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Abstract	
	
Background:	Detecting	adverse	drug	reactions	(ADRs)	is	an	important	task	that	has	
direct	 implications	 for	 the	 use	 of	 that	 drug.	 If	we	 can	 detect	 previously	 unknown	
ADRs	 as	 quickly	 as	 possible,	 then	 this	 information	 can	 be	 fed	 back	 to	 regulators,	
pharmaceutical	 companies	 and	 healthcare	 organisations	 thereby	 potentially	
reducing	 drug-related	 morbidity	 and	 saving	 lives	 of	 many	 patients.	 A	 promising	
approach	 for	detecting	ADRs	 is	 to	use	 social	media	platforms	such	as	Twitter	and	
Facebook.	A	high	level	of	correlation	between	a	drug	name	and	an	event	may	be	an	
indication	 of	 a	 potential	 adverse	 reaction	 associated	 with	 that	 drug.	 Although	
numerous	 association	 measures	 have	 been	 proposed	 by	 the	 signal	 detection	
community	 for	 identifying	 ADRs,	 these	 measures	 are	 limited	 in	 that	 they	 detect	
correlations	but	often	ignore	causality.	
	
Objective:	In	this	paper,	we	propose	a	causality	measure	that	can	detect	an	adverse	
reaction	that	is	caused	by	a	drug	rather	than	merely	being	a	correlated	signal.	
	
Methods:	To	the	best	of	our	knowledge,	this	is	the	first	causality-sensitive	approach	
for	 detecting	 ADRs	 from	 social	 media.	 Specifically,	 we	 represent	 the	 relationship	
between	a	drug	and	an	event	using	a	set	of	automatically	extracted	lexical	patterns.	
We	 then	 learn	 the	 weights	 for	 the	 extracted	 lexical	 patterns	 that	 indicate	 their	
reliability	for	expressing	an	adverse	reaction	of	a	given	drug.	
	
Results:	 Our	 proposed	 method	 obtains	 an	 ADR	 detection	 accuracy	 of	 74%	 on	 a	
large-scale	manually	annotated	dataset	of	 tweets,	covering	a	standard	set	of	drugs	
and	adverse	reactions.	
	
Conclusions:	 By	 using	 lexical	 patterns,	 we	 can	 accurately	 detect	 the	 causality	
between	drugs	and	adverse	reaction	related	events.	
	
Trial	Registration:	This	study	does	not	require	any	clinical	trials.	
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Introduction	
An	 Adverse	 Drug	 Reaction	 (ADR)	 is	 defined	 as	 “an	 appreciably	 harmful	 or	
unpleasant	reaction,	resulting	from	an	intervention	related	to	the	use	of	a	medicinal	
product,	which	predicts	hazard	from	future	administration	and	warrants	prevention	
or	 specific	 treatment,	 alternation	 of	 the	 dosage	 regimen,	 or	 withdrawal	 of	 the	
product”	[34,	15,	26,	1].	It	is	estimated	that	approximately	2	million	patients	in	the	
United	States	are	affected	each	year	by	serious	ADRs,	resulting	in	roughly	100,000	
fatalities	[21].	 In	 fact,	 ADRs	 are	 the	 fourth	 leading	 cause	 of	 death	 in	 the	 U.S.	
following	 cancer	 and	 heart	 diseases	[19].	 Treating	 patients	 who	 develop	 ADRs	
results	 in	significant	health	costs	to	nations	throughout	the	world.	For	example,	 in	
the	U.S.	it	has	been	estimated	that	USD	136	billion	is	spent	each	year	on	treatments	
related	to	ADRs	[6,	32].	

In	 an	 ideal	 world,	 all	 adverse	 reactions	 associated	 with	 a	 drug	 need	 to	 be	
detected	prior	to	marketing,	and	the	drug	label	modified	accordingly.	However,	this	
is	 not	 feasible	 due	 to	 several	 reasons.	 First,	 the	 number	 of	 human	 subjects	
participating	in	a	clinical	trial	of	a	pre-marketed	drug	is	often	small,	which	limits	the	
statistical	 power	 to	 detect	 ADRs,	 particularly	 those	 which	may	 be	 uncommon.	 In	
fact,	 rare	ADRs	 are	 usually	 not	 detected	 during	 the	 pre-marketing	 phases	 of	 drug	
development.	Second,	since	many	of	the	clinical	trials	are	short-lasting,	ADRs	which	
are	delayed	will	 not	 be	detected.	Third,	 some	ADRs	 show	up	only	when	 a	drug	 is	
being	taken	together	with	other	drugs	leading	to	an	adverse	drug-drug	interaction.	
Considering	 that	 the	 number	 of	 combinations	 of	 drugs	 is	 potentially	 large,	 it	 is	
impractical	to	test	for	all	of	the	possible	combinations	during	a	clinical	trial.	Fourth,	
drug	repurposing	[28]	–	the	practice	of	off-label	usage	of	drugs	for	treating	diseases	
for	which	they	were	not	originally	intended,	could	lead	to	unforeseen	ADRs.	

Because	of	these	challenges	in	detecting	ADRs	during	the	pre-marketing	phase,	
identification	of	ADRs	 in	 the	post-marketing	phase	remains	hugely	 important.	The	
cornerstone	 of	 post-marketing	 pharmacovigilance	 remains	 the	 spontaneous	
reporting	 schemes	 such	 as	 the	 Yellow	 Card	 Scheme	 [35]	 in	 the	 UK	 and	 the	
MedWatch	 system	 [36]	 in	 the	 US.	 Such	 schemes	 allow	 hospitals,	 medical	
practitioners,	 and	 patients	 to	 report	 ADRs.	 Unfortunately,	 the	 reporting	 rates	 are	
generally	 poor.	 For	 example,	 only	 10%	 of	 serious	 ADRs	 and	 2−4%	 of	 nonserious	
ADRs	are	reported	[9].	

Although	 patients	 experience	 ADRs,	 they	 may	 be	 reluctant	 to	 report	 their	
experiences	 through	 official	 reporting	 systems	 for	 various	 reasons.	 For	 example,	
patients	 might	 be	 unfamiliar	 with	 or	 unaware	 of	 the	 ADR	 reporting	 schemes,	 or	
might	find	it	difficult	to	understand	the	terminology	used	in	the	forms,	or	might	not	
be	aware	of	the	importance	of	reporting	ADRs.	Even	when	ADRs	have	been	reported	
via	such	spontaneous	reporting	systems,	the	time	required	from	the	first	report	to	
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any	 regulatory	 action	 may	 be	 long,	 which	 is	 problematical	 in	 protecting	 public	
health	from	iatrogenic	conditions.		

An	alternative	approach	for	detecting	ADRs	in	a	timely	manner	on	a	larger	scale	
is	 to	use	social	media.	Social	media	platforms	such	as	Twitter	[37],	Facebook	[38],	
Instagram	[40],	Pinterest	[39]	etc.	have	been	used	extensively	for	market	analysis	of	
various	 products.	 Social	 media	 provides	 a	 convenient	 and	 direct	 access	 to	
consumers’	opinions	about	the	products	and	services	they	use.	 In	comparison	to	a	
clinical	study,	which	inevitably	is	limited	to	a	small	number	of	participants,	in	social	
media	we	can	access	comments	from	a	massive	number	of	diverse	groups	of	people.	
Because	 of	 its	 potential	 value,	 the	 pharmacovigilance	 community	 has	 already	
started	 to	 exploit	 social	 media	 as	 a	 potential	 reporting	 tool	 for	 obtaining	
information	about	ADRs	[30].	For	example,	 the	WEB-RADR	[41]	project	 funded	by	
the	 Innovative	Medicines	 Initiative	 (IMI)	was	 funded	 to	evaluate	 the	usefulness	of	
social	media	as	a	reporting	tool	for	ADRs.	

However,	 compared	 to	 spontaneous	 reporting	 systems	 where	 patients	 or	
healthcare	 practitioners	 explicitly	 report	 ADRs,	 detecting	ADRs	 from	 social	media	
poses	several	challenges.	Because	social	media	is	not	perceived	by	most	patients	as	
an	 official	 reporting	 tool	 for	 ADRs,	 a	 drug	 and	 its	 associated	 ADRs	 might	 not	 be	
completely	expressed	in	a	single	social	media	post.	This	issue	is	further	aggravated	
by	 the	 limitations	 imposed	 on	 the	 length	 of	 a	 post	 in	 social	media	 platforms.	 For	
example,	 in	 Twitter,	 a	 single	 post	 (aka.	 a	 tweet)	 is	 limited	 to	 a	maximum	 of	 140	
characters.	Even	in	social	media	platforms	where	such	limitations	do	not	exist	such	
as	Facebook,	the	users	might	not	always	provide	comprehensive	reports	containing	
all	 the	 information	 that	 would	 normally	 be	 completed	 on	 a	 Yellow	 Card.	
Furthermore,	social	media	users	often	interact	with	social	media	platforms	through	
specialised	 apps	 on	 mobile	 devices	 such	 as	 smart	 phones,	 which	 do	 not	 possess	
physical	key	boards	that	facilitate	the	entering	of	longer	texts.	

In	addition	to	the	brevity	and	incompleteness	of	social	media	posts	as	a	medium	
for	reporting	ADRs,	the	reliability	of	the	information	expressed	through	social	media	
is	 also	a	 concern.	 It	 is	 often	difficult	 to	 authenticate	 the	 information	disseminated	
through	 social	media.	 For	 example,	 in	 Twitter,	 the	 same	 user	 can	 create	multiple	
accounts	 under	 different	 names	 including	 aliases.	 False	 information	 might	 be	
expressed	 intentionally	or	unintentionally	 in	social	media,	which	makes	 it	difficult	
to	 verify	 the	 information	 extracted	 from	 social	 media.	 Unlike	 in	 the	 Yellow	 Card	
system,	where	 it	 is	possible	 to	contact	a	reporter	 to	obtain	 further	 information,	 in	
social	 media	 it	 is	 difficult	 to	 obtain	 additional	 information	 from	 users	 due	 to	
anonymity	and	privacy	settings.	All	of	 these	challenges	 introduce	various	 levels	of	
noise	to	ADR	signal	that	can	be	captured	from	social	media.	Consequently,	methods	
that	detect	ADRs	from	social	media	need	to	overcome	these	challenges.	

An	 approach	 for	 detecting	 significant	 signals	 indicating	 adverse	 reactions	 to	
drugs	in	social	media	is	to	measure	the	correlation	between	a	drug	and	an	event.	If	
many	 social	 media	 posts	 and/or	 users	 mention	 a	 drug	 and	 an	 event,	 then	 the	
likelihood	 that	 the	 drug	 causing	 an	 adverse	 reaction	 increases.	 Indeed,	 numerous	
measures	 have	 been	 proposed	 in	 previous	 work	 to	 measure	 the	 degree	 of	
association	 between	 a	 drug	 and	 an	 adverse	 reaction	[31,	 24,	 5,	 4,	 11,	 2,	 17,	 12].	
Although	 co-occurrence	 measures	 do	 not	 completely	 solve	 all	 of	 the	 above-
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mentioned	 challenges	 of	 using	 social	media,	 they	 provide	 a	 practical	 and	 a	 highly	
scalable	mechanism	for	detecting	ADRs	from	social	media.	

A	fundamental	drawback	of	co-occurrence-based	approaches	for	detecting	ADRs	
is	that	they	ignore	the	context	in	which	a	drug	and	an	ADR	co-occur	in	social	media.	
Co-occurrence	 does	 not	 always	 indicate	 causality.	 Although	 a	 drug	 and	 an	 event	
which	could	suggest	an	ADR	might	be	mentioned	frequently	in	social	media,	the	co-
occurrence	 may	 be	 because	 the	 drug	 is	 used	 as	 a	 remedy	 for	 that	 symptom.	
Moreover,	 the	drug	may	have	been	taken	by	one	person	but	 the	social	media	post	
mentions	the	ADR	in	a	different	person.	However,	the	context	in	which	a	drug	and	
an	 ADR	 co-occur	 can	 provide	 useful	 clues	 that	 can	 be	 used	 to	 separate	 causality	
from	co-occurrence.	The	co-occurring	context	between	a	drug	and	an	ADR	provides	
useful	clues	that	we	can	use	to	separate	causality	from	co-occurrence.	

To	illustrate	the	usefulness	of	contextual	information	for	ADR	detection	consider	
the	three	tweets	shown	in	Figure	1.		

 

 
Figure 1: Three tweets mentioning a drug (shown in blue boldface fonts) and an 
symptoms (shown in red italic font). 

T1	is	 suggestive	of	 an	association	with	a	drug	and	a	potential	 adverse	 reaction.	T2	
may	 reflect	 that	 the	 patient’s	 disease	 improving	 or	 that	 an	 ADR	 occurred	 but	 is	
waning	 following	 dose	 reduction.	T3	is	 unlikely	 to	 be	 an	 ADR;	 Ibuprofen	 is	 being	
taken	 by	 this	 patient	 to	 potentially	 relive	 the	 pain	 and	 have	 some	 sleep.	 These	
examples	show	that	 there	are	useful	hints	we	can	extract	 from	the	 tweets	such	as	
about	to	(feel	an	ADR),	 I	still	have	(ADRs)	 that	we	 can	use	 to	 evaluate	 the	 causality	
relationship	between	a	mentioned	drug	and	an	adverse	reaction.	

Why	 is	 solving	 this	 problem	 critical	 for	 systems	 that	 attempt	 to	 extract	 ADRs	
from	social	media?	The	standard	practice	in	the	pharmacovigilance	community	for	
detecting	 ADRs	 from	 patient	 reports	 is	 to	 apply	 disproportionality	measures	 that	
consider	 only	 co-occurrence	 (and	 occurrence)	 counts.	 Unfortunately,	
disproportionality	measures	by	design	are	agnostic	to	the	linguistic	context	in	social	
media,	 and	are	 therefore	unable	 to	utilise	 the	clues	 that	appear	 in	 social	media	 to	
determine	 whether	 an	 ADR	 is	 truly	 caused	 by	 the	 drug.	 However,	 given	 a	 tweet	
containing	a	drug	and	a	potential	adverse	reaction,	if	we	can	first	develop	a	classifier	
that	predicts	whether	this	tweet	is	describing	a	causality	relationship,	we	then	can	
use	disproportionality	measures	on	the	tweets	that	are	identified	as	positive	by	the	
classifier	 for	 further	 analysis.	 This	 pre-processing	 step	 is	 likely	 to	 improve	 the	
accuracy	of	the	ADR	detection	process.	Moreover,	given	the	noise	and	the	low-level	
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of	reliability	in	social	media	as	opposed	to	patient	reports	in	spontaneous	reporting	
schemes,	 it	 is	vital	 that	we	perform	some	 form	of	pre-processing	 to	guarantee	 the	
reliability	of	the	identified	ADRs.	

In	 this	 paper	 we	 therefore	 consider	 the	 following	 problem:	 given	 a	 tweet	 T	
containing	 a	 drug	D	 and	 an	 ADR	 A,	 whether	 T	 describes	 an	 instance	 where	 A	 is	
caused	by	D,	as	opposed	to	A	and	D	co-occurring	for	a	different	reason	(or	randomly	
without	 any	particular	 relation	between	A	 and	D).	Our	 experimental	 results	 show	
that	 the	 proposed	 method	 statistically	 significantly	 outperforms	 several	 baseline	
methods,	 demonstrating	 its	 ability	 to	detect	 causality	between	drugs	 and	ADRs	 in	
social	media.	

Related	Work	
The	number	of	co-occurrences	between	a	drug	and	an	ADR	can	be	used	as	a	signal	
for	detecting	ADRs	associated	with	drugs.	Various	measures	have	been	proposed	in	
the	literature	that	evaluate	the	statistical	significance	of	disproportionally	large	co-
occurrences	 between	 a	 drug	 and	 an	 ADR.	 These	 includes	 (M)GPS	 ((Multi-item)	
Gamma	 Poisson	 Shrinker)	[13,	 12,	 20,	 2],	 RGPS	 (Regression-Adjusted	 Gamma	
Poisson	 Shrinker)	[11],	 BCPNN	 (Bayesian	 Confidence	 Propagation	 Neural	
Network)	[4,	 5,	 24],	 PRR	 (Proportional	 Reporting	 Rate)	[20,	 31],	 and	 ROR	
(Reporting	Odds	Ratio)	[20,	31].	Each	of	these	algorithms	uses	a	different	measure	
of	 disproportionality	 between	 the	 signal	 and	 its	 background.	 Information	
component	 (IC)	 is	 applied	 in	 BCPNN,	 while	 empirical	 Bayes	 geometric	 mean	 is	
implemented	 in	 all	 variants	 of	 the	 GPS	 algorithm.	 Each	 of	 the	 measures	 gives	 a	
specific	 score,	which	 is	 based	on	 the	number	of	 reports	 including	 the	drug	or	 the	
event	 of	 interest.	 These	 count-based	 methods	 are	 collectively	 referred	 to	 as	
disproportionality	measures.	

In	contrast	 to	 these	disproportionality	measures	which	use	only	co-occurrence	
statistics	 for	 determining	whether	 there	 is	 a	 positive	 association	 between	 a	 drug	
and	 an	 event,	 in	 this	 paper,	 we	 propose	 a	 method	 that	 uses	 the	 contextual	
information	extracted	from	social	media	posts	to	 learn	a	classifier	that	determines	
whether	there	is	a	causality	relation	between	a	drug	and	an	ADR.	Detecting	causality	
between	 events	 from	 natural	 language	 texts	 has	 been	 studied	 in	 the	 context	 of	
discourse	 analysis	[10,	 27]	 and	 textual	 entailment	[3,	 18].	 In	 discourse	 analysis,	 a	
discourse	 structure	 for	 a	 given	 text	 is	 created	 showing	 the	 various	 discourse	
relationships	 such	 as	 causality,	 negation,	 evidence	 etc.	 For	 example,	 in	 Rhetorical	
Structure	 Theory	 (RST)	[22],	 a	 text	 is	 represented	 by	 a	 discourse	 tree	 where	 the	
nodes	correspond	to	sentences	or	clauses	referred	to	as	Elementary	Discourse	Units	
(EDUs),	 and	 the	 edges	 that	 link	 those	 textual	 nodes	 represent	 various	 discourse	
relations	 that	exist	between	 two	EDUs.	Supervised	methods	 that	require	manually	
annotated	discourse	trees	[14]	as	well	as	unsupervised	methods	that	use	discourse	
cues	[23]	 and	 topic	 models	[25]	 have	 been	 proposed	 for	 detecting	 discourse	
relations.		

The	 problem	 of	 determining	 whether	 a	 particular	 semantic	 relation	 exists	
between	 two	 given	 entities	 in	 a	 text	 is	 a	 well-studied	 problem	 in	 the	 NLP	
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community.	 The	 context	 in	 which	 two	 entities	 co-occur	 provide	 useful	 clues	 for	
determining	the	semantic	relation	that	exists	between	those	entities.	Various	types	
of	 features	 have	 been	 extracted	 from	 co-occurring	 contexts	 for	 this	 purpose.	 For	
example,	 Cullotta	 and	 Sorensen	 [52]	 proposed	 tree	 kernels	 that	 use	 dependency	
trees.	Dependency	paths	and	the	dependency	relations	over	those	paths	are	used	as	
features	in	the	kernel.	Agichtein	and	Gravano	[53]	used	a	large	set	of	automatically	
extracted	 surface-level	 lexical	 patterns	 for	 extracting	 entities	 and	 relations	 from	
large	text	collections.	

To	 address	 the	 limitations	 of	 co-occurrence-based	 approaches,	 several	 prior	
work	have	used	contextual	information	[46].	Nikfarjam	et	al.	[45]	annotated	tweets	
for	 ADRs,	 beneficial	 effects	 and	 indications,	 and	 used	 those	 tweets	 to	 train	 a	
Conditional	Random	Field	(CRF).	They	use	contextual	clues	 from	tweets	and	word	
embeddings	 as	 features.	 Their	 problem	 setting	 is	 different	 from	ours	 in	 the	 sense	
that	we	do	not	attempt	to	detect/extract	ADRs	or	drug	names	from	tweets	but	are	
only	interested	in	determining	whether	the	mentioned	ADR	is	indeed	relevant	to	the	
mentioned	drug.	A	 tweet	 can	mention	 an	ADR	 and	 a	 drug	 but	 the	ADR	might	 not	
necessarily	be	related	to	the	ADR.	Huynh	et	al.	[47]	proposed	multiple	deep	learning	
models	by	concatenating	convolutional	and	recurrent	neural	network	architectures	
to	 build	ADR	 classifiers.	 Specifically,	 given	 a	 sentence,	 they	would	 like	 to	 create	 a	
binary	classifier	that	predicts	whether	the	sentence	contains	an	ADR	or	otherwise.	
Their	experimental	results	show	that	convolutional	neural	networks	to	be	the	best	
for	ADR	detection.	This	observation	is	in	agreement	with	broader	text	classification	
tasks	 in	NLP	where	convolutional	neural	networks	have	reported	 the	state-of-the-
art	performance	[48].	However,	one	issue	when	using	CNNs	for	ADR	detection	is	the	
lack	of	labelled	training	instances,	such	as	annotated	tweets.	This	problem	is	further	
aggravated	if	we	must	learn	embeddings	of	novel	drugs	or	rare	ADRs	as	part	of	the	
classifier	training.		

To	 overcome	 this	 problem,	 Lee	 et	 al.	 [49]	 proposed	 a	 semi-supervised	
convolutional	 neural	 network	 that	 can	 be	 pretrained	 using	 unlabeled	 data	 for	
learning	 phrase	 embeddings.	 Bidirectional	 Long	 Short-Term	 Memory	 (bi-LSTM)	
units	were	used	 in	[50]	to	tag	ADRs	and	 indicators	 in	tweets.	A	small	collection	of	
841	tweets	were	manually	annotated	by	two	annotators	for	this	purpose.	Pretrained	
word	embeddings	using	skip-gram	on	400	million	tweets	are	used	to	 initialise	 the	
bi-LSTM’s	word	 representations.	This	 setting	 is	 different	 to	what	we	 study	 in	 this	
paper	because	we	do	not	aim	to	tag	ADRs	and	indicators	in	a	tweet	but	to	determine	
whether	a	tweet	that	mentions	an	ADR	and	a	drug	indicator	describes	an	ADR	event	
related	to	the	drug	mentioned	in	the	tweet.	

	
	

Methods	
In	this	section,	we	present	our	proposed	method	for	detecting	the	causality	between	
a	 drug	 and	 an	 event.	 First,	 in	 Section	Error!	 Reference	 source	 not	 found.,	 we	
formally	 define	 the	 problem	 of	 causality	 detection	 between	 a	 drug	 and	 an	 event	
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from	 social	media	 posts.	 Second,	 in	 Section	Error!	Reference	 source	not	 found.,	
we	 explain	 techniques	 for	 aggregating	 social	 media	 posts	 related	 to	 drugs	 and	
events.	 Third,	 in	 Section	Error!	 Reference	 source	 not	 found.,	 we	 explain	 the	
method	we	use	for	extracting	various	lexical	patterns	that	describe	the	relationship	
between	 a	 drug	 and	 an	 event	 in	 social	 media	 posts.	 Finally,	 in	 Section	Error!	
Reference	source	not	found.,	we	present	a	machine	learning	approach	that	uses	a	
manually	 annotated	 dataset	 containing	 social	media	 posts	 as	 to	whether	 they	 are	
describing	a	relationship	between	a	drug	and	an	adverse	reaction	 for	 learning	 the	
reliability	of	the	lexical	patterns	we	extract	in	Section	Error!	Reference	source	not	
found..	 We	 do	 not	 assume	 any	 specific	 properties	 or	 meta-data	 available	 in	 a	
particular	 type	of	 social	media	platform	such	as	 retweets,	 favourites	 in	Twitter,	 or	
likes	 or	 comments	 in	 Facebook.	 Although	 such	 platform-specific	 meta-data	 can	
provide	 useful	 features	 for	 a	machine	 learning	 algorithm,	 such	meta-data	 are	 not	
universally	available	across	all	social	media	platforms	or	cannot	be	retrieved	due	to	
privacy	settings.	The	fact	that	the	proposed	method	does	not	rely	on	such	meta-data	
is	 attractive	because	 it	makes	our	proposed	method	applicable	 to	a	wide-range	of	
social	media	posts,	and	does	not	limit	it	to	a	particular	platform.	
	
Problem	Definition	
Let	 us	 consider	 a	 social	media	 post	T,	which	 explicitly	mentions	 a	 drug	D	 and	 an	
adverse	reaction	R.	We	model	the	problem	of	detecting	causality	between	D	and	R	in	
T	as	a	binary	classification	problem	where	we	would	like	to	learn	a	binary	classifier	
h(T,D,R;w)	 parametrised	 by	 a	 d-dimensional	 real-valued	 weight	 vector	 w∈ℝd	 as	
follows:		

ℎ 𝑇, 𝐷, 𝑅;𝒘 = 1, if	𝑇	mentions	that	𝐷	causes	𝑅
0, otherwise0        (1) 

	
Here,	we	assume	that	the	social	media	post	T	is	already	given	to	us	and	the	drug	

and	adverse	reaction	have	already	been	detected	in	T.	Detecting	drug	names	can	be	
done	 by	 matching	 against	 pre-compiled	 drug	 name	 lists	 (gazetteers)	 or	 using	
Named	Entity	Recognition	 (NER)	 tools	[29].	A	particular	challenge	when	matching	
drug	names	in	social	media	is	that	the	drug	names	mentioned	in	social	media	might	
not	 necessarily	 match	 against	 the	 drug	 names	 listed	 in	 pharmacology	
databases	[30].	 The	 same	 drug	 is	 often	 sold	 under	 different	 labels	 by	 different	
manufacturers,	and	the	label	names	continuously	change,	which	makes	it	difficult	to	
track	a	particular	drug	over	time	in	social	media.	Similar	challenges	are	encountered	
when	matching	ADRs	in	texts.	Although	the	MedDRA	[42]	hierarchy	assigns	unique	
codes	to	preferred	terms	(PTs)	that	describe	various	ADRs	such	as	“oropharyngeal	
swelling”	 or	 “systemic	 inflammatory	 response	 syndrome”,	 such	 terms	 are	 used	
rarely	 by	 the	 majority	 of	 the	 social	 media	 users	 who	 might	 not	 necessarily	 be	
familiar	 with	 the	 MedDRA	 code	 names	 [55].	 Although	 we	 acknowledge	 the	
challenges	in	detecting	mentions	of	drug	names	and	adverse	reactions,	we	consider	
it	to	be	beyond	the	scope	of	the	current	paper,	which	focuses	on	a	signal	detection	
problem.	
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Social	Media	Aggregation	
Although	the	problem	definition	described	in	Section	Error!	Reference	source	not	
found.	 assumes	 that	 we	 are	 already	 provided	 with	 a	 set	 of	 social	 media	 posts,	
obtaining	a	large	collection	of	social	media	posts	relevant	to	drugs	and	events	can	be	
challenging	for	several	reasons.	

The	vast	majority	of	social	media	posts	are	not	relevant	to	drugs	or	ADRs.	One	
effective	method	 for	 filtering	 out	 such	 irrelevant	 social	media	 posts	 is	 to	 use	 the	
keyword-based	filtering	functionalities	provided	by	the	major	social	media	APIs.	As	
a	specific	example	of	such	an	API,	we	discuss	the	use	of	Twitter	streaming	API	[43].	
the	Twitter	streaming	API	allows	registration	of	a	set	of	keywords	and	if	there	are	
any	 tweets	 that	 contain	 at	 least	 one	 of	 those	 keywords,	 then	 the	 corresponding	
tweet	will	be	filtered	and	sent	to	the	querying	user.	In	our	case,	we	used	drug	names	
and	 PTs	 (and	 their	 lexical	 variants)	 as	 keywords	 to	 filter	 the	 relevant	 tweets.	
Moreover,	 the	 streaming	 API	 also	 enabled	 us	 to	 limit	 the	 tweets	 to	 a	 particular	
geographical	area	or	a	language,	which	is	useful	if	we	want	to	monitor	drugs	that	are	
specifically	used	in	a	particular	country	or	a	region.	

Twitter’s	streaming	API	allowed	us	to	aggregate	tweets	from	two	main	types	of	
data	streams:	public	streams	and	user	streams.	Public	streams	are	publicly	available	
tweets	by	a	specific	group	of	users	or	on	a	topic.	Hash	tags	in	twitter	are	useful	for	
streaming	 such	 public	 tweets	 on	 a	 particular	 topic.	 For	 example,	 by	 including	 the	
hash	tag	#epilepsy,	we	can	retrieve	tweets	that	are	relevant	to	epilepsy.	On	the	other	
hand,	user	streams	allows	us	to	obtain	tweets	from	a	single	twitter	user,	containing	
roughly	 all	 of	 the	 data	 corresponding	with	 that	 user’s	 view	 (timeline)	 on	Twitter.	
Despite	 the	 used	 aggressive	 filtering,	 streaming	 API	 returned	 a	 large	 number	 of	
tweets.	Therefore,	we	stored	the	filtered	tweets	in	a	MongoDB	[44]	database	in	JSON	
format	for	efficient	retrieval.	

	

Lexical	Pattern	Extraction	
To	represent	the	relationship	between	a	drug	and	an	ADR	in	a	tweet,	we	extracted	
lexical	 patterns	 from	 the	 tweet.	 Let	 us	 illustrate	 the	 lexical	 pattern	 extraction	
process	using	the	example	tweet	shown	in	Figure	2.	We	first	identified	the	drug	and	
event	in	the	tweet	and	split	the	tweet	into	three	parts.	The	part	from	the	beginning	
of	the	tweet	to	the	first	mentioned	entity	(either	the	drug	or	event)	is	named	as	the	
prefix,	 the	 part	 from	 the	 first	mentioned	 entity	 to	 the	 second	mentioned	 entity	 is	
named	as	the	midfix,	and	the	part	from	the	second	mentioned	entity	to	the	end	of	the	
tweet	is	named	as	the	postfix.	Prior	work	on	information	extraction	has	shown	that,	
in	English,	the	midfix	provides	useful	clues	related	to	the	relationship	between	two	
entities	 that	 co-occur	 in	 some	 context	[8,	 7].	 Indeed,	 from	 the	 example	 shown	 in	
Figure	2	we	 see	 that	words	 such	 as	 feeling	 that	 appear	 in	 the	midfix	 indicate	 that	
this	 twitter	 user	 is	 experiencing	 a	 side	 effect	 from	 the	 drug.	 However,	 it	 has	 also	
been	 shown	 that	 prefix	 and	 postfix	 terms	 also	 provide	 useful	 information	 when	
determining	 the	 relationship	 between	 two	 entities.	 For	 example,	 we	 see	 that	 the	
word	 took	 that	 appears	 in	 the	 prefix	 in	 the	 tweet	 (Figure	2)	 indicating	 that	 this	
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twitter	 user	 has	 indeed	 taken	 this	 drug	 and	 not	 simply	 reporting	 an	 adverse	
reaction	experienced	by	a	different	person.	 Such	 information	 is	useful	 to	 estimate	
the	 reliability	 of	 the	 relationships	mentioned	 in	 social	media,	 which	 can	 often	 be	
noisy	and	unreliable.	Therefore,	 in	 this	work,	we	use	all	prefix,	midfix,	and	postfix	
sections	 in	 tweets	 for	 extracting	 lexical	 patterns.	We	 experimentally	 evaluate	 the	
significance	of	prefix,	midfix,	 and	postfix	 for	ADR	detection	 later	 in	Section	Error!	
Reference	source	not	found..	

  

 
Figure 2: Extracting lexical patterns from a tweet that describe the an adverse reaction 
(dizziness) caused by a drug (Atenolol). The tweet is split into three parts, prefix, midfix, 
and postfix, and various lexical patterns are extracted from each part. See text for the 
details of the pattern extraction method. Best viewed in colour. 

We	 extracted	 skip-grams	 from	 prefix,	 midfix	 and	 postfix	 separately	 as	 lexical	
patterns	for	representing	the	relationship	between	a	drug	and	an	event.	A	skip-gram	
is	an	extension	of	n-gram.	Unlike,	n-grams	that	require	us	to	consider	all	consecutive	
n	words	 in	 a	 sequence,	 skip-grams	 allow	 us	 to	 generalise	 the	n-gram	patterns	 by	
skipping	 one	 or	 more	 words	 in	 a	 sequence.	 For	 example,	 a	 trigram	 (n=3)	 lexical	
patterns	extracted	 from	the	midfix	shown	 in	Figure	2	would	be	while	ago	and,	ago	
and	now,	and	now	feeling,	now	feeling	very.	

On	the	other	hand,	skip-gram	patterns	also	let	us	match	any	word	(indicated	by	
the	wildcard	 “*”)	 in	 an	n-gram	pattern.	 For	 example,	 the	 skip-gram	pattern	 *	ago,	
which	 is	a	generalisation	of	 the	bigram	pattern	while	ago	will	match	various	other	
time	indicators	such	as	hours	ago,	days	ago,	and	months	ago.	Unlike,	n-gram	patterns	
that	might	not	match	exactly	in	numerous	other	tweets,	skip-gram	patterns	flexibly	
match	different	tweets,	thereby	leading	to	a	dense	feature	space.	More	importantly,	
skip-gram	 patterns	 subsume	 n-gram	 patterns.	 Therefore,	 all	 tweets	 that	 can	 be	
represented	using	n-gram	patterns	can	be	matched	by	the	corresponding	skip-gram	
patterns.	

Considering	 the	 fragmented,	 ungrammatical,	 misspelled	 texts	 frequently	
encountered	in	social	media,	skip-gram	lexical	patterns	provide	a	robust	and	flexible	
feature	representation.	Moreover,	extracting	skip-grams	is	computationally	efficient	
compared	 to,	 for	 example,	 part-of-speech	 tagging	 or	 dependency	 parsing	 social	
media,	 considering	 the	 volume	 of	 the	 texts	 we	 must	 process.	 Note	 that	 the	 drug	
name	or	the	event	are	not	part	of	the	skip-gram	lexical	patterns.	In	other	words,	we	
replace	 the	 drug	 name	 and	 event	 respectively	 by	 place	 holder	 variables	D	 and	R.	
This	 is	 important	because	we	would	 like	 to	generate	patterns	 that	not	only	match	
the	existing	drugs	and	adverse	reactions	but	can	generalise	to	future	drugs	and	their	
(currently	 unknown)	 adverse	 reactions.	 In	 our	 experiments,	 we	 use	 skip-gram	
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lexical	 patterns	 for	 n=1,2	 and	 3	 and	 allowed	 a	 maximum	 of	 one	 wildcard	 in	 a	
pattern.	

	

Learning	Pattern	Weights	
We	built	 a	binary	 classifier	 that	 could	predict	whether	an	event	R	mentioned	 in	 a	
tweet	 T	 alongside	 with	 a	 drug	D	 was	 actually	 related	 to	D.	 As	 explained	 later	 in	
Section	Error!	 Reference	 source	 not	 found.,	 we	 used	 a	 manually	 annotated	
collection	of	tweets	where	each	tweet	contained	a	drug	and	an	event,	and	a	human	
annotator	annotates	whether	the	mentioned	ADR	is	relevant	to	the	drug	(positively	
labeled	instance)	or	otherwise	(negatively	labelled	instance).	We	represent	a	tuple	
(T,D,R)	using	a	feature	vector	φ(T,D,R)	∈	ℝd,	where	each	dimension	corresponds	to	a	
particular	skip-gram	lexical	pattern	we	extracted	following	the	procedure	described	
in	Section	Error!	Reference	source	not	found..	The	value	of	the	i-th	dimension	in	
the	feature	vector	is	set	to	1	if	the	skip-gram	lexical	pattern	li	appears	in	T,	or	zero	
otherwise.	 In	 other	words,	 each	 tuple	 (T,D,R)	 is	 represented	 by	 a	 boolean-valued	
feature	vector	over	the	set	of	skip-gram	lexical	patterns	we	extracted	from	all	of	the	
training	 instances.	Using	 the	above	notation,	 let	us	denote	 this	 training	dataset	by	
Dtrain	=	{(φ(Tn,Dn,Rn)	,yn)}Nn=1.	Here,	(Tn,Dn,Rn)	indicates	the	n-th	training	instance	out	
of	 N	 total	 instances	 in	 the	 dataset,	 and	yn∈{−1,+1} 	indicates	 the	 manually	
annotated	label	to	the	n-th	instance.	

Unfortunately,	 not	 all	 skip-gram	 lexical	 patterns	 are	 equally	 important	 when	
determining	whether	there	exists	a	relationship	between	a	drug	and	an	event.	For	
example,	 in	 Figure	2,	 the	 pattern	 while	 ago	 can	 appear	 in	 various	 contexts,	 not	
necessarily	 in	 the	 context	 where	 an	 adverse	 reaction	 is	 described.	 Therefore,	 we	
assigned	some	form	of	a	confidence	weight	to	each	skip-gram	pattern	before	we	used	
those	 patterns	 to	make	 a	 decision	 about	 the	 relationship	 between	 a	 drug	 and	 an	
event.	For	this	purpose,	we	assigned	a	weight	wi∈	to	each	skip-gram	lexical	pattern	
li.	We	then	predicted	the	relationship	between	D	and	R	in	T	using	the	linear	binary	
classifier	given	by	(2).		

 ℎ 𝑇, 𝐷, 𝑅;𝒘 = 	𝒘T𝝋(𝑇, 𝐷, 𝑅) (2) 

Here,	 w	 ∈	ℝd	is	 a	 d-dimensional	 real-valued	 weight	 vector	 where	 the	 i-th	
dimension	 represents	 the	 confidence	 weight	wi	we	 have	 on	 the	 skip-gram	 lexical	
pattern	li	as	a	reliable	indicator	of	a	positive	relationship	between	D	and	R	in	T.	The	
sign	 function,	 sgn,	 is	 defined	 in	 (3),	 which	 returns	 the	 sign	 of	 the	 inner-product	
between	the	weight	vector	and	the	feature	vector.		

 sgn 𝜃 = 1, 𝜃 > 0
−1, 𝜃 ≤ 0       (3) 
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Given the training dataset Dtrain, our goal was to learn w such that it can be used in (2) to 
predict whether the R mentioned in a T with D was indeed related to D. For this purpose, 
we used linear kernel Support Vector Machines (SVMs) [33] with slack variables ξn≥0. 
Slack variables act in two ways during training. First, slack variables can be used to 
absorb the labelling noise in training instances. Given the scale of the annotation task, it 
is unavoidable that some of the instances will be incorrectly labelled by the human 
annotators, introducing some labelling noise to the training dataset. Second, slack 
variables can shift some of the training instances closer to the decision hyperplane, 
thereby artificially making the dataset to be linearly separable.  

Although	non-linear	kernels	such	as	polynomial,	radial	basis	function	(RBF),	or	
sigmoid	 can	 be	 used	with	 SVMs,	we	 limited	 our	 analysis	 to	 linear	 kernels	 for	 the	
following	 reason.	Under	 the	 linear	 kernel,	 the	weight	 associated	with	 a	 particular	
feature	 can	be	 seen	as	 the	 influence	 imparted	by	 that	 feature	on	 the	 classification	
decision.	 This	 property	 is	 useful	 because	we	 can	 identify	 the	most	 discriminative	
lexical	patterns	that	indicate	a	positive	association	between	a	drug	and	an	event.	We	
can	use	such	lexical	patterns,	 for	example,	to	create	extraction	rules	in	the	form	of	
regular	expressions	to	extract	adverse	reactions	of	drugs	from	social	media.	Because	
we	are	using	a	linear	classifier	in	this	work,	it	 is	important	to	handle	the	instances	
that	violate	the	decision	hyperplane	using	slack	variables.	

The	 joint	 learning	 of	 slack	 variables	 and	 weights	 can	 be	 formulated	 as	 the	
constrained	convex	optimisation	problem	given	by	(4).		

 minimise     C
D
𝒘 D + 𝐶 𝜉HI

HJC  

  𝑦H𝒘T𝝓 𝑇H, 𝐷H, 𝑅H ≥ 1 	
  ξn≥0  (4) 

Here,	C>0,	cost	 factor,	 is	a	hyperparameter	 that	determines	how	much	penalty	we	
assigned	 to	 margin	 violations.	 The	 optimisation	 problem	 given	 in	 (4)	 can	 be	
converted	 into	 a	 quadratic	 programming	 problem	 by	 introducing	 Lagrange	
multipliers.	Efficient	implementations	that	scale	well	to	large	datasets	with	millions	
of	instances	and	features	have	been	proposed	[16].	

Once	we	have	obtained	the	weights	wi	for	the	skip-gram	lexical	patterns,	we	can	
use	(2)	to	predict	the	relationship	between	D	and	R	in	T.	

Results	
We	trained	and	evaluated	the	proposed	method	using	a	manually	annotated	dataset.	
The	 details	 of	 the	 dataset	 are	 presented	 in	 Section	Error!	Reference	 source	 not	
found..	 Next,	 to	 evaluate	 the	 proposed	 method	 we	 compared	 it	 against	 several	
baseline	methods.	 The	 baseline	methods	 and	 their	 performances	 are	 described	 in	
Section	Error!	Reference	source	not	found..	
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Dataset	and	Evaluation	Measure	
To	create	a	training	and	testing	dataset	for	our	task,	we	manually	annotated	a	set	

of	social	media	posts	collected	from	the	Twitter	and	Facebook	between	the	period	of	
August-October	 2015.	Using	 the	 social	media	 aggregation	 techniques	 described	 in	
Section	Error!	 Reference	 source	 not	 found.,	 we	 filtered	 social	 media	 posts	 that	
contained	 a	 single	 mention	 of	 a	 drug	 and	 an	 event.	 The	 number	 of	 tweets	 that	
contain	both	a	PT	and	a	drug	name	was	94,890.	
We	 then	 asked	 a	 group	 of	 annotators,	 who	 are	 familiar	 with	 ADRs	 of	 drugs,	 to	
annotate	whether	 the	 event	mentioned	 in	 the	 social	media	 post	 is	 caused	 by	 the	
drug	mentioned	 in	 the	 same	 post	 (a	 positively	 labelled	 instance)	 or	 otherwise	 (a	
negatively	labelled	instance).		

The	 final	 annotated	dataset	 contained	44,809	positively	 labelled	 instances	 and	
50,081	 negatively	 labelled	 instances.	 We	 perform	 5-fold	 cross-validation	 on	 this	
dataset,	selecting	80%	of	the	positive	and	negative	instances	in	each	fold	as	training	
data,	 and	 the	 remainder	 as	 the	 testing	 data.	 In	 addition	 to	 the	 above	 mentioned	
social	media	posts,	we	set	aside	1000	positively	and	1000	negatively	labelled	social	
media	posts	 as	 developmental	 data,	 for	 tuning	 the	hyperparameter	C.	 In	 total,	we	
extracted	 168,663	 skip-gram	 patterns	 from	 this	 dataset.	 We	 used	 classification	
accuracy	defined	by	(5)	as	the	evaluation	measure.		

	

 Classification	Accuracy	=	 Total	no.	of	correctly	predicted	instances
Total	no.	of	instances	in	the	dataset

 (5) 

	

Discussion	
We	 compared	 the	 proposed	 method	 against	 several	 baseline	 methods	 using	 the	
classification	accuracy	on	the	testing	data	as	shown	in	Table	1.	Next,	we	describe	the	
different	methods	compared	in	Table	1.		
	

Majority Baseline: Note that our training and test datasets were unbalanced in the 
sense that we have more negatively labelled instances than positively labelled 
instances. This situation is natural given that most social media posts might not 
necessarily describe an adverse reaction of a drug even though it mentioned both 
the drug and an event. The training and test datasets we used in our evaluations 
closely simulate this situation. However, if a dataset is unbalanced, then by simply 
predicting the majority class (in our case this is the negative label) can still result in 
classification accuracies greater than 50%. The majority baseline shows the level of 
performance that was obtained by such a majority classifier. 

 
Bag-of-words Classifier: Our proposed method used skip-gram patterns for 

representing social media posts. An alternative approach would be to ignore the 
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word order in the text, and represent a text using the set of words contained in it. 
Specifically, we would represent each text by a binary-valued feature vector where 
the feature values for the unigrams that appear in the text are set to 1, and 0 
otherwise. We then trained a binary SVM classifier with a linear kernel. By 
comparing against the bag-of-words classifier, we can empirically evaluated the 
usefulness of the proposed skip-gram lexical patterns. 

 
Prefix only: This is a scaled-down version of the proposed method that used skip-

gram patterns extracted only from the prefix. By evaluating against the prefix only 
baseline, we evaluated the importance of the information contained in the 
prefix.There are 50021 prefix skip-gram patterns in total. 

 

Midfix only: This is a scaled-down version of the proposed method that uses skip-
gram patterns extracted only from the midfix. By evaluating against the midfix 
only baseline, we evaluated the importance of the information contained in the 
midfix. There are 53057 midfix skip-gram patterns in total. 

 
Postfix only: This is a scaled-down version of the proposed method that uses skip-

gram patterns extracted only from the postfix. By evaluating against the postfix 
only baseline, we evaluated the importance of the information contained in the 
postfix. There are 65585 postfix skip-gram patterns in total. 

 

Prefix+Midfix: In this baseline method we used both prefix and midfix for extracting 
skip-gram patterns. This baseline demonstrates the effectiveness of combining 
contextual information from both the prefix and the midfix. 

Prefix+Postfix: In this baseline method we used both prefix and postfix for extracting 
skip-gram patterns. This baseline demonstrates the effectiveness of combining 
contextual information from both the prefix and the postfix. 

 
Midfix+Postfix: In this baseline method we use both midfix and postfix for extracting 

skip-gram patterns. This baseline demonstrates the effectiveness of combining 
contextual information from the midfix and the postfix. 

 
CNN: We use the state-of-the-art short text classification method proposed by Kim 

[51] to train an ADR classifier. Each word in a tweet are represented using 128 
dimensional word embeddings, where each dimension is randomly sampled from a 
uniform distribution in range [-1,1]. The word embeddings are concatenated to 
represent a tweet. Next, a one-dimensional convolutional neural network (CNN) 
with a stride size of 3 tokens and a max pooling layer is applied to create a fixed 20  
dimensional tweet representation. We use AdaGrad [56] for optimisation with 
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initial learning rate set to 0.01 and the maximum number of iterations is set to 1000. 
Finally, logistic sigmoid unit is used to produce a binary classifier.  

 
Proposed Method: This is the method proposed in this paper. We use prefix, midfix, 

and postfix for extracting skip-gram patterns. 
 

Using	the	development	data	we	found	the	cost	parameter	C	for	each	setting.	For	the	
bag-of-words	classifier	the	optimal	C	value	was	found	to	be	0.01,	whereas	for	all	the	
variants	of	the	proposed	method	it	was	1.0.	

 The classification accuracies obtained for the 5-fold cross-validation task for the above-
mentioned methods are shown in Table 1. From Table 1, we see that the majority 
baseline achieves an accuracy of 63.19%. Our task here is binary classification and to 
compute confidence intervals for accuracies we must compute Binomial confidence 
intervals. There are several ways to compute this and one approach is the use of Clopper-
Pearson confidence intervals [54]. By using confidence intervals, we can easily compare 
the statistical significance between methods, without having to conduct numerous 
pairwise comparisons between different methods. We compared all other methods against 
the accuracy reported by the majority baseline using Clopper-Pearson confidence 
intervals (p<0.001) to test for statistical significance, which is [61.70,65.65]. Statistically 
significant accuracies over the majority baseline are indicated by an asterisk in Table 1. 

 

 
Table 1: Classification accuracy of different baselines and the proposed method. (* 
indicates statistically significant values) 
 

	Method	 Classification	Accuracy	
	Majority	Baseline	 63.19	
Bag-of-words	Classifier	
CNN	

69.31*	
69.26*	

Prefix	only	 66.41*	
Midfix	only	 72.78*	
Postfix	only	 68.08*	
Prefix+Midfix	 74.72*	
Prefix+Postfix	 71.07*	
Midfix+Postfix	 77.10*	
Proposed	method	 77.70*	
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From	 Table	1	 we	 see	 that	 the	 best	 performance	 is	 obtained	 by	 the	 proposed	
method	 using	 the	 skip-gram	 patterns	 extracted	 from	 all	 prefix,	 midfix,	 and	 suffix	
contexts.	 A	 skip-gram	 pattern	 is	 an	 extension	 of	 n-gram	 patterns.	 Unlike	 n-gram	
patterns	that	must	contain	consecutive	tokens,	skip-gram	patterns	can	skip	one	or	
more	tokens	when	representing	a	subsequence.	Among	the	different	context	types,	
we	 see	 that	midfix	 performs	 best,	 whereas	 prefix	 and	 postfix	 performs	 relatively	
equally.	This	 result	 is	 in	agreement	with	prior	work	on	 information	extraction	 for	
English,	 where	 midfix	 has	 been	 found	 to	 be	 useful.	 However,	 to	 the	 best	 of	 our	
knowledge,	 such	 an	 analysis	 has	 not	 yet	 been	 conducted	 for	 ADR	 extraction.	
Interestingly,	 we	 see	 that	 by	 adding	 the	 midfix	 to	 prefix	 and	 postfix	 we	 always	
perform	better	than	if	we	had	used	only	prefix	or	postfix.	The	proposed	method	uses	
all	three	contexts	and	obtains	the	best	performance	among	the	methods	compared	
in	 Table	1.	 In	 particular,	 the	 performance	 reported	 by	 the	 proposed	 method	 is	
statistically	 significant	 over	 both	 the	 majority	 baseline	 and	 the	 bag-of-words	
classifier.	We	see	that	the	CNN-based	ADR	classifier	is	performing	at	the	same	level	
as	the	BOW	classifier.	Compared	to	the	typical	sentence	classification	datasets	used	
to	train	such	deep	learning	methods,	our	twitter	dataset	is	significantly	smaller	and	
this	lack	of	data	might	have	resulted	in	CNN-based	ADR	classifier	to	perform	poorly	
in	our	experiments.	

	
Figure	3.	Histogram	of	the	weights	of	the	features	learnt	by	the	SVM	classifier.	
	
To	 gain	 further	 insights	 into	 the	 skip-gram	 patterns	 that	 are	 identified	 by	 the	

classifier	to	be	useful	for	predicting	whether	there	is	a	positive	relationship	between	
a	 drug	 and	 an	 event	 in	 a	 tweet,	 we	 plot	 the	 histogram	 of	 the	 feature	 weights	 in	
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Figure	 3.	 From	 Figure	 3.,	we	 see	 that	 the	majority	 of	 patterns	 have	 their	weights	
close	 to	 zero,	 and	 an	 almost	 identical	 spread	 in	 positive	 and	 negative	 directions	
centered	 around	 zero.	We	 counted	 60430	 patterns	 to	 have	weights	 exactly	 set	 to	
zero,	meaning	that	approximately	35%	(60430/168663)	of	patterns	are	found	to	be	
uninformative	 by	 the	 classifier.	 A	 randomly	 selected	 subset	 of	 zero-weighted	
patterns	 is	 shown	 in	 Table	 1.	 We	 see	 that	 patterns	 that	 are	 likely	 to	 appear	 in	
tweets,	irrespective	of	the	tweet	is	about	an	ADR	event	are	accurately	pruned	out	by	
the	classifier.	Therefore,	even	if	we	have	a	comparatively	larger	feature	space	to	the	
number	of	training	instances,	this	does	not	necessarily	result	in	overfitting.	
	
Table	2:	A	randomly	selected	sample	of	features	with	zero	weights.	
Prefix	patterns	 Midfix	patterns	 Postfix	patterns	
P+trip+i	 M+bad+idea	 S+over	
P+news+:	 M+a+breakfast	 S+12+hours	
P+dat+lean	 M+if+school	 S+conquest	
P+@rroddger	 M+medica_authorities	 S+please	
P+fussiness+no	 M+convicted+i	 S+bad!	
	

We	 list	 the	 top-ranked	positively-weighted	 and	negatively-weighted	 skip-gram	
patterns	 in	 Table	3.	 From	Table	 3	we	 see	 that	 skip-gram	patterns	 that	 describe	 a	
positive	 relationship	 between	 a	 drug	 and	 an	 ADR	 are	 correctly	 identified	 by	 the	
proposed	method.	For	example,	the	P+took+too	 indicates	that	the	user	has	actually	
took	 the	 drug.	 Moreover,	 we	 see	 many	 negations	 in	 the	 top-ranked	 negatively-
weighted	patterns.	Such	clues	could	be	used	in	several	ways.	First,	we	can	use	these	
clues	as	keywords	for	filtering	social	media	posts	that	describe	a	potential	positive	
relationship	 between	 drugs	 and	 ADRs.	 For	 example,	 we	 could	 run	
disproportionality-based	 signal	 detection	 methods	 using	 the	 disproportionality	
counts	 obtained	 from	 those	 filtered	 social	 media	 posts,	 thereby	 increasing	 the	
reliability	of	the	detection.	Second,	these	clues	could	be	used	to	develop	extraction	
patterns/templates	 that	 can	 be	 used	 for	 matching	 and	 extracting	 previously	
unknown	ADRs	for	novel	or	existing	drugs.		

  

Table	 3:	 Top-ranked	 positively	 (left	 two	 columns)	 and	 negatively	 (right	 two	
columns)	 weighted	 features	 (skip-gram	 patterns)	 by	 the	 SVM.	 P,	 M,	 S	 indicate	
respectively	 prefix,	 midfix,	 and	 postfix	 skip-gram	 patterns.	 For	 bigrams,	 we	 have	
used	’+’	to	separate	the	constituent	unigrams.		
 

	Feature	 weight	 Feature	 weight	
	S+als	 1.2096	 M+commercial	 -1.2304	
M+induced	 1.1314	 P+hate+being	 -1.0398	
P+oh+no	 1.0683	 P+I’m+definitely	 -1.0000	
M+stinks	 1.0000	 P+clumsiness	 -1.0000	
S+.+wooh	 1.0000	 P+hospitalisation	 -1.000	
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M+never+work	 1.0000	 S+lol+fml	 -0.9674	
P+high+off	 0.9006	 S+wopps	 -0.9035	
P+took+too	 0.8449	 P+rt+xanaaxhadme	 -0.8067	
M+was+supposed	 0.8378	 P+don’t+think	 -0.7721	

 	
	

Conclusions	
We	proposed	a	novel	 signal	detection	problem	where	given	a	 social	media	post	T	
that	 contains	 a	 drug	D	 and	 an	 event	R,	 we	would	 like	 to	 determine	whether	R	 is	
related	 to	D,	 or	 otherwise.	We	 have	 then	 proposed	 a	method	 to	 solve	 this	 signal	
detection	problem	utilising	 the	 lexical	contextual	 information	 in	T.	 Specifically,	we	
extracted	skip-gram	patterns	 from	the	prefix,	midfix,	and	suffix	 in	T,	and	trained	a	
binary	 SVM	 using	 a	manually	 labelled	 training	 dataset.	 Our	 results	 show	 that	 the	
proposed	 method	 significantly	 outperformed	 the	 majority	 baseline	 and	 a	 bag-of-
words	classifier.	Moreover,	we	showed	that	the	discriminative	patterns	were	ranked	
at	 the	 top	by	 the	 trained	classifier.	 In	 the	 future,	we	plan	 to	use	 the	automatically	
extracted	 patterns	 to	 develop	 an	ADR	 extraction	method	 for	 previously	 unknown	
adverse	reactions	of	drugs	from	social	media.	
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