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Abstract9

The SIGMA Germanium detector has the potential to revolutionise γ-ray

spectroscopy, providing superior energy and position resolving capabilities

compared with current large volume state-of-the-art Germanium detectors.

The theoretical position resolution of the detector as a function of γ-ray

interaction position has been studied using simulated detector signals. A

study of the effects of RMS noise at various energies has been presented

with the position resolution ranging from 0.33 mm FWHM at Eγ = 1 MeV,

to 0.41 mm at Eγ = 150 keV. An additional investigation into the effects

pulse alignment have on pulse shape analysis and in turn, position resolution

has been performed. The theoretical performance of SIGMA operating in

an experimental setting is presented for use as a standalone detector and as

part of an ancillary system.
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1. Introduction12

The primary aim of the SIGMA (Segmented Inverted-coaxial GerMAnium)13

project is to demonstrate γ-ray tracking and imaging using point contact14

High Purity Germanium (HPGe) technology. SIGMA will be the first p-type15

segmented inverted-coaxial germanium detector to be manufactured. A sim-16

ilar large volume n-type HPGe detector utilising point contact technology17

was proposed in 2011 (1) with a working prototype currently being studied18

at Lawrence Berkeley National Laboratory (2).19

One of the long term objectives is that detectors of this type could be20

deployed as part of the DEGAS HPGe array required for the DESPEC (DE-21

cay SPECtroscopy) experiment (3) at FAIR (Facility for Anti-proton and22

Ion Research). Additionally, this detector would be ideally suited for use as23

a single detector γ-ray imaging device for commercial and industrial appli-24

cations, enhancing performance in areas such as nuclear decommissioning,25

security, environmental monitoring and medical imaging.26

One of the many benefits of using a point like contact is the reduced27

capacitance (∼ 1 pF) of the electrode when compared to that of a standard28

coaxial detector (∼10’s of pF); a result of the reduced physical size of the29

contact. As a consequence, the signals from the point contact will exhibit30

extremely low series noise resulting in energy resolving capabilities superior31

to the current state-of-the-art large volume, segmented germanium detectors,32

an effect which is magnified at low energies. The energy resolution of a similar33

p-type Broad Energy Germanium (BeGe) detector was measured to be 0.534

keV at a γ-ray energy of 59.5 keV and 1.7 keV at an energy of 1332 keV (4).35

The pulse shapes from the detector preamplifier are significantly altered36
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from that of a standard coaxial detector due to the unique electrode config-37

uration and inverted-coaxial design. The chosen configuration increases the38

charge collection time and creates a complex relationship between drift time39

and γ-ray interaction position. Using digitised charge pulses, in addition to40

pulse shape analysis (5) techniques, the interaction position is predicted to41

be localised to <1 mm3 throughout the detector volume, up to 5 times better42

than obtained in current state-of-the-art large volume HPGe detectors such43

as AGATA (6) and GRETINA (7). This combination of energy and position44

resolution has the potential to improve the performance of γ-ray tracking and45

imaging algorithms which utilise the γ-ray interaction position and energy46

to kinematically reconstruct their paths.47

2. Detector Design and Characterisation48

The dimensions of the SIGMA crystal are illustrated in Figure 1, with49

the point contact being referred to as the rear of the detector. The crystal50

measures 70 mm maximum diameter by 80 mm length, with a taper reducing51

the radius of the crystal to 24.5 mm at the front face. The taper starts 2052

mm from the rear of the crystal and tapers uniformly to the front face at53

an angle of 10o. The core measures 10 mm in diameter and extends 5554

mm into the bulk. The core, also known as a bore hole, enables large volume55

detectors to reach full depletion at a few thousand volts. The 6 mm diameter56

p+ point contact is surrounded by a passivation region extending from r = 357

mm→ r = 12 mm as shown in blue in Figure 1.58

The electrical segmentation scheme of the DC coupled outer contacts59

consists of 8 longitudinal rings, 2 concentric segments on the front face, 860
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Figure 1: The SIGMA detector illustrating the dimensions of the crystal with the point

contact shown in red (colour online).

azimuthal sectors, 1 core segment and a point contact on the rear face. Elec-61

trons will be collected by the 19 segments, with the holes being collected at62

the point contact. An illustration of the segmentation scheme is provided in63

Figure 2. The discussion will refer to a cylindrical coordinate system, (r, ϕ, z),64

where r is the radial distance from the central axis, ϕ is the angle around the65

central axis and z is the distance from the rear of the crystal perpendicular66

to r, with the centre of the point contact being (r, z) = (0, 0). The angle67
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ϕ is defined with ϕ = 0o being the start of segment 1 and rotating around68

the segments in order. The 8 azimuthal segments provide angular informa-69

tion (ϕ), with the longitudinal rings used to resolve the depth of interactions70

(z). The addition of the front face segments and the core segments aid in71

resolving the radial position (r) of the γ-ray interaction. From hereon, the 872

azimuthal segments will be referred to as segments 1-8, with segments 9-1673

being the 8 longitudinal rings. The 2 concentric rings on the front face make74

up segments 17 and 18, with segment 19 being the core segment. The de-75

tector is currently being manufactured by MIRION TECHNOLOGIES. The76

impurity profile of the crystal has been measured by the manufacturer to be77

1.02× 1010 cm−3 at the rear of the detector, with an impurity of 0.87× 1010
78

cm−3 at the front face of the crystal. This results in an impurity gradient of79

−1.88×108 cm−4, assuming a linear impurity gradient. The results presented80

are based on simulated work using these values and the physical dimensions81

described above.82

2.1. Field Simulations83

Simulations have been performed to calculate the electric and weighting84

potentials for SIGMA using a geometric adaptation of the FieldGen software85

developed at Oak Ridge National Laboratory (8). These simulations are cru-86

cial for calculating the drifts of charge carriers produced following a γ-ray87

interaction as they move through the crystal and measuring the expected re-88

sponse on each electrode. This software, along with the SigGen software (8),89

are established codes used for various experiments including GRETINA and90

MAJORANA. Simulations were initially performed to predict the voltage at91

which the detector fully depletes, with the results indicating full depletion92
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Figure 2: Schematic diagrams of the SIGMA detector showing the segmentation scheme

with (a) and (b) showing the rear and front face of the crystal respectively. The point-like

contact is coloured in red for illustrative purposes (colour online).

at -2000 V. Based on measurements made by the manufacturer, the recom-93

mended operational voltage was set at -3000 V. The electric potential and94

electric field strength for the SIGMA detector as a function of position have95

been calculated. Parameters included in the simulation were the operating96

voltage, detector geometry and electrode geometry. The results are shown97

for ϕ = 0o in Figure 3. The high voltage is applied directly to the point98

contact, with the outer DC coupled contacts being grounded. Figure 3a99

shows the short range of the electric potential, with the voltage reducing by100

∼50% within 10 mm of the point contact. Figure 3b shows the electric field101

strength, which is the gradient of the electric potential at each point in the102

crystal. As can be seen, the field strength is very low for most of the detector,103
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which when combined with long charge drift paths of the holes to the point104

contact, will result in very long drift times of up to 2µs.105

The concept of a weighting potential (9; 10; 11) is used to calculate the106

instantaneously induced charge, Q, on an electrode, where107

Q = q∆ϕ0 (1)

where q is the charge of the charge carriers and ∆ϕ0 is the change in the108

weighting potential. This enables theoretical detector signals to be produced.109

Therefore, the weighting potential has been calculated for the point contact,110

see Figure 4a and for each segment, examples of which are shown in Figure 6.111

Due to the rotational symmetry of the detector, only 1 weighting potential112

is calculated for the azimuthal segments on the rear of the detector. This113

potential is then used for all 8 segments.114

2.2. Charge Transport Simulations115

The SigGen (8) software has been used to track charge produced follow-116

ing a γ-ray interaction throughout the detector. Inputs to SigGen include117

the fields calculated by FieldGen, polarity, crystal temperature, detector im-118

purity profile and the crystal lattice orientation. The electron drift velocity119

varies significantly as a function of temperature and crystallographic axis,120

with the crystallographic axis affecting the distance between atoms along121

the electric field lines changing for each orientation (12). In the simulation,122

charge is sampled as it drifts through the electric field at a frequency of 1123

GHz, equating to a 1 ns sample size for the resulting charge pulses. For124

consistency, the 1 GHz pulses are downsampled to 100 MHz to match the125
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sampling frequency that will be used by the digitiser cards for all experimen-126

tal measurements, with each result comprising 200 samples.127

The weighting potential is responsible for the shape of the charge pulses,128

with the point contact potential, Figure 4a, showing virtually zero potential129

throughout the detector followed by a large rise near to the contact. This130

short range potential is reflected in the resulting charge pulses, with a sharp131

rise in the pulse amplitude as the charge carriers near the point contact.132

Two example pulses are shown in Figure 4b, with the red and green cir-133

cles in Figure 4a representing the γ-ray interaction positions corresponding134

to the red (solid) and green (dotted) pulses presented in 4b. This clearly135

demonstrates the temporal variation in the point contact pulse as a function136

of γ-ray interaction position. Due to this sharp rising edge, it is much easier137

to differentiate multiple interactions than in a comparable coaxial detector.138

Figure 5 shows all signals produced following a multi site event, with the139

point contact trace shown in red, the secondary collecting electrodes shown140

in green and the image charges highlighted blue. The point contact trace141

clearly shows 3 distinct rises followed by a plateau. This ability to distin-142

guish multiple site events is one of the major advantages of a detector such as143

SIGMA over current large volume HPGe detectors. The difference in pulse144

quality can be seen in Figure 5 with comparative pulses for AGATA available145

in (13). By comparing the point contact signal to the secondary charge col-146

lecting electrodes, the reduced clarity is clear to see, with the larger physical147

size of the outer segments being more representative of the response seen148

in a standard coaxial detector. Figure 6 shows the weighting potentials for149

four example segments with the increased size of the electrode responsible150
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for the increased spread in the weighting potential when compared with the151

point contact, Figure 4. This results in signals being induced on the contact152

at a much greater distance from the contact and explains the gradual slope153

in the charge pulses as opposed to the sharp rise seen in the point contact154

trace. The image charges (blue) shown in Figure 5 are a direct result of155

charge carriers passing through the weighting potentials of each electrode as156

they travel to their terminating electrode. This variation in the weighting157

potential causes a current to be induced on the electrode with the net charge158

returning to zero for non terminating electrodes.159

2.3. Drift Time Distributions160

Pulses provided by SigGen contain exact information regarding the start-161

ing time of the traces. The drift time as a function of position has been162

calculated as the time taken for the trace to rise from 0→ 95% of the pulse163

height. The drift time calculated as a function of (r, z) is presented in Fig-164

ure 7a, with the top and bottom halves showing the distribution at ϕ = 0o165

and ϕ = 45o respectively. For this discussion, only the drift time measured166

on the point contact is considered.167

This plot shows a very strong relationship between z position and drift168

time in the front of the detector, ∼ 25 < z < 80 mm. In the rear of the169

crystal, the isochrone lines rotate and the direction of the gradient changes170

from longitudinal to radial. The variation between the two halves is due to171

the change in the crystallographic axis as a function of ϕ and can be seen more172

clearly in Figure 7b, which shows the variation in drift time as a function of ϕ173

for a γ-ray interaction at (r, z) = (20, 20) mm. A clear oscillating behaviour174

is seen as the crystallographic axis varies as a function of ϕ, with a variation175
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of ∼6% seen in the drift time.176

To understand the drift paths of the electrons in this detector, the elec-177

tron collecting electrode, outer hit segment, is plotted as a function of γ-ray178

interaction position in Figure 8. The relative sizes of each of the segments in179

Figure 8 are a direct result of the relative strengths of the weighting poten-180

tials shown in Figure 6 and provide a clearer image of the relative influence181

each electrode has on the charge collection path. The scale of the core contact182

is clear to see, with most interactions occurring near the central axis of the183

crystal terminating on the core. However for interactions occurring far from184

the central axis of the detector, there are clearly defined bands representing185

each of the outer contacts.186

3. Position Sensitivity187

The performance of tracking and imaging algorithms hinge on accurate188

measurement of γ-ray interaction energies and positions (14). With the ex-189

cellent energy resolution of HPGe point contact detectors, the success of190

SIGMA as a tracking and imaging detector will depend on the position reso-191

lution attainable. To study this, simulated signals have been generated and192

processed through a grid search algorithm to reconstruct the initial γ-ray193

interaction position. The grid search algorithm utilises a simple χ2 min-194

imisation technique based on comparison between the charge pulses and a195

simulated pulse shape database; more detail is provided in section 3.1. A196

pulse shape database contains simulated charge pulses as a function of po-197

sition for use in pulse shape analysis, with the database used in this work198

having a grid size of 1 mm x 3o x 1 mm on a (r, ϕ, z) grid. As expected,199
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the grid search algorithm perfectly reproduces the γ-ray interaction posi-200

tion when using the pulses directly generated from SigGen. In a laboratory201

environment, sources of noise and processing errors are introduced into the202

charge pulses. Examples of these effects, such as electronic noise and pulse203

alignment error, have been added to the simulation, with the effects of each204

on the final position resolution calculated.205

3.1. Position Reconstruction206

A grid search (GS) algorithm has been used to reconstruct the γ-ray207

interaction position. Tests were performed to study the most effective method208

of calculating the χ2, in terms of both performance and time, where χ2 was209

calculated as210

χ2 =
∑
i,j

|Smi,j − Ssi,j|2 (2)

where Smi,j and Ssi,j represent the modified and simulated pulses summed over211

the number of segments, i , and the number of samples, j . For the χ2 study,212

three sets of search parameters, GS 1 → GS 3, were tested, with each set213

defined as214

• GS 1 → Point contact + core + hit segment215

• GS 2 → GS 1 + 8 × azimuthal segments216

• GS 3 → All 19 segments + point contact217

where the hit segment is defined as the electrode on which the electrons218

terminate. Since the size of the charge cloud in not accounted for in these219
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simulations, there is no charge sharing and so there is only 1 hit segment for220

a single interaction. For the case when the electrons terminate on the core221

or one of the 8 azimuthal segments, the algorithm discards the ‘hit segment’222

trace from the calculation to prevent double counting.223

For the study, a simulated pulse is taken for a single position, with a224

random Gaussian noise added to each sample to simulate the electronic noise,225

defined by the root mean square (RMS). The χ2 is then calculated against226

each pulse in the basis, with the lowest value of χ2 taken as the most likely227

interaction position. The difference between the known interaction position228

and the measured position is then recorded. This process is repeated for229

each position in the detector on a 1 mm × 1 mm × 3o grid. For this work230

to be valid, all knowledge of the input pulse must be unknown prior to the231

grid search. Since all of the effects added to the pulses are based on random232

distributions, this condition holds true and all post processing is done with233

no knowledge of the initial pulse.234

To simulate the electronic noise, a random Gaussian distributed noise was235

added to each sample in the chosen pulse. Based on experimental measure-236

ments from a BEGe detector (4), the electronic noise was measured to be ∼1237

mV peak-to-peak. For white noise, the relationship Vrms = 6.6 × Vpp holds238

true such that only 0.1% of the time, the RMS noise, Vrms, will exceed the239

nominal peak-to-peak value, Vpp, (15), giving a typical RMS noise of 0.15240

mV for the point contact. When processed through a typical 100 mV/MeV241

charge sensitive preamplifier, the average noise is ∼1.5 keV which gives a242

normalised RMS noise of ∼1% when assuming a γ-decay of Eγ = 150 keV243

and 2% at 75 keV. For the study using normalised pulses, the value of 2% at244
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75 keV was used as the standard deviation to demonstrate the performance245

capabilities at low energies, with the mean centred at 0. For this initial study,246

the RMS noise was set to be equal on all segments, with a more realistic ap-247

proach to segment noise applied in section 3.2, where the effects of varying248

RMS noise is discussed in more detail.249

The results are presented numerically in Table 1, showing the average250

variation in search time in addition to the deviation from the known position251

for ϕ, r and z. The results clearly show that the mean deviation for all 3252

parameters decrease significantly from GS 1 → GS 2 with a smaller change253

occurring from GS 2 → GS 3. In addition, the time taken to search a single254

position increases more than 10 fold from GS 1→ GS 3. The major difference255

between the results arises from the improved reconstruction of the ϕ value,256

with the azimuthal segments containing much of the angular information.257

To remove the effects of a bad measurement, each position was simulated 10258

times, with the average deviation presented.259

The ϕ improvement from GS 1 → GS 2 can be accounted for by the260

addition of extra azimuthal information. However, the improvement in r261

and z resolution arises because the weighting potential for the core segment262

is so large that there exists a significant probability that the core segment263

is also the hit segment. In this scenario, the GS 1 χ2 is calculated using264

information from only 2 signals, increasing the effects of one noisy trace on265

the overall reconstruction. With the addition of more segments in GS 2 and266

GS 3, the effects of this on the χ2 calculation are reduced.267

Although the data is all analysed offline, the ultimate goal of this project268

would to be capable of utilising Pulse Shape Analysis (PSA) techniques in269
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Grid Search Event Processing Mean Deviation (o / mm)

Time (s) r ϕ z

GS 1 0.057 0.0147 1.7919 0.0225

GS 2 0.256 0.0051 1.2515 0.0060

GS 3 0.499 0.0025 1.2045 0.0026

Table 1: Variation in run time per event and position resolution for 3 different combinations

of segments when running the grid search algorithm. GS 1 compared the point contact,

core and hit segment signals, with GS 2 including the 8 azimuthal segments and GS 3

searching over all segments. For all runs, the normalised RMS noise was set at 0.02,

equivalent to a 75 keV γ-ray

an online environment, hence the importance of the search time per event.270

As seen before, there exists a strong relationship between position and271

drift time to the point contact. Using this, the drift time can be calculated272

from the test pulse, with a cut applied to the database. To calculate the drift273

time, the start of the pulse, t0, must be accurately determined.274

Since the point contact pulse remains in the noise for much of its drift,275

the t0 algorithm developed utilises the secondary charge collecting electrode276

output. Due to the proximity of the γ-ray interaction to the secondary277

collecting electrode, the output pulse exhibits a sharp initial rise enabling278

the starting point of the drift to be more accurately determined. This can279

be seen in the first interaction in Figure 5. To further exaggerate the initial280

rise and also dampen the baseline noise, a cumulative pulse was taken with281

each bin comprising of an accumulation of all prior bins. From here, a simple282

threshold was set to test that the pulse was starting to rise, in addition to a283

check to ensure that the following samples were also rising.284
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Once measured, a drift time cut of dt ± 100 ns can be applied to the285

grid search, reducing the event processing time significantly. When used286

in combination with the GS 3 search parameters, the event time reduced287

from 0.499 s → 0.054 s, with the r, ϕ and z resolution remaining the same.288

A narrower time cut would further reduce the event time, however a more289

accurate t0 calculation would be necessary to ensure the drift times were290

calculated correctly.291

In addition to the drift time cut, a cut on the electron collecting electrode292

can be applied to further improve the search time. As seen in Figure 8, for293

each segment there exists a small section of the detector wherein a γ-ray294

interaction would result in a termination at said electrode. This can be used295

to reduce the search space for the grid search algorithm. Combining this296

with the drift time cut described above reduces the search time per event297

from 0.054 s→ 0.019 s whilst maintaining the position resolution values seen298

in the GS 3 results. For all subsequent studies, the GS 3 search parameters299

are used in addition to the drift time and hit segment cuts.300

3.2. Effects of RMS Noise301

One of the main benefits of this detector is the extremely low noise in-302

duced on the signals at the point contact. As mentioned earlier, similar point303

contact detectors experience peak-to-peak noise values of ∼1 mV, equating304

to a normalised RMS noise of ∼1% at 150 keV. The effects of varying the305

noise level from 0→ 10% at 150 keV have been studied, with the results for306

the average deviation presented in Table 2. In addition, a position by posi-307

tion scan is illustrated in Figure 9. The percentage of events reconstructed,308

εrecon, to within 1 mm is presented for each study, with the results for 1 and309
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2% RMS noise showing excellent reconstruction capabilities with 100% of310

events reconstructed to within 1 mm of the known interaction position.311

Normalised Mean Deviation (o / mm) εrecon(%) FWHM (mm)

RMS Noise r ϕ z < 1 mm

0.00 0.0000 0.000 0.0000 100.0 0.00

0.01 0.0004 0.576 0.0004 100.0 0.11

0.02 0.0025 1.205 0.0026 100 0.28

0.05 0.0696 3.535 0.0531 93.0 1.33

0.10 0.3277 7.637 0.2359 40.6 3.52

Table 2: List of mean values from RMS noise simulations, showing average deviation in r,

ϕ, z for the detector as a whole. The percentage of events reconstructed εrecon, to within

1 mm is also shown.

The effects of RMS noise are clear, with each increase in noise level result-312

ing in a significant change in the average deviation for all three components.313

By examining each event individually, the 3-dimensional Cartesian position314

variation can also be measured, providing a value more comparable to pub-315

lished results for current state-of-the-art detectors (6; 7). For each event, the316

Cartesian 3-vector between the known position and the reconstructed posi-317

tion was calculated as
√

∆x2 + ∆y2 + ∆z2, where ∆x,∆y and ∆z represent318

the deviation in each of the respective dimensions. The FWHM was then319

calculated as320

FWHM = 2.35σ = 2.35

√∑
N ∆2

x,y,z

N
(3)

where ∆x,y,z is the Cartesian 3-vector. The position resolution was calculated321
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as 0.105, 0.281, 1.332 and 3.515 mm for 1, 2, 5 and 10 % RMS noise respec-322

tively. This is substantially better than the current ∼4.5 - 5 mm attainable323

by AGATA at 1.3 MeV (6) and GRETINA at 2 MeV (7).324

Figure 9 shows the distribution of the erroneous reconstructions follows325

the segmentation scheme seen in Figure 8, with the increase in RMS noise326

showing this effect more clearly. The addition of a segment cut results in a327

larger error near the centre of segments, with the errors on the boundaries328

significantly reduced. This plot also shows the much greater resolution in z329

than r, with the cut on drift time providing a clear z position for the front330

end of the detector. The r resolution arises in part due to the cut on segment,331

with the core segment showing the worst resolution in r as a consequence of332

its size. The resolution in ϕ is poorest near r = 0 mm, something that is333

likely caused by the much smaller deviation in drift time as a function of ϕ334

at small drift times, hence more similar charge pulses in these regions. It335

is also worth noting that larger errors in ϕ in these regions have less of an336

effect on the 3-dimensional deviation due to them being closer to the central337

axis. This is related to the fact that the distance, d, between two positions338

separated by angle, ϕ, at a constant radius, R, is given by d = 2Rsin(ϕ
2
).339

When reconstructing γ-ray tracks within a detector, the majority of in-340

teractions will be low energy Compton scatters in the 100 - 500 keV range,341

which when reconstructed sum to equal the initial γ-ray energy. This study342

shows that even at low energy, SIGMA will be capable of providing excep-343

tional position resolution. For higher γ-ray energies, the relative contribution344

of the noise is reduced and hence these values will be improved upon.345

One thing to consider when performing a realistic simulation is the fact346
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that electron collecting electrodes, segments 1-19, are much larger in size347

than the point contact. This increased size results in a higher capacitance348

and hence increased series noise. To account for this, a realistic peak-to-peak349

noise, ranging from 5mV→ 15 mV has been added to each segment according350

to their relative sizes. When applying this to the 1% RMS noise simulation351

presented in Table 2, the FWHM for the position resolution decreases from352

0.11 → 0.41 mm.353

3.3. Effects of Pulse Alignment354

One experimental challenge to PSA lies in the ability to accurately de-355

termine the start time of the pulse, t0. As seen earlier in Figure 7, the drift356

time to the point contact contains information regarding interaction position.357

However, due to the compact nature of the point contact weighting poten-358

tial, the pulses remain near the baseline for much of that drift as shown in359

Figure 4. This increases the difficulty in determining t0.360

To study the effects of incorrectly identifying t0, a random shift was361

assigned to each test pulse within the range -n...n, where n is the maximum362

number of samples to be shifted. The results for the mean response to an363

alignment shift of 0 → 4 samples, equating to 0 → 40 ns, is presented in364

Table 3, with Figure 10 showing the variation in the reconstructed position365

relative to the true position at ϕ = 0o for each position in the detector on a366

1× 1 mm grid. To isolate the effects of ∆t0, the RMS noise was set to 0 for367

this study.368

Again, the results for ∆t0 = 0 show perfect reconstruction, with a ∆t0369

of ±10 ns having a significant effect on the reconstruction efficiency with370

57.9% of the γ-ray interactions reconstructed to within 1 mm of the known371
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∆t0 (ns) Mean Deviation (o / mm) εrecon(%) FWHM (mm)

r ϕ z < 1 mm

0 0.000 0.000 0.000 100.0 0.00

10 0.327 5.597 0.253 57.9 3.10

20 0.698 7.744 0.573 40.2 4.85

30 0.968 9.228 0.859 30.7 6.11

40 1.208 10.138 1.132 24.9 7.18

Table 3: List of mean deviation as a function of ∆t0, showing average deviation in r, ϕ

and z for the detector as a whole. The percentage of events reconstructed εrecon, to within

1 mm is also shown.

interaction position. The 3-dimensional FWHM is also reduced to 3.10 mm372

for ∆t0 = 10 ns, demonstrating the importance of correctly aligning experi-373

mental pulses with those in the database. As can be seen, a single channel374

misalignment in a 100 MHz digitiser output signal has the same effect as375

increasing the RMS noise to 10 %.376

The importance of this effect is clear to see, with the variation in r, ϕ377

and z more than doubling from ∆t0 = 10→ 40 ns. The percentage of events378

reconstructed to within 1 mm more than halved from ∆t0 = 10→ 40 ns. The379

3-dimensional position resolution is also significantly reduced at ∆t0 = 40 ns380

with FWHM = 7.18 mm.381

To combat this, additional searches can be added to the grid search algo-382

rithm, whereby the pulses in the database are compared with the test pulse383

using multiple different alignments. Applying this methodology to the worst384

case studied, ∆t0 = 40 ns, with the search space expanded to cover shifts of385

up to ±2 bins, the 3-dimensional position resolution improved from 7.18 →386
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5.04 mm.387

3.4. Expected Position Resolution388

SIGMA will have a large variety of spectroscopic applications both as a389

standalone detector and as part of an array in conjunction with ancillary sys-390

tems. The performance of SIGMA as a tracking and imaging system will vary391

in each case with the increased information available from ancillary detec-392

tors aiding in SIGMA’s position reconstruction capabilities. Two scenarios393

are presented here; SIGMA as a standalone system and SIGMA in conjunc-394

tion with an implantation detector as would be the case at the DESPEC395

experiment at FAIR. The advantages of using an implantation detector lie396

in the ability to perform temporal correlations between implantations in the397

ancillary and interactions in SIGMA. This should enable proper alignment398

of pulses to within a single digitiser sample, i.e. <10 ns.399

For a more thorough understanding of the performance of SIGMA in400

real situations, the effects described in Section 3 must be collated using401

realistic values for each scenario. To create the realistic test pulses, a peak-402

to-peak noise of 1 mV was added to the point contact signal of each pulse. In403

addition, peak-to-peak noise ranging from 5→ 15 mV was added to segments404

1-19. Simulations are presented fo initial γ-ray energies of 500 keV and 1405

MeV. In addition to the series noise, a pulse alignment error was included406

to represent the expected errors for each of the 2 scenarios studied. For407

standalone SIGMA, a pulse alignment error of ±30 ns was used with a value408

of ±10 ns used for the simulations with an ancillary detector. In all studies,409

the pulses were processed through the GS 3 algorithm with cuts placed on410

both the drift time and hit segment with the search space extended to cover411
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t0 ± 2 s.412

The results are presented in Table 4 showing the mean deviation in r, ϕ413

and z, along with the FWHM of the Cartesian 3-vector between the known414

and reconstructed positions. As a standalone detector, SIGMA will be capa-415

ble of providing an exceptional position resolution of 4.54 mm at 500 keV. and416

4.37 mm at 1 MeV. These values are significantly improved when SIGMA is417

paired with an ancillary detector capable of improving the t0 determination418

of the pulses. As seen in Table 4, the FWHM for SIGMA with an ancillary419

detector is 0.65 mm at 500 keV and 0.33 mm at 1 MeV. These values would420

represent an improvement over current large volume germanium detectors.421

One note regarding these results is the fact that the simulations do not ac-422

count for the finite size of the electron charge cloud and the resulting charge423

sharing effects that occur near segment boundaries. These effects will be424

studied in more detail during the experimental phase of this project.425

Eγ(keV) Mean Deviation FWHM

r (mm) ϕ (o) z (mm) (mm)

Standalone
500 0.570 7.612 0.451 4.54

1000 0.535 7.124 0.424 4.37

w Ancillary
500 0.049 1.347 0.036 0.64

1000 0.006 0.533 0.006 0.33

Table 4: List of mean deviation for two configurations of SIGMA at initial γ-ray energies

of 500 keV and 1 MeV showing the average deviation in r, ϕ and z for the detector as

a whole. Also presented is the FWHM for the Cartesian 3-vector between the known

position and the reconstructed position.
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4. Conclusion426

The SIGMA detector should be capable of providing unrivalled position427

and energy resolution, with its unique design enabling major advancements428

over current state-of-the art large volume HPGe detectors used in the track-429

ing arrays AGATA and GRETA. A limiting theoretical estimate suggests a430

3-dimensional position resolution ranging from 0.41 mm at 150 keV to 0.33431

mm at 1 MeV. Performance such as this will aid in drastically improving the432

tracking and imaging capabilities of large volume HPGe detectors. With a433

more accurate and consistent determination of t0, tighter cuts on the drift434

time can be applied, decreasing the time taken to scan a single event in435

addition to providing much tighter constraints on the interaction position.436
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Figure 3: (a) The simulated electric potential and (b) the simulated electric field strength

of the SIGMA detector showing the short range of the electric potential and also the very

weak fields present in the bulk of the crystal (colour online).
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Figure 4: (a) The weighting potential for the point contact and (b) two example point con-

tact charge pulses resulting from γ-ray interaction occurring in different locations within

the detector. The red (solid) and green (dashed) circles in (a) represent the positions of the

two γ-ray interactions that produce the signals shown in (b) with the charge drift paths

overlaid. There exists a clear temporal variation in the signals; a feature that enables

multiple interactions to be more easily identified (colour online).
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Figure 5: Example pulses from a multi site event interacting in the SIGMA detector. The

terminating electrode of the holes and electrons are highlighted in red (dashed) and green

(dot-dashed) respectively, with all image charges shown in blue (solid) (colour online).

Figure 6: Simulated weighting potentials through the central axis for four segments in the

SIGMA detector. Only 1 potential is calculated for the azimuthal segments with the same

potential used for each (colour online).
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Figure 7: (a) Drift time distribution as a function of γ-ray interaction position within

the detector. Overlayed are 50 ns isochrones. The top half of the figure shows results

for ϕ = 0o, with the lower half showing ϕ = 450, with a slight variation seen in the drift

patterns between the two as a result of the change in crystallographic axis with varying

ϕ. (b) Variation in drift time as a function of ϕ for a γ-ray interaction at (r, z) = (20, 20)

mm, showing the ∼6 % peak-to-peak change from 0o → 45o (colour online).
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Figure 8: Illustration of the secondary collecting electrode as a function of γ-ray interaction

position within the detector (colour online).
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Figure 9: Deviation of reconstructed position from true position as a function of RMS

noise, using the GS 3 algorithm in addition to cuts placed on the drift time (± 100 ns)

and hit segment. Deviations for r, ϕ and z are shown in the left, middle and right panels

respectively in units of mm and o (colour online).
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Figure 10: Deviation of reconstructed position from true position as a function of pulse

alignment error, using the GS 3 algorithm in addition to cuts placed on the drift time (±

100 ns) and hit segment. Deviations for r, ϕ and z are shown in the left, middle and right

panels respectively in units of mm and o (colour online).
31



Figure1



Figure2



Figure3



Figure4



Figure 5



Figure6



Figure7



Figure8



Figure9



Figure10



Response to reviewers          Reference: NIMA-D-17-01100 
 
Submitted: “Position Resolution Simulations for the Inverted-coaxial 
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on the submitted article. We are pleased that reviewer 1 has recommended the 
work for publication, following a few small modifications. We would like to respond 
to each of the comments and identify the actions taken to improve the article.  
 
Reviewer 1: 
 
The first reviewer has provided detailed comments, which have been addressed by 
the authors:  
 
1 – Page 2 line 27 :  

“One of the benefits of point-contact detector is the reduced capacitance (1 
pF) of the electrode when compared to that of standard coaxial detector. It 
would be more informative to mention the corresponding capacitance value 
for standard detectors in the manuscript.” 
The only information we have on coaxial detector capacitance has been 
given in confidence therefore exact values cannot be relayed. To provide 
scale “(~10’s of pF)” has been added to the text. 

 
2 – Page 2 line 34 : 

“BeGE is not defined while it is done later on, at line 235. Should be 
corrected.” 
Definition has been removed from line 235 and added to line 34. 

 
3 – Page 3 line 42 : 

“the authors should elaborate more about the location of the position 
interaction within less than a 1 mm. Is this performance expected with any 
pulse shape analysis algorithm or with a specific one? If so this should be 
emphasized.” 
The performance of PSA algorithms will depend upon the variation in 
signal shapes. The algorithm used for this work was a FoM minimisation 
technique but the signal variation in SIGMA is what provides the 
improvement over other HPGe detectors. More advanced algorithms 
should provide at least the same levels of performance. 

 
4 – Page 3 line 44 : 

“Ref.5 corresponds to in-beam position resolution of AGATA whereas ref.6 
is not. I would suggest M. Descovich et al, NIM 533 (2005)535 as the proper 
reference 6.” 
Reference 6 has been replaced throughout the document. 
 

*Response to Reviewers &/or Editor



 
5 – Page 3 line 58 : 

“the passivation region as mentioned in the text, is not clearly seen in 
Figure 1. The authors can easily modify the figure to make it clear for the 
reader.” 
Figure 1 has been altered so that the passivation region is highlighted in 
blue. Text altered correspondingly to alert the reader to this. 

 
6 – Page 5 line 75 :  

“ "segments 17&18 " should correctly written as "segments 17 and 16" ” 
Corrected. 
 

7 – Page 5 : 
“Ref 7 and 8 correspond to the same web page link and hence should be 
merged into a single reference.” 
Corrected. 
 

8 – Page 6 line 93-94 :  
“The operational voltage as measured by the manufacturer is NOT slightly 
higher compared to simulated full depletion. The authors should rephrase 
this sentence and elaborate more regarding about the difference of 1000 
Volts.”  
We agree that this sentence was phrased in a confusing manner and have 
therefore reworded it. 
 

9 – Page 7 line 105 :  
“miss-spelling of upto -> up to” 
Corrected. 
 

10 – Page 8 :  
a) “Fig4 shows two examples of point contact pulses for the chosen 

interaction points. To be consistent with Reference 1,  the authors 
should/could also display the outer segment and core contact pulses. In 
addition, it is stated that due to the sharp rising edge, it is much easier 
to differentiate multiple interactions than in a comparable coaxial 
detector. Is this statement valid for any position of the interactions? If 
one chooses a very close interactions points near the green or the red 
circles, how does the super pulse change? 

 
b) Figure5 shows an example of full trace and it is not clear whether it 

corresponds to the interactions that are displayed in Fig4. In addition, 
Fig5 displays a signal distortion around segment 8 that I don't 
understand. Could the authors elaborate on that?” 

 
c) At line 144, the difference in pulse quality is pointed out but I don't see 

any comparison with another super pulse (for example when using an 
AGATA crystal) that illustrates this quality.” 

 



 
a) The purpose of Figure 4 is to illustrate the temporal variation in the 

point contact pulse as a function of position which does not require the 
core and outer segment pulses. Examples of pulses from all segments 
are shown in Fig 5. 
For nearby interactions, a superposition will occur in the point contact 
trace however the drift time varies significantly over short distances; 
thus enabling the two pulses to be identifiable. The two pulses in 
Figure 4 where chosen so this effect was clearly visible to the naked 
eye and not just identifiable through computer based analysis.  

b) The full trace shown in Figure 5 is for a multi site event, i.e. a single 
photon that has scatter multiple times within the crystal, whereas the 
interactions in Figure 4 are singles used to illustrate the temporal 
variation in the point contact trace as a function of position. They do 
not correspond to the interaction positions shown in red and green. 
The signal distortion in segment 8 is likely a result of multiple charge 
carriers from the multiple interactions (2 x scatter + PE absorption) 
drifting in opposite directions through the weighting potential of 
segment 8. The same effect is seen in all segments to varying degrees, 
however the larger induced charges dilute the visibility of this to the 
naked eye. 

c) Added a reference to S.Akkoyun et al., NIM A668(2012)26 where 
example pulses are presented. 

 
11 – Page 10 : 

“Figure 8 as an extension of the results of Fig.6 is not clear and the final 
collecting electrode versus the position of the interaction is not obvious for a 
general reader. I would suggest and improvement of this section together 
with a correction of typos than one sees on the labels of Fig.8.” 
The section has been reworded to make it more accessible to a general 
audience as described below. The label on Fig.8 has been corrected. 
Original: 
To understand the drift paths of the electrons in this detector, the final 
collecting electrode of the electron is plotted as a function of γ-ray 
interaction position in Figure 8. This plot is an extension of the results in 
Figure 6 providing a clearer image of the relative influence of each 
electrode on charge collection path. The scale of the core contact is clear to 
see, with most interactions occurring near the central axis of the crystal 
terminating the core. However for interactions occurring far from the 
central axis of the detector, there are clearly defined bands representing 
each of the outer contacts.   
New: 
To understand the drift paths of the electrons in this detector, the electron 
collecting electrode, outer hit segment, is plotted as a function of γ-ray 
interaction position in Figure 8. The relative sizes of each of the segments 
in Figure 8 are a direct result of the relative strengths of the weighting 
potentials shown in Figure 6 and provide a clearer image of the relative 
influence each electrode has on the charge collection path. The scale of the 



core contact is clear to see, with most interactions occurring near the 
central axis of the crystal terminating the core. However for interactions 
occurring far from the central axis of the detector, there are clearly 
defined bands representing each of the outer contacts.   
 

12 – Page 10 line 186 : 
“references should be added for the performance of gamma-ray tracking 
versus the accurate measurements of the interaction point positions and 
energies.” 
Added reference to G.J. Schmid, et al.,NIM A430(1999)69-83 which 
explains the effects of both energy and positions resolution on the 
performance of a tracking algorithm used for GRETA. More specifically, 
this paper explains how the errors in the position and energy of the 
gamma-ray corresponds to the errors in the individual parameters used in 
the tracking algorithm.  

 
13 – Page 10 line 191 :  

“a reference for the grid search algorithm is suitable” 
The grid search algorithm used is a simple exhaustive grid search with all 
modifications outlined in the text. The FoM minimisation is a standard 
mathematical procedure.  

 
14 – Page 10 Line 199 :  

“outputted is probably an incorrect word and should be corrected.” 
Changed from “pulses directly outputted by SigGen” to “pulses directly 
generated from SigGen” 

 
15 – Page 11 line 205 : 

“ "A grid search algorithm" to be replaced by " A grid search (GS) 
algorithm " in order to make the reader understanding what is referred to 
as GS1, GS2 and GS3.” 
Altered. 

 
16 – Page 11 line 209 : 

“S^m_ij being the measured pulses over the number of segments is 
confusing since all the work presented in this paper is based on simulated 
data. The authors should correct this.” 
Changed Sm to refer to modified pulses instead of measured. 

 
17 – Page 12 line 228 :  

“1 mm x 1 mm x 3o grid. I Guess this a 1 mm x 3o x 1 mm grid that 
corresponds to (r,phi,z). Is a 3 degrees small enough? What one would 
expect when using 1mm x 1 deg X 1 mm grid basis?” 
That is correct. The effects of using a 1o grid has been investigated and the 
results showed no statistically significant variation from those presented. 
This results from the variation in drift time over 3o being less than the 
drift time variation over 1 mm in R and Z, therefore the gains from a finer 
phi grid are lost in the errors from the R,Z grid. Given the difference in 



computation power required for the smaller grids, it was decided to use 
the larger grid for the study presented. 

 
18 – Page 12 line 236 and 238 :  

“the authors should choose between a single notation for consistency : either 
peak-to-peak or Peak-to-Peak in the entire text.” 
Corrected. 

 
19 – Page 13 line 267 :  

“a reference for the PSA should be added unless the authors refer to the GS 
algorithm.” 
I have added the reference K.Vetter, et al.,NIM A452(2000)223-238 for the 
use of PSA as a means of improving position resolution through the use of 
charge pulses. 

 
20 – Page 14 line 272 :  

“a simple and a more complex t0 algorithm is not clear and should be 
explained in more details. Did the authors investigate the effect of applying 
the Kolmogorov-Smirnov method (EPJA 40(2009)249?” 
The sentence was ambiguous and has been removed. The method used, as 
described in the text, worked sufficiently well for this study and provides 
us with a reference for future work. The method in question was not 
investigated, however such methods may be looked at when we begin 
optimising the PSA process and start to analyse experimental data. 

 
21 – Page 16 line 316 :  

“the reference to the mentioned published results is missing.” 
Reference is to AGATA/GRETINA papers discussed earlier. They have 
been added. 
 

22 – Page 17 line 323 : 
“The comparison of the position resolution as obtained in this work and 
those obtained with AGATA and GRETINA is not consistent. F. Recchia 
paper refers to an energy of 1.3 MeV whereas for GRETINA one refers to a 
2 MeV line.” 
Added the energies of each study to provide clarity to the reader. It is 
expected that higher energy signals will produce better performance due 
to the increased signal-to-noise ratio on the pulses and therefore SIGMA 
will give at least the quoted values or better if a higher energy study were 
to take place.  
 

23 – Page 21 line 412 : 
“unit for t0 is missing” 
          line 417 :  
“full stop is missing between "1 MeV" and "These values" ” 
Corrected. 

 



 
24 – Page 21 Table 4 :  

“when using SIGMA in a standalone mode, a tiny difference is seen in the 
achieved FWHM at 0.5 and 1 MeV (4.54 versus 4.37 mm). However, when 
SIGMA is used with an ancillary detector indeed one notices the 
improvement; but one also gets about 50% difference (0.64 versus 0.33 mm): 
Is there an explanation for this?” 
The effects of the time alignment are much more significant than the 
effects of the factor 2 change in RMS noise from 1 MeV -> 500 keV. Refer 
to the results from the RMS and Pulse Alignment studies for confirmation 
of this. 
 

25 – Conclusion : 
“The conclusion emphasizes the unprecedented position resolution obtained 
with sigma and such this would help AGATA and GRETA tracking rays 
improve their performance. If so, what is the current limitation of point 
contact detector that makes it not usable for AGATA and GRETA yet?” 
As with the AGATA and GRETINA arrays, technical evolution in the 
manufacturing of novel detectors is required. A prototype n-type detector 
is currently under investigation, M.Salathe et. al, NIM A868(2017)19-26, 
and the p-type discussed here is currently being manufactured. Once the 
performance of both detectors are experimentally validated, it is expected 
they will offer a step change in array performance as predicted by the 
work in R.Cooper et. al, NIM A665(2011)25-32 and in this paper. 
 

26 – Figure captions should be revised : 
“For example : Figure 3, the authors should explicitly mention 
calculated/simulated electric potential and calculated electric field 
strength. Figure 9-10, the x axis as labelled 10 20 30 is not appropriate.” 
Corrected. 

 
27 – References : 

“Ref5 : misspelling of F. Recchia  
Ref6 : to be replaced by the suggested one (see above) 
Ref7 and 8 : to be merged in a single reference” 
Corrected. 
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