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WE HAVE STRATEGICALLY INCORPORATED THREE DIFFERENT FLUOROPHORES AT TREN TO CONSTRUCT A MULTI-ENERGY 

DONOR/ACCEPTOR “SMART”  PROBE L. THIS PROBE OPERATES BY USING THREE DIMENSIONAL SCALES (response time, 

wavelength and fluorescence intensity) which allows for the SELECTIVE RECOGNITION AND DISCRIMINATION OF 

THE IONS Cu2+, Hg2+, Fe3+ and F-. 

 

Fluorescent probes are widely used as powerful tools for molecular recognition due to their high selectivity, sensitivity, 

simplicity in manipulation and their capacity for real-time imaging and non-destructive nature.1 Over the past few 

decades, various fluorescent probes have been developed, based on different mechanisms such as photoinduced 

electron transfer (PET),2 excimer/exciplex formation or extinction (Excimer),3 intramolecular charge transfer (ICT),4 

aggregation induced emission (AIE) 5 and fluorescence (Förster) resonance energy transfer (FRET). 6 Based on their 

differing analytical capabilities, such probes can recognize a mono-target guest,7 di-target guests,8 tri-target guests9 

and even more. They  can be prepared by either organic synthesis10 or inorganic synthesis (quantum dot).11 However, 

despite the diversity of probes reported, they all function basically by using either fluorescence wavelength or intensity 

changes (two dimensional scales). Herein, we would like to introduce the use of three dimensional scales (time, 

wavelength and intensity) for the selective recognition and discrimination of guest ions using the FRET fluorescent 

probe L. To the best of our knowledge, this type of fluorescent probe has not been reported previously. 

The multi-energy donor and acceptor “smart” probe L, incorporates three different fluorophores, i.e. 7-hydroxy-2-

oxo-2H-chromene-8-carbaldehyde (Coumarin), 7-nitrobenz-2-oxa-1,3-diazole (NBD) and rhodamine-B (Rh-B), which 

act as the excitation energy donor and acceptor components (Fig. 1). The fluorophores were selected based on the 

spectral overlap between the radiative emission of the donor and the absorbance of the acceptor (Fig. S4); this can 

efficiently induce fluorescence resonance energy transfer (FRET). The three different fluorophores were introduced in 

three steps; synthetic details are given in the supporting information (Scheme S1). L has been fully characterized by 
1H and 13C NMR spectroscopy and by mass spectrometry (Figs. S1 ~ S3). 

For fluorescent probes, both high selectivity and sensitivity are important attributes. Herein, there are two possible 

donor groups, i.e. coumarin and NBD, in other words, there are two different excitation wavelengths λex (Coumarin) = 365 

nm and λex (NBD) = 470 nm. Hence, we initially investigated the selectivity and sensitivity of probe L by the fluorescent 

method at the excitation wavelength of coumarin (λex (Coumarin) = 365 nm, Fig. 2a). Probe L (20 M) exhibited almost 

no fluorescence in CH3CN/H2O (97/3, v/v, pH = 7) due to the PET process. Upon the addition of various  metal 

cations (Li+, Na+, K+, Ag+, Mg2+, Ca2+, Sr2+, Ba2+, Zn2+, Co2+, Ni2+, Pb2+, Hg2+, Cu2+, Cr3+, Al3+ and Fe3+), there were 

no detectable changes, except on addition of Hg2+, Fe3+ and Cu2+. In particular, the addition of Hg2+ resulted in an 

immediate (within 2 mins a 100-fold increase) acute fluorescent enhancement at 585 nm (the characteristic emission of 

Rh-B due to the spirolactam ring-opening), which was accompanied by a stable orange coloured “turn on” 

fluorescence under a UV-vis lamp (365nm). This indicated that 

the Rh-B spirolactam ring was opened and resulted in an effective FRET process. Interestingly, in the presence of Fe3+ 

and Cu2+, there is a slower start to the process (Fig. 2b). Over time, the presence of Fe3+ starts to induce a slow 

fluorescent enhancement at 525nm and 585 nm. After about 75 min, a stable fluorescence emission is achieved, and its 

intensity at 585 nm is higher than that observed in the presence of Hg2+. In contrast, the presence of Cu2+ did not bring 

about a significant fluorescent change at 585 nm even over longer time periods, but did trigger a gradually 

fluorescence increase at 525 nm (the characteristic emission of NBD). It also reached a plateau after about 100 

minutes, and a stable green colour fluorescence can be observed. All of these observation indicated that probe L can 
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initiate three different FRET recognition modes dependent on the different target ions present, viz recognition of Hg2+ 

via the Rh-B moiety (585 nm), Fe3+ via both the Rh-B (585 nm) and NBD moieties (525 nm), whilst Cu2+ is only 

through the NBD moiety (525 nm). Similar phenomenon can be observed when we tuned the excitation wavelength to 

470 nm (λex(NBD)), except that the fluorescence intensity was stronger (Fig. S5). This stronger fluorescence maybe 

attributed to the fact that the overlap of the spectral area of NBD/Rh-B is larger than that of coumarin/Rh-B (Fig. S4), 

which resulted in a higher efficient FRET process.  

In order to investigate these three different FRET “OFF-ON” systems, fluorescent titration experiments have been 

carried out. Upon increasing the concentration of Hg2+ in a solution of probe L (Fig. 3a), the emission maximum 

shifted from 525 nm (characteristic of NBD, weak emission due to the PET effect) to 585 nm (characteristic of Rh-B, 

the acute enhancement is attributed to the Hg2+-induced FRET) via an intermediate chelation process with a 

characteristic emission band at about 555 nm (upon addition of 0.1 equiv. of Hg2+). It reached equilibrium after the 

addition of 1.0 equiv. Hg2+ which suggested a 1:1 complex stoichiometry for the Hg2+·Rh-B—L complex (Fig. 3a 

inset). Interestingly, when Fe3+ was added to the solution of probe L, at the beginning (0 to 1.0 equiv.), there was no 

significant fluorescence change at 585 nm, but it did exhibit a detectable fluorescent enhancement at 525 nm which 

maybe ascribed to the inhibition PET process of the NBD fluorophore (Fig. 3b). On increasing the concentration of 

Fe3+ from 1.0 to 2.0 equiv., a dramatically fluorescence enhancement was observed at 585 nm, which indicated the 

Fe3+-induced spirolactam ring-opening of Rh-B moiety during this process. Further increasing Fe3+ ( >2.0 equiv.) did 

not bring  

any significant changes in the fluorescent spectrum, which suggested that the complex system had reached 

equilibrium. Hence, these observation indicated that there is a two-step complex process for probe L and Fe3+: firstly, 

probe L complexes with one equiv. of Fe3+ through the NBD moiety forming an Fe3+·NBD—L intermediate complex, 

and then further complexes Fe3+ through the Rh-B moiety to form the final stable 1:2 Fe3+·NBD—L—Rh-B·Fe3+ 

complex. It is perhaps this two-step complex process which results in the longer observed response time for the 

detection of Fe3+ by probe L. The significant emission at 585 nm (Rh-B) and a relatively weaker emission band at 525 

nm (NBD) appeared, which suggested that two FRET processes were occurring between coumaring-Rh-B and 

coumaring-NBD. However, on increasing the amount of Cu2+ cation in the solution of probe L, a green fluorescence 

was induced which was ascribed to the emission of the NBD fluorophore at 525 nm (Fig. 3c, to more fully explore the 

complexation process, the 470 nm excitation titration results are shown.). The results strongly suggest that the probe 

L·Cu2+ complex was formed through the NBD moiety, i.e. Cu2+·NBD—L. The 1:1 complex stoichiometry for Cu2+·L 

complex was supported by a Job’s plot (Fig. S6). 

 On the other hand, in order to fully investigate the recognition capability of probe L, studies of probe L towards 

anions have been carried out in CH3CN solution (Fig. 4). Regardless of whether 365 nm or 470 nm were employed as 

the excitation wavelength, there was only a very weaker fluorescence at about 525 nm (Iλ365 nm = 30 and Iλ470 nm = 95) for 

probe L. Interestingly, upon the addition of F- anions, the different excitation wavelength resulted in different 

phenomenon. When 365 nm was employed as the excitation wavelength, the fluorescence exhibited an acute increase 

at 460 nm, which indicated that the coumarine participates in the complexation of F- (Fig. 4a). In contrast, when 470 

nm was selected as the excitation wavelength, the fluorescence at 525 nm decreased upon the addition of F- which 

suggested that the NBD moiety also participated in the complexation process (Fig. S7). The fluorescent titration 

experiments revealed the detail complex process (Fig. S8), namely that the F- anion was complexed by the OH group 

at the coumarine moiety and the NH group at the NBD moiety via hydrogen bonding. This binding interaction locks 

the C=N bond of probe L in place, preventing its rapid isomerisation and switching the fluorescence ‘on’. 

To further investigate the practical applicability of probe L (20 M) as a Hg2+, Fe3+, Cu2+ and F- ion selective 

fluorescent probe, competitive experiments were carried out. As shown in Fig. S9, no significant interference to the 

selective response of probe L to Hg2+, Fe3+, Cu2+ or F- ion were observed in the presence of any of the other ions 

employed herein when using the three dimensional scales (time, wavelength and intensity) method. Upon the addition 

of probe L to the detection solution, if we observed an acute enhancement and stable fluorescence at 585 nm (orange 

coloured solution) over two minutes, this is suggestive of the presence of Hg2+. By contrast, if we observe a gradual 

enhancement (over about 100 min) at 585 nm and 525 nm, this is consistent with the presence of Fe3+; on the other 

hand, if we only observe a fluorescence enhancement at 525 nm (a green coloured solution), this suggests the presence 

of Cu2+. Furthermore, if we observe a fluorescent enhancement at 460 nm (a cyan coloured solution), this indicates the 

presence of F- anion. In other words, probe L can act as a highly efficient three dimensional scale fluorescent probe for 

the recognition and discrimination of Cu2+, Hg2+, Fe3+ and F- ions. 

Under the optimal conditions, the detection of linear relationships and limits of detection (LOD = 3 /slope) for 

probe L with Hg2+, Fe3+, Cu2+ and F-  are summarized in Table S1. This data suggests that probe L is also a sensitive 

fluorescent probe for the recognition and discrimination of these four ions. A binding analysis using the method of 

continuous variations established a 1:1 for L·Hg2+, 1:2 for L·2Fe3+ and 1:1 for L·Cu2+ complex formation. The 

complexations were further confirmed by MALDI-TOF mass spectrometry. Mass peaks at m/z 1105.28056 (calculated 

value 1105.34104), m/z 1017.25709 (calculated value 1017.25594) and m/z 969.30535 (calculated value 969.32349) 

were observed, which corresponded to [L + Hg -2 H]+, [L + 2Fe]6+ and [L + Cu + H]3+ complexes (Fig. S10), 

respectively. Combining all of these observation, we proposed the possible binding mode for L·Hg2+, L·2Fe3+, L·Cu2+ 

and L·F- as shown in Figure 5. 
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The capability of probe L to detect Hg2+, Fe3+ and Cu2+ within living cells was investigated by fluorescence 

imaging on a fluorescent inverted microscope. Bright-field measurements confirmed that the cells, after being treated 

with Hg2+, Fe3+, Cu2+ and L, were viable throughout the imaging experiments. In the control experiment, human 

prostatic cancer cells (PC3) with a 10 μM probe L over 50 min led to negligible intracellular fluorescence (Fig. 6a and 

6b). When the cells were first incubated with 10 μM probe L for 50 min, and then further treated with 50 μM of metal 

ions (Hg2+, Fe3+ or Cu2+) for another 40 ~ 50 min, a significant increase in the fluorescence from the intracellular area 

was observed (Fig. 6c, ~ 6f). These results demonstrate that the probe is permeable to cells, binds to intracellular Hg2+, 

Fe3+ and Cu2+, and emits strong fluorescent light, and thus it is highly suitable for determining intracellular Hg2+, Fe3+ 

and Cu2+ ions. The responses to Hg2+, Fe3+ and Cu2+ ions exhibited distinctly different colours (red and green, 

respectively) for the cell samples and this raises the prospect that the Hg2+, Fe3+ or Cu2+ ions could be simultaneously 

determined. 

In conclusion, a multi-analyse probe L for the recognition and discrimination of the four ions  Hg2+, Fe3+, Cu2+ and 

F-, without any interference from other potentially competing ions according to their response time, max wavelength 

and fluorescent intensity, has been successfully obtained. Cell imaging demonstrated that probe L can be further used 

for monitoring intracellular Hg2+, Fe3+ and Cu2+ levels in living cells. To the best of our knowledge, this is the first 

case of utilizing the three dimensional scales (time, wavelength and intensity) to recognize and discriminate different 

ions with a single fluorescent probe; previous reports normally involve the two dimensional scales (wavelength and 

intensity). Our study illustrates an effective and novel strategy to differentiate multi-analyses. This work provides a 

promising new strategy for the simultaneous detection of ions by one simple probe. 

This work was supported by the “Chun-Hui” Fund of Chinese Ministry of Education (Z2015007 & Z2016008), 

SIAT Innovation Program for Excellent Young Researchers (2017014) and the Innovation Fund of the Graduate 

Student of Guizhou University (2017002). 
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Figures and Captions 
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Figure 1. The molecular structure of probe L. 

 

 

Figure 2. (a) Fluorescence spectrum of probe L (20 M) with 20 equiv. of different metal ions (measured after equilibrium, λex = 

365 nm) in CH3CN/H2O (97/3, v/v, Tris-HCl, pH 7) solution; (b) The fluorescence intensity of probe L on addition of 20 equiv. of 

Hg2+ (λex/ λem = 365 nm/ 585 nm), Fe3+ (λex/ λem = 365nm/ 585 nm) or Cu2+ (λex/ λem = 365 nm/ 525 nm) as a function of time. 

 

 

 

 

 

 



 5 

 

 

 

 

Figure 3. Fluorescence spectral titration of probe L (20 μM) with Hg2+ (a), Fe3+ (b) and Cu2+ (c) in CH3CN/H2O (97/3, v/v, Tris-

HCl, pH 7, measured after stabilization) solution; Inset: the intensity of max wavelength versus the added equivalents of Hg2+ (a, 

λex/ λem = 365 nm/  585 nm), Fe3+ (b, λex/ λem = 365 nm/585 nm) and Cu2+ (c, λex/ λem = 470 nm/ 525 nm). 

 

 

 

Figure 4. Fluorescence spectrum of probe L (20 μM) with 10 equiv. of different anions (F-, Cl-, Br-, I-, NO3-, HSO4
-, H2PO4

-, ClO4
- 

and AcO-) in CH3CN solution; λex/ λem = 365 nm/ 460 nm. 

 

 

Figure 5. The proposed binding model of the probe L with Hg2+, Fe3+, Cu2+ and F- ions. 
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Figure 6. Fluorescence images of ions (50 μM) in live PC3 cells with probe L (10 μM). (a) images of cells incubated with probe L over 50 min 

at bright field; (b) fluorescence images of (a) in red or green channel; (c) fluorescence images of cells incubated with probe L over 50 min, then 

with Hg2+ over 40 min in red channel; (d) fluorescence images of cells incubated with probe L over 50 min, then with Fe3+ over 50 min in green 

channel; (e) fluorescence images of (d) in green channel; (f) fluorescence images of cells incubated with probe L over 50 min, then with Cu2+ 

over 50 min in green channel. Red channel: λex = 510 nm ~ 550 nm; green channel: λex = 450 nm ~ 490 nm. 


