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Immobilized on Phosphazene-Functionalized Silica 
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Highlights 

 Catalytic activity increases with size of phosphazene R group (iPr < iBu < Bz). 

 Catalyst activity decreases PMo > PW > SiW with increasing stability of POM. 

 100% DBT and DMDBT conversion observed with most active catalyst PMo/BzPN-SiO2.  

 Easy catalyst/product separation enables catalyst reuse. 

 A reaction scheme proposed for the system. 

cState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 

Dalian, 116023, China 
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Keggin-type polyoxometalates (POM) immobilized on alkylaminophosphazene 

(RPN)-functionalized silica (POM/RPN-SiO2) are new effective single-site solid catalysts for 

oxidative desulfurization (ODS) of diesel fuel under mild conditions in a biphasic system 

composed of a benzothiophene-containing model diesel fuel (heptane) and aqueous 30% H2O2. 

The catalytic activity of POM/RPN-SiO2 was found to be influenced by the choice of POM 

and the amine R group in RPN, decreasing in the order PMo > PW > SiW and Bz > iBu > iPr, 

respectively. The most effective catalyst, PMo/BzPN-SiO2 (PMo = PMo12O40
3-), exhibited 

100% removal of dibenzothiophene from model diesel fuel at 60 oC and ambient pressure and 

could be reused without loss of activity. This catalyst outperforms other recently reported 

heterogeneous catalysts for ODS in similar systems. 13C, 29Si and 31P MAS NMR, FTIR, SEM, 

BET and elemental analysis were used to characterize the structure of surface phosphazene and 

POM species in the new catalysts. 

Keywords: oxidative desulfurization; polyoxometalate; phosphazene; heterogeneous 

catalysis. 

1. Introduction  

Due to increasingly strict environmental regulations, the sulfur content of diesel fuels 

used in transportation vehicles has decreased dramatically from 2000 to 10 ppm over the last 

20 years and further reduction in sulfur content is desired [1-3]. Hydrodesulfurization (HDS) 

is the most widely used technology for removing sulfur from diesel fuels, which is usually 

operated at high temperature (300-400 oC) and pressure (30-130 atm) using alumina-supported 

Co-Mo or Ni-Mo sulfided oxides as catalysts [2,3]. The main drawbacks of HDS are severe 

operating conditions and low desulfurization efficiency in the case of refractory 

benzothiophenes. Alternative desulfurization methods have been investigated in recent years 

including, among others, oxidative desulfurization (ODS) [4,5], extraction [6], adsorption [7] 
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and bio-desulfurization [8]. ODS appears to be the most promising method for deep 

desulfurization of diesel fuel. Typically, it involves liquid-phase biphasic oxidation of 

organosulfur compounds with H2O2 at low temperatures (60-80 oC) and atmospheric pressure 

to yield sulfoxides and sulfones, which can be separated from the fuel by precipitation, 

extraction or adsorption [4,5]. This method is highly efficient for removing refractory aromatic 

sulfur compounds such as thiols and benzothiophenes, which are difficult to remove by HDS 

[3].  

Many ODS catalysts have been reported. Polyoxometalates (POMs), in particular 

Keggin-type POMs, have demonstrated remarkable ODS activity [9-14]. These compounds 

comprise polyanions, XM12O40
m-, composed of oxygen-sharing MO6 octahedra (typically M = 

MoVI, WVI and VV) encapsulating a central tetrahedron XO4
n- (X = PV, SiIV, etc.) [14]. In the 

presence of hydrogen peroxide, these POMs degrade to form active peroxopolyoxometalate 

species (peroxo-POM), e.g., the Venturello peroxo complex, {PO4[WO(O2)2]4}
3- [15]. Peroxo-

POMs are highly active catalysts in various biphasic oxidations with hydrogen peroxide [16-

19]. In these reactions, a phase transfer agent (PTA) is required to transfer the peroxo-POM 

species from the aqueous phase containing H2O2 to the substrate-containing organic or fuel 

phase. Most frequently, quaternary ammonium cations are used as the PTAs in such systems, 

including amino-modified high molecular weight alkene oligomers [19]. 

Cyclic and polymeric phosphazenes are renowned for their chemical and thermal 

robustness. They have been used as high-performance elastomers, fire retardants, polymeric 

electrolytes and in biomedical applications [20,21]. Previously, we have demonstrated that 

alkylaminocyclophosphazenes {(RNH)6P3N3, labelled hereafter as RPN, R= benzyl, iso-butyl 

or iso-propyl} exhibit promising phase transfer properties in POM-catalyzed biphasic 

oxidations with H2O2, including oxidative desulfurization [13,22]. The basic N-sites of the 

cyclophosphazene ring are protonated by heteropoly acids, HnPOM, forming ion pairs, in 
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which the POM anions are effectively encapsulated by extensive hydrogen bonding with the 

protonated RPNs [22]. The lipophilicity of the alkylamino groups in RPN renders the resulting 

POM-RPN aggregates soluble in the organic fuel phase. Moreover, the phase transfer 

efficiency of RPN can be tuned by varying the alkyl group, R [13,22]. 

A major drawback of homogeneous POM catalysts in PTA-assisted biphasic oxidative 

desulfurization is the difficulty of separating these catalysts from the fuel phase after 

desulfurization as the POM-PTA aggregates are highly soluble in the fuel phase. This would 

lead to contamination of fuel with POM. In this regard, heterogeneous ODS catalysts have the 

important advantage of easy catalyst separation from the fuel after reaction [23-27]. Here we 

report a new heterogeneous single-site catalyst POM/RPN-SiO2 for the biphasic oxidative 

desulfurization of model diesel fuel by H2O2, which comprises Keggin POM chemically bound 

to silica surface via alkylaminocyclophosphazene tethers preventing the POM from leaching. 

This catalyst shows higher catalytic activity for the oxidation of benzothiophenes than its 

homogeneous analogue POM-RPN, with the advantage of easier catalyst separation and reuse. 

It is also superior in activity than other recently reported heterogeneous ODS catalysts in 

similar systems [25-27].  

2. Experimental 

2.1. Chemicals 

Benzothiophene (BT, 99%), dibenzothiophene (DBT, 99%), 4,6-

dimethyldibenzothiophene (DMBDT, 97%), heptane (99%), dodecane (99%), 

hexachlorocyclotriphosphazene, benzylamine, isobutylamine, isopropylamine, 30% H2O2, 

KMnO4 (99%), H2WO4 (99%) and heteropoly acid hydrates H3PW12O40 (99%), H3PMo12O40 

(99.9%) and H4SiWO40 (99.9%) containing 20–28 H2O molecules per Keggin unit were 

purchased from Sigma–Aldrich. Aminopropyl-functionalized silica Hypersil APS-2 (0.40 
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mmol g-1 amino group loading (2.0 RNH2 nm-2), 5 µm particle size) was purchased from 

Thermo Scientific. The amount of crystallization water in heteropoly acids was determined by 

thermogravimetric analysis (TGA). 

2.2. Synthesis and characterization of RPN functionalized silica 

Hypersil APS-2 (2.0 g, 0.80 mmol aminopropyl groups), dry toluene (40 mL), 

hexachlorocyclotriphosphazene (P3N3Cl6) (0.8 mmol) and triethylamine (20 mmol) were added 

to a 250 mL two-neck round bottomed flask equipped with a magnetic stirring bar, a reflux 

condenser and a bubbler. The flask was flushed with nitrogen at ambient temperature for 5 min 

(a dry atmosphere is required for the reaction, but not for the work-up). The mixture was then 

heated to reflux (120 oC) under nitrogen with stirring and left for 24 h. After the mixture was 

left to cool to room temperature, primary amine RNH2 (R = benzyl (Bz), iso-butyl (iBu) or iso-

propyl (iPr), 8.0 mmol) in dry toluene (10 mL) was added to the mixture. This was then heated 

to reflux (120 oC) with stirring for 24 h. The faint yellow/brown colored solution was then 

cooled to room temperature forming clear crystals (Et3NH·HCl) and a yellow/brown powder. 

The mixture was filtered and washed with toluene under low pressure to produce a mixture of 

white powder/white crystals. These were transferred to a beaker with methanol (20 mL). The 

resulting creamy/white precipitate was stirred for 10 min and then filtered and washed with 

methanol to give a white powder. The powder was stirred with aqueous KOH (30 mL, 10% 

w/v) for 5 min to free any remaining amines from their chloride salts, filtered under low 

pressure, washed with distilled H2O and dried under vacuum in a desiccator. 

iBuPN-modified Hypersil APS-2 (iBuPN-SiO2). Elemental analysis calcd (%) for 0.12 

mmol g-1 loading of iBuPN: C 3.13, N 1.55, P 1.16; found: C 3.69, N 1.87, P 1.15; FTIR (KBr 

powder, Hypersil APS-2 background): 3335 cm-1 (νs N-H), 2963 cm-1, 2876 cm-1 (C-Halkyl), 

1466 cm-1, 1406 cm-1 (C-Calkyl), 1114 cm -1(νs P-N); δ 31P DE (Direct-Excitation with 1H high 

power decoupling) NMR (161.9 MHz, 12 kHz MAS (Magic Angle Spinning)): (R’/R” = Pr or 
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iBu), 18 and 14 ppm {P(NHR’)NHR”}, 9 and 4 ppm {P(=O)NHR’}, -3 ppm (PO2); δ 29Si CP 

(Cross-Polarization) NMR (79.4 MHz, 10 kHz MAS): -59 ppm (T2), -67 ppm (T3), -102 ppm 

(Q3), -111 ppm (Q4); δ 13C CP NMR (100.5 MHz, 10 kHz MAS): 49, 30 and 19 ppm (iBuNH), 

43, 25 and 10 ppm (PrNH); iBuPN loading was found to be 0.12 mmol g-1 determined by P 

content from ICP analysis.  

BzPN-modified Hypersil APS-2 (BzPN-SiO2). Elemental analysis calcd (%) for 0.14 

mmol g-1 loading of BzPN: C 5.71, N 1.76, P 1.30; found: C 5.58, N 1.88, P 1.32. FTIR (KBr 

powder, Hypersil APS-2 background): 3403 cm-1 (νsym N-H), 3248 cm-1 (νs N-H broad), 3028 

cm-1 (C-Harom), 2849 cm-1 (C-Halkyl), 1664 cm-1, 1496 cm-1 (C=Carom), 1448 cm-1 (C-Calkyl), 1274 

cm-1, 1107 cm-1 (νs P-N), 878 cm1 (P-O), 731 cm-1, 699 cm-1 (C-H, arom); δ 31P DE NMR 

(161.9 MHz, 12 kHz MAS): (R’/R” = Pr or Bz),  19 and 14 ppm {P(NHR’)NHR”}, 5 ppm 

{P(=O)NHR’}, -3 ppm (PO2); δ 29Si CP NMR (79.4 MHz, 10 kHz MAS): -59 ppm (T2), -67 

ppm (T3), -102 ppm (Q3), -111 ppm (Q4); δ 13C CP NMR (100.5 MHz, 14 kHz MAS): 142, 

128 and 45 ppm (BzNH), 43, 25 and 10 ppm (PrNH); BzPN loading was found to be 0.14 

mmol g-1 determined by P content from ICP analysis.  

iPrPN-modified Hypersil APS-2 (iPrPN-SiO2). Elemental analysis calcd (%) for 0.14 

mmol g-1 loading of iPrPN: C 3.02, N 1.76, P 1.30; found: C 3.17, N 1.73, P 1.29. FTIR (KBr 

powder, Hypersil APS-2 background): 3333 cm-1 (νsym N-H), 3225 cm-1 (νsym N-H broad), 2971 

cm-1, 2880 cm-1 (C-Halkyl), 1466 cm-1, 1409 cm-1 (C-Calkyl), 1310 cm-1 (νs P-N). 896 cm-1 (P-

O), 718 cm-1, 650 cm-1, 626 cm-1; δ 31P DE NMR (161.9 MHz, 12 kHz MAS): (R’/R” = Pr or 

iPr),  18 and 12 ppm {P(NHR’)NHR”), 5 ppm {P(=O)R’}, -2 ppm (PO2); δ 29Si CP NMR (79.4 

MHz, 10 kHz MAS): -59 ppm (T2), -67 ppm (T3), -102 ppm (Q3), -111 ppm (Q4); δ 13C CP 

NMR (100.5 MHz, 10 kHz MAS): 43 and 24 ppm (iPrNH), 43, 25 and 10 ppm (PrNH); iPrPN 

loading was found to be 0.14 mmol g-1 determined by P content.  
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PMo/BzPN-SiO2. H3PMo12O40 (0.0332 g, 0.014 mmol), BzPN-SiO2 (0.1 g, 0.014 mmol 

surface BzPN groups), H2O (0.3 mL) and heptane (10 mL) was stirred in a 50 mL beaker at 

ambient temperature and pressure for 30 min. The product, a yellow powder, was then filtered 

under low pressure and washed with heptane. The powder was dried under vacuum overnight; 

it gradually turned yellow-green. Elemental analysis calcd (%) for [PMo]/[BzPN] = 1:1 

mol/mol loading: C 4.55 and N 1.41; found: C 4.37, N 1.55.  FTIR (KBr powder, Hypersil 

APS-2 background): 3577 cm-1 (νsym N-H), 3346 cm-1 (νsym N-H), 1408 cm-1 (C-Calkyl ), 1328 

cm-1 (νs P-N), 1099 cm-1 (P-O), 965 cm-1 (Mo=O), 874 cm-1, 818 cm-1 (Mo-O-Mobridge); δ 31P 

DE NMR (161.9 MHz, 12 kHz MAS): (R’/R” = Pr or Bz), 11 ppm {P(NHR’)NHR”), -3.7 and 

-4.4 ppm (PMo); δ 29Si CP NMR (79.4 MHz, 10 kHz MAS): -59 ppm (T2), -67 ppm (T3), -102 

ppm (Q3), -111 ppm (Q4); δ 13C CP NMR (100.5 MHz, 14 kHz MAS): 140, 128 and 45 ppm 

(BzNH), 43, 25 and 10 ppm (PrNH). 

2.3. Reaction procedure for catalytic testing 

Dodecane (GC internal standard, 0.40 mmol), DBT, BT or DMDBT (0.50 mmol), 

heptane (10 mL), POM (0.0056 mmol) and 30% H2O2 (0.15 mL, 1.51 mmol) were placed in a 

50 mL jacketed glass reactor vessel equipped with a magnetic stirrer, a heat circulator and a 

reflux condenser. The resulting mixture was stirred for 2 min at ambient temperature (~20 oC) 

to activate the catalyst. RPN-SiO2 (0.0056 mmol with respect to RPN) was added to start the 

reaction at the required temperature and stirring speed (60 oC and 1500 rpm unless stated 

otherwise). Reaction rate did not depend on the stirring speed in the range of 1000-1500 rpm, 

which indicates no external diffusion limitation. The conversion of benzothiophenes was 

monitored by submitting aliquots of the organic phase for analysis by gas chromatography 

(GC) using the internal standard method (a Varian Chrompack CP-3380 gas chromatograph 

equipped with a flame ionization detector and a 25 m × 0.32 mm × 0.5 µm BP1 capillary 

column). The mean absolute percentage error in benzothiophene conversion was ≤10%.  
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For catalyst reuse, the initial reaction was run using the above procedure. After reaction 

had reached completion, the mixture was left to settle and the organic and aqueous layers were 

carefully decanted off. The catalyst powder in the reactor vessel was washed with 2 x 5 mL of 

acetonitrile to remove the sulfone product then washed with heptane (5 mL) using a centrifuge. 

The catalyst was dried at ambient temperature overnight. The dried catalyst was added back to 

the reactor along with 30% H2O2 (0.15 mL, 1.51 mmol), dodecane (0.40 mmol), 

benzothiophene (0.50 mmol) and heptane (10 mL) for the next run. 

  

2.4. Techniques 

BET analysis of catalyst samples was conducted on a Micrometrics ASAP 2010 

instrument by N2 physisorption at -196 oC. Samples were pre-treated at 140 oC under vacuum 

for 4.5 h. Fourier transform infrared (FTIR) spectra were recorded in DRIFTS (diffuse 

reflectance infrared Fourier transform spectroscopy) mode on a Nicolet Nexus FTIR 

spectrometer using powdered catalyst mixtures with KBr. Phosphorus content in catalysts was 

determined on a Spectro Ciros ICP-OES analyzer, with samples prepared by digesting 0.02 g 

of a catalyst sample in 1:3 aqua regia (4 mL), which was then made up to 10 mL with distilled 

H2O. 

All NMR experiments were performed on a 400 DSX NMR spectrometer, using a 4 

mm HXY probe in triple resonance mode with the X channel tuned to 31P at 161.9 MHz, and 

Y channel tuned to 13C at 100.5 MHz in 13C CP experiments and to 29Si at 79.4 MHz in 29Si 

CP experiments, respectively. 

31P DE NMR. Experiments were performed at a magic angle spinning (MAS) rate of 12 

kHz using 31P rf (radio-frequency) field amplitude pulses and 1H cw (continuous-wave) 
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decoupling at 83 kHz. 128 to 2048 transients were accumulated with a quantitative recovery 

delay longer than 5 x T1. The chemical shifts were referenced to aqueous 85% H3PO4 at 0 ppm. 

13C CP NMR. Experiments were performed at MAS rates of 10 and 14 kHz. The rf field 

amplitude of 1H 90o pulses and SPINAL64 decoupling were 83 kHz [28]. For 1H to 13C CP 

transfer, the amplitude-ramped rf field for 1H was 60 kHz, while Hartmann-Hahn matched 13C 

rf field was 25-33 kHz at MAS rate of 10 kHz and 30 to 53 kHz at MAS rate of 14 kHz, and 

the contact time was optimized to be 1-2 ms. 5120 to 47104 transients were accumulated with 

a recovery delay of 3 s per transient. The chemical shifts were referenced to CH of adamantane 

at 29.45 ppm [29]. 

29Si CP NMR. Experiments were performed at a MAS rate of 10 kHz. The rf field 

amplitude of 1H 90o pulse and SPINAL64 decoupling was 83 kHz [28]. For 1H to 29Si CP 

transfer, the amplitude-ramped rf field for 1H was 60 kHz, while Hartmann-Hahn matched 29Si 

rf field was 28-57 kHz, and the contact time was optimized to be 9 ms. 20480 to 51200 

transients were accumulated with a recovery delay of 3 s per transient. The chemical shifts 

were referenced to the most upfield signal of Q8M8 at -109 ppm (corresponding to SiMe4 at 0 

ppm) [30]. 

Scanning electron microscopy (SEM) was performed on an FEI Quanta 250 FEG 

Environmental SEM, operating in “low vacuum” mode. This allowed for imaging of non-

conductive samples by filling the sample chamber with a small amount of pure water vapor (at 

100 Pa), which helped dissipate beam induced charge from the sample surface. To image the 

samples, the dry powder silica particles were deposited directly on double-sided carbon 

adhesive discs (Agar Scientific). All images were obtained at low beam energy (5 kV) to avoid 

sample damage and charging effects. 

3. Results and discussion 
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3.1. Phosphazene-modified silica support 

The route for grafting alkylaminocyclotriphosphazenes onto silica is shown in Scheme 

1. First, the reaction of hexachlorocyclotriphosphazene (P3N3Cl6) with Hypersil APS-2 in the 

presence of triethylamine produced the chlorocyclotriphosphazene grafted silica (P3N3Cl6-n)-

SiO2 (where n is the number of grafted aminopropyl linkers; in Scheme 1, n = 1 as an example). 

Subsequent reaction with an 8-fold molar excess of RNH2 yielded the final RPN functionalized 

silica, RPN-SiO2. 

Scheme 1. Grafting RPN onto aminopropyl-modified silica Hypersil APS-2. 

Elemental analysis of the prepared RPN-SiO2 samples is given in Table 1. It provided 

empirical formulae C32.4N9.4P3, C24.8N10.8P3 and C18.9N8.9P3 for BzPN-SiO2, iBuPN-SiO2 and 

iPrPN-SiO2, respectively. This confirms the immobilization of the cyclophosphazenes on the 

silica surface and substitution of the cyclotriphosphazene chlorine with the RNH2 alkylamines. 

The sources of nitrogen atoms in these samples are the N atoms of cyclotriphosphazene rings 

(three N atoms per ring, N:P = 1:1), as well as the Hypersil APS-2 aminopropyl groups and the 

RPN substituent amino groups RNH, each possessing a single nitrogen atom. As there are 

equimolar quantities of P and N present in cyclotriphosphazene rings, the P content was used 

to determine the quantity of nitrogen provided by the ring nitrogen atoms and the RPN loading 

for each RPN-SiO2. The loading of the RPN on the silica surface thus calculated was 0.12 

mmol g-1 for iBuPN and 0.14 mmol g-1 for iPrPN and BzPN. The total concentration of 

aminopropyl linker plus alkylamino substituent (Amine N) equals the difference between the 

total N and the total P content. The ratio of C/Amine N content for each RPN-SiO2 
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approximates the distribution of the primary amino groups (RNH) and aminopropyl linkers in 

each sample (e.g., for BzNH2 and aminopropyl, the C/N ratio is 7 and 3, respectively, and 

equimolar amounts of both groups in BzPN-SiO2 would give a [C]/[Amine N] ratio of 5, such 

as the value that was calculated using the experimental data).        

Further, solid-state 13C, 29Si and 31P MAS NMR, FTIR and elemental analysis were 

used to characterize the structure of surface phosphazene species formed in more detail, as well 

as to monitor the synthesis of RPN-SiO2. The NMR data (Fig. S1 – S4) indicated partial 

hydrolysis of PCl2 groups in the initial stage of RPN grafting (Scheme 1) and the presence of 

phosphazene P=O and P-OH groups in the RPN-SiO2 prepared. This is evidenced by the 

similarity of 31P NMR shifts of the RPN-SiO2 samples with hydrolyzed RPN species in solution 

reported previously [31], which is also supported by elemental analysis. These results are 

presented and discussed in detail in the Supporting Information. Taking the partial hydrolysis 

into account, more realistic structures of RPN grafted on Hypersil APS-2 can be represented 

as shown in Scheme 2 (cf. the idealized structure of RPN-SiO2 shown in Scheme 1). 

   

Scheme 2. Probable surface structures of RPN-modified Hypersil APS-2.  

Fig. 1 shows the SEM images of Hypersil APS-2 and BzPN-functionalized Hypersil 

APS-2 (BzPN-SiO2). The initial Hypersil APS-2 sample exhibits a uniform array of spherical 

particles of ~5 μm particle size. It can be seen that this morphology is preserved in the BzPN-
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functionalized sample, indicating that RPN grafting does not affect the morphology of the 

initial silica support.  

The surface area and porosity of Hypersil ASP-2 and the functionalized supports RPN-

SiO2 are given in Table 2, together with the loading of surface functional groups determined 

by elemental analysis. These data show that RPN functionalization had a relatively small effect 

on the BET surface area due to small RPN loadings, although it slightly reduced the pore 

volume and pore diameter of the samples. Apparently, the RPN groups on the inside of pore 

walls of RPN-SiO2 take up more space inside the pores than the aminopropyl groups of 

Hypersil APS-2, resulting in a decrease in the diameter and volume of pores of RPN-SiO2 

compared to Hypersil APS-2. The N2 adsorption isotherms for Hypersil ASP-2 and BzPN-SiO2 

show a type IV isotherm with a H1 hysteresis loop (Fig. 2). This indicates a mesoporous 

structure of uniformly arranged spherical particles [32,33], in agreement with the SEM data 

(Fig. 1). The adsorption isotherms for iPrPN-SiO2 and iBuPN-SiO2 samples (Fig. S5) also show 

type IV isotherms with H1 hysteresis loops, which indicates that the mesoporous structure of 

the silica support remained intact through the RPN functionalization process. 

3.2. POM immobilized on phosphazene-functionalized silica 

Next, Keggin POMs, namely PW12O40
3- (PW), PMo12O40

3- (PMo) and SiW12O40
4-

 

(SiW), were immobilized onto the RPN-functionalized silica supports using the corresponding 

heteropoly acids as POM precursors (Sect. 2.2). This allowed us to obtain single-site catalysts 

comprising POM active species chemically bound (tethered) to the silica surface and spatially 

separated from each other. These catalysts were then used for the oxidative desulfurization of 

model fuel with H2O2. Among the POM/RPN-SO2 catalysts, PMo/BzPN-SiO2 (PMo/BzPN = 

1:1 mol/mol) showed the best desulfurization performance (see below); this catalyst was 

characterized in more detail by SEM, BET, solid-state NMR and FTIR. 
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Fig. 3 shows the SEM images of fresh and spent PMo/BzPN-SiO2 catalysts, the latter 

was recovered after ODS of DBT (see below). Both catalysts have similar morphologies to 

those of Hypersil APS-2 and BzPN-SiO2 (Fig. 1), which indicates that the loading of PMo and 

desulfurization reaction have little effect on catalyst morphology as confirmed by the surface 

and porosity data for fresh PMo/BzPN-SiO2 catalyst (Table 2). It should be noted, however, 

that fresh PMo/BzPN-SiO2 had a higher quantity of smaller particles attached onto the surface 

as compared to the spent catalyst (Fig. 3). Possibly, the smaller particles were washed out 

during the ODS reaction. PMo/BzPN-SiO2 also displayed a type IV nitrogen adsorption 

isotherm with a H1 hysteresis loop (Fig. S5), similar to those for Hypersil ASP-2 and BzPN-

SiO2 (Fig. 2), which corroborates with the SEM images above suggesting that the catalyst 

particles remained spherical and fairly uniform after PMo loading.  

The 13C CP MAS NMR spectrum of PMo/BzPN-SiO2 (Fig. 4A) shows the typical 

signals from the benzylamino groups (cf. the 13C spectrum of BzPN-SiO2 in Fig. S2), while the 

29Si CP MAS NMR spectrum (Fig. 4B) confirms the presence of T2 and T3 signals (cf. Fig. 

S3), suggesting that the structure of BzPN-SiO2 remained intact after loading PMo. In the 31P 

MAS NMR spectrum (Fig. 4C), two sharp peaks at -3.7 and -4.4 ppm can be assigned to PMo 

and its hydrate [34,35] confirming the presence of intact PMo in the catalyst. The broad peak 

of BzPN in PMo/BzPN-SiO2 is shifted upfield from 14 ppm to 11 ppm as compared to BzPN-

SiO2 (Fig. S2), which suggests protonation of one or two of the phosphazene nitrogens [13].  

The PMo/BzPN-SiO2 catalyst exhibited characteristic peaks of the Keggin anion 

PMo12O40
3- in the FTIR spectrum (Fig. 5) at 962 cm-1 (Mo=O), 873 cm-1 (Mo-O-Mo corner-

sharing) and 794 cm-1 (Mo-O-Mo edge-sharing) [36], which indicates that PMo remained intact 

in the catalyst. The intense peak at 1065 cm-1 (P-O) in the FTIR spectrum of PMo/BzPN-SiO2 

is obscured by the broad silica band at 1000-1300 cm-1. 
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Previously, single-crystal X-ray diffraction has been used to characterize the bonding 

in bulk POM-RPN aggregates [22]. It has been found that the POM structures remain intact 

upon aggregation with RPNs, where the Keggin units are encapsulated by RPNH+ and 

RPNH2
2+ cations through ionic and hydrogen bonding. As 31P MAS NMR (Fig. 4C) and FTIR 

(Fig. 5) indicate that the structure of PMo in PMo/BzPN-SiO2 is intact, we can suggest that 

POM is grafted onto the silica support through ionic and hydrogen bonding with cationic 

BzPNH+ and BzPNH2
2+ species. These cationic species are formed by protonation of BzPN 

with H3PMo12O40 during the preparation procedure.    

3.3. Oxidation of benzothiophenes by H2O2 catalyzed by POM/RPN-SiO2 

Here the prepared POM/RPN-SiO2 catalysts comprising Keggin-type polyoxometalates 

(PMo, PW and SiW) immobilized onto the RPN-functionalized silica support were used for 

oxidative desulfurization of model diesel fuel by H2O2 in a biphasic heptane-H2O system, with 

heptane as a model fuel and benzothiophene (BT, DBT or DMDBT) as an organosulfur 

compound. Most of the work was carried out with DBT because the oxidation of DBT is 

typically employed as a model reaction for testing desulfurization catalysts, hence it is easy to 

compare results with those obtained in different catalyst systems. The desulfurization process 

involved oxidation of benzothiophenes to the corresponding sulfones as shown in Scheme 3 

for the oxidation of DBT. In these experiments, the POM/RPN-SiO2 catalysts were assembled 

in situ by adding POM (as the corresponding heteropoly acid) and RPN-SiO2 separately to the 

reaction mixture to ensure more efficient activation of the POM by hydrogen peroxide prior to 

reaction (Sect. 2.3). 

 

Scheme 3. Oxidation of DBT to sulfone by H2O2. 
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Representative results are given in Table 3. The catalytic activity of POMs in the 

oxidation of DBT was found to decrease of the order PMo > PW > SiW (entries 3-5 in Table 

3, Fig. 6) in agreement with both the relative stability of these POMs to degradation in aqueous 

solution and their oxidation potentials [14,37]. Of these POMs, PMo is the strongest oxidant 

and least stable toward degradation with H2O2, leading to more efficient formation of the active 

peroxo-POM species [14,37]. The same activity trend has been found previously in biphasic 

systems with homogeneous POM catalysts [13]. The reaction with XM/BzPN-SiO2 (X = P, Si; 

M = Mo, W) can be represented by equations (1)-(3) as with homogeneous XM-RPN catalysts 

[13]. The Keggin POM precursor initially degrades in the presence of H2O2 to form the active 

peroxo species (step 1), which oxidizes DBT to sulfone (step 2) and finally regenerates to 

reform the active peroxo species (step 3). Steps (1) and (3) occur in the aqueous phase or at the 

interface, and step (2) in the organic phase. With the least stable POM, PMo, step (1) is likely 

to occur faster than with PW and SiW, which can explain the relative catalyst activity of these 

POMs.  

 

Entries 1 and 2 in Table 3 compare the catalytic activity of PMo/Hypersil APS-2 and 

PMo/BzPN-SiO2 single-site catalysts, which had the same PMo loading, with molecular 

dispersion of PMo Keggin units. As can be seen, PMo/BzPN-SiO2 is a significantly more 

efficient catalyst for the oxidation of DBT than PMo/Hypersil APS-2 (96 and 32% DBT 

conversion at 60 oC in 2 h, respectively). The corresponding initial turnover frequencies for 

these catalysts were calculated to be 1.9 and 0.24 min-1, i.e., PMo/BzPN-SiO2 is 8 times more 

active than PMo/Hypersil APS-2 in terms of turnover rates. This shows that RPN groups in the 
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POM/RPN-SiO2 catalysts are better tethers for catalytically active POM species on silica than 

aminopropyl groups of the parent Hypersil APS-2. This can be attributed to the RPN groups 

that enhance the hydrophobic character of RPN-SiO2 compared to Hypersil APS-2. With 

respect to the RPN groups, the catalytic activity decreases in the order BzPN > iBuPN > iPrPN 

(Table 3, entries 3, 6 and 7; Fig. S6), in line with decreasing the size of the R group. The best 

performance of the BzPN group may be attributed to arene-arene π-π interactions between the 

BzPN benzene ring and benzothiophene molecules, which may enhance the catalytic activity 

by increasing the local concentration of benzothiophene around the active sites. Another 

contributing factor may be the basicity of the phosphazene ring, which is affected by the 

primary amine substituent groups [38]. Increased basicity would strengthen the interaction 

between precursor heteropoly acid and the RPN surface group.  

The reactivity of benzothiophenes was found to decrease in the order DBT > DMDBT 

> BT (Table 3, entries 3, 10 and 12). The same trend has also been observed in homogeneous 

systems [4,5,9,10,13,39,40]. It can be attributed to the electron density on the S atom and steric 

effects of the methyl groups in DMDBT [10]. The electron density on the S atom increases in 

the order BT < DBT ≈ DMDBT, which can explain the lower reactivity of BT as compared to 

DBT and DMDBT. On the other hand, the S atom in DMDBT is sterically hindered by the two 

neighboring methyl groups rendering it less reactive compared to DBT [10].  

As expected, the reaction rate increased with increasing the temperature (Fig. S7). For 

the oxidation of DBT with PMo/BzPN-SiO2 catalyst, the apparent activation energy was found 

to be 47 kJ mol-1 in the temperature range 40 – 60 oC (see the Arrhenius plot in Fig. S8). This 

value is high enough to indicate the absence of significant diffusion limitations in the reaction 

system.  
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Notably, the PMo/BzPN-SiO2 catalyst was found to be more active than its 

homogeneous analogue PMo-BzPN, which has been reported previously [13]. PMo/BzPN-

SiO2 (PMo/BzPN = 1:1) gave 94% DBT conversion in 2 h at 50 oC, whereas PMo/BzPN gave 

only 28 and 49% with an 1:1 and 1:6 PMo/BzPN molar ratio, respectively, under the same 

reaction conditions and at the same PMo loading (Fig. 7) [13]. This may be explained by 

adsorption of DBT onto the surface of PMo/BzPN-SiO2 silica support, which could increase 

the local concentration of DBT around the active catalyst sites. In addition, interaction between 

the active surface groups and DBT may be aided by the flexible aminopropyl tethers between 

silica and BzPN, which increase the mobility of the active peroxo-POM/BzPN units at the silica 

surface.  

The PMo/BzPN-SiO2 catalyst has an important advantage over its homogeneous 

analogue of easy and clean catalyst separation from fuel by simple filtration. The solid 

PMo/BzPN-SiO2 catalyst could be easily recovered and, after washing with acetonitrile or 

toluene to remove the sulfone product, reused at least three times in the oxidation of DBT at 

60 oC, giving 100% DBT conversion after each use. 

The PMo/BzPN-SiO2 catalyst showed higher activity than other heterogeneous 

catalysts that have been reported recently for the oxidation of DBT with hydrogen peroxide in 

similar systems [25-27] (Table 4). For example, Ti(IV) grafted onto silica gives 99% DBT 

conversion to sulfone in isooctane with 10-60% H2O2 at 60 oC in 8 h reaction time [25]. With 

hybrid catalysts comprising Zr(IV) and Hf(IV) oxoclusters in poly(methylmethacrylate) 

matrix, 84% DBT conversion to sulfone with 94% selectivity has been obtained in n-octane 

with 30% H2O2 at 65 oC in 24 h [26]. A polyoxometalate-MOF composite comprising PW11Zn 

and 2-aminoterephthalic acid in n-octane–[BIMIM]PF6 biphasic system at 50 oC gives 70% 

DBT conversion in 4 h and ~100% in 6 h reaction time, however this was obtained using a 50-

fold molar excess of 30% H2O2 over DBT [27]. In this system, the ionic liquid [BIMIM]PF6 
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has been used to extract the product sulfone from the model diesel. In comparison with these 

catalysts, our PMo/BzPN-SiO2 catalyst gave 100% DBT conversion in heptane with 30% H2O2 

at DBT/H2O2 = 1:3 mol/mol and 60 oC in 3 h reaction time to deliver the best result. 

Scheme 3. Reaction scheme for oxidation of DBT by H2O2 catalyzed by POM/RPN-SiO2 in 

two-phase system. 

The proposed reaction scheme for oxidation of DBT in model diesel fuel by H2O2 

catalyzed by POM/RPN-SiO2 is shown in Scheme 3. In the initial step, POM degrades in the 

presence of H2O2 in the aqueous phase to form a catalytically active peroxopolyoxometalate 

species (1) [14]. This species is then heterogenized by interaction with the surface RPN groups 

of the RPN-SiO2 support (2) via ionic and hydrogen bonding. Next, the supported 

peroxopolyoxometalate species oxidize DBT to DBT sulfone (3). The sulfone, poorly soluble 

in heptane and insoluble in water, precipitates out (4). The supported POM, now reduced to an 

oxo species, is regenerated by H2O2 from the aqueous phase to reform the active peroxo-POM 

species (5), thus completing the catalytic cycle. In this multiphase system, intense stirring is 
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essential to facilitate the heterogeneously catalyzed oxidation process. Sulfur-free diesel fuel 

can be separated from the catalyst and sulfone product by filtration once the reaction is 

complete. The sulfone can be separated from the catalyst by solvent extraction (with 

acetonitrile or toluene), and the catalyst can be reused. 

4. Conclusions 

In this work, phosphazene-modified silica supports, RPN-SiO2 (R= benzyl, iso-butyl or 

iso-propyl) were prepared by grafting phosphazenes (RPN) onto commercially available 

Hypersil APS-2 aminopropyl-modified silica. Keggin-type polyoxometalates (PMo, PW and 

SiW) were immobilized onto the RPN-SiO2 supports using the corresponding heteropoly acids 

as precursors to afford single-site POM/RPN-SiO2 catalysts. The prepared POM catalysts were 

tested in a biphasic heptane-H2O system for oxidative desulfurization (ODS) of a model diesel 

fuel (heptane containing benzothiophenes) with hydrogen peroxide as the oxidant. It was 

demonstrated that the most effective catalyst, PMo/BzPN-SiO2, has a higher ODS activity than 

its previously reported homogeneous analogue, PMo-BzPN, with the advantage of easier 

catalyst separation and reuse due to the inherent heterogeneity provided by the phosphazene-

functionalized silica support. This catalyst also outperforms other recently reported 

heterogeneous catalysts for ODS in similar systems. Both the new supports and the best 

catalyst, PMo/RPN-SiO2, were characterized by elemental analysis, BET, SEM, multinuclear 

MAS NMR and FTIR. 
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Table 1 

RPN-SiO2 Total N 

mmol g-1 

C 

mmol g-1 

P 

mmol g-1 

Ring N 

mmol g-1 

Amine N 

mmol g-1
 

RPN 

mmol g-1 

C/Amine N 

Hypersil APS-2 0.40 1.20 - - - - - 

iPrPN-SiO2 1.24 2.64 0.42 0.42 0.82 0.14 3.2 

iBuPN-SiO2 1.11 2.61 0.37 0.37 0.74 0.12 3.5 

BzPN-SiO2 1.34 4.65 0.43 0.43 0.92 0.14 5.0 

Composition of RPN-SiO2 samples. 

Table 2 

Surface and porosity data for Hypersil APS-2 and RPN-SiO2 functionalized supports.a 

Sample RPN loading 

mmol g-1 

SBET
b 

m2g-1 

Pore volumec 

cm3g-1 

Pore diameterd 

Å 

Hypersil APS-2 0.40e 123 0.54 174 

iPrPN-SiO2 0.14 130 0.49 151 

iBuPN-SiO2 0.12 109 0.39 144 

BzPN-SiO2 0.14 116 0.42 143 

PMo/BzPN-SiO2 0.14 122 0.41 135 

a Samples pre-treated at 140 oC under vacuum. b BET surface area. c Single point total pore 

volume. d Average pore diameter. e Loading of aminopropyl groups. 
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Table 3  

Oxidation of benzothiophenes by H2O2 in heptane-H2O system using POM/RPN-SiO2 as 

catalysts.a 

Entry POM/RPN 

mol/mol 

POM RPN Benzothiophene Temp

. oC 

Time 

h 

Conv. 

% 

H2O2 

efficiencyc 

% 

1 1:4 PMo PrNH2
b DBT 60 2 32 22 

2 1:1 PMo BzPN DBT 60 2 96 68 

3 1:1 PMo BzPN DBT 60 3 100 68 

4 1:1 PW BzPN DBT 60 3 70 50 

5 1:1 SiW BzPN DBT 60 3 55 52 

6 1:1 PMo iBuPN DBT 60 3 86 61 

7 1:1 PMo iPrPN DBT 60 3 61 55 

8 1:1 PMo BzPN DBT 50 3 100 68 

9 1:1 PMo BzPN DBT 40 3 81 69 

10 1:1 PMo BzPN BT 60 3 57  

11 1:1 PMo BzPN BT 60 6 90 80 

12 1:1 PMo BzPN DMDBT 60 3 86  

13 1:1 PMo BzPN DMDBT 60 4 100 65 

a POM (0.0056 mmol), 30% H2O2 (0.15 mL, 1.51 mmol), dodecane (GC standard, 0.40 mmol), 

benzothiophene (0.50 mmol) and heptane (10 mL); molar ratio [benzothiophene]/[H2O2] = 1:3, 

[POM]/[H2O2] = 1:270 and [POM]/[benzothiophene] = 1:90; stirring speed 1500 rpm. b 

Unmodified Hypersil APS-2. c Reaction selectivity with respect to H2O2 determined from 

titration of unconverted H2O2 with KMnO4. 
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Table 4 

Catalyst Model diesel DBT/H2O2 

mol/mol 

T 

oC 

Time 

h 

DBT conversion 

% 

Reference 

PMo/BzPN-SiO2 heptane 1:3 60 3 100 This work 

Ti(IV)/SiO2 isooctane 1:5 60 8 99 [25] 

Zr(IV)/PMMAb n-octane 1:3.5 65 24 84 [26] 

PW11Zn-MOFc n-octane 1:50 50 6 100 [27] 

Comparison of heterogeneous catalysts for oxidation of DBT in model diesel fuel with H2O2.
a 

a Biphasic systems comprising a model diesel phase and aqueous H2O2 phase. b Zr(IV) oxoclusters in 

poly(methylmethacrylate) matrix (PMMA). c MOF comprising PW11Zn polyoxometalate and 2-

aminoterephthalic acid in n-octane – [BIMIM]PF6 biphasic system. 
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Figure captions 

Fig. 1. SEM images of Hypersil APS-2 (A, C) and BzPN-SiO2 (B, D); magnification scale 5 

μm for A, B and 20 μm for C, D.  

Fig. 2. Nitrogen adsorption isotherm for Hypersil APS-2 (left) and BzPN-SiO2 (right). 

Fig. 3. SEM images of fresh PMo/BzPN-SiO2 catalyst (A, C) and spent catalysts (B, D) 

recovered after desulfurization reaction; magnification scale 5 μm for A, B and 20 μm for C, 

D. 

Fig. 4. (A) 13C CP MAS (14 kHz), (B) 29Si CP MAS (10 kHz) and (C) 31P DE MAS (12 kHz) 

NMR spectra for PMo/BzPN-SiO2. 

Fig. 5. FTIR spectra of PMo/BzPN-SiO2 (dashed line) and H3PMo12O40 (solid line) (KBr 

powder). 

Fig. 6. Comparison of activity of POM/BzPN-SiO2 catalysts (POM/BzPN = 1:1 mol/mol) in 
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Fig. 7. Comparison of heterogeneous PMo/BzPN-SiO2 (PMo/BzPN = 1:1) and homogeneous 

PMo-BzPN (PMo/BzPN = 1:1 or 1:6) catalysts for oxidation of DBT with H2O2 (50 oC, PMo 
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Fig. 1. SEM images of Hypersil APS-2 (A, C) and BzPN-SiO2 (B, D); magnification scale 5 

μm for A, B and 20 μm for C, D.  
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Fig. 2. Nitrogen adsorption isotherm for Hypersil APS-2 (left) and BzPN-SiO2 (right). 
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Fig. 3. SEM images of fresh PMo/BzPN-SiO2 catalyst (A, C) and spent catalysts (B, D) 

recovered after desulfurization reaction; magnification scale 5 μm for A, B and 20 μm for C, 

D. 
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Fig. 4. (A) 13C CP MAS (14 kHz), (B) 29Si CP MAS (10 kHz) and (C) 31P DE MAS (12 kHz) 

NMR spectra for PMo/BzPN-SiO2. 

 

 

Fig. 5. FTIR spectra of PMo/BzPN-SiO2 (dashed line) and H3PMo12O40 (solid line) (KBr 

powder). 
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Fig. 6. Comparison of activity of POM/BzPN-SiO2 catalysts (POM/BzPN = 1:1 mol/mol) in 

DBT oxidation by H2O2 in heptane-H2O two-phase system (60 oC, POM (0.0056 mmol), 30% 

H2O2 (0.15 mL, 1.51 mmol), DBT (0.50 mmol), heptane (10 mL)). 
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Fig. 7. Comparison of heterogeneous PMo/BzPN-SiO2 (PMo/BzPN = 1:1) and homogeneous 

PMo-BzPN (PMo/BzPN = 1:1 or 1:6) catalysts for oxidation of DBT with H2O2 (50 oC, PMo 

(0.0056 mmol), 30% H2O2 (0.15 mL, 1.51 mmol), DBT (0.50 mmol) and heptane (10 mL)).  
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