)P (s∗1)

= (1− Pfa)(1−Ψ∗) + P (s0 | s∗1)Ψ∗ = 1−Ψ (12)

where P (s∗j ) represents the probability that the channel is
observed in state sj at the reference location and it has been
made use of the equivalence P (s0) = 1−Ψ. Solving (12) for
the desired term yields:

P (s0 | s∗1) =
1−Ψ− (1− Pfa)(1−Ψ∗)

Ψ∗
(13)

Following a similar procedure:

P (s1) = P (s1 | s∗0)P (s∗0) + P (s1 | s∗1)P (s∗1)

= Pfa(1−Ψ∗) + P (s1 | s∗1)Ψ∗ = Ψ (14)

which yields:

P (s1 | s∗1) =
Ψ− Pfa(1−Ψ∗)

Ψ∗
(15)

The joint probabilities P (si, s
∗
j ) can be obtained based on

their conditional counterparts as P (si, s
∗
j ) = P (si | s∗j )P (s∗j ),

where P (s∗0) = 1 − Ψ∗ and P (s∗1) = Ψ∗. Table I shows
the entire set of joint and conditional probabilities. These
expressions, combined with the analytical models of Section
IV, can be employed to characterise not only the probability
that a channel is observed as busy (DC) as a function of
the DSA/CR user location and some basic primary signal
parameters, but also the joint and conditional probabilities that
the channel is observed in any of its states with respect to the
simultaneous observation of other DSA/CR users.
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TABLE I
PROBABILITIES OF SIMULTANEOUS OBSERVATIONS.

si s∗j P (si, s
∗
j) P (si | s∗j)

s0 s∗0 (1 − Pfa)(1 − Ψ∗) 1 − Pfa

s1 s∗0 Pfa(1 − Ψ∗) Pfa

s0 s∗1 1 − Ψ − (1 − Pfa)(1 − Ψ∗)
1−Ψ−(1−Pfa)(1−Ψ∗)

Ψ∗

s1 s∗1 Ψ − Pfa(1 − Ψ∗)
Ψ − Pfa(1 − Ψ∗)

Ψ∗

B. Model validation

The validity of the expressions in Table I was assessed based
on synchronised field measurements. As described in Section
III, one measurement suite was placed in the outdoor high
point (location 1 in Fig. 2), where the maximum experienced
SNR was observed, while the second measurement suite was
displaced along the rest of outdoor locations at the ground
level (locations 3-12 in Fig. 2). This allowed the comparison
of the occupancy patterns simultaneously perceived at various
pairs of locations with different SNR levels.

The sequences of received powers were converted to se-
quences of busy/idle states by applying an energy detection
method as mentioned in Section III. Based on a direct com-
parison of the sequences, the joint and conditional probabilities
were extracted for each measured pair of locations. The
obtained empirical results are shown in Figs. 7 and 8 along
with the corresponding theoretical predictions, as a function
of the SNR difference with respect to the reference location.
The theoretical curves were obtained by first estimating the
required signal parameters (µSk , σSk , αk) and noise param-
eters (µN , σN ) from the empirical data (as explained in
Section IV-C), and then employing the corresponding ana-
lytical expressions presented in Section IV along with the
expressions shown in Table I. As observed, there exists a
nearly perfect agreement between the empirical results and
theoretical predictions, which confirms the validity of the
proposed modelling approach and highlights its capability
to provide accurate predictions of the spectrum occupancy
perceived in real environments.

VI. APPLICABILITY EXAMPLES

The models presented in Section IV and Section V are
essentially theoretical and rely on closed-form expressions.
As such, the developed models can be employed in analytical
studies. However, the applicability of the models is not con-
fined to analytical studies since other fields of application can
be identified. This section presents two detailed examples to
illustrate the practical applicability of the spectrum occupancy
models developed in this work. The first example shows
how the proposed modelling approaches can be combined
with radio propagation models in order to provide a statisti-
cal characterisation of the spectrum occupancy perceived at
various locations within a realistic environment, while the
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Fig. 7. Empirical validation of the joint probabilities.
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Fig. 8. Empirical validation of the conditional probabilities.

second example illustrates how they can be implemented and
exploited in simulation tools6.

A. Prediction of spectrum occupancy perception

The behaviour and performance of a DSA/CR network de-
pends on the spectrum occupancy perceived by each DSA/CR
node in its local environment. The prediction of the spectrum
occupancy perceived by DSA/CR users in different locations
as a function of the surrounding radio propagation environment
constitutes a valuable tool for the analysis, design, dimension-
ing and performance evaluation of DSA/CR systems.

1) Prediction approaches: A simple prediction method
based on radio propagation models (frequently employed in
the context of DSA/CR) is shown in Fig. 9(a). A radio
propagation model is used to compute, based on a set of input

6While the results presented in Section VI-A are similar to some results
presented in [49], the former are based on the more accurate models presented
in Section IV-B while the latter are based on the preliminary models presented
in [47]. The results in Section VI-B are new.
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Fig. 9. Prediction of spectrum occupancy: (a) binary prediction approach, (b)
probabilistic prediction approach.

parameters p = (p1, p2, . . . , pM ) such as operating frequency,
distance, etc., the path loss L between the primary transmitter
and the locations of interest in the considered spatial region.
The parameter set p required to estimate L is specific to the
path loss model selected for the scenario under study. The
primary signal powers PS received at the locations of interest
are obtained as PS(dBm) = PT (dBm)−L(dB), where PT is
the primary transmission power. Assuming energy detection,
the average power levels PS predicted with the path loss
model are compared to a decision threshold λ, thus providing a
binary channel observation result (idle s0, or busy s1) for each
analysed location. The main advantage of this approach is its
simplicity. However, this method results in an oversimplified
characterisation of the perceived spectrum occupancy where,
for a particular location, the spectrum is observed either as
always idle or always busy. In practice, radio propagation
phenomena such as slow (shadowing) and fast (multipath)
fading cause momentary signal fades, which may result in
momentary signal misdetections, specially under sufficiently
low SNR conditions (a case of particular interest for DSA/CR).

An alternative prediction approach is shown in Fig. 9(b),
which combines radio propagation models and the spectrum
occupancy models developed in this work [49]. As opposed
to the binary prediction method mentioned above, the re-
ceived PS levels are not compared to a decision thresh-
old, but converted to SNR values Γ(dB) = PS(dBm) −
PN (dBm), where PN is the DSA/CR receiver’s noise, given
by PN (dBm) = −174dBm/Hz + 10 log10B(Hz) + NF(dB),
with −174dBm/Hz being the thermal noise power spectral
density at 290K, B the radio bandwidth of the sensed channel,
and NF the noise figure of the DSA/CR terminal. The resulting
SNR values Γ are then fed, along with an additional set of
input parameters p′ = (p′1, . . . , p

′
N ), to the DC model, which

outputs an estimation Ψ of the DC perceived by the DSA/CR
users at the considered locations of interest. The DC model,
in its most general form, is given by (11) and the involved
variables and parameters constitute the input vector p′.

The main advantage of the probabilistic approach is its
capability to include the effects of signal and noise power
variations on the predicted spectrum occupancy perception.
The instantaneous values of signal and noise power experi-

TABLE II
EXPERIMENTAL VALUES OF σS AND σN .

Band B (Hz) Sensing (ms) σS (dB) σN (dB)

TV 8 · 106 200 0.5252 0.1679

UMTS 5 · 106 125 0.4138 0.2093

DAB 1.7 · 106 42.5 0.8298 0.3640

GSM/DCS 200 · 103 5 1.6421 0.8921

TETRA 25 · 103 0.625 2.0469 1.3624

enced at various sensing events may suffer some fluctuations
around the mean values µS and µN , respectively. The effective
signal power PS may vary due to the primary transmission
power pattern along with shadowing and multipath fading
effects. The effective noise power PN may vary due to finite
sensing times, which may not be long enough to average
the instantaneous oscillations of noise, or other reasons such
as temperature variations. The fluctuations of the signal and
noise powers are included by means of the σS and σN
parameters (note that these are some of the input parameters
of vector p′ in Fig. 9). The values of σS and σN can be
estimated by means of appropriate radio propagation models,
simulation/radio planning tools or field measurements. Table
II shows some examples of σS and σN for various bands,
which have been derived from field measurements. Note that
the received signal is always affected by the receiver’s noise
and, as a result, σS > σN . The employed spectrum analyser
sweeps at an average speed of 25 ms/MHz, which results in the
effective channel observation (sensing) times shown in Table
II. As it can be appreciated, there is a direct relation between
the effective sensing time and the resulting σN . The trend
is not so well-defined for σS , which depends on particular
technology-specific power patterns and the channel fading
properties at various frequencies.

2) Considered scenario and propagation models: To illus-
trate the prediction approaches of Section VI-A1, a generic
urban environment is considered where buildings of height hr
= 40 m are deployed following a uniform layout with inter-
building separation b = 40 m and street width w = 20 m as
shown in Fig. 10. The area under study is composed of a
grid of 5×5 buildings. A TV transmitter with height hb = 50
m, operating at a frequency f = 800 MHz and transmission
power PT = 60 dBm, is located d = 4.8 km apart. Within
this scenario, DSA/CR terminals using energy detection with
a target Pfa = 0.01, NF = 8.6 dB, and antenna height hm = 2
m, are located at the center of building rooftops (height is
hr+hm), at the ground level between buildings (height is hm),
or inside buildings (height is n ·h+hm, with n = 3 being the
floor number and h = 3 m/floor). These locations represent
scenarios of practical interest and embrace a wide range of
receiving conditions, from direct line-of-sight at rooftops to
severely blocked and faded signals at the ground level and
inside buildings.

For computation purposes, the area under study is here
represented by a matrix of 100×100 elements, each of which
represents a possible location for DSA/CR users. The state of
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Fig. 10. Considered scenario.

each element (i.e., possible location) is computed individually
based on the developed models.

The average primary signal power received at every location
is computed based on the Okumura-Hata model [50], [51]
(including the Hata’s correction factor for open areas [51, (19-
20)]) for DSA/CR users in building rooftops, the COST231
Walfisch-Ikegami model [52] for DSA/CR users at the ground
level, and the building penetration loss model for non-line-of-
sight conditions described in [52] for indoor DSA/CR users.
Signal and noise power fluctuations are characterised by σS =
0.5252 dB and σN = 0.1679 dB, respectively (see Table II).

3) Numerical results: Fig. 11 shows the primary signal
power PS(dBm) received at various locations in the area
under study, based on the radio propagation models mentioned
in Section VI-A2. As it can be appreciated, the highest
power level is observed at rooftops, with significantly lower
powers received at the ground level (around 10 dB lower)
and inside buildings (around 20 dB lower). This suggests that
DSA/CR users within the same region may experience quite
dissimilar perceptions depending on their particular locations
and propagation conditions.

Fig. 12 shows the perceived spectrum occupancy pattern as
predicted by the method of Fig. 9(a). White and grey colours
indicate that the primary channel is observed as busy and
idle, respectively, at the corresponding locations. According
to the predicted pattern, the TV channel is always observed as
busy (idle) at rooftops (indoor locations), where the highest
(lowest) power levels are in general observed. At the ground
level, different cases are observed depending on the distance
from the primary transmitter. However, it is worth highlighting
that this prediction approach indicates the existence of a hard
limit such that the primary channel is always observed as
busy at locations slightly above, and idle at locations slightly
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below, which provides not only an excessively simplistic,
but also unrealistic characterisation of the perceived spectrum
occupancy pattern.

Fig. 13 shows the perceived spectrum occupancy pattern
predicted by the method of Fig. 9(b). Comparing with Fig. 12,
it can be observed that both prediction approaches agree for
locations at building rooftops (the channel is observed as busy
with probability one, i.e., always) and indoor environments
(the channel is observed as busy with probability zero, i.e.,
never), where the highest and lowest received powers are ob-
served, respectively. The differences between both approaches
are observed in the spectrum occupancy perception predicted
at the ground level. As opposed to the binary prediction
method, where a hard borderline is observed, the prediction
method based on the developed DC models provides a more
sophisticated characterisation in terms of the probability that
the spectrum is observed as busy, which increases progres-
sively as the considered location approaches the primary
transmitter (without observing any abrupt transitions).

This example illustrates how the developed spectrum occu-
pancy models can be combined with radio propagation models
in a probabilistic prediction approach to provide a sophisti-
cated characterisation of the perceived spectrum occupancy,
as a function of the considered location and surrounding radio
propagation scenario.

B. Snapshot-based simulations

Another illustrative example of the applicability of the mod-
els developed in this work is the development of innovative
and improved simulation methods. The models of Section IV
can be used to determine the average DC perceived at every
location inside the simulation scenario as illustrated in Fig.
13. As the DC represents the probability that the primary
channel is observed as busy, the local decisions of DSA/CR
terminals can be obtained by comparing the DC values Ψ
computed at their locations with a random value ξ drawn from
a uniform distribution U(0, 1). If ξ ≤ Ψ, then the DSA/CR
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Fig. 12. Binary spectrum occupancy pattern.
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Fig. 13. Probabilistic spectrum occupancy pattern.

terminal observes the channel as busy. Otherwise, the channel
is observed as idle. This procedure can be repeated to generate
several simulation snapshots.

While the previous simulation approach provides the right
average DC in the long-term, the simultaneous observations
of various DSA/CR users at particular time instants (i.e., in
a snapshot) are independent of each other. This simulation
approach can be refined by additionally taking into account
the expressions shown in Table I in order to characterise
the simultaneous observations. For each snapshot, the channel
state s∗j observed at the reference (maximum SNR) location
is first determined in a random way as mentioned above.
The instantaneous channel state si observed in the rest of
locations is then determined as follows. When the channel
is observed as idle at the reference location (s∗j = s∗0), the rest
of locations may observe the channel as busy with probability
P (s1 | s∗0) = Pfa and idle with probability P (s0 | s∗0) =
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Fig. 14. Random simulation snapshot when the channel is observed as idle
at the reference location.

1 − Pfa. On the other hand, when the channel is perceived
as busy at the reference location (s∗j = s∗1), the rest of
locations may observe the channel as busy with probability
P (s1 | s∗1) = [Ψ−Pfa(1−Ψ∗)]/Ψ∗ and idle with probability
P (s0 | s∗1) = [1−Ψ−(1−Pfa)(1−Ψ∗)]/Ψ∗. These probabili-
ties can be used to determine the channel states si observed in
other locations based on random numbers ξ ∼ U(0, 1). This
procedure can be repeated to generate snapshots that reproduce
not only the average DC values in the long-term, but also the
simultaneous observations at various locations.

As an illustrative example, Figs. 14 and 15 show some
random simulation snapshots generated with the aforemen-
tioned simulation method, for the scenario considered in
Section VI-A. The reference (highest SNR) location in this
scenario corresponds to the rooftop in the coordinate (x =
0m, y = 80m). White and grey colours indicate that the
primary channel is observed as busy and idle, respectively, at
the corresponding locations. When the channel is idle at the
reference location (Fig. 14), it is also observed as idle (grey)
in most locations except in some particular cases where it is
observed as busy (white) as a result of some false alarms. On
the other hand, when the channel is perceived as busy at the
reference location (Fig. 15), the rest of locations may observe
the channel as busy (white) or idle (grey) depending on
the particular user location and the corresponding conditional
probabilities. In general, in areas close to the primary trans-
mitter (top of Fig. 15) the probability to observe the channel
as busy (white) is higher and as a result there is a higher
number of locations where it is detected in such state. This
example illustrates how the proposed models can be combined
and employed in the implementation and development of
simulation tools for DSA/CR research.

VII. CONCLUSIONS

Realistic and accurate spectrum occupancy models consti-
tute a valuable tool in the analysis, design and simulation of
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Fig. 15. Random simulation snapshot when the channel is observed as busy
at the reference location.

DSA/CR networks. This work has addressed the problem of
modelling spectrum usage in the spatial domain by introducing
a novel set of models that describe the average spectrum
occupancy level (expressed in terms of the DC) perceived
by DSA/CR users at any arbitrary location based on the
knowledge of some simple primary signal parameters. An
extension has also been proposed in order to characterise not
only the average occupancy perception but also the simultane-
ous observations of various DSA/CR users. The validity and
correctness of the proposed modelling approaches have been
evaluated and corroborated with extensive empirical data from
a multi-band spectrum measurement campaign, performed
with an advanced measurement platform. Some illustrative
examples of the potential applicability of the developed models
have been presented and discussed as well.

APPENDIX
ESTIMATION OF MODEL PARAMETERS

This appendix discusses how the model parameters (primary
activity factor and signal- and noise-related parameters) can be
estimated in practical scenarios.

The activity factor of an unknown primary transmitter and
the signal power parameters of the models could be estimated
from field measurements performed under sufficiently high
SNR conditions (e.g., in a location sufficiently close to the
primary transmitter). As discussed at the beginning of Section
IV, the duty cycle observed in such a case would provide an
accurate estimation of the primary activity factor. Moreover,
under sufficiently high SNR conditions there would be a wide
range of values for the detection threshold that would enable
an easy separation of signal and noise measurement samples
(based on their power levels). The signal samples could then be
processed individually in order to estimate the signal-related
parameters of the models. This approach has been employed
in the experimental part of this work and a nearly perfect
match between theoretical and empirical results has been

observed. Wherever field measurements are not feasible, the
model parameters could be estimated based on radio planning
tools or simulators.

The estimation of the noise parameters, however, is more
problematic in practice and a more critical aspect. In the
literature, the noise statistics of the receiver have frequently
been assumed to be constant and known. However, in practice,
the noise floor of a receiver depends not only on its circuitry
but also on random parameters such as temperature or external
noise sources that may increase the effective noise (out-of-
band transmissions, ambient noise or man-made noise), which
may also change over time [53]. All these phenomena have
an impact on the effective noise floor and consequently on
the spectrum occupancy observed by DSA/CR users (a more
detailed discussion on noise sources and their impact on the
observed spectrum occupancy is provided in [45]). The noise
floor of a receiver could be determined in several ways. For
example, it could be estimated from measurements on channels
that are known to be idle. However, this approach has some
drawbacks since harmonics, intermodulation products or other
signal components resulting from non-linear effects may be
present in idle channels; moreover, the estimated noise floor
may not be useful for detection in other channels given the
frequency-dependent nature of some noise sources. Another
option would be a hardware design where the RF front-end
can be switched between the antenna (for transmission) and a
matched load (for noise estimation). However, this approach
also has some drawbacks since some signal components
might still be detected through the matched load, and some
other external noise sources that are detected through the
antenna would not be included in the estimated noise floor. To
overcome these issues, more sophisticated methods have been
proposed. In [54] a method to estimate flat or non-flat noise
floor in the presence of unknown signals is proposed based
on the use of morphological image processing operations.
Information theoretic criteria relying on spectrum sensing
methods based on Akaike’s Information Criterion (AIC) or
Minimum Description Length (MDL) have been proposed in
[55]. Another noise power estimation method is proposed in
[56] assuming perfect sensing during long sensing periods.
More recently, other methods for noise estimation in the
presence of signals have been proposed in [57]–[59] based on
a median forward consecutive mean excision (MED-FCME)
method and some variations thereof; their main advantage is
the ability to estimate the noise floor directly from the signal
while simultaneously performing regular measurements, and
to react rapidly to changes in the noise floor.
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