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Abstract

Robust human pose estimation and tracking plays an in-

tegral role in assistive service robot applications, as it pro-

vides information regarding the body pose and motion of the

user in a scene. Even though current solutions provide high-

accuracy results in controlled environments, they fail to suc-

cessfully deal with problems encountered under real-life sit-

uations such as tracking initialization and failure, body part

intersection, large object handling and partial-view body-

part tracking. This paper presents a framework tailored for

deployment under real-life situations addressing the above

limitations. The framework is based on the articulated 3D-

SDF data representation model, and has been extended with

complementary mechanisms for addressing the above chal-

lenges. Extensive evaluation on public datasets demon-

strates the framework’s state-of-the-art performance, while

experimental results on a challenging realistic human mo-

tion dataset exhibit its robustness in real life scenarios.

1. Introduction

Human pose estimation and tracking refers to the process

of detecting and extracting the positions of the joints of the

human body from, either single or sequences of, RGB and

depth images or 3D point-clouds, in order to reconstruct the

skeletal structure and provide information about body pos-

ture, body motion and human gestures. It is considered one

of the major challenges in the field of Computer Vision and

has been intensively studied in the last few decades by the

computer vision community [23, 22], due to its fundamen-

tal importance in various scientific fields. Pose estimation

and tracking techniques have found usage in a large vari-

ety of technology domains, such as healthcare and robotics,

with robust pose tracking becoming a basic pre-requisite for

assistive service robots aiming towards monitoring human

activities and providing assistance in daily life [19, 21].

Estimating the human pose is an intricate and complex

task. The human body presents high variability in shape,

size and texture, while the articulated joints that make up the

human skeleton offer many degrees of freedom, providing

a large range of motion for each rigid body part. Marker-

based motion capture systems have been effectively used for

body pose estimation and tracking, in controlled laboratory

environments [27]. However, the intricate installation pro-

cess and high cost have prevented the wide adoption of such

systems in real-life applications. As a result, significant re-

search focus has been put towards marker-less techniques,

using consumer-grade RGB and depth cameras [22]. While

most state-of-the-art techniques are reported to achieve high

joint estimation accuracy and real-time performance, they

are usually evaluated using datasets captured under ideal

recording conditions in controlled laboratory environments

(SMMC-10 [15], EVAL [16], PDT [17] datasets). Their ac-

curacy and robustness, however, degrade in real life appli-

cations, where various problems arise, such as body part oc-

clusions due to the presence of obstacles, partial-body views

due to constraints in the available FOV of the camera, sen-

sor noise, interaction with objects etc [26, 29].

The current work aspires to improve the robustness of

human motion analysis in realistic settings, by introducing

a real-time human pose estimation and tracking framework,

which builds upon the articulated SDF-based model pre-

sented in [32] and is extended through a series of comple-

mentary features and mechanisms. The features proposed

herein target specific problems encountered under real-life

monitoring conditions, eventually leading to the develop-

ment of a complete standalone framework suitable for de-

ployment in real life, assistive robot applications.

The rest of the paper is organized as follows. Section 2

provides a summary of the state-of-the-art in the field of hu-

man pose estimation and tracking. Sections 3 and 4 present

the base of the proposed framework’s articulated tracker

along with its complementary tracking features. Sections

5 and 6 describe the framework’s initialization and data

preprocessing steps respectively, Section 7 provides results

from the experimental evaluation of the proposed frame-

work and presents a new realistic human motion dataset and

finally, Section 8 concludes the paper.
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2. Related work

State of the art marker-less human pose estimation and

tracking algorithms tend to fall into two categories. Dis-

criminative approaches use large training datasets and ma-

chine learning techniques in order to map the extracted fea-

tures from the input data to body parts and poses. Genera-

tive approaches, on the other hand, try to match the input

data to articulated body templates by minimizing an ob-

jective function, utilizing various optimization techniques.

There are also hybrid approaches which combine discrim-

inative and generative techniques towards pose estimation

and tracking. While initial implementations relied mainly

on RGB data, the recent development of low-cost high-

accuracy RGB-D sensors has pushed the research commu-

nity towards approaches that utilize the sparse partial-view

depth/3D data that these sensors offer.

Discriminative approaches, also known as single shot

pose estimators, have been successfully used for human

pose estimation, utilizing both RGB and Depth images [22].

They rely on large datasets and machine learning techniques

in order to directly train the conditional probability of a

body part within an image, thus providing robust human

pose estimation from a single frame without requiring any

prior knowledge regarding the human’s position within the

scene. The main drawback of these approaches is the re-

quirement of extremely large and diverse datasets in order

to generate the recognition models, which can be hard to

acquire and train [33]. However, this process needs to be

performed only once.

Towards human pose estimation from RGB images

Bourdev and Malik [4] introduce the concept of “poselets”,

by extracting HOG [8] features, for human body part detec-

tion and Wang et al. [38] further extend it by introducing a

structured hierarchical model for each poselet. Andriluka

et al. [2] utilize a Pictorial Structure Model [13] for hu-

man pose estimation, while in [36, 7, 6] Convolutional Neu-

ral Network-based [20] methods for human pose estimation

are proposed, taking advantage of available large pretrained

networks which can be fine-tuned towards RGB-based body

part estimation.

Utilizing Depth/3D information, Plagemann et al. [28]

propose a novel interest point detector, called “Accumula-

tive Geodesic EXtrema”, which iteratively selects points of

interest by incrementally maximizing geodesic distances on

the surface of the 3D mesh, using Dijkstras algorithm [10].

Shotton et al. [33] use randomized decision trees and forests

for body part detection and treat the body part segmentation

as a per-pixel classification task. Similarly, Pons-Moll et al.

[30] also utilize randomized decision forests, but propose

an alternative training approach by employing the “Metric

Space Information Gain” (MSIG) training objective. Tar-

geting high performance on low-powered hardware, Jung

et al. [18] also employ randomized decision trees for pose

estimation. They achieve a large computation gain by sub-

stituting pixel-wise classification with the estimation of the

probability distribution to the direction towards a particular

joint. Meanwhile, in [24, 37] large synthetic depth human

motion datasets are introduced, leading to CNN-based body

part estimators from depth data.

Generative approaches, also known as body pose track-

ers, attempt to track the human pose by fitting an articulated

human body template to the observed data. The pose of the

body template is described by a pose vector and the fitting

process involves the estimation of the optimal values of the

vector that minimize an objective function, which expresses

the similarity between the input data and the human tem-

plate for a given pose. While they do not require any prior

training, generative approaches do need a rough initial pose

of the body, so that the optimization algorithm will be able

to converge to the actual pose during the initialization step.

Ganapathi et al. [16] use a Dynamic Bayesian Network

to model human body motion, which is modeled as a col-

lection of linked 3D capsules, and introduce an enhanced

ICP-based model [9] that utilizes free space constraints,

termed “Ray-Constrained ICP Model”, by applying Cham-

fer distance transforms. A generalization of Signed Dis-

tance Functions (SDF) [12] for articulated objects is intro-

duced by Schmidt et al. [32]. Objects are represented by

a symmetric version of the articulated SDF in 3D space,

which can be precomputed, allowing for a dense represen-

tation of the data and gradient based optimization is em-

ployed to estimate the optimal pose, taking into consider-

ation free space constraints similar to [16]. Ye and Yang

[41] relate the observed data to a realistic skinned body

template by assuming that the observed point cloud fol-

lows a Gaussian Mixture Model (GMM), while simultane-

ously performing shape adaptation by optimizing the hu-

man template in regard to limb length and body part geom-

etry. The pose estimation and shape adaptation problem is

then solved iteratively using the Expectation-Maximization

(EM) algorithm. Towards achieving high performance for

non-GPU optimized implementations, a Generalized Sum-

of-Gaussians (G-SOG) model for human shape modeling

is presented in [11]. The observed data are represented by

isotropic Gaussians through octree partitioning, and a mul-

tivariate Gaussian kernel correlation-based objective func-

tion is optimized by employing a Quasi-Newton algorithm.

Hybrid approaches have also been proposed, combining

single-shot estimators with articulated trackers. In these

methods, pose tracking is usually performed through gen-

erative techniques, while discriminative algorithms work

complementary to the main tracker proposing potential

joint positions for faster convergence, initializing the pose

tracker or recovering it from failure, leading to an overall

improvement in robustness and accuracy, increasing, how-

ever, the implementation complexity as well.
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Wei et al. [39] use a gradient-based optimizer to track

the human pose, and combine it with a randomized decision

trees-based body part detector similar to [33], used only for

initialization and tracking failure recovery. In a similar fash-

ion, Ganapathi et al. [15] also utilize a gradient-based op-

timizer, modeling the system as a DBN, similar to [16], in

conjunction with the body part detector from [28]. How-

ever, in contrast to [39], the body part proposals are taken

into consideration in every frame and not only during the

initialization/reset phase. In [34], the authors further extend

the random forests-based approach by learning to predict di-

rect correspondences between input image pixels and a 3D

articulated mesh model, with the optimization process be-

ing handled by a Quasi-Newton algorithm. Baak et al. [3]

provide a rough pose estimation by selecting the pose most

similar to the observation, from a database of pre-rendered

mesh models, using the feature extraction algorithm from

[28]. The final human pose is extracted by fusing the two

alternative pose hypotheses, from the generative and the

discriminative components, through a novel voting scheme

based on sparse Hausdorff distance. Database lookup is also

employed in [40], where PCA of normalized depth images

is used to find an initial rough pose, which is then further

refined through non-rigid registration between the observed

point cloud and the estimated human pose.

Despite the significant progress in the domain of hu-

man pose estimation and tracking, there are still challenges

that need to be overcome in order to achieve robust per-

formance in real-life applications, especially in the scope

of robotic applications for assisted living, where constraints

in the available camera FOV due to the robot’s positioning

can severely hinder the accuracy of the body part estima-

tion and tracking techniques [26, 29]. Towards this end, the

main contributions of this paper are: (1) a real time hybrid

human pose estimation and tracking framework with incor-

porated body part visibility and intersection models, (2) a

tracking initialization and failure detection module, (3) a

large object handling technique, (4) a custom human mo-

tion dataset captured under realistic conditions. The pro-

posed framework is also comparatively evaluated in three

public human motions datasets, achieving state-of-the-art

performance, while also presenting promising results in un-

constrained environment settings.

3. Articulated human pose tracker

The framework’s human pose tracker employs the artic-

ulated SDF model [32] and uses an articulated skinned hu-

man template to track the human pose in sequences of depth

images, extracting the 3D positions of the skeletal joints.

3.1. Articulated Human Template

The articulated human template used in our approach is

created using the MakeHuman open source tool [35] and

Figure 1. Human template customization. Left: [g=1,s=1], Right

[g=1.2, s=1.5]

includes a skeleton composed of 13 rigid body parts con-

nected to each other in a kinematic tree through 10 joints,

along with 13000 vertices, each one rigidly attached to a

single skeleton body part, which represent the shape of the

human body.

The template pose is described through a pose vector

θ = [t0, q0, q1, ..., q10] which includes the rotation of each

body part q1...10 relative to its parent, along with the global

rotation q0 and translation t0 of the template with refer-

ence to the camera frame. For efficiency reasons and to

avoid the problem of gimbal lock [1], the relative rotations

of each body part are represented in the pose vector using

unit quaternions. Given a pose θ0, the transformation ma-

trix Ti,0 of a body part i in relation to the camera frame

can be defined recursively by composing the transforms in

a chain:

Ti,0 (θ0) = Tprt(i),0 (θ0)Ti (θ0) (1)

where Ti the transormation matrix of body part i in relation

to its parent prt(i) .

Two shape factors are also introduced to allow the dy-

namic manipulation of the shape of the template: a global

scale factor g which uniformly resizes the model, to account

for variations in height and limb length, and a width factor

s which alters the position of the skin vertices in order to fit

on silhouettes of humans with variable body fat (Figure 1).

3.2. SDF­based tracker

The SDF-based human pose tracker attempts to mini-

mize the sum of the distances between the 3D points of an

observed point cloud and the 3D points of the mesh of the

human template. In traditional ICP algorithms, this requires

the explicit nearest point computation for each of the input

cloud points. However, it is possible to remove the need

for this taxing process by using implicit surface representa-

tions in the form of precomputed signed distance functions

[14], which replaces nearest point computation with a much
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faster lookup in the SDF. This approach is further extended

in [32] with the introduction of an articulated model signed

distance function SDFmod (x,θ) : R3 → R, which de-

fines for all x ∈ R3 the distance to the surface of a model

when articulated according to the pose vector θ. Thus the

pose estimation process is achieved by estimating the pose

vector θ̂ that minimizes the tracker energy function:

θ̂ = argmin
θ

SDFmodel (θ)

= argmin
θ

∑

x∈Ω

SDFmod (x,θ)
(2)

where Ω the input 3D point cloud.

3.2.1 Model representation

For each rigid body part i of the human template, the 3D

mesh points rigged to it form a geometry defined implicitly

by a signed distance function SDF i (x,θ) : R3 → R [12],

which takes on negative values inside the geometry, positive

values outside, and has a zero value at the surface interface.

This allows to approximate the global signed distance func-

tion SDFmod (x,θ), as a composition of the precomputed

local signed distance functions SDF i (x,θ), which allevi-

ates the need to re-compute the full global SDF every time

the pose is updated.

3.2.2 Data Association

In order to calculate the value of the energy function

SDFmodel (θ) for a given pose θ0 the following steps are

followed, similarly to [32]:

1. Transformation of the observed point cloud to body

part space: All the points of the input point cloud are

transformed to the local coordinates system of each

rigid body part

2. SDF lookup: For each point of the input point cloud,

the distance of the closest point on the surface of each

body part is estimated by trilinear interpolation of the

precomputed SDF of each body part

3. Body part assignment: Based on the distances esti-

mated in the previous step, each point of the input

cloud is assigned to a body part. If the distance is larger

than dthresh, the point is discarded as an outlier. The

sum of the distances of each point to its corresponding

body part is the value of the energy function.

3.2.3 Optimization

For the estimation of the optimal pose, a Quasi-Newton

method is employed, using the BFGS algorithm [25], which

in contrast to the Gauss-Newton algorithm used in [32], can

Figure 2. Pose correction through the complementary tracking fea-

tures. Left: free space violation, Center: leg intersection, Right:

body part visibility in occluded view; instead of converging to the

visible right leg, the left occluded leg remains stationary.

minimize any general real-valued function f(x) instead of

only nonlinear least-squares problems.

A Quasi-Newton optimization method uses an iterative

approach to arrive at a minimal function value, similar to

gradient descent or Newton’s method for optimization, re-

quiring the Hessian of the function in order to estimate the

direction of the line-search algorithm. Instead of explic-

itly supplying the Hessian, Quasi-Newton methods approx-

imate the matrix using rank-one updates specified by gradi-

ent evaluations, which are simpler to evaluate. The gradi-

ent values are calculated by estimating the data association

error for each point, as described in Subsection 3.2.2, and

explicitly computing the first derivatives according to the

kinematic model structure and current pose estimate. The

resulting pose step ∆θ then updates the current pose esti-

mate, and the algorithm iterates as needed until it meets a

convergence criterion (|∆θ| ≈ 0), which means that the

optimization process has converged to a final pose vector.

4. Complementary tracking features

A series of complementary tracking features are intro-

duced herein, in order to increase the overall robustness and

accuracy of the framework’s main tracking algorithm, de-

scribed in Section 3, when operating under real life moni-

toring conditions (Figure 2).

4.1. Free space violation

Free space violation occurs when a part of the human

template does not correspond to any of the input data and

ends up “floating” in free space (Figure 2). To avoid this

issue a free space constraint is introduced. Specifically, the

2D-SDF of the input depth image is computed [12]. Next,

the deformed template is projected on the image, with each

vertex of the template contributing towards a free-space er-

ror SDFfs(θ), based on the value of the corresponding

pixel on the 2D-SDF image. As a result, the energy min-

imization function (2) takes the form:
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SDFoverall (θ) = SDFmodel (θ) + λSDFfs (θ)

θ̂ = argmin
θ

SDFoverall (θ)
(3)

where λ ≤ 1 a weighing factor, which while not affect-

ing the detection accuracy, helps the optimization algorithm

converge faster to a pose, reducing the number of iterations.

4.2. Body part visibility

Commonly encountered in realistic environments is the

occlusion of body parts due to obstacles and constraints of

the camera’s FOV. In order to ensure that in such cases only

the visible body parts are used in the optimization process,

a preprocessing step is employed, which calculates the vis-

ibility of each body part before moving to the optimization

step. Specifically, the last tracked skeleton pose is projected

on the camera’s image plane and any body parts that are

outside the camera’s FOV or do not have valid depth ob-

servations in their surroundings pixels, are considered non-

visible. For body parts without any children (lower arm,

shin, head), visibility is determined by the position of that

part’s endpoint, while for the rest of the body parts the mid-

point is used. Non-visible body parts are not taken into

consideration during the optimization process, by setting to

zero the contribution of their corresponding 3D points to the

energy function SDFoverall(θ):

SDF i (x,θ) = 0 x ∈ Ωi, ∆qi = 0 (4)

where i the non-visible body parts, Ωi the input points that

correspond to part i and qi the quaternion that describes its

relative rotation in the pose vector θ.

4.3. Leg intersection

Mix-up of the lower limbs can sometimes be observed

(Figure 2), especially in cases of noisy observations be-

tween the legs (due to long distance from the camera or

baggy clothes) or quick turn-arounds of the human which

may create a local minimum that “traps” the optimization

algorithm.

To counteract this issue, a leg intersection fix is em-

ployed. Using a body part representation similar to [34],

each of the four lower body parts of the human template

(hip R/L and shin R/L), is approximated by 7 spheres s

(center cs, radius rs) equally spaced along the body part.

For a given pose θ, intersection between spheres s, t occurs

when |cs (θ)− ct (θ) | < rs + rt, thus we introduce the leg

intersection error defined as:

Eintr(θ) =
∑

(s,t)∈P

1

1 + e−(rs+rt−|cs(θ)−ct(θ)|)γ (5)

where P is the set of pairs of spheres and γ a normalization

factor.

In contrast to [34], where the intersection error is incor-

porated within the optimization process, we opt to execute

the leg intersection correction at post-processing, taking ad-

vantage of the fact that only two subcases need to be taken

into consideration (mix up between R/L hip or R/L shin).

Specifically, if the error for the current pose is found larger

than a threshold EI , it is recalculated for two more poses:

a) R/L knees interchanged and b) R/L ankles interchanged,

with the pose that produces the minimum error retained

as the optimal pose. Moving the intersection fix at post-

processing ensures that any potential leg intersections will

be fixed and removes the need to recalculate the error in

each optimization iteration.

5. Framework initialization

The use of the BFGS algorithm, as with any iterative op-

timization technique, presents the risk of the optimization

process converging to a minimal function value that does

not correspond to the actual human pose, due to the fact

that the objective function is not convex and can present lo-

cal minima. As a result, it becomes essential that the track-

ing process begins from a pose close enough to the actual

pose of the human.

To this end, a two-step initialization process is intro-

duced herein, using as input the human pose estimation pro-

vided by the Kinect v1 built-in skeleton tracker [33] (Fig-

ure 3), in order to initialize the human template in the first

frame of a tracking sequence. First the scale, global rota-

tion and translation of the human template related to the

camera frame are calculated, by estimating the rigid trans-

formation between the torso area of the template (formed

by the hips and shoulders joints) and the corresponding area

of the observed human, taken from the Kinect v1 skeleton

tracker. Next, each of the human template’s body parts are

initialized. Similarly to the main optimization process of

the pose tracker (Sub-section 3.2.3), the initial pose θinit is

estimated by minimizing, using the BFGS solver, the initial-

ization energy function which is defined as the sum of the

distances between the corresponding joints of the template

and the target skeleton provided by the Kinect v1 skeleton

tracker:

θinit = argmin
θ

∑

i

|jti (θ)− jti,init| (6)

where jti(θ) and jti,init are the 3D positions of the joint i

of the template and the initialization skeleton respectively.

5.1. Tracking confidence and re­initialization

After the conclusion of the initialization process, the

pose tracker functions independently, using as an initial

pose the pose estimated in the last frame. In order to en-

sure, however, that the last tracked pose is indeed correct
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Figure 3. The initialization pipeline of the human pose tracker

Figure 4. High (left) and low (right) confidence pose tracking. De-

formed human template in red, input human silhouette in grey

and the optimization process did not converge to a wrong

human pose, a metric is introduced to monitor the quality of

the tracking process. The tracking confidence is estimated

by projecting the deformed human template on the camera’s

image plane, taking into consideration only the visible body

parts, and calculating its overlay ratio in respect to the in-

put image. If the confidence score falls below a threshold,

the estimated pose is considered incorrect (Figure 4) and the

tracker is re-initialized.

6. Large object handling

Handling of objects by the monitored human is a very

common scenario in realistic environments. In the case of

small handheld objects, such as a cup, it does not signifi-

cantly impact the accuracy of the pose tracking algorithm.

However, when large objects, such as a cupboard door, are

incorporated inside the foreground data that is passed to the

algorithm, the optimization process can lead to erroneous

results, as the optimizer tries to match the human template

to the input human and the large object simultaneously, thus

making it necessary to remove any non-human data from

the input. Such cases are of particular importance for ser-

vice robots that monitor human activities (e.g. cooking) in

the context of assistive applications.

Towards this end, a data preprocessing step is intro-

duced. Specifically, the last successfully tracked human

silhouette, along with a small buffer zone, is projected on

the new input depth image. Any large areas that do not

overlap with the human silhouette are considered as candi-

date large objects. Taking advantage of the fact that large

objects tend to be smooth surfaces (i.e. doors, tables etc),

Figure 5. Data preprocessing for large object removal. The input

image is split in three regions: blue - overlap with the last tracked

human silhouette, red - buffer zone, green - candidate large object

area which provides the seeds for the flood-fill algorithm. The

image on the right is the processed image passed to the optimizer

the flood-fill algorithm is used on the depth image, seeded

from the center point of each candidate area, in order to re-

move any large objects in the scene. The threshold value

for the flood-fill algorithm is set to a relatively low value to

ensure that no parts of the actual human will be removed,

resulting in small parts of the object being left in the scene

as well, without, however, significantly impacting the algo-

rithm’s accuracy anymore. Figure 5 presents an example of

the large object removal process.

7. Experimental evaluation

Following the evaluation process employed in the rele-

vant literature, the metrics used for the experimental evalu-

ation of the proposed framework are: a) Average Distance

Error (ADE): Average distance between the ground truth

and the estimated joint positions, and b) Mean Average Pre-

cision at 0.1m (mAP): Percentage of body joints where the

distance between the ground truth and the estimated joint

position is less than 0.1m. In all the experimental sequences

a generic human model is used, which is initialized in the

first frame using the ground truth data, while the proposed

framework performs at an average framerate of 24fps on a

modern CUDA-enabled GPU. Detailed experimental results

can be found in the supplemental material.

7.1. Individual components evaluation

Two small-scale experiments are conducted, using sub-

sets of the publicly available PDT [17] dataset, in order to

evaluate the effectiveness of the body part visibility and leg

intersection features.

The body part visibility component is tested in sequences

of moderate lower body motion complexity, with the lower

body parts being artificially occluded, by removing all the

input data below the subjects’ hips. Enabling the visibil-

ity component does not affect significantly the upper body

parts’ accuracy (disabled: [ADE 0.030, mAP 0.983] - en-

abled: [ADE 0.032, mAP 0.974]), which is expectable as all

the upper body parts are visible throughout the testing se-
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Figure 6. Framework performance on three public datasets. Top - comparison to state-of-the-art methods (results as reported by their

authors), Bottom - ADE per-joint

quences. For the occluded lower body parts, on the other

hand, there is a clear increase in accuracy when enabling

the body part visibility component (disabled: [ADE 0.283,

mAP 0.366] - enabled: [ADE 0.204, mAP 0.389]). While

the improvement in mAP is not significant, which is to be

expected since it is hard to reach the 0.1m threshold with-

out any information about the body parts, there is major im-

provement in the ADE of almost 8cm, which indicates that

the body part visibility component keeps the occluded body

parts closer to their actual position, increasing the probabil-

ity of the tracker correctly tracking the occluded body parts

once they reappear.

The leg intersection feature is tested in sequences with

relatively complex leg movement. With the intersection fea-

ture disabled, the tracker sometimes mixes the lower body

parts and keeps them mixed throughout the sequence, re-

sulting in low accuracy for the four leg joints (R/L knee, R/L

foot): ADE 0.094, mAP 0.814. However, enabling the leg

intersection feature limits the leg mix-up to a few frames,

significantly increasing the lower body accuracy to: ADE

0.041, mAP 0.941.

7.2. Public datasets

The overall developed pose tracking method is evalu-

ated using three publicly available human pose tracking

datasets: SMMC-10 [15], EVAL [16] and PDT [17]. All

three datasets were recorded using a TOF/depth camera,

and include single subjects performing sequences of vari-

able motion complexity and human pose ground truth data

provided from a marker-based motion capture system.

Figure 6 presents the performance comparison between

our framework and current state-of-the-art methods (as re-

Figure 7. Sample frames from the evaluation on public datasets.

ported by their authors), along with the per-joint accuracy

for each of the three datasets. From the experimental results

it becomes evident that the proposed framework performs

comparably to other state-of-the-art methods, approaching

the accuracy of the top performers in the SMMC-10 and

EVAL datasets, while slightly outperforming them in the

PDT dataset.

7.3. Realistic human motion dataset

In order to evaluate the overall performance and robust-

ness of the proposed framework in real-life monitoring con-

ditions, a realistic human-motion dataset1 is captured, since

the public datasets used in subsection 7.2 were recorded in

controlled laboratory environments and lack in challenges

encountered in unrestrained real-life settings.

The dataset is captured using a Kinect v1 depth camera

positioned on-board of a service robot at height h ≈ 1.2m,

simulating scenarios where the subject’s domestic activities

are monitored by an assistive service robot. In total 11 sub-

jects (10 male, 1 female) perform a series of everyday ac-

tions in a single 1.5-minute long sequence including: inter-

1available online: http://www.ramcip-project.eu/

ramcip-data-mng
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Figure 8. Sample frames from the realistic human motion dataset,

with manually annotated ground truth data.

action with large (i.e cupboard door) and small (i.e. pillbox)

objects, sitting on a chair, eating while occluded behind a

table, moving around the room near the FOV limits or ex-

tremely close/far from the camera etc. This resulting human

motion dataset incorporates, in contrast to currently avail-

able public datasets, many of the challenges encountered in

real life scenarios, such as: occlusions due to the presence

of obstacles, out-of-FOV clipping, noisy observations due

to object handling, decreased sensor accuracy due to long

camera/subject distance, long-duration side-view tracking,

non-frontal complex initialization poses, large variety in hu-

man body shape and more, creating a realistic benchmark

for the evaluation of human pose estimation techniques in

real-life settings.

Ground truth annotation is performed manually on the

recorded data, by selecting and 3D projecting 9 skeleton

joints: head, R/L elbow, R/L hand, R/L knee, R/L ankle.

The selection of the joints is based on ensuring consistency

among consecutive frames (i.e. a torso joint would be hard

to track consistently), while annotation is performed every

10 frames and includes only joints visible in the specific

frame. Figure 8 shows some sample frames from the realis-

tic human motion dataset.

The proposed framework is tested on the realistic human

motion dataset, achieving promising results: ADE 0.075,

mAP 0.825, and clearly outperforming the Kinect built-

in pose estimator (NITE 2.2 middleware [31]2). Figure 9

presents the detailed results, while Figure 10 shows some

sample frames from the evaluation process.

8. Future work and conclusions

This paper introduces a human pose estimation and

tracking framework capable of accurate and robust real time

performance in real-life applications, targeting mainly the

domain of robotic applications for assisted living. The

framework builds upon the articulated-SDF tracking ap-

proach and further enhances its robustness by introducing

a series of complementary mechanisms to tackle problems

that arise under real-life conditions, such as tracker initial-

ization and failure, pose tracking from partial-views, large

2while the NITE algorithm has not been published, its functionality and

performance approach the ones of Shotton et al. [33, 5]

Figure 9. Comparison of per-joint ADE and mAP with the Kinect

built-in pose estimator (NITE 2.2 middleware [31]) on the realistic

human motion dataset.

Figure 10. Sample frames from the evaluation on the realistic hu-

man motion dataset: Red - proposed framework, Green - Kinect

built-in pose estimator (NITE 2.2 middleware [31])

object handling and body part intersection. Through exper-

imental evaluation on a new realistic human motion dataset,

specifically targeting these problems, the proposed frame-

work is found to outperform currently available pose esti-

mation techniques.

Future improvements of the proposed framework may

include incorporation of the discriminative estimator within

the optimization process and enhancement of the accuracy

utilizing CNNs [24, 37], which have achieved impressive

results in identification tasks [20]. Further elaboration of

the data preprocessing algorithms can also increase robust-

ness, while from a h/w standpoint, performance modelling

on various architectures may potentially provide significant

benefits, as achieving robust and accurate pose estimation

on lower-spec h/w can be of major significance in the case

of applications where the available processing power is lim-

ited, such as autonomous robots.
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